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ABSTRACT 

Three experiments were performed to enumerate the natural microflora on unwashed 

peaches, known as “field” peaches, and to determine the efficacy of using acidified electrolyzed 

water as a topical antimicrobial to remove or reduce the number of the natural microflora or 

inoculated Listeria innocua from to peach surfaces. During the first experiment, field peaches 

were divided into four treatment groups: no wash (NW), tap water wash (TW), acidified 

electrolyzed water wash (AEW), and chlorinated water wash (CL).  Peaches were dipped into 

each of the treatment solutions at ambient temperature and immediately removed 

(approximately 5 seconds).  Peaches were then rinsed in 100 mL of 0.1% peptone and rinsates 

were plated on aerobic plate count agar for enumeration.  For the second experiment, exposure 

time to the treatment solutions and the temperature of the same treatment solutions were 

studied.  Field peaches were again divided into NW, TW, AEW, and CL but treatments were 

applied using two exposure times of 5 seconds and 40 minutes at a temperature of 2°C (samples 

were given either a “0” or “40” in their labels to denote exposure time in minutes where 5 

second exposures = 0 minutes e.g. TW-0, TW-40, AEW-0, etc.).  Rinsing and plating was 

conducted as mentioned above.   

Experiment three investigated the efficacy of NW, TW, AEW, and Cl, in reducing 

numbers of Listeria innocua on peaches that were previously inoculated and held at 4°C for 24 

hours.  Inoculated peaches were dipped in treatment solutions for 5 second and 40 minute 

times at 2°C.  Results showed that exposure time had a significant effect on bacterial reduction 

for both AEW and Cl treatments.  Average aerobic counts from all NW peaches was 4.2 log10 

CFU/g peach for natural microflora and 4.3 log10 CFU/g peach for samples inoculated with 
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Listeria.  The following results show the number of bacteria recovered (log10 CFU/g peach) from 

natural microflora samples and Listeria inoculated samples, respectively: NW = 4.2 and 4.9, TW-

0 = 3.8 and 4.3, TW-40 = 3.2 and 4.7, AEW-0 = 3.6 and 3.7, AEW-40 = 2.6 and 1.6, CL=0 = 3.7 and 

3.7, and CL-40 = 2.3 and 1.9.  Greatest reductions were found with AEW-40 and CL-40 at 

refrigerated temperatures against both aerobic microorganisms and Listeria innocua.  They 

reduced natural microflora counts by approximately 1.6 and 1.9 log10 CFU/g peach, respectively 

and they also reduced Listeria innocua counts by 3.3 and 3.0 log10 CFU/g peach, respectively.  

Listeria innocua, like monocytogenes, thrives in cold environments and the analysis of this 

study’s results suggest that Listeria in TW-40 may have reattached to peaches during exposure. 

Color studies were also performed on the peaches from the preliminary experiment and 

Experiment 2 to determine the effects of exposing the peaches to low pH environment such as 

that of the AEW used in this study.  Peaches were analyzed for L*a*b* color data prior to their 

exposure to treatment solutions then they were analyzed again after their treatment concluded 

and they had air dried until no visible moisture remained.  There was no significant color 

difference shown in any of the peaches when the pre- and post-treatment data was compared. 

Results from these studies demonstrate that total aerobic microorganisms and Listeria 

spp. may be reduced, but not eliminated, during washing (by dipping) with AEW or CL with 

similar reductions for both antimicrobial treatments. 
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CHAPTER 1 

 

LITERATURE REVIEW 

Introduction 

Many people in the United States, and worldwide, are affected by foodborne illnesses 

due to insufficient processing or preservation methodologies coupled with additional 

mishandling by consumers.  Despite the efforts of the USDA, FDA, EPA, and other agencies 

working to promote the manufacture and sale of safe food, food safety continues to be a 

growing concern.  It has recently been reported that the estimated cost of foodborne illnesses in 

the United States alone is over $51 billion and that approximately 85% to 90% of that sum 

results from the five following microorganisms: Salmonella enterica, Campylobacter spp., 

Listeria monocytogenes, Toxoplasma gondii, and norovirus (Batz, 2013; Scallan et al., 2011a; 

Scallan et al., 2011b; Scharff, 2010).  Many of these microorganisms are ubiquitous and can 

commonly be found in the natural environment, which presents a challenge for food producers 

and processors.  Most foods are grown or raised in environments that contain large quantities of 

microorganisms that cause illness when ingested by humans.  These environments are natural 

mediums and include things like the soil that crops are grown in, the areas where food 

production animals are raised, air, the water that harbors fish and shellfish, etc. (Abadias et al., 

2008; Beuchat, 1996; Kim et at., 2012; Lee et al., 2014, Li et al., 2014; Natvig et al., 2003; Su and 

Lui, 2007).  Because of this, it is clear that there are potential hazards involved in the production 

of any food item.  These hazards must be accounted for in the process of getting foods from the 

farm to the table to ensure the health and safety of the public. 
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Global Implications of Produce Shelf-life Extension  

Fruits and vegetables are a vital source of nutrients in the human diet and compose a 

significant portion of the average diet for many people across the globe.  According to the World 

Health Organization (2013), fruits and vegetables have many benefits including contributing to 

the prevention of certain cardiovascular diseases and cancer; and 1.7 million deaths (2.8%), 

worldwide, can be attributed to insufficient intake of fruits and vegetables.  This means that 

many people are not consuming adequate amounts of fruits and vegetables (400g/day, 

excluding starch vegetables, according to the WHO) to help prevent issues like heart disease, 

cancer, diabetes, obesity, and other micronutrient deficiencies (Diet 2003).  Fruits and 

vegetables are very perishable which makes them more difficult to harvest, process, transport, 

and sell before natural biochemical processes and/or naturally present microorganisms render 

the products unacceptable or unsafe for consumption.  The perishability of fresh fruits and 

vegetables is one reason that many people groups, especially in countries without efficient 

transportation infrastructure, do not have access to much fresh produce (Gustavsson et al., 

2011).  Though processed produce is shelf stable and readily shippable, it is still difficult to get 

sufficient amounts of it to people due to transportation hurdles in many underdeveloped 

countries.  The perishable nature of fresh produce is not only a hurdle for addressing global 

nutritional issues but also presents a problem for domestic production.  Fruits and vegetables 

are often damaged or spoiled before safely making it into the market in either fresh or 

processed form.  During three steps of food production (postharvest handling/storage, 

processing/packaging, and distribution) produce losses range from approximately 5%, 2%, and 
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10%, respectively, in industrialized countries to 10%, 20%, and 15% in lesser developed 

countries (Gustavsson et al., 2011). 

 

Food Production in the United States 

In the United States, it is estimated that 30% of the food produced is wasted and most 

of this loss occurs at the farm and in retail sales environments (Jones, 2004; Lundqvist et al., 

2008; Nellemann et al., 2009).  This equals approximately 20 pounds per person per month 

(Jones, 2004; Lundqvist et al., 2008; Nellemann et al., 2009).  Specifically regarding fruits and 

vegetables produced in the United States, the losses can separated by processing/handling 

steps; and losses are given as percentages based on the amount of food entering that step.  

They are as follows:  

• agricultural production = 20% 

• postharvest handling and storage = 4% 

• processing and packaging = 2% 

• distribution: supermarket retail = 12%, and consumption = 28% (Gustavsson et al., 

2011).  

 To decrease these losses while maintaining or increasing the amount of available fresh 

produce in the market, continued research into novel, responsible preservation methodologies 

and technologies is needed.  As these new methods are developed, produce can be made more 

readily available at lower costs to consumers, which would help break down barriers to 

purchasing and consuming fruits and vegetables needed to maintain good health.  When 
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consumers buy and consume produce before it degrades, waste is reduced and personal health 

could be improved.  Thus, it can be seen that new food preservation strategies need to be 

developed in order to help eliminate the current high levels of food waste and decrease 

malnutrition. 

Fruit and vegetable consumption in the United States has been a concern for many 

years.  The “5 A Day for Better Health” program was in place in the United States for 15 years 

before recently being replaced by “Fruits & Veggies – More Matters,” which was established 

through a partnership between the Centers for Disease Control & Prevention (CDC) and the 

“Produce for Better Health Foundation” (PBH) (Rekhey and McConchie, 2014).  This program 

was created to educate the American public on the importance of eating fruits and vegetables 

and to help them find ways to get recommended amounts into their diet.  The United States 

Department of Agriculture (USDA) has stated its recommendation in the 2010 Dietary Guidelines 

for Americans as filling half of the plate with colorful fruits and vegetables (USDA, 2010). The 

“My Plate” nutrition guide is a reference guide for the general public that reflects many of the 

recommendations of the USDA and the “Fruits & Veggies – More Matters” program and is easily 

available online (USDA, 2010). 

According to the current Dietary Guidelines for Americans, most Americans are 

consuming only around half of the amounts of fruits and vegetables that are recommended 

each day (USDA, 2010).  In the past, the majority of fruit and vegetable intake has come in the 

form of processed items.  However, as improvements in infrastructure, transportation, and food 

safety/preservation have been made, the high ratio of processed compared to fresh fruit and 

vegetable consumption has been changing.  In 2002, the USDA published its “Agricultural Fact 
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Book,” which tracked the consumption of fresh versus processed fruits and vegetables and 

showed a substantial increase in annual fresh fruit and vegetable consumption from 250 pounds 

per capita to 328 pounds per capita between 1970 and 2000.  While the ratio of the amount of 

fresh versus processed vegetables has not changed significantly (intake of processed vegetable 

consumption also rose), the ratio between the amount of fresh versus processed fruit has fallen 

by approximately 50% (USDA, 2003).  This suggested a strong trend in the American 

population’s shifting preference from processed to fresh fruit.  Later, in 2012, the United States 

Census Bureau published its findings on fruit and vegetable per capita consumption in the 

United States between 2000 and 2009, which noted that the consumption of fresh vegetables, 

processed vegetables, and processed fruits steadily decreased over the 10 year time period (U.S. 

Census Bureau, 2012).  Interestingly, the amount of fresh fruit consumed remained constant 

which further reduced the ratio of processed to fresh fruit consumption.  Now there is only a 

negligible difference (2 pounds) in the amount of fresh compared to processed fruit consumed 

annually per person in the United States (U.S. Census Bureau, 2012). 

Historically, many food safety issues have occurred with consumption of produce.  Fruits 

and vegetables are grown in soils and are exposed to rodents, insects, and pests that inevitably 

contain or deposit large amounts of microorganisms on the produce (Abadias et al., 2008; 

Beuchat 1996; Kim et al., 2012; Lee et al., 2014; Natvig et al., 2003).  The ubiquity of 

microorganisms has been known for years and serves as the primary reason that producers 

wash their crops and often treat them with topical antimicrobials and preservatives.  In recent 

years, many consumers have become adverse to the use of “chemical” additives including those 

used during the washing of food.  Because some of the public is concerned with food additives, 
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it is becoming increasingly important for producers to find new ways to minimize food waste 

due to chemical and bacterial breakdown.  Bearth et al. (2014) state that even though additives 

do not arrive in the food supply without rigorous scientific testing to ensure safety, the public 

does not always trust scientific consensus.  One trend that many consumers support is the use 

of “natural” or “organic” ingredients, but even these terms are becoming targets of consumer 

skepticism.  In a report published by Browne (2011) on Mintel, it was reported that only 34% of 

consumers trust the term “organic” and that only 24% trust the term “natural” when they 

appear on food and beverage labels.  The same study, though, also noted that among the 

consumers who purchase natural and organic foods and beverages (NOFB), 84% did so for  

health reasons and 44% believed NOFB to be more nutritious than regular foods (Browne, 

2011).  Because there is confusion regarding some of the terms used on food labels (what they 

actually indicate) and because consumers and scientist do not evaluate food safety with the 

same perspective, the general public may be concerned about the food additives being utilized 

(Bearth et al., 2014; Hansen et al., 2003; Krystallis et al., 2007; Sparks and Shepherd, 1994)).  

Ultimately, the goal of food additives is to create safe, nutritious, wholesome, and appealing 

food with long shelf-life for consumers.  In order to improve a sense of trust and security in the 

food supply and to prevent harm, the Food Safety Modernization Act was signed into law in 

2011.   

 

Food Safety Modernization Act (FSMA) 

“About 48 million people (1 in 6 Americans) get sick, 128,000 are hospitalized, and 3,000 

die each year from foodborne diseases, according to recent data from the Centers for Disease 

Control and Prevention.  This is a significant public health burden that is largely preventable” 
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(FDA, 2014a).  This statement is a summation of the reasoning behind the passing of the FSMA.  

The purpose of the FSMA is “to amend the Food, Drug, and Cosmetic Act with respect to the 

safety of the food supply” (FDA, 2011).  Previously, the overall focus of food safety regulations 

was to create a system to effectively respond (reactive) to food safety issues that were 

discovered.  While this goal is important and should be maintained, it is being increasingly noted 

that it is incomplete.  To go alongside an efficient response system, an efficient prevention 

system (proactive) for food safety is equally important.  That is the aim of the FSMA according to 

the United States Food and Drug Administration.  It was created to establish food safety 

protocol not only for response to food safety issues but for preventing them from ever 

occurring.   

To do this, regulatory agencies have been given more authority to require compliance 

with food safety standards such as written “preventative controls” for hazards (such as HACCP 

plans), mandatory inspections at intervals deemed necessary by scientific evidence for specific 

products, import regulations, and collaboration among inspections agencies.  More stringent 

testing of water supplies is being implemented, as are higher levels of training for inspectors, 

including scientific training, laboratory and sampling techniques, specialization of knowledge 

and skill for particular types of food, and increased knowledge of best practices.  Lab 

accreditation requirements were also reviewed and accreditation maintenance is required, at 

minimum, every five years to ensure compliance (FDA, 2011).  Furthermore, authority to require 

documentation on all imports is upheld, training of third-party auditors through accredited 

institutions is being pursued to provide more accountability, and the voluntary qualified 

importer program are in place (FDA, 2011).  These steps help redirect the attention of food 
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regulations towards preventing foodborne illness incidences with the hope that the number of 

cases can be reduced on a yearly basis. 

One area determined to be of significance within the FSMA is in regards to fresh 

produce.  From 1996 to 2010, there were 131 reported cases of produce-related foodborne 

illness outbreaks which resulted in 14,350 cases, 1,382 hospitalizations, and 34 deaths (FDA, 

2014b).  Because of these numbers the FSMA mandates that the FDA establish minimum 

standards, based on science, for the safe growing, harvesting, packing, and holding of produce 

on farms to prevent contamination with pathogens (FDA, 2011; FDA, 2014b).  In South Carolina, 

approximately 25% of the landmass is dedicated to farming fresh fruits and vegetables.  This 

makes meeting the FSMA requirements critical to the state’s economic growth. 

 

Peaches 

1.) Production and Processing 

Peaches are an important portion of the produce grown in the United States.  In 2013, 

over 100,000 acres of land were dedicated to growing peaches in the United States and yielded 

over 900,000 tons of fruit.  Of this, approximately 15,000 tons of peaches were not utilized due 

to many factors, including spoilage, mechanical damaging, deformity, and defects.  During the 

same year, the average price per ton of peaches was $614 which generated nearly $550 million 

of revenue (USDA-NASS, 2013).  However, economic loss from the 15,000 tons of unutilized 

peaches should also be considered and may be estimated to be $10 million.   

Since 2004, the amount of acreage dedicated to peach farming has consistently 

lessened, decreasing from 140,000 acres in 2004 to just over 100,000 acres in 2013.  Along with 
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that, the amount of utilized peach production has dropped from around 1.25 million tons to 

about 0.9 million tons (USDA-NASS, 2013).  With peach production acreage dropping, it is 

important for peach farmers to make the best use of the crops they plant.  Currently, roughly 

half of all unutilized peaches were not harvested while the other half were harvested but were 

not sold (USDA-NASS, 2013).  Though unharvested peaches would not be benefited by 

improvements in processing or preservation, the peaches that are harvested but not sold could 

be potentially saved and utilized as advances are made.  In the United States in 2013, peach 

farmers lost over 5 million dollars simply because peaches that they harvested could not be 

sold.   

According to the National Agricultural Statistics Survey in 2013, South Carolina alone 

produced an estimated 70,000 tons of peaches making it the second largest peach producing 

state in the United States, behind California.  This crop produced a potential revenue of nearly 

75 million dollars; however, approximately 8% of those peaches went unutilized.  This equates 

to a loss of over 6 million dollars in South Carolina in one year.  Of the peaches that were not 

utilized, 45% were unharvested and the remaining 55% were harvested but were not sold 

(USDA-NASS, 2013).  There are various reasons why peaches may not have been sold; but, 

undoubtedly, spoilage, damage, and disease are large contributors and need to continue to be 

addressed. 

During peach production and processing, there is one step that stands out as having 

high potential as a critical control point (CCP) for microorganisms.  This step is the wash step 

referred to as hydrocooling and it is used heavily by peach farmers.  The primary purpose of 

hydrocooling is the rapid reduction in temperature to slow fruit degradation (respiration) and to 
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slow the growth of microorganisms.  Temperature reduction of peaches needs to be done 

quickly after harvest to maximize production yields and minimize the amount of time bacterial 

growth is favored.  If done properly, peaches should reach a final temperature of 40°F (4.4°C), 

preventing decay and softening of texture prior to reaching the consumer (Bennett et al., 1965).  

In the hydrocooling step, there are two primary methods in use: 1.) flood-type hydrocooling and 

2.) bulk hydrocooling (Bennett et al., 1965).   Bennett et al., (1965) note that flood-type 

hydrocooling has been in use longer than bulk hydrocooling; and it entails having peaches 

placed in their shipping baskets, set on a conveyor, and run through a large “shower” of cold 

water (32°F).  Bulk hydrocooling involves submersing loose peaches into a large tank of chilled, 

circulating water which they pass through until they are lifted out by a conveyor which then 

carries them under a shower, similar to that of the flood-type hydrocoolers.  Bulk hydrocooling 

may provide more opportunity for the bruising and damaging of peaches due to excess 

handling.  Previous research has shown that a peach with a three inch diameter would need 

approximately 30 minutes exposure time to water at 35°F (1.7°C) to reduce their internal 

temperature from 90°F (32.2°C) to 40°F (4.4°C) (Bennett et al., 1965).  This long exposure time 

provides a good opportunity for bacterial control if the control technology is applied using the 

rinse water as a medium.   

2.) Quality 

According to the United States Department of Agriculture (2004), peaches may be 

graded using four quality categories.  The categories are listed below, along with their 

specifications (USDA, 2004). 
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U.S. Fancy. 

“U.S. Fancy” consists of peaches of one variety which are mature but not soft or 

overripe, well 

formed and which are free from decay, bacterial spot, cuts which are not healed, 

growth cracks, hail injury, scab, scale, split pits, worms, worm holes, leaf or limb rub 

injury; and free from damage caused by bruises, dirt or other foreign material, other 

disease, insects or mechanical or other means. In addition to the above requirements, 

each peach shall have not less than one-third of its surface showing blushed, pink or 

red color. 

 

U.S. Extra No. 1. 

Any lot of peaches may be designated “U.S. Extra No. 1” when the peaches meet the 

requirements of the U.S. No. 1 grade: Provided, That in addition to these 

requirements, 50 percent, by count, of the peaches in any lot shall have not less than 

one-fourth of the surface showing blushed, pink or red color. 

 

U.S. No. 1. 

“U.S. No. 1” consists of peaches of one variety which are mature but not soft or 

overripe, well 

formed, and which are free from decay, growth cracks, cuts which are not healed, 

worms, worm holes, and free from damage caused by bruises, dirt, or other foreign 

material, bacterial spot, scab, scale, hail injury, leaf or limb rubs, split pits, other 

disease, insects or mechanical or other means. 
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U.S. No. 2. 

“U.S. No. 2” consists of peaches of one variety which are mature but not soft or 

overripe, not 

badly misshapen, and which are free from decay, cuts which are not healed, worms, 

worm holes and free from serious damage caused by bruises, dirt or other foreign 

material, bacterial spot, scab, scale, growth cracks, hail injury, leaf or limb rubs, split 

pits, other disease, insects, or mechanical or other means. 

 

The highest quality peaches are often reserved for applications where they will be sold 

whole and fresh while lesser quality fruits may be used for purees, slices, juices, canning, or 

other applications where they can be trimmed or where visual quality is not of concern.  Official 

USDA quality standards are assigned shortly after harvesting; but peaches will continue to ripen 

during holding and, if not consumed soon enough, they will begin to decay.  Peaches may begin 

to degrade in quality and safety during postharvest processing, storage, and transportation due 

to various reasons including metabolic changes within the peach, microbial activity, mechanical 

damage, softening of the peach’s flesh, and physiological decay.  These effects can be caused by 

factors such as varietal differences, the extent of ripening at harvest, handling, and storage 

conditions (Crisosto and Mitchell 2002; Crisosto et al., 1999; Girardi et al., 2005; Lelièvre et al., 

1997; Lill et al., 1989; Rombaldi et al., 2002).  It should be noted that much of a peach’s 

degradation is intrinsic and cannot be prevented.  Once harvested, peaches continue to respire 

and increasingly lose weight (and thus per pound value) as the nutritional constituents of the 

peach (sugar, amino acids, vitamins and minerals, and organic acids) are used for metabolic 
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processes.  Perez-Lopez et al., (2014) found that peaches lost up to 9% of their harvest weight 

after five days of storage at 20°C.  The same study tested peaches with the following 

percentages of their skin still yellow (yellow color denotes unripe peaches in this case): 25%, 

50%, and 100%.  The weight loss after five days varied by only 7% to 9%.  The respiration rate, 

however, was differentiated in terms of CO2 consumed.  At ambient holding temperatures, 

peaches with 50% yellow consumed almost twice as much CO2 as the peaches that were 100% 

yellow, while the 25% yellow peaches fell approximately midway between the 50% and 100% 

yellow peaches.  This shows that, as expected, climacteric fruit respiration and subsequent 

changes in skin color and texture, are self-propagating.  As the fruit’s flesh increasingly softens 

from starches being converted into various mono- and disaccharides, from the increased 

methylation of pectin, and from polygalacturonase activity, it becomes less resilient; and there is 

a higher likelihood of lacerations that breach the skin of the fruits and provide excellent growth 

sites for microorganisms due to the nutrient availability from the mesocarp.  

 

3.) Color 

Peaches vary in color from white to yellow to red flesh with skins that transition from 

green (unripe) to yellow, orange, and red to during ripening and light exposure (Frett, 2012; 

Layne and Bassi, 2008; Zhang, 2014).  There are several pigments in peaches that contribute to 

their color but carotenoids and anthocyanins are most notable when considering color for 

specific applications (Layne and Bassi, 2008).  Carotenoids and anthocyanins impart 

yellow/orange and red colors to peaches, respectively, and their chemical structures make them 

both favorable for different applications.  Peaches intended for sale as unprocessed and whole 
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are often selected for higher anthocyanin content because blush (red skin pigmentation) makes 

the fruits visually appealing and favorable for marketing (Frett, 2012).   

Anthocyanin production in the exocarp and mesocarp of peaches is independent, and 

that high blush does not inherently denote high anthocyanin content in the mesocarp (Layne 

and Bassi, 2008).  Anthocyanin production in the exocarp is dependent on light exposure, but 

production of the pigment in the mesocarp is not, and the concentration of anthocyanins in the 

mesocarp varies largely among cultivars and from tree to tree (Layne and Bassi, 2008).  Though 

anthocyanins are aesthetically pleasing when in the natural environment maintained in the 

peach’s cell, they are not good for processing.  This is largely because they are water soluble and 

are not heat or pH stable (Bakowska-Barczak, 2005; Giusti and Wrolstad, 2003; Layne and Bassi, 

2008).  When peaches are processed in syrups or water, anthocyanins will leach into the liquid 

and will also discolor due to heat which yields an unappealing brown color in the fruit and in the 

syrup (Layne and Bassi, 2008).  Therefore, peaches intended for heat processing (e.g. canning) 

are usually grown with strong selection against anthocyanins and in favor of carotenoids (Layne 

and Bassi, 2008).  Peaches for heat processing applications are typically peeled by spraying or 

immersing the whole fruits into hot caustic solutions of 1 - 2.5% lye (NaOH) for 30 - 60 seconds 

(Burrows, 2011; Dauthy, 1995; Layne and Bassi, 2008).  This eliminates the aesthetic need for 

blush development in the skins and requires pigments with heat and pH stability in the 

mesocarp to maintain color.  Carotenoids are heat stable and lipid soluble, which prevents both 

discoloration and leaching into hydrophilic processing liquids; this is why processors uses 

peaches for canning prefer peaches with high carotenoid to anthocyanin ratios (Layne and Bassi, 

2008).   



15 

 

 

Microbiology 

1.) General  

Microorganisms, while extrinsic to peaches, are ubiquitous and are found on the surface 

of all fresh produce.  Bacterial contamination of fresh produce, such as peaches, is inevitable 

during the growing process; and the surfaces of fruits contains high numbers of natural 

microflora, some of which are pathogenic, after harvest and before processing (Kalia and Gupta, 

2006).  These microorganisms are naturally found in the soil and water that peach trees are 

grown in, and their transfer from the growing medium to the food is unavoidable (Abadias et al., 

2008; Beuchat 1996; Kim et al., 2012; Lee et al., Li et al., 2014; Natvig et al., 2003; Su and Lui 

2007). Although fresh peaches have a natural pH between 3.30 and 4.05, which should be too 

low for supporting the growth of known pathogens, the skin of the peaches can easily harbor 

bacteria.  This makes the washing of peaches critical control for biological hazards (pathogenic 

bacteria), since most fresh produce in the United States is not subjected to a kill step during 

processing or handling (FDA, 2007 and Omac et al., 2015).  Alegre et al., (2010) tested fresh 

peach flesh for its ability to support the growth of Escherichia coli O157:H7, Salmonella, and 

Listeria innocua and found that several varieties of peach with pH < 4 still resulted in up to 2.5 

log10 CFU/g increase in bacterial population after one day of storage at 5°C and 25°C.  It is 

unclear as to why low pH, alone, may not always be sufficient to inhibit microbiological growth 

but this result is of concern when considering how different environments may affect microbial 

responses to different treatment mechanisms.  Because of the molecular complexity that 

comprises fruits, the effectiveness of antimicrobial treatments for one specific type or variety of 
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fruit may not be as effective for another.  This being the case, additional research needs to be 

conducted to determine the factors that work synergistically or antagonistically with pH to 

inhibit bacterial growth on fresh fruit.  The decontamination of produce, however, also 

eliminates the naturally present, non-pathogenic, competitive microflora which could then 

create an environment that more readily supports the growth of pathogens if they are present 

(Alegre et al., 2012; Carlin et al., 1996; Li et al., 2002). 

2.) Listeria   

Listeria is a gram (+), facultative anaerobic, psychrotrophic pathogen that is halotolerent 

at NaCl concentration of up to 25% (Bell and Kyriakides 2005).  The International Commission on 

Microbiological Specifications for Foods (1996) notes Listeria spp. minimum and maximum pH 

for growth at 4.39 and 9.4, respectively, though some research reports its ability to survive 

between pH 3.0 and 12.0.  It has a minimum water activity for survival of 0.92 (Bell and 

Kyriakides 2005; Liu 2008; Liu et al., 2005).  As a human pathogen, Listeria is less common than 

others such as E. coli or Salmonella but is a high priority because listeriosis has a high mortality 

rate (Bell and Kyriakides 2005; Liu 2008).  In the United States, the Centers for Disease Control 

and Prevention (CDC) reports that 123 cases of foodborne illnesses are caused by Listeria 

monocytogenes each year.  Of those, nearly 112 illnesses resulted in hospitalizations; and over 

24 illnesses resulted in death (Crim et al., 2014).  Listeriosis outbreaks are commonly traced back 

to processed meat products like deli meats and hot dogs, fresh cheeses, and produce.  Though 

listeriosis is less common than other foodborne pathogens, it has the third highest fatality rate 

of over 20% (Bennion et al., 2008; CDC 2011; Omac et al., 2015; Sant’Ana et al., 2012; Todd and 

Notermans 2011).  Due to the nature of listeriosis, peach growers, processors, and distributors 
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should begin to invest in more preventative technologies to stop future contamination and 

potential foodborne disease outbreaks (CDC 2011).  This is the type of proactive thinking 

encouraged by the FSMA.  In 2013, Wawona Packing Co. in California issued a voluntary recall of 

whole peaches and several other stone fruits due to possible Listeria contamination.  The 

amount of fruit lost due to the recall is unpublished at this time; but the recall extended from 

peaches harvested on June 1st, 2014 to those harvested on July 17th, 2014.  The large scale loss 

in product and revenue should be cause for concern about Listeria contamination among 

members of the National Peach Council.  It is for this reason the many peach processors are 

investigating the use of “Listeria management protocols” for the packing sheds. 

3.) Fungi 

There are several fungi that are, historically, problematic in regard to peaches.  The 

most prevalent ones are spoilage molds that will grow under refrigeration, albeit more slowly 

than at ambient temperatures. These molds cause various diseases in peaches such as blue 

mold rot from Penicillium expansum, Rhizopus rot from Rhizopus stolonifer, gray mold rot from 

Botrytis cinerea, and brown rot from Monilinia fructicola (Cao et al., 2011; Kalia and Gupta, 

2006; Karabulut et al., 2002; Wang et al., 2013; Yu et al., 2012; Zhang et al., 2007a; Zhang et al., 

2007b; Zhang et al., 2008; Zhou et al., 2008).  It has been noted by Karabulut et al., (2002) that 

synthetic chemicals have been the most common fungicides; but, as the general public 

continues to ask for less synthetic treatments to be used in food, new and “natural” treatment 

options against fungi need continued research (Yang et al., 2011; Yu et al., 2012; Zhang et al., 

2007a).  Yu et al., (2012) found that applying some yeast saccharides to peaches would 

stimulate chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase, and peroxidase activity and 
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promote phenolic synthesis within the peaches, which may result in fungal inhibition.  Guentzel 

et al., (2010) showed that using neutral electrolyzed water, with total residual chlorine from 25 

to 100 ppm, as a dip (with 10 minute exposure time) for peaches was effective in reducing 

Monilinia fructicola and Botrytis cinerea to undetectable levels for up to three days.  There are 

various other technologies being researched for antifungal properties, and that research will 

become increasingly important from an economic standpoint as time progresses.  While molds 

do cause degradation in produce, they do not typically pose health threats to humans and are 

thus, primarily, a quality concern, not a safety concern;  however, previous reports have 

suggested that mold growth on fruit can elevate the pH to levels that may allow for the growth 

of pathogenic bacteria (Ryser and Marth, 2007). 

 

Antimicrobials 

1.) General 

The preservation of fresh produce is a great concern economically.  Because of the 

highly perishable nature of fresh fruits and vegetables, they must be harvested, processed, 

stored, shipped, and sold under controlled conditions which most often entails low temperature 

storage to slow respiration and inhibit microbial propagation.  Currently the most common 

method for washing produce after harvest is chlorinated water at concentrations between 50 

and 200 ppm (Beuchat, 1998; Graca et al., 2011).  Alegre et al., (2012) state that a 1 to 2 log 

reduction in bacterial populations on minimally processed produce can be expected when using 

chlorine as a treatment.  Growing disapproval, though, has occurred relative to using chlorine as 

an antimicrobial food treatment.  Additionally, chlorine reacts with organic materials, such as 
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soil, causing reduced efficacy against microorganisms.  Because chlorine is currently facing some 

obstacles as antimicrobial treatment for produce, alternative technologies that are practically 

feasible for manufacturers (including biopreservatives or “green” preservatives) are continuing 

to be researched to determine their efficacy against pathogenic microorganisms like Listeria, E. 

coli O157:H7, Salmonella, and Shigella.   

 

2.) Essential Oils 

Research has already been done regarding essential oils (EOs) and their applicability in 

food preservation, and it has been shown that they have significant antimicrobial potential.  

There are various ways by which EOs can work to destroy microorganisms; some of these ways 

are mitochondrial membrane degradation, inhibition of metabolic and respiratory activity, and 

cytoplasmic mutagenicity (Bakkali et al., 2008).  Research has shown EOs to be viable 

antimicrobials in a diverse number of food systems such as lettuce and leafy greens (Yossa et al., 

2013; Gunduz et al., 2012; Moore-Neibel et al., 2012); fresh water fish (Desai et al., 2012); salt 

water fish (Kykkidou et al., 2009); chicken (Giatrakou et al., 2010); pork (Chen et al., 2013; Gill et 

al., 2002); and citrus fruits (Chafer et al., 2012), other fruits, vegetables, and grains such as 

cabbage, barley, tomato, and papaya (Catherine et al., 2012; Yun et al., 2013); and bovine milk 

(Shah et al., 2013b), to name a few.  Because of the wide range of essential oils and the unique 

proportion of constituents within each, there are many potential options for use with food 

applications.  This is important because of the characteristic organoleptic properties associated 

with each particular EO.  An EO cannot be selected for use with a food based solely on its 

general antimicrobial capabilities; further screening must be done to ensure that the EO and 
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target food are compatible from a sensory perspective (Seow et al., 2014).  Desai et al. (2012) 

conducted a study testing orange EO and carvacrol (shown by Burt (2004) to be a major 

constituent in some EOs (such as thyme and oregano) for use with catfish.  Though the carvacrol 

had the highest antimicrobial strength, sensory panelists noted that it had a piney off flavor.  

Because of the off flavors they impart to food, EOs containing high levels of carvacrol should be 

avoided in applications like catfish. Klein et al. (2013) also noted that the concentration of 

thymol and carvacrol required to achieve bacteriostatic/bacteriocidal results produced negative 

organoleptic effects; however, Giatrakou et al., (2010) showed positive sensory effects of thyme 

oil when used in a chicken application, thus demonstrating the need to match EOs to the flavor 

profiles of the foods they will be used with.  Furthermore, EOs should also be selected for use in 

specific foods known to typically contain certain types of microorganisms that the chosen EO is 

known to be effective against, especially concerning whether gram (+) or gram (-) bacteria are 

commonly found on the food.  While it is generally noted that gram (+) bacterial cells are more 

susceptible to EOs  than gram (-) cells (Akrayi 2012; Burt 2004; Seow et al., 2014), there are 

studies identifying EOs that are effective against both categories (Akrayi 2012; Catherine et al., 

2012; Jiang et al., 2011; Singh et al., 2007; Tajkarimi et al., 2010; Wang et al., 2012).  The 

effectiveness of EOs against gram (+) and gram (-) bacteria has much to do with the mechanisms 

of inhibition utilized by the oils for the destruction of bacterial cells. 

Research has been conducted to explore different delivery methods to apply EOs onto 

food products.  The stability of EOs in aqueous solutions is being studied and improved through 

the use of emulsions, microemulsions, nanoemulsions, and encapsulation techniques; and the 

antimicrobial/antifungal capacity of the oils within these systems is also being studied (Bhavini 
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et al., 2012; Buranasuksombat et al., 2011; Chafer et al., 2012; Cramp et al., 2004; Engels et al., 

1995; Francesco et al., 2011; Ghosh and Coupland 2008; Lim et al., 2011; Magnusson et al., 

2011; McClements and Rao 2011; Rao and McClements 2011; Rao and McClements 2013; 

Rodriguez-Rojo et al., 2011; Shah et al., 2013a; Shah et al., 2013b).  Yun et al. (2013) tested the 

possibility of applying EOs in the vapor phase to cherry tomatoes.  They tested EOs including 

cinnamon, oregano, and mustard, and compared them to using only isolated primary 

components which are cinnamaldehyde, carvacrol, and allyl isothiocyanate, respectively.  These 

tests showed positive results, especially with mustard EO and isolated allyl isothiocyanate, as 

both yielded no salmonella growth when used in either 16.7 or 33.3 µL/L, respectively, in vitro 

and reduced Salmonella to undetectable levels (> 5-log reduction) in vivo. 

Essential oils applied both holistically and separated, isolated compounds derived from 

them have shown positive results for antimicrobial work.  Though EOs do work more effectively 

against gram (+) bacteria, research is beginning to identify more ways to use EOs that are also 

effective against gram (-) bacteria which is extremely important when considering pathogen 

control.  Delivery of the EOs onto food products is also an important area needing evaluation.  

The use of emulsions and encapsulation techniques is being researched and is showing good 

results but is not feasible for most large scale operations at this time.  Specifically regarding the 

anti-listerial effects of EOs, variable results have been reported and suggest that the amounts of 

anti-listerial compound occurring naturally in foods is often too low to provide satisfactory log 

reductions of Listeria and should not be relied on as a sole prevention strategy (Bell and 

Kyriakides 2005; Friedman et al., 2002; Hammer et al., 1999; International Commission 1998).  

Because the anti-listeria compounds naturally present in foods is too low to be considered 
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effective in reduction Listeria populations, using EO concentrations and isolated compounds 

from the EOs is the suggested topic of study moving forward.  With continued work, EOs and 

novel delivery systems for their application could be another method by which to meet a rising 

need in the market for “natural” food preservatives.   

3.) Peracetic Acid 

Peracetic acid is a highly effective antimicrobial agent against bacteria, spores, viruses, 

and fungi (Kitis, 2004).  It is more expensive to produce than chlorine and electrolyzed water but 

has shown strong antimicrobial results against coliforms even at low concentrations (Baldry, 

1983; Baldry and French, 1989; Fraser et al., 1984, Kitis, 2004).  When Greenspan and MacKeller 

(1951) tested its efficacy against various microorganisms including E. coli, Bacillus subtilis, 

Pseudomonas aeruginosa, Aspergillus niger, and others; they found it to be bactericidal at 

0.001%, fungicidal at 0.003%, and sporicidal at 0.3% (Kitis, 2004).  This demonstrates that 

peracetic acid is most effective against bacteria, though still effective against other 

microorganisms such as molds, yeasts, and fungi (Kitis, 2004; Liberti and Notarnicola, 1999; 

Rudd and Hopkinson; 1989).   

Peracetic acid acts as a strong oxidant to alter cytoplasmic membrane lipoproteins, to 

disrupt cell walls, and to denature proteins and enzymes.  This makes it effective against both 

gram (-) and gram (+) bacteria (Baldry and Fraser, 1988; Block, 1991; Kitis, 2004; Leaper, 1984; 

Liberti and Notarnicola, 1999).  It has also been suggested as an inactivation compound against 

catalase, which makes it especially detrimental to aerobic bacteria (Block, 1991; Kitis, 2004).  

Another benefit of peracetic acid is that it does not form toxic or mutagenic byproducts after it 

reacts with organic materials and its decomposition products are acetic acid, hydrogen peroxide, 
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oxygen, and water (Baldry and Fraser, 1988; Colgan and Gehr, 2001; Gehr et al., 2002; Kitis, 

2004; Lefevre et al., 1992; Monarca et al., 2001; Monarca et al., 2002; Sancher-Ruiz et al., 1995; 

Wagner et al., 2002).   

With the release of acetic acid, though, is the availability of extra organic acids that any 

surviving bacteria may be able to utilize to grow if pH is favorable (Kitis, 2004; Sanchez-Ruiz et 

al., 1995).  Another disadvantage of peracetic acid is its combustibility and instability at 

concentrations over 15%, but most industry users apply it at 12% with sufficient results (Block, 

1991; Kitis, 2004).  This concentration of 12% has been estimated, by Kitis (2004), to cost four to 

five times more than sodium hypochlorite (chlorine) in the United States and is a current hurdle 

to more widespread use in industry.   

 

4.) Electrolyzed Water  

Electrolyzed water (EW) is an antimicrobial treatment that has begun to be studied for 

its potential use in food safety.  EW is generated by using a machine called an electrolyzer to 

pass an electrical current through water containing a salt, typically either sodium chloride (NaCl) 

or potassium chloride (KCl) (Al-Haq et al., 2005).  The solution is exposed to a chamber in the 

electrolyzer containing an anode and a cathode; and the salt water is fractioned into two water 

streams: a basic stream (predominantly containing NaOH) and an acidic stream (predominantly 
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containing HOCl).  Thus, electrolyzed water can either be classified as acidic electrolyzed water 

(AEW), basic electrolyzed water (BEW), or neutral electrolyzed water (NEW) (Al-Haq et al., 

2005).  This process is depicted in Figure 1.                            

The amperage of the electrolyzer and initial salt concentration can be altered to adjust 

the final pH of the streams and either the free chlorine content (AEW) or the NaOH content 

(BEW).   The only components required to make EW are water and salt.  Because these 

ingredients are presumably familiar to all consumers, this may improve the acceptability of this 

treatment.  Some consumers may be concerned with the increased Na and Cl levels in the food 

treated with EW; however, due to the low concentration used and the topical application, 

sodium (Na) levels will be negligible and chloride (Cl) levels will not exceed what has been 

deemed safe to use for fruit and vegetable wash, which current scientific research has 

Figure 1: Schematic of EW generation (Dev et al., 2014; Huang et al., 2008) 
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established at 200 ppm NaOCl- (FDA, 2013).  Studies have shown promising results when using 

original salt solutions of only 0.1% NaCl and available chlorine levels ranging from 4-200 ppm 

(Rahman et al., 2011; Shimizu and Hurusawa 1992; Torlak 2014; Wang et al., 2014; Xu et al., 

2014).  Using EW as a preservative may also be a more inexpensive method for 

producers/processors to use than current additives.  After the initial purchase of a water 

electrolyzing system, the EW may be generated on-site using only tap water and salt, both of 

which are very inexpensive ingredients. 

Though EW is a relatively new technology for use as a topical antimicrobial, it has 

undergone some research primarily investigating three antimicrobial mechanisms it employs: 

pH, free chlorine, and oxidation-reduction potential (ORP).  Each of these components, 

individually, are known to have antimicrobial affects; thus, it can be expected that the 

combination of the three would at least have additive affects, if not synergistic (Al-haq et al., 

2000; Kim et al., 2000; Lee et al., 2014; Li et al., 2014; Park et al., 2004). 

 The mechanism by which pH affects bacterial cells is the altering of the permeability of 

the cell membrane, causing the cell’s regulation of selective diffusion to become ineffective 

(McArthur, 2006; Srivastava and Srivastava, 2003).  The tertiary and quaternary structure of 

proteins embedded within the cell membrane begin to degrade and lose polarity as they are 

exposed to increasing concentrations of hydrogen ions, and this degradation weakens, the 

integrity of the cell membrane.  When the cell membrane integrity weakens excess hydrogen 

ions can pass into the cell; or the leakage of intercellular constituents into the environment may 

occur (McArthur 2006; Srivastava and Srivastava 2003).  Intercellular proteins may then begin to 
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be denatured by the invading hydrogen atoms and/or the cell could lose vital constituents to the 

environment rendering it incapable of reproducing (Brock, 1967; Jay et al., 2005; White 2010). 

 Another important mechanism that is involved in EW’s antibacterial property is chlorine 

concentration.  Chlorine has three primarily proposed mechanisms by which it inhibits bacterial 

propagation.  These include the alteration of nucleic acids, the denaturing of cellular enzymes, 

and the disruption of the cell membrane structure (Fair et al., 1947; Green and Stumpf 1946; 

Knox et al., 1948; Sconce 1962; Marks and Strandskov 1950; White 2010; Wyss 1962).  Chlorine’s 

efficacy, however, is highly effected by pH.  When mixed with water, it is most effective 

between pH = 4 and 6 because the predominant form it takes in that range is hypochlorous acid 

(HOCl) which has the highest efficacy against bacteria (White, 2010).  Because HOCl has no 

charge and a low molecular weight (52.46 g/mol), it is easy for it to pass into a cell because the 

cell simply perceives it as water (Sconce 1962; White 2010).  Green and Stumpf (1946) and 

Sconce (1962) note that, upon entering the cell, the weak acid can begin affecting vital enzymes 

and organelles and denaturing them such that they can no longer replicate.  To an extent, low 

pH increases HOCl content; however, as is passes below 4 and lower, chlorine gas is also 

generated at the low pH levels; and this has the potential for becoming a health hazard (White, 

2010).  On the opposite side, pH increases will also cause HOCl decreases and hypochlorite ions 

(ClO-) become the predominant species in the solution before later converting into sodium 

hypochlorite (NaClO) (Marriott and Gravani 2006; White 2010; White 2010).  The negative effect 

of increasing pH on the activity (not simply the concentration) of hypochlorite has also been 

established (Block 2001; Johns 1934; Rideal and Evans 1921).  One experiment noting the 

negative effect of alkalinity on the bactericidal activity of chlorite ions (ClO-) was conducted by 
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Charlton and Levine in 1934.  When they tested Bacillus metiens in calcium hypochlorite 

solutions, the researchers observed that 100 ppm of free chlorine at pH 8.2 would inactivate an 

approximately equal amount of bacterial cells as 1000 ppm of free chlorine at pH 11.3.  Later, in 

1941, Rudolf and Levine tested a solution of 25 ppm free chlorine against B. metiens spores and 

noted how much exposure time was required at various pH levels in order to achieve a 2-log 

reduction in spores.  They found the following pH and exposure combinations that eliminated 

spores: pH 6 = 2.5 minutes, pH 7 = 3.6 minutes, pH 8 = 5 minutes, pH 9 = 19.5 minutes, pH 9.35 = 

35.5 minutes, pH 10 = 131 minutes, and pH 12.86 = 465 minutes (Block 2001; Rudolf and Levine, 

1941).  Again, undissociated hypochlorous acid concentration was thought to be the limiting 

factor causing reduced sporicidal activity (Block 2001; Rudolf and Levine 1934).  Because of the 

tendency of HClO to dissociate above pH = 6 and the increased production Cl2 gas below pH 4, it 

is best to keep the pH of hypochlorite solutions between pH 4 and 6 when using them as 

antimicrobial agents (Marriott and Gravani 2006; White 2010).  This will result in the most 

efficient balance of bactericidal activity and chlorine gas production. 

 The last antimicrobial mechanism seen in EW is oxidation reduction potential (ORP).  

ORP refers to the level of oxidizing or reducing strength within a given system (Jay 1996; 

McPherson, 1993; Robbs et al., 1995; Venkitanarayanan et al., 1999).  Negative ORP values 

denote a reducing environment, and positive values denote an oxidizing environment.  In the 

realm of EW, chlorine is another oxidizing agent that increases ORP values.  Most pathogens and 

viruses will be killed on contact or within a few seconds by solutions with an ORP of over +800 

mV due to oxidizing the cell walls, which alters their chemical makeup and physical structure.  

High ORP can also cause damage to nucleic acids, enzymes, and other proteins if reactive 
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compounds enter the cell as the cell wall becomes more permeable (Jay 1996; McPherson, 

1993; Robbs et al., 1995; Venkitanarayanan et al., 1999).  This damage prevents bacterial 

growth.  According to Venkitanarayanan (1996) and Jay (1999), aerobic microorganisms have an 

optimal growth rate in an ORP range of +200 mV to +800 mV, and favor growth in an ORP range 

between -200 mV and -400 mV. 

 Though all of the mentioned aspects of EW may contribute to its effectiveness as an 

antimicrobial, they are not all thought to contribute to bactericidal activity to the same degree.  

Li et al., (2014) tested the efficacy of AEW ice against Listeria monocytogenes and Vibrio 

parahaemolyticus and monitored the contributions of available chlorine concentration, pH, and 

ORP to the overall reductions seen in the presence of the pathogens.  They reported that the 

most significant contribution to bactericidal activity in AEW ice was due to available chlorine 

content, followed by pH, and lastly ORP.  They also showed that pH remained stable over time 

but available chlorine content and ORP decreased over time (Li et al., 2014).  Because EW 

contains all three of these factors, the strengths and limitations of each can be used together to 

provide an antimicrobial treatment that is very versatile as it inherently implements hurdle 

concepts for microbiological control. 

EW has been tested and shown effective in many different mediums including herbs, 

vegetables, fruits, seeds, seafood, pork, poultry, and in non-food media both alone and in 

conjunction with other control measures like temperature and added acids (Abadias et al., 2008; 

Goodburn and Wallace 2013; Graca et al., 2011; Hao et al., 2015; Kim et al., 2000; Kim et al., 

2013; Lee et al., 2014; Mansur et al., 2015; Northcutt et al., 2008; Park et al., 2004; Rahman et 

al., 2011; Torlak 2004; Wang et al., 2014; Xu et al., 2014).  On apples, both neutral electrolyzed 
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water (NEW) and acidic electrolyzed water (AEW) have been shown by Graca et al., (2011) to 

have antimicrobial effects against L. innocua with AEW at 100 ppm, free chlorine concentration 

showing the greatest reduction in counts.  The results from the AEW 100 ppm free chlorine 

samples were not statistically different from samples treated with HOCl diluted to 100 ppm free 

chlorine.  The application of EW to most products can be easily implemented by substituting 

commonly used tap water, either partially or in total, with AEW.  As is noted by Goodburn and 

Wallace (2013), tests need to be conducted for different products that receive topical AEW 

treatments to ensure that the acidity and ORP of the AEW would not alter the properties of the 

products in a negative way.  Because of its seemingly widespread efficacy and manufacturing 

feasibility, the use of electrolyzed water as a topical antimicrobial for fresh produce appears to 

be very promising. 

 

5.) Other Antimicrobial Treatments 

DiPersio et al., (2004) researched the use of sodium metabisulfite (Na2S2O5) and ascorbic 

and citric acid solutions for treating peaches prior to dehydration and found that it was effective 

in reducing Listeria populations by 1.5 to 2.0 log CFU/g.  Sodium metabisulfite was developed 

initially as a replacement to trisodium phosphate (PO4), which had negative environmental 

effects.  Sodium metabisulfite decomposes in water, resulting in free SO2 at a theoretical yield of 

67.4%.  The high levels of free SO2 are more active against bacteria at pH levels below 5, and the 

sodium metabisulfite solutions used in this study were approximately 4.2, resulting in high 

antimicrobial activity.  Rose and Pilkington (1989) and Barnett (1985) suggested that the boost 

in antimicrobial activity of sulfites at low pH could be due to un-ionized SO2 which can easily 
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pass through cell membranes and interfere with intercellular metabolic functions within 

bacterial cells (DiPersio et al., 2004).  However, Davidson and Branen (1993) have expressed 

concern over negative health effects from sulfites when ingested by some individuals who have 

sulfur sensitivities; and, thus, sulfites should be used cautiously and with proper labeling on food 

products. Citric acid and ascorbic acid also showed reduction in Listeria by approximately 5 logs 

when assessed on dried peaches; but the drying process alone yielded Listeria reductions of 

approximately 3 log10 CFU/g.  This suggests that the acids account for no more than a 2 log10 

reduction when using this process of drying then treating with acid (DiPersio et al., 2004).  The 

drying process may have also weakened bacterial cells leaving them more susceptible to acid 

treatment and facilitating the additional 2 log10 CFU/g reductions produced by post-drying 

exposure the acids. 

Another possible treatment is ozone, either as a gas or by bubbling it in water for liquid 

application.  Ozone in gaseous form was tested on bell peppers by Alwi and Ali (2014).  After 

dipping bell pepper plugs into Listeria solution (104 CFU/ml) for one minute and drying for one 

hour, the plugs were exposed to 9 ppm of gaseous ozone for six hours, and a 3.06 log10 

reduction in Listeria was observed (Alwi and Ali 2014).  While these numbers are good, it is likely 

not applicable in large scale operations simply due to the amount of product that would need to 

be treated.  For effective treatment, complete coverage of the ozone over the entire surface of 

each product must be ensured.  This would be a difficulty to large producers. 

All of the aforementioned antimicrobial treatments are non-thermal and can be applied 

at 1 atm of pressure.  This is an important regulation concerning the treatment of fresh peaches.  

Due to the soft nature of the flesh and skin of peaches, treatments must be applied that will not 
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degrade the texture or appearance of the peach (such as thermal or barometric processes).  

Peaches contain enzymes such as polyphenol oxidase and catechol oxidase that facilitate 

transformation of phenols aggregated quinones that yield a brown color.  Because of this, the 

cell structure of peaches must not be damaged during treatment or the enzymes will become 

de-compartmentalized and begin creating a brown color on the fruit’s flesh.  

Conclusion 

 Food safety is of extremely high importance to ensure the health and wellness of the 

people who trust food manufacturers to provide them with wholesome and nutritious foods.  In 

regards to fresh produce, the traditionally used chlorine wash is coming under more and more 

disapproval amongst consumers who are requesting new, “natural” treatments to remove 

microorganisms from food.  This has produced a need amongst food scientists to face the 

challenge of creating new food treatment technologies that can achieve equal results as chlorine 

not only in microbial reduction, but also in cost effectiveness and technical feasibility for 

manufacturers.  Multiple alternative methods are available, including irradiation, ozone 

treatment, bacterial competition, essential oils, electrolyzed water, and many others.  At this 

point, each of these techniques shows potential, but most of them are not feasible outside of 

laboratory settings or for use in high-volume processing environments.  Currently, electrolyzed 

water seems to be an outstanding choice for alternative treatment methods for produce.  

Though it would require an initial investment for a high-volume electrolyzer, the subsequent 

treatment process requires nothing more than tap water and salt (NaCl or KCl) and can be 

applied, in the same step, as a substitution for traditional chlorine wash.  Though more 

validation for antimicrobial efficacy should be obtained, current research suggests results may 



32 

 

be comparable to traditional chlorine but additional research is needed.  Because of the high 

potential EW shows for the treatment of fresh produce for both quality and safety, the following 

research was conducted as to provide further documented validation supporting electrolyzed 

water’s use within the food industry. The purpose of this study is to test the efficacy of using 

acidified electrolyzed water (AEW) as a topical antibacterial agent for use on fresh, whole 

peaches.  This research project involved the following objectives:  

 

1.) Determining the amount of natural microflora found on peaches 

2.) Testing the efficacy of AEW, in comparison to chlorine, as a topical antimicrobial for fresh, 

whole, unwashed peaches. 

3.) Testing the efficacy of AEW, in comparison to chlorine, as a topical anti-listeria agent on 

fresh, whole, unwashed peaches. 

 

The above objectives were evaluated in three experiments. 
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CHAPTER 2 

EFFECT OF ANTIMICROBIAL TREATMENTS ON THE RECOVERY OF MICROORGANISMS FROM 

THE SURFACES OF FRESH, WHOLE, UNWASHED PEACHES 

 

Abstract 

New technologies are being investigated to maintain the safety and quality of fresh 

peaches during processing while reducing cost and meeting the demands of some consumers 

who are adverse to buying foods treated with chlorine.  The goal of this study was to determine 

the amount of natural microflora found on fresh, whole, unwashed peaches and to compare 

acidified electrolyzed water (AEW) to traditional chlorine as a topical treatment for the 

reduction or elimination of total aerobic microorganisms on those peaches.  This experiment 

compared peaches receiving no wash (NW), a tap water wash (TW), an acidified electrolyzed 

water wash (AEW), and a chlorine wash (CL) for effectiveness at removing microorganisms 

naturally present on peaches right after harvest.  Each treatment was applied for two different 

time exposures (5 seconds or 40 minutes) for comparison.  NW peaches received no treatment 

while tap water washed (TW) peaches were washed with water chilled to 2 ± 2°C.  AEW was 

produced immediately before each application with the following characteristics: 21 ± 0.2 ppm 

free chlorine, pH ≈ 2.5, ORP ≈ 1100 mV, and a temperature of 2 ± 2°C.  CL solution was also 

prepared immediately before each application to contain 21 ± 0.3 ppm free chlorine with a 

resulting pH of approximately 8.   

Analysis of results showed that the length of time of treatment exposure had a 

significant effect on the number of aerobic microorganisms recovered from the surfaces of 

peaches (P < 0.05).  AEW reduced the counts of microbes recovered from peaches by 0.9 and 1.7 

log10 CFU/gram peach after 5 second or 40 minute exposure times, respectively.  Peaches 
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treated with CL had similar microbiological reductions as those treated with AEW as CL was 

found to reduce counts of aerobic microorganisms recovered from peaches by 2.0 and 0.6 log10 

CFU/gram peach after 5 second or 40 minute exposure times, respectively.  AEW and CL reduce 

the numbers or microorganisms naturally found on the surfaces or harvested peaches.  Based 

on these findings, the incorporation of AEW into the hydrocooling step used by peach 

processors seems feasible from a microbiological safety standpoint. 
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Introduction 

The sales of peaches accounts for roughly $550 million in revenue generation in the 

United States each year (USDA-NASS, 2013).  Peaches are a seasonal crop, typically marketed 

from April until early October, but this varies based on location within the United States (USDA-

NASS, 2013).  The fruit is largely used for commercial canning or selling fresh but, as with all 

produce, peaches must be minimally-processed for microbiological control prior to selling.  

Many bacteria are naturally occurring in the environment and are transferred to all types of 

produce during production, harvest, and transportation to the pack-house (Abadias et al., 2008; 

Bell and Kyriakides, 2005; Beuchat 1996; Kim et al., 2012; Lee et al., 2014; Natvig et al., 2003).  

However, numbers of these microorganisms can be reduced during processing and lowered 

levels can be maintained with proper storage and distribution conditions. 

According to the National Agriculture Statistics Survey (2013), nearly $10 million in lost 

revenue occurs each year from peaches that are defective and unutilized.  This inability to use 

harvested peaches can be attributed to many factors but, when considering usable peaches, 

spoilage (typically from mold) is the factor that will eventually deem a peach unusable.  It is 

therefore critical to sell or process peaches into products before they begin to spoil and have to 

be condemned.  Because of this, technologies that reduce total aerobic microorganisms found 

on peaches, thus inhibiting their spoilage, are of great importance to the industry. 

The treatment of peaches with chlorinated water has been a commonly used method to 

prolong the shelf life of the fruits and to ensure safety to consumers (Beuchat 1998; Graca et al., 

2011). Typically peaches are treated with low levels of chlorine (between 50 and 200 ppm) 

which have been shown to reduce bacterial population by 1 to 2 log10 CFU/g (Alegre et al., 2010; 
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Beuchat 1998; FDA, 2001; Graca et al., 2011).  The mechanisms by which chlorine inhibits 

bacterial cell propagation are still being investigated; however, three strong conjectures have 

been drawn thus far.  The alteration of nucleic acids within the cells, the inactivation of cellular 

enzymes, and the disruption of the cell membrane are currently the proposed mechanisms by 

which chlorine is thought to inhibit bacteria (Fair et al., 1947; Green and Stumpf 1946; Knox et 

al., 1948; Marks and Strandskov 1950; Sconce 1962; White 2010; Wyss 1962).  Chlorine is most 

active in the form of hypochlorous acid (HClO) which is chlorine’s predominant form when 

dissolved in water at pH 4 to 6 (Marriott and Gravani 2006; White 2010).  HClO is an oxidizing 

agent that will disrupt cell membranes and, thus, prevent cell regeneration from occurring as it 

damages structural proteins and causes the leakage of vital organelles and other cellular 

components (Marriott and Gravani 2006).  Due to its low molecular weight (52.46 g/mol) and 

the fact that it carries no charge, HClO can also readily migrate into bacterial cells where will 

begin to disrupt enzymatic processes (White 2010; Sconce 1962).  AEW shares the antibacterial 

benefits of low pH, chlorine content, and high ORP and is thought to be similar to the traditional 

chlorine that is used (sodium hypochlorite) in its bactericidal efficacy.  AEW is produced from 

salt water (NaCl or KCl) which would makes it a more “natural” preservative for concerned 

consumers and it could be implemented with comparatively minimal disruptions to large scale 

processors (Bearth et al., 2014; Browne, 2011; Hansen et al., 2003; Krystallis et al., 2007; Sparks 

and Shepherd, 1994).   
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The red skin pigmentation 

(blush) of peaches is caused from the 

light regulated development of 

anthocyanin pigments (Bakowska-

Barczak, 2005; Frett, 2012; Layne and 

Bassi, 2008; Schijlen, 2004).  

Anthocyanins are glucosides of anthocyanidins 

(Figure 2) whose resonance structure accounts 

for the wide array of colors they can reflect 

(Castañeda-Ovando et al., 2003; De-Xing et al., 2004; Pauling, 1939; Wrolstad et al., 2005).        

The production of anthocyanins in peach skin is inversely proportional to chlorophyll 

production which can be seen during peach ripening as the fruits transition from green and 

begins developing red colors (Layne and Bassi, 2008).  This blush development is beneficial for 

the marketing of fresh, whole peaches because it improves the fruit’s visual appeal to 

consumers (Frett, 2012).  A potential problem for the use of AEW on peaches is the instability of 

anthocyanins to pH.  When the pH of the pigment’s environment changes, the aromatic rings 

undergo chemical changes (at various pH levels) that alter the light absorption, of the molecules 

and thus produce a color change (Bakowska-Barczak, 2005; Gould, et al., 2009; Iqbal and Mido, 

2005).  This is predominantly due to substitutions to the anthocyanidin base structure and 

degradation reactions that take place as higher pH increases the degree of hydroxyl substitution 

on the B-ring (Bakowska-Barczak, 2005; Castaneda-Ovando et al., 2009; Giusti and Wrolstad, 

2003).  Anthocyanidin structure can take different forms based on pH levels (Figure 3) 

Figure 2: Anthocyanidin structure (De-

Xing et al., 2004) 
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(Casteneda-Ovando, 2003; de Costa et al., 1998; Fleschhut et al., 2006; Heredia et al., 1998; 

Kennedy and Waterhouse, 2000).  The purple/red flavylium cation (shown in Figure 3A) is 

predominant at pH 1, while the blue quinoidal species (Figures 2B-D) is predominant at pH 2 – 4.  

The colorless carbinol pseudobases (Figure 3E) and chalcones (Figure 3F) are the predominant 

anthocyanin structures at pH 5 – 6.  At pH 7 and higher the pigment with begin to degrade and 

produce dark arrays that eventually blacken as pH continues to increase (Figure 3 Degradation 

reaction, Castaneda-Ovando et al., 2009).

  

 
Figure 3: “Anthocyanins chemical forms depending on pH and degradation 

reaction for anthocyanins. Where R1 = H or saccharide, R2 andR3 = H or 

Methyl” (Castañeda-Ovando et al., 2009). 
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Anthocyanins are also hydrophilic pigments and have a tendency to leach into water if 

exposed for long periods of time; however, if the cell walls containing them are not damaged 

then loss of the pigment will not occur (Iqbal and Mido, 2005; Bakowska-Barczak, 2005).  

Because of the water soluble and pH instable nature of anthocyanins, it is important to consider 

the effects of AEW on the pigments in peach skin which has not been previously reported.   

The goals of this study were two-fold: 1.) to determine the efficacy of AEW to act as a 

topical antimicrobial for reducing populations of aerobic microorganisms on the surfaces of 

fresh, whole, unwashed peaches; and 2.) to assess the effects of AEW and chlorine on the 

surface skin color of fresh, whole, unwashed peaches. 

 

Materials and Methods 

Peaches 

Sweet September peaches were obtained from a commercial grower located in South 

Carolina.  All peaches were procured within 24 hours after harvest and before processing 

(washing).  Peaches with preexisting signs of microbial degradation (mold growth) were not 

used in the experiment. 

 

Treatments 

A preliminary experiment was conducted to compare the antimicrobial efficacy of four 

treatments when applied to peaches at 25°C for less than 5 seconds.  The four treatments were: 
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no wash (NW), tap water wash (TW), acidified electrolyzed water wash (AEW), and chlorinated 

water wash (CL).  NW (control) peaches did not undergo a wash step.  TW peaches used were 

dipped into municipal tap water.  AEW peaches were dipped into electrolyzed water that was 

generated using a Hoshizaki ROX-10WA-E Water Electrolyzer that was set at 10 A and was 

generated from a 100 g/L NaCl solution at ambient temperature.  The chlorine concentration of 

the AEW was approximately 22 ± 0.2 ppm.  CL treatment was made using commercial bleach 

(8.25% sodium hypochlorite) and was diluted in tap water (previously chilled to 2°C) to be 

similar to the AEW chlorine concentration (22 ± 0.3 ppm).  Chlorine concentration of both the 

AEW and chlorine (CL) treatments was tested using a portable CHEMetrics CHLORINE 2 SAM test 

kit with Vacu-vials to analyze N,N diethyl-p-phenylenediamine (DPD) colorimetric reactions. 

After conducting the preliminary experiment, another experiment (Experiment 2) was 

conducted to test the effects of time and temperature on the effectiveness of the treatment 

solutions.  Experiment 2 included additional samples that underwent increased exposure time to 

the TW, AEW, and CL treatment solutions. 

For all treatments in the preliminary experiment and in Experiment 2 (excluding NW), 

500 mL of freshly prepared solution was placed into individual 1000 mL beakers and one peach 

was dipped into one beaker.  The use of 500 mL of solution per peach was implemented 

replicated the maximum amount of water that can be estimated to contact each peach in the 

hydrocooler used by this study’s peach supplier.  All 500 mL allocations of the treatment 

solutions were used to treat only one peach and were then discarded.  Four peaches per 

treatment were tested per replication plus four peaches that were not washed in each 
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experiment.  Therefore 16 peaches for Experiment 1 and 28 peaches for Experiment 2 were 

tested per replication. 

After preparing the treatment solutions, peaches were weighed and the skin color of the 

peaches was measured as C. I. E. L*a*b* color values at four equidistant points around the 

midsection of each peach.  A HunterLab UltraScan PRO spectrocolorimeter was used to measure 

lightness (*L), redness (+a*), and yellowness (+b*) using the settings for 2° and 10° observer in 

illuminate C light.  Prior to each analysis, the spectrocolorimeter was standardized using a light 

trap and standard white tile (EVU 000746).     

After weighing and measuring skin color, treatments were applied with exposure times 

as follows: preliminary experiment - 5 seconds; Experiment 2 - 5 seconds and 40 minutes.  For 

the preliminary experiment, the treatment solutions were only tested at 25°C.  For the second 

experiment, only refrigerated treatments (2 ± 2°C) were used.  This was done to simulate 

commercial peach hydrocooling procedures (≈0°C).  At the end of the exposure, peaches were 

removed from the treatments, allowed to drip for 1 minute, and then immediately placed into 

clean bags (1 gallon) along with 100 mL of sterile 0.1% peptone solution.  Peaches and peptone 

were shaken for approximately 1 minute to recover surface microorganism.  NW peaches were 

also shaken in peptone.  The peaches were aseptically removed from the rinsate and placed into 

pre-numbered weigh boats.  The rinsate was used to prepare serial dilutions and these were 

spread plated on aerobic plate count (APC) agar plates.  Plates were inverted and incubated for 

48 hours at 37°C.  After incubation, visible colony forming units (CFUs) were counted, converted 

to log10 CFU/g peach, statistically analyzed, and reported as log10 CFU/g peach.  Rinsate was also 

tested for residual chlorine to determine if neutralization was required.  No residual chlorine 
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was found using the DPD colorimetric test and therefore no neutralization was used.  After the 

peaches had visibly dried, post-treatment color measurements were taken, using the same 

procedure as mentioned above. 

 

Preliminary Experiment 

Immediately after harvest, unwashed peaches were transported in corrugated boxes to 

the laboratory.  Peaches were aseptically weighed and surface skin color was measured.  Skin 

color of peaches was determined before and after treatments to determine if the treatments 

had an effect on skin color.  All peaches that were tested were at ambient temperature and all 

treatments were freshly prepared (as described above) and applied at ambient temperature for 

less than 5 seconds. 

Experiment #2 

Experiment 2 included the same treatments used in the preliminary experiment; 

however, exposure time varied and treatments were applied at refrigerated temperatures to 

mimic industry processes.  All peaches that were treated were at ambient temperature.  All 

treatments were applied for either < 5 seconds or 40 minutes by dipping peaches into freshly 

prepared solutions as described above.  Color analysis of all peaches was performed in the same 

manner as is discussed for the preliminary experiment. 
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Statistics 

 Both the preliminary experiment (N=48) and Experiment 2 (N=84) were performed in 

triplicate.  Data were analyzed using the General Linear Model procedure of SAS to test the main 

effects of antimicrobial treatment, replication, and time (only in Experiment 2; SAS, 2001).  The 

residual error served as the model error term in the model.  Means were separated using least 

square means with Tukey’s mean separation procedures of SAS at a P < 0.05 level. Color data 

across both experiments were pooled for pre- and post-treatment.  Pooled values were 

reported after analyses showed no statistical difference for treatment exposure time (P > 0.05).  

  

Results and Discussion 

 In the preliminary experiment, the weight of peaches ranged from approximately 297 g 

to 346 g (Table 1).  The pH of CL treatment was not adjusted to optimum (pH 4 – 6) to simulate 

commercial conditions as most processors would not control for pH of chlorine washing 

treatments.  No significant difference existed between any of the treatments.  Unwashed 

peaches were found to have approximately 4 log10 CFU/g peach of total aerobic microorganisms 

and this did not change substantially after dipping in TW, AEW, or Cl (Table 1).  New time and 

temperature variables were then incorporated into a second experiment for evaluation. 

In Experiment 2, increasing exposure time from 5 seconds to 40 minutes produced 

significant differences in microbial reductions for the TW, AEW, and Cl treatments when 

compared to NW peaches as all three treatments removed > 1 log10 CFU/g of aerobic 

microorganisms from peaches (P < 0.05) (Table 3).  Previous research has suggested that 



62 

 

chlorinated water may primarily function as an antimicrobial by eliminating bacteria in residual 

wash water and preventing microorganisms from re-attaching to surfaces (Northcutt et al., 

2008).  This principal has been demonstrated by showing little or no difference in the reduction 

of Escherichia coli O157:H7 counts in lettuce leaves using a chlorinated wash from 20 ppm to 

200 ppm versus non-chlorinated treatments or deionized water (Adams et al., 1989; Beuchat, 

1999; FDA, 2001, Li et al., 2001).  Even so, it has been reported that at least one minute of 

exposure to chlorine is necessary for fresh produce to achieve a 1 to 2 log10 CFU/g reduction in 

bacteria when being used with produce (Beuchat, 1998; FDA, 2001; Graca et al., 2011).  These 

data demonstrated that either additional time or agitation would be required to produce 

significant reduction in the microorganisms on peach surfaces. Because industry practice often 

incorporates a 40 minute hydrocooling step utilizing approximately 0°C water, Experiment 2 was 

conducted to reflect industry conditions. 

Studies have been conducted utilizing various exposure times between 2 and 5 minutes 

and achieving approximately 2 log10 CFU/g reductions or aerobic bacteria; however little 

research has been conducted using a 40 minute exposure time even though this is a washing 

time period common for manufacturers (Hao et al., 2015).  The results of Experiment 2 agree 

with those reported by Graca et al. (2011) and Beuchat (1998) who state the necessity of at least 

1-2 minutes exposure time for chlorine to be effective against microorganisms (Table 3).  

Rahman et al. (2010) noted an approximate 2 log10 CFU/g reduction in total bacteria and Hao et 

al. (2015) noted an approximate 3 log10 CFU/g reduction of Escherichi coli when using AEW on 

spinach and cilantro, respectively.  Chlorine concentration in those studies was higher than that 

used in this study (Rahman et al. (2010) used 50 ppm free chlorine and Hao et al. (2015) used 68 
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ppm free chlorine). When considered together, Experiment 2 along with the work by Rahman et 

al. (2010) and Hao et al. (2015) validate the efficacy of AEW at multiple chlorine levels and 

exposure times.  The aforementioned studies report similar bacterial reductions from 22 ppm 

chlorine up to 68 ppm chlorine and with exposure times from 5 seconds to five minutes 

(Rahman e al., 2010 and Hao et al., 2015).  Rahman et al. (2010) also noted that increasing 

exposure time from 30 seconds to 7 minutes further reduced bacterial counts by 1 log10 CFU/g 

using AEW.  Their data are in agreement with the 0.8-log10 CFU/g reductions found in this study 

as exposure time increase from 5 seconds to 40 minutes.   

AEW-0 and AEW-40 did not show significant differences in log10 CFU/g peach, but CL-0 

and CL-40 were significantly different.  Chlorine is one of the mechanisms in AEW that reduces 

microbial populations and its effectiveness was shown to be time dependent suggesting that is it 

not the primary mechanism for antimicrobial activity in AEW which was not shown to be time 

dependent.  Therefore, pH or ORP are thought to be the primary antimicrobial mechanism in 

AEW in the ≈ 22 ppm chlorine concentration used for this experiment.  This could either be a 

direct effect of oxidation and excess hydrogen ion concentration on bacterial cells or it could 

pertain to the low pH of AEW maintaining higher levels of hypochlorous acid than that seen in 

the CL samples.  This contrasts Rahman et al. (2010) who reported significant differences in total 

bacteria concentrations between samples subjected to AEW exposures of less than 1 minutes 

and samples subjected to AEW exposures over 3 minutes.  The differences in AEW’s 

effectiveness over time may be due to minor chlorinated species that are generated during AEW 

generation.  These species may include hydrochloric acid (HCL), chlorine (Cl2), hypochlorite ions 

(ClO-), and trichloride ions (Cl3-) and are all measured in DPD colorimetric analysis.  The presence 

of these minor species (though most likely very low) may contribute to overall effectiveness of 
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AEW and, since their concentrations are unknown, could have contributed to the differences in 

the present work and the work conducted by Rahman et al. (2010) (White, 2010).  However, 

when compared to unwashed peaches, AEW-40 and CL-40 showed reductions in aerobic 

microorganisms of 1.7 log10 CFU/g peach and 2.0 log10 CFU/g peach, respectively, which 

indicates that they are both sufficient antimicrobials for use on food products.  It should also be 

noted that all CL samples were approximately at pH 8 which is not within chlorine’s maximum 

bactericidal range of 4 to 6 (Marriott and Gravani 2006; White 2010).  Nevertheless, the CL 

solutions (60% hypochlorite ions at pH 8 according to White (2010)) produced a 2.0 log10 CFU/g 

peach reduction. Additionally, the control sample (TW-40) also reduced total aerobic bacterial 

counts by 1.1 log10 CFU/g peach, implying that the process of washing peaches alone can 

achieve large reductions in surface bacteria.  This denotes the importance of AEW’s aqueous 

nature on its bactericidal efficiency.   

Temperature of treatment solutions was compared from peaches in the preliminary 

experiment (ambient with 5 second exposure time) and Experiment 2 (refrigerated with 5 

second exposure time) and no statistical difference was found on this basis (P < 0.05).  However, 

there is a numerical trend that suggests temperature has some of an effect since bacterial 

reductions from the preliminary experiment (Table 1) are consistently lower than those the 5 

second samples in Experiment 2 (Table 2).   

Three things can be derived from the results of this work.  First, when taking into 

account the noted dependency of chlorine on exposure time and AEW’s efficacy being 

independent of exposure time, it is suggested that either pH or ORP are the primary reasons for 

AEW’s efficiency in solutions containing < 25 ppm of free chlorine.  This could be due to direct 

inhibition or it could be indirect as pH maintains an environment that allows chlorine to perform 
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at its maximum antimicrobial capacity in the form of HOC.  Secondly, because AEW-40 and CL-40 

showed no difference in bactericidal activity, it is thought that AEW (pH ≈ 2.5 and ORP ≈ +1100 

mV) and traditional chlorine treatments (with equal free chlorine concentrations < 25 ppm) 

result in equal amounts of reduction in aerobic microorganisms on fresh, whole peaches.  Lastly, 

the confirmation that AEW-40 and CL-40 both reduce aerobic microorganisms by 1 to 2 logs 

demonstrates that the amount of reduction in viable aerobic microorganisms achieved by AEW-

40 and/or CL-40 is sufficient for use on fresh, whole peaches.  In short, though the mechanisms 

used by AEW (pH ≈ 2.5, ORP ≈ +1100 mV, and [Cl] ≈ 22 ppm) for bacterial inactivation may be 

different than those used by traditional sodium hypochlorite, AEW and NaHClO are equal in 

antimicrobial propensity, and they are both sufficient for use on fresh, whole peaches. 

Table 3 shows the colorimetric measurements (L*, a*, b*) for peaches before and after 

the washing treatments.  Statistical analyses revealed no differences due to exposure time to 

treatment and these data were pooled and reported together.  Measurements were performed 

to determine the effect of using an acidic treatment (AEW) on the color of the anthocyanin 

pigments in the peach skins.  Iqbal and Mido (2005) state the even though anthocyanins are 

hydrophilic and prone to leaching into aqueous solutions, as long as the cell containing the 

pigments remain intact no leaching should occur.  In this case, excluding small lacerations or 

mechanical damage to peach skins that would expose cellular constituents to the environment, 

it appears from the data that anthocyanins in the peach skins had minimal contact with the 

wash treatments and thus were not be chemically effected by the pH levels of the treatments 

nor would the overall concentration of the pigment be altered.  After analyzing peaches both 

before and after treatment, no statistical difference (P < 0.05) between the pre- and post-

treatment peaches in any of the test groups (NW, TW, AEW, and CL).  On average, peaches were 
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found to have lightness of approximately 55, redness of approximately 20, and yellowness of 

approximately 35.  Although not significant, the greatest variation among peach color was 

observed with redness.  Results from the colorimetric data can be seen in Table 3. 

Results from the present study demonstrate that washing peaches may remove nearly 1 

log10 CFU/g of the total aerobic microorganisms on the surfaces of peaches and reductions may 

be increased by incorporating antimicrobial factors into the wash water such as the of chlorine 

and/or acid.  Results also demonstrate that AEW may be an acceptable alternative to chlorine 

with comparable biocidal effects without compromising the color of the peaches. 
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Table 1: Chemical characteristics1 of treatment solutions and their effects on numbers of total aerobic microorganisms1 recovered from 

peaches after 5 second treatment exposure time. 

Treatment Peach Weight 

(g) 

pH Oxidation Reduction 

Potential (ORP) 

[Cl] (ppm) Log10 CFU/g Reduction 

(log10 

CFU/g) 

No Wash (NW) 346.45 ± 

13.50 

N/A N/A N/A 3.95 ± 0.10 N/A 

Tap Water Wash (TW) 297.29 ± 

15.03 

6.64 ± 

0.00 

390.00 ± 0.00 0.00 ± 0.00 3.94 ± 0.35 0.01 

Acidified Electrolyzed Water 

Wash (AEW) 

325.62 ± 

15.21 

2.77 ± 

0.00 

1118.00 ± 0.00 22.2 ± 0.0 3.79 ± 0.12 0.16 

Chlorine Wash (CL) 340.6 ± 13.0 8.2 ± 0.0 753.3 ± 0.0 21.1 ± 0.0 3.7 ± 0.2 0.2 
1 Means ± standard error of means  
2 N=12 

 

Table 2: Chemical characteristics of treatment solutions and their effects on numbers of total aerobic microorganisms recovered from 

peaches after 5 second and 40 minutes treatment exposure times at 2°C1. 

Treatment Exposure 

Time (min.) 

Peach Weight 

(g) 

pH Oxidation Reduction 

Potential (ORP) 

[Cl] (ppm) Log10 CFU/g Reduction 

(log10 CFU/g) 

NW N/A 335.14 ± 14.37 N/A N/A N/A 4.30a ± 0.23 N/A 

TW 0 336.32 ± 18.78 6.96 ± 0.05 526.33 ± 34.87 0.03 ± 0.01 3.47abc ± 0.17 0.83 

AEW 0 343.43 ± 12.76 2.87 ± 0.01 1126.33 ± 8.04 21.87 ± 0.24 3.41abc ± 0.19 0.89 

CL 0 333.89 ± 13.46 8.39 ± 0.02 744.33 ± 12.38 21.47 ± 0.31 3.67ab ± 0.31 0.63 

TW 40 304.12 ± 11.97 6.96 ± 0.05 526.33 ± 34.87 0.01 ± 0.1 3.20bcd ± 0.20 1.10 

AEW 40 320.54 ± 18.08 2.89 ± 0.02 1126.33 ± 8.04 21.87 ± 0.24 2.57cd ± 0.32 1.73 

CL 40 335.63 ± 19.52 8.39 ± 0.02 744.33 ± 12.38 21.47 ± 0.31 2.34d ± 0.36 1.96 
a-d Means ± standard error of means with differing superscripts are significantly different (P < 0.05). 
1 N=12 
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Table 3: Pre- and post-treatment colorimetric data.  All numbers are averages including measurements from every peach tested within 

each treatment.  No statistical difference was seen in color for any individual peach in any of the treatment groups.1, 2, 3 

 NW TW AEW Cl 

 L* a* b* L* a* b* L* a* b* L* a* b* 

Initial 55.9 ± 

1.1 

18.9 ± 

0.6 

35.2 ± 

1.3 

55.8 ± 

1.3 

20.0 ± 

0.9 

35.7 ± 

1.4 

55.4 ± 

1.2 

20.9 ± 

0.8 

35.2 ± 

1.4 

56.4 ± 

1.2 

19.6 ± 

0.8 

35.7 ± 

1.3 

Post 55.5 ± 

1.0 

20.1 ± 

0.6 

35.5 ± 

1.2 

55.7 ± 

1.3 

21.8 ± 

1.0 

37.8 ± 

1.6 

55.1 ± 

1.2 

22.3 ± 

0.8 

35.1 ± 

1.44 

57.3 ± 

1.3 

19.3 ± 

0.8 

37.5 ± 

1.5 

Difference 0.5 ± 

1.4 

-1.23 

± 0.8 

-0.4 ± 

1.6 

0.1 ± 

1.9 

-1.8 ± 

1.2 

-2.1 ± 

2 

0.4 ± 

1.3 

-1.4 ± 

0.9 

0.1 ± 

1.5 

-0.9 ± 

1.4 

0.3 ± 

0.8 

-1.8 ± 

1.6 
1 Means ± standard error of means 
2 N=132 
3 L* indicates lightness with “0” being black and “100” diffuse white; a* indicates green/red where negative values denote green 

and positive values denote red; b* indicates blue/yellow where negative values denote blue and positive values denote yellow. 
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CHAPTER 3 

ACIDIFIED ELECTROLYZED WATER AS A TOPICAL ANTIMICROBIAL AGAINST LISTERIA INNOCUA 

ON FRESH, WHOLE, UNWASHED PEACHES 

Abstract 

 Pathogenic contamination is of great concern to the produce industry, regulators, and 

consumers.  Organisms like Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, 

and many others are common sources of foodborne illness outbreaks associated with fresh 

produce.  Because Listeria is a psychrotrophic bacteria, it is well suited for cold, dark storage areas 

common in many packing sheds or distributors. This makes it increasingly important that fruit 

sanitization steps are effective in inactivating pathogens.  

The goal of this study was to determine the efficacy of acidified electrolyzed water (AEW) 

on fresh, unwashed peaches inoculated with Listeria innocua and held for 24 hours before 

treatment.  Peaches received 0.1 mL of Listeria inoculum containing 109 cells/mL and after 

inoculation peaches were held overnight at 34°C.  The AEW used for this experiment was prepared 

to contain 21.8 ± 0.3 ppm free chlorine, at pH ≈ 2.8, and was applied at a temperature of 2 ± 2°C.  

Unwashed and inoculated peaches were divided into the following treatment groups: no wash 

(NW), a tap water wash (TW), an acidified electrolyzed water wash (AEW), and a chlorine wash 

(CL) containing 20.9 ± 0.1 ppm free chlorine.  Each treatment was performed with two exposure 

times for comparison - 5 seconds or 40 minutes.  In both AEW and CL samples, a significant 

difference was observed in numbers of Listeria recovered from peaches washed for 40 minutes 

versus peaches washed for 5 seconds.  When exposure time for AEW was increased from 5 

seconds to 40 minutes, numbers of Listeria removed from peaches decreased 2.2 log10 CFU/g of 

peach. Similarly, when the exposure time for CL was increased from 5 seconds to 40 minutes, 
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peaches achieved 1.610 log CFU/g greater reduction in numbers of Listeria recovered.  Both the 

40 minute CL and the 40 minute AEW samples reduced Listeria innocua by over 3 log10 CFU/g 

when compared to the total Listeria counts recovered from the NW samples which contained 4.9 

log10 CFU/g peach. 

Results from the present study demonstrate that washing peaches will remove Listeria 

from peaches (0.4 log10 CFU/g) and that greater removal of Listeria occurs with longer washing 

times and the use of AEW of CL, which have similar results (3.5 and 3.02 log10 CFU/g reduction). 
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Introduction 

 Listeria is a gram (+) pathogen that is psychrotrophic, halotolerant up to sodium chloride 

(NaCl) concentrations of 25%, and is a facultative anaerobe (Bell and Kyriakides 2005).  These 

properties make Listeria a good competitor in storage environments commonly used for fresh 

produce.  Listeria’s ability to grow under chilled conditions and in low oxygen environments 

means that is can migrate into small crevices in fruits and vegetables and propagate where it is 

very difficult for sanitizers to reach. It is also capable of surviving at a wide pH range (pH 3.0 to 

12.0) (Liu et al., 2005).  All of these things combined make Listeria an increasingly difficult 

pathogen to eliminate in a food processing environment.   

Though it is less prevalent in produce outbreaks than other pathogens like Escherichia coli 

and Salmonella, Listeria is still known to occur on fresh produce and causes an estimated 123 

cases of foodborne illness in the United States each year (Crim et al., 2014).  Furthermore, it has 

the third highest human fatality rate among all pathogens which has been estimated at 

approximately 20% (Bell and Kyriakides 2005; Bennion et al., 2008; CDC 2011; Hoelzer et al., 2014; 

Omac et al., 2015; Sant’Ana et al., 2012; Scallan et al., 2011a; Scallan et al., 2011b; Todd and 

Notermans 2011).  In 2014, Wawona Packing Company in Cutler, California issued a voluntary 

recall of several peach lots spanning from June 1st to July 17th due to the possibility of Listeria 

contamination.  Though Listeria is not commonly associated with peaches, this recall shows the 

importance of focusing on preventative action when considering foodborne pathogens that affect 

peaches and other fresh produce.  Peaches are not commonly associated with Listeria because of 

their naturally low pH but, given the recent recall, more emphasis is being placed on preventative 

action regarding the pathogen.  Listeria has been shown to survive in high acid environments with 
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pH levels as low as 3.0, especially when refrigerated which gives it a competitive edge over 

mesophilic bacteria (Gahan et al., 1996; Liu et al., 2005; Ryser and Marth, 2007).  When 

refrigerated, Listeria will upregulate genes for cold-adaptive response and will also increase 

production of σB protein which enhances the resistance of Listeria spp. against acid and several 

other factors (Becker et al., 1998; Ferreira et al., 2001; Liu et al., 2002; Ryser and Marth, 2007).  .   

Batz (2013) and Scharff (2010) suggest that, when considering direct and indirect 

monetary costs, more than $51 billion dollars are lost due to foodborne illnesses each year in the 

United States and that 85% to 90% of that is attributed to only five major pathogens; one of which 

is Listeria.  Clearly Listeria is of high importance from a food safety standpoint and must be 

controlled for during processing.  The goal of this study was to determine the efficacy of acidified 

electrolyzed water (AEW) against Listeria innocua on fresh, whole, unwashed peaches in 

comparison to the currently used chlorine wash. 

 

Materials and Methods 

Sweet September peaches were obtained from a commercial grower located in South 

Carolina.  All peaches were procured immediately after harvest but before processing (washing).  

Peaches with preexisting signs of microbial degradation, mold growth, or decay were removed 

from the experiment.  Immediately after harvest, peaches were placed into corrugated boxes 

and were transported to the laboratory for testing.  Upon arrival at the laboratory, peaches 

were weighed and inoculated with 0.1 mL of Listeria innocua inoculum containing 109 cells per 

mL. 
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Inoculum Preparation 

 Non-pathogenic Listeria innocua was chosen for this study because of its genetic 

similarity to Listeria monocytogenes.  Listeria innocua cultures were grown on PALCAM agar 

with PALCAM Listeria selective supplement.  After incubation for two days at 37°C, colonies 

were removed from plates using a sterile loop and were vortexed in 0.1% sterile peptone.  

Absorbance at 495 nm was used to estimate numbers of Listeria in the inoculum (Thermo 

Scientific Genesys 10S UV-Vis spectrophotometer).  The inoculated peptone was then plated on 

PALCAM with supplement for CFU/mL confirmation.  All inoculum used in this experiment 

contained initial concentrations of 9 ± 0.2 log10 CFU/mL of Listeria innocua.  After inoculation 

and 24 hour storage, peaches were randomly divided into the following treatments: NW, TW, 

AEW, and CL.  All treatments except NW were applied for 5 seconds or 40 minutes using 

solutions chilled to 2°C.  For each of the treatments (excluding NW), 500 mL were placed into 

individual 1000 mL beakers into which the peaches were dipped.  Only one peach was dipped 

into one beaker and treatment solutions were then discarded. 

 

Inoculation of Peaches 

All peaches were inoculated with 0.1 mL of Listeria inoculum containing 109 cells/mL .  

Peaches were inverted and inoculum was pipetted onto the bottom surface of each peach.  The 

inoculum was spread across the bottom surface of the peach using a sterile loop before allowing 

the peach to rest until visibly dry.  Peaches were then packed into a foam cooler and place 

under refrigeration (2°C) overnight for bacterial attachment as well as to mimic potential 

overnight storage prior to a wash step that could be required at farms during harvesting. 
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Treatment Application 

Peaches were exposed to four treatments in order to determine the comparative 

antimicrobial efficacy of each treatment.  NW (control) peaches did not undergo a wash step. 

TW peaches used unaltered tap water as the wash for the treatment.  AEW peaches used 

electrolyzed water that was generated using a Hoshizaki ROX-10WA-E Water Electrolyzer that 

was set at 10A and was drawing from a 100g/L NaCl solution at ambient temperature.  The 

chlorine concentration of the AEW was approximately 20.9 ± 0.1 ppm and the chlorine 

concentration of the AEW was approximately 22 ± 0.3 ppm.  CL treatment was made using 

commercial bleach (8.25% sodium hypochlorite) and was diluted in tap water to be similar to 

the AEW chlorine concentration (22 ± 0.3 ppm).  Chlorine concentrations were tested on each 

batch of AEW or CL using a portable CHEMetrics CHLORINE 2 SAM test kit with Vacu-vials to 

analyze N,N diethyl-p-phenylenediamine (DPD) colorimetric reactions.   

The treatments applied in this experiment were denoted as follows: NW, TW-0, TW-40, 

AEW-0, AEW-40, CL-0, and CL-40.  The numbers following the abbreviations represent the 

exposure time (minutes) that peaches were in contact with the treatments where 0 minutes = 

denotes a 5 second exposure. 

Aside from NW, each treatment was applied by dipping individual peaches into 500 mL 

of treatment solution in 1-liter beakers with the following exposure times: 5 seconds and 40 

minutes.  Each of the treatments used were refrigerated (2 ± 2°C).  All 500 mL allocations of the 

treatment solutions were used to treat only one peach and were then discarded.  Four peaches 

per treatment were tested per replication (N=28). 
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After dripping, peaches were removed from the treatment solutions; “0” time samples 

were immediately placed into clean 1 gallon bags along with 100 mL of sterile 0.1% peptone 

solution and shaken for 1 minute.  The peaches were allowed to drip for 1 minute prior to 

rinsing in peptone.  After rinsing, peaches were retained and residual peptone was diluted and 

plated on PALCAM agar plates with selective nutrient supplement (0.1mL residual 

peptone/plate).  Plates were inverted and incubated for 48 hours at 37°F at which point visible 

colony forming units (CFUs) were counted.  Numbers of bacteria were converted to log10 CFU/g 

peach and reported. 

 

Statistics 

 The experiment was replicated three times with four peaches per treatment group per 

replication (N=12/treatment).  Data were analyzed using the General Linear Model procedure of 

SAS to test the main effects of antimicrobial treatment, replication, and time.  The residual error 

served as the error term in the model.  Means were separated using least square means with 

Tukey’s mean separation procedures of SAS at a P < 0.05 level.  

 

Results/Discussion 

 The ability of Listeria to implement a cold shock response and continue propagating in 

cold conditions presents potential safety concerns for processors of fresh produce, especially if 

they store their products in chilled environments (Becker et al., 1998; Ryser and Marth, 2007).  

Because Listeria is also know to become more acid tolerant as it is exposed to low temperatures 
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(≈4°C), it was important to evaluate the efficacy of chilled AEW against this pathogen (Becker et 

al., 1998; Fereira et al., 2001; Ryser and Marth, 2007).  Table 5 shows that AEW is effective 

against Listeria even at refrigerated temperatures.   AEW and CL exhibit the same bactericidal 

effect against Listeria with a 1.2 and 1.6 log10 CFU/g reduction after 5 seconds as compared to 

number recovered from NW.  No statistical difference was found in Listeria reduction between 

AEW-0 and Cl-0 treatments.  There was also no statistical difference in reduction of Listeria in 

AEW-40 and Cl-40 treatments.  After 40 minutes of exposure time, AEW and Cl treatments 

reduced Listeria by approximately 3.5 log10 CFU/g and 3.2 log10 CFU/g, respectively, when 

compared to NW samples.  AEW-40 and CL-40 also produced significantly higher reductions in 

Listeria when compared to control samples (TW-40) which showed 0.2 log10 CFU/g reductions.  

These results are in agreement with Rahman et al. (2010) and Park et al. (2009) who showed 

AEW to reduced Listeria populations on spinach and green onion/tomatoes, respectively.  

Rahman et al. (2010) observed an approximate 2.7 log10 CFU/g reduction in Listeria (7 minute 

exposure time) while Park et al. (2009) observed an approximate 2 log10 CFU/g reduction (5 

minute exposure time).  Another study by Graca et al. (2011) showed over 1 log10 CFU/g 

reductions in Listeria innocua after treating apple slices with AEW (pH≈3, ORP≈1111, [Cl]≈53 

ppm) for 5 minutes.  In this experiment, exposure time was shown to be a significant variable in 

reductions in Listeria with both AEW-40 and CL-40 treatments, as compared to reductions of 1.2 

log10 CFU/g and 1.6 log10 CFU/g in AEW-0 and CL-0, respectively.  This supports the conclusion of 

Kim et al. (2000), who tested 30 second and 60 second exposures, that exposure time does 

affect the antimicrobial capacity of electrolyzed water.   
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From a commercial standpoint, results suggest that the implementation of AEW in place 

of traditional chlorine washes would pose no threat in terms of food safety and that the 

integration of AEW into the hydrocooling step, for peaches, or similar wash steps for other fresh 

produce seems feasible.  The high pH (8) of the CL samples did not hinder the solution’s 

effectiveness against Listeria even though Marriott and Gravani (2006) and White (2010) have 

reported chlorine’s antibacterial capacity decreasing above 6.  At pH 8, only 40% of free chlorine 

is in the form of hypochlorous acid, it’s most bactericidal form.  In this experiment, the presence 

of approximately 60% hypochlorite ions in the CL samples was still shown to be effective against 

Listeria with 40 minutes of exposure.  Arevalos-Sanchez (2012) also tested electrolyzed water 

with 65 ppm chlorine at a neutral pH with exposure times of 5, 10, 20, and 45 minutes at 20°C 

and 37°C which yielded Listeria monocytogenes biofilm populations undetectable in most cases.  

Mansur et al. (2015), found that when used on fresh pork, AEW (pH≈2.3, ORP≈1159, [Cl]≈30 

ppm) reduced Listeria by < 1 log10 CFU/g when applied at 25°C for 3 minutes and by 

approximately 1.5 log10 CFU/g when applied at 40°C.  The low efficacy at 25°C is in contrast to 

what is suggested in this study; however, the difference in using a protein based media for 

testing or a higher surface moisture could be factors contributing to the discrepancy. 

These findings were consistent with the results found by Hopkins (2015) who found low 

reductions (< 1 log10 CFU/g) in total aerobic microorganisms in chlorine solutions (pH 8) when 

samples were exposed to treatments for 5 seconds.  This confirms the necessity of at least 1 – 2 

minute exposure time to aqueous chlorine treatments for the surface decontamination of 

produce as is stated by Beuchat (1998) and Graca et al. (2011).  Hopkins (2015) also reported no 

statistical difference (P < 0.05) in AEW and CL treatments in the reductions of aerobic 
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microorganisms and is in agreement with the results found in the present study, pertaining to 

Listeria reduction, which showed no difference in AEW and CL treatments (P < 0.05). 

   Further research should be conducted to determine the threshold of bactericidal 

activity of AEW against Listeria in terms of exposure time.  However, due to the fact that current 

bulk hydrocooling processes typically operate for 40 minutes and have been shown to take 

approximately 35 minutes to reduce a 3-inch peach from 32.2°C to 4.4°C (when using 1.7°C 

water), the enhanced efficacy of AEW with extended time can be utilized without adding more 

time in processing (Bennett, 1965).   This study shows the viability of using acidified electrolyzed 

water (AEW) as an anti-Listeria treatment for the topical treatment of fresh, whole peaches.  

AEW proved to reduce equivalent amounts of Listeria innocua as compared to a chlorine wash 

(Cl) made from sodium hypochlorite solution.  The elimination on 99.9% of Listeria by the 

treatments proves them both to be acceptable for use from a safety standpoint.  These results 

show that AEW wash has strong potential as a “natural” anti-Listerial substitute for chlorine in 

the produce industry. 
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Table 4: Effect of No Wash (NW), Tap Water Wash (TW), Chlorine Wash (CL), and Acidified Electrolyzed Water Wash (AEW) with five 

second and 40 minute exposure times on the Listeria populations on fresh, whole peaches inoculated with Listeria innocua.1, 2 

Treatment Exposure 

Time 

(min.) 

Peach Weight 

(g) 

pH Oxidation 

Reduction 

Potential (ORP) 

[Cl] (ppm) Log CFU/g Reduction 

(log CFU/g) 

No Wash (NW) N/A 246.75 ± 16.00 N/A N/A N/A 4.90a ± 0.12 0.0 

Tap Water (TW) 0 215.23 ± 9.35 6.39 ± 0.11 591.33 ± 30.77 0.00 ± 0.00 4.25ab ± 0.12 0.65 

Acidified 

Electrolyzed Water 

(AEW) 

0 238.43 ± 19.07 2.83 ± 0.02 1159.67 ± 3.63 21.77 ± 0.27 3.68bc ± 0.18 1.22 

Chlorine (CL) 0 221.43 ± 15.08 8.18 ± 0.03 773.33 ± 8.18 20.87 ± 0.14 3.34c ± 0.12 1.56 

Tap Water (TW) 40 250.98 ± 12.56 6.39 ± 0.11 591.33 ± 30.77 0.00 ± 0.00 4.70a ± 0.10 0.20 

Acidified 

Electrolyzed Water 

(AEW) 

40 222.75 ± 7.52 2.83 ± 0.02 1159.67 ± 3.63 21.77 ± 0.27 1.45d ± 0.42 3.45 

Chlorine Wash (CL) 40 216.90 ± 9.81 8.18 ± 0.03 773.33 ± 8.19 20.87 ± 0.14 1.73d ± 0.28 3.17 
a-d represent statistical differences within a column (P < 0.05) 
1 Means ± standard error of means 
2 N=12 
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CONCLUSION 

 

Acidified electrolyzed water (AEW) is an antibacterial agent effective against a wide spectrum of 

pathogenic and non-pathogenic bacteria.  The results of these studies confirm that AEW can be used for 

the antibacterial treatment of fresh, minimally processed peaches replacing of chlorine solutions 

(sodium hypochlorite) that are commonly used at present.  When tested for biocidal activity against 

aerobic microorganisms, AEW was found to be as effective as chlorine treatment and producing up to 

1.7 log10CFU/g reductions.  Exposure time of the AEW was considered and was shown to produce a 

significant difference in bacterial reductions.  When implementing the use of AEW, it is suggested that 

exposure time be over one minute; however, a maximum exposure time has yet to be determined.  

Because the hydrocooling step is the proposed critical control point for the application of AEW, the 

exposure time tested was 40 minutes to mimic the hydrocooling step commonly used in industry by 

peach processors.   

The results against Listeria innocua on inoculated peaches at 40 minutes of exposure was 3.5 

log10 CFU/g peach.  Compared to total aerobic microorganisms, AEW’s effectiveness was no different 

than the effectiveness of chlorine samples tested in the same way at the same free chlorine 

concentration.  The results of this work suggest that not only is AEW equivalent in antibacterial activity 

to sodium hypochlorite solutions (which are currently used) but it is also effective enough to ensure 

food safety by eliminating over 95% of native bacteria and over 99.9% of Listeria innocua on inoculated 

peaches. 

Further research should be conducted to determine AEW exposure times yielding maximum 

bacterial reductions for use in applications that do not have an inherent 40 minute exposure time due to 

processing requirements.  For applications using acidic electrolyzed water, uses for the basic 

electrolyzed water should also been investigated such as utilizing it for a peeling step for some fruits.  If 
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acidic and basic streams are recombined to reach a neutral pH, it is possible that the neutral 

electrolyzed water could be used in the water supply for livestock to prevent microbiological 

contamination.  Also, because Listeria is more susceptible to many antimicrobial treatments at ambient 

temperatures than it is at refrigerated temperatures and it is weakened by heat-cool cycling, a warm-

cool hydrocooling study using AEW could be of benefit.  
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