Date of Award

5-2008

Document Type

Thesis

Degree Name

Master of Science (MS)

Legacy Department

Mathematical Science

Advisor

Calkin, Neil J

Committee Member

Matthews , Gretchen L

Committee Member

Gallagher , Colin M

Abstract

Let M(n,s) be the number of nxn matrices with binary entries, row and column sum s, and whose rows are in lexicographical order. Let S(n) be the number of nxn matrices with entries from {0,1,2}, symmetric, with trace 0, and row sum 2. (The sequence S(n) appears as A002137 in N.J.A. Sloane's Online Encyclopedia of Integer Sequences.)
We give two proofs to show that M(n,2)=S(n). First, we show they satisfy the same recurrence. Second, we give an explicit bijection between the two sets. We also show that the bijection maintains the cycle structure of our matrices.
Let M_s(n,2) be the set of symmetric matrices in M(n,2). We will show M_s(n,2) satisfies the Fibonacci sequence.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.