Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Mathematical Sciences

Committee Member

Dr. Elena Dimitrova, Committee Chair

Committee Member

Dr. Oleg Yordanov

Committee Member

Dr. Eleanor Jenkins

Committee Member

Dr. Brian Dean

Committee Member

Dr. Matthew Macauley


Work by Cushing et al. [18] and Kot et al. [60] demonstrate that chaotic behavior does occur in biological systems. We demonstrate that chaotic behavior can enable the survival/thriving of the species involved in a system. We adopt the concepts of persistence/permanence as measures of survival/thriving of the species [35]. We utilize present chaotic behavior and a control algorithm based on [66, 72] to push a non-permanent system into permanence. The algorithm uses the chaotic orbits present in the system to obtain the desired state. We apply the algorithm to a Lotka-Volterra type two-prey, one-predator model from [30], a ratio-dependent one-prey, two-predator model from [35] and a simple prey-specialist predator-generalist predator (for ex: plant-insect pest-spider) interaction model [67] and demonstrate its effectiveness in taking advantage of chaotic behavior to achieve a desirable state for all species involved.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.