A Review of Electrically-Assisted Manufacturing With Emphasis on Modeling and Understanding of the Electroplastic Effect

Document Type


Publication Date


Publication Title

Journal of Manufacturing Science and Engineering




Increasingly strict fuel efficiency standards have driven the aerospace and automotive industries to improve the fuel economy of their fleets. A key method for feasibly improving the fuel economy is by decreasing the weight, which requires the introduction of materials with high strength to weight ratios into airplane and vehicle designs. Many of these materials are not as formable or machinable as conventional low carbon steels, making production difficult when using traditional forming and machining strategies and capital. Electrical augmentation offers a potential solution to this dilemma through enhancing process capabilities and allowing for continued use of existing equipment. The use of electricity to aid in deformation of metallic materials is termed as electrically assisted manufacturing (EAM). The direct effect of electricity on the deformation of metallic materials is termed as electroplastic effect. This paper presents a summary of the current state-of-the-art in using electric current to augment existing manufacturing processes for processing of higher-strength materials. Advantages of this process include flow stress and forming force reduction, increased formability, decreased elastic recovery, fracture mode transformation from brittle to ductile, decreased overall process energy, and decreased cutting forces in machining. There is currently a lack of agreement as to the underlying mechanisms of the electroplastic effect. Therefore, this paper presents the four main existing theories and the experimental understanding of these theories, along with modeling approaches for understanding and predicting the electroplastic effect.