Date of Award

May 2021

Document Type


Degree Name

Master of Science (MS)


School of Computing

Committee Member

Ioannis Karamouzas

Committee Member

James (Zijun) Wang

Committee Member

Victor Zordan


The task of safely steering agents amidst static and dynamic obstacles has many applications in robotics, graphics, and traffic engineering. While decentralized solutions are essential for scalability and robustness, achieving globally efficient motions for the entire system of agents is equally important. In a traditional decentralized setting, each agent relies on an underlying local planning algorithm that takes as input a preferred velocity and the current state of the agent's neighborhood and then computes a new velocity for the next time-step that is collision-free and as close as possible to the preferred one. Typically, each agent promotes a goal-oriented preferred velocity, which can result in myopic behaviors as actions that are locally optimal for one agent is not necessarily optimal for the global system of agents. In this thesis, we explore a human-inspired approach for efficient multi-agent navigation that allows each agent to intelligently adapt its preferred velocity based on feedback from the environment. Using supervised learning, we investigate different egocentric representations of the local conditions that the agents face and train various deep neural network architectures on extensive collections of human trajectory datasets to learn corresponding life-like velocities. During simulation, we use the learned velocities as high-level, preferred velocities signals passed as input to the underlying local planning algorithm of the agents. We evaluate our proposed framework using two state-of-the-art local methods, the ORCA method, and the PowerLaw method. Qualitative and quantitative results on a range of scenarios show that adapting the preferred velocity results in more time- and energy-efficient navigation policies, allowing agents to reach their destinations faster as compared to agents simulated with vanilla ORCA and PowerLaw.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.