Document Type


Publication Date


Publication Title





We examine quantitatively the suggestion that the heavy anomalous isotopes of Xe-HL found in meteoritic diamonds were produced by a short intense neutron burst and then implanted into the diamonds. Using a large nuclear reaction network we establish one (out of many) neutron irradiation histories that successfully reproduces the heavy isotopes of Xe-HL, and then evaluate what that same history would produce in every heavy element. This has become more relevant following recent measurement of anomalous Ba and Sr in those same diamond samples. Therefore we offer these calculations as a guide to the anomalies to be expected in all elements if this scenario is correct. We also discuss several other aspects of the problem, especially the established contradictions for Ba, the observed Kr pattern, the near normalcy of 129Xe, and some related astrophysical ideas. In particular we argue from p-process theory that the observed deficit of 78Kr in correlation with 124–126Xe excess implicates Type II supernovae as the diamond sources. However, our more complete astrophysical conclusions will be published elsewhere. This present work is offered as computational expectation for this class of models and as a guide to considerations that may accelerate the digestion of new experimental results in the diamonds.


Published version found here: