Date of Award


Document Type


Degree Name

Master of Science (MS)

Legacy Department

Mechanical Engineering


Dadaq, Mohammed F

Committee Member

Vahidi , Ardalan

Committee Member

Li , Gang


This thesis introduces an electromagnetic vibratory energy harvester to power consumer electronics by generating electricity from the strides taken during walking or jogging. The harvester consists of a magnetic pendulum oscillating between two fixed magnets. The pendulum behaves similar to a rotor in a DC generator, while the fixed magnets, which are poled opposite to the pendulum, provide magnetic restoring forces similar to mechanical springs. When attached to a person's arm, the swinging motion subjects the magnetic pendulum to base excitations. Consequently, the pendulum oscillates near a stator which has three poles of wound copper coils. The motion of the pendulum induces a time-varying magnetic field in the flux path which generates electricity in the coils as per Faraday's law.
To better understand the response behavior of the device, the thesis presents a nonlinear electromechanical model that describes the interaction between the mechanical and electrical subsystems. Experimental system identification is then implemented to characterize several unknown design parameters, including the nonlinear magnetic restoring torque, the mechanical damping coefficient, and the electromechanical coupling. The derived nonlinear mathematical model, which mimics the behavior of a damped Duffing oscillator, is then solved analytically using the method of multiple scales and the results are compared to experimental data showing good agreement for the design parameters considered. The performance of the device in charging a small battery while jogging is investigated. The motion of a typical swinging arm in terms of frequency and acceleration is reproduced on an electrodynamic shaker and used to charge a 100 μAh battery yielding an estimated charging time of 12 minutes.