Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Human Factors Psychology


Pagano, Christopher C.

Committee Member

Burg , Timothy

Committee Member

Pak , Richard

Committee Member

Stephens , Ben


In minimally invasive surgery (MIS), the ability to accurately interpret haptic information and apply appropriate force magnitudes onto soft tissue is critical for minimizing bodily trauma. Force perception in MIS is a dynamic process in which the surgeon's administration of force onto tissue results in useful perceptual information which guides further haptic interaction and it is hypothesized that the compliant nature of soft tissue during force application provides biomechanical information denoting tissue failure. Specifically, the perceptual relationship between applied force and material deformation rate specifies the distance remaining until structural capacity will fail, or indicates Distance-to-Break (DTB). Two experiments explored the higher-order relationship of DTB in MIS using novice and surgeon observers. Findings revealed that observers could reliably perceive DTB in simulated biological tissues, and that surgeons performed better than novices. Further, through calibration feedback training, sensitivity to DTB can be improved. Implications for optimizing training in MIS are discussed.