Date of Award

May 2020

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mechanical Engineering

Committee Member

Phanindra Tallapragada

Committee Member

Suyi Li

Committee Member

Ardalan Vahidi

Committee Member

Martin Schmoll

Abstract

Nonholonomic systems model many robots as well as animals and other systems. Although such systems have been studied extensively over the last century, much work still remains to be done on their dynamics and control. Many techniques have been developed for controlling kinematic nonholonomic systems or simplified dynamic versions, however control of high dimensional, underactuated nonholonomic systems remains to be addressed. This dissertation helps fill this gap by developing a control algorithm that can be applied to systems with three or more configuration variables and just one input. We also analyze the dynamic effects of passive degrees of freedom and elastic potentials which are commonly observed in such systems showing that the addition of a passive degree of freedom can even be used to improve the locomotion characteristics of a system. Such elastic potentials can be present due to compliant mechanisms or origami, both of which can exhibit bistability and many other properties that can be useful in the design of robots.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.