Document Type

Article

Publication Date

7-2009

Publication Title

Eukaryotic Cell

Volume

8

Issue

7

Publisher

American Society for Microbiology

Abstract

Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. Vesicle trafficking events, such as phagocytosis and delivery of plasma membrane proteins, have been implicated in pathogenicity. Rab GTPases are proteins whose primary function is to regulate vesicle trafficking; therefore, understanding the function of Rabs in this organism may provide insight into virulence. E. histolytica possesses a number of unique Rabs that exhibit limited homology to host Rabs. In this study we examined the function of one such Rab, EhRabA, by characterizing a mutant overexpressing a constitutively GTP-bound version of the protein. Overexpression of mutant EhRabA resulted in decreased adhesion to and phagocytosis of human red blood cells and in the appearance of large tubular organelles that could be stained with endoplasmic reticulum (ER)-specific but not Golgi complex-specific antibodies. Consistent with the adhesion defect, two subunits of a cell surface adhesin, the galactose/N-acetylgalactosamine lectin, were mislocalized to the novel organelle. A cysteine protease, EhCP2, was also localized to the ER-like compartment in the mutant; however, the localization of two additional cell surface proteins, Igl and SREHP, remained unchanged in the mutant. The phenotype of the mutant could be recapitulated by treatment with brefeldin A, a cellular toxin that disrupts ER-to-Golgi apparatus vesicle traffic. This suggests that EhRabA influences vesicle trafficking pathways that are also sensitive to brefeldin A. Together, the data indicate that EhRabA directly or indirectly influences the morphology of secretory organelles and regulates trafficking of a subset of secretory proteins in E. histolytica.

Comments

This article has been published in the journal Eukaryotic Cell. Please find the published version here (note that a subscription is necessary to access this version):

http://ec.asm.org/content/8/7/1014.full?sid=45cc5e42-3822-4b18-aeac-f672d894bea6

Included in

Microbiology Commons

Share

COinS