Date of Award


Document Type


Degree Name

Master of Science (MS)


Electrical and Computer Engineering (Holcomb Dept. of)

Committee Chair/Advisor

Fatemeh Afghah

Committee Member

Linke Guo

Committee Member

Kuang-Ching Wang


The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To address the generalizability challenge faced by conventionally trained deep learning localization models, we propose the use of meta-learning-based approaches. By leveraging meta-learning, we aim to improve the models' ability to adapt to new environments without extensive retraining. Additionally, since meta-learning algorithms typically require diverse datasets from various scenarios, which can be difficult to collect specifically for localization tasks, we introduce a novel meta-learning algorithm called TB-MAML (Task Biased Model Agnostic Meta Learning). This algorithm is specifically designed to enhance generalization when dealing with limited datasets. Finally, we conduct an evaluation to compare the performance of TB-MAML-based localization with conventionally trained localization models and other meta-learning algorithms in the context of indoor localization.


I defended my thesis in July, I am not sure if I should choose August or July for the "Date of Award" section.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.