Date of Award

5-2013

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Materials Science and Engineering

Advisor

Mefford, Olin T

Committee Member

Kitchen , Christopher

Committee Member

Luzinov , Igor

Committee Member

Lickfield , Gary

Abstract

The design, functionalization, characterization, and applications of magnetic nanoparticles have garnered significant interest over the past several decades. While this area has garnered increasing attention, several questions remain unanswered about the stability of these systems and it's influence on their biomedical applications. To help answer these questions about the stability of these, a novel tri(nitroDOPA) terminated polymer based ligand has been developed for the stabilization of magnetite nanoparticles. The synthesis involves a process in which ethylene oxide is polymerized using a trivinyl initiator, modified with carboxylic acid using a free radical addition of mercaptoundecanoic acid, and then functionalized with nitroDOPA using N,N-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) chemistry. This polymer has displayed robust adhesion even in harsh chemical environments, out performing many polymers used today for the stabilization of magnetite. Along these same lines, the effects of instability of these systems were analyzed in both MRI and magnetic hyperthermia applications. It is widely known that formation of linear aggregates (i.e. chains) occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R2, is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. In this work the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate and heating rate in magnetic hyperthermia of aqueous suspensions of magnetic particles are examined. The results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation and heating rates. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications.

Share

COinS