Clinical evaluation of AI software for rib fracture detection and its impact on junior radiologist performance


BackgroundThe detection of rib fractures (RFs) on computed tomography (CT) images is time-consuming and susceptible to missed diagnosis. An automated artificial intelligence (AI) detection system may be helpful to improve the diagnostic efficiency for junior radiologists.PurposeTo compare the diagnostic performance of junior radiologists with and without AI software for RF detection on chest CT images.Materials and methodsSix junior radiologists from three institutions interpreted 393 CT images of patients with acute chest trauma, with and without AI software. The CT images were randomly split into two sets at each institution, with each set assigned to a different radiologist First, the detection of all fractures (AFs), including displaced fractures (DFs), non-displaced fractures and buckle fractures, was analyzed. Next, the DFs were selected for analysis. The sensitivity and specificity of the radiologist-only and radiologist-AI groups at the patient level were set as primary endpoints, and secondary endpoints were at the rib and lesion level.ResultsRegarding AFs, the sensitivity difference between the radiologist-AI group and the radiologist-only group were significant at different levels (patient-level: 26.20%; rib-level: 22.18%; lesion-level: 23.74%; P < 0.001). Regarding DFs, the sensitivity difference was 16.67%, 14.19%, and 16.16% at the patient, rib, and lesion levels, respectively (P < 0.001). No significant difference was found in the specificity between the two groups for AFs and DFs at the patient and rib levels (P > 0.05).ConclusionAI software improved the sensitivity of RF detection on CT images for junior radiologists and reduced the reading time by approximately 1 min per patient without decreasing the specificity.

Publication Date



figshare SAGE Publications



Document Type

Data Set



Embargo Date