Title

Electroplastic Modeling of Bending Stainless Steel Sheet Metal Using Energy Methods

Document Type

Article

Publication Date

8-2011

Publication Title

Journal of Manufacturing Science and Engineering

Publisher

ASME

Abstract

Automotive manufacturers are continuously striving to meet economic demands by designing and manufacturing more efficient and better performing vehicles. To aid this effort, many manufacturers are using different design strategies such to reduce the overall size/weight of certain automotive components without compromising strength or durability. Stainless steel is a popular material for such uses (i.e., bumpers and fuel tanks), since it possesses both high strength and ductility, and it is relatively light for its strength. However, with current forming processes (e.g., hot working, incremental forming, and superplastic forming), extremely complex components cannot always be easily produced, thus, limiting the potential weight-saving and performance benefits that could be achieved otherwise. Electrically-assisted manufacturing (EAM) is an emerging manufacturing technique that has been proven capable of significantly increasing the formability of many automotive alloys, hence the “electroplastic effect”. In this technique, electricity can be applied in many ways (e.g., pulsed, cycled, or continuous) to metals undergoing different types of deformation (e.g., compression, tension, and bending). When applied, the electricity lowers the required deformation forces, increases part displacement or elongation and can reduce or eliminate springback in formed parts. Within this study, the effects of EAM on the bending of 304 Stainless Steel sheet metal will be characterized and modeled for different die widths and electrical flux densities. In previous works, EAM has proven to be highly successful on this particular material. Comparison of three-point bending force profiles for nonelectrical baseline tests and various EAM tests will help to illustrate electricity’s effectiveness. An electroplastic bending coefficient will be introduced and used for modeling an electrically-assisted (EA) bending process. Additionally, the springback reductions attained from EAM will be quantified and compared. From this work, a better overall understanding of the effects and benefits of EAM on bending processes will be explained.

COinS