Date of Award

December 2020

Document Type


Degree Name

Master of Science (MS)


Mechanical Engineering

Committee Member

Fadi FA Abdeljawad

Committee Member

Huijuan HZ Zhao

Committee Member

Garrett GP Pataky

Committee Member

Marian MK Kennedy


High Entropy alloys (HEAs) are metal alloys consisting of multiple base metals in equimolar or near equimolar concentrations. HEAs exhibit unique combinations of properties that render them an attractive choice in many engineering applications. Among HEAs, a single phase face centered cubic (FCC) CoCrFeMnNi alloy, known as the Cantor alloy, shows simultaneous strength and ductility specifically at cryogenic temperatures. This has been attributed to the activation of deformation twinning as an additional mode of plastic deformation. Experimentally it has been observed that grain boundaries (GBs) facilitate the nucleation of deformation twins in HEAs. However, the role of GB geometry in the deformation behavior of HEAs remains unexplored. In this thesis work, we leverage atomistic simulations to systematically investigate the role of GB geometry in the deformation behavior of the Cantor alloy at 77 K. To this end, a series of Cantor alloy bicrystals with <110> and <111> symmetric twist GBs are constructed and used in tensile deformation simulations. Simulation results reveal that plastic deformation proceeds by the nucleation of partial dislocations from GBs, which then grow with further loading by bowing into the bulk crystals leaving behind stacking faults. Variations in the nucleation stress exist as function of GB character, defined in this work by the twist angle. Our results provide future avenues to explore GBs as a microstructure design tool to develop HEAs with tailored mechanical properties.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.