Date of Award

11-2012

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Computer Science

Committee Chair/Advisor

Pargas, Roy P

Committee Member

Dean , Brian

Committee Member

Sitaraman , Murali

Abstract

This dissertation describes a novel intelligent tutoring system, BeSocratic, which aims to help fill the gap between simple multiple-choice systems and free-response systems. BeSocratic focuses on targeting questions that are free-form in nature yet defined to the point which allows for automatic evaluation and analysis. The system includes a set of modules which provide instructors with tools to assess student performance. Beyond text boxes and multiple-choice questions, BeSocratic contains several modules that recognize, evaluate, provide feedback, and analyze student-drawn structures, including Euclidean graphs, chemistry molecules, computer science graphs, and simple drawings. Our system uses a visual, rule-based authoring system which enables the creation of activities for use within science, technology, engineering, and mathematics classrooms.
BeSocratic records each action that students make within the system. Using a set of post-analysis tools, teachers have the ability to examine both individual and group performances. We accomplish this using hidden Markov model-based clustering techniques and visualizations. These visualizations can help teachers quickly identify common strategies and errors for large groups of students. Furthermore, analysis results can be used directly to improve activities through advanced detection of student errors and refined feedback.
BeSocratic activities have been created and tested at several universities. We report specific results from several activities, and discuss how BeSocratic's analysis tools are being used with data from other systems. We specifically detail two chemistry activities and one computer science activity: (1) an activity focused on improving mechanism use, (2) an activity which assesses student understanding of Gibbs energy, and (3) an activity which teaches students the fundamentals of splay trees. In addition to analyzing data collected from students within BeSocratic, we share our visualizations and results from analyzing data gathered with another educational system, PhET.

Included in

Education Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.