Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Automotive Engineering

Committee Chair/Advisor

Prucka, Robert G

Committee Member

Ayalew , Beshah

Committee Member

Venhovens , Paul

Committee Member

Filipi , Zoran


This research describes a physics-based control-oriented feed-forward model, combined with cylinder pressure feedback, to regulate combustion phasing in a spark-ignition engine operating on an unknown mix of fuels. This research may help enable internal combustion engines that are capable of on-the-fly adaptation to a wide range of fuels. These engines could; (1) facilitate a reduction in bio-fuel processing, (2) encourage locally-appropriate bio-fuels to reduce transportation, (3) allow new fuel formulations to enter the market with minimal infrastructure, and (4) enable engine adaptation to pump-to-pump fuel variations. These outcomes will help make bio-fuels cost-competitive with other transportation fuels, lessen dependence on traditional sources of energy, and reduce greenhouse gas emissions from automobiles; all of which are pivotal societal issues.
Spark-ignition engines are equipped with a large number of control actuators to satisfy fuel economy targets and maintain regulated emissions compliance. The increased control flexibility also allows for adaptability to a wide range of fuel compositions, while maintaining efficient operation when input fuel is altered. Ignition timing control is of particular interest because it is the last control parameter prior to the combustion event, and significantly influences engine efficiency and emissions. Although Map-based ignition timing control and calibration routines are state of art, they become cumbersome when the number of control degrees of freedom increases are used in the engine. The increased system complexity motivates the use of model-based methods to minimize product development time and ensure calibration flexibility when the engine is altered during the design process.
A closed loop model based ignition timing control algorithm is formulated with: 1) a feed forward fuel type sensitive combustion model to predict combustion duration from spark to 50% mass burned; 2) two virtual fuel property observers for octane number and laminar flame speed feedback; 3) an adaptive combustion phasing target model that is able to self-calibrate for wide range of fuel sources input. The proposed closed loop algorithm is experimentally validated in real time on the dynamometer. Satisfactory results are observed and conclusions are made that the closed loop approach is able to regulate combustion phasing for multi fuel adaptive SI engines.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.