Document Type


Publication Date


Publication Title

Current Pharmaceutical Design






Bentham Science Publishers


In this review we discuss the role of protonation states in receptor-ligand interactions, providing experimental evidences and computational predictions that complex formation may involve titratable groups with unusual pKa’s and that protonation states frequently change from unbound to bound states. These protonation changes result in proton uptake/release, which in turn causes the pHdependence of the binding. Indeed, experimental data strongly suggest that almost any binding is pH-dependent and to be correctly modeled, the protonation states must be properly assigned prior to and after the binding. One may accurately predict the protonation states when provided with the structures of the unbound proteins and their complex; however, the modeling becomes much more complicated if the bound state has to be predicted in a docking protocol or if the structures of either bound or unbound receptor-ligand are not available. The major challenges that arise in these situations are the coupling between binding and protonation states, and the conformational changes induced by the binding and ionization states of titratable groups. In addition, any assessment of the protonation state, either before or after binding, must refer to the pH of binding, which is frequently unknown. Thus, even if the pKa’s of ionizable groups can be correctly assigned for both unbound and bound state, without knowing the experimental pH one cannot assign the corresponding protonation states, and consequently one cannot calculate the resulting proton uptake/release. It is pointed out, that while experimental pH may not be the physiological pH and binding may involve proton uptake/release, there is a tendency that the native receptor-ligand complexes have evolved toward specific either subcellular or tissue characteristic pH at which the proton uptake/release is either minimal or absent. - See more at:


This manuscript has been published in the journal Current Pharmaceutical Design. Please find the published version here (note that a subscription is necessary to access this version):