Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Electrical Engineering

Committee Member

Dr. Rajendra Singh, Committee Chair

Committee Member

Dr. Ganesh K. Venayagamoorthy, Committee Co-Chair

Committee Member

Dr. William W. Harrell

Committee Member

Dr. Michael Carbajales-Dale


To meet the current and future demands of electrical power for household, industrial, commercial and transport sectors, the energy infrastructure has to undergo changes in terms of generation, distribution and consumption. Due to the shortcomings of nuclear and fossil fuel based power generation, the emergence of renewable energy has provided a very lucrative option. With the advent of low-cost photovoltaics (PV) panels and our ability to generate, store and use electrical energy locally without the need for long-range transmission, the world is about to witness transformational changes in electricity infrastructures. For local nano-grids, direct current (DC) -based system has several distinct advantages that are demonstrated through theoretical and experimental results. A PV- powered and local DC power based nano-grids can be more efficient, reliable, cyber secured, and can easily adopt internet of things (IoT) platforms. With DC generation, storage and consumption, significant amount of energy can be saved that are wasted in back and forth conversion between AC and DC. In case of geomagnetic disturbances, such nano-grids will be more resilient compared to centralized distribution network. Free-fuel, i.e. sunlight, based local DC nano-grid can be the sustainable and cost effective solution for underdeveloped, developing and developed economies. To take advantage of this, the manufacturing of PV, power electronics and batteries have to follow the best practices that aid process control, quality improvement and potential cost reduction. Without proper process control, the variation will result in yield loss, inferior performance and higher cost of production. On many instances, these issues were not considered, and some technology such as perovskite solar cell, received a lot of attention as a disruptive technology. Through detailed technical and economic assessments, it was shown that the variability and lack of rigorous process control will result in a lower efficiency when perovskite thin film solar cells are connected together to form a module. Due to stability and performance reasons, it was showed the perovskite solar cell is not ideal for 2-terminal or 4-terminal multi-junction/tandem configuration with silicon cells. Power electronics also play a vital role in PV systems. The challenges and design rules for silicon carbide (SiC) and gallium nitride (GaN) based power device manufacturing were analyzed. Based on it, advanced process control (APC) based single wafer processing (SWP) tools for manufacturing SiC and GaN power devices are proposed. For energy storage, batteries play an important role in PV installation. Li-ion technology will become the preferred storage due to its capabilities. Incorporation of advanced process control, rapid thermal processing, Industrial IoT, etc. can reduce variability, improve performance and reduce quality-check failures and bring down the cost of electrochemical batteries. The combined approaches in manufacturing of PV, power electronics and batteries will have a very positive impact in the growth of PV powered DC –based nano-grids.