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ABSTRACT 

Arguably the main focus of thermoelectric materials research over the last decade 

has been the reduction of lattice thermal conductivity through nanostructuring. This 

approach has proved quite effective in many instances, but has several inherent 

drawbacks including not only the metastability of many of the nanostructures used, but 

also difficulty decoupling the effects on the thermal properties of materials from the 

effects on their electrical properties. Some more recent research has focused on reduced 

thermal conductivity in materials with strong anharmonicity. In these systems 

anharmonicty in the crystal structure, whose strength can be gauged by the so-called 

Gruneissen parameter leads to amorophous–like thermal behavior in crystaline materials. 

Ag8GeTe6 is one such material which displays an unusually low thermal 

conductivity (~0.25 W/m*K at room temperature) that can be at least partially attributed 

to its large mode-averaged Gruneisen parameter, which we have estimated to be ~3.8 at 

room temperature. Beyond the small magnitude of the thermal conductivity of Ag8GeTe6 

its temperature dependence is also surprising, and displays a positive temperature 

coefficient rather than the usual 1/T dependence expected for crystalline materials. 

Furthermore, Ag8GeTe6 is an unusual example of a material in which superionic 

conduction and promising thermoelectric performance coexist at 500 K and above. Such 

coexistence is a surprise as the crystal chemistry requirements for these two phenomena 

are distinct. Therefore understanding the interplay between the ionic, electronic, and 

phonon conduction in Ag8GeTe6 not only attracts interest in fundamental research but 

also bridges two realms of energy-related materials research, namely, thermoelectric 
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materials (electronic conductors for direct heat-to-electricity energy conversion) and 

electrolyte materials (ionic conductors for energy storage in batteries).  

To better understand how Ag8GeTe6 evolves and sets the stage for such rare 

coexistence the coexistence of superionic conduction and promising thermoelectric 

performance at elevated temperatures, we have conducted temperature variable powder 

X-ray diffraction, photo-acoustic spectroscopy, heat capacity, thermal conductivity, 

electrical conductivity (DC and AC electrical conductivity, and ionic conductivity), 

Seebeck coefficient, and Hall coefficient measurements over a wide temperature range 

below room temperature. As previous studies on Ag8GeTe6 are scarce, these results have 

brought our understanding of Ag8GeTe6 to an unprecedented level. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

 

1.1 Thermoelectricity and Thermoelectric Materials  

 

The looming fossil fuel shortage coupled with the environmental concerns of 

burning fossil fuels and our ever-increasing demand for energy impose a pressing need 

for alternative and sustainable energy conversion technologies.1  To this end 

thermoelectricity is the simplest technology applicable to direct heat-to-electricity energy 

conversion, fitting well into the Department of Energy’s renewable energy initiative and 

the Department of Defense’s Sustainability initiative. Though it would be naive to expect 

thermoelectric materials to be the primary solution to large scale energy production, in 

certain (niche) applications thermoelectric materials are very promising, a fact that was 

realized as early as the 1950s by Ioffe.2  

Rather than an exhaustive introduction to thermoelectricity and thermoelectric 

materials (for an in-depth introduction to thermoelectricity the reader is referred to 

references [3] and [4]), I will limit my discussion of thermoelectric materials to three 

specific aspects that I find to be most useful and somewhat less heeded. First I will 

discuss the thermoelectric effect in the context of Onsager relations because I find the 

elegance of this simple description of the fundamental phenomenon to be unparalleled. 

Second I will discuss the basic principles of the Seebeck effect for two reasons: most 
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obviously because the Seebeck effect is the basis, at least historically, of all of the 

thermoelectric effects, and second because in my opinion most basic descriptions of the 

Seebeck effect are at best difficult to understand and in some cases misleading. Finally I 

will discuss the heat engine analogy of thermoelectric devices because I think this route 

offers the most insight for the future of the field of thermoelectric materials.     

 
1.1.1 Onsager Relations 

As suggested by their name, thermoelectric effects deal with the interplay of two 

flows; namely charge and heat (or entropy). This relation was pointed out by Lord Kelvin 

as early as 1854 in the form of the Thompson relations: 

 ,d T
dT

α αΠ
Κ ≡ − Π =   (0.1) 

here Κ is the Thompson coefficient, Π is the Peltier coefficient, and α is the Seebeck 

coefficient.5 A much more through and general description of the relation between the 

charge and entropy flows was given by Onsager in 1931.6 In his derivation Onsager 

noted that when two or more processes occur simultaneously in any thermodynamic 

system there will be an interaction between them. In the simplest case a thermodynamic 

system under the influence of two processes can be described by the following equation 

(in this case the driving forces are the electrical field andtemperature gradient) 

 11 12

21 22

e L LJ V
L LQ T

∇    
=     −∇    

  (0.2) 

Obviously the diagonal terms correspond to the thermal and electrical conductivities 

( 11L σ=  and 22L κ= ) while the cross terms L12 and L21, which correspond to interactions 

between the fluxes describe coupled thermo-electric effects. Using the principle of 
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microscopic reversibility Onsager further showed that L12=L21 though in the current form 

L12 and L21 do not correspond to physically meaningful quantities. Later H.B. Callen 

showed that with proper selection of the driving forces it is possible to obtain a more 

meaningful description of the system where the off-diagonal elements correspond to 

physically measurable quantities.7  

To begin Callen’s description we will first consider the total energy flux in the 

system which can be given by the expression 

 E Q e NJ J Jµ= +
  

  (0.3) 

where EJ


 is the energy flux, QJ


 is the heat flux, μe is the electrochemical potential, and 

NJ


 is the particle flux. Now if we remember that these fluxes are conjugated to their 

thermodynamic potential gradients (1/T and μe/T respectively) it is possible to write the 

forces in the system as: 

 e
NF

T
µ− = ∇ 

 

 

  (0.4) 

and  

 
1

EF
T

 = ∇ 
 

 

  (0.5) 

Using these forces we can rewrite the equation describing the entire system as  

 

( )1

e
NN NEN

EN EEE

L LJ T
L LJ

T

µ  ∇ −       =          ∇ 









  (0.6) 

At this point for simplicity and in order to follow Callen’s formulation it is useful to 

replace the energy flux with the heat flux. Additionally, we should remember that 
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according to Onsager the cross terms should be equal, which leaves us with Callen’s 

formula: 

 
( )

( )
11 12

21 22

1

1

eN

Q

J L L T
L LJ

T

µ − ∇    
  =         ∇ 









  (0.7) 

From here it is possible to quickly write down the equations for the thermal and electrical 

conductivity which correspond to the cases when NJ


 and QJ


 equal zero respectively: 

 2
11

D
T L

κ =   (0.8) 

and  

 
2

11e L
Tσ =   (0.9) 

where following Callen’s formalism D is defined by the relation   D ≡ L11L22 − L12
2  .  

To describe the Seebeck coefficient we must first recall that it is defined as the 

ration between the electrochemical gradient and the temperature gradient and therefore 

given by the relation: 

 12

11

( )1 1
( )

e L
e eT LT

µα α∇
≡ − → =

∇



   (0.10) 

the Peltier coefficient on the other hand relates the particle current and the heat current 

and can therefore be given by the relation: 

 12

11

1QJ L
e LJ

Π ≡ → Π =



   (0.11) 

 where J


 is the current density 1
NJ J

e
 = 
 

 

 . This returns us to the Thompson relation 

between the Seebeck and Peltier coefficients given in Equation (1.1).  
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At this point it is possible to solve the system of equations to obtain all of the 

kinetic coefficients and rewrite Equation (1.7) in terms of measureable quantities. 

 
( ) ( )

( )
( )

( )

2
2

2 3 2 2

1

1

T T eN

Q T T J

T TJ ee T
J T T Te T

σ σ α µ

σ α σ α κ

  − ∇    
  =       +  ∇  









  (0.12) 

The final task is to estimate the amount of entropy carried by the charge carriers. 

To do this the first step is to write out the entropy flux density:  

 ( )21 22
1 1 1Q

S e

J
J L L

T T T T
µ    = = − ∇ +        



 

  (0.13) 

With the help of the expression of Ohm’s law in the current formalism  

 ( )
11

e
TJ

eL
µ∇ = −

 

  (0.14) 

equation (1.12) can be simplified to  

 21
22

11

1 1
S

LJ J L
TeL T T

= + ∇
 

  (0.15) 

This simple expression for the entropy of the system has two distinct terms. The second 

term describes the entropy associated with the electrochemical potential while closer 

inspection of the first term reveals that it is the fraction of the entropy carried by each 

carrier and closely related to the Seebeck coefficient.  

 

1.1.2 Seebeck Effect  

 The previous discussion gave an adequate theoretical description of the nature of 

the Seebeck coefficient, however, in practice a more phenomenological description is 

useful. The following section offers a phenomenological description of the Seebeck 

coefficient and its different interpretations.  
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The Seebeck effect was discovered by Thomas Joahnn Seebeck, a German doctor 

turned physicist, in 1821. In most cases the Seebeck effect and hence the Seebeck 

coefficient or thermopower are described in the context of the “thermocouple effect”. In 

my opinion, however, this is somewhat misleading and doesn’t lead to a proper 

understanding of the underlying physics.  Perhaps this can be attributed to Seebeck’s own 

misinterpretation of the phenomena named after him. In his experiment Seebeck noticed 

that a compass magnet placed near a junction between two dissimilar metals would be 

deflected when legs of the junction are held at different temperatures.8 Seebeck 

erroneously attributed this observation to magnetism induced by the temperature 

gradient. Modern knowledge of the Seebeck effect tells us that the compass magnet is 

actually deflected by a magnetic field induced by a current flowing through the junction. 

Thanks to Hans Oersted’s 1819 discovery of the magnetic field encircling an electric 

current, the background was in place for Seebeck to properly describe the phenomenon. 

However, the burgeoning nature of the physical understanding of the coupling between 

charge currents and magnetism meant that though Oersted’s work was published it wasn’t 

widely understood. Indeed the discovery of Faraday’s law (changing magnetic field 

induced current) wasn’t until 1831, and Maxwell didn’t publish his classic equations 

unifying electricity and magnetism until 1861.9 

A much more informative interpretation of the Seebeck effect can be achieved by 

considering a free electron gas, in the presence of a temperature gradient (Figure 1.1). In 

this way the electrons at the hot side of the material have a higher energy and therefore a 

higher velocity than the electrons near the cold end of the material, which leads to a net 
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migration (diffusion) of electrons from the hot end to the cold end. This in turn creates an 

excess charge on the cold end and therefore an internal electric field and a potential. The 

system will eventually come into equilibrium when the number of electrons diffusing 

from the cold side to the hot side equals the number of electrons diffusing in the opposite 

direction. Specifically, this will occur when the chemical potential, which is the driving 

force of the diffusion, is counter balanced by the internal electrical field. In actuality this 

process occurs almost instantly, and can be attributed to two factors: first of which is the 

fact that electrons move very quickly. The second reason behind the rapid equilibrium is 

less intuitive, but much more informative: in reality when the potential gradient is 

generated in the Seebeck effect it does not involve electrons moving all the way from the 

hot end to the cold end (as may be assumed when looking at the cartoon) but rather a 

slight distortion of the overall electron distribution. In this way, small perturbations of the 

electron positions (in the same direction) lead to an overall distortion of the electron 

density. This phenomena is well described (quantified) by the following equation  

   (0.16) 

where the coefficient α is the Seebeck coefficient or thermopower of the material in 

question. Importantly the above expression for the Seebeck coefficient defines a rank 2 

tensor which can in most cases be replaced by its scalar counterpart (the average 

Seebeck) to obtain the following more common definition  

 
V
T

α ∆
= −

∆
  (0.17) 
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In most cases it is sufficient to consider this scalar representation of Seebeck coefficient, 

however, there are exceptions to the rule, which like all direction dependent material 

properties can be exploited for certain technological uses. This preceding picture is 

obviously oversimplified and offers little information on the magnitude of the Seebeck 

coefficient, but importantly gives a simple phenomenological understanding of the 

problem at hand. 

 In a brilliant but somehow less heeded paper Paul Chaikin demonstrates a concise 

method to estimate the magnitude of the Seebeck coefficient.10 The first step in this 

description involves defining the Peltier effect, which is in some sense the “inverse” of 

the Seebeck effect.  Again we consider a free electron gas of charged particles in a box, 

but this time rather than a temperature gradient the perturbation to the system is an 

electric current. Since the charge carriers also carry some amount of heat there will be a 

heat current accompanying the charge current that can be described by the following 

equations. 

   (0.18) 

 The Peltier heat is then defined by the equation 

 u j= Π




  (0.19) 

and is nothing more than the ratio of the heat current to the electrical current. As 

discussed in the previous section, the Seebeck coefficient and Peltier coefficient are 

connected by the combined thermal and electrical transport Onsager relation.  

 8 



 
 
S =

Π
T

=
c
q

  (0.20) 

This simple equation states one of the most informative definitions of the Seebeck 

coefficient. The Seebeck coefficient is proportional to the heat per charge carrier (in 

the case of thermal equilibrium, the proportional factor is in fact unity) or in a more 

general sense the entropy per charge carrier. This simple observation has proved to be not 

only very useful in basic understanding of the phenomena but also in the search for new 

avenues to high performance thermoelectricity. Indeed current research is focused on 

using new types of entropy to enhance Seebeck.11 

 Though beautiful in its simplicity the particle-like treatment of charge carriers in 

the preceding discussion is oversimplified. A more complete discussion of the Seebeck 

effect can be formulated in the matter-wave picture. In this case, it is more intuitive to 

deal with states rather than fundamental particles. In this picture the application of a 

temperature gradient across a material leads to an instantaneous redistribution of the 

matter waves, or in another sense changes in the system’s wave function and thus its 

energy eigenvalues.  

Furthermore, there is a major contribution to Seebeck from scattering, which is 

completely missed when we begin by assuming a free electron gas. In this vein, using 

Mott’s formula is more appropriate, for example, in a quasi-equilibrium and diffusive 

electron transport process, one may relate the energy-specific (differential) electrical 

conductivity σ(E) and the thermopower α in the differential form of the Mott relation 

upon a few simplifying assumptions,12  
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σ (E) = n(E)eµ(E) = n(E)e2 τ (E)

m*   (0.21) 

where the energy-specific carrier concentration n(E) is defined as the number of carriers 

between energy E and E+∆E, μ(E) and τ(E) their energy-specific mobility and relaxation 

time, and m* the effective mass. 
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where q is the elementary charge, kB the Boltzmann constant, EF the Fermi energy, and 

f0(E) the Fermi-Dirac distribution function. The “Fermi window factor” 0 ( )f E
E

∇ 
 ∇ 

is 

usually a bell curve centered at E = EF and having a narrow width on the order of kBT. 

Therefore α is, to the first order, proportional to <E-EF>. Furthermore, in a degenerate 

single-band electron system one can rewrite Equation (1.22) as:13 

 
  
α =

π 2

3
kB

q
(kBT ) g(E)

n(E)
+

1
µ(E)

dµ(E)
dE









   (0.23) 

where g(E) is the electron density of states. It is instructive to note that the two 

terms in the square bracket of Equation (1.23) each corresponds to a mechanism that 

affects α. 

1.1.3 Heat Engine Analogy 

Keeping with the formalism of the interaction between two flows (entropy/heat 

and charge) an excellent and overlooked paper by C.B. Vining shows the correlation 
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between thermoelectric materials and more traditional gas-cycle engines.14 In this way 

the charge carriers in a thermoelectric material can be considered to be analogous to the 

working fluid in a mechanical engine. Vining begins by noting that the ration between the 

thermal and electrical conductivities under zero temperature gradient and under adiabatic 

conditions (zero heat flux) can be directly described by the equation 

 T T

T e

i E
Ts T

σ σ α
σ α λ

    
=       −∇    

 

 

  (0.24) 

where i is the electric current density, E is the electric field, q is the heat current density, s 

is the entropy current, T∇  is the temperature gradient, σT is the electrical conductivity 

and α is the Seebeck coefficient. λE is the thermal conductivity measured under the 

condition of zero electric field. Hence  

 
  
γ Ei ≡ λE

λi
= σ T

σ q
= 1+ σ Tα 2T

λi
= 1+ ZT   (0.25) 

where λi is the thermal conductivity under zero current and σq is the electrical 

conductivity under adiabatic conditions. Furthermore Vining pointed out that these ratios 

play the same role when considering the efficiency of a thermoelectric process as the 

ratio of Cp/Cv in a traditional gas-cycle. Importantly this suggests that near instabilities 

the efficiency of a thermoelectric device may be enhanced similar to the enhanced 

efficiency of a gas-cycle near a critical point in the working fluid. This idea is clearly 

illustrated in Figure 1.2 where γPV of Freon-12 is plotted along with γEi for several 

common n-type thermoelectric materials.15   
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This somewhat unusual approach to describing thermoelectric materials suggests 

three different routes for improving the efficiency of thermoelectric devices in line with 

the optimization of gas-cycle engines:  

1. Materials will exhibit an anomalously large γEi and therefore ZT near electronic 

phase transitions similar to the increase in γPV and efficiency of gas cycles near a 

gas-liquid critical point. 

2. The use of materials with strong interactions between charge carriers will cause 

the transport matrix L to be dominated by solely transport effects. 

3. Attempt to use a more favorable thermodynamic cycle in a thermoelectric device. 

For the purposes of this thesis rule number 1 is the most important. It suggests that 

inherently unstable electron systems could display promising thermoelectric properties.  

 
 
1.2 Mixed Conductor Thermoelectricity 
 
 

  Mixed conductors are materials in which charge and heat are transported by not 

only electrons or holes and phonons but also mobile ions. In the context of the Onsager 

relations discussed earlier in this chapter, mixed conduction can be easily included in 

thermoelectric research by increasing the rank of Equation (1.6) to include the flow of 

ions. A similar expansion of the Onsager relation has been done to accommodate the flow 

of spin in a material and is reported in reference [16]. The limiting case that the 

thermoelectric properties of a mixed conductor are dominated soley by the flow of ions 

and not electrons or holes is an example of the solid state Soret-Ludwig effect.17   
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A special class of mixed conductors is the so called superionic mixed conductors, 

which as their name suggests, display unusually large ionic conductivities. Until recently 

this class of materials has been somewhat ignored by the thermoelectric researchers 

because the coexistence of superionic conduction and good thermoelectric performance 

in the same material and in the same temperature range is very rare, which can be 

attributed to the fact that the compositional and structural requirements for these two 

phenomena are distinct. A large anionic electro-negativity is favored for ionic 

conduction, while a large electronegativity difference between the constituent elements 

will lead to more ionic bonding, strong scattering of charge carriers and thus low 

thermoelectric figure of merit, ZT.  

 Considering the Seebeck coefficient of this class of materials in the context of the 

entropy per carrier formalism offers an interesting question: Can the increased entropy 

carried by relatively massive mobile ions lead to an enhancement in Seebeck coefficient? 

Furthermore, mobile ions have internal degrees of freedom that at least theoretically 

could offer another route for increasing their entropy. Experimental realization of this 

theory has been realized in a small number of materials, but a complete understanding of 

the results is still lacking. An important observation of the existing research is that for the 

onset of ionic conduction to enhance thermoelectric performance, the charge of the 

mobile ions should have the same sign as the dominant charge carriers (i.e. in a material 

where hole conduction dominates the mobile ions should have a net positive charge).  

Recent experiments, however, have shown ionic conductors to be promising 

thermoelectrics for another reason: mixed conductors tend to display very low values of 
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lattice thermal conductivity.  This low thermal conductivity can be attributed to two 

factors. First, mixed conductors undergo a premelting transition where part of the crystal 

lattice begins to behave like a liquid (this is generally the onset of ionic conduction). This 

transition not only allows for more “dynamic” scatterers in the lattice, but also 

fundamentally changes the way heat is stored and transported in the material by 

eliminating transverse phonon modes in a part of the lattice.18 Beyond their liquid like 

properties a general characteristic of mixed conductors is strong anharmonicity in the 

crystal lattice. Though it has been known for some time that anharmonicity in the lattice 

of certain materials leads to low thermal conductivity, the mechanisms governing this 

observation are not well understood. In this vein, we argue that the anharmonicity plays 

an equivalent role, at least thermally, in the time domain to the role of amorphicity in the 

spatial domain, therefore the thermal conductivity of strongly anharmonic materials is 

similar to amorphous materials. 

 

 1.3 Silver Germanium Telluride (Ag8GeTe6) 

 

Ag8GeTe6 is an example of a material in which superionic conduction and good 

thermoelectric performance coexist.19,20,21 Furthermore, Ag8GeTe6 undergoes four first 

order phase transitions between 155K and 250K, an extraordinary number for such a 

narrow temperature range, as well as having a molar heat capacity ~30 J/mol-K above the 

classical Dulong Petit limit suggesting that it is an inherently unstable system. The 

thermal conductivity of Ag8GeTe6 is also unusually low (~0.3W/m*K at room 
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temperature), which prompted it to be mentioned as a possible high performance 

thermoelectric material in the CRC Thermoelectrics handbook.22 For these reasons 

Ag8GeTe6 offers a chance to not only study the enhancement of thermoelectric 

performance in unstable electron systems as suggested by C.B. Vining but also the 

thermoelectric properties, especially reduced lattice thermal conductivity, of mixed 

conductors. 

 

Figure 1.1: a) Charge carrier distribution in a material in equilibrium. b) The charge 
carrier distribution of a material under a temperature gradient, where the net diffusion of 
charge carriers from the hot side to the cold side is balanced by an internal electric field.  
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Figure 1.2: γPV=CP/CV the ratio of the specific heat at constant pressure (CP) to the 
specific heat at constant volume (CV) for Freon 12 plotted along with γEi=κE/κi=1+ZT for 
several well known n-type thermoelectric materials as a function of temperature. Source 
Ref. [15].  
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CHAPTER TWO 

SYNTHESIS 

 
The first and largest hurdle in beginning our study on Ag8GeTe6 was the synthesis 

of high quality samples for transport measurements. To that end, our distinction of a high 

quality sample is two-fold: (i) the sample is large and mechanically strong so it can be 

appropriately shaped and survive various transport measurements including many 

heating/cooling cycles; and (ii) the sample is phase pure so the results of transport 

measurements are intrinsic. While criterion (i) is specific to this study as Ag8GeTe6 is 

known for its brittleness, criterion (ii) is generic but has been somewhat disregarded in 

previous studies on Ag8GeTe6. It took more than one year to address these criteria and 

not only find a suitable method to grow large, mechanically strong, amply pure samples 

but also to evaluate the transport data.  

The lesson of this struggle is that quality control of samples is of utmost 

importance in such an exploratory study as the researchers must know from the outset 

what they are actually measuring. Furthermore, the necessity of conducting transport 

measurements lies in the fact that theoretical band structure calculations on Ag8GeTe6 are 

still unavailable due to the complicated crystal structure and intriguing consecutive phase 

transitions.  

Previous studies have shown that not only is it difficult to pelletize Ag8GeTe6 

powder by hot pressing or spark plasma sintering, but also that slight variations in 

composition can have drastic effects on the transport properties.19,20,23,24,25, The second 
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observation is a reminiscent of a strongly correlated electron system, a category that 

Ag8GeTe6 hardly fits in. Previous authors neither explained the correlation, if any, 

between these two observations nor elucidated their cause(s). In this thesis these two 

observations will be satisfactorily explained. 

Two previous x-ray diffraction studies and a DSC study were taken on single 

crystals of Ag8GeTe6, though the remainder of the published work, including all 

examples of transport measurements on Ag8GeTe6 were performed on powders densified 

using a hot press (HP),21,23,23,24,26,27 To obtain single phased Ag8GeTe6, all of these 

studies began with a melt growth from either high purity single elements or 

stoichiometric amounts of Ag2Te, GeTe, and elemental Te. In the present study, we have 

adopted the single-element recipe. It should again be stressed that Ag8GeTe6 is brittle and 

hard pelletize from powder, and furthermore, the way in which a few percent porosity 

and the residual stress impact the transport properties of a hot pressed sample is an open 

question. As such, extra caution should be taken when referencing and comparing the 

published data. 

A quick look at the phase diagram of Ag, Ge, and Te (Figure 2.1) confirms that 

Ag8GeTe6 is the only ternary phase present which leads us to believe that it should be 

straightforward to form.28 Our results however, have shown that though it is indeed easy 

to obtain Ag8GeTe6 as a primary phase obtaining samples with high phase purity > 99% 

is very difficult. We attribute this difficulty to the incongruent melting at 645°C (Figure 

2.2). Incongruent melting refers to the phenomenon in which a crystalline phase melts 

into a solid-liquid mixture where the solid phase and liquid phases have different 
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compositions. Crystal growth from a stoichiometric ratio of starting materials will 

inevitably lead to the formation of secondary phases, as will be discussed in the following 

chapters [Chapter 3, 4]. Additionally, the fact that small amounts of secondary phases in 

Ag8GeTe6 samples can have drastic effects on their properties suggests that Ag8GeTe6 is 

an intrinsically low-carrier-concentration electron system. As such, a crystalline solid 

cannot be obtained by slowly cooling a stoichiometric melt.  

When growing crystals from incongruent melting substances, the floating zone 

method is often used. Indeed we have an optical floating zone furnace in position, 

however, the volatility of Te at elevated temperatures restricts the use of the optical 

furnace. Another way of growing crystals from incongruent melting substances is flux 

growth, which will be briefly addressed in the following sections. 

In the following sections we will discuss our attempts to synthesize bulk 

Ag8GeTe6 samples through single element spark plasma sintering, melt growth, hot 

pressing (HP), vapor transport, and flux growth techniques. Initial characterization of the 

samples grown using all of the aforementioned techniques was done using our in-house 

tabletop x-ray apparatus (Rigaku Miniflex).  

 

2.1 Single Crystal Growth 

 

 Ideally, single crystals would be used when studying the transport properties 

because they allow for a better understanding of the intrinsic properties of the material. In 

most cases, however, limitations on the size and shape of single crystals that can be 
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grown make this impossible. In the cases of Ag8GeTe6, we were unable to grow large 

enough single crystals to perform transport measurements, but some of our growths did 

yield small single crystals suitable for x-ray diffraction studies which proved very 

valuable in our studies of the low temperature crystal structure of Ag8GeTe6. In the 

following section we will discuss the techniques used (some successful and some less 

successful) to obtain single crystals of Ag8GeTe6. 

 

2.1.1 Vapor Transport  

 For our first attempts to grow single crystals of Ag8GeTe6, we used a vapor 

transport method and followed a procedure similar to those laid out in [19] and [21]. To 

begin the growth, approximately 2g of Ag8GeTe6 powder, synthesized during one of our 

previous melt growths, was loaded into a 2” diameter quartz tube (~10” long) along with 

0.1g of Iodine crystals. The tube was then evacuated to <20mTorr and sealed using a 

Hydrogen torch. At this point the tube was then loaded into a tube furnace (Lindberg 

Blue TF55035C-1), and care taken to make sure the charge (both Ag8GeTe6 and Iodine) 

was in the middle, the hottest zone, of the furnace. The length of the tube meant that the 

other end was near the outer end of the furnace which would create a temperature 

gradient across the length of the tube as the furnace was heated. Next, the furnace was 

quickly heated to 500°C and allowed to sit for 5 days. Care was taken when choosing the 

reaction temperature to avoid the incongruent melting of Ag8GeTe6 at 645°C. After 

soaking at 500°C for five days the furnace was turned off and allowed to cool to room 

temperature. When the tube was removed from the furnace it was clear that the sample 
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had reacted in some way. Where there was originally powder now contained a dense 

ingot covered in small crystallites. X-ray analysis of both the ingot and the crystallites 

showed that the sample had begun to decompose during the growth as both of the 

resulting components showed traces of Ag5Te3 and Ag7Te4 as well as the starting 

Ag8GeTe6 phase.  

 

2.1.2 Flux Growth 

 Another attempt was made to grow single crystals of Ag8GeTe6 using a self flux 

method. For this growth, stoichiometric amounts of Ag and Ge were loaded into a quartz 

tube along with an excess of Te (approximately 10 times the stoichiometric amount). A 

piece of quartz wool was then added to the tube just above the surface of the powder. The 

tube was then evacuated and sealed using a hydrogen torch. The sealed tube was then 

loaded into a box furnace (Lindberg Blue model BF51732 with a UP150 temperature 

controller) and heated to 1000°C. This temperature was maintained for several days 

before removing the tube and placing it directly in a centrifuge. The excess flux was then 

spun off before it had a chance to solidify. Ideally this would have left single crystals of 

Ag8GeTe6 in the tube on top of the quartz wool. Unfortunately, this method did not yield 

any suitable single crystals and was therefore abandoned.  

 

2.1.3 “Lucky” Growth 

A breakthrough in our attempts to grow a single crystal came when we noticed the 

formation of a small cubic crystal on the free surface of one of our melt growths. Initially 
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we suspected this was a single crystal of Ag8GeTe6, however, the mechanisms behind its 

formation were unclear. Repetition of the type of melt growth that led to the single crystal 

led to the collection of a number of small crystals. Particularly interesting was the fact 

that one run yielded nearly 20 crystals while the others normally yielded one. We do not 

offer an explanation for the behavior, but found it interesting. Clearly a better 

understanding of the mechanisms governing the formation of single crystals on the free 

surface of Ag8GeTe6 melts would be very useful in further studies. Nonetheless the single 

crystals we were able to obtain were suitable for single crystal x-ray diffraction 

measurements, and which to be essential in our efforts to describe the low temperature 

crystal structure of Ag8GeTe6 (Chapter 3 Section 1).  

 

2.2 Polycrystalline Growth 

 

In a perfect world when studying a new material it would always be possible to 

grow large high quality single crystals in order to pinpoint the intrinsic properties of the 

material. Obviously this is not the case, and what’s more in many cases the effects of 

grain boundaries and such are technologically useful. In the case of Ag8GeTe6 we 

performed our studies on “coarse grained” polycrystalline samples because suitable 

single crystals could not be obtained. The classification of our polycrystalline samples as 

“coarse grained” is important because it distinguishes our work from that of previous 

authors. Our coarse grained samples, shaped directly from ingots, should display 

transport properties closer to the intrinsic behavior because they have fewer defects and 
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grain boundaries than the hand ground and hot pressed samples presented in [19], [20], 

and [25],.  

 

2.2.1 Spark Plasma Sintering  

In an early effort to grow/sinter Ag8GeTe6 we attempted to synthesize Ag8GeTe6 

directly from single elemental powders (Ag powder Alfa Aesar 4-7 micron 99.99%, Ge 

powder Alfa Aesar -100 mesh 99.999%, and Te powder Alfa Aesar -30mesh 99.99%) 

using a Spark Plasma Sintering System (SPS), Dr. Sinter SPS-515S made by Fuji 

Electronic Industrial Co., similar to what we had done for SiGe.29 The major benefit of 

this approach is that it offers a way to approach the desired phase from the “bottom” of 

the phase diagram rather than the “top” (Figure 2.2). This is because the process is far 

from equilibrium and therefore allows for growth at temperatures lower than the bulk 

melting point so as to avoid the incongruent melting that plagued our attempts to grow 

Ag8GeTe6 using more traditional methods. Initially this technique appeared promising as 

x-ray analysis of the first few attempts showed the sintered products to be made up of a 

combination of the desired phase and unreacted elemental powders, as shown in Figure 

2.3. After many attempts, however, it was clear that it would be impossible to obtain a 

complete reaction using on the SPS and I moved on to melt growth.   

Furthermore, it should be mentioned that we attempted to densify phase pure 

Ag8GeTe6 powders using the SPS however that attempt also failed. SPS is a powerful 

technique that can densify most materials, however, from experience (we have 
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SPSed~400 samples per year for the last five years) our group has come up with two 

conspicuous exceptions:  

1. Materials with high electronic density of states (e.g., LAST materials, we know 

from Dr. Drymiotis’ samples)30  

2. Materials with strong anharmonicity, such as many oxides and chalcogenides, 

because of the large thermal expansion coefficient and fast ramping rate in a 

typical SPS process.  

In actuality the fact that Ag8GeTe6 could not be SPSed was our first hint that Ag8GeTe6 

has strong anharmonicity, which is the key to many of its unusual properties and will be 

discussed in the following chapters.  

 

2.2.2 Melt Growth  

Based on many growths basically following a procedure of trial-and-error (each 

growth took somewhere between a few days and 3 weeks to complete) we came to the 

conclusion that melt growth is the most promising way to obtain the physically solid high 

purity samples that are required for transport measurements. In order to melt grow 

Ag8GeTe6 stoichiometric amounts of elemental Ag and Te powders and Ge pieces were 

massed out, mixed, and loaded into a ½” diameter quartz tube (Ag powder Alfa Aesar 4-7 

micron 99.99%, Ge pieces Alfa Aesar 3-9mm, and Te powder Alfa Aesar -30mesh 

99.99%). The tube was then evacuated and sealed using a hydrogen torch. At this point 

the sample was loaded into a box furnace (Lindberg Blue model BF51732 with a UP150 

temperature controller) and heated using the temperature profile shown in Figure 2.4 

similar to that found in [25]. The resulting samples were analyzed using our tabletop x-
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ray powder diffraction system and were found to be single phased, but far too brittle to be 

used for transport measurements. Further attempts to melt grow Ag8GeTe6 proved that 

though it is simple to get the proper phase using this technique obtaining a solid sample 

capable of being cut or shaped for further measurements is very difficult.  

A breakthrough came when a sample was loaded into the furnace at an acute 

angle. The initial idea for this setup was that it would maximize the ratio of the free 

surface of the liquid to the surface in contact with the quartz tube. By varying the angle 

between the tube and the bottom of the furnace I was able to control this ratio and 

therefore gain some control over the mechanical properties of the resulting samples. The 

best angle for growth was found to be ~30o. Finally though the samples were still too 

brittle to cut using a diamond or wire saw we were to shape bar and disc shaped samples 

for transport and laser flash measurements using a small file. This process was quite time 

consuming but proved to be the only way to shape Ag8GeTe6 samples that were strong 

enough to survive our measurements.  

 

2.2.3 Hot Pressing (HP) 

In an attempt to obtain mechanically strong samples we also tried to HP hand 

ground Ag8GeTe6 powders from our previous melt growths. From the onset we were 

cautions with our expectations as we knew from interactions with Dr. Zhu the author of 

[20] that the samples they were able to obtain were very brittle even after HP, and only 

sintered in a very narrow temperature range (+/- 20° C) around 400° C. Furthermore as 

mentioned above early reports on the thermoelectric properties of Ag8GeTe6 were very 
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inaccurate due to problems in attaining properly densified samples using HP. For our 

study we followed a procedure similar to [19] and [20]. We began with hand ground 

Ag8GeTe6 powders (~3.5g) synthesized during one of our previous melt growths and 

loaded them into ½” graphite HP dies. The samples were pressed using a force of 640Kg 

(Thermal Technology Inc. Model # HP20-4560-20). The temperature profile for the 

pressing included a quick ramp (~15min.) to the holding temperature of 420°C followed 

by a two hour hold at 420°C and finally furnace cooling to room temperature. The sample 

was cooled without pressure in order to lessen the chance of cracking during the cooling 

process. The sample obtained from this procedure was exceedingly brittle and therefore 

not suitable for further studies. Approximately 15 samples were hot pressed using 

different conditions, however, we were never able to obtain samples that displayed better 

mechanical stability that our file shaped ingots.  
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Figure: 2.1 Ternary Phase Diagram of Ag, Ge, and Te. Source Ref [28].  

 

Figure: 2.2 Psuedo Binary Ternary Phase Diagram of Ag2Te and GeTe2 which shows the 
incongruent melting of Ag8GeTe6 at 644 C. Source Ref [28]. 
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Figure 3: X-ray pattern of the post SPS Ag8GeTe6 samples shown in black the blue 
pattern is the starting material and green peaks are the known pattern for Ag8GeTe6. The 
presence of the strong peaks in the post SPS pattern around 28o and 77o are evidence of 
unreacted starting material. The peaks in the post SPS pattern between 41o and 45o 
(circled in red) most likely correspond to either Ag2Te or Ag5Te3. 
 
 

 
Figure 2.4: Temperature profile used in the melt growth of Ag8GeTe6. 

 28 



CHAPTER THREE 

STRUCTURE AND MAGNETIZATION 

 

3.1 Crystal Structure  

 

 Many of the unusual material properties of Ag8GeTe6, especially the migration of 

silver ions at elevated temperatures, can be directly attributed to it unusually complicated 

crystal structure.31 Perhaps unsurprisingly the room temperature crystal structure of 

Ag8GeTe6 was a topic of debate for some time with several conflicting reports published 

on the subject in the 1970s [26], [32], and [33]. Indeed the reports suggest similar 

symmetries, either cubic ( 43F M ) or pseudocubic (R3), but offer slightly different 

interpretations of the structure. Specifically trouble describing the locations, occupancies, 

and displacement parameters of the Ag sites have led to discrepancies in the descriptions 

that become particularly evident when the Ag-Te and Ag-Ge bond distances are 

considered. In general these discrepancies have been attributed to the strong silver 

disorder related to the ionic conductivity. More recently F. Boucher et al. have offered a 

much more complete description of the crystal structure of Ag8GeTe6 at both room 

temperature and 400 K going as far as to map the Ag+ diffusion path through the 

crystal.21 The key to the refinement was the use of an anharmonic model to describe the 

locations of the Ag ions. Indeed Boucher et al. were able to accurately describe the 

structure of Ag8GeTe6 using a similar model to the previous studies with the inclusion of 

three distinct Ag sites with anharmonic ADPs. This treatment of the structure allowed for 
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a description of the Ag diffusion path through the crystal which is shown in Figure 3.1c. 

This structure, space group   F43M with Z=4, was confirmed by our single crystal x-ray 

results performed in the Department of Chemistry at Clemson University. A diagram of 

the structure is shown in Figure 3.1b.  

 Though the room temperature structure of Ag8GeTe6 is well understood the low 

temperature structure is still unknown with no published work discussing the subject. It is 

well known that the Argyrodite family of compounds undergoes multiple phase 

transitions below room temperature, which in many cases have been shown to be 

structural in nature.34,35,36 Ag8GeTe6 undergoes at least four phase transitions between 0K 

and room temperature, and while it has been suggested by some authors that they are all 

first order others have suggested that they are related to Ag+ ordering.27,37 The heat 

capacity of Ag8GeTe6 measured by Kawaji and Atake is shown in Figure 3.2, and clearly 

shows the four phase transitions below room temperature at 156 K, 169 K, 223 K, and 

245 K. In order to elucidate the nature of these phase transitions we performed powder x-

ray diffraction measurements at 140K, 160K, 210K, 220 K, 230 K, 240 K, 260 K, and 

295 K. The measurements were performed using the rapid access portal at Beamline 11-

BM-B at the Advanced Photon Source (APS) at Argonne National Lab. It should also be 

noted that due to the high Z (atomic mass) of the constituent elements in Ag8GeTe6 our 

samples were diluted with amorphous silica in order to lower the absorption (the actual 

composition of the measured samples was Ag8GeTe6-(SiO2)5).  

 The x-ray diffraction pattern of Ag8GeTe6 taken at different temperatures is 

shown in Figure 3.3. From the data it is clear that Ag8GeTe6 undergoes at least one if not 
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more symmetry changes between 140 K and room temperature. Most likely the sample 

undergoes two symmetry changes that correspond to the onset of new peaks in the 

diffraction pattern. One symmetry change occurs between 240K and 250K while the 

second occurs between 210K and 220K. This suggests that the transition observed by 

Kawaji and Atake at 223K and 245K are indeed first order (structural) while the 

transitions at 156K and 170K are second order. The fact that the second transition (223K 

in DSC) is observed at a slightly lower temperature in x-ray than DSC can likely be 

attributed to uncertainty in the temperature measurements made during the x-ray 

experiment.  

Refinement of the high temperature data using the published space group ( 43F M  

at 295 K) confirmed that the samples were indeed Ag8GeTe6, but did offer one surprise. 

Though measurements performed on our in-house x-ray apparatus showed our powder 

samples to be single phased the higher resolution of the synchrotron data allowed us to 

detect a small amount (~1%) of secondary phase, most likely Ag5Te3. At this point it was 

still difficult to accurately refine the low temperature diffraction patterns because we did 

not have enough information about the space group. For this reason we measured single 

crystal x-ray diffraction at 190 K in the chemistry department at Clemson University. 

Unfortunately the data didn’t show enough reflections to be refined so the crystals were 

sent to Rigaku Ltd. to be measured on a higher resolution instrument.   

 The single crystal x-ray diffraction pattern of Ag8GeTe6 was measured at Rigaku 

using an Xta LAB® P200 diffractometer with a 30W MicroMax003 Mo/Cu X-ray 

generator. Two studies were performed using MoKα radiation (λ=0.071075 Å): First a 
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temperature study between 293 K and 173 K was performed where 30 images of 0.5 deg. 

oscillation and 10 sec. exposure were measured at different temperatures: 25 °C, -10 °C, -

20 °C, -30 °C, -40 °C, -50 °C, -60 °C, -70 °C, -80 °C, -100 °C (298 K, 263 K, 253 K, 243 

K, 233 K, 223 K, 213 K, 203 K, 193 K, 173 K. From the change in the diffraction 

images, shown in Figure 3.4, it is clear that there are two structural transitions one 

occurring between -30°C and -40°C (243K and 233K) and the other occurring between -

40°C and -50°C (233K and 223K).  Furthermore the diffraction patterns did not indicate 

additional transitions between -50°C and -100°C (223K and 173K). It should also be 

noted that when the crystal was warmed back up to 293K the original diffraction pattern 

was again observed, indicating that the structural transitions are fully reversible, without 

compromising the crystal. The second study involved taking full data collections at both 

293K and 173K in order to determine the detailed structure. The room temperature data 

unambiguously confirmed that structure from previous studies: face centered cubic, space 

group 43F M , a = 11.56. As expected after the temperature dependent study the low 

temperature phase (173K) has many more diffraction spots, which initially appeared to 

correspond to a face-centered cubic structure with a = 23.05. Further refinement, 

however, showed this structure to be incorrect. The onset of these new diffraction spots 

however can be explained by a combination of two factors: 

1) The low temperature structure is instead of lower symmetry - primitive cubic with a 

= 11.51 with the best results appearing to be in space group P2(1)3. 
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2) During the phase transition the crystal also experiences twinning, which, like the 

phase transition, is reversible and non-destructive. This twinning also produces an 

additional set of reflections, which gives the appearance of higher symmetry. 

Interestingly, both of these structural features are observed in other members of 

the Argyrodite family including Ag7PSe6 and Cu7PSe6 where similar transitions occur 

(albeit at different temperatures).34,35 Prior to that work, most reports suspected that the 

low temperature structure of Argyrodite compounds was an ordered supercell with a ~ 

23.00 Å based on simple photographs and powder data,21,27 though the idea of space 

group P2(1)3 with a ~ 11.50 Å was proposed by Gorochov.38   With this in mind we 

refined the single crystal data using a primitive cubic unit cell (P2(1)3) with a = 11.51 Å 

coupled to a twin refinement to account for the extra reflections and were able to get a 

reasonable structure solution. Additionally the twins appear to be present in about a 1:1 

ratio, explaining why the intensities of the additional diffraction reflections are so 

significant that they give the appearance of the (nearly exactly) doubled unit cell 

parameter of a = 23.05 Å.   

With this in mind we attempted two refinement approaches on the single crystal 

Ag8GeTe6 data in order to identify the atomic positions: one based on the proposed 

structure by Gorochov and one based on the well-refined structure of Ag7PSe6 by Evain.  

Clearly, in the latter case we were able to identify another Ag atom in our data to bring 

the stoichiometry to Ag8GeTe6.  Both approaches yielded a reasonable R-value of about 

0.16. Unfortunately we were not able to obtain an unambiguous solution to the structure 

from our refinement. 
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In a final attempt to determine the low temperature structure of Ag8GeTe6 we 

attempted to refine the low temperature powder x-ray data from the APS using the space 

groups suggested by our single crystal results. We attempted two solutions both of which 

were used space group P2(1)3 and a lattice constant of 11.5206Å. Unfortunately neither 

of these refinements yielded a good solution to the crystal structure, both of the fits had 

an R-value of about 16%. The results of the refinements are shown in Figure 3.5. 

 

 

3.2 Magnetization 

 

The D.C. magnetization of Ag8GeTe6 was measured on a Quantum Design 

Physical Properties Measurement System (PPMS®) using a Vibrating Sample 

Magnetometer (VSM®) option. The magnetization was measured between 10K and 

300K at fields between 100 Oe. and 10,000 Oe., additionally a measurement at 5,000 Oe. 

was taken between 10K and 350K to verify that the observed behavior continues above 

room temperature. The field dependence of the magnetization was also measured at 

several temperatures. As can be seen in Figure 3.6 all of the measurements showed 

Ag8GeTe6 to be diamagnetic with a slight positive temperature dependence except for the 

100 Oe. measurement that is too close to the lower limit of the resolution of the 

instrument to resolve a trustable value. 
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3.2.1 Magnetic Units 

 Before continuing with my analysis of the magnetization data it is very useful to 

discuss the units used in magnetization measurements, because in many cases keeping 

track of the units is the most difficult part of understanding any magnetic data. In general 

this confusion arises from the fact that most data is reported in emu’s though most 

analysis is performed using Gaussian or S.I. units. Additionally many scientists use Tesla 

as a unit of applied field ( H


) though in the strictest sense Tesla is a unit of the magnetic 

field ( B


), where depending on the system of units 0 ( )B H Mµ= +
  

 (S.I.) or 

4B H Mπ= +
  

 (Gaussian or cgs).39 Beyond the improper use of the units of Tesla the 

biggest hurdle to an inexperienced scientist interpreting magnetic data is the fact that emu 

is a system of units and not a unit of magnetization. In most cases magnetization data is 

presented in the units of emu/g or emu/mol which is easy enough to understand until a 

conversion to S.I. units in needed. This conversion is the main sticking point when 

inexperienced scientists try to interpret magnetic data, because it is not always clear as to 

which conversion factor to use. In this sense it is critical to completely unify the system 

of units before beginning to analyze any magnetic data. A convenient table that outlines 

these considerations is given in Figure 3.7.  

 

3.2.2 Measurements 

 The measurement was performed using a Vibrating Sample Magnetometer 

(VSM®) option on a Quantum Design PPMS®, which is notable because this type of 

measurement is normally performed using a Superconducting Quantum Interference 
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Device (SQUID®). In general SQUID measurements are much more precise (several 

orders of magnitude) than VSM measurements, though the equipment need for a SQUID 

measurement is much more expensive than the relatively simple VSM apparatus. As 

shown in Figure 3.8 the VSM has three main parts: 1) the pickup coil, 2) the linear 

motor, and 3) the sample stage which are all coupled to the PPMS which controls both 

the temperature and the applied field.  

 The operation of the VSM is very simple. First the applied field and sample 

temperature are set by the PPMS, and then the sample is “vibrated” inside the pickup coil 

by the linear motor at 40Hz. To obtain data the VSM takes advantage of the fact that the 

static applied field will not induce a current in the pickup coil while the changing field of 

the vibrating sample will induce an electric current proportional to the magnetic moment 

of the sample. The time dependent voltage of the coil induced by the vibrating sample is 

given by the equation  

 
 
Vcoil =

dΦ
dt

=
dΦ
dz







dz
dt







   (2.1) 

Where Φ is the magnetic flux enclosed by the coil, z is the vertical position of the sample, 

and t is time. Now if we assume the motion of the sample is in the form of sinusoidal 

oscillation the voltage can be given by the equation 

   Vcoil = 2π fCmAsin(2π ft)    (2.2) 

Where C is a coupling constant, m is the DC magnetic moment of the sample, A is the 

amplitude of the oscillation and f is the frequency of the oscillation. This simple equation 

is the basis for all VSM measurements.  
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3.2.3 Data Analysis 

 It is now possible to analyze the measured magnetization of Ag8GeTe6. It is clear 

that Ag8GeTe6 is negative (diamagnetic) through the entire temperature range (10K-

350K). This in addition to the observation that the magnetization is essentially 

independent of temperature suggests that Ag8GeTe6 is an insulator. Indeed this is the case 

at low temperatures, though at higher temperatures (room temperature and above) it is 

well known that Ag8GeTe6 behaves like a semiconductor. For this reason I have 

calculated the ionic contribution to the diamagnetic response with the goal of subtracting 

the ionic contribution from the total measured signal to end up with the carrier 

contribution. The ionic diamagnetic susceptibility was calculated by assuming the 

oxidation states of the ions to be Ag+, Ge4+, and Te2-, and then performing a weighted 

sum on values for each species found in the literature: -24x10-6 emu/mol [Ag+], -7x10-6 

emu/mol [Ge4+], and -70x10-6 emu/mol [Te2-].40 The resulting calculated value for the 

ionic diamagnetic susceptibility is -6.18 x10-4 (emu/mol*formula unit). From here it is 

possible to calculate the contribution to the magnetization from the free carriers, but first 

we must consider the assumptions that go into this calculation: First we have assigned a 

fixed valence to each of the species though any deficiency of Ag, Te, or even Ge would 

certainly lead to a shift in valance of at least one of the species. We have also assumed 

that all of the signal is due to either Pauli Paramagnetism (Pauli PM) or full shell 

diamagnetism (DM), which is clearly too simple because the measured data displays a 

slight field dependence though both Pauli PM and DM should both be field independent. 

Further it is difficult to rigorously justify the shift of the magnetization from negative to 
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positive after the diamagnetic subtraction. Indeed if directly measured the sign of a value 

can nearly always be trusted, however, in our case a signal was measured and a slightly 

larger signal subtracted which changed the sign of the final product. We can argue that 

most likely the positive signal is real, but with the current information it is impossible to 

rule out the possibility that the original measured signal was shifted slightly due to a 

systematic error or inherent uncertainty in the system.  The magnitude of the Pauil PM 

signal obtained by subtracting the ionic diamagnetic susceptibility from the measured 

signal is shown in Figure 3.9. 

At this point it is possible calculate the carrier concentration from the Pauli PM 

contribution to the magnetic signal. First the magnitude of the Pauli term must be 

calculated using the calculated value of the ionic diamagnetic susceptibility (-6.18 x10-4 

emu/mol*formula unit) and the value of the magnetization measured at 3000 Oe. (4.4x10-

4 emu/mol*formula unit) which gives a value of 1.8x10-4 (emu/mol*formula unit). We can 

calculate the density of states at the Fermi level, g(EF), using the relation 

  
χ para ≈ µ0β

2g(EF ) . Then if we assume the free carriers act as a 3-D Fermi gas we can 

then calculate the carrier concentration from g(EF) that gives a value of ~1016 cm3. It 

should also be noted that beyond the assumptions mentioned above, in the previous 

calculation band effects, van Fleck magnetization, and electron-electron interactions have 

been ignored. 

At this point it is important to note that the above analysis is consistent with the low 

carrier concentration obtained from Hall coefficient measurements (Chapter 4). 

Furthermore we expect that the ground state of Ag8GeTe6 is non-magnetic and probably 
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insulating electron system. Therefore the orbital degree of freedom plays a negligible role 

in phase transitions mentioned in the introduction and discussed in more detail in the 

following section. 

 

Figure 3.1: a) Complete crystal structure of Ag8GeTe6 b) the three distinct silver sites, 
and c) the ionic diffusion path Source Ref.[21].  
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Figure 3.2: Heat Capacity of Ag8GeTe6 measured by Kawaji and Atake using a precision 
DSC. Source Ref.[37]  

 

 

 
Figure 3.3: Temperature dependent x-ray diffraction pattern of Ag8GeTe6. Measured at 
the Advanced Photon Source (APS) at Argonne National Lab. The circles show the onset 
of peaks between 240K and 260K as well as between 210K and 220K.  
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Figure 3.4: Temperature dependent single crystal x-ray diffraction pattern of Ag8GeTe6. 
Measured at Rigaku. The onset of diffraction spots between -30ºC and -40ºC as well as 
between -40ºC and -50ºC are attributed to structural transitions. 

 41 



 

Figure 3.5: Refinement results for Ag8GeTe6 at 220 K a) using space group P2(1)3 and 3 
distinct Ag sites and b) using space group P2(1)3 and 5 distinct Ag sites.  
 

 

Figure 3.6: The magnetization of Ag8GeTe6 as a function of temperature measured using 
different applied fields.  
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Figure 3.7: This table is very useful when converting between different magnetic units. 
Source Ref. [39] 
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Figure 3.8: Diagram of the Vibrating Sample Magnetometer (VSM). Source Ref. [41] 

 

 

 

 

Figure 3.9: Measured magnetic susceptibility as well as the calculated ionic diamagnetic 
contribution and the carrier contribution to the susseceptibility of Ag8GeTe6 as a function 
of temperature.  
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CHAPTER FOUR 

RESISTIVITY AND SEEBECK COEFFICIENT 

 

As discussed in the previous chapter magnetic susceptibility data precludes the 

spin and orbital degrees of freedom as driving forces in the phase transitions observed by 

Kawaji and Atake.37 With this in mind we attempted to probe the charge degree of 

freedom in Ag8GeTe6 with resistivity and Seebeck coefficient measurements. It is 

important to measure both Seebeck and resistivity because though they both offer 

information on the charge carriers and band structure of a material resistivity is a 

percolative (path dependent) phenomenon while Seebeck is not. 

It should be noted that the majority of the following analysis considers the charge 

conduction in Ag8GeTe6 to be due to electrons or holes but not ions. This is clearly not 

completely true, nonetheless, at room temperature and below the fraction of the 

conductivity due to mobile ions is small and therefore ignored. A more complete analysis 

of the contribution of ions to the conductivity of Ag8GeTe6 can be found in the following 

section. 

 

4.1 Measurements 

 

4.1.1 Ionic Conductivity 

The ionic conductivity of Ag8GeTe6, at room temperature, was estimated using 

two different methods.  First the ionic contribution to the conductivity was directly 
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measured by measuring the conductivity of Ag8GeTe6 with an electron blocker in the 

circuit.42 Next we attempted to estimate the ionic conductivity of Ag8GeTe6 using AC 

impedance spectroscopy. 

Direct measurements of the ionic conductivity using an electron blocker were 

performed in Dr Steve Creager’s lab in the chemistry department at Clemson University. 

The principle of this type of measurement is quite simple. To perform a measurement the 

sample is connected in a circuit as shown in Figure 4.1 with electron blockers on the 

electrodes, and a traditional two-probe resistance measurement performed using a 

potentiostat due to the high resistance of the samples. 

 An electron blocker is a material that allows for the passage of mobile ions, but 

not electrons. For our measurement we used Ag substituted Nafion as our electron 

blocker.43 The Nafion was silver substituted by soaking it in a heated silver nitrate 

solution for several hours. To promote the diffusion of Ag ions during the measurement 

the Nafion sheets were also soaked in deionized water directly before the measurement.  

For our measurement voltage sweeps were performed using a potentiostat and the 

current through the sample monitored. The ionic conductivity was then calculated from 

the slope of the i-V curves. Figure 4.2a shows a sample dataset, while Figure 4.2b 

shows the conductivity (slope of the voltage sweeps) as a function of the sweep number. 

The small variation in the conductivity between sweeps suggests that the data is trustable. 

When converted to conductivity the measured value of ~1 x 10-5 S*m is quite small 

suggesting that the contribution of mobile Ag ions to the overall electrical conductivity at 

room temperature is negligible.  
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At this point it is important to note that under ambient conditions (room 

temperature and humidity) the ionic conductivity of Nafion is not very high which means 

our measurement should be considered to be a lower limit for the ionic conductivity of 

Ag8GeTe6.42,43,44 Figure 4.2b shows the measured conductivity as a function of sweep 

for both dry Nafion and wet Nafion. The measurements conducted with wet Nafion show 

a much higher conductivity than those performed with dry Nafion because the resistance 

at the interface is much lower due to the increased ionic conductivity of the Nafion. This 

interfacial resistance can be considered analogous to contact resistance in a traditional 

two-probe resistance measurement. Ideally the sample stage would be placed inside a 

humid chamber at elevated temperatures (~50 °C) to perform the measurement because 

this increases the ionic conductivity of Nafion, the dimensions of our sample stage made 

this impossible. For this reason we cannot be certain that all of the measured resistance is 

due to the sample and not contact resistance which is why we say that the measured value 

of the ionic conductivity of Ag8GeTe6 should be considered a lower limit to the actual 

value.  

We also attempted to measure the ionic contribution to the electrical conductivity 

using AC impedance measurements. AC impedance measurements were performed 

between 20°C and 100°C by Mr. Isaac Bredesson in Dr. David Mandrus’s group in 

Department of Materials Science and Engineering Department at the University of 

Tennessee, Knoxville. Normally the ionic conductivity of a material can be calculated by 

measuring the AC impedance and modeling the sample to an equivalent circuit made up 

of resistors and capacitors in parallel. Figure 4.3a shows the data measured on 
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Ag8GeTe6. Unlike the usual case of an ionic conductor the data measured on Ag8GeTe6 

cannot be fit (interpreted) using the model of combined resistance and capacitance (the 

frequency dependence of the imaginary part is clearly inductive-like as it is almost 

linearly dependent on frequency Figure 4.3b). In the case of Ag8GeTe6 the impedance 

can however be modeled using an equivalent circuit made up of a resistor (R1) and 

inductor (I) in parallel which together are in series with another resistor (R2), as shown in 

Figure 4.3c. Fitting the data to the equivalent circuit gives values of 9.5Ω for R2 105Ω for 

R1 and 10-5 H for I. 

One possible explanation for this somewhat unexpected behavior involves the 

diffusion path of Ag ions through the lattice. Figure 4.3d, taken from [21] shows the 

ionic diffusion path in Ag8GeTe6 measured using single crystal x-ray diffraction. Clearly 

ions diffuse through the Ag8GeTe6 crystal structure following a path that has a very 

strong curvature that may explain the observed inductive component in the AC 

impedance.  

 

4.1.2 Electronic Resistivity 

Initial resistivity and Seebeck coefficient measurements of Ag8GeTe6 were 

performed using an in-house custom designed system between 15K and 300K.45 The 

system is built around an Advanced Research Systems (ARS) closed circuit He cryostat, 

and uses differential and four probe techniques to measure Seebeck coefficient and 

resistivity respectively. In order to facilitate rapid throughput samples are mounted on 

removable pucks as shown in Figure 4.4.  
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The system is controlled by a Labview® program and operates using a slewing 

type temperature control in which the heating/cooling rate, but not the actual system 

temperature is maintained at a preset value controlled by the user. In this way a 

measurement is made while the system cools at a constant rate. When the cooling power 

from the cryostat is insufficient to maintain the desired cooling rate the system switches 

to warming mode and continues to run, while still taking data, until it reaches room 

temperature. Through the entire run the ΔT across the sample is maintained at a constant 

value set using a PID control. The system takes data at user-determined intervals in either 

time or temperature. The magnitude of the current passed through the sample during 

restively measurements is accurately determined by measuring the voltage drop across a 

known standard resistor placed electrically in series with the sample. 

In order to take a data point the system goes through the following procedure: first 

a current is passed in the forward direction and the resulting resistive voltage measured, 

then the current is turned off and the temperature gradient and Seebeck voltage measured, 

and finally a current, of identical magnitude and opposite sign to the first current is 

passed through the sample and the resistive voltage measured again. At this point the 

Seebeck coefficient can be calculated as ∆V/∆T and the resistivity of the sample can be 

calculated using the equation 

 
 
ρ =

v+ − v−( )
i

a
l

  (3.1) 

where v+ and v- are the measured voltages in the forward and reverse directions, i is the 

current passed through the sample, a is the cross-sectional area of the sample, and l is the 

length between the voltage leads. As can be seen Equation (4.1) the contribution of the 
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Seebeck voltage is negated by switching the direction of the current between 

measurements. 

It is important to remember that the slewing type temperature control is a 

compromise between accuracy and time, with an eye on the simultaneous measurement 

of resistivity and Seebeck. Our system has proved to work very well in characterizing a 

wide range of materials, even some materials that are far from what the system was 

designed for, i.e. materials with small Seebeck (<20μV/K). Still the compromise between 

speed and accuracy becomes apparent in several instances including when attempting to 

track phase transitions, especially when the transitions are close together as is the case in 

Ag8GeTe6. Another example of this limitation became apparent when we attempted to 

probe ionic conduction, as ionic migration has a much longer “time” scale than its 

electronic counterpart it is also difficult to track using our in-house system. 

 In addition to the measurements on our in-house system the resistivity was 

measured using the ACT option on a Quantum Design PPMS because the information the 

systems offer is slightly different. Both the PPMS and our in-house system make 

resistivity measurements in the four-probe configuration, which effectively negates 

contact resistance, but the PPMS uses an AC current while our in-house system uses a 

DC current. Moreover the PPMS takes data by stabilizing at each temperature point while 

the in-house system operates using a slewing method where the rate of change of the 

temperature (dT/dt) is controlled and not the actual system temperature.  This is an 

important consideration since the time scales associated with the thermal relaxation of the 

sample, the migration of electrons/holes, and the migration of ions are very different, 
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therefore a slewing type measurement cannot possibly satisfy all three time scales. In the 

mean time, any dependence of the measured resistivity on the ramping rate, could be a 

sign of ionic migration assuming that thermal inhomogeneity can be ignored.  

The use of an AC current in the PPMS measurements not only automatically 

removes contributions from any Seebeck voltage or any other stray voltage for that 

matter but also allows for the use of a much smaller excitation (current density). This is 

because the system digitally filters out any signals of different form or frequency than the 

excitation, which removes any DC offset as well as a large portion of the noise.46 This 

can be attributed to the fact that the noise is by nature not purely resistive and therefore 

occur out of phase and at different frequencies than the excitation.  

 

4.1.3 Steady State Seebeck 

 Since the time scales for ionic and electronic migration (under a temperature 

gradient) are very different (ps vs. minutes-hours), in a mixed conductor, it should be 

possible to separate their contributions to the Seebeck coefficient using a time dependent 

Seebeck measurement. This assumes however that the time scale of the measurement is 

greater than the longest time scale of the ionic and electronic migration. Indeed one of the 

main challenges of this project was related to dealing with phenomena in multiple-space 

and -time domains. A similar study was performed by Park and Yoo in which they 

claimed to separate the electronic and ionic contributions of the Seebeck of the mixed 

conductor Ce1-xGdxO2-x/2-δ. The results of Park and Yoo’s study are shown in Figure 4.5 

for comparison, and they did indeed see a time dependent signal that appears to be due to 
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the slow migration of ions. With this in mind we designed an experiment to measure the 

Seebeck as a function of time using a power sweep method.  

 For this measurement we modified a steady state thermal conductivity system in 

Dr. Terry Tritt’s lab, described in [47] to allow for rapid measurements and fine control 

of the system temperature. The system shown in Figure 4.6 is built around an ARS 

cryostat and controlled using a labview program. The temperature gradient is generated 

using a 39Ω resistive heater mounted on top of the sample using 5 min. epoxy and 

measured using a Au–Fe versus chromel differential thermocouple.  

 In order to take a measurement the base temperature of the system is set and 

stabilized. Next a user-controlled current is passed through the heater on top of the 

sample and the voltages (both across the sample and across the thermocouple) monitored 

in real time. The temperature gradient is then allowed to stabilize before the heater 

current is increased and another measurement taken.  

 A sample dataset taken on Ag8GeTe6 using our custom system is shown in Figure 

4.7. Upon initial inspection it appears that we are seeing a contribution from ions similar 

to what was seen by Park and Yoo.48 Further inspection of the data, however, suggests 

that the time dependence of the signal is not from the slow migration of ions but rather 

due to the low thermal conductivity of Ag8GeTe6. Because the thermal conductivity of 

Ag8GeTe6 is so low it takes a very long time for the sample to reach thermal equilibrium, 

which mimics the signal expected for ionic migration.  

To test this scenario I measured the Seebeck of Bi2Te3, a common thermoelectric 

material that is not a mixed conductor, using the system. Suprisingly the Bi2Te3 
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measurements showed similar, but not as pronounced features as the measurements on 

Ag8GeTe6. This confirms that the deviations in the data can at least mostly be attributed 

to deviations from thermal equilibrium, furthermore the fact that the deviations are larger 

for Ag8GeTe6 suggest that it has a lower thermal conductivity than Bi2Te3, which will be 

discussed in detail in Chapter 6.  

 

 

4.1.4 Measurement Considerations 

Initial attempts to solder to Ag8GeTe6 samples proved very difficult, which 

incidentally has been observed in many ionic conductors. Therefore Dupont® Silver 

paste was used to make electrical contacts to the samples. Still contact resistance proved 

to be a large problem, with contact resistances on the order of kilo ohms observed. In an 

initial attempt to overcome this issue we mixed the silver paint with powdered Ag8GeTe6 

a trick Ryoji Funahashi used in oxide thermoelectric studies, however this proved 

ineffective.49 A more successful method for lowering the contact resistance involved 

sputtering gold contacts on the surface of the sample before applying Ag paste. This 

brought the contact resistance down several orders of magnitude from kilo ohms to ohms. 

The contacts were sputtered using a Denton Vacuum Desk® 2 sputtering system and 

scotch tape as a mask.   

Due to the unusually low thermal conductivity of Ag8GeTe6 the warming and 

cooling rates in both systems (our in-house R&S system as well as the PPMS) had to be 

adjusted to ensure the samples were in thermal equilibrium, or at least as close as possible 
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(we used 0.25 and 0.4 K/min. respectively). This was particularly important when 

attempting to probe the nature of the phase transitions, which will be discussed in depth 

later in this chapter. 

Furthermore though our desktop x-ray diffractometer showed the samples 

synthesized at Clemson University to be single phased our initial resistivity and Seebeck 

measurements showed wide variations from sample to sample. This proved to be a puzzle 

until high-resolution synchrotron X-ray diffraction at Argonne National Lab revealed that 

there was indeed at least a small amount of secondary phase present (Chap. 3). To our 

knowledge this issue has never been addressed by previous investigators possibly leading 

to errors in both measurement and data analysis.  

Figure 4.8 shows the variation of both the magnitude and temperature 

dependence of the resistivity and Seebeck coefficient of the as grown Ag8GeTe6 samples. 

Indeed the variation of the temperature dependence of the resistivity and Seebeck from 

essentially insulating to metallic is very surprising. As discussed in Chapter 3 the 

presence of a small amount of secondary phase(s) ~1-3% was confirmed by synchrotron 

x-ray measurements. Previous work on Ag8GeTe6 suggests that it is a low carrier system 

hence small changes in the composition of samples can have drastic changes in the 

electrical properties.19,20,25 Synchrotron x-ray data suggested that the secondary phase is 

Ag5Te3, and though little is known about the electrical properties of Ag5Te3 comparison 

with its sister compound Ag2Te suggests it has a much higher carrier concentration than 

Ag8GeTe6. There are two scenarios that could explain how a small amount of high carrier 

concentration/mobility secondary phase can lead to the observation of such a wide range 
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of electrical properties from samples that appear to be identical when compared using a 

bench top x-ray. First the secondary phase may form an interconnected path on the grain 

boundaries of the Ag8GeTe6 samples. A second more likely explanation involves charge 

transfer from the carrier-rich phase to the low carrier matrix, by “modulation doping”.50 

The fact that peaks in the XRD spectrum are quite sharp, suggests that if the secondary 

phase does in fact form of a layer on grain boundaries, it cannot be too thin which 

suggests that modulation doping is a more likely scenario. This problem alone took us ~ 1 

year to solve by altering the synthesis process to minimize the impact of incongruent 

melting that occurs at 645° C. 

With this in mind we have carefully chosen data that we believe reflects the 

intrinsic behavior of Ag8GeTe6 based on two criteria. 

(i) One criterion for choosing samples that we believed to show “intrinsic” behavior 

was the low temperature (<50K) resistivity. In this way we assumed that 

samples that showed the highest low temperature resistivity contained less 

secondary phase because the increased resistivity is a sign of a decreased 

carrier concentration.  

(ii) The second criterion for choosing samples that we believed to show “intrinsic” 

behavior was the signature of the four phase transitions below room 

temperature. The existence of these transitions is well documented therefore 

we assumed that they are real and that samples with a signature of the 

transitions in resistivity contain less secondary phase than those that don’t.  
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4.2 Data Analysis 

 

 As can be seen in Figure 4.9a the DC resistivity of Ag8GeTe6 increases rapidly 

with decreasing temperature. At first glance, it is characteristic of a semiconductor and 

consistent with what has been reported above room temperature.19,20,25 However, closer 

inspection of the data above 100K, Figure 4.9b, suggests that the resistivity behavior can 

be divided into three regions: a low temperature region (region I, below 140K) which 

displays a negative temperature coefficient of resistance (TCR), a second region (region 

II, between 140K and 250K), which contains all four of the phase transitions and on the 

whole displays a positive TCR, and a third region (region III, between 250K and 300 K) 

that again shows a negative TCR. 

 Unlike the resistivity the Seebeck coefficient of Ag8GeTe6 does not show drastic 

changes of slope as a result of the phase transitions (Figure 4.9c), but is nonetheless 

useful in understanding the nature of the electronic properties of Ag8GeTe6.With this in 

mind we have probed the nature of the electronic properties of Ag8GeTe6 using 

resistivity, Seebeck coefficient, and finally Hall coefficient.  

As compared to resistivity Seebeck coefficient is a more robust reflection of the 

energy-dependent electronic states and insensitive to the microstructure, especially grain 

boundaries. Furthermore, comparison of resistivity and Seebeck with respect to various 

external control parameters such as temperature and composition is especially 

informative. Given the secondary phases, mostly likely at the grain boundaries, and their 
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impact on the electrical resistivity, Seebeck is well suited to provide us with extra insight 

into the charge and entropy flow in Ag8GeTe6. 

Region 
Temperature Dependence of 

Resistance (TCR) 

Temperature Dependence of 

Seebeck 

I Negative T1/3 

II Positive T1/3 or linear 

III Negative Linear transitioning to 1/T 

Table 4.1: Temperature dependence of the resistivity and Seebeck coefficient of 
Ag8GeTe6 in different temperature regimes below room temperature. 

 

4.2.1 Low Temperature Regime (below 140K) 

 In the low temperature regime, below the lowest phase transition at 145K, the 

conduction of Ag8GeTe6 is not band in nature, but rather governed by hopping 

mechanisms. In particular the conduction appears to be governed by Mott type variable 

range hopping (VRH).  

The VRH model, used to describe systems in which the electrical conduction is 

governed by disordered induced localization of charge carriers, was developed by Mott in 

1969. In these systems the low temperature conductivity is well described by localized 

electronic states between which carriers “hop” with varying probabilities proportional not 

only to the distance separating the states, but also the difference in energy between 

them.51 According to the VRH model the expression for electrical resistivity can be 

written as  
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where d is the dimensionality of the material. In this case it is important to note that the 

dimensionality is not spatial but rather related to the number of degrees of freedom of the 

charge carriers. Figure 4.10 shows a plot of ln(ρ) vs. both T-1/3 and T-1/4 for Ag8GeTe6 

between 10K and 300K (2d and 3d VRH). Clearly the VRH model is not well suited to 

describe the conduction of Ag8GeTe6 in the entire temperature range (at high 

temperatures the plot is far from linear), but is most likely the dominant conduction 

mechanism between 10K and 140K (the plot shows good linearity). Surprisingly the plot 

of ln(ρ) vs. T-1/3 (2d VRH)shows better linearity that the plot of ln(ρ) vs. T-1/4 (3d VRH) 

suggesting that the charge carriers in Ag8GeTe6 only have two degrees of freedom though 

the crystal structure is clearly three dimensional. One possible explanation of this 

behavior is that the density of states is not constant in the temperature range of interest. In 

his model Mott assumed a constant density of states at the Fermi level which may not be 

the case in Ag8GeTe6. Efros and Shklovskii have proposed another model for 3d VRH in 

which the DOS vanishes quadratically at the Fermi level, which leads to a T-1/2 law for 

resistivity. This does not appear to be the case for Ag8GeTe6 (the plot of ln(ρ) vs. T-1/2  , 

Figure 4.10c, does not appear linear)however it does show one possibility of how Mott’s 

law can vary when the DOS is not constant.52  

 The presence of VRH conduction is supported by the Seebeck coefficient 

measurements. In the Mott picture the Seebeck coefficient should be described using the 

equation  

 58 



   (3.3) 

Figure 4.11 shows the Seebeck as a function of temperature as well a fit of the measured 

Seebeck to Equation (4.3) with d=2 as suggested by the resistivity data. Unlike the 

resistivity the Seebeck coefficient can be fit fairly well through the entire temperature 

range using the VRH model. Again though the Seebeck can be well fit using a 2d VRH 

model it is also possible that the conduction is 3d and the DOS is not constant.  

Another concern with using the VRH model to describe the low temperature 

electrical properties of Ag8GeTe6 is the temperature range between 15K and ~50K. In 

this range both the measured resistivity and Seebeck are larger that the values predicted 

by the VRH model. There are two possible explanations for this deviation: First it is 

possible that the samples are so resistive at low temperatures that it acts as a capacitor 

storing charge during the resistance measurement. This would cause the measured 

resistivity to increase by offering another path for the current to flow through, but it 

would also increase the measured Seebeck coefficient by adding to the change on the 

sample, which would contribute an anamolous voltage to the Seebeck measurement. This 

hypothesis is supported by the fact that both the magnitude and sharpness of the low 

temperature “hump” in Seebeck increase when a larger current is used for the resistivity 

measurement, Figure 4.12b. 

 The second possibility is that the “hump” in resistivity is due to phonon drag. 

Phonon drag refers to an electron-phonon coupling phenomenon in which the Seebeck 

coefficient is enhanced due to the coupling between the charge carriers and the heat flow 

in absence of phase transition and charge current. In most cases phonon drag is 
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understood in the context of long mean free path carriers coupled to phonons, and 

exhibits as a gentle hump centered at ~ 20% θD, where θD is Debye temperature. In this 

sense the feature does indeed bear a striking resemblance to the characteristic phonon 

drag peak. This is in direct violation, however, of the observation of VRH conduction 

which results in very short electron mean free paths. 

Clearly long mean free path carriers coupled to phonons can generate a well-

defined signature of phonon drag, however a closer look at the mechanisms governing 

this phenomenon offer another explanation. According to [53] and [54] the magnitude of 

Sp, the phonon drag contribution to the total Seebeck coefficient, is proportional to the 

ratio of phonon mean free path to charge carrier mean free path. In a VRH electron 

system in which the charge carriers have very short mean free path, one would expect to 

see a large Sp term, which could possibly be resolved on top of the relatively large 

intrinsic Seebeck of a VRH material. Furthermore though phonon drag should have a 

small or even negligible signature in the resistivity of a metal, in a hopping system, the 

resistivity should be more sensitive to the change of momentum transfer so it is at least 

plausible to see some change in resistivity. Shown in Figure 4.12a the resistivity, 

measured simultaneously with the Seebeck coefficient during the four runs discussed 

above, appears to display a feature around the same temperature as the onset of the 

phonon drag peak (the peak is most pronounced in the "run 4" data).  

At this point it is impossible comment definitively on the nature of the “hump” in 

Seebeck coefficient. Further measurements are needed in order to determine whether it is 

the result of an experimental error or an intrinsic feature due to phonon drag. This is an 
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important observation, because it opens the possibility that Ag8GeTe6 exhibits strong 

electron-phonon coupling. 

 

4.2.2 Phase Transitions and the Intermediate Temperature Range 

 Figure 4.9b shows the resistivity of Ag8GeTe6 in the intermediate range (140K-

250K). Of particular interest in this temperature range are the signatures of the four phase 

transitions previously identified in Cp. All four transitions are accompanied by a 

discontinuity in the resistivity and three of the four also display a hysteresis loop. In 

general the presence of a hysteresis loop in resistivity is a strong indicator of a first order 

phase transition. This supports Kawaji and Ataki’s assertion that all four of the phase 

transitions below room temperature are first order.37 In particular the phase transition at 

156K shows a beautiful hysteresis loop and a transition from a positive temperature 

dependence back to a negative temperature dependence reminiscent of a metal-insulator 

transition (MIT). Unlike the other three transitions the transition at 169K does not show a 

hysteresis loop, but does show both a discontinuity and a change in slope in resistivity. 

Like the low temperature phase transitions the upper two transitions are featured by 

discontinuities. Additionally the upper two transitions display large separations between 

the warming and cooling curves that do not converge. This separation can most likely be 

attributed to deviations from thermal equilibrium due to the onset of superionic. If this is 

the case a hysteresis without closed loop can be explained in the context of Ag+ ion 

migration because the ionic kinetics have a much longer time constant than their 

electronic counterpart. 
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 In the region between the phase transitions (160K-220K) the resistivity displays a 

positive TCR similar to a metal however the magnitude is much too large to be metallic. 

In this range the Seebeck also appears to be near linear (at least on the cooling curve), but 

again its magnitude is also much too large to be metallic. At this point further discussion 

of the nature of the electrical conduction in this regime would be little more than 

conjecture.  

 

4.2.3 High Temperature Regime 

 In the high temperature regime the resistivity again displays a negative TCR, but 

doesn’t appear to follow Arrenhius law, Figure 4.13. One possibility for the deviation is 

the onset of ionic conduction. Obviously any attempt to analyze the electrical properties 

of Ag8GeTe6 in this temperature range that does not take into account the effects of ionic 

conduction is too simplistic. On the other hand it is well known that fast ionic conduction 

is governed by a thermally activated hopping. Following the equation 

 ( )0 exp E RTσ σ= −   (3.4) 

or possibly  

 ( )0 exp E RT
T
σσ = −   (3.5) 

where E is either the activation energy of the mobile ions or in some cases the energy 

needed for the creation of interstitial defects or vacancies necessary for ionic 

conduction.55 In this way the contribution of ionic migration to the electrical properties of 

Ag8GeTe6 below room temperature can again considered to be small.  
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 The Seebeck coefficient appears to level off in this range transitioning to a 

negative slope with increasing temperature as reported in [19] and [20]. This is in line 

with a transition from hopping conduction to band conduction, which is also supported by 

the negative slope of the resistivity.   

 

4.2.4 Hall Coefficient  

Hall coefficient measurements were performed on a Quantum Design PPMS, 

using the standard 5 probe configuration. In a four probe Hall measurement the largest 

source of error is misalignment of the voltage leads. For this reason in the PPMS the 

three voltage leads are used, as shown in Figure 4.14, and balanced electronically using a 

bridge to remove any resistive contributions to the measured voltage. For the 

measurement samples were mounted on a Quantum Design AC Transport puck, and 

thermally sunk using Apiezon N-grease to ensure thermal stability. The leads were 

attached using silver paste on top of gold sputtered contacts to ensure that the contacts 

were ohmic (the addition of gold sputtered contacts lowered the contact resistance from 

hundreds of Ohms to about 1 ohm). The Hall resistivity was measured between -1T and 

1T from room temperature down to approximately 20K. 

 The Hall coefficient, RH, was calculated as the slope of the Hall resistivity versus 

field plot. As can be seen in Figure 4.15b the data showed very good linearity. The Hall 

coefficient as a function of temperature is shown in Figure 4.15c. It should be noted that 

the plotted Hall data was taken on multiple samples with multiple runs to confirm that the 

measured values were indeed intrinsic to Ag8GeTe6.  After calculating the Hall 
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coefficient it was possible to estimate the carrier concentration (Figure 4.15a) n, using 

the equation below 

 
1

HR
ne

=   (3.6) 

where n is the carrier concentration and e is the charge of an electron (1.60217 x 10-19 C). 

This equation for carrier concentration comes from a single band parabolic model which 

is clearly not valid in this case. As discussed in the previous section at low temperatures 

the electrical conductivity of Ag8GeTe6 is governed by hopping mechanisms while at 

higher temperatures the contribution from mobile ions is not negligible, therefore should 

not be considered to be rigorous, but rather used as cross check of the order of magnitude 

and temperature dependence of the carrier concentration.    

 As can be seen in the plot the carrier concentration has a very small magnitude for 

a semiconductor (1017 cm-3), and displays a slight positive temperature dependence. 

When considered in the context of the resistivity, poorly semiconducting, the small 

concentration and temperature dependence is expected. From here it is possible to 

calculate the carrier mobility, µH, using the formula below 

 H
H

Rµ
ρ

=   (3.7) 

where ρ is the electrical resistivity. The calculated carrier mobility, µH, is shown in 

Figure 4.15d. Again it must be noted that the carrier concentration and hence the 

mobility is calculated using the assumption of a single parabolic band which isn’t 

necessarily correct in the case of Ag8GeTe6, and for this reason only the magnitude and 

temperature dependence of the mobility will be considered. Surprisingly the carrier 
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mobility displays a slight positive temperature dependence similar to the carrier 

concentration.  

 As discussed in the previous section, the electronic conduction of Ag8GeTe6 is 

governed by hopping mechanisms, specifically Mott VRH, at low temperatures. 

Grunewald et al. have a concise description of the Hall coefficient of a hopping 

conductor using percolation theory.56 It is very important to remember that this theory is 

developed in the approximation of a constant DOS which may not the case in Ag8GeTe6, 

but nonetheless should still offer some physical insight. According to this description the 

Hall coefficient of a VRH conductor should be described the relation 

 0ln
S

H
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  (3.8) 

and the hall mobility should follow the relation 
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  (3.9) 

where  

 
  
S =

1
d +1

  (3.10) 

where, as before, d is the dimensionality of the material. With this in mind Figure 4.16 

shows the log of the Hall coefficient (RH) and Hall mobility (μH) of Ag8GeTe6 plotted 

versus T-1/3 and T-1/4. As was the case with resistivity and Seebeck both 2d and 3d VRH 

give a reasonably good fit, however the 2-d fit appears to be more linear.  

4.2.5 Photoacoustic Spectroscopy (PAS) 

In order to verify the band gap (or energetic barrier for hopping) of Ag8GeTe6 

photoacoustic spectroscopy (PAS) measurements were performed by Dr. Narayanan 
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Kuthirummal at the College of Charleston.  PAS is a nondestructive spectroscopy tool 

that is particularly useful for the characterization of optically opaque samples based on 

the photoacoustic effect discovered by Alexander Graham Bell in 1880 in which sound 

waves are generated by a solid sample which has absorbed light from a pulsed source. To 

perform a PAS measurement a sample is placed in an airtight chamber and illuminated 

with a monochromatic time varying (either pulsed or sinusoidal) light source. The 

response of the sample is then monitored with a microphone.57  The physical mechanisms 

responsible for the PAS signal include 2 main phenomena. The signal should be due to 

the excitation of electrons or phonon modes in the crystal. 

As can be seen in Figure 4.17 there is a step-like feature in the PAS spectrum of 

Ag8GeTe6 with an onset at 3500 wavenumbers, which corresponds to an energy of 

0.406eV. This transition can be attributed to the electronic mobility-gap. This value is in 

good agreement with the value of 0.47eV measured by Bendorius  et al. using optical 

spectroscopy.58 
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Figure 4.1: Diagram of the experimental setup used to perform an ionic conductivity 
measurement using the electron blocker approach in the two probe configuration. 
 
 
 
 
 
 

 
Figure 4.2: a) sample I-V curve b) conductivity versus sweep measured using wet Nafion 
v dry Nafion  
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Figure 4.3: a,b) AC impedance of Ag8GeTe6 measured at room temperature c) equivalent 
circuit used to model the impediance data d) Ag+ diffusion path through the Ag8GeTe6 
lattice measured by Boucher et al. Source Ref. [21]  
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Figure 4.4: Removable sample puck for low temperature resistivity and Seebeck 
coefficient measurements. Source Ref. [47]  
 
 

 
Figure 4.5: Temperature gradient and potential as a function of time measured on  
Ce1-xGdxO2-x/2-δ taken from [48]. The peaks that appear in potential immediately after 
changes in temperature are attributed to the slow migration of ions in the system. 
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Figure 4.6: Sample mounted in the time dependent Seebeck system built at Clemson. 
 
 

  
Figure 4.7: Sample dataset taken on Ag8GeTe6 taken on the time dependent Seebeck 
system.  
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Figure 4.8: Variation of electrical properties between Ag8GeTe6 samples. 
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Figure 4.9: a,b) Resistivity and c) Seebeck coefficient of Ag8GeTe6 as a function of 
temperature. 
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Figure 4.10: a)Clearly the VRH model is not well suited to describe the conduction of 
Ag8GeTe6 in the entire temperature range (at high temperatures the plot is far from 
linear), but is most likely the dominant conduction mechanism between 10K and 140K 
(the plot shows good linearity b) 3-d VRH c) tempertaure  dependence of conductivity as 
predicted by Efros and Shklovskii  
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Figure 4.11: a)Seebeck coeifficient of Ag8GeTe6 fit to a 2-D VRH model  
 
 
 

 
Figure 4.12: a)Resistivity and b) Seebeck coeifficient of Ag8GeTe6 measured using 
different excitations.  
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Figure 4.13: Arrenhius behavior of resistivity. 
 
 
 
 
 

 
Figure 4.14: a) 5 wire Hall measurement configuration Source Ref. [4]. 
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Figure 4.15: a) carrier concentration b) an example of a field sweep (performed at 200K) 
c) the Hall coefficient as a function of temperature d) the Hall mobility of Ag8GeTe6 as a 
function of temperature. 
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Figure 4.16: a,c) Hall coeifficient and b,d) Hall mobility of Ag8GeTe6

 
plotted versus T-1/3

 

and T-1/4
.
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Figure 4.17: PAS spectrum of Ag8GeTe6. 
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 CHAPTER FIVE 

SPECIFIC HEAT 

 

5.1 Preface 

Though it is somewhat unusual to have a preface for an individual chapter, the 

central importance of this chapter warrants a preface. The preceding chapters addressing 

magnetic susceptibility, electrical resistivity, thermopower, photoacoustic spectroscopy, 

and X-ray diffraction allow for an unprecedented level of understanding on the physical 

nature of Ag8GeTe6.  Specifically, these results have corroborated that (i) the ground state 

of Ag8GeTe6 is non-magnetic (i.e., no long range magnetic ordering down to 2 K) and 

electrically insulating; (ii) Ag8GeTe6 is a low carrier concentration yet low mobility 

electron system; (iii) the electrical conduction is basically electronic and it adopts a 

variable range hopping below the phase transition at 245 K, above which ionic 

conduction sets in and precludes fast ionic conduction at elevated temperatures; (iv) 

several of the four phase transitions between 150 K and 250 K appear to be first order, at 

least, the two transitions at 223 K and 245 K involve a crystal symmetry change; and (v) 

time-dependent thermopower measurements suggest a long thermal relaxation time and 

thus a very low thermal conductivity. Given the small magnitude of the total electrical 

resistivity in the temperature range studied, the total thermal conductivity is basically the 

lattice (phononic) thermal conductivity. 
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From the few thermoelectric studies of Ag8GeTe6 above room temperature, the 

exceptionally low thermal conductivity of Ag8GeTe6 is apparent.19,20,25 This low thermal 

conductivity seems to be a common feature of the Agyrodite family of compounds.59 

Currently a basic understanding as to why Ag8GeTe6 and other Agyrodites possess such a 

low thermal conductivity, and more importantly, how Ag8GeTe6 thermodynamically 

evolves to allow for the rare co-existence of good thermoelectric performance and fast 

ionic conduction is conspicuously lacking. In this and the next chapter we will attempt to 

elucidate the nature of this unusually low thermal conductivity in light of the charge, 

spin, orbital and lattice degrees of freedom and their interplay. To this end, we performed 

specific heat (Cp) measurements between 1.8 K and 500 K and later thermal conductivity 

measurements (κ) between 10 K and 400 K on Ag8GeTe6.  

At this point we must stress that the results of structural and thermal 

measurements we performed on Ag8GeTe6 are the most trustable among all datasets. As 

discussed in the earlier chapters on the structural and electrical properties of Ag8GeTe6, 

our samples contain a trace amount of secondary phase (~ 1 vol.% Ag5Te3 or Ag10Te7 as 

estimated from the Rietveld refinement of synchrotron X-ray power diffraction data). In 

crystal growth, a slow cooling rate (on the order of 1 K/hr) is found to be beneficial to 

obtain large solid ingots for electrical and thermal transport measurements, however, it 

also tends to promote the formation of the secondary phase. The secondary phase is hard 

to completely remove as it adheres to the incongruent melting of Ag-Ge-Te in crystal 

growth as discussed in Chapter 2. Moreover though the secondary phase is of trace 

amount, we must take extra caution since Ag8GeTe6 is a low carrier concentration system 
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whereas the secondary phase is comparably rich in charge carriers.60 As such, the 

electrical transport properties of the as-grown samples are susceptible to the presence of 

the secondary phase. This explains the rather scattered electrical resistivity and 

thermopower data, presented in Chapter 4, although our lab-based X-ray diffraction 

measurements detected no secondary phase. In contrast, the results of heat capacity and 

thermal conductivity measurements, which will be presented in this chapter, have shown 

a satisfactory convergence within the instrumental uncertainty. The lack of practical lab-

based technical tools has prevented us from timely and non-destructively investigating 

the amount, morphology, and topology of the secondary phase. For this reason up to this 

point the only strong evidence we have on the nature of the secondary phase is from high-

resolution synchrotron X-ray powder diffraction which is expensive and has a very long 

turnaround time. 

In order to manage these sample preparation issues while facilitating the much 

needed fundamental understanding of Ag8GeTe6 within the two year time span for my 

thesis, we have adopted two rules of thumb, in the case of inconsistent or contradictory 

data: (i) the structural and thermal data are more trustable than their electrical 

counterpart, and (ii) the data sets that are volumetric in nature are more trustable than 

those that are percolative in nature. These rules of thumb also reflect the fact that prior to 

our studies little was known about this material and some of the published data turned out 

to be incorrect. One of the most curious aspects of the previous thermoelectric studies on 

Ag8GeTe6 is the extreme dependence of the total thermal conductivity on the self doping 

ratio as described by Zhu et al. Figure 5.1 shows the total thermal conductivity of self-
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doped Ag8GeTe6 as a function of doping ratio. Surprisingly the authors report a nearly 

40% change in thermal conductivity by varying the silver content by less than 0.5%. This 

change is too large to be physical when you consider that the carrier contribution to the 

thermal conductivity is negligible. As such, we deliberately use the colloquial wording 

“trustable” rather than “intrinsic” at this point. Toward the end of this thesis, we will have 

enough confidence to call several of our results “intrinsic”. 

 

5.2 Previous Work 
  

In the one of the few early studies on the physical properties of Ag8GeTe6 below 

room temperature, Kawaji and Atake measured the specific heat of Ag8GeTe6 between 

10K and 310K using a high precision adiabatic calorimeter, and showed that the lattice 

dynamics of Ag8GeTe6 are interesting in their own right.37 As can be seen in Figure 2 the 

specific heat of Ag8GeTe6 shows four anomalies between 150K and 250K, and near room 

temperature is nearly 30 J/mol*K above the classical Dulong-Petit limit.  Additionally the 

specific heat displays a rare negative slope between 250K and 300K. With little in the 

way of supporting information the authors argued that all four phase transitions are first 

order and attributed the negative slope to an unspecified two-level system. 
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5.3 Experimental Details 

 

In order to verify and further understand the rich thermodynamic features in 

Kwaji and Atake’s report, low temperature specific heat was measured on a Quantum 

Design PPMS between 1.8K and 215K using the thermal relaxation method,61,62 and 

between 130K and 260K by Dr. Joe Brill’s group at the University of Kentucky using a 

high precision Differential Scanning Calorimeter (DSC). Throughout the temperature 

range the data sets are in good agreement, as shown in Figure 5.2. It should be 

mentioned that we attempted to push the PPMS measurement to higher temperatures, but 

due to poor thermal coupling between the sample and the stage the data proved to be 

unreliable, which hints that the thermal conductivity of this material is indeed low. 

Additionally as shown in Figure 5.3 the specific heat was measured between 130K and 

215K on both the DSC and PPMS. Other than in the regions of the phase transitions at 

156K and 169K (discussed in the next section) the data is in very good agreement though 

the principle of measurement is subtly different: the DSC is a dynamic measurement63 

while the PPMS uses a steady state thermal relaxation type measurement. Ideally both a 

DSC and a PPMS measurement probe the same thermodynamics, however due to 

differences in the way data is obtained different systems are better for different purposes. 

First off as discussed in the next section the PPMS does very poorly when tracking 

multiple phase transitions within a narrow temperature range, which happens to be the 

case in Ag8GeTe6. Second, PPMS measurements are time consuming when compared to 

a DSC as it requires temperature stabilization at each data point. Third, thermal relaxation 
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measurements on a PPMS are prone to radiation losses at elevated temperatures, which is 

magnified in samples with low thermal conductivity and/or poor thermal coupling with 

the sample holder. On the other hand, DSC measurements excel in all three of the above 

aspects but are very difficult to conduct at low temperatures (< 10K).   

Furthermore the specific heat of Ag8GeTe6 was measured between 50° C (323 K) 

and 600°C (873 K), using a Netzsch DSC 404 Pegasus in Dr. Tritt’s lab at Clemson 

University. As can be seen in the Figure 5.4 the data is in excellent agreement and even 

shows three more phase transitions above room temperature,1 maintaining the overall 

negative temperature dependence, and 30 J/mol*K excess above the classical Dulong-

Petit limit. The excellent agreement between the measurement results from three separate 

measurements enables a coherent understanding of the underlying thermodynamics in 

Ag8GeTe6 over such a wide temperature range for the first time.  

 

5.4 Phase Transitions  

 

 As mentioned above Ag8GeTe6 undergoes seven phase transitions between 150K 

and 750K (156K, 170K, 223K, 245K, 527K, 629K, and 724K). This is an amazing 

number indicating that the material is thermodynamically unstable. Since we have 

previously ruled out any long range magnetic ordering in Ag8GeTe6 (Chapter 3.), these 

thermodynamic anomalies must be associated with the charge (electrons and ions), 

lattice, and orbital degrees of freedom, as well as the interplay between them. The 

1 The reader should note that though these phase transitions are novel and have not been previously 
studied, they are beyond the scope of this thesis. 
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entropies and enthalpies of the phase transitions (calculated for both the new and old 

data) are shown in Table 5.1. Kawaji and Atake suggested that due to the shape of their 

DSC signatures all four of the phase transitions below room temperature are first order 

without further discussing their origin. As discussed in Chapter 3 temperature dependent 

powder x-ray diffraction has confirmed that the transition at 223K and most likely the 

transition at 245 K both correspond to crystal symmetry changes confirming their first 

order nature. The low temperature transitions at 156 K and 170 K, however, have proven 

much more difficult to categorize. Indeed our PPMS measurements, preliminary DSC 

measurements, and even an early paper by Katty et al. missed the first transition at 156 K 

likely due to its small magnitude.27 The small magnitude and lack of signature in x-ray 

data suggest that the transitions at 156K and 170K are not structural in nature or only 

involved with subtle structural changes (e.g., the onset of silver ordering). Additionally 

though the PPMS measurements were able to pick up the transition at 170 K the shape of 

the peak does not appear to be physical which can be attributed to systematic errors. J. C. 

Lashley et al. have published an excellent review of the thermal relaxation method (used 

in the PPMS) and argue that though it is possible to confirm the existence second order 

phase transitions it is impossible to accurately determine their shape or even confirm the 

existence of first order phase transitions using the PPMS.64  

At this point it would seem obvious that other data sets could be used to confirm 

the nature of the transitions. The message from the DC resistivity regarding the transition 

at 170 K, however, is mixed: the lack of a well defined hysteresis loop accompanying the 

phase transition at 170K suggests it is a second order or continuous phase transition, on 
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the other hand, the abrupt jump near 170 K constitutes a discontinuity which is often seen 

in a first order phase transition. So far, no conclusion has been drawn on the 170 K phase 

transition. In this vein the appearance of an obvious hysteresis loop in the DC resistivity 

accompanying the phase transition at 156K along with the lack of signature in the PPMS 

Cp measurement are consistent with a first order phase transition. Ideally the signatures of 

the higher temperature transitions (223K and 245K) in the DC electrical resistivity could 

be used to clarify their order. Unfortunately the DC resistivity appears to show a 

hysteresis around these transitions, but the loop never closes making it difficult to 

describe. As discussed in Chapter 4 the thermopower shows band noise above 245 K, 

the AC impedance detects a non-resistive signal above room temperature, and Ag8GeTe6 

develops into a fast ionic conductor above room temperature. All these evidences suggest 

that the phase transition at 245 K corresponds to the onset of super-ionic conduction. If 

this is the case, Ag+ ion migration is expected, and because the ionic kinetics have a 

much longer time constant than their electronic counterpart a hysteresis without closed 

loop can be explained. More discussion on the super-ionic phase transition at 245 K will 

be given when we address the peculiar line shape of the heat capacity anomaly at 245 K 

and the sustaining negative slope above 245 K.  

Above room temperature the transition that appears to begin around 900K can be 

attributed to the onset of the peritectic decomposition of Ag8GeTe6.28 Unfortunately the 

nature of the remaining transitions above room temperature (527K, 629K, and 724K) is 

less clear, due to a lack of supporting information. The presence of so many phase 

transitions in such a broad range of temperatures further supports both the observation 
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that Ag8GeTe6 is extremely unstable and the existence of a competition between many 

“nearly degenerate” states. In fact a large amount of current research in the field of 

thermoelectrics is focused on the study of improved thermoelectric performance near 

phase transitions, which as discussed in the introduction (Chapter 1), can lead to a 

destabilization of the charge degree of freedom due to the coupling between charge and 

lattice degrees of freedom and therefore enhance ZT.65  

  

5.5 Basics of Specific Heat  

 

Before beginning to quantitatively analyze the specific heat of Ag8GeTe6 it is 

instructive to review several of the basic concepts and models used to describe the way in 

which heat is “stored” in solid materials. 

 

5.5.1 Dulong-Petit Limit 

The Law of Dulong and Petit, also known as the Dulong-Petit limit, is a 

thermodynamic rule, published in 1819, that describes the molar heat capacity of a 

crystalline material.66 Dulong and Petit were able to formulate their rule by noticing that 

if it was first multiplied by the atomic weight of the constituent atoms the mass specific 

heat of many materials approached a constant value at sufficiently high temperatures 

(now known to be ~θD the Debye temperature, which will be discussed in the following 

section). They found that the molar specific heat was about 25J/K-mol. Knowledge of 

modern thermodynamics allows us to justify Dulong and Petit’s expression in terms of 
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either the gas constant R and the molar mass of the material M or the number of atoms 

per mole N and the Boltzmann constant kB. 

 3 3v B
RC NkM =   (4.1) 

 It should be noted that the Dulong-Petit limit is related to the constant volume specific 

heat Cv, not the constant pressure specific heat Cp. In general, Cv is more intuitive for 

theoretical considerations while Cp is experimentally accessible. The difference between 

Cv and Cp leads to an important discussion on anharmonicity and quasi-harmonicity in 

Section 5.6.  

The introduction of Einstein’s model of specific heat in 1907 offered a concrete 

microscopic explanation of the physical origins of the Dulong-Petit limit.67 Using three 

simple observations Einstein was able to describe the physical origins of the Dulong-Petit 

limit: First he treated the atoms in a crystal as individual quantum harmonic oscillators, 

next he observed that according to the equi-partition theorem quadratic degrees of 

freedom can each store 1/2kBT of energy, and finally he noted that each atom in a crystal 

has 6 degrees of freedom (one vibrational and one translational degree of freedom for 

each spatial dimension). Hence the energy stored in a crystal, at sufficiently high 

temperatures, should be equal to . 

 The expression for specific heat of a crystal at low temperatures in the Einstein 

model is slightly more complicated and invokes quantum mechanics. As mentioned 

above in the Einstein model a solid material is described as a collection of quantum 

harmonic oscillators vibrating with the same frequency. Recalling the formula for the 

average energy of a quantum harmonic oscillator and remembering that there are N atoms 
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in the lattice which each have 3 degrees of freedom (3N total oscillators) allows us to 

express the average energy per mole of the Einstein lattice as 

 
1 13
2 exp( 1AU N hω

β ω
 

= + − 

  (4.2) 

Next we recall the definition of heat capacity at constant volume 
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where 
B

x k T
ω=   . Finally we define the Einstein temperature of the material as 

E
E

Bk
ωθ =
  which allows us to write the expression for the specific heat of an Einstein 

lattice in its final form 
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  (4.4) 

 
5.5.2 Debye vs. Einstein Model  

Discussed above was Einstein’s model to describe the specific heat of a solid. A 

second, more realistic, model was developed by Peter Debye in 1912.68 As we know, 

Einstein’s model works well at high temperature where it approaches the classical 

Dulong-Petit limit; however at low temperatures it predicts an exponential temperature 

dependence, which contradicted experimental observations of a T3 temperature 

dependence. To solve the problem of the low temperature dependence Debye developed a 

model in which the atomic vibrations of a material are modeled as phonons inside a box. 

In this way the specific heat of a given material can be calculated using the equation  
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where θD is the Debye temperature given by D
D

B

h
k
ωθ =  and ωD is the Debye frequency 

given by the equation 
1

33
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 =  
 

 where N/V is the number density of atoms and vs 

is the speed of sound in the material. Like Einstein’s model the Debye model recovers the 

Dulong-Petit limit at high temperatures (T>>θD). At low temperatures (T<<θD) the 

Debye model follows the equation  
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which unlike the Einstein model displays a T3 temperature dependence in agreement with 

experiment. This is because the Debye model predicts the exact phonon dispersion at 

temperatures low enough that only long wavelength acoustic modes are activated. In 

between the high and low temperature regimes the Debye model is not as accurate due to 

limitations of the basic assumptions of used in its derivation, similar to the Einstein 

model. 

 

5.5.3 Phonon Dispersion Relation 

 As mentioned earlier any excitation in a solid material can both store and 

transport heat. In many cases, however, (Ag8GeTe6 being one of them) the storage and 

conduction of heat is dominated by quantized lattice vibrations or phonons. With this in 

mind it is useful to consider the phonon dispersion relation when discussing any thermal 

phenomena in Ag8GeTe6.  
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 The phonon dispersion relation of a crystalline material describes the frequency 

(ω) of the allowed phonon modes in the material as a function of their momentum (k).  

This problem can be simply solved with three simple assumptions: (i) first we must 

assume a harmonic periodic lattice, (ii) second only nearest neighbor interactions are 

considered, and (iii) finally Born-von Karman boundary conditions must be used.  

A classic derivation of the phonon dispersion is given by Kittel. For simplicity the 

derivation is for an elastic wave propagating along a high symmetry direction ([100], 

[110], and [111]) of an infinite (iii) monatomic cubic crystal.69 He begins by considering 

the displacement of planes of atoms rather than individual atoms, and then assumes that 

the forces between atoms can be described using Hooke’s Law F kx= −


 (i). From here the 

force on plane s displaced by s+p can be given by  

 ( )sp sp s pF C u u= − −


  (4.7) 

Next by considering only nearest neighbor interactions (ii) p is constrained to 

1p = ± allowing the expression to be further simplified to  

 ( ) ( )1 1s s s s sF C u u C u u+ −= − + −


  (4.8) 

At this point it is useful to consider C as the interatomic force constant rather than the 

interplane force constant in order to facilitate the description of a single atom in an 

atomic plane which can be given by the following equation: 

 [ ]
2

1 12 2n
n n n

d uM C u u u
dt + −= − −   (4.9) 

where M is the mass of a single atom. Finally by assuming all displacements have the 

same time dependence (exp(-iωt)) equation 5.9 becomes 
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1 1 2n n n nM u C u u uω + −− = + −   (4.10) 

Solving the differential equation gives a traveling wave solution of the form  

 1 exp(isKa)exp( iKa)su u± = ±   (4.11) 

which can be simplified to obtain the phonon dispersion relation 

 ( )2 24 1sin 2
C KaMω =   (4.12) 

Furthermore it is important to consider which values of will be physically significant. To 

this end basic solid state considerations tell us that all of the meaningful information in 

the phonon dispersion is contained in the first Brillouin zone hence k is restricted to 

a k aπ π− ≤ ≤ .  Figure 5.5 shows the phonon dispersion of a monatomic crystal. 

 It is also informative to consider the slope of the phonon dispersion at the edge of 

the first Brillouin zone. To do this we must take the derivative equation. 5.12  

 ( )2
2 sind Ca M kadk

ω =   (4.13) 

clearly the derivative goes to zero at the zone boundary k
a
π

= ± hence it corresponds to a 

standing wave. Beyond the slope of the phonon dispersion it is also informative to 

consider the group velocity of waves described by the phonon dispersion relation. In this 

way the group velocity can be described by the following equation  

 ( )(k)g k

dv grad
dk
ω ω= = 



  (4.14) 

Substituting equation 5.12 into the above equation gives the group velocity  
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  (4.15) 

which again corresponds to a standing wave at the zone boundary.  

 The preceding derivation is in most cases oversimplified. When a material 

contains two or more atoms per primitive cell the situation is more complex. In this case 

the phonon dispersion will still have three acoustic modes which correspond to in phase 

motion of entire unit cells as in a monatomic crystal, however there now be a number of 

optical modes, which correspond to the motion of atoms against each other inside the unit 

cell. The number modes of a given crystal structure is equal to 3N where N is the number 

of atoms per unit cell, and these modes can be further broken down into 3 acoustic modes 

and (3N-3) optical modes. A complete derivation of the phonon dispersion relation of a 

material with more than one atom per unit cell is beyond the scope of this thesis however 

we will present the phonon dispersions for the optical and acoustic branches of a diatomic 

crystal. In the limit of small k the dispersions are given by the following equations 

 2

1 2

1 12C
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    (4.16) 
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  (4.17) 

where M1 and M2 correspond to the atomic masses. Equation (5.16) corresponds to the 

optical branch and Equation (5.17) corresponds to the acoustic branch. At the other 

extreme in the limit of ka π= ±  the dispersion can be given by 

 2
12 /C Mω =   (4.18) 

And  
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22 /C Mω =   (4.19) 

The phonon dispersion of a diatomic crystal is shown in Figure 5.6. The same equation 

for the group velocity of acoustic modes (Equation 5.15) applies to the optical modes in 

a crystal. As can be seen in Figure 5.6, however, the optical modes have a much smaller 

slope than the acoustic modes and therefore have a smaller group velocity. In this way it 

is possible to understand the adage that “all phonon modes store heat but not all modes 

carry heat.” Due to their low group velocity optical phonon modes contribute very little 

to thermal conductivity (in most cases).  In the case of materials with many atoms per 

unit cell there will obviously be many more optical modes than acoustic modes, and in 

some cases the optical modes have energy at or below the maximum energy of the 

acoustic branches.  

 The phonon dispersion relation in materials like Ag8GeTe6 that display strong 

anharmonicity is more complicated that the preceding discussion. Indeed one of the 

initial assumptions was that the potential is purely harmonic. In reality no material is 

purely harmonic therefore the lines in the dispersion relation would more accurately be 

replaced by “bands” whose width increased with increasing anharmonicity. 

 

5.5.4 Charge carrier contribution to specific heat Cv 

Until now the discussion of the storage of heat in a solid material (specific heat) 

has been focused solely on the crystal lattice. In real crystals however heat can also be 

stored by be stored other types of excitations including (but not only) free carriers and 

spin waves (spinons).70 The contributions to specific heat by excitations beyond free 
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carrier and phonons are considered to be beyond the scope of this thesis. To calculate the 

contribution of free carriers to the specific heat we begin with the following expression 

for the internal energy of a Fermi sea of electrons (holes) 
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where D(ε) is the Density of States and f(ε) is the Fermi-Dirac distribution.  From here it 

is possible to calculate the carrier contribution to the specific heat in the low temperature 

limit using the equation: 
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  (4.21)  

The contributions of different excitations to specific heat should be additive therefore the 

total specific heat of a solid material in the low temperature limit can be given by the 

equation 

 3
, ,V V carrier V DebyeC C C T Tγ β= + = +   (4.22) 

 

5.5.5 Schottky Anamoly  

Undoubtedly the Einstein and Debye models are oversimplified when it comes to 

the specific heat of real materials. This oversimplification is particularly important to the 

discussion of Ag8GeTe6 because they ignore two important aspects of the specific aspects 

of many materials anomalies, such as Schottky anomalies and phase transitions, and 

anharmonicty. 

A Schottky anomaly describes an anomalous contribution (peak) observed in the 

specific heat of a solid material due to the presence of discreet energy levels in the 

system. This is an example of a macroscopic signature of a microscopic quantum 
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phenomenon. In most cases Schottky anomalies appear at low temperatures (T << θD) in 

systems with two (or more) discreet energy levels, which are generally due to the 

presence of dilute magnetic impurities in the system. In some rare cases Schottky type 

behavior can be observed at temperatures near room temperature.71 In the most general 

case the energy of a multi level system can be describe by the equation: 
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which leads to the following expression for the heat capacity of a two level system: 
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in the usual case of a system with the lower level at the ground state (ε0=0) at low 

temperature this simplifies to the well known equation for a Schottky system 
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The most important point of the derivation is the presence of a negative slope in the 

specific heat as a function of temperature, which is very similar to the behavior of 

Ag8GeTe6 observed by Kawaji and Atake.  

 

5.5.5 Anharmonicity  

The above discussion of the specific heat of solid materials considers only 

harmonic interatomic potentials. This simplified approach works well in many instances, 
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however, isn’t always sufficient when considering real condensed matter systems. In this 

case deviations from the simple harmonic crystal lattice are lumped into the category of 

anharmonicity. Indeed several basic physical processes can only be explained by 

anharmonicity including thermal expansion, the pressure/temperature dependence of 

elastic constants, and even phonon-phonon interactions.  

 

5.6 Data Analysis 

 

The following subsections will focus on the three most prominent anomalies in 

the specific heat, namely, (i) the excess Cp observed at low temperatures; (ii) the 

anharmonicity caused deviation from the Dulong-Petit limit; and (iii) the persistent 

negative slope starting from the right side of the specific heat peak at 245 K. The results 

will provide a clear picture on the lattice dynamics of Ag8GeTe6 and set up a stage to 

analyze the low thermal conductivity. 

 

5.6.1 A Combined Debye-Einstein Model to Understand Feature (i) 

As mentioned above the low temperature specific heat of a solid material can 

generally be fit using the Debye Model. 

 3
PC T Tγ β= +   (4.26) 

where γ is the Sommerfeld coefficient hence the γT term corresponds to the contribution 

to the specific heat from charge carriers, and the βT3 term corresponds to the contribution 

from the crystal lattice described in Section 5.2. Figure 5.7 shows the low temperature 
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specific heat of Ag8GeTe6 fit to the Debye model.72 Though the fit initially looks good 

the values it gives for both γ and β are obviously questionable. First off the γ value is 

negative which is unphysical, while the β  value of 0.029 J/mol*K4 corresponds to a 

Debye temperature (θD) of nearly 1000K. The Debye temperature can be considered to be 

a rough estimate of the temperature at which all of the phonon modes in the system are 

populated, and hence the temperature where the specific heat saturates. A quick look at 

the Cp v. T plot tells us that the fit value for θD is obviously much too large. Recalling that 

the low temperature resistivity and magnetization of Ag8GeTe6 from the preceding 

chapters suggests the Sommerfeld Coefficient (γ) can be set to zero however, this still 

leads to unphysical values of β.  

 To understand the nature of the deviations from the Debye model it is useful 

remember the crystal structure of Ag8GeTe6. When considered in the context of two 

sublattices: one rigid GeTe sublattice and a second “liquid-like” Ag sublattice it suggests 

that one or more of the Ag+ sites behave like Einstein oscillators rather than members of 

the collective Debye lattice. Following the procedure laid out in “Use of Atomic 

Displacement Parameters in Thermoelectric Materials Research” by Dr. Brian Sales et al. 

it is possible to model the crystal interactions using a combined Debye and Einstein 

lattice shown in the equation below, were f is the fraction of the atoms in the entire 

crystal lattice that act as part of the Debye lattice, CDebye is the Debye specific heat, and 

CEinstein is the Einstein specific heat.73 

   (4.27) 
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In a physical sense this model treats the material as being made up of a traditional 

Debye lattice of tightly bonded atoms that is interspersed with loosely bound atoms 

whose motion is not coupled to the other atoms in the crystal, and therefore behave like 

harmonic oscillators. In some sense this model is still oversimplified, the Einstein 

oscillators are assumed to all vibrate with the same frequency, however it accurately 

describes the specific heat of many interesting materials. The most obvious example of 

this type of lattice is filled Skutterudites.  The basic Skutterudite structure, shown in 

Figure 5.8, is featured by 2 voids, which can be filled to create rattlers or atoms that are 

only loosely bound to the crystal structure. These rattlers have proved to be very useful to 

thermoelectricians due to their ability to strongly and resonantly scatter phonons. The 

specific heat of these materials can be very accurately described using a combined Debye 

and Einstein lattice where the “rattlers” are treated as Einstein oscillators.74,75 

Before beginning to model the lattice dynamics in Ag8GeTe6 using the procedure 

laid out in [73] it is important to point out that this procedure uses single crystal x-ray or 

powder neutron scattering data to completely model the specific heat of a material with 

no free parameters which is a very different procedure than the usual fitting used to 

obtain θD from Cp data. Additionally it should be noted that the crystallographic data that 

will be used in the model was taken at room temperature and above though the model is 

for low temperature Cp. This presents a problem because it is clear from both the 

experimental low temperature specific heat and low temperature x-ray data that the 

system undergoes at least one symmetry change between room temperature and the 

temperatures being modeled. For this reason it must be stressed that this model is not 
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presented to be rigorous but rather as one possible explanation of the low temperature 

lattice dynamics of Ag8GeTe6. 

The first step in modeling the specific heat is to decide which site or sites to 

model as Einstein oscillators. To do this the atomic displacement parameters (ADPs) of 

the different crystallographic sites are compared. Clearly any atom which behaves like an 

Einstein oscillator will have a large atomic displacement parameter because of the fact 

that it is so loosely bound to the surrounding atoms, and according to [73] the rule of 

thumb is that any site that behaves like an Einstein oscillator should have an ADP that is 

three times larger than the other sites in the lattice. The APDs of the all of the sites in the 

Ag8GeTe6 lattice are given in Table 5.2.21 It is clear that if there is a site in the Ag8GeTe6 

lattice that behaves like an Einstein oscillator it is the Ag2 site. The next step is to 

calculate the Einstein and Debye temperatures using the equations below 

   Slope(Uisovs.T ) = 3h2 ( mkBΘD 4π 2 )   (4.28) 

and 

  

 
  
Uiso = kBT

K = h2T
( 4π 2mkBΘE

2 )
  (4.29) 

this gives values of 37K for θE and 176K for θD. In general it is best to use the slope of the 

ADP vs. Temperature plot to calculate θD and θE however, the magnitude of the ADP of 

the Ag2 site in Ag8GeTe6 decreases with increasing temperature due to changes in 

occupancy. This would lead to an imaginary value of θE, which isn’t physical; therefore 

the room temperature ADP along with the assumption that the intercept of the ADP vs. 
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temperature plot is near zero has been used to calculate the slope of the low temperature 

ADP vs. T plot and hence θE. Once θD and θE have been calculated it is possible to 

calculate the Einstein and Debye contributions to the specific heat using Equations 5.4 

and 5.5. 

It is now possible to calculate the Cp of the material using Equation 5.27 and the 

Einstein and Debye specific heats calculated above. We have also assumed that f the 

fraction of atoms that are part of the Debye lattice is 0.8 which should be equal to the 

total number of atoms per unit cell minus the number of atoms on the Ag2 site.  

 As can be seen in Figure 5.9 the model is in very good agreement with the 

measured data at both low temperatures (below 10K) and also at high temperatures 

(above 150K). The deviation of the measured Cp from the model between 50K and 150K 

is expected because the basic assumptions of both the Debye and Einstein models are not 

valid in this intermediate temperature range, as discussed earlier in the chapter. 

Additionally as expected the model cannot explain the deviations from Dulong-Petit, 

which will be discussed in detail in Section5.5.3. 

 

5.6.2 BOSON PEAK  

 Solids that contain Einstein modes in their phonon spectra generally display a 

peak in the plot of Cp/T3 v lnT. This peak can be attributed to excess vibrational modes 

above the normal Debye contribution. In the most general sense this peak is called a 

Boson peak, and is a characteristic of amorphous solids. The physical origins of the 

Boson peak in amorphous materials are still currently a topic of much debate, though it is 
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generally accepted that they are the result anomalies in the phonon density of states 

usually described in terms of soft structures.76 Interestingly some authors attribute the 

appearance of a Boson peak to disordered systems that are nearly unstable.77 In most 

cases amorphous materials that display a Boson peak in Cp also have a peak in the low 

temperature thermal conductivity versus temperature plot. Moreover the existence of a 

Boson peak in glasslike materials has signatures in Neutron and Raman scattering 

experiments.78,79 In cases similar to Ag8GeTe6 where the nature of the peak is confirmed 

it is usually referred to as an Einstein peak.   

 A plot of Cp/T3 v lnT for Ag8GeTe6 along with the combined Debye and Einstein 

model is shown in Figure 5.10a. As expected the plot shows a peak centered around 5-

6K, which supports the existence of Einstein modes in the lattice. The peak in the model, 

however, occurs at a slightly higher temperature, approximately 8K, and displays the 

wrong shape; its FWHM is about half as large as it should be. This suggests that the 

combined Debye+Einstein fit is too simple, and that the lattice would be better described 

by two Einstein oscillators/modes inside a Debye host.  

 Figure 5.10b shows a modified fit of the low temperature specific heat data. To 

obtain the displayed curve the Einstein peak (Cp/T3 v. lnT below 20K) was fit to a 

combined Debye and Einstein lattice with 2 different Einstein modes using six free 

parameters: the Einstein and Debye temperatures (θΕ 1, θΕ2, and θD) and the fractions of 

the atomic lattice contributing to each term in the fit (fE1, fE2, and fD).  Both in terms of 

peak position and peak width the fit containing two Einstein modes is much better than 

the initial model containing a single Einstein mode. Of particular interest are the values 
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of the Einstein and Debye (θΕ 1, θΕ2, and θD) temperatures from the new fit. The new 

values for θΕ 1, θΕ2, and θD are 16 K, 36 K, and 165 K respectively, which is surprisingly 

close to the values obtained from the previously described model, of 37K and 176K. 

When coupled to the Debye temperature of 175 K obtained from the speed of sound  
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(1701 m/s) measured by Charoenphakdee et al.Error! Bookmark not defined. the 

similarity of the values of θΕ  and θD obtained by such different methods strongly supports 

their validity.   

 Furthermore the fact that the Debye temperatures obtained by measurements 

above (velocity of sound) and below (low temperature specific heat) the four low 

temperature phase transitions are very similar suggests that the phase transitions involve 

very little vibrational entropy. In “Vibrational Thermodynamics of Materials” Fultz gives 

the following equation to estimate the vibrational entropy change involved with a 

particular phase transition:  where θDα is the Debye Temperature 

of phase  α,  and θDβ is the Debye temperature of phase β.80 This observation strongly 

supports the observation that the low temperature phase transitions mainly involve 

ordering of the silver sublattice which is discussed in detail later in this chapter. 

 The existence of the Einstein peak in the low temperature confirms the existence 

of low energy optical modes in the crystal structure though the nature of these modes is 

less clear. Initially presented in the context of “rattlers” similar to those in Clathrates or 

Skutterudites, further structural considerations, however, suggest that there are no voids 
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or cages in the crystal structure to house this type of atom. This still leaves two 

possibilities for the nature of the Einstein peak first it is still possible that the Ag+ ions act 

as “rattlers” in a tunnel-like structure formed by the ionic diffusion path (discussed in 

Chapter 3), or conversely the excess Cp could simply be attributed to low laying optical 

phonon modes. This second case can be understood in the context of the phonon density 

of states (Section 5.5.3). In this way optical phonon modes with low enough energy will 

be populated at low temperatures adding to the specific heat predicted by the Debye 

model, which assumes only long wavelength acoustic phonon modes at temperatures << 

θD. This is of a very valuable observation in to context of Ag8GeTe6 because the existence 

of low lying optical modes offers several paths to explain the unusually low thermal 

conductivity discussed in detail in the following chapter. 

 

5.6.3 Anharmonicity and Gruneissen parameter 

As discussed in Section 5.5.1 the Debye and Einstein models cannot explain the 

observed deviations from the Dulong-Petit limit. At their core the Debye and Einstein 

models assume a harmonic potential for the atoms that make up the crystal lattice and 

therefore ignore any anharmonic interactions, which would cause an increase in specific 

heat because they offer another place to store themal energy in the material. This suggests 

that the excess Cp above the Dulong-Petit limit (Figure 5.4) may be at least partially 

attributed to anharmonicity. 

 In the case of Ag8GeTe6 the large anharmonicity leads to strong phonon-phonon 

interactions, and is therefore at least partially responsible for the unusually low lattice 
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thermal conductivity discussed in Chapter 6. For this reason it is crucial to address 

anharmonicity and furthermore to derive the important Gruneissen parameter in the 

context of general thermodynamics. 

The Gruneissen Parameter of a given phonon mode (i) defined as:81 
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offers a way to quantify the “strength” of its anharmonicity, and can be calculated from 

pressure dependent neutron or x-ray scattering. Furthermore the mode averaged 

Gruneissen parameter describes the anharmonicity of the bulk of a material. With this in 

mind we calculated the room temperature mode averaged Gruneissin parameter of 

Ag8GeTe6 using the equation:82  
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αγ =   (4.32) 

where αvol is the volumetric thermal expansion coefficient, calculated from temperature 

dependent x-ray diffraction measurements and taken to be 1.2x10-4 K-1, BT is the bulk 

modulus calculated from the measured vS of 1723 m/s and taken to be 2.14 x 1010 

Kg/ms2, V0 is the molar volume taken to be 2.36 x 10-4 m3/mol, and CP is the specific heat 

(at 300K) measured using taken to be 442  J/mol*K. Substitution of these values into the 

equation gives a value of 3.8 for the Gruneissen parameter.  

 As a rule of thumb the Gruneissen parameter of most materials has a value 

between one and two. Materials with a Gruneissen parameter as high as three or four are 

quite rare and signify a class of “frustrated” materials in which the lattice is not complete 

stable. In some cases it is possible for the Gruneissen parameter is a specific phonon 
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mode to have a value as high as seven or so but this only occurs in very specific bands 

that normally correspond to highly disordered crystallographic directions. Indeed there 

are no materials with reported mode averaged Gruneissen parameters higher than 

3.7.8181,83,84 The effects of anharmonicity and the concomitant changes in interatomic 

spacing can be described by the following equation 

 6 s

s

kr
k r

γ ∂
= −

∂
  (4.33) 

where r is the interatomic distance and ks is the interatomic force constant. From 

Equation 5.33 it is clear that slight changes in interatomic distance (+1%) can lead to 

very large changes in interatomic forces(–12%). Even more suprising is that observation 

that a change in interatomic distance of +10% could cause the interatomic force to 

disappear entirely.80 

 

5.6.4 Quasi-Harmonic Model  

At least a portion of the deviation of the measured Cp from the combined Debye 

and Einstein model above 125K can be explained by the fact that the measured specific 

heat is at constant pressure (Cp) though the model is from specific heat at constant 

volume (Cv). For this reason there measured value should always be larger than the 

values given by the model because it involves not only heat stored in the lattice but also 

the energy needed cause the lattice to expand through thermal expansion. It is customary 

to assume that the difference between Cv, which plays a significant role in theoretical 

thermodynamics, and Cp, which is experimentally easy to assess, is only a few percent. In 

the case of Ag8GeTe6, however, the key to understanding why the thermal conductivity is 
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so low partially lies in this few percent difference. At least a portion of deviation can be 

well understood in the context of the Quasi Harmonic (QH) model, which offers a 

valuable tool for understanding aharmonicity, at least to the first order.  

The QH model is very similar to the Debye or Einstein models in that it describes 

a solid material as a collection of harmonic oscillators. However in the QH model the 

spring constant of the oscillators is allowed to change with temperature. In this way the 

quasi-harmonic model is able to extend the harmonic Debye and Einstein models to 

include a very specific type of anharmonicity. By allowing the spring constants of the 

harmonic oscillators to change with increasing temperature the quasi-harmonic allows for 

the introduction of phonons with different frequency and leads to the inclusion of thermal 

expansion in the definition of the specific heat, which effectively changes the Debye and 

Einstein models of specific heat at constant volume (Cv) to specific heat at constant 

pressure (CP). Moreover by modeling the specific heat of a material using the quasi-

harmonic model it is possible to roughly estimate the amount of anharmonicity in the 

crystal beyond simple thermal expansion (anywhere the measured Cp is larger than the 

value of the “Harmonic+QH” model), which is particularly useful to thermoelectricians 

because this anharmonicity is usually effective at lowering thermal conductivity through 

a reduction of phonon lifetime.   

Fig 5.11 shows the measured Cp along with two models. The first model 

discussed assumes only harmonic crystal interactions in the form of a Debye host lattice 

with Einstein oscillators while the second model has an additional contribution from a 

QH term. After the addition of the QH term the fit is quite good up to the phase transition 
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at 223K. This suggests that though the anharmonicity in Ag8GeTe6 is quite large it can be 

explained in the context of thermal expansion. Above the transition at 223 however the 

deviations from the Dulong-Petit limit are much larger and cannot be well explained in 

the context of the QH model. 

 

5.6.5 Negative Slope of the Specific Heat 

 At this point we are ready to discuss third question posed by our data: “(iii) the 

persistent negative slope starting from the right side of the specific heat peak at 245 K”. 

The key to understanding this peculiar feature lies in the shape of Cp anomaly at 245 K. 

As shown in Figure xx the anomaly at 245 K can be decomposed into a 1st order and a 2nd 

order phase transition. 

Between 250K and 800K the overall trend in the Cp v. T plot is negative, which 

goes against the basic rule that with the exception of the backside of a phase transition Cp 

should always increase with increasing temperature. In their paper Kawaji and Atake 

have attributed the negative slope between 250K and 350 K to the existence of a two 

level system though they do not further address its nature. Indeed one our first reasons for 

studying Ag8GeTe6 was the existence of this negative slope, as it is possibly due to the 

charge Kondo effect, which we initially assumed to could be due to differing Ge charge 

states (Ge2+ and Ge4+, which importantly both correspond to full shell states) as a result 

of Silver deficiency in the crystal structure.85 Furthermore Figure 5.12 shows the 

measured CP plotted along with a curve: 2( ) . /C C Dulong Petit const T= − + , which is 

what one would expect from a Schottky anomaly, for kBT>>splitting of a 2 level system.  

 108 



The temperature dependence of the negative slope is similar to what would be expected 

for a traditional Schottky anomaly (as discussed in Section 5.5 above) though the energy 

scale is much too large: the coefficient of the 1/T2 term would imply an energy splitting 

of ~ 80 meV (i.e. > kBT), assuming there is only one excitation/formula unit. With that in 

mind if the negative slope is to be attributed to a Schottky anomaly there must be several 

excitations/formula unit. Beyond the magnitude of the Cp anomaly the shape is 

inconsistent with what would be expected for a Schottk anomaly. The low temperature 

side of a Schottky anomaly should show a Gaussian shape, but fitting the data show the 

low temperature side of the peak is far too steep to be Guassian. Additionally the 

width/height of the peak is inconsistent with what one would expect for a Schottky 

anomaly, in order to properly fit the width of the observed fit to a Schottky type peak the 

height of the peak is three to four orders of magnitude too large. Currently the existence 

of the charge Kondo effect cannot be conclusively ruled out, however, evidence for its 

existence is on shaky ground therefore further discussion can be found in Chapter 7: 

Future Work.  

A more compelling explanation for the negative temperature dependence of Cp 

lies in the super ionic nature of Ag8GeTe6. Recent studies on the interplay between super 

ionic conduction and high performance thermoelectricity have attributed similar behavior 

of specific heat to a “premelting” phenomenon.86 The onset of this phenomenon is clear 

upon closer inspection of the specific heat in the region of the phase transition at 245K 

(Figure 5.13). In this case the nature of the peak is revealed when it is broken into parts: 

first there is a contribution from a first order structural transition which accounts for the 
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large latent heat present after the transition the second contribution is a second order 

“Lambda” transition which causes the large peak in the Cp and can be explained by a 

partial “melting” of the Ag+ sublattice. Similar behavior has also been observed in 

nanoclusters of metal atoms.87     

Furthermore in the case of super ionic conductors authors have recently argued 

that the onset premelting and the super ionic phase fundamentally changes the way in 

which heat is stored in the crystal. This change can be well described in the context of 

waves inside of a periodic lattice versus waves in a liquid. As discussed in (Dulong Petit 

Section) the specific heat of a periodic crystalline lattice is given by 

where (3+3) term describes the three vibrational 

and three translational degree degrees f freedom of each atom. In a liquid however 

transverse acoustic modes cannot propagate therefore effectively eliminating any 

transverse vibrational modes in which case the specific is more accurately given by the 

equation . After the onset of premelting only a 

portion of the atomic lattice of a super ionic conductor becomes “liquid” (the conducting 

species) therefore the specific heat of a superionic conductor should fall somewhere in 

between the value for a traditional solid and the value for a liquid 2NkB < CV < 3NkB   

 

5.7 Conclusions 
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 The lattice of Ag8GeTe6 is extremely unstable, which sets the stage for the 

unusually low thermal conductivity of Ag8GeTe6, discussed in detail in the following 

chapter. We have argued that the instability is a consequence of three factors and the 

interplay between them: First the strong anharmonicity as evidenced by the large 

Gruneissen parameter, second the existence of low lying optical phonon modes as 

evidenced by the Einstein peak in the Cp/T3 v. ln T plot, and finally the onset of 

premelting alter the final low temperature phase transition at 245K. 

  

 

 

 

 

Site Ag1 Ag2 Ag3 Ge Te1 Te2 Te3 

ADP at 293K .1128 .1470 .0545 .0142 .0224 .068 .062 

ADP at 400K .1103 .1014 .0761 .018 .0297 .069 .059 

Table 5.1 Atomic displacement parameters of the different sites in the Ag8GeTe6 lattice. 
Source Ref. [21]  
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Transition Temperature (K) Enthalpy ΔH (J/mol) Entropy  ΔS (J/K*mol) 

156.1 90 0.58 

169.9 194 1.14 

222.9 2560  11.5 

244.7 1910 7.83 

557 879 1.59 

629 2261 3.57 

724 3931 5.40 

 

Table 5.2: Temperatures, enthalpies and entropies of the phase transtions of Ag8GeTe6. 

 

Figure 5.1:. Thermal conductivity of “self-doped” Ag8GeTe6 Source Ref. [20] 
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Figure 5.2: Heat capacity of Ag8GeTe6 measured using a precision DSC and a Quantum 
Design PPMS overlaid on data previously published by Kawaji and Atake (our data is in 
excelent agreement with the literature). Source Ref. [37] 

 

Figure 5.3: The measurements of the specific heat of Ag8GeTe6 using a precision DSC 
and the PPMS are in very good agreement.  
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Figure 5.4: Specific heat of Ag8GeTe6 from 2K to 875K measured using four different 
systems (the data is in excellent agreement).  

 

Figure 5.5: Phonon dispersion of a monatomic crystal.  
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Figure 5.6: Phonon dispersion of a diatomic crystal.  
 

 

Figure 5.7: Low temperature specific heat of Ag8GeTe6 fit to the Debye model. 
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Figure 5.8: Skutterudite structure. Source Ref. [72]. 

 

Figure 5.9: Measured Specific Heat (Cp) of Ag8GeTe6 plotted along with the combined 
Einstein and Debye model. 
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Figure 5.10: Low temperature specific heat (Cp) of Ag8GeTe6 divided by T3 plotted 
versus logT to show the so called Boson peak along with a) a combined Einstein Debye 
model using a single Einstein mode and b) a fit using two separate Einstein modes. 
 

 
Figure 5.11: The measured Specific Heat (Cp) of Ag8GeTe6 plotted along with two 
models 1) a harmonic combined Debye and Einstein model with two Einstein modes as 
well as 2) a similar model that includes and additional Quasi-Harmonic contribution. 
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Figure 5.12: Specific Heat (Cp) of Ag8GeTe6 measured using several different heating 
rates plotted along with a fit to a model containing both a Debye lattice and a Schottky 
anomaly. 
 

 
Figure 5.13: Specific Heat (Cp) of Ag8GeTe6 near the phase transition at 245K, can be 
broken into two parts-a first order transition and a second order transition. 
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CHAPTER SIX 

THERMAL CONDUCTIVITY 

6.1 Introduction 
 

In the first few chapters, we probed the charge, spin and orbital degrees of 

freedom in Ag8GeTe6. These results have set the stage for understanding the behavior of 

the thermal conductivity of Ag8GeTe6. Moreover as discussed on the previous chapter 

when it comes to probing the dynamics of an insulating or highly resistive material 

thermal conductivity plays a similar role to the electrical conductivity in conductors. 

However even in non-correlated electron systems, the coupling between the lattice, 

charge, orbital and spin degrees of freedom can be crucial. As such, the thermal 

conductivity must be addressed in connection to our earlier measurements for a complete 

and coherent understanding of the material system. The magnetic susceptibility data 

showed Ag8GeTe6 is persistently diamagnetic without any long range ordering, consistent 

with an insulating material with low carrier concentration, which was confirmed by the 

analysis of low temperature heat capacity (i.e., the negligible Sommerfeld coefficient, 

discussed in Chapter 5 Section 6.1). Temperature independent magnetic susceptibility 

also suggests an inert role of the orbital degree of freedom (especially in the region of the 

phase transitions). As such, we will neglect the contribution of spin and orbital degrees of 

freedom in the following analysis. Instead, we will focus on the charge (electronic and 

ionic) and lattice (static and dynamic) degrees of freedom. 

Electrically, Ag8GeTe6 shows variable range hopping behavior, as evidenced by 

the electrical resistivity, the Hall mobility, and the Seebeck coefficient (Chapter 4). 
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Bearing in mind the material becomes a mixed conductor above 245K we measured the 

Ag ionic conductivity near room temperature. The preliminary results suggest the ionic 

conductivity is at least 2 orders lower than the electronic counterpart, though we must 

stress that the W-F relationship has an ionic counterpart and the Lorenz number can be 

much larger for ions than electrons or, therefore it is premature to conclude that the 

carrier thermal conductivity is small from the small ionic conductivity.88 Another factor 

discerned from the heat capacity measurements and analysis is the existence of strong 

anharmonicity, as evidenced by the large acoustic mode-averaged Gruneissen parameter 

(~ 3.8) at room temperature (chapter 5 section 6.3). Ag8GeTe6 undergoes four phase 

transitions between 150 K and 250 K., as well as multiple phase transitions above room 

temperature, indicating the material system is inherently unstable. With this in mind we 

measured the thermal conductivity of Ag8GeTe6.  

Generally speaking, in solid materials heat can be stored and transported by any 

type of excitation. In most cases, however, the electronic and phononic contributions 

dominate. For this reason it is generally accepted that heat is mainly stored and 

transported by a combination of charge carriers and phonons or lattice. Furthermore in 

the presence of strong electron-phonon coupling it is not physically sound to visualize 

bare electrons or phonons as a result the quasi-particles picture must be used. This is 

most likely not the case in Ag8GeTe6 (as was discussed in Chapter 4) and will therefore 

be considered beyond the scope of this thesis. 

The electronic contribution to the thermal conductivity is proportional to the 

electrical conductivity and can be described by the Wiedemann–Franz relation 
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( ), where σ is the electrical conductivity, L is the Lorenz number taken to 

be 2.44*10-8 WΩK-2 for degenerate semiconductors or 1.5 ×10-8 WΩK-2 for non-

degenerate materials,89 and T is the absolute temperature. The validity of this relationship 

must be questioned from the onset when studying any new material system as it is well 

known that the Lorenz number can vary quite a bit between materials and over 

temperature. The degenerate value of the Lorenz number (2.44 ×10-8 WΩK-2) can be 

exactly calculated using Fermi Dirac statistics as was shown by Sommerfeld in 1927.90  

   (5.1) 

This value only holds under very specific conditions (based on the assumptions of the 

model) the first being that the material is highly degenerate, and the second is the 

assumption that phonon and electron mean free paths are proportional. In cases where the 

difference in mean free path is small and the system is degenerate the proper value of the 

Lorenz number can be calculated using the equation 

 0
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 (5.2) 

where κ is the carrier thermal conductivity, lT is the electron mean free path for thermal 

conductivity, lE is the electron mean free path for electrical conductivity.91 Additionally 

from dimensional analysis point it is clear that the units of Seebeck coeifficient and the 

Lorenz number are very similar which suggests they are related. This is indeed that case 

as both can be considered to be a gauge of entropy flow with respect to a parent charge 

flow.  

In the case of Ag8GeTe6 the electronic contribution to the thermal conductivity is 

negligible due to the low electrical conductivity discussed in Chapter 4. Furthermore, in 
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Ag8GeTe6 the ionic contribution to the thermal conductivity cannot be ignored due to the 

large ionic conductivity at elevated temperatures, and can be described in the same way 

as the electronic thermal conductivity by simply changing the Lorenz number to that of 

ions instead of electrons (holes).88 Especially in the low temperature regime the ionic 

conductivity is negligible (essentially zero below the phase transition at 245K), hence 

below room temperature the thermal conductivity can be considered to be solely due to 

phonons. At room temperature and above the nonzero ionic conductivity suggests that the 

ionic contribution to the thermal conductivity could be substantial especially in light of 

the fact that the Lorenz number for ionic charge carriers can be two to three orders of 

magnitude as large as that for electrons (holes).88 Finally as discussed at the end of the 

last chapter on specific heat the Ag sublattice of Ag8GeTe6 undergoes a premelting 

transition above 245K, which not only allows for more “dynamic” scatterers in the 

lattice, but also fundamentally changes the way heat is stored and transported in the 

material by eliminating transverse phonon modes in a part of the lattice!  

The goal of this chapter is to answer three main questions:  

(1) how do the 4 consecutive phase transitions affect the thermal conductivity of 

Ag8GeTe6?  

(2) how does anharmonicity impact the thermal conductivity?  

(3) how much and in what way does the ionic conductivity and premelting of the 

Ag sublattice contribute to the heat conduction?  

 

 

 122 



6.2 Basics of Thermal Conduction in Solids 
 

Thermal conductivity is the product of how much heat is stored in a material (i.e., 

specific heat) and how easily it moves under a temperature gradient (i.e., phonon 

mobility). Using simple kinetic theory the lattice thermal conductivity of solid materials 

can be well described by the equation  

   (5.3) 

where Cv is the specific heat at constant volume, v is the velocity of sound in the material, 

and l is the phonon mean free path.92 Unlike the specific heat and the mean free path the 

velocity of sound is a material dependent parameter that varies very little with changes in 

temperature, morphology, or doping. Hence the behavior of the lattice thermal 

conductivity largely reflects the variations of specific heat and phonon mean free path. As 

described in the previous chapter the specific heat (Cv) of a solid material can be well 

described using the Debye model, varying as T3 at low temperatures before saturating at 

the Dulong-Petit limit of 3R/M, where R is the gas constant (taken to be 8.314 (J/mol*K)) 

and M is the molar mass. It should also be noted that in this case Cv is used rather than 

Cp. In most cases Cv and Cp are used interchangeably, which can be justified by the fact 

that in many materials the difference between Cp and Cv is at most a few percent. In this 

case physically the distinction between Cp and Cv is important. Because Cv is a measure 

of the heat stored by the lattice at constant volume it contains only contributions from 

excitations in the lattice, generally in the form of phonons, Cp on the other hand includes 

contributions not only from the excitations but also a contribution from thermal 
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expansion. Importantly energy input in the lattice that goes into thermal expansion will 

not contribute to the thermal conductivity, therefore Cv is more relevant, as compared to 

Cp, when considering thermal conductivity. The phonon mean free path of a solid 

material is strongly dependent on the detailed scattering mechanism. The scattering 

mechanism of phonons should be described by an equation similar to Matthiessen's rule 

for electrons  where τC is the total phonon scattering relaxation time. 

In a purely harmonic lattice phonons cannot interact, however in 1929, Peierls 

demonstrated that elastic waves can be scattered by each other, as a result of 

anharmonicity of the interatomic potential.93 This can be understood in the quantum 

picture where scattering processes can be described through the destruction and creation 

of some quanta of elastic energy. Though certainly not the only quantum scattering 

process the most likely phonon scattering process is three-quantum scattering in which 

two quanta “scatter” and are destroyed while a third is created or vice versa. In his 

description of the problem Peierls showed that two conservation laws had to be obeyed:  

   (5.4) 

and 

   (5.5) 

where w is the (angular) frequency of the quanta and  is Planck's constant 

divided by 2p, ki = 2π / λi is the wavevector, G is the reciprocal lattice vector, and j can 

be either 0 or ± 1. The first equation expresses the conservation of energy, while the 

second equation is analogous to the conservation of momentum for the process. At this 
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point it is informative to break these scattering processes into two groups: a first group 

where j=0 is called Normal processes (n-process). In an n-process k3 is less than 2p/a and 

therefore remains inside the first Brullion zone. In this way the momenta of the initial 

waves simply add to form a new wavevector traveling in the same direction and the total 

wavevector will be conserved. For this reason there will be no influence on the flow of 

energy and therefore no thermal resistance associated with this type of process. Though 

n-processes do not directly contribute to thermal resistance their effect on thermal 

conductivity is not negligible as will be discussed in Section 2.2. The second group of 

scattering processes, where j=±1, are called UmKlapp Processes (U-Process). A simple 

diagram of the initial and final wavevectors in reciprocal space illustrates the difference 

between n and U processes and can be seen in Figure 6.1. In a U-process k3 is larger than 

2p/a and is therefore ends up outside the first Brillouin zone. This however, isn’t physical 

as it corresponds to a wave with wavelength shorter than 2a, or twice the lattice spacing. 

Nevertheless the situation can, be described in the context of a wave traveling in the 

opposite direction whose wave vector can be described be the equation: *
3 3= −k k G .  

Because this type of process involves phonons moving against the initial phonons it 

involves a thermal resistance.94 

For highly crystalline materials at low temperatures the phonon mean free path is 

on the order of the sample dimension therefore the thermal conductivity varies as T3. At 

higher temperatures, however, the specific heat saturates and the onset of phonon-phonon 

scattering (UmKlapp scattering) causes the thermal conductivity to vary as 1/T. This is 

due to the fact phonon mean free path follows a temperature dependence of 1/T when 
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UmKlapp scattering dominates and at temperatures comparable to the θD and above both 

Cv and the vs are weakly temperature dependent, as discussed in the previous chapter. 

This behavior leads to the so-called crystalline peak in thermal conductivity (at ~ 1/10-

1/20 θD) shown in Figure 6.2.95 Indeed one of the most intriguing aspects of the thermal 

conductivity of Ag8GeTe6 is the deviation from this temperature dependence typical of a 

crystalline material, which will be discussed later in the chapter. 

Furthermore when considering the lattice thermal conductivity of a crystalline 

material it is informative to consider the phonon dispersion relation, which describes the 

connection between frequency and momentum for the allowed phonon modes in the 

material. In a monatomic material there are only three phonon modes (two transverse 

modes and one longitudinal mode) which (in the long wavelength limit) correspond to 

atoms in the unit cell moving in phase with each other. The phonon dispersion relations 

of materials with more than one atom per unit cell are more complex. In that case there 

are still three acoustic modes, but in addition the acoustic modes there are also 3n-3 

optical modes, where n is the number of atoms per unit cell. Unlike acoustic modes in the 

long wavelength limit optical modes correspond to the movement of atoms in the unit cell 

out of phase with each other. In general optical phonon modes carry less heat than 

acoustic modes because their group velocity, given by dw/dq, is small. For this reason 

optical phonon modes can store heat in a material, but do not carry much heat, though 

they can still have an effect on heat conduction by interacting with (scattering) heat 

carrying acoustic modes. Hence when we use question (1) to estimate the phonon mean 
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free path, the value is more likely the lower limit of the phonon mean free path rather 

than the actual mean free path. 

 

6.2.1 Phonons in Amorphous Materials 

Though we know from our x-ray studies (Chapter 3) that our Ag8GeTe6 samples 

are crystalline many of the their properties appear to mimic an amorphous material. For 

this reason it is important to consider the difference between phonons in crystalline 

materials, where a periodic lattice I well defined and hence k is a good quantum number, 

and amorphous materials where the atomic periodicity is not as well defined. A very 

good review paper [96] was published by S. Hunklinger in 1982 discussing the difference 

between crystalline and amorphous materials where in his words “the enormous 

simplification engendered by the periodicity of the crystalline structure is lacking”. For 

this reason the normal modes of the material are no longer plane waves which leads to 

damping of the phonons as in anharmonic crystals. These effects are particularly 

important in the short wavelength limit because the average atomic distribution 

normalizes as the length scale increases. Like crystalline materials in the limit of long 

wavelength amorphous materials behave as elastic continua. In the context of a phonon 

dispersion relation an amorphous material should look identical to its crystalline 

counterpart near the zonecenter, however, with increasing wavevector the dispersion will 

be more and more smeared out until it reaches the boundary of the first Bruillion where it 

is no longer distinguishable, due to the lack of short range atomic order. In this sense in 

the long wavelength limit the phonons in amorphous materials are indistinguishable from 
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their crystalline counterparts, but as the wavelength decreases the classical definition of 

phonons begins to breakdown. 

 

6.2.2 Thermal Relaxation Approximation and the Callaway model 

As mentioned above the thermal conductivity of a solid material is strongly 

dependent on the dominant scattering mechanism. In this way the thermal conductivity of 

a solid material in the momentum relaxation regime can be well understood in the context 

of the relaxation time approximation and, going a step further, the Callaway model. The 

total relaxation time of a material at a given temperature should follow the equation: 

   (5.6) 

Assuming that the distribution of phonons is restored to equilibrium at a rate proportional 

to its departure we end up with the Relaxation Time Approximation. Furthermore by 

assuming a linear dispersion relation the thermal conductivity can be expressed as: 
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In this model only scattering that directly leads to thermal resistance is included in the 

thermal conductivity. Hence normal processes are ignored, though assumption may be 

too simplistic.97 

In 1958 Callaway presented a model to describe the low temperature thermal 

conductivity of crystalline solids that included a contribution to the thermal conductivity 

due to normal processes. Specifically Callaway considered the possibility that normal 

processes redistribute the momentum and energy of phonons to states that are less likely 
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to experience resistive scattering processes. Hence the thermal conductivity can be 

broken into two parts: a normal part and a resistive part. 

 As in the thermal relaxation model Callaway assumed that phonon scattering 

processes can be represented by their frequency dependent relaxation times (τ), and that 

the vibrational spectrum of the material is dispersion-less. Additionally Callaway 

assumed that the material of interest is elastically isotropic. 98 From here Callaway 

assumed that the phonon scattering in a given material can be completely described using 

four terms: (1) Boundary scattering, which has a constant relaxation time, (2) Normal 

three phonon processes, whose relaxation time should follow (ω2T3)-1, (3) Impurity 

scattering which has a constant relaxation time in temperature but should be proportional 

to ω-4, and (4) Umklapp process whose relaxation time should be proportional to (e-

θ/aTω2T3)-1 where θ is the Debye temperature and a is a  constant which depends on the 

vibrational spectrum of the material. At this point is possible to calculate two relaxation 

times for the material using the equations: 

   (5.8) 

And 

   (5.9) 

where B1 describes the contribution of Umklapp processes and is equal to e-θ/aT and B2 is 

a constant which describes the contribution of normal processes thus τR can be considered 

the total resistive process relaxation time and τn is the relaxation time for normal 

processes. From the lattice thermal conductivity can be estimated by the equation: 
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Where the first term κ1 is identical to the Thermal Relaxation Approximation and the 

second term κ2 describes the added contribution due to the consideration of normal 

processes.  

 

6.2.3 Cahill Model 

Clearly the conduction of heat in amorphous solids must follow different rules 

than crystalline materials due to the lack of long-range periodicity. In fact even before 

1950, Kittel described the conduction of heat in amorphous materials as fundamentally 

different than their crystalline counterparts.99  Whereas the thermal conductivity of 

crystalline materials is dominated by waves, long wavelength acoustic phonons to be 

exact, in amorphous materials this is not possible. Due to the large number of scattering 

centers the mean free path of phonons in an amorphous solid is on the order of the 

interatomic spacing. In many ways the thermal conductivity of amorphous materials 

cannot be considered in the context of bands at all. This can be considered to be 

somewhat analogous to the difference between band conduction and hopping conduction 

by electrons or holes (Chapter 3), though hopping conduction (electrons) and diffusive 

conduction (phonons) are fundamentally different.   
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In 1989 Cahill and Pohl proposed a model as an extension of the Debye model of 

specific heat that describes “a random walk of energy between localized oscillators of 

varying sizes and frequencies.”100  The Cahill model can be described by the equation  

   (5.11) 

where the sum is taken over the three sound modes (one longitudinal vl and two 

transverse vt) and qi is the cutoff frequency of the different modes. qi is given by the 

equation  

   (5.12) 
From a glance it is clear that this cutoff is similar to the Debye temperature. Indeed qi  is 

analogous to the Debye temperature of a material, however each qi corresponds to a 

specific direction while the Debye temperature of a material  is a bulk property . Though 

initially developed to describe amorphous materials the Cahill model has more recently 

been used to describe the minimum lattice thermal conductivity of crystalline materials. 

The idea being that as the phonon mean free path of a crystalline material decreases it 

becomes more and more amorphous until the phonon mean free path is on the order of 

the interatomic spacing in which case the thermal conductivity of the “crystalline” 

material should be equal to its amorphous counterpart. This value has become 

particularly useful for thermoelectricians because it offers a simple way (the only 

parameter you need is the Debye temperature) to estimate the ideal thermal properties of 

a new thermoelectric material.  
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6.2.4 Anharmonicity 

The above models are based on momentum relaxation processes, so any variation 

in thermal conductivity is governed by the phonon mean free path in the spatial domain. 

In this regard, anharmonicity is concerned with the phonon life time in the temporal 

domain. Generally speaking, anharmonicity limits the maximum thermal conductivity, 

but to beat the minimum thermal conductivity, according to the Cahill model, solely by 

anharmonicity, the phonon life time must be shorted beyond the minimum phonon mean 

free path divided by the velocity of sound.  

 The effects of anharmonicity on the thermal conductivity of solid materials are 

not well understood. On the one had the complete absence of anharmonicity, i.e. a 

perfectly harmonic lattice, would lead to the complete absence of phonon-phonon 

interactions which dominate the behavior of the thermal properties of most materials at 

high temperatures. Indeed without phonon-phonon interactions an infinite periodic lattice 

would display and infinite thermal conductivity.  In the other extreme in the presence of 

strong anharmonicity the effects on thermal conductivity are much harder to quantify. 

Experimental observations have led people to believe that strong anharmonicity leads to 

low thermal conductivity. As early as the 1970s Slack suggested that thermal 

conductivity is lowered by anharmonic crystal interactions, and offered the following 

equation to quantify its effects101,102 

   (5.13) 
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 where M  is the average atomic mass in the crystal, A is a collection of physical 

constants, θa is the Debye temperature of the acoustic modes of the crystal, d is the 

volume per atom n is the number of atoms in the primitive cell γ is the Gruneissen 

parameter, and T is the absolute temperature. As discussed in the previous chapter the 

Gruneissen parameter is a rough gauge of the anharmonicity of a material therefore one 

can expect the thermal conductivity to vary as the square of the inverse of the strength of 

the anharmonicity. Though this equation has been used many times over the years its 

understanding is still phenomenological in nature and a complete understanding of how 

anharmonicity effects thermal conductivity is lacking.  

 Perhaps the best example of anharmonicity induced amorphous-like thermal is the 

I-II-IV2 class of semiconductors. Recent work has shown that though they crystallize in 

the high-symmetry rocksalt structure I-II-IV2 semiconductors display unusually low 

thermal conductivity near the amorphous limit. Furthermore this low thermal 

conductivity is very reproducible in both experimental and theoretical studies, which 

suggests that it is not the result of defect structures or a similar phenomenon, but rather 

due to an intrinsic and inherently reproducible process.103,104,105 In this case the low 

thermal conductivity has been attributed to lone pair induced anharmonicity in the lattice. 

Figure 6.3 taken from [104] shows the effects of lone pair electrons in reducing the 

thermal conductivity of Cu-Sb-Se ternary compounds. The Cu-Sb-Se system offers a 

perfect platform to study the effect of LEPs on thermal conductivity in that there are three 

compounds (Cu3SbSe4, CuSbSe2, and Cu3SbSe3) made of similar atoms, which 

crystallize in the same structure (orthorhombic, Pmna), and therefore would be expected 
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to display similar values of thermal conductivity. Importantly the main difference 

between the compounds studied is the local environment of the Sb atoms. The difference 

in the thermal conductivity of Cu3SbSe4, CuSbSe2, and Cu3SbSe3 can be well understood 

in the context of valence shell electron repulsion (VSEPR) theory. In the case of 

Cu3SbSe4 the Sb atoms in the middle of the tetrahedral are completely bonded and 

therefore display ideal tetrahedral bonds of 109.5° and a “harmonic” potential 

environment. In the case of CuSbSe2 and Cu3SbSe3 however some of the 5s electrons of 

the Sb atom remain localized around the nucleus and therefore repel the Se atoms 

according to VSEPR theory and distort the Se-Sb bond angles. For these materials the 

difference in the Se-Sb-Se bond angle can be attributed to differences in the effective 

valence state of Sb, and can be calculated using the equation  

   (5.14) 

where ( )α  is the Se-Sb-Se bond angle.106 Using Equation xx and the effective Sb 

valance states of 3.2 in CuSbSe2 and 3.36 in Cu3SbSe3 it is possible to directly calculate 

the bond angles to obtain 95.25° and 99.42° respectively. At first glance this would 

suggest that CuSbSe2 will display stronger anharmonicity and thus a lower thermal 

conductivity than Cu3SbSe3. However the bonding in CuSbSe2 is nearing the ideal Se-Sb-

Se bond angle of 90° in the case of Sb3+ ions. This suggests that of the three compounds 

Cu3SbSe3 should display the strongest anharmonicity and thus lowest thermal 

conductivity followed by CuSbSe2 and finally Cu3SbSe4, which is confirmed by the 

measured thermal conductivity data shown in Figure 6.3a. A further crosscheck of the 

strength of the anharmonicity in the Cu-Sb-Se series of compounds is their Gruneissen 
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parameter. In a more recent paper Zhang et al. calculated the Gruneissen parameter of 

Cu3SbSe3 and Cu3SbSe4 and found that the average square value is significantly larger in 

Cu3SbSe3 than Cu3SbSe4 suggesting that it has a stronger lattice anharmonicity. They 

again attribute this difference to repulsion between lone s2 pair electrons and the 

surrounding lattice.  An important observation noted in [105] is the connection between 

marginally stable compounds, like Ag8GeTe6, and highly anharmonic acoustic phonons.  

 

6.3 Measurements 

 

6.3.1 Steady State Measurement 

The low temperature thermal conductivity of Ag8GeTe6 was measured with an in-

house custom designed system between 20K and 300K using a steady-state technique.107 

The measurement system was designed by Dr. Amy Pope as part of her Ph.D. thesis, and 

is built around an Advanced Research Systems (ARS) closed cycle He cryostat. As with 

any steady state measurement precise temperature control is critical. Therefore coupled to 

the cryostat is a Lake Shore model 340 temperature controller, which allows the system 

temperature to be maintained within 0.025K during the measurement. The sample is 

mounted on a modified Quantum Design PPMS puck. A diagram of the mount is shown 

in Figure 6.4. As can be seen in the picture there is a 220Ω strain gauge mounted on top 

of the sample, which acts as a heater. Additionally a 0.001”Cn–chromel differential 

thermocouple is soldered to two #34 copper wires, which have been attached to the 

 135 



surface of the sample using Stycast®. These copper wires ensure that the thermocouple is 

both well thermally sunk and mounted on an equi-temperature plane across the sample. 

The first step in taking a measurement is to stabilize the system temperature (base 

temperature) within 0.025K for three minutes. Then a current is passed through the heater 

on top of the sample, and the temperature gradient monitored using the thermocouple. 

Once the temperature gradient is stable within 0.025K the current (heater power) and ΔT 

are recorded. The heater power is then increased and another data point taken. This 

process is repeated at least five times. At this point the thermal conductance is calculated 

as the slope of the power versus ΔT plot, and finally thermal conductivity is calculated by 

scaling the thermal conductance by the sample dimensions.  

 

6.3.2  Laser Flash  

 To obtain the thermal conductivity above room temperature the thermal 

diffusivity was measured using a Netzsch 457 Microflash Laser Flash Apparatus (LFA). 

In the most general sense the thermal diffusivity of a material is a measure of its ability to 

transport heat relative to its ability to store heat. In order to perform a LFA measurement 

a quanta of heat in the form of a laser pulse (≤1 msec) is imparted on one side of the 

sample, at the same time the temperature of the other side of the sample is continuously 

monitored using a Liquid Nitrogen cooled IR detector. From here is possible to calculate 

the thermal diffusivity using a predetermined model. The simplest model for laser flash 

analysis was developed by Parker et al. in 1961108 allows the diffusivity to be calculated 

using the equation  
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where d is the thickness of the sample and t1/2 is the time it takes the signal to reach half 

of its maximum value. In this model it is assumed that both the material and the energy 

input are homogeneous, the laser pulse is infinitely short (a Dirac-delta function), the 

system is adiabatic (there are no heat losses), and the faces of the sample are both 

perfectly flat and parallel. In 1963 Cowan presented a more sophisticated model that 

allows for energy losses at the surface of the sample in the form of both convection and 

radiation.109 These corrections are particularly important in two cases: first for 

measurements at high temperatures and second for samples with low diffusivity values 

which allow the sample to reach near equilibrium conditions during the measurement. As 

expected Cowan’s model generalizes to the Parker model when surface losses become 

negligible.  Due to its low thermal conductivity and hence diffusivity Ag8GeTe6 fits the 

second class described above therefore the Cowan model was used for all analysis of 

LFA data.   

During the initial diffusivity measurements it became apparent that Ag8GeTe6 is 

at least partially transparent to IR radiation. To correct for this gold was sputtered on both 

surfaces of the sample before coating graphite to keep the laser from passing through. 

Once suitable diffusivity data had been obtained the thermal conductivity was calculated 

using the equation: 

   (5.16) 
where d is the density and Cv is the specific heat.  
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6.3.3 Measurement Considerations 

It should be noted that due to its unusually small magnitude, ~0.3 W/m*K at room 

temperature, the thermal conductivity of Ag8GeTe6 is near the detection limit of both the 

steady state and laser flash systems which makes it very difficult to resolve and obtain 

accurate values. As can be seen in Figure 6.5 there is an upturn in the thermal 

conductivity versus temperature plot, which can be at least partially attributed to the 

onset of a radiation contribution to the measured thermal conductivity. 

The nature of this contribution is clearly evident if we consider the way thermal 

conductivity is calculated in a steady state measurement. In a steady state thermal 

conductivity measurement a thermal flux is driven through the sample using a heater at a 

set power, which can be calculated as I2R, next the temperature gradient across the 

sample is monitored. Once a stable temperature gradient has been achieved the thermal 

conductance can be calculated as the input power divided by the induced temperature 

gradient, and thermal conductivity obtained by scaling by the samples dimensions. As 

seen in Equation 1.2 however this method breaks down when all of the heat does not 

flow directly through the sample, with any heat losses leading to measured thermal 

conductivity that is higher than the true value.  

 total lossP PP L L
T A T A

κ −
= =

∆ ∆
  (5.17) 

As is evident from equation the lower the thermal conductivity of the sample the more 

important it is to try to minimize heat losses when performing a steady state thermal 

conductivity measurement. For this reason care has been taken while designing the 
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apparatus to try and minimize any conductive heat losses leaving radiative losses as the 

main source of error in the thermal conductivity measurements.  

6.3.4 Heat Losses 

Central to any steady state thermal conductivity measurement is the ability to 

minimize heat losses. Indeed care was taken during the design of the system to minimize 

these losses. These measures included: 1) the use of multiple radiation shields to 

minimize radiative losses, 2) the use of a turbo molecular vacuum pump to achieve high 

vacuum (10-8 Torr) to minimize convective heat losses, and 3) the use of small diameter 

thermocouples and phospor bronze heater leads to minimize conductive heat losses. 

Indeed for most semiconducting samples these measures are enough to yield accurate 

data. For samples with low thermal conductivity, however, they are not enough, and 

losses become important to the measurement. Generally these losses can be attributed to 

radiation, and make up less than 30% of the entire signal. In the usual case the radiative 

losses appear as an upturn in the thermal conductivity versus temperature plot above 

about 150 K. In that case it is safe to subtract the radiation term using the following 

procedure: First the electronic contribution to the thermal conductivity is subtracted using 

the Wiedemann–Franz relation, discussed above, and then the remaining thermal 

conductivity is fit using the equation:  

 31
l T

T
κ α β= +   (5.18) 

where the first term α(1/T) corresponds to the intrinsic thermal conductivity dominated 

by U-processes and the second term βT3 corresponds to the radiation contribution. The 

formula for radiative heat loss is given by the equation: 
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   (5.19) 

 where ε is the emissivity of the sample, σSB is the Stephan-Boltzmann constant (5.7*10-8 

W/m2*K4), and A is the surface area of the sample. The T3 dependence of the radiation 

term is evident after a Taylor expansion of the term in which the lead 

term has a T3 temperature dependence. Once the data has been fit the radiation 

contribution can be subtracted to obtain the intrinsic value of the thermal conductivity. 

While this type of correction is valid for many materials it is difficult to defend for 

Ag8GeTe6 for two reasons: first fitting the intrinsic thermal conductivity of Ag8GeTe6 to 

1/T is problematic because unlike most crystalline materials U-processes are not 

necessarily the dominate type of phonon scattering, and second the radiation contribution 

in Ag8GeTe6 is very large ~50% of the magnitude of the signal.  

In order to obtain a proper radiation correction for Ag8GeTe6 we tried several 

different methods. First we measured the thermal conductivity of a sample with well-

known dimensions then cut the sample so that its new length was 30-50% of the original 

length and measured it again. In this sense the radiation contribution should have been 

decreased as the surface area decreased according to Equation 6.2. Two samples were 

measured this way, and as expected the magnitude of the measured thermal conductivity 

decreased after they were shortened, however, due to brittle nature of the samples parts of 

them crumbled between the measurements making impossible to maintain their cross 

section. This meant that though the existence of a radiative contribution to the measured 

thermal conductivity was confirmed it was impossible to accurately subtract it. For our 

second attempt to correct for radiative losses we measured the thermal conductivity of a 
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sample, then coated the surface of the sample with graphite, and finally re-measured the 

thermal conductivity of the sample. In this way we hoped to change the emissivity (ε) of 

the sample and hence the radiation contribution to the signal according to Equation 6.19. 

Figure 6.6 shows the thermal conductivity of the sample with and without the graphite 

coating. From the figure it is clear that the graphite coating did little to alter the 

emissivity of the sample, which could be verified by simply looking at the surface of the 

sample. Pristine Ag8GeTe6 has a diffuse dark grey color on its own so the addition of the 

graphite coating did very little to alter the surface of the sample. The final way we tried to 

correct for radiation was to measure the thermal conductivity of Ag8GeTe6 at room 

temperature using a laser flash technique; because the laser flash is a transient type 

measurement there should be no heat loss due to radiation. Once the thermal conductivity 

was measured using the laser flash it was compared to the room temperature values 

obtained using the steady state technique. To perform the correction we assumed that the 

entire difference between the room temperature values of thermal conductivity measured 

by the steady state technique and by the laser flash was due to radiation. Furthermore we 

assumed that this radiative contribution followed a T3 temperature dependence as is 

normally the case. In this way we fit the measured thermal conductivity to the equation: 

   (5.20) 
At this point it was possible to calculate the intrinsic thermal conductivity by 

subtracting the radiative contribution from the measured thermal conductivity. The 

results of this correction are shown in Figure 6.7. At this point the validity of this 

correction must be considered. Indeed a quick look at Figure 6.7 suggests that the room 

 141 



temperature value of the thermal conductivity is “over constrained”, however with no 

clear justification for altering the room temperature thermal conductivity values for 

different runs any further modification of the data would be on poorly justified.  

 
6.4 Phase transitions 
 

 

Perhaps the most surprising property of Ag8GeTe6 is the large number phase 

transitions occurring in such a narrow temperature range (Discussed in Chapter 5). 

Indeed there are barely discernible features in the thermal conductivity curve 

corresponding to at least two of the low temperature phase transitions.  

It is possible that these signatures are the result of actual changes in the thermal 

conductivity of Ag8GeTe6 as it goes through the transitions, however, it is also possible 

that they are an artifact of the measurement. As discussed in section 3.1 when a steady 

state thermal conductivity measurement is made the first step is to establish a stable base 

temperature followed by the establishment of a stable ∆T. It is possible that if the base 

temperature is near a phase transition it will be impossible for the system to stabilize 

because small fluctuations in the temperature have drastic effects on the specific heat of 

the material, and therefore cause huge swings in the amount of heat needed to obtain a 

stable base temperature. If the system is unable to obtain a stable base temperature it is 

programmed to “skip” that temperature and move on to a higher temperature creating a 

gap in the data. In our case however, we don’t see this gap suggesting that the changes in 

thermal conductivity are intrinsic.  
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Furthermore we should also note that we have purposefully avoided the discussion of 

the effect of the phase transitions above room temperature because the measurement 

breaks down in the region phase transitions due to inaccuracies in Equation 6.16. This is 

because in the region of a phase transition the definition of specific is subtly different.   

 

6.5 Data Analysis  
 

 As confirmed by x-ray diffraction (see Chapter 3) Ag8GeTe6 is clearly a 

crystalline material. Its thermal conductivity, however, more closely resembles an 

amorphous material. Indeed x-ray diffraction measurements have verified that our 

samples are indeed crystalline and crystallize in cubic space group (F-43m) with a very 

large unit cell (a=11.56Å and containing 60 atoms). At first glance one may (naively) 

guess that the thermal conductivity of Ag8GeTe6 is quite large due to its similarities, high 

density and cubic crystal structure, to materials like iron. Further investigation however, 

reveals several factors that suggest the thermal conductivity of Ag8GeTe6 will in fact be 

low.  First due to the low electrical conductivity the electronic contribution to the thermal 

conductivity can be considered negligible. Also due to its large unit cell Ag8GeTe6 has a 

very small Brillouin zone and therefore a high probability for U-processes. Furthermore 

the large number of atoms per unit cell leads to a large number of optical phonon modes 

(as mentioned above there should be 3N-3 optical modes where N is the number of atoms 

in the unit cell). This huge number of optical modes suggests that some of them may be 

“low lying” modes and likely increases the possibility of band hybridization, which will 
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further suppress (disrupt) the heat conduction of heat by acoustic bands. Finally strong 

anharmonicity as evidenced by the large Gruneissen parameter and thermal expansion 

coefficient offers another route to strong phonon scattering.  

 

6.5.1 Phonon mean free path  

In the preceding sections we have argued that though the thermal conductivity of 

Ag8GeTe6 appears to be amorphous like though the material is in fact crystalline. To 

further understand the microscopic nature of the thermal conductivity we have calculated 

the phonon mean free path (lph).  Using the simple kinetic equation for thermal 

conductivity discussed in Section 2 (  ) along with our measured values 

for specific heat (Chapter 5) and the velocity of sound measured in [19] it is possible to 

estimate lph. We have also assumed that the velocity of sound is constant with 

temperature, which should be valid due to the fact that the Debye temperature is nearly 

temperature independent as discussed in Chp 5. Figure 6.8 shows the estimated phonon 

mean free path for Ag8GeTe6. At least up to the range of the phase transitions lph follows 

an approximate 1/T temperature dependence, as expected for a crystalline material.  In 

the range of the phase transitions the assumptions of the estimation clearly break down as 

the kinetic equation for thermal conductivity can no longer be used. In the simplest sense 

this can be explained by the fact that during the phase transition heat input into the 

system goes into changing the lattice (or possibly other degrees of freedom) rather than 

being “stored” in the lattice in the form of phonons.    
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Furthermore if one of the Ag sites in the Ag8GeTe6 lattice behaves like an 

Einstein oscillator, as discussed in Chapter 5, one would expect the phonon mean free 

path lph to be similar in magnitude to the spacing between Einstein oscillators. This can 

be attributed to the fact that, as mentioned above, Einstein oscillators are inherently 

strong scatterers of phonons. The estimated phonon mean free path of ~3 Å at room 

temperature is slightly smaller than the Ag2-Ag2 spacing of 4Å, but is reasonable when 

you consider that all phonon modes contribute to specific heat but only certain modes 

contribute to κ. One step further the average interatomic spacing in the crystal structure 

can be calculated by calculating the volume of the unit cell then dividing by the number 

of atoms per unit cell and finally taking a cube root to convert from volume to length. 

This gives an average interatomic spacing of ~3 Å exactly the same value as the mean 

free path, suggesting that the thermal conductivity of Ag8GeTe6 is at the amorphous limit 

at room temperature.  

 

 

6.5.2 Minimum Thermal Conductivity  

 As discussed in Section 2.3 it is possible to calculate the so-called amorphous 

limit of the thermal conductivity of a solid material as described by Cahill et al.100 

According to Equation 6.11 it is possible to calculate the “minimum thermal 

conductivity” of a material using only the number density of atoms in the material (nA) 

and the Debye Temperature (θD). Figure 6.9 shows the calculated minimum thermal 

conductivity of Ag8GeTe6 as well as the measured thermal conductivity as a function of 
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temperature. It is clear that the thermal conductivity of Ag8GeTe6 is significantly lower 

than the minimum value according to the Cahill limit. This is particularly evident when 

the difference between the measured thermal conductivity and the calculated minimum is 

plotted as a function of temperature as shown in Fig 6.10. Indeed the shape of this plot is 

somewhat surprising and reminiscent of phonon resonant scattering though the presence 

of resonant scattering in Ag8GeTe6 is not well supported. 

It is plausible that the Einstein modes observed in the low temperature specific 

heat could lead to a phonon resonance; however a simple estimation of the maximum 

energy of the acoustic phonon modes in the material suggests that they will be completely 

populated before the observed resonant type behavior. In order to estimate the upper limit 

of the maximum energy of acoustic modes in the system we assume that slope of the 

acoustic modes in the phonon dispersion relation is not only constant until the 1st 

Brillouin zone boundary but also equal to its value at low k. Clearly this is an 

overestimate because at mid or short wavelengths the slope levels off in most cases. Next 

we must remember that the velocity of sound is determined by the slope of phonon 

dispersion relation for acoustic phonons at long wavelength limit, i.e. small k. Therefore 

we can estimate the maximum frequency of acoustic phonons using the equation  

   (5.21) 

where  and a is the lattice constant. In this case we use a the size of 

the unit cell rather than the interatomic spacing because acoustic phonons correspond to 

motion of the entire unit cell. Substituting the measured velocity of sound of ~1700 m/sec 

(it should be noted that this is more of a semi-quantitative estimate, but should good 
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enough for our estimate) and the lattice constant a of 11.56 Å into equation 6.21 gives a 

maximum phonon frequency of 1.4x1012 Hz which corresponds to an energy of ~3.1 

meV. This means that at 36 K, the acoustic modes should be thermally populated. In 

other words, above 36 K most of the thermal energy added to the system goes into 

populating optical modes. At least, we can safely assume so above 100 K and in the 

temperature range where those phase transitions occur.  

Another method for estimating the maximum energy of the acoustic modes in a 

material was put forth by Anderson.110 In his paper Anderson offers the empirical 

relationship 

 
1

3
a nθ θ

−
=   (5.22) 

where θ is the “traditional” definition of the Debye temperature (θD) and n is the number 

of atoms per unit cell. The validity of this expression has been tested by comparing it to 

experimental data in several cases, and has proven to be a good estimation.102,111 

Substituting the appropriate values for Ag8GeTe6 (θD=176 K and n=60) into Equation 

6.22 give a value of 45K for θa. If we draw a parallel between θa and θD we can say that 

45K is roughly the temperature where all of the acoustic modes are populated.  

It is plausible to explain the resonant scattering regime by assuming that there are 

some dispersion-less optical branches in Ag8GeTe6, which can store but not carry heat. 

We can possibly even go a step further and assume that because of the strong 

anharmonicty, there may be coupling between the bands and thus avoided band crossing 

in this energy/temperature range. It should be noted that even if there is no avoided band 

crossing, the dispersion-less optical bands by themselves can explain the “resonance”.  In 
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this case there would have to be many levels in the given energy range as the resonance 

regime is fairly wide, between 50 K and 200 K. This scenario could be elucidated by 

inelastic neutron scattering measurements however our beam line proposal is declined. 

Furthermore the two or more Einstein modes as described in the chapter discussing 

specific heat (chapter 5) cannot explain the resonance as their characteristic 

temperatures, 15 K and 36 K, are too low to explain the “resonance”. 

Thermal conductivity values below the amorphous limit have been reported in 

materials at relatively high temperatures (~T >3 θD), and can normally be understood in 

the context of the onset of higher energy excitations which can further interact with heat 

carrying phonons. The observation of a thermal conductivity values below the amorphous 

limit in Ag8GeTe6 is unusual however due to its onset at low temperatures (T ~ θD/3). In 

this case one would generally assume that the temperature is too low to have a significant 

population of higher energy excitations as seen in other materials with such low thermal 

conductivity.  

Thermal conductivity lower than the amorphous limit near or below the Debye 

Temperature of certain materials has been observed in a few cases. Normally only in very 

anisotropic (usually layered) materials and has been attributed to phonon localization due 

to a combination of disorder and anisotropy.112 This scenario is unlikely in bulk 

Ag8GeTe6 because it has a cubic crystal structure and should therefore not be strongly 

anisotropic. 

 In order to explain the deviation of our measured thermal conductivity from the 

amorphous limit we must return to the basic assumptions of the Cahill model. Cahill’s 
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model is based on a harmonic periodic crystal in which k


 is a good quantum number. 

This leads to elastic thermal relaxations (momentum relaxation) hence the minimum 

phonon mean free life can be given by the inter atomic spacing divided by the velocity of 

sound, 
3

s
a

alifetime vn
 =  
 

. In the case of strongly anharmonic crystals similar to 

Ag8GeTe6 however k


is no longer a good quantum number due to the dynamic disorder 

introduced by the anharmonic potential at each lattice site. Clearly thermal vibrations will 

cause the atoms in a harmonic crystal at finite temperature to deviate from their 

equilibrium positions (lattice points), which has lead some people to loosely consider 

phonons as dynamic imperfections; however, in the case of harmonic potentials the 

atomic positions will be exactly their equilibrium values when averaged over time. In this 

sense it is difficult to justify the classification of harmonic phonons as dynamic 

imperfections. This is not the case if the potentials of each site are anharmonic. In this 

case when averaged over time the atomic positions of the atoms will not perfectly 

coincide with their lattice points. Therefore k is not a good quantum number. This fact 

that k is not a good quantum number is also present in amorphous materials, but for 

subtly different reasons. In an amorphous material the disorder that leads to the 

breakdown of the infinitely periodic lattice is static, but in the case of crystalline 

materials with strong anharmonicity this disorder is dynamic in nature, which invokes the 

time domain adding a degree of freedom to the system. This suggests that by introducing 

strong anharmonicity to a crystalline material it is possible to mimic the thermal 

properties of an amorphous material. Furthermore in the case of strong anharmonicity the 
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phonon relaxation must be considered in the context of energy, and in this way the 

phonon mean free lifetime can be shorter than the value assumed by the Cahill model.   

 Interestingly similar behavior has been observed in phase change materials with 

similar atomic compositions to Ag8GeTe6. A very informative study by Matsunaga et al. 

directly probes the differences in lattice dynamics between the crystalline and amorphous 

phases of GeSb2Te4 materials.113 This study is very usefully when considering the 

thermal properties of Ag8GeTe6 because it offers a direct comparison between amorphous 

and crystalline phases of the same material. Indeed Matsunaga et al. argue that the unlike 

the amorphous phase which shows harmonic atomic potentials the unusual vibrational 

and therefore thermal properties of the crystalline phase can be largely understood by 

strong anharmonicity.  

 

Figure 6.1: Diagram of the difference between a) normal processes and b) Umklapp 
processes in 2-d. 

 150 



 

 

Figure 6.2: Example of a thermal conductivity versus temperature for a typical crystaline 
material where different scattering mechanisms dominate in different temperature 
regions. Source Ref. [95] 
 
 
 
 
 
 

 
Figure 6.3: a) Lattice thermal conductivity of Cu3SbSe4, CuSbSe2, and Cu3SbSe3 as a 
function of temperature b) the differences in thermal conductivity have been attributed to 
lone pair induced anharmoniciy Source Ref. [104] 
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Figure 6.4: Diagram of the sample mount for thermal conductivity measurements.  
Source Ref. [107] 
 
 
 
 
 
 

 
Figure 6.5: Measured thermal conductivity of Ag8GeTe6. The upturn in the thermal 
conductivity versus temperature plot can be at least partially attributed to the onset of a 
radiation contribution.  
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Figure 6.6: Measured thermal conductivity of Ag8GeTe6 before and after the application 
of a graphite coating to the surface of the sample. 
 
 
 
 
 

 
Figure 6.7: Thermal conductivity of Ag8GeTe6 after the radiation correction. 
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Figure 6.8: Estimated phonon mean free path for Ag8GeTe6. as well as fit to a T-1 power 
law as expected for a crystalline material . 
 
 
 
 

 
Figure 6.9: The calculated minimum thermal conductivity of Ag8GeTe6 plotted along 
with the measured thermal conductivity as a function of temperature. 
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Figure 6.10: The measured thermal conductivity ofAg8GeTe6 subtracted from calculated 
minimum as a function of temperature. 
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CHAPTER SEVEN 
 

CONCLUSIONS AND FUTURE WORK 
 
 

 The initial goal of this project was to study the enhancement in the power factor 

in mixed conductor thermoelectric materials due to the increased entropy carried by 

mobile ions when compared to electrons or holes. In the case of Ag8GeTe6 we were not 

able to realize this goal, however, our studies suggested that mixed conductors may be 

promising candidates for thermoelectric applications due to their thermal properties.  

 In the case of Ag8GeTe6, we have attributed the unusually low thermal 

conductivity to two factors: 1) low lying optical or Einstein modes in the phonon 

dispersion and 2) strong anharmonicity. The presence of low lying optical modes is 

evidenced by the so called Boson peak in the low temperature specific heat, while the 

strong anharmonicity is evidenced by the deviation of the specific heat from the Dulong-

Petit limit as well as the inherently unstable nature of the crystal structure (the large 

number of phase transitions between 150 K and 250 K). 

Furthermore, the main observation of this thesis is the fact that anharmonicity 

plays a similar role in the time domain to amorphicity in the spatial domain. In this vein, 

we have shown that strong anharmonicity offers a route to achieving thermal conductivity 

values lower than the so-called amorphous limit, a feat that is usually considered 

impossible.  

Clearly the best evidence of this behavior would be in the form of the phonon 

density of states and dispersion of Ag8GeTe6, however, at this point that information is 

still lacking. In collaboration with Xing Gao we attempted to calculate the phonon 
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dispersion of Ag8GeTe6, but due to computing restraints were unsuccessful (the crystal 

structure of Ag8GeTe6 is so complicated that first principles calculations are incredibly 

time consuming). We were however successful in calculating the phonon dispersion and 

density of states of Ag12GeTe6, a theoretical compound with the same crystal structure as 

Ag8GeTe6 but with a higher silver occupancy, shown in Figure 7.1. The calculated 

spectrum shows three interesting features. First, the PDOS shows a low energy “hump” 

which likely corresponds to the “Boson peak” we observed in low temperature specific 

heat measurements. Second, the small "humps" at frequency=0, appear to be phonon 

"instabilities", which are usually a signature of "anharmonicity" though at this point it is 

difficult to say whether they are real or an artifact of the calculation. Finally, the large 

band gap from 210 cm-1 to 250cm-1 (~ 26 meV to 31 meV), and the “flat” bands near the 

gap suggests another factor that may contribute to the low thermal conductivity of 

Ag8GeTe6 especially in the region of the observed “plateau”. To confirm the accuracy of 

the calculated spectrum we have submitted a beamline proposal for inelastic neutron 

scattering, but at this point it has not been accepted.  

 

Figure 7.1: Phonon dispersion and Phonon Density of States (DOS) calculated using 
Quantum Espresso of Ag12GeTe6 a theoretical compound that is isostructural with 
Ag8GeTe6, but has a higher silver occupancy. 
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