Date of Award

May 2020

Document Type


Degree Name

Doctor of Philosophy (PhD)


School of Computing

Committee Member

Rong Ge

Committee Member

Valerie Taylor

Committee Member

Amy Apon

Committee Member

Feng Luo

Committee Member

Xizhou Feng


Power has become a critical constraint for the evolution of large scale High Performance Computing (HPC) systems and commercial data centers. This constraint spans almost every level of computing technologies, from IC chips all the way up to data centers due to physical, technical, and economic reasons. To cope with this reality, it is necessary to understand how available or permissible power impacts the design and performance of emergent computer systems. For this reason, we propose power bounded computing and corresponding technologies to optimize performance on HPC systems with limited power budgets.

We have multiple research objectives in this dissertation. They center on the understanding of the interaction between performance, power bounds, and a hierarchical power management strategy. First, we develop heuristics and application aware power allocation methods to improve application performance on a single node. Second, we develop algorithms to coordinate power across nodes and components based on application characteristic and power budget on a cluster. Third, we investigate performance interference induced by hardware and power contentions, and propose a contention aware job scheduling to maximize system throughput under given power budgets for node sharing system. Fourth, we extend to GPU-accelerated systems and workloads and develop an online dynamic performance & power approach to meet both performance requirement and power efficiency.

Power bounded computing improves performance scalability and power efficiency and decreases operation costs of HPC systems and data centers. This dissertation opens up several new ways for research in power bounded computing to address the power challenges in HPC systems. The proposed power and resource management techniques provide new directions and guidelines to green exscale computing and other computing systems.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.