Date of Award


Document Type


Degree Name

Master of Science (MS)

Legacy Department

Mechanical Engineering


Xuan, Xiangchun

Committee Member

Ochterbeck, Jay

Committee Member

Tong, Chenning


Microfluidic devices have been increasingly used in the past two decades for particle and cell manipulations in many chemical and biomedical applications. A variety of force fields have been demonstrated to control particle and cell transport in these devices including electric, magnetic, acoustic, and optical forces etc. Among these particle handling techniques, the magnetic approach provides clear advantages over others such as low cost, noninvasive, and free of fluid heating issues. However, the current knowledge of magnetic control of particle transport is still very limited, especially lacking is the handling of diamagnetic particle. This thesis is focused on the magnetic manipulation of diamagnetic particles and cells in ferrofluid flow through the use of a pair of permanent magnets. By varying the configuration of the two magnets, diverse operations of particles and cells is implemented in a straight microchannel that can potentially be integrated into lab-on-a-chip devices for various applications.
First, an approach for embedding two, symmetrically positioned, repulsive permanent magnets about a straight rectangular microchannel in a PDMS-based microfluidic device is developed for particle focusing. Focusing particles and cells into a tight stream is often required in order for continuous detection, counting, and sorting. The closest distance between the magnets is limited only by the size of the magnets involved in the fabrication process. The device is used to implement and investigate the three-dimensional magnetic focusing of polystyrene particles in ferrofluid microflow with both top-view and side-view visualizations. The effects of flow speed and particle size on the particle focusing effectiveness are studied. This device is also applied to magnetically focus yeast cells in ferrofluid, which proves to be biocompatible as verified by cell viability test. In addition, an analytical model is developed and found to be able to predict the experimentally observed particle and cell focusing behaviors with reasonable agreement.
Next, a simple magnetic technique to concentrate polystyrene particles and live yeast cells in ferrofluid flow through a straight rectangular microchannel is developed. Concentrating particles to a detectable level is often necessary in many applications. The magnetic field gradient is created by two attracting permanent magnets that are placed on the top and bottom of the planar microfluidic device and held in position by their natural attractive force. The effects of flow speed and magnet-magnet distance are studied and the device was applied for use for concentrating live yeast cells. The magnet-magnet distance is mainly controlled by the thickness of the device substrate and can be made small, providing a locally strengthened magnetic field as well as allowing for the use of dilute ferrofluid in the developed magnetic concentration technique. This advantage not only enables a magnetic/fluorescent label-free handling of diamagnetic particles but also renders such handling biocompatible.
Lastly, a device is presented for a size-based continuous separation of particles through a straight rectangular microchannel. Particle separation is critical in many applications involving the sorting of cells. A first magnet is used for focusing the particle mixture into a single stream due to its relative close positioning with respect to the channel, thus creating a greater magnetic field magnitude. Then, a following magnet is used to displace the aligned particles to dissimilar flow paths by placing it farther away compared the first magnet, which provides a weaker magnetic field, therefore more sensitive towards the deflection of particles based on their size. The effects of both flow speed and separator magnet position are examined. The experimental data are found to fit well with analytical model predictions. This is followed by a study replacing the particles which are closely sized to that of live yeast cells and observe the separation of the cells from larger particles. Afterwards, a test for biocompatibility is confirmed.