Date of Award

August 2020

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Electrical and Computer Engineering (Holcomb Dept. of)

Committee Member

Yingjie Lao

Committee Member

Jon C. Calhoun

Committee Member

Shuhong Gao

Abstract

Polar code is a novel and high-performance communication algorithm with the ability to theoretically achieving the Shannon limit, which has attracted increasing attention recently due to its low encoding and decoding complexity. Hardware optimization further reduces the cost and achieves better timing performance enabling real-time applications on resource-constrained devices. This thesis presents an area-efficient architecture for a successive cancellation (SC) polar decoder. Our design applies high-level transformations to reduce the number of Processing Elements (PEs), i.e., only log2 N pre-computed PEs are required in our architecture for an N-bit code.

We also propose a customized loop-based shifting register to reduce the consumption of the delay elements further. Our experimental results demonstrate that our architecture reduces 98.90% and 93.38% in the area and area-time product, respectively, compared to prior works.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.