Date of Award

5-2007

Document Type

Thesis

Degree Name

Master of Architecture (MArch)

Legacy Department

Architecture

Advisor

Allison, David

Abstract

In healthcare, the architectural response to the development of information technologies has largely been relegated to a reactive role, essentially waiting for systems to develop and simply accommodating them with appropriately sized spaces. Designing IT systems independently from, rather than integrally with, their environment impedes them from reaching their full potential as vital components in the delivery of care by creating a lack of flexibility, decelerating performance, and degrading the healing environment. The flexibility of the environment is compromised by fixed position, single user data systems which prevent it from actively adapting to changing conditions, especially during volumetric surges associated with mass casualty events. Additionally, the delivery of care is hindered by traditional data entry points which minimize the caregiver's ability to utilize information effectively by increasing distances to, and wait times for, available platforms. Furthermore, the overall quality of the healing environment is degraded by the increasing amount of technological clutter which can be difficult to sanitize, intimidating to patients, and unsafe by frustrating care.
Dissolving the disconnect between architectural environments and information technology can be achieved by devising architectural elements and treatment protocols which would fuse both entities together, creating a more holistic, digitally integrated setting in which to deliver care. Utilizing advances such as integrated wall interfaces and environmental sensor systems would improve the delivery of care by empowering users and architectural settings with the ability to effectively adapt to changing conditions, increase accessibility to information, and streamline care for improved patient outcomes. Replacing fixed position, single user data entry systems with environmentally integrated surface interfaces would improve flexibility and performance by creating a multitude of localized points to access data, as well as streamline and simplify the environment by eliminating technological clutter.
The process in which to derive an architectural response to the thesis statement was initiated by performing a series of interviews with nationally prominent professionals in the fields of healthcare architecture and information technology, attending international design conferences, interning in health facilities, assembling a cross-disciplinary thesis committee, and conducting a thorough literature review. The thesis research phase began by studying the historical progression and significance of information technology in healthcare environments in order to discern the architectural role in the implementation of these systems. The research focus was then shifted to all areas of architecture, identifying applicable precedent studies in which the environmental integration of information technology had enhanced the quality of the setting, highlighting characteristics that would improve flexibility, performance, and outcomes in the field of healthcare. From this exploration, a series of typological selection criteria were developed in order to determine which area within the healthcare spectrum would best demonstrate the potentials of this union. The emergency care environment was selected as an appropriate vessel to implement the thesis, due to its need for flexibility in order to accommodate ever changing demographic needs, significant volumetric shifts, fast paced care delivery which is dependent on the rapid utilization of information, and high patient turnover rate requiring an efficient throughput processes. Specific problems relevant to contemporary emergency departments were then identified, including overcrowding, staffing issues, and inability to accommodate for volumetric surges, all of which stem from inadequate throughput methodologies. The thesis then explored how the fusion of digital modalities with architectural elements in the emergency care environment would remediate these problems by improving the throughput of the facility.
To ensure the final design holistically satisfies the goal of improving the quality and effectiveness of emergency care through the environmental integration of information technology, a series of design principles were developed to serve as its basis. In order to optimize data flow, access to input areas must be maximized by conceiving the building as an interface, where spatial boundaries become digital connections. If integrated data systems are to be accessible from a universal architectural interface and respond in a safe and controlled manner, digital scanning technologies such as biometrics and RFID tagging must be fused with physical threshold conditions in order to enable the digital system's recognition of its inhabitants. In an additional effort to maintain safety, maximize workability, and ensure a level of sterility in sensitive environments, the facility needs to be designed into layers of penetration, regulating access to only those users who meet proper security clearances. Furthermore, the facility needs to act like a sponge, easily expanding and contracting the layers of penetration in an effort to accommodate unpredictable volumetric increases during mass casualty events. In addition to increasing its capacity, the facility should also be prepared to appropriate adjacent, existing infrastructure for overflow shelter and staging operations during such events.
The programmatic typology of a freestanding medical emergency department, in which there is no connection to an existing facility, was selected with the intention of deriving a pure condition which eliminated extraneous influences from diluting the focus of this thesis on the relationship between information technology and architecture. Although rare in the US, freestanding emergency care facilities are a viable option for expanding healthcare provider's coverage, capturing areas with growing populations, and improving the regional capability to respond effectively during mass casualty events. The base program was derived from the Swedish Medical Issaquah Campus Freestanding Emergency Department in Seattle, Washington, and then modified to function as a Point of Distribution (POD) site during mass casualty events. A series of potential mass casualty event scenarios were then developed in order to effectively prepare conceptual simulations to test possible responses from the facility's program.
The thesis proposal consists of a freestanding, 40,000+ square foot Interactive Medical Emergency Department (iMED) located in Charleston, SC. The proposal is guided by an established set of design principles, aiming to improve the delivery of emergency care during daily operations and mass casualty surge events through the architectural integration of information technology. In order to provide a range of possible disaster response situations, the building was located in the densely populated peninsula area of Charleston, South Carolina, within a region which is susceptible to an assortment of mass casualty events (including hurricanes, earthquakes, and terrorist attacks). The final site within the urban context adheres to a set of established criteria, including placement on open, stable, elevated land adjacent to the major access arterials of I-26, Hwy 17, and Meeting Street. Additionally, the site was located within a rapidly expanding, non-historical sector of the city which is not part of an existing healthcare complex. By meeting regional and urban conditions defined in the criteria, the site's location strengthens the facility's ability to deliver care during both daily and surge conditions substantially.

Included in

Architecture Commons

Share

COinS