The Effects of Physicochemical Properties of CeO2 Nanoparticles on Toxicity to Soil Denitrification Processes

Jessica Dahle
Clemson University, jdahle@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Biogeochemistry Commons

Recommended Citation
https://tigerprints.clemson.edu/all_theses/1579

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
THE EFFECTS OF PHYSICOCHEMICAL PROPERTIES OF CeO$_2$ NANOPARTICLES ON TOXICITY TO SOIL DENITRIFICATION PROCESSES

A Thesis
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
Environmental Toxicology

by
Jessica Teague Dahle
May 2013

Accepted by:
Dr. Yuji Arai, Committee Chair
Dr. Elizabeth Carraway
Dr. Lisa Bain
ABSTRACT

Due to the rise of nanotechnology in industry, the concentrations of engineered metal oxide nanoparticles being released to the environment are increasing daily. Cerium-based compounds such as nanoparticulate ceria (NP CeO$_2$) have received much attention in the last several years due to their popular applications (e.g., mischmetal, pharmaceuticals, nanotechnology) in industrial and commercial uses. Like many emerging pollutants, NP CeO$_2$ is often released to the environment, where its toxicological effects are not well known. Though several environmental exposure pathways have been identified for CeO$_2$ NPs, a major route of NP introduction to the environment is via biosolids application to agricultural lands. Thus, concerns about the release of NP CeO$_2$ and its impact on ecosystem health have stimulated many recent toxicological studies. Recent investigations have uncovered the effect of NP CeO$_2$ at cellular levels showing both protection of cells and severe cellular damage depending on pH, particle size, concentration, and aggregation state. Yet, the toxicological information of NP CeO$_2$ to aquatic and terrestrial biota remains largely unknown. The studies presented in this thesis identify the impact of NP CeO$_2$ on soil denitrifying microbial communities and reveal that physical and chemical characteristics including particle size, speciation, concentration, pH, and presence of ligands are key to predicting environmental fate and reactivity of NP CeO$_2$ in the soil.
A review of the literature in Chapter 1 revealed a widespread lack of toxicological information for soil exposures to NP CeO$_2$. Soil denitrifying bacteria are a keystone species because they serve an important role in the global nitrogen cycle controlling the atmospheric nitrogen input. Soil denitrifiers are important to this study because the reducing conditions during denitrification could induce phase transformation of Ce(IV) to Ce(III), potentially influencing the toxicity of Ce. Cerium is well known for being the only lanthanide that is thermodynamically stable in both the trivalent and tetravalent state in low temperature geochemical environments. Using well characterized NP Ce(IV)O$_2$ as well as bulk soluble Ce(III), batch denitrification experiments were conducted to evaluate the toxicity of Ce species to the denitrifying community in a Toccoa sandy loam soil. The statistical analysis on the antimicrobial effect on soil denitrifiers was conducted using both steady-state evaluation and zero-order kinetic models in order to compare the toxicity of the Ce(III) species to the NPs. These studies, presented in Chapter 3, show that soluble Ce(III) is far more toxic than Ce(IV)O$_2$ NPs when an equal total concentration of Ce is used, though both species exhibit toxicity to the denitrifiers via statistically significant inhibition of soil denitrification processes. Particle-size dependent toxicity, species-dependent toxicity, and concentration-dependent toxicity were all observed in this study for both the steady-state and the kinetic evaluations.

The possibility of toxicity enhancement and diminishment via dissolution and ligand complexation pathways was investigated thoroughly in Chapter 2. In addition to the
equilibrium and kinetic-based toxicological assessments presented in Chapter 1, dissolution and sorption experiments were performed to gain an overall understanding of Ce biogeochemistry in the terrestrial environment post-release and reveal possible geochemical controls on toxicity. It was shown that dissolution of bioavailable Ce is pH-dependent; dissolution is only detectable at acidic pH values (< pH 5) and increases with increasing acidity. Dissolution of Ce from NP CeO$_2$ was identified to be almost 100% Ce(III). It was also demonstrated that this dissolution is suppressed by the addition of phosphate ligand, which is largely bioavailable in soils, especially in agricultural lands. This suppression was explained by the strong sorption of phosphate ligand to NP CeO$_2$. The elimination of bioavailable Ce(III) release from NP CeO$_2$ by phosphate ligand is likely one of the most important controls on toxicity effects and should be a large consideration in determining the fate and transport of NP CeO$_2$ in the aquatic and terrestrial environment. It was also demonstrated that both Ce(III) and NP CeO$_2$ have extremely strong affinity for sorption to soil matter, which could serve as another controlling pathway. Experiments indicated that factors such as reductive transformation of NP CeO$_2$ in soils and exchangeable Ce(III) impurity in the NPs could contribute to controls on toxicity as well.

In conclusion, the studies presented in this thesis indicate that the toxicity effects of the studied Ce species to soil denitrifiers are strongly affected by physical and chemical characteristics such as speciation, pH, and bioavailable ligands. As the global market for
nanomaterials rapidly expands, so does the need of the scientific community for an understanding of how these influences in environmental fate and reactivity may be key in assessing toxicological risks associated with environmental exposures to NP CeO$_2$ as well as other engineered metal oxide nanoparticles.
DEDICATION

To my teacher James Alverson, who introduced me to chemistry and the physical sciences; and whose infectious passion for the subjects forever changed my life.
ACKNOWLEDGEMENTS

I would like to express my deep appreciation and gratitude to several people for the contributions and support given to me during my educational journey. First, I would like to thank my advisor, Dr. Yuji Arai, for his encouragement, guidance, and mentorship throughout my studies. His dedication to his students and most of all his patience has inspired and shaped my intellectual growth as a researcher. I also wish to thank my committee members, Dr. Elizabeth Carraway and Dr. Lisa Bain, for their guidance, suggestions, and support.

I would like to thank the people whose experimental assistance helped make my research possible; particularly Dr. Ryan Tappero of the National Synchrotron Light Source at Brookhaven National Laboratory and Dr. Brian Powell of the Rich Lab of Environmental Engineering and Earth Sciences at Clemson University. In addition, I would like to thank my lab mates for the impact their continual support and encouragement has made on me.

I wish to thank my family, most especially my parents Bobby and Gina Humphreys, for their unconditional love, support, and patience. I am deeply thankful to them for always pushing me to advance myself personally and academically.

Finally, I must thank my teacher, James Alverson, who is solely responsible for sparking the love of math and science that serves as my driving force. His encouragement and
influence has greatly shaped my life, and without it I would not be the person I am today. My gratitude to him for inspiring my passion for chemistry and deep curiosity about the universe is unending.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION AND LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction to Cerium</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Cerium Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Geochemical Occurrence</td>
<td>11</td>
</tr>
<tr>
<td>1.4 Historical and Current Uses</td>
<td>18</td>
</tr>
<tr>
<td>1.5 Toxicity of Cerium</td>
<td>25</td>
</tr>
<tr>
<td>1.6 Research Hypotheses</td>
<td>43</td>
</tr>
<tr>
<td>1.7 Research Objectives and Tasks</td>
<td>46</td>
</tr>
<tr>
<td>1.8 References</td>
<td>55</td>
</tr>
<tr>
<td>2. EFFECTS OF pH AND PHOSPHATE ON PHYSICOCHEMICAL PROPERTIES OF CeO₂</td>
<td></td>
</tr>
<tr>
<td>2.1 Abstract</td>
<td>63</td>
</tr>
<tr>
<td>2.2 Introduction</td>
<td>64</td>
</tr>
<tr>
<td>2.3 Materials</td>
<td>67</td>
</tr>
<tr>
<td>2.4 Methods</td>
<td>68</td>
</tr>
<tr>
<td>2.5 Results & Discussion</td>
<td>73</td>
</tr>
<tr>
<td>2.6 Summary</td>
<td>81</td>
</tr>
<tr>
<td>2.7 References</td>
<td>94</td>
</tr>
<tr>
<td>3. EFFECTS OF PHYSICOCHEMICAL PROPERTIES OF CeO₂</td>
<td></td>
</tr>
<tr>
<td>3.1 Abstract</td>
<td>97</td>
</tr>
<tr>
<td>3.2 Introduction</td>
<td>98</td>
</tr>
<tr>
<td>3.3 Materials</td>
<td>103</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>3.4 Methods</td>
<td>104</td>
</tr>
<tr>
<td>3.5 Results & Discussion</td>
<td>108</td>
</tr>
<tr>
<td>3.6 Summary</td>
<td>123</td>
</tr>
<tr>
<td>3.7 References</td>
<td>145</td>
</tr>
<tr>
<td>RESEARCH SUMMARY AND CONCLUSIONS</td>
<td>157</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Lanthanide reduction potentials</td>
<td>48</td>
</tr>
<tr>
<td>1.2</td>
<td>Solubility constants for selected Ce compounds</td>
<td>49</td>
</tr>
<tr>
<td>1.3</td>
<td>Electronegativity of cerium compared to other common species found in soils</td>
<td>50</td>
</tr>
<tr>
<td>1.4</td>
<td>Several members of the rare earth carbonates</td>
<td>51</td>
</tr>
<tr>
<td>1.5</td>
<td>Several members of the rare earth phosphates</td>
<td>52</td>
</tr>
<tr>
<td>1.6</td>
<td>Several members of the rare earth silicates</td>
<td>53</td>
</tr>
<tr>
<td>1.7</td>
<td>Several members of the rare earth oxides and hydroxides</td>
<td>54</td>
</tr>
<tr>
<td>2.1</td>
<td>Characterization of physicochemical properties of manufactured cerium oxide nanoparticles</td>
<td>90</td>
</tr>
<tr>
<td>2.2</td>
<td>Impurities of manufactured small (10-30 nm) cerium oxide nanoparticles</td>
<td>91</td>
</tr>
<tr>
<td>2.3</td>
<td>Impurities of manufactured large (50-105 nm) cerium oxide nanoparticles</td>
<td>92</td>
</tr>
<tr>
<td>2.4</td>
<td>Rates for dissolution of Ce species from CeO₂ particulate surface comparing size effect, pH effect, and ligand effect</td>
<td>93</td>
</tr>
<tr>
<td>3.1</td>
<td>Texture, physicochemical properties, organic matter, and clay mineralogy of Toccoa sandy loam surface soil</td>
<td>139</td>
</tr>
</tbody>
</table>
List of Tables (Continued)

3.2 Denitrification kinetic rates and 90% and 50% depletion times for denitrification batch reaction vessels ... 140
3.3 T-test results for 90% and 50% depletion times ... 141
3.4 T-test results for denitrification rates .. 142
3.5 Calculated lanthanide impurities in denitrification vessels with small NPs .. 143
3.6 Calculated lanthanide impurities in denitrification vessels with large NPs ... 144
LIST OF FIGURES

Figure	Page
1.1 Distribution of hardness and softness for potential donor atoms for ligands in the periodic table | 47
2.1 Phosphate sorption envelope onto both small and large CeO2 nanoparticle surfaces for two different concentrations of PO$_4^{3-}$ | 82
2.2 Phosphate sorption isotherm for small CeO2 NP at pH 4.5 and 7.5 | 83
2.3 Phosphate sorption isotherm for large CeO2 NP at pH 4.5 and 7.5 | 84
2.4 Desorption of phosphate from small and large CeO2 nanoparticle surfaces at pH 4.5 and 7.5 | 85
2.5 Dissolution of cerium from surface of small CeO2 NP over five days at two different pH values in the absence and presence of 100 µM PO$_4^{3-}$ | 86
2.6 Dissolution of cerium from surface of large CeO2 NP over five days at two different pH values in the absence and presence of 100 µM PO$_4^{3-}$ | 87
List of Figures (Continued)

2.7 Dissolved phosphorus concentration during small cerium oxide NP dissolution experiments at two different pH values over seven days...88

2.8 Dissolved phosphorus concentration during large cerium oxide NP dissolution experiments at two different pH values over seven days..89

3.1 Sorption data in Toccoa sandy loam for Ce(III) as

Ce(III)(NO$_3$)$_3$..126

3.2 Dissolved phosphate concentration during Ce(III) and CeO$_2$ NP sorption in Toccoa sandy loam ...127

3.3 Microfocused(µ)-XRF maps of Ce L_{β_1} fluorescence line in Toccoa entisol soil samples ...128

3.4 Normalized microfocused Ce L_3-edge XANES spectra of Ce reference compounds and selected spots from µ-XRF maps of Ce(III)-treated soils ...129

3.5 Normalized microfocused Ce L_3-edge XANES spectra of Ce reference compounds and selected spots from µ-XRF maps of NP-treated soils ...130

3.6 Histogram of denitrification activity in Toccoa sandy loam as indicated by 90% nitrate depletion time...131
List of Figures (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>Histogram of denitrification zero-order kinetic rates in Toccoa sandy loam</td>
<td>132</td>
</tr>
<tr>
<td>3.8</td>
<td>Denitrification kinetic data of native soil bacteria in a reducing environment treated with Ce(III)</td>
<td>133</td>
</tr>
<tr>
<td>3.9</td>
<td>Denitrification kinetic data of native soil bacteria in a reducing environment treated with small CeO₂ NPs</td>
<td>134</td>
</tr>
<tr>
<td>3.10</td>
<td>Denitrification kinetic data of native soil bacteria in a reducing environment treated with large CeO₂ NPs</td>
<td>135</td>
</tr>
<tr>
<td>3.11</td>
<td>Measurement of pH and Eh values during denitrification batch experiments with Ce(III)</td>
<td>136</td>
</tr>
<tr>
<td>3.12</td>
<td>Measurement of pH and Eh values during denitrification batch experiments with small CeO₂ NPs</td>
<td>137</td>
</tr>
<tr>
<td>3.13</td>
<td>Measurement of pH and Eh values during denitrification batch experiments with large CeO₂ NPs</td>
<td>138</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction to Cerium

The Discovery of Cerium

Cerium (Ce), a member of the lanthanide series of metals on the periodic table, is the most abundant of the rare-earth metals found in the earth’s crust (Hedrick, 2004).

Cerium comprises about 0.0046% of the earth’s crust by weight, occurring at average concentrations of around 50 mg kg\(^{-1}\). Cerium and other lanthanide metals naturally occur in an array of minerals in the environment including allanite ((Ca,Ce)(Al\(_2\)Fe\(^{2+}\))(Si\(_2\)O\(_7\))(SiO\(_4\))O(OH)), bastnäsite ((Ce,La)(CO\(_3\))F), cerite ((Ce,La,Nd,Th)(PO\(_4\))), monazite ((Ce,La, Nd,Th)(PO\(_4\))), and euxenite ((Y,Ca,Ce,U,Th)(Nb,Ti,Ta)\(_2\)O\(_6\)); however, of these minerals, only bastnäsite and monazite serve as important sources commercially. The discovery of cerium in the form of its oxide (CeO\(_2\)) was first reported in 1803 by scientists in both Sweden and Germany. This oxide was given the name “ceria” by discoverer Jons Jacob Berzelius in Sweden; this name is still used today (Weeks, 1932). Berzelius named the compound after the dwarf planet Ceres, which itself was named for the Roman goddess of agriculture.

In the last several years, Ce based compounds have received much attention because of their popular applications (e.g., mischmetal, pharmaceuticals, nanotechnology) in
industrial and commercial uses. This review chapter summarizes an overview of cerium chemistry, geologic occurrence, current and historic uses, toxicological data, and environmental fate.

1.2 Cerium Chemistry

Chemical and Physical Properties
Elemental cerium is a soft, ductile metal that is silver in color and a strong oxidizer in the presence of air (O’Neil, 2001). It exhibits a melting point of 798 °C and a boiling point of 3443 °C. The density of cerium is 6.770 g cm\(^{-3}\) and it is found to decompose slowly in cold water and rapidly in hot water. Cerium is also soluble in dilute, mineral acids. The atomic weight of cerium is 140.116 g mol\(^{-1}\). Elemental cerium exhibits paramagnetism and a face-centered cubic crystal structure. Cerium metal tarnishes slowly in air and burns readily at 150 °C to form CeO\(_2\) (Lide, 2005).

Elemental cerium exhibits complex low temperature behavior. Four allotrophic modifications are thought to exist: \(\gamma\) cerium, \(\beta\) cerium, \(\alpha\) cerium, and \(\delta\) cerium. Cerium existing at room temperature and atmospheric pressure is known as \(\gamma\) cerium. Upon cooling to -16 °C, \(\gamma\) cerium begins to change to \(\beta\) cerium. The remaining \(\gamma\) cerium begins to change to \(\alpha\) cerium when cooled to -172 °C, and the transformation is complete at a temperature of -269 °C. The transformation from \(\gamma\) cerium \(\alpha\) cerium results in a 17% volume collapse of the face-centered cubic cerium structure (Moore, Belhadi, et al.,
The δ form of cerium exists above 726 °C. At atmospheric pressure, liquid cerium is more dense than its solid form at the melting point (Stassis, Gould, et al., 1979).

Nearly 89% of naturally occurring Ce consists of four observationally stable isotopes (\(^{136}\)Ce, \(^{138}\)Ce, \(^{140}\)Ce, \(^{142}\)Ce). With the exception of \(^{140}\)Ce (the most abundant isotope at 88.5% natural occurrence), these isotopes are expected to undergo double beta decay. Radioisotopes of Ce also occur; three radioisotopes exist with considerable half-lives (\(^{144}\)Ce, \(t_{1/2} \sim 285\) d, \(^{139}\)Ce, \(t_{1/2} \sim 138\) d, \(^{141}\)Ce, \(t_{1/2} \sim 33\) d). Other radioisotopes of Ce consist of species with half-lives of less than 4 d; these radioisotopes are largely comprised of species with half-lives under 10 min. Thirty-five isotopes of cerium are currently known; less than half of all possible isotopes have been observed (Ginepro, Snyder, et al., 2009). The first isotopes of cerium discovered were found concurrently in 1925 in Cambridge, England by Francis William Aston. The isotopes \(^{140}\)Ce and \(^{142}\)Ce were discovered together via mass spectroscopy of cerium bromide (Aston, 1925).

Cerium (electronic configuration: [Xe] 4f\(^1\) 5d\(^1\) 6s\(^2\)) exhibits a variable electronic structure which sets it apart from other lanthanides. The energy of the inner 4f level is nearly equal to the energy of outer or valence electrons. Since a very small amount of energy is necessary to change the relative occupancy (of these electronic levels), dual valence states of 3\(^{+}\) and 4\(^{+}\) occur in cerium (Patnaik, 2003).
In low temperature geochemical environments, cerium commonly exists in both the trivalent cerous state (Ce$^{3+}$) and the tetravalent ceric state (Ce$^{4+}$). (Cerium also occasionally exhibits a 2$^+$ oxidation state; this rare valency is found in CeH$_2$, CeI$_2$, and CeS.) Cerium exhibits a unique stability in the tetravalent state; other lanthanides are only stable in the trivalent state. This feature allows for easy separation of cerium from other rare-earth elements through oxidation (forming CeO$_2$) followed by variable solubility filtration. Cerium salts can be extracted via liquid-liquid extraction of rare-earth cerium-containing solutions; cerium metal can be obtained via the reaction of CeF$_3$ with excess air at approximately 900 °C or via fused-salt electrolysis of a mixture of cerium chlorides and fluorides (Stassis, Gould, et al., 1979). Two common methods exist for the preparation of metallic cerium. Metallothermic reduction of CeF$_3$ with calcium is used to produce high-purity cerium; electrolysis of molten CeCl$_3$ or other cerous halides yields a less pure product (Oxford, 2011).

Aqueous Chemistry of Cerium

The formation of Ce aqueous complexes and solubility products involve the binding of a metal center (like Ce$^{3+}$ or Ce$^{4+}$) to a ligand to form a coordination complex. These interactions are normally soft-soft or hard-hard as described below by the hard and soft acid and base (HSAB) theory. Hard-hard affinity can be described as mostly ionic while soft-soft affinity is covalency-driven. Characterizing the electronegativity, size, and charge properties of cerium is key to understanding its association chemistry since the affinity of metals for ligands is controlled by these three factors.
The HSAB theory can be used to explain the tendency of Ce to quickly and strongly bond with ligands such as phosphates and hydroxides over species like sulfates and hydrides. Using HSAB, species are first characterized as a Lewis acid or Lewis base, then identified as a “hard” or “soft” species. Hard species exhibit a small atomic/ionic radius, high oxidation state, and are only weakly polarizable while soft species are large in size, have low oxidation states, and are strongly polarizable. Common examples of hard ions include Fe\(^{3+}\) and OH\(^-\); Ag\(^+\) and SH\(^-\) are some well-known soft ions. Hard acids have a strong affinity for hard bases while soft acids “prefer” to bond with soft bases. Intermediate ions (such as Pb\(^{2+}\)) that have no strong preference for hard over soft bonding partners also exist.

While HSAB theory serves mainly as a qualitative identification system, a quantitative definition for chemical hardness has also been developed such that the chemical hardness of an acid or base can be described in electron volts (eV). The harder the acid or base, the higher the eV value; values tend to be much higher for acids than for bases. Cerium is classified as a hard acid based on its small size, high oxidation state (most commonly 3\(^+\) or 4\(^+\)) and weak polarizability; thus, it is most likely to bond with hard bases such as phosphate, hydroxide, and carbonate.

Cerium oxide nanoparticles are most often noted for their catalytic ability, which is largely affected by redox behavior and is known to be directly dependent on cerium’s redox state. The nanoparticles are often largely composed of Ce(III) (up to 60% in some
cases) as well as Ce(IV); the more Ce(IV) in the nanoparticles, the stronger the catalase mimetic activity (Pirmohamed, Dowding, et al., 2010). Another study has shown that a decrease in the $3^+/4^+$ ratio directly correlates with a loss of superoxide dismutase (SOD) mimetic activity (Heckert, Karakoti, et al., 2008). Clearly, redox state plays a large role in determining the characteristics and behavior of cerium oxide nanoparticles.

To better understand the aqueous chemistry of Ce, it is also important to discuss the chemistry of 4^+, 3^+, and 2^+ lanthanides in aqueous systems. The primary hydration numbers of most lanthanides are 8 and 9; salts with common anions frequently contain $\text{Ln(H}_2\text{O)}_9^{3+}$ with tri-capped trigonal prismatic geometry. Cerium’s normal coordination/hydration number of 6 is quite uncommon among lanthanides. However, as previously stated, cerium does exhibit other coordination numbers as well; for example, in the case of nitrates, $\text{Ce(NO}_3)_5^{2-}$ features a 10-coordinate bicapped dodecahedron structure and $\text{Ce(NO}_3)_6^{3-}$ features a 12-coordinate icosahedron structure. Other common O-donor chelating ligands that form complexes with Ce and other lanthanides include oxalate, citrate, tartrate, and beta-diketonates. Classic bidentate complexes, macrocyclic ligands (crown ethers), and weak coordination by halides are also key to the solution chemistry of 3^+ lanthanides (Evans, 2000).

In terms of 4^+ lanthanides, cerium is the only tetravalent lanthanide with significant coordination and/or aqueous chemistry. Lower oxidation states occur in bromides and iodides while higher oxidation states of lanthanides tend to occur in fluorides and oxides.
The \(E^\circ \) value of Ce(IV)aq/Ce(III)aq = 1.72 V; the \(E^\circ \) value of other lanthanides is ~ 2.9 V. This value is largely dependent on hydrolysis and complexation properties of Ce including pH. In solution, hydrolysis to Ce(OH)\(^{3+}\) occurs, then polymerization which leads to precipitation of yellow gelatinous hydrated cerium(IV) oxide (Evans, 2000). Values for \(3^+/2^+ \) lanthanide reduction potentials can be found in Table 1.1.

Properties of the \(2^+ \) lanthanides are very closely related to the electronic properties of the alkaline earths. In particular, Eu is often linked to barium(II); the two species exhibit similar salt solubilities (insoluble sulfates, soluble hydroxides), similar behavior in ammonia, similar coordination chemistry (not extensive, hard ligands), but extremely different redox chemistry. The solution chemistry of \(2^+ \) lanthanides is essentially confined to samarium(II) (Sm(II)), Eu(II), and ytterbium(II) (Yb(II)). All three are prepared via electrolytic reduction of the \(3^+ \) form. The colors of the \(2^+ \) products vary largely; Sm(II) features a blood red hue, Eu(II) is colorless, and Yb(II) appears yellow. The \(2^+ \) states are readily oxidized by air but Eu(II)\(_{aq}\) is easily handled. Sm(II) and Yb(II) reduce water and are susceptible to oxidation by their water of crystallization. More characteristics of these \(2^+ \) lanthanides include Eu(II)’s stability in the dark and the dissolution of Eu(II) and Yb(II) in liquid ammonia to give intense blue, highly reducing solutions which decompose on standing, precipitating the amide (Eu- or Yb-(NH\(_2\))\(_2\)) (Evans, 2000).
Solubility and Redox Properties of Ce Compounds

The solubility properties of cerium compounds such as these listed above vary greatly. Solubility constants for Ce(III) and Ce(IV) bound to common ligands including hard bases like phosphate are listed in Table 1.2. Cerium phosphate forms quickly and is extremely insoluble; the species will precipitate out of solution almost immediately upon formation. Cerium(IV) hydroxide exhibits similar properties. However, cerium(III) hydroxide is many orders of magnitude more soluble than cerium(IV) hydroxide. Among cerium species, even cerium(III) hydroxide is not regarded as particularly soluble. Among the most soluble species are cerium(III) chloride and cerium(III) nitrate. Cerium(III) selenite and cerium(III) sulfate are also relatively soluble.

Analogues of Ce, or lanthanides and possibly actinides that react similarly and become more soluble as the valence state becomes more reduced, are difficult to identify since the tetravalent state is only characteristic of cerium. Since it is not possible to identify “true” analogues, instead comparisons must be made across systems with $3^+/2^+$ systems (such as that of europium) instead of cerium’s $4^+/3^+$ system. Cerium has the notable characteristic of becoming more soluble as its coordination state becomes more reduced. Other lanthanides are only stable at 3^+ with the exception of europium (Eu), which may be the only “good” analogue of Ce in the lanthanides. Eu usually assumes a 3^+ oxidation state, but 2^+ is also very common. The solubility constant of Eu(III) hydroxide at 20 °C is 1.538×10^{-5}, which is similar in magnitude but overall less soluble than Ce(III) hydroxide. The solubility constant of Eu(III) sulfate at 20 °C is 2.56, which is also much less soluble than...
Ce(III) sulfate. The sulfate of Eu(II) is highly insoluble in water. Other compounds of Eu(III) exhibit similar properties such that the compounds of Eu(III) tend to be far less soluble than the same compounds of Ce(III). Like the Eu(III) compounds discussed above, most lanthanides existing in the 3+ state are not very soluble in water. The lighter lanthanides are more soluble when paired with oxalates, double sulfates, or double nitrates, while the heavier lanthanides are more soluble with basic nitrates.

The HSAB theory discussed earlier is key in understanding how the redox properties of CeO₂ NPs come into play when metals such as cerium are introduced to the soil. Metals in the soil are Lewis acids and ligands in the soil are Lewis bases. Each of the ligands important to soil geochemistry can be classified using the HSAB theory. Distribution of hardness and softness for potential donor atoms for ligands in the periodic table is illustrated in Figure 1.1. Hard bases commonly found in soil and soil minerals include water, OH⁻, F⁻, PO₄³⁻, SO₄²⁻, Cl⁻, CO₃²⁻, ClO₄⁻, and NO₃⁻. Several soft bases include I⁻, CN⁻, CO, S²⁻, sulphhydryl (R-SH), and R-S⁻. Likewise, the soil also include hard acids such as H⁺, Li⁺, Na⁺, K⁺, Be²⁺, Mg²⁺, Ca²⁺, Sr²⁺, Fe³⁺, Al³⁺, and Se³⁺, as well as soft acids such as Ag⁺, Au⁺, Tl⁺, Cu⁺, Zn²⁺, Cd²⁺, Hg²⁺, and Sn²⁺. Hard acids associate with hard bases through ionic (electrostatic) bonds and soft acids associate with soft bases through covalent bonds. The preference of hard metals (acids) for ligands falls from the strongest preference for the hardest donors (like nitrate, water, and hydroxide) to the softest donors (like sulfide, bromide, and iodide). In additional to simple inorganic ligands, natural
organic matter in the soil also has hard (carboxylic and phenolic) and soft (sulfur-containing) sites (Sparks, 2003).

As noted earlier, the variable electronic structure of cerium (electronic configuration: [Xe] 4f\(^{1}\) 5d\(^{1}\) 6s\(^{2}\)) truly sets it apart from other lanthanides. The energy of the inner 4f level is nearly equal to the energy of outer (valence) electrons. Since a very small amount of energy is necessary to change the relative occupancy (of these electronic levels), dual valence states of +3 and +4 occur in cerium (Patnaik, 2003). As previously stated, in low temperature geochemical environments, cerium commonly exists in both the trivalent cerous state (Ce\(^{3+}\)) and the tetravalent ceric state (Ce\(^{4+}\)). The electronegativity value of Ce is 1.12 on the Pauling scale; the electronegativity values of other common species found in soils are shown in Table 1.3. Cerium has three ionization energies. Its first ionization energy is 534.4 kJ mol\(^{-1}\) (Ce\(^{4+}\)), its second ionization energy is 1050 kJ mol\(^{-1}\) (Ce\(^{3+}\)), and its third ionization energy is 1949 kJ mol\(^{-1}\) (Ce\(^{2+}\)).

As mentioned previously, the electronegativity values identified in Table 1.3 are on the Pauling scale. Pauling’s rules are a set of steps that allow identification of coordination properties of any compound. The first of Pauling’s five rules can be used to calculate the coordination number of compounds by dividing the cationic radius by the anionic radius of the compound and then classifying that ratio into a distinct interval identifying it’s coordination number and crystal structure (Sparks, 2003). The coordination number of cerium(IV) oxide (perhaps the most environmentally relevant Ce species) is 6, so the
crystal exhibits an octahedron structure (such as the Al-O octahedral sheets well known in clay minerals). Cerium(III) oxide also features a coordination number of 6 and the same octahedron crystal structure. However, cerium compounds are not always coordinated octahedrally; for the compounds CeF$_6^{2-}$ (via fluoride bridging) and CeCl$_6^{2-}$, the coordination number is 8. The 4$^+$ charge also stabilizes halogeno-complexes like CeF$_8^{4-}$ (Evans, 2000).

1.3. Geochemical Occurrence

Cerium is found in a variety of mineral classes, primarily including carbonates, phosphates, silicates, oxides and hydroxides. Main sources of industrial cerium include the carbonate mineral bastnäsite and the phosphate mineral monazite. These key cerium minerals and other lanthanide associated minerals are discussed in detail below and tables documenting members of the rare earth carbonates (Table 1.4), phosphates (Table 1.5), silicates (Table 1.6), oxides and hydroxides (Table 1.7) can be found at the end of this chapter.

Carbonates

Carbonates, the largest group of Ce-containing minerals, feature three oxygen atoms in a triangular arrangement about a central carbon. This CO$_3$ group exhibits a 2$^-$ overall charge and is the essential featured structure of carbonate minerals. The oxygen ions are much more strongly bonded to the central C$^{4+}$ cation than to any other cations in the
structure and an oxygen ion in one CO_3^{2-} group cannot be shared with another CO_3^{2-}
group. Therefore, the structure of all carbonates is based on CO_3^{2-} groups that are
laterally bonded through various cations. Additional OH^- or other anionic components
may also appear in carbonate minerals. (Nesse, 2000).

As stated earlier, monazite and bastnäsite are presently the two most important sources of
cerium and other rare-earth metals (such as thorium). Bastnäsite is of particular
importance to the discovery of cerium. Bastnäsite is a carbonate-fluoride mineral which
was first described by Hisinger in 1838 when ore samples from the Bastnäs mine in
Vastmanland, Sweden were analyzed, leading to the discovery of multiple minerals and
chemical elements by Berzelius, Hisinger, and Carl Gustav Mosander. It was many years
before the chemistry of these ores was fully understood; while cerium was discovered in
1803, lanthanum was not described until 1839. Bastnäsite was one of the new minerals
discovered from the ore; Hisinger, who owned the Bastnäs mine, gave the mineral its
name (bastnäsit) when he described it in 1838.

Mining for bastnäsite began at the Mountain Pass rare earth mine in San Bernardino,
California with the discovery of a new class of rare earth deposit: a large carbonaceous
mineral deposit containing significant amounts of bastnäsite. The major composition of
bastnäsite consisted of approximately 49% cerium, 33% lanthanum, 12% neodymium
with some praseodymium, samarium and gadolinium. Bastnäsite minerals also exhibited
at least twice the europium concentrations of a typical monazite. As more carbonatite
deposits were discovered in Africa and China, mining processes were developed and these deposits became vital to the global lanthanide supply. From 1965 to the mid 1980s, the Mountain Pass site emerged as the world’s major source of lanthanides. Currently China plays a leading role in the global rare earth supply (as high as 97%); the Bayan Obo Mining District is the source of the majority of the world’s lanthanides (Lide, 2005).

Phosphates

Though relatively few cerium phosphate minerals exist, they are very important to consider when identifying sources of cerium. The key structural element of phosphate minerals is the tetrahedral PO_4^{3-} groups. These anionic tetrahedron groups feature a cationic P^{5+} center surrounded by oxygen anions at the corners of a tetrahedron. As with carbonate groups, the oxygen anions are more strongly bonded to the central atom, P^{5+}, than to other cations in the mineral, so the PO_4^{3-} groups are the fundamental structural units of phosphate minerals. Phosphate minerals are not as widespread and well-known as silicate or carbonate minerals; only a few phosphate minerals are common. Turquoise is perhaps the best-known phosphate mineral, often used in jewelry; however, it is actually a fairly rare mineral. (Nesse, 2000).

Until bastnäsite began to be processed around 1965, the phosphate mineral monazite, which usually forms small reddish-brown crystals, was the only significant commercial source of lanthanides such as cerium and thorium. Monazite is most often found in placer deposits, which are mineral accumulations often in the form of black sedimentary
rocks. Monazite is fairly dense (about 4.6 to 5.7 g cm\(^{-3}\)), a property consistent with that of most black sand mineral constituents (such as zircon and cassiterite). Monazite exhibits a range of hardness of 5.0 to 5.5 Mohs. Placer deposits in India are particularly rich in monazite as well as deposits in Australia, Madagascar and South Africa (Anthony).

One of the major reasons that bastnäsite came to replace monazite in lanthanide production in the 1960’s is the radioactive nature of monazite, which contains thorium and produces radioactive daughter products. This radioactive character is useful because it allows monazite to be used as a geological dating tool; thorium was also considered as a potential nuclear fuel in the 1960s. When this interest began to decline, bastnäsite was an attractive replacement option because it contained much lower concentrations of thorium than were found in monazite. Monazite is also more difficult to store than bastnäsite since it must be kept away from any mineral samples that are sensitive to radiation.

Monazite and bastnäsite minerals are both broken down into further classifications based on relative elemental composition. Four types of monazite and three types of bastnäsite are commonly referred to in geological literature. Monazite occurs in monazite-(Ce) (meaning cerium is the most predominant rare earth metal in monazite-(Ce)), monazite-(La), monazite-(Nd), and monazite-(Pr); bastnäsite occurs in bastnäsite-(Ce), bastnäsite-(La), and bastnäsite-(Y). The –(Ce) compositions constitute most of the bastnäsite and monazite minerals in existence (Anthony).
Silicates

Silicates comprise the most abundant group of minerals in the earth’s crust. Silicates play an extremely important role in soils. They are the basic building block of all silicate minerals in the silicon tetrahedral which exhibits Si$^{4+}$ with a net tetrahedron charge of 4$^+$. Minerals in this class can be categorized as orthosilicates, disilicates, ring silicates, chain silicates, sheet silicates, and framework silicates (Nesse, 2000).

Though bastnäsite and monazite serve as the two largest commercial sources of cerium, a significant amount of cerium (as well as thorium, uranium, and chromium) is also found in the silicate mineral allanite. Like bastnäsite and monazite, allanite can be broken down into three further classifications: allanite-(Ce), allanite-(La), and allanite-(Y). Allanite is a useful source of rare earth elements because it can contain up to 20% rare earths by composition. The high concentrations of thorium and other radioactive elements in the mineral lead to radiative degradation and structure disruption of allanite and surrounding minerals. The distribution of allanite minerals is widespread with large, high-quality deposits occurring in Greenland (where allanite was discovered), Sweden, Norway, Finland, and Russia. Allanite has hardness values ranging from 5.5 – 6 Mohs and is found mainly in metamorphic sedimentary and felsic igneous rocks. Allanite is also commonly referred to as orthite.
Oxides and Hydroxides

Oxide minerals feature one or more metal cations combined with oxygen. Since oxide structures are normally based on systematic oxygen anion packing (often cubic or hexagonal close packed), most oxide minerals exhibit very high symmetry. The tetrahedral and octahedral sites between regularly packed anions are occupied by metal cations. Although it may seem counterintuitive, most oxygen in the geological environment does not occur in oxide minerals; the abundance of silicon in the environment for most geographical areas keeps most oxygen tied up in silicate minerals. Oxide minerals exhibit a wide variety of structural forms, including X_2O (cuprite, ice), XO (periclase, zincite), XY_2O_4 (magnetite, chromite, spinel, chrysoberyl), X_2O_3 (hematite, corundum, ilmenite), and XO_2 (rutile, cassiterite, pyrolusite, uraninite), where X is a metal cation (Nesse, 2000).

The hydroxides are another class of very common minerals. Many hydroxide minerals are formed by weathering and hydration of other minerals. For this reason, hydroxides normally occur as fine-grained aggregates mixed with other minerals (including clays) produced by the same processes rather than alone. Hydroxide minerals are used to describe other minerals in this way; brucite and gibbsite are significant hydroxides that are commonly used as a starting point for describing layer silicates. Their structures (OH anions arranged in planes) allow for useful classification of other, co-occurring materials (Nesse, 2000).
Of the few oxides and hydroxides that contribute to commercial cerium sources, euxenite is the most significant despite its low composition percent of cerium (around 4%). Unlike allanite, monazite, and bastnäsite, euxenite exists almost entirely in the euxenite-(Y) form, featuring yttrium as its major component instead of cerium. Like allanite, euxite also exhibits radiation damage to itself and nearby minerals due to high radioactive content. With hardness values varying between 5.5 and 6.5 Mohs, euxenite features comparable to slightly higher hardness than its other cerium-containing counterparts, allanite, monazite, and bastnäsite. Euxenite occurs along with monazite in black sands as well as in granite pegmatites. Euxenite is found primarily in Norway, where it was discovered, as well as in Russia, Brazil, Madagascar, Canada, and the US. Euxenite functions as an ore for many of the other rare earth elements contained in the mineral as well (Anthony).

As discussed earlier, Ce is commonly present with other lanthanides and metals forming phosphate and carbonate minerals. The heterogeneity of natural minerals makes the isolation process of pure Ce extremely difficult. Some ores are directly used for metallurgical purposes. Other Ce enriched ores undergo the purification process prior to industrial and commercial uses. The separation of Ce from natural minerals is conducted via oxidation and variable solubility based filtration steps.

In general, the mineral ores are leached with sulfuric acid and then titrated with sodium hydroxide to remove thorium precipitates. This step is followed by precipitation with
oxalate to remove to most of rare earth elements (e.g., Ce, La, Th, Nd) as insoluble oxalate forms. These oxalates undergo annealing/oxidation process to produce lanthanide (tri-and tetra-valent state) oxides. Acidification of these mixed oxides by nitric acid makes all of the lanthanide (III) oxides soluble except for Ce(IV)(OH)$_4$. Insoluble cerium(IV) hydroxides are separated through the filtration process (Abreu and Morais, 2010, Patnaik, 2003). Once the purity of Ce is improved from the mixed lanthanide/metal oxides, a variety of Ce compounds are synthesized for commercial and industrial applications. The historic and current uses of Ce compounds are discussed below.

1.4. Historical and Current Uses

Drugs and Pharmaceuticals

Cerium compounds have recorded uses in drugs and pharmaceuticals as early as the mid nineteenth century. In 1854, cerium nitrate was first reported to relieve vomiting. Cerium(III) oxalate was administered for many following decades for anti-vomiting effects in cases of sea sickness, gastrointestinal and neurological disorders, and especially in pregnant women. Cerium(III) oxalate was used as an antiemetic until the mid 1950s when it was replaced by the antihistamine meclizine which is still in use today (Jakupec, Unfried, et al., 2005).

Trivalent cerium exhibits similar size and bonding properties to Ca$^{2+}$, an extremely biologically important cation. Ce$^{3+}$ can replace Ca$^{2+}$ in biomolecules due to their similar
ionic radius, thus Ce\(^{3+}\) compounds strongly exhibit the ability to act as anticoagulant, or anti-clotting, agents. Several of the lanthanides, including cerium, are well-known for their anticoagulant properties and have been employed as antithrombic drugs (Jakupec, Unfried, et al., 2005).

Cerium compounds are also known in particular for their uses in topical burn treatments due to their bacteriostatic and bactericidal effects. By the end of the nineteenth century, cerium compounds were used in both human and veterinary medicine; most commonly used were cerium(III) acetate and cerium(III) stearate treatments. Later, studies confirmed the antiseptic effects of cerium(III) chloride, cerium(III) nitrate, and cerium(IV) sulfate and demonstrated particular subsceptibility of both gram-negative and gram-positive bacteria (which tend to coat burn wounds) to their effects (Jakupec, Unfried, et al., 2005). Cerium(III) nitrate in particular is a widely used treatment for burn wounds, exhibiting nearly a 50% reduction in death rate for patients with life-threatening burns when compared to patients who were administered silver nitrate treatments (Monafo, Tandon, et al., 1976).

Mischmetal

While commercial applications of cerium are numerous, it is most commonly used in the form of mischmetal for metallurgical purposes. Mischmetal is an alloy of rare earth metals in various naturally occurring proportions; a typical composition includes approximately 50% cerium and 25% lanthanum, as well as small amounts of neodymium.
and praseodymium. Mischmetal reacts with impurities found in metals to form solid compounds, thereby reducing the effect of these impurities on the properties of the metal. Mischmetal is used in steel manufacturing to improve shape control, reduce hot shortness, and increase heat and oxidation resistance. The addition of mischmetal to cast iron improves ductility, toughness, and microstructure. Mischmetal is also commonly used in the “flint” ignition devices of lighters and torches; it is blended with iron oxide and magnesium oxide to form ferrocerium, a hard enough material to give good sparks (Kilbourn, 2003).

The high scavenging capacity of cerium with respect to oxygen and sulfur can be used to improve oxidative resistance of alloys; however, apart from mischmetal, elemental cerium is not used for a wide variety of applications due to its high reactivity and immediate oxidation potential. However, a wide array of applications arises from the combination of cerium with other materials to produce assorted cerium compounds. Chemical companies began selling cerium compounds in the late 1950s for use primarily in mischmetal; since then, the use of cerium compounds for multiple applications has become widespread. Many of these applications are discussed below.

Organic Synthesis Starting Materials

Cerous chloride (CeCl$_3$) is used as a catalyst in Friedel-Crafts alkylation reactions as well as a starting material for the preparation of other cerium salts. Anhydrous cerous chloride is generally prepared via thermal treatment of heptahydrate CeCl$_3$·7H$_2$O under
vacuum (Dimitrov, Kostova, et al., 1996, Edelmann, 1997). This hygroscopic solid is mostly important in organic syntheses such as Luche reduction and alkylation of ketones for which organolithium reagents cannot be used (Johnson and Tait, 1987, Paquette, 1999).

Scintillation Counters

Cerous bromide is a component of interest in scintillation counters, which measure ionizing radiation. Aqueous solutions of cerous bromide (CeBr$_3$·H$_2$O) can be prepared by reacting Ce$_2$(CO$_3$)$_3$·H$_2$O with HBr. Heating the product with NH$_4$Br followed by sublimation of residual NH$_4$Br will allow dehydration, yielding in white hygroscopic cerous bromide (CeBr$_3$) solids. Well-ordered single crystals may be produced using standard crystal growth methods such as the Bridgman or Czochralski methods (Higgins, Churilov, et al., 2008). Cerous bromide-doped lanthanum bromide single crystals exhibit superior scintillation properties; applications for CeBr$_3$ include security, medical imaging, and geophysics detectors (van Loef, Dorenbos, et al., 2001). Undoped single crystals of CeBr$_3$ have also shown promise as gamma ray scintillation detectors in similar fields as well as oil exploration and environmental remediation.

Other

Other selected cerium compounds also have many applications of interest. Hydrated cerium oxide is used in the production of cerium salts and cerium oxide (Kilbourn, 2003).
Cerous fluoride (CeF$_3$) is used in the preparation of cerium metals as well as in arc carbons to increase brilliance (Kilbourn, 2003).

Nanoparticles: Catalysts, Glass Additives, and Fuel Additives

Cerium in its nanoparticulate form is especially important when considering applications of cerium. Nanoparticles (NPs) are substances that are less than 100 nm in all three dimensions. Although the applications of compounds such as CeCl$_3$ and CeBr$_3$ discussed above are important, cerium compounds are best known for their uses in catalysts, fuel cells, glass (de)pigmentations, and fuel additives. All of these applications are based on the same compound: cerium dioxide (CeO$_2$), or ceria. Ceria, which can be in the form of a white, pale-yellow, or brownish power depending on its purity, is by far the most widely commercially used cerium compound.

Ceria exhibits cubic crystal structure akin to a fluorite type structure. The fluorite structure of CeO$_2$ allows for rapid diffusion of oxygen as a function of the number of oxygen vacancies since the oxygen atoms in the crystal are all in plane with one another. As the number of vacancies increases, the oxygen is more easily able to move around in the crystal, allowing reduction and oxidation of molecules or co-catalysts on the crystal’s surface. Ceria is used as a co-catalyst in a number of reactions, including the water-gas shift and steam reforming of ethanol or diesel fuel into hydrogen gas and carbon dioxide. It is useful in the Fischer-Tropsch reactions and in selected oxidations (Reinhardt and Winkler, 2002).
Gadolinium, samarium, or platinum doped CeO₂ are useful materials for solid oxide fuel cells due to relatively high oxygen ion conductivity at intermediate temperatures (Kilbourn, 2003). Substituting a fraction of the CeO₂ with these elements is a way to increase ionic conductivity and create a better electrolyte since this introduces oxygen vacancies in the crystal without adding electronic charge carriers. A large amount of oxygen vacancies within the electrolyte will form on the anode (reducing) side of the fuel cell. Some of the ceric oxide is reduced to cerous oxide under these conditions; this transformation increases the electronic conductivity of the material. The lattice constant of CeO₂ increases under reducing conditions as well as with decreasing nanocrystal size as a result of this reduction of the cerium cation from Ce(IV) to Ce(III). This increase compensates for the formation of oxygen vacancies, resulting in an increase in the fuel cell efficiency.

Nanoparticulate CeO₂ has a particularly high oxygen storage capacity which, when coupled with its ease of transition between trivalent and tetravalent states and its high natural abundance, makes it an excellent choice as a catalyst. Nanoparticulate CeO₂ is most often used in catalytic converters in automobiles due to its non-stoichiometric ability to give up oxygen without decomposing. Ceria can release or take in oxygen in the exhaust stream of a combustion engine depending on its ambient partial pressure of oxygen. Via this mechanism, NOₓ emissions are reduced and carbon monoxide is converted to carbon dioxide. Ceria is relatively inexpensive but its addition has been
shown to provide substantial reductions in the amount of platinum catalyst needed for complete oxidation of NO\textsubscript{x} and other harmful incomplete combustion products (Reinhardt and Winkler, 2002). Fuel burns more cleanly upon addition of CeO\textsubscript{2}, resulting in less air pollution. It has also been characterized as a useful catalyst in systems including oxidation of volatile organic carbon (Abbasi, Haghghi, et al., 2011) and toluene (Abbasi, Haghghi, et al., 2011), ozonation of organic compounds (Orge, Orfao, et al., 2011), and water-gas shift reactions (Yuan, Idakiev, et al., 2008). More properties and applications of nanoparticulate CeO\textsubscript{2} are discussed below at length.

Because CeO\textsubscript{2} is remarkably insoluble in water and in dilute acid (Kilbourn, 2003) it is commonly used as an abrasive; the powder is used in the grinding/polishing of other materials. For many years, it was used for polishing specialized glass (telescope mirrors, for example) (Hedrick and Sinha, 1994). It is also used in heat-resistant alloy coatings and in ceramic coatings.

Potential Future Applications of Cerium (III) Oxides: the Ceria Cycle for Hydrogen Production and Catalysts

While cerium dioxide exhibits a particularly large wide variety of uses, another useful oxide of cerium must be mentioned as well: cerium(III) oxide. Cerium dioxide and cerium(III) oxide (or cerous oxide) are combined in an extremely useful process known as the ceria cycle. The ceria cycle serves as a pathway of great interest for hydrogen production. This thermochemical process splits water into hydrogen and oxygen and is
carried out in two steps: the endothermic dissolution of CeO$_2$ followed by the exothermic hydrolysis of Ce$_2$O$_3$. In the first step, CeO$_2$ is thermally dissociated in an inert gas atmosphere into Ce$_2$O$_3$ and 0.5O$_2$. This reaction takes place at 2000 °C and 100-200 mbar of pressure. During the second step, Ce$_2$O$_3$ is reduced at 400-600 °C in a fixed-bed reactor with water to produce 2CeO$_2$ and H$_2$. The high reactivity of Ce$_2$O$_3$ with steam draws the main interest in this cycle; however, a major drawback lies in the partial vaporization of CeO$_2$ during the reduction step at reduced pressure. Water is the only material input to the ceria cycle and heat is the only energy input, making the ceria thermochemical cycle “a promising process for hydrogen production.” The ceria cycle is also sometimes referred to as the cerium oxide cycle (Chueh, Falter, et al., 2010).

Cerium(III) oxide has several uses in addition to water splitting. The compound is used mainly in cooking appliances; it is incorporated into the walls of modern ovens to prevent the build-up of cooking residues and act as a catalyst for the oven’s self-cleaning mode. Ce$_2$O$_3$ has also shown promise as a new petroleum-cracking catalyst (Abanades and Flamant, 2006).

1.5. **Toxicity of Cerium**

Nanoparticle Toxicity

Nanoparticle toxicity is only well-understood for a small range of nanomaterials since the field is relatively new. Nanoparticles tend to sorb more than their bulk counterparts and
exhibit multiple exposure routes for biological organisms including ingestion, inhalation, absorption/adsorption onto surfaces, uptake across epithelia, and multiple other pathways. Multiple toxicity mechanisms have been reported for a variety of NPs, from physical damage to ROS generation to dissolution of toxic ions/species.

Two major considerations for NP toxicity are size effects and capping agents. Nanoparticle toxicity characteristically exhibits size-dependent effects. For a large variety of NPs including species such as NP silver, silicon dioxide, and titanium dioxide it has been demonstrated that smaller sizes (and thus larger reactivities) lead to heightened toxicity effects across biological systems. Nanoparticles tend to exhibit much higher toxicities than their bulk counterparts; this tendency is especially exaggerated in bacteria due to the NP’s higher affinity for attachment to bacterial cell walls (Jiang, Mashayekhi, et al., 2009) that could potentially perturb the electron transfer reaction and respiration. Capping agents (or lack thereof) also play a large part in NP toxicity. Capping agents stabilize NPs by covering a large portion of their surface area and preventing aggregation as well as introducing multiple functionalities such as enhanced solubility effects. Polymers are popular capping agents along with other organic materials (Lead and Smith, 2009).

As mentioned previously, the large surface area of NPs results in their ability to often exhibit much higher reactivity and interaction potential with biological systems. Several potential risks are postulated: 1) the production of reactive oxygen species (ROS) and 2)
the release of reaction products (e.g., ionic metal(loid)s via dissolution). A primary mechanism of NP toxicity is the ability to generate ROS such as free radicals (Lead and Smith, 2009). Reactive oxygen species contain unpaired valence electrons which yield extremely high chemical reactivity and the ability to induce severe damage to cells, including DNA and RNA damage, oxidations of lipids and proteins, and enzyme (cytochrome P) deactivation. A wide array of NPs has been found to induce ROS production; among these are carbon nanotubes (CNTs), fullerenes (C$_{60}$), and titanium dioxide NPs (TiO$_2$). The release of metal ions from quantum dots (e.g., CdSe) and nanosilver can be highly toxic to bacterial cells, (Liu, Sonshine, et al., 2010, Lubick, 2008) as well as organic coatings of NPs (Hoshino, Fujioka, et al., 2004, Mahendra, Zhu, et al., 2008).

Conflicting Views: Are CeO$_2$ NPs Harmful or Helpful?

Recent research on NP CeO$_2$ has reported conflicting results regarding toxic effects: NP CeO$_2$ has been reported to act as both an antioxidant and a ROS production-inducing agent across multiple biological pathways.

Many researchers have reported that CeO$_2$ NPs utilize their ability to scavenge free radical species in order to act as an antioxidant. Ceria NPs have been reported by multiple researchers to act as a mimic of superoxide dismutase, the main catalyst that reduces the production of and damage caused by ROS to mammalian cells by transforming superoxide into oxygen and hydrogen peroxide. They have been shown to inhibit cellular
aging (Karakoti, Singh, et al., 2010) and have even demonstrated the ability to increase the lifespan of brain cell cultures (Rzigalinski, Bailey, et al., 2003). Their properties have been implied in the prevention of retinal disorders leading to blindness (Chen, Patil, et al., 2008). However, other research seems to tell a different story about CeO$_2$ NPs. Multiple researchers report strikingly opposite effects. Ceria NPs have been reported to induce and catalyze the generation of ROS across multiple biological systems. Nanoceria has been reported to lead to decreased lifespans in roundworms (Zhang, He, et al., 2011), cause liver damage in rats (Nalabotu, Kolli, et al., 2011), and exhibit moderate toxicity to various human muscle tissues including lung tissue (Park, Choi, et al., 2008).

An important consideration is the tendency of NP toxicity to exhibit size dependent effects. The effects of pH and ionic strength of systems also play a large role in the contrasting reported effects of nanoparticulate CeO$_2$. These toxicity factors will be discussed in detail in further sections.

Introduction to the Environment

The environmental fate of cerium is dependent on its applications and uses. As previously stated, the use of cerium as a diesel fuel additive coupled with a particulate filter drastically decreases particulate matter emissions in automobile exhaust, up to 90% by weight (Institute, 2001). Some cerium escaping in the emissions could accumulate in the soil. Cerium is also introduced to the environment via wastewater discharge from ceramic manufacturing plants and recycling of sewage sludge to soils. Most notably, cerium
levels in the soil can be attributed to agricultural amendments via application of biosolids from wastewater treatment plants.

When particles are not efficiently removed from wastewater streams, they can become a long-term problem for the environment. A study by Limbach, et al. has shown that, for a model wastewater treatment plant, a significant fraction of cerium oxide nanoparticles were able to escape the clearing system and avoid adsorption to clearing sludge. The surface charge of the NPs was found to play a key role in the stabilization against clearance, leading to detectable concentrations of CeO$_2$ NPs up to 6 wt % in the model plant’s exit stream (Limbach, Bereiter, et al., 2008). Thus, industrial wastewaters serve as a significant environmental source of CeO$_2$ NP exposure.

Another notable source of exposure is road runoff after CeO$_2$ NPs are deposited in soils from exhaust catalysts. Since about 95% of CeO$_2$ NPs undergo biosolid accumulation in wastewater treatment plants, CeO$_2$ discharge into the aquatic environment is fairly limited as compared to accumulation levels in the soil (Limbach, Bereiter, et al., 2008). Exhaust particulate matter exists as very fine particles, normally $< 1 \mu$m, leading to extremely diffuse pollution through air exposure (Moller, Morteani, et al., 2003). Since CeO$_2$ NP partitioning is the most significant in wastewater treatment plant biosolids, it follows that Ce pollution largely occurs after the amendment of agricultural soil via application of wastewater biosolids. As in the case of many other metal NPs such as TiO$_2$, ZnO, and Ag NPs (Gottschalk, Sonderer, et al., 2009), it is believed that biosolids
application to agricultural soils serves as one of the largest environmental exposure pathways for CeO$_2$ NPs (Cornelis, Ryan, et al., 2011); thus, this pathway needs to be studied extensively and monitored in order to control Ce enrichment and transformation in natural soils and waters.

Unfortunately, due to the relativity newness of discovery of NP chemistry as a field, the fate and transport of NPs in general are not well-understood. Much work has been done with TiO$_2$ and silver NPs but most NPs have not been studied as extensively. Nanoparticulate CeO$_2$, while greatly useful for a wide variety of applications, is not without the risks and hazards associated with NPs in general. The toxicity of cerium NPs and cerium in general is discussed in depth in Chapter 3.

Cerium oxide NPs are of great interest biologically for many reasons, including their many starkly contrasting toxicity effects in different conditions. As previously mentioned, increased Ce(III):Ce(IV) ratios result in increased SOD mimetic activity and thus further inactivation of superoxide free radicals (Heckert, Karakoti, et al., 2008). Unlike SOD, CeO$_2$ NPs can directly react with hydroxyl radicals (Karakoti, Monteiro-Riviere, et al., 2008) as well as superoxide radicals in order to inactivate both short-lived and stable radicals (Babu, Velez, et al., 2007). A study by Ivanov, et al. showed that the rate of inactivation of stable radicals by CeO$_2$ NPs is dependent directly upon particle size and that smaller particle sizes result in increased rates of radical inactivation (Ivanov, Shcherbakov, et al., 2010). Discussed below are effects of CeO$_2$ NP exposure to
biological organisms including plants, bacteria/aquatic organisms, and mammals, as well as the recorded and possible effects of these exposures.

Exposure to Biological Organisms and Effects: Plants

Once in the soil, CeO$_2(s)$ tends to accumulate in suspensions due to natural organic matter reducing its aggregation capability. Cerium in the soil may be absorbed into vegetation or contaminate water. Cerium has been shown to be likely to enter the produce food chain through take-up by alfalfa, corn, tomato, and cucumber (Lopez-Moreno, de la Rosa, et al., 2010). Nanoparticles tend to accumulate on root surface of plants, decreasing hydraulic conductivity and often inhibiting root growth. Nanoceria has been reported to significantly reduce germination rates in corn, tomato, and cucumber; the same study reported enhanced root growth in cucumber and corn species after introduction of CeO$_2$ NPs, but reduced root growth in tomato and alfalfa plants. Shoot elongation was also found to be enhanced in all four species (Lopez-Moreno, de la Rosa, et al., 2010).

Another study displayed differing effects, finding that CeO$_2$ NPs did not affect root growth in radish, tomato, lettuce, wheat, rape, cabbage, and cucumber plants (Ma, Kuang, et al., 2010). Concentration-dependent absorption by plant roots has been observed, but most of the NPs are instead adsorbed to the surface of the root; entry into the roots is limited and very difficult (Zhang, He, et al., 2011).

Nanoceria particles have also been shown to protect anthocyanins in grapes from ROS by inhibiting oxidative degradation in neutral and alkaline solutions. However, in acidic
solutions, no inhibitory effects were observed after exposure of the anthocyanins to NP CeO$_2$ (Ivanov, Usatenko, et al., 2009). Similar pH-dependent effects have been demonstrated across a variety of plants and other organisms.

Nanoceria particles have also shown translocation ability; that is, the capability to cross biological barriers such as the blood-brain barrier. When applied to maize leaves, NP CeO$_2$ was demonstrated to either adsorb to the leaf surface in agglomerated form (larger particles) or penetrate the leaf and become incorporated into the leaf structure (smaller particles). However, in plants cultivated after airborne exposure to NP CeO$_2$, newly grown leaves exhibited no translocation. This lack of evidence for translocation is important since maize is a major agricultural crop and knowledge of NP ability to translocate into newly grown, non-exposed plants is needed. Nanoparticles most commonly enter plants via root uptake or air exchange into the leaves. Nanoparticles larger than 1.1 µm were found by the study to be unable to penetrate the leaf surface and enter the leaves (Birbaum, Brogioli, et al., 2010).

Bacteria and Aquatic Organisms

Nanoparticle effects on both gram-positive and gram-negative bacteria have been studied extensively. Nanoceria was shown to exhibit size-dependent and concentration-dependent inhibition of both *Escherichia coli* and *Bacillus subtilis*; it is suggested that the NPs do not penetrate the bacterial cells, but rather adsorb to them, inducing deleterious effects. The same study found that NP CeO$_2$ induced no inhibitory effects on the growth
of *Shewanella oneidensis*, demonstrating that bacterial responses to NPs and interactions between the two vary greatly among bacterial species (Pelletier, Suresh, et al., 2010).

After exposure to NP CeO$_2$ in pure water for 24 hours, the aquatic cyanobacteria *Anabaena* CPB4337 exhibited toxicity values ranging from 0.27 to 6.3 mg L$^{-1}$ and the aquatic green alga *Pseudokirchneriella subcapitata* exhibited values from 2.4 – 29.6 mg L$^{-1}$. Ceria NPs were shown to cause membrane disruption and severe damage to the cells of both organisms though uptake of the NPs by the cells was not indicated. As in the case of *E. coli* and *B. subtilis* mentioned above, the *Anabaena* cells became coated with adsorbed NP CeO$_2$. It is suspected that cell wall and membrane disruption was likely the cause of cell damage rather than oxidative activity (Rodea-Palomares, Boltes, et al., 2011). From these and other similar studies, it remains unclear whether nanoceria toxicity can be largely attributed to cellular adsorption or if uptake of the particles lends to intracellular effects, especially because negatively charged particles should be repelled by the large negatively charged domains of cell membranes. Importantly, it has been demonstrated that CeO$_2$ NP toxicity in *P. subcapitata* is largely influenced by pH, ionic strength and amounts of natural organic matter. Increasing pH and ionic strength levels result in increased NP aggregation (and therefore increased toxicity), while higher levels of natural organic matter sharply lowered average NP aggregate sizes, severely decreasing aggregation from particle sizes of ~ 4,500 nm to sizes of 100-200 nm. Adsorption of the particles to natural organic matter reduced their bioavailability and thus
the resultant toxicity of the particles to *P. subcapitata* (Van Hoecke, De Schamphelaere, et al., 2011).

Aquatic organisms are perhaps some of the least well-studied systems for NP CeO₂ toxicity, largely due to the undocumented nature of nanoparticulate species presence in waterways. In a study on the effect of NPs on microbial communities in wastewater treatment plants, it was found that CeO₂ NPs exhibited stronger inhibitory effects on biogas production by the microbes than TiO₂, gold, or silver NPs (Garcia, Delgado, et al., 2012). After release into the waterway, NP CeO₂ is far more likely to partition into aquatic plants and sediment than to stay in the water, but some aquatic species such as algae and fish are still at risk and the possible toxicity and effects of NP CeO₂ uptake in these organisms must be investigated (Lu, Zhang, et al., 2010). When CeO₂ NPs do stay in the sediment, concentrations tend to be locally high due to the adsorption and aggregation tendencies of NPs, as stated earlier.

Caenorhabditis elegans is a commonly-studied soil nematode that serves as an important aquatic indicator. Ceria NPs have been shown to induce size-dependent toxicity effect on the survival and fertility of *C. elegans*; while all CeO₂ NP exposure sizes in one study led to decreased reproductive ability and increased fatality, the smaller NPs had a markedly more toxic effect than the larger NPs. This effect was also observed for TiO₂ NPs (Roh, Park, et al., 2010). Another study on nanoceria exposure in *C. elegans* indicated that NP CeO₂ could lead to reduced lifespans via catalysis of ROS generation and subsequent
oxidative damage. The study observed a 12% reduction in mean lifespan even at the
coldest NP CeO\textsubscript{2} exposure level of 1 nM (Zhang, He, et al., 2011). Cellular function was
inhibited in another study on \textit{P. subcapitata} by 10.3 mg L-1 of NP CeO\textsubscript{2}, leading to
damaged cell membranes and growth inhibition (Rogers, Franklin, et al., 2010). Yet
another study found that only 7.6 mg L-1 NP CeO\textsubscript{2} was required to inhibit algal growth in
\textit{P. subcapitata}, while the two crustaceans \textit{Daphnia magna} and \textit{Thamnocephalus
platyurus} suffered no acute toxicity effects from NP CeO\textsubscript{2} concentrations, even ranging
up to 5,000 mg L-1 (Hoecke, Quik, et al., 2009).

Another study on cytotoxicity of CeO\textsubscript{2} NPs to gram-negative \textit{E. coli} confirmed that the
NPs were adsorbed in large amounts on the outer membrane. The NPs are positively
charged at neutral pH values, meaning they are subject to a strong electrostatic attractive
force toward bacterial outer membranes such as that of \textit{E. coli}. Close contact was
reported between the NPs and \textit{E. coli}, indicating that oxidative response may have been
responsible for the observed toxicity, which was significant after the adsorption of the
NPs and their reduction from Ce(IV) to Ce(III). The survival rate of \textit{E. coli} was reduced
to half for a 5 ppm exposure to CeO\textsubscript{2} (Thill, Zeyons, et al., 2006). This study as well as
other investigations have found that cytotoxicity of CeO\textsubscript{2} NPs for \textit{E. coli} can be reversed
by changing the exposure media, indicating that surface charge density is largely
responsible for NP CeO\textsubscript{2} cytotoxic effects (He, Kuang, et al., 2012).
It is known that CeO$_2$ nanocrystals are positively charged under acidic and neutral conditions (below pzc at pH = 8.0) while negatively charged under more basic conditions (above pH = 8.0). Nanoceria crystals aggregate strongly at pH values near the pzc across multiple medias, resulting in increased hydrodynamic radii; decreases in hydrodynamic radii occur at higher pH values when the surface charge of the crystals becomes reversed. Since the pzc is around neutral pH values, NP CeO$_2$ crystals aggregate at the same pH values that optimize the growth of bacteria.

Larger-scale organisms should also be considered when evaluating the ecotoxicological effects of CeO$_2$ NPs. In a study exposing multiple nanoscale metal oxides (zinc oxide, cerium dioxide, and titanium dioxide) to zebrafish (*Danio rerio*) and rainbow trout (*Oncorhynchus mykiss*) both via water and via diet, the oxide NPs were largely not found to be able to penetrate the fish cell barriers. The zinc, cerium, and titanium content was measured in the gill, liver, skin, brain, but, blood, and kidneys of the two fish species and only two areas of significant NP uptake were observed. Ceria NP uptake was discovered in the liver of the zebrafish exposed via water and ionic titanium was detected in the gut of the trout exposed via diet. It is likely that this inability of the metal oxide NPs, including CeO$_2$, was due to limited bioavailability caused by accumulation of large aggregates (up to 3 µm) in the aqueous exposure route (Johnston, Scown, et al., 2010).
Mammals

Mammals are among the lesser-studied organisms for CeO$_2$ NP toxicity effects; unlike the widespread variety of plants, bacteria, and aquatic organisms investigated, the only mammal cell lines that have been evaluated for NP CeO$_2$ toxicity currently include those of rodents and humans. Ceria NPs have been demonstrated to be neuroprotective in mouse hippocampal brain slices, indicating that the NPs could be useful as therapeutic agents for strokes due to reduced ischemic cell death (Estevez, Pritchard, et al., 2011). Another study of rodent cell line HT22 verified that CeO$_2$ NPs (as well as yttrium NPs) prevent oxidative stress to cells and are neuroprotective (Schubert, Dargusch, et al., 2006). However, it has also been shown that a single CeO$_2$ NP exposure leads to reduced liver weight, hepatocyte enlargement, reduced albumin levels, and diminished sodium-potassium ratios in male Sprague-Dawley rats (Nalabotu, Kolli, et al., 2011).

Ceria NPs have demonstrated a range of activity in human cells as well. Unlike bacterial and algal cells, effective uptake of CeO$_2$ NPs by human cells has been demonstrated repeatedly. It has been shown that CeO$_2$ NPs modulate the brain-derived neurotrophic factor (BDNF) pathway in human Alzheimer’s disease models in order to trigger neuronal survival (D'Angelo, Santucci, et al., 2009). The NPs have been shown to exhibit toxicity to bronchial epithelial cells due to ROS production (Xia, Kovochich, et al., 2008), although another study showing the same results for bronchial epithelial cells also found no toxic effects for human brain cells and rat cardiomyocytes (Park, Choi, et al., 2008). Another study exhibited low to moderate toxicity of CeO$_2$ NPs to human
alveolar epithelial and macrophage cell lines (Lanone, Rogerieux, et al., 2009). In a study comparing CeO$_2$ to Al$_2$O$_3$ and ZnO NPs, CeO$_2$ NPs were found to induce membrane damage and inhibit colony formation to differing degrees across human lung epithelial cells, carcinoma cells, and normal cell lines. The CeO$_2$ NPs did not demonstrate notable adverse effects on cell proliferation and viability; they were shown to be much less toxic than ZnO in terms of cell viability, proliferation, colony formation, and membrane integrity, but more toxic than Al$_2$O$_3$ even after long-term exposure (Kim, Baek, et al., 2010).

As previously stated, the results of studies across similar cell lines are not always in agreement. Ceria NPs have been reported to both induce and prevent oxidative stress in a variety of organisms. Studies have shown that existing levels of CeO$_2$ in the environment are far “lower than the estimated no effect dose for chronic human exposure” (Park, Choi, et al., 2008), leading to the assertion by some that NP CeO$_2$, along with a variety of other NPs, may not exhibit any environmental effects at all (Rodea-Palomares, Boltes, et al., 2011). However, until the ecotoxicological effects of NP CeO$_2$ are well-known, studies must continue to investigate the generation, transport, uptake, and toxicity mechanisms of these potentially harmful materials.

Mechanisms of Toxicity

Unfortunately, little literature exists revealing possible toxicity mechanisms of CeO$_2$ NPs (or their large amounts of Ce$^{3+}$ impurity) to denitrifying bacteria. However, many studies
exist detailing the effects of the NPs on other bacteria; from these studies, conclusions can be drawn about several likely toxico-mechanistic pathways of CeO$_2$ NPs in denitrifiers.

As previously mentioned, ceria NPs have best been studied for *E. coli* cells. A study by Thill, et al. found that large amounts of CeO$_2$ NPs are able to be adsorbed to the outer membrane of *E. coli* and that the speciation of the Ce following adsorption was significantly different. Post-adsorption, the ratio of Ce(IV):Ce(III) decreased sharply, indicating reduction of the Ce species was taking place at the cell surface. They also found significant cytotoxicity was associated with the adsorption of the NPs and their concurrent reduction at the cell surface. When coupled with the resulting cytotoxic effects, the fact that the reduction of the NPs always occurred at the cell surface revealed that surface adsorption of the NPs is associated with oxidative stress in the bacterial cells. Furthermore, they observed a lack of difference in toxicity after 1 h and 5 h of exposure, which supports rapid biological reductive mechanisms after NP adsorption to the cell membrane (Thill, Zeyons, et al., 2006).

Ceria nanoparticles have also been shown to exhibit surface-charge dependent cytotoxicity in *E. coli*. In normal saline media, the (positively-charged) NPs caused destabilization upon contact with the outer membrane as well as loss of viability and increased ROS production. However, in the presence of phosphate-buffered saline, the amount of contact with the outer membrane was greatly reduced; thus, the destabilization
was far less and no cytotoxic effects or ROS production was observed (He, Kuang, et al., 2012). The surface charge density is extremely closely related to the cytotoxic effects of CeO$_2$ NPs and is perhaps one of the most important considerations when evaluating the NPs for cytotoxicity to other organisms as well. It was also demonstrated that CeO$_2$ NPs exhibit more antibacterial activity than bulk CeO$_2$. In another similar study, it was confirmed that direct contact of the NPs with the surface (outer membrane) of the $E. coli$ bacterial cells induced an increase in intracellular ROS levels (Kuang, He, et al., 2011). Other studies have also supported the idea that adsorption of CeO$_2$ NPs to bacterial cells is the cause of cytotoxic effects, rather than penetration of the cells. In another study demonstrating inhibited cell growth of $E. coli$ and $B. subtilis$ by CeO$_2$ NPs, STEM imaging was used to find that the NPs quickly adsorb to the bacterial cells but are unlikely to actually penetrate them. The study also found that the NPs aggregated fairly strongly (Pelletier, Suresh, et al., 2010). The results of the imaging from this study are in agreement with the earlier mentioned study suggesting that NP adsorption was responsible for cytotoxic effects, rather than penetration (Thill, Zeyons, et al., 2006).

Though extensive literature is not available on the mechanism of CeO$_2$ NP toxicity to denitrifying bacteria, it is likely that the mechanism is similar to those discussed for $E. coli$ and other bacteria: the NPs undergo aggregation and adsorb to the surface of the bacterial cells, but do not penetrate the cells. The direct contact between the cell surface and the NPs results in reduction of Ce species, thus inducing oxidative stress in the bacterial cells, leading to increased ROS production. This is the best mechanism that can
currently be postulated for cytotoxicity of CeO₂ NPs. However, a discussion of ceria cytotoxicity would not be complete without also considering the large amount of Ce³⁺ impurity that is also inherent in the NPs (some manufacturers have reported up to 55% Ce³⁺ impurity). It is likely that the Ce³⁺ impurities in the NP could also play a large role in any observed cytotoxic effects. Another possible pathway of cytotoxicity that has been far less studied is that of Ce³⁺ as an ATPase inhibitor. Several of the lanthanides have been identified as ATPase inhibitors (Gruner, Sehrt, et al., 1992, Palasz and Czekaj, 2000) that are capable of inhibiting phagocytosis in neutrophil granulocytes (white blood cells) (Gruner, Sehrt, et al., 1992) and thus inhibit the release of histamine. Lanthanides work so efficiently as ATPase inhibitors due to their ionic radii, which are extremely similar to that of Ca²⁺. In particular, Ce³⁺ is able to substitute for Ca²⁺ extremely well (Jakupec, Unfried, et al., 2005). This calcium-swapping feature is the foundation of cytophysiological effects of the lanthanides. It is postulated that the isomorphic capabilities of the lanthanide ions allow them to replace Ca(II) in the binding sites of nucleases, thus interrupting activation and preventing growth metabolism of bacteria (Balusamy, Kandhasamy, et al., 2012). In humans and animal cells, trivalent lanthanide ions block calcium channels and affect numerous enzymes very potently (Palasz and Czekaj, 2000).

The effects of Ce³⁺ specifically as a Ca²⁺ ATPase inhibitor have not been studied thoroughly; however, the strong ability of other lanthanides (with less ability to easily substitute for Ca²⁺ than Ce³⁺ has) leads to the conclusion that another important cytotoxic
pathway for Ce\(^{3+}\) could definitely be that of Ca\(^{2+}\) ATPase inhibition, as well as ATPase inhibition in general. Along with their Ce\(^{3+}\) impurities, CeO\(_2\) NPs also tend to have large lanthanide impurities which could lend to further ATPase inhibition and cytotoxicity. Other trivalent lanthanides have been shown to block calineurin and regulate release and transport mechanisms for synaptic transmitters, as well as block membrane receptors like glutamate receptors and GABA (Palasz and Czekaj, 2000).

In conclusion, though the cytotoxic mechanism of CeO\(_2\) NPs (or Ce\(^{3+}\)) has not been directly identified for denitrifying bacteria, a large amount of studies have been performed identifying the mechanisms in other bacterial organisms. A review of the literature on cytotoxic effects of CeO\(_2\) NPs and ionic Ce\(^{3+}\) leads to two main conclusions as to the possible mechanism of CeO\(_2\) NP toxicity in denitrifiers:

1) Exposure to the NPs results in enhanced ROS production via oxidative stress induced by NP adsorption to outer membrane of the bacterial cell; or

2) Cytotoxicity occurs as a result of ATPase (specifically, Ca\(^{2+}\) ATPase) inhibitor activity by Ce\(^{3+}\) and other lanthanide impurities in the NPs.
1.6 Research Hypotheses

A cerium compound of particular interest is nanoparticulate ceria, also known as cerium oxide (CeO$_2$). By far, cerium oxide nanoparticles (CeO$_2$ NPs) are the most widely commercially used cerium compound. It has been reported that global nanomaterial demands will increase by 20% per year and one estimate indicates that the global market for pure nanomaterials is expected to grow to $20.5 billion by 2015 (Palmberg and Tuomo, 2006). As the production of CeO$_2$ NP increases, so does the usage in the industry and consumer markets, posing questions about the fate of NPs in environment. A study by Limbach, et al. has shown that a significant fraction (~ 95%) of CeO$_2$ NPs accumulated in sewage sludge at wastewater treatment plants, and CeO$_2$ discharge into the aquatic environment was fairly limited as compared to accumulation levels in the soil (Limbach, Bereiter, et al., 2008). Thus, application of sludge to agricultural land serves as a significant environmental source of CeO$_2$ NP exposure to the terrestrial environment.

In the last decade, the scientific community has begun to uncover the effect of CeO$_2$ NPs on ecosystem health through toxicological studies of plants, bacteria, aquatic organisms, and mammals. However, the research findings are often difficult to extrapolate to natural aquatic and terrestrial systems since the majority of studies do not consider the effect of natural geochemical conditions on the CeO$_2$ NP reactivity (e.g., solubility and chemical speciation). In low-temperature geochemical environments, CeO$_2$ NPs are likely to react with ligands (e.g., protons, inorganic and organic acids) and/or partition into ge media,
resulting in changes in chemical speciation. One should expect that these geochemical reactions could alter the toxicity of CeO$_2$ NPs as particulates or as dissolution products (e.g., Ce(III)$_{\text{aq}}$).

Based on the research questions above, the following two hypotheses are formulated:

- **Hypothesis 1 (H1):** Exposure to CeO$_2$ NPs can cause toxicity effects to soil denitrifying bacteria.
- **Hypothesis 2 (H2):** Effects of CeO$_2$ NP toxicity on the soil denitrification process are controlled by physicochemical factors and geochemical conditions (size, concentration, valence state ratio of Ce(III)/Ce(IV), pH, ligand concentration) which can alter the surface properties of CeO$_2$ NPs.

The soil denitrifying process was chosen because 1) the anaerobic system which facilitates the denitrification process is suited to study the toxicity of reduced Ce species (i.e., Ce(III)), 2) it is also ideal to study the response of soil microbial community since recent studies have indicated that land application of biosolids to agricultural soils may be a major exposure pathway (Limbach, Bereiter, et al., 2008), and 3) it serves an important role in water treatment systems and in the global N cycle in soil/water environments where CeO$_2$ NPs could have an impact. In addition to being one of the key players in the global nitrogen cycle, the denitrification process is also localized as an instrumental process for operations such as wetland remediations and wastewater treatment plants. Denitrifying bacteria are used to remove nitrogen from municipal
wastewater, sewage, and industrial wastes; they are also used in wetlands (Bachand and Horne, 2000) and riparian zones (Martin, Kaushik, et al., 1999) for removal of excess nitrate caused by the application of fertilizer to residential and agricultural land (Mulvaney, Khan, et al., 1997).
1.7 Research Objectives and Tasks

The objective of this study is to expand the scientific community’s current knowledge of CeO$_2$ NP toxicity to heterogeneous systems by studying the impact of geochemical reactions on CeO$_2$ NP toxicity to the soil denitrification process. The following two major tasks are planned to test the hypotheses above: Task 1: Assessing the effect of geochemical conditions (pH, phosphate ligand) on the physicochemical properties of CeO$_2$ NPs, and Task 2: Investigating the effect of physicochemical properties (e.g., particle size, concentration, pH, ligand concentration) of CeO$_2$ NPs on the soil denitrifying process.
Figure 1.1. Distribution of hardness and softness for potential donor atoms for ligands in the periodic table. (Pearson, 1963)
<table>
<thead>
<tr>
<th>Lanthanide</th>
<th>Reduction Potential (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu</td>
<td>-0.35</td>
</tr>
<tr>
<td>Yb</td>
<td>-1.15</td>
</tr>
<tr>
<td>Sm</td>
<td>-1.55</td>
</tr>
<tr>
<td>Tm</td>
<td>-2.30</td>
</tr>
<tr>
<td>Nd</td>
<td>-2.60</td>
</tr>
<tr>
<td>Dy</td>
<td>-2.60</td>
</tr>
<tr>
<td>Pr</td>
<td>-2.70</td>
</tr>
<tr>
<td>Ho</td>
<td>-2.90</td>
</tr>
<tr>
<td>La</td>
<td>-3.10</td>
</tr>
<tr>
<td>Er</td>
<td>-3.10</td>
</tr>
<tr>
<td>Ce</td>
<td>-3.20</td>
</tr>
<tr>
<td>Tb</td>
<td>-3.70</td>
</tr>
<tr>
<td>Gd</td>
<td>-3.90</td>
</tr>
</tbody>
</table>

Table 1.1. Lanthanide reduction potentials (Evans, 2000).
<table>
<thead>
<tr>
<th>Species</th>
<th>K_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO$_2$ bulk</td>
<td>0.00073338</td>
</tr>
<tr>
<td>CeO$_2$ NP</td>
<td>0.128205128</td>
</tr>
<tr>
<td>Ce(OH)$_3$</td>
<td>1.6E-20</td>
</tr>
<tr>
<td>Ce(OH)$_4$</td>
<td>2.00E-48</td>
</tr>
<tr>
<td>CePO$_4$</td>
<td>1.00E-23</td>
</tr>
<tr>
<td>Ce$_2$S$_3$</td>
<td>6.00E-11</td>
</tr>
<tr>
<td>Ce$_2$(SO$_4$)$_3$·2H$_2$O</td>
<td>9.84 (L3 mol$^{-2}$)</td>
</tr>
<tr>
<td>Ce(SO$_4$)$_2$</td>
<td>9.84 (L2 mol$^{-2}$)</td>
</tr>
<tr>
<td>CeF$_3$</td>
<td>8.00E-16</td>
</tr>
<tr>
<td>Ce(IO$_3$)$_3$</td>
<td>3.20E-10</td>
</tr>
<tr>
<td>Ce(IO$_3$)$_4$</td>
<td>5.00E-17</td>
</tr>
<tr>
<td>Ce$_2$(SeO$_3$)$_3$</td>
<td>3.70E-25</td>
</tr>
<tr>
<td>Ce(NO$_3$)$_3$</td>
<td>234 (L2 mol$^{-2}$)</td>
</tr>
</tbody>
</table>

Table 1.2. Solubility constants (g per 100 g H$_2$O) for selected Ce compounds (Clever, Derrick, et al., 1992, Clever, Johnson, et al., 1985, Clever and Johnston, 1980, IUPAC, 1979-1992, Lide, 2005, Marcus, 1980).
<table>
<thead>
<tr>
<th>Species</th>
<th>EN</th>
<th>Species</th>
<th>EN</th>
<th>Species</th>
<th>EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>0.4</td>
<td>Al</td>
<td>1.61</td>
<td>P</td>
<td>2.19</td>
</tr>
<tr>
<td>K</td>
<td>0.82</td>
<td>Zn</td>
<td>1.65</td>
<td>Pb</td>
<td>2.33</td>
</tr>
<tr>
<td>Na</td>
<td>0.93</td>
<td>Cd</td>
<td>1.69</td>
<td>C</td>
<td>2.55</td>
</tr>
<tr>
<td>Sr</td>
<td>0.95</td>
<td>Co</td>
<td>1.88</td>
<td>S</td>
<td>2.58</td>
</tr>
<tr>
<td>Ca</td>
<td>1</td>
<td>Si</td>
<td>1.9</td>
<td>N</td>
<td>3.04</td>
</tr>
<tr>
<td>Ce</td>
<td>1.12</td>
<td>Cu</td>
<td>1.9</td>
<td>Cl</td>
<td>3.16</td>
</tr>
<tr>
<td>Mg</td>
<td>1.31</td>
<td>Ni</td>
<td>1.91</td>
<td>O</td>
<td>3.44</td>
</tr>
</tbody>
</table>

Table 1.3. Electronegativity of cerium (Pauling scale) compared to other common species found in soils (Gordy and Thomas, 1956).
<table>
<thead>
<tr>
<th>Mineral</th>
<th>Chemical Formula</th>
<th>Type</th>
<th>Locality</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancylite-(Ce)</td>
<td>SrCe((CO_3)_2)(OH) · H_2O</td>
<td></td>
<td>Greenland</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Bastnäsite-(Ce)</td>
<td>(Ce,La)(CO_3)F</td>
<td></td>
<td>Sweden</td>
<td>Hexagonal</td>
</tr>
<tr>
<td>Burbankite</td>
<td>(Na,Ca)_3(Sr,Ba,Ce)_3(CO_3)_5</td>
<td>USA</td>
<td></td>
<td>Hexagonal</td>
</tr>
<tr>
<td>Calcioanycyite</td>
<td>(Ca,Sr)Ce(CO_3)_2(OH) · H_2O</td>
<td>Russia</td>
<td>Orthorhombic</td>
<td></td>
</tr>
<tr>
<td>Calkinsite</td>
<td>(Ce,La)_2(CO_3)_3 · 4H_2O</td>
<td>USA</td>
<td>Orthorhombic</td>
<td></td>
</tr>
<tr>
<td>Carbocernaite</td>
<td>(Ca,Na)(Sr,Ce,Ba)(CO_3)_2</td>
<td>Russia</td>
<td>Orthorhombic</td>
<td></td>
</tr>
<tr>
<td>Cordylite-(Ce)</td>
<td>NaBaCe_2(CO_3)_4F</td>
<td>Greenland</td>
<td>Hexagonal</td>
<td></td>
</tr>
<tr>
<td>Huanghoite</td>
<td>BaCe(CO_3)_2F</td>
<td>China</td>
<td>Trigonal</td>
<td></td>
</tr>
<tr>
<td>Hydroxylbastnäsite-(Ce)</td>
<td>(Ce,La)(CO_3)_3(OH,F)</td>
<td>Russia</td>
<td>Hexagonal</td>
<td></td>
</tr>
<tr>
<td>Lanthanite-(Ce)</td>
<td>(Ce,La,Nd)_2(CO_3)_3 · 8H_2O</td>
<td>Wales</td>
<td>Orthorhombic</td>
<td></td>
</tr>
<tr>
<td>Parisite-(Ce)</td>
<td>Ca(Ce,La)_2(CO_3)_3F_2</td>
<td>Colombia</td>
<td>Monoclinic</td>
<td></td>
</tr>
<tr>
<td>Rhabdophane</td>
<td>(Ce,La)(PO_4) · H_2O</td>
<td>England</td>
<td>Hexagonal</td>
<td></td>
</tr>
<tr>
<td>Remondite-(Ce)</td>
<td>Na_3(Ce,La,Ca,Na,Sr)_3(CO_3)_5</td>
<td>Cameroon</td>
<td>Monoclinic</td>
<td></td>
</tr>
<tr>
<td>Rontgenite</td>
<td>Ca_2(Ce,La)_3(CO_3)_5F_3</td>
<td>Greenland</td>
<td>Trigonal</td>
<td></td>
</tr>
<tr>
<td>Sahamalite</td>
<td>(Mg,Fe)(Ce,La,Nd)_2(CO_3)_4</td>
<td>USA</td>
<td>Monoclinic</td>
<td></td>
</tr>
<tr>
<td>Synchysite-(Ce)</td>
<td>Ca(Ce,La)(CO_3)_2F</td>
<td>Greenland</td>
<td>Monoclinic</td>
<td></td>
</tr>
<tr>
<td>Thorbastnäsite</td>
<td>Th(Ca,Ce)(CO_3)_2F · 3H_2O</td>
<td>Russia</td>
<td>Hexagonal</td>
<td></td>
</tr>
<tr>
<td>Tundrite-(Ce)</td>
<td>Na_2Ce_2Ti(SiO_4)(CO_3)_2O_2</td>
<td>Russia</td>
<td>Triclinic</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.4. Several members of the rare earth carbonates (Anthony).
<table>
<thead>
<tr>
<th>Mineral</th>
<th>Chemical Formula</th>
<th>Type Locality</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agardite-(Ce)</td>
<td>CeCu$_6$(AsO$_4$)$_3$(OH)$_6$·3H$_2$O</td>
<td>Germany</td>
<td>Hexagonal</td>
</tr>
<tr>
<td>Monazite-(Ce)</td>
<td>(Ce,La,Nd,Th)(PO$_4$)$_3$</td>
<td>Russia</td>
<td>Monoclinic</td>
</tr>
</tbody>
</table>

Table 1.5. Several members of the rare earth phosphates (Anthony).
<table>
<thead>
<tr>
<th>Mineral</th>
<th>Chemical Formula</th>
<th>Type</th>
<th>Locality</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allanite-(Ce)</td>
<td>(CaCe)(Al$_2$Fe$^{2+}$)(Si$_2$O$_7$)(SiO$_4$)O(OH)</td>
<td></td>
<td>Greenland</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Cerite-(Ce)</td>
<td>(Ce,Ca)$_9$(Fe,Mg)(SiO$_4$)$_3$(HSiO$_4$)$_4$(OH)$_3$</td>
<td></td>
<td>Sweden</td>
<td>Trigonal</td>
</tr>
<tr>
<td>Gadolinite-(Ce)</td>
<td>(Ce,La,Nd,Y)$_2$Fe$^{2+}$Be$_2$Si2O${10}$</td>
<td></td>
<td>Japan, Norway</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Joaquinite-(Ce)</td>
<td>NaBa$_2$Ce$_2$FeTi$_2$[Si4O${12}$]$_2$O$_2$(OH,F) · H$_2$O</td>
<td></td>
<td>USA</td>
<td>Monoclinic</td>
</tr>
</tbody>
</table>

Table 1.6. Several members of the rare earth silicates (Anthony).
<table>
<thead>
<tr>
<th>Mineral</th>
<th>Chemical Formula</th>
<th>Type Locality</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeschynite-(Ce)</td>
<td>$(\text{Ce,Ca,Fe,Th})(\text{Ti,Nb})_2(\text{O,OH})_6$</td>
<td>Russia</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Euxenite-(Y)</td>
<td>$(\text{Y,Ca,Ce,U,Th})(\text{Nb,Ti,Ta})_2\text{O}_6$</td>
<td>Norway</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Perovskite</td>
<td>CaTiO$_3$ with Ce varieties</td>
<td>Russia</td>
<td>Orthorhombic</td>
</tr>
</tbody>
</table>

Table 1.7. Several members of the rare earth oxides and hydroxides (Anthony).
1.8 References

CHAPTER TWO
EFFECTS OF pH AND PHOSPHATE ON PHYSICOCHEMICAL PROPERTIES
OF CeO₂ NANOPARTICLES

2.1 Abstract

Due to the rise of nanotechnology in industry, the concentrations of engineered metal oxide nanoparticles being released to the environment are increasing daily. To understand the chemical interactions of CeO₂ nanoparticles post-environmental release, the dissolution of small (10 – 30 nm) and large (50 – 105 nm) manufactured CeO₂ NPs was studied as a function of pH in the absence and presence of phosphate. It was found that Ce dissolution was negligible at pH > 7 and was only significant at pH < 5. When 100 µM phosphate was present, dissolution of CeO₂ NPs was significantly reduced. The rate constant in small NPs decreased by 15% at pH 1.65 and 75% at pH 4.5 and in large NPs decreased by 56% at pH 1.65 and 63% at pH 4.5. Phosphate-suppressed Ce(IV)O₂ dissolution was linked to the chemisorption of PO₄³⁻. It was postulated that the Ce(III) impurity metal-centered complexation with PO₄³⁻ ligands could facilitate the formation of Ce(III)PO₄ surface precipitates at the Ce(IV)O₂-water interface. Phosphate ligands might play an important role in controlling the Ce release from CeO₂ NPs; this is an important consideration in determining the fate and transport of CeO₂ NPs in the aquatic and terrestrial environment.
2.2 Introduction

Cerium (Ce) is the most abundant of the rare-earth metals found in the earth’s crust (Hedrick, 2004). Cerium comprises about 0.0046% of the earth’s crust by weight, occurring at average concentrations of 50 mg kg\(^{-1}\). Cerium minerals naturally occur with other lanthanide metals in an array of minerals in the environment including allanite ((Ca,Ce)(Al\(_2\)Fe\(^{2+}\))(Si\(_2\)O\(_7\))(SiO\(_4\))O(OH)), bastnäsite ((Ce,La)(CO\(_3\))F), cerite ((Ce,Ca\(_9\))(Fe,Mg)(SiO\(_4\))\(_3\)(HSiO\(_4\))\(_4\)(OH)\(_3\)), monazite ((Ce,La,Nd,Th)(PO\(_4\))\(_3\)), and euxenite ((Y,Ca,Ce,U,Th)(Nb,Ti,Ta)\(_2\)O\(_6\)); however, of these minerals, only bastnäsite and monazite serve as important sources commercially. Acidification of these mixed lanthanide/metal followed by base titration improves purity of Ce, and a variety of Ce compounds have been synthesized for commercial and industrial applications (Abreu and Morais, 2010, Patnaik, 2003).

Popular applications of Ce compounds include pharmaceutical (antiemetic and antithrombic drugs) and industrial uses (mischmetal for metallurgical purposes, scintillation counters, abrasives) (Hedrick and Sinha, 1994, Jakupec, Unfried, et al., 2005, Kilbourn, 2003, van Loef, Dorenbos, et al., 2001). The most common applications are the uses of CeO\(_2\) nanoparticles as catalysts, glass additives, and fuel additives. (Abbasi, Haghighi, et al., 2011, Reinhardt and Winkler, 2002). Because of the rapidly growing demand of Ce nanotechnology, the release of Ce is expected to increase in the environment. A majority (95%) of cerium is likely to be discharged from wastewater.
treatment plants and/or accumulated in the sludge that is later used for soil amendments (Limbach, Bereiter, et al., 2008). Thus, industrial wastewaters serve as a significant environmental source of CeO$_2$ NPs. As in the case of many other metal NPs such as TiO$_2$, ZnO, and Ag NPs (Gottschalk, Sonderer, et al., 2009), it is believed that biosolids application to agricultural soils serves as one of the largest exposure routes for manufactured CeO$_2$ NPs (Cornelis, Ryan, et al., 2011). Thus, there is great interest in understanding the fate of CeO$_2$ nanoparticles in soils and sediments.

In low temperature geochemical environments, the most common oxidation states of Ce are trivalent and tetravalent. Cerium’s coordination/hydration number is generally six, which is a quite uncommon coordination number among other lanthanides. The Hard/Soft Acid/Base theory predicts the tendency of hard acidic Ce to strongly bond with hard base ligands such as hydroxyl ions and phosphates over species like sulfates and hydrides. In general, Ce(III) is more soluble than Ce(IV). Tetravalent Ce is known to undergo hydrolysis reactions to form insoluble Ce(IV)(OH)$_4$ (K_{sp}: 2 x 10$^{-48}$, whereas K_{sp} of Ce(III)(OH)$_3$ is 1.6 x 10$^{-20}$). However, Ce(III) could form the very insoluble phosphate compound, Ce(III)PO$_4$ as well (K_{sp}: 1 x 10$^{-23}$) (Bjerrum, 1958, Clever, Johnson, et al., 1985, Clever, Johnson, et al., 1992, Clever and Johnston, 1980, IUPAC, 1979-1992, Marcus, 1980). While other common O-donor organic acids (oxalate, tartrate) complex with Ce(III) to form solubility products (Ce$_2$(C$_2$O$_4$)$_3$·9H$_2$O: K_{sp}: 3,2 x 10$^{-26}$), Ce$_2$(tartrate)$_3$ (K_{sp}: 1.0 x 10$^{-19}$), it seems that the role of hard basic ligands (hydroxyl and phosphate) in pore waters and soil solutions is undoubtedly important in predicting the
solubility of CeO$_2$ NPs in the aquatic-terrestrial environment. Unfortunately, due to the relativeness newness of CeO$_2$ nanotechnology, the reactivity of CeO$_2$ NP in low temperature geochemical environments has not been extensively investigated, leaving uncertainties in predicting the fate of CeO$_2$ NPs.

The objective of this study is to understand the sorption dissolution of manufactured CeO$_2$ NPs as a function of pH and phosphate concentration. Batch phosphate sorption on CeO$_2$ NPs and CeO$_2$ dissolution experiments were carried out using two uncapped CeO$_2$ NPs (33 and 78 nm) as a function of pH (3 – 8). Phosphate was chosen as an inorganic ligand since it is largely environmentally relevant, found widely in soils (especially agricultural soils) as well as in agricultural drainage and lake surface waters at 0.05 – 1 and 0.01 – 0.04 mg L$^{-1}$, respectively (Snoeyink and Jenkins, 1980). Cerium oxide NPs are characterized for physicochemical properties (valence state and particle size, zeta potential, exchangeable Ce) to better interpret the results of batch sorption and dissolution experiments. Results from this work should help in predicting the chemical fate of CeO$_2$ NPs under environmentally relevant geochemical conditions.

2.3 Materials

Cerium oxide NPs (powder) of two different particle sizes were obtained from US Research Nanomaterials (Houston, TX) and Nanostructured and Amorphous Materials, Inc. (Houston, TX). Brunauer-Emmett-Teller (BET) surface area, density and chemical
impurity data were provided by the manufacturers. To improve understanding of the reactivity of the CeO$_2$ NPs, exchangeable Ce was measured. A 0.3 g portion of CeO$_2$ NPs was suspended in 10 mL of 0.5 M Ca(NO$_3$)$_2$ solution and sonified. The NP suspensions were agitated on an end-over shaker for 18 h at 12 rpm. Nanomaterials were spun down using a high speed centrifugation method, and acid digested aliquots were analyzed for total Ce using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and for dissolved Ce(III) using the fluorimetric method and dissolved Ce(IV) using the spectrophotometric method detailed in the dissolution section.

Zeta Potential and Particle Size Characterization

Cerium NP solutions were analyzed for zeta potential and particle size (via dynamic light scattering, DLS) using a Brookhaven Instruments particle separation system (Brookhaven Instruments, Holtsville, New York). Cerium nanoparticle suspensions (0.15 g L$^{-1}$) were prepared by hydrating the NPs for several days at pH ~ 4 in 0.01 M NaNO$_3$.

2.4 Methods

Phosphate Sorption Envelope on CeO$_2$ Nanoparticles

Phosphate adsorption was studied as a function of pH (3.5 – 8.5), [PO$_4^{3-}$] = 0.48 and 2.39 mM, and particle size of the CeO$_2$ nanoparticles. All experiments were conducted at 21 ± 1.2 °C, at ionic strength I = 0.017 M NaNO$_3$, and under pCO$_2$ = 10$^{-3.45}$ atm unless otherwise mentioned in the text. Cerium oxide nanoparticle stock suspensions were
freshly prepared in the same background electrolyte solution prior to the experiment. Hydration of adsorbent was carried out in two steps. In the first step, 20 mL of sonified CeO$_2$ stock suspensions were transferred into 30 mL high speed Oakridge centrifuge tubes. Next, the pH of the suspensions was adjusted to values ranging between 3 and 9 using either 1 M HNO$_3$ or 1 M NaOH, and equilibrated for 24h. The appropriate amount of sodium bicarbonate was also added to achieve desired bicarbonate concentrations at targeted pH values that were estimated using the chemical speciation program VisualMinteq ver. 3.0 (Gustaffson, 2007). After hydration, an appropriate amount of 23.87 mM phosphate monobasic monohydrate stock solution was added to achieve an initial PO$_4^{3-}$ concentration of 0.48 or 2.39 mM and the final suspension density of CeO$_2$ = 1 g L$^{-1}$. The samples were reacted for 48 h on an end-over shaker at 12 rpm. The reaction time of 48 h was chosen through preliminary experiments showing that there is a minimum kinetic effect on total PO$_4^{3-}$ uptake after 48 h (i.e., reaching near steady-state after 2 days). After 48 h of shaking, the final pH was measured in the suspension. Prior to the filtration of aliquots, the following nanoparticle separation method was developed using modified Stokes’ law. The large NPs were centrifuged at 10,000 rpm for 13 min and the small NPs were centrifuged at 17,000 rpm for 60 min. After centrifugation, 5 mL of supernatant were filtered through 0.20 µm Whatman (polyvinylidene difluoride) PVDF filters. The molybdenum blue method (He, Baligar, et al., 1998, Murphy and Riley, 1986) was used to analyze for soluble phosphate.
Phosphate Sorption Isotherm on CeO$_2$ Nanoparticles

All experiments were conducted in duplicate under ambient conditions (22 ± 1.2 °C and pCO$_2$ = 10$^{-3.45}$ atm). Prior to the sorption experiments, cerium oxide nanoparticle (NP) stock suspensions (large nanoparticles, 50 – 105 nm, and small nanoparticles, 10 – 30 nm) were freshly prepared in a 0.017 M NaNO$_3$ background electrolyte solution. First, 10 mL of sonified CeO$_2$ stock suspensions were transferred into 30 mL Nalgene high speed centrifuge tubes. Next, the pH of the suspensions was adjusted to 4.5 and 7.5 using 10 mL of 30 mM sodium acetate and 3-morpholino-2-hydroxypropanesulfonic acid sodium salt, 3-(N-morpholinyl)-2- hydroxypropanesulfonic acid (MOPSO) buffer solutions, respectively. The pH values were readjusted using either 1 M HNO$_3$ or 1 M NaOH and the solutions were allowed to equilibrate for 24 h. After the equilibration, an appropriate amount of sodium phosphate monobasic monohydrate stock solution and NaNO$_3$ background electrolyte solution was added to achieve [P]$_{\text{total}}$ = 0.10 – 1.30 mM, the final suspension density of CeO$_2$ = 1 g L$^{-1}$, and I = 0.017 M NaNO$_3$. The samples were then placed on an end-over shaker for 48 h. In order to separate the NPs from solution, the following centrifugation method was developed from the modified Stokes’ law. After 48 h of shaking, the large NP samples were centrifuged at 10,000 rpm for 13 min and the small NP samples were centrifuged at 17,000 rpm for 60 min. After centrifugation, 5 mL aliquots of the supernatant were filtered through 0.20 µm Whatman (polyvinylidene fluoride) PVDF filters. The molybdenum blue method (He, Baligar, et al., 1998 and Murphy, J. and Riley, J.P., 1962) was then used to analyze the filtrate for total phosphate.
Phosphate Desorption

Phosphate sorbed CeO$_2$ NP samples (0.48 and 2.39 mM PO$_4^{3-}$ in 0.017 M NaNO$_3$ at pH = 4.5 and 7.5) were prepared using the sorption isotherm method described above. Suspensions were centrifuged using the method described in the previous section. The remaining supernatant was decanted completely. The entire 30 mL of supernatant was filtered through 0.20 µm Whatman (polyvinylidene fluoride) PVDF filters. Then, 30 mL of fresh PO$_4^{3-}$-free background electrolyte solutions (0.017 M NaNO$_3$ adjusted to pH 4.5 or 7.5 with 30 mM sodium acetate or 3-morpholino-2-hydroxypropanesulfonic acid, respectively) were introduced to respective pH systems. The equilibrium shift in [PO$_4^{3-}$] drove the desorption of PO$_4^{3-}$. After addition of PO$_4^{3-}$-free background electrolyte solutions, the tubes were placed on an end-over shaker for 24 h at 12 rpm. The replenishment process was repeated at time periods of 1, 2, 3, 5, 10, 15, and 30 days. The filtrates were acidified in 1% HNO$_3$ and analyzed for total PO$_4^{3-}$ and Ce using ICP-AES.

Aqueous Speciation Calculation

Cerium(III) aqueous speciation and solubility products were estimated using the chemical speciation program VisualMinteq ver. 3.0 (Gustaffson, 2007).

Dissolution Experiments

To assess the solubility of CeO$_2$ NPs, dissolution experiments were conducted as a function of particle size, pH, phosphate concentration (0 and 0.1 mM). All experiments
were performed at $[\text{Ce}]_{\text{total}} = 500 \text{ mg L}^{-1}$. Ionic strength was maintained with 0.005 M NaNO$_3$.

Four pH values, which were controlled by 0.1 M HNO$_3$ for pH = 1.65 ± 0.05, 0.02 M sodium acetate for pH 4.5 ± 0.05, 0.02 M 3-morpholino-2-hydroxypropanesulfonic acid sodium salt (MOPSO) buffer for pH 7.5 ± 0.05 and 0.1 M NaOH for pH = 12.40 ± 0.05, were used in the experiments. Solutions were kept in 50 mL Oak Ridge Nalgene polycarbonate high speed centrifuge tubes for the systems at pH < 5 and Nalgene polypropylene high speed centrifuge tubes for the systems at pH > 8. Tubes were shaken on a reciprocal shaker at 15 rpm up to 6 days. At each sampling period (24, 48, 72, 96, 120, and 144 h), CeO$_2$ NPs were separated from the bulk solution using the high-speed centrifugation method described above. Concentrations of $[\text{Ce}]_{\text{total}}$ were measured using the ICP-AES and $[\text{Ce(III)}]$ using the fluorimetric method described below. Using the linear portion of the dissolution data, the rate was modeled using a linear empirical rate law under the assumption of zero order kinetics for solid phase. The rate (k) can be described in the following equation, $C = C_0 + kt$.

Ce(III) Fluorimetric Analysis

Subsamples of filtrates from the denitrification experiments were used for Ce(III) fluorimetric analysis (Rakicioglu and Akseli, 1998). In 96-well microplates, samples were prepared for analysis in triplicate. The filtrates were combined with 0.033 g L$^{-1}$ sodium pyrophosphate and degassed DI water, then 200 µL portions were immediately
evaluated for total $[\text{Ce(III)}]$ using a Synergy Mx Biotek (Biotek U.S. Winooski, VT) using an excitation wavelength of 300 nm and an emission wavelength of 350 nm.

Ce(IV) Spectrophotometric Analysis

Similarly, 1 mL of filtrates from the denitrification experiments were analyzed for $[\text{Ce(IV)}_{(aq)}]$ using a spectrophotometric method described by Agrawal, Sekhar, and Pandey (Agrawal, Sekhar, et al., 1994). A 1 mL aliquot of the filtrates was combined with 2 mL of 1 M H_2SO_4, and 5 mL of 0.1 % o-phenylenediamine (OPD) reagent. In 96-well microplates, 200 µL portions of these solutions were added in triplicate for immediate analysis with a Synergy Mx Biotek at an absorbance wavelength of 470 nm.

2.5 Results and Discussion

Nanoparticle characterization

Table 2.1 describes the physicochemical properties of the cerium oxide nanoparticles (CeO$_2$ NPs) used in this study. The species CeO$_2$-S denotes the small CeO$_2$ NP while CeO$_2$-L denotes the large nanoparticle. The density of the two species is identical but they differ greatly in BET surface area and zeta potential values. The BET surface area of small and large NP is 40 m2 g$^{-1}$ and 11.5 m2 g$^{-1}$, respectively. The manufacturers reported that the smaller NP is more X-ray amorphous than the larger NP (Nanostructured & Amorphous Materials, Inc., Houston, TX and US Research Nanomaterials, Houston, TX). The zeta potential value is positive for both NPs at pH ~ 4. This agrees with
literature values (Berg, Romoser, et al., 2009). Lastly, perhaps the most important
characterization in Table 2.1 is that of exchangeable Ce(III) in the NPs. While the larger
NPs contain 1.56 mM kg\(^{-1}\) of exchangeable Ce(III), the small NPs feature only 0.3 mM
kg\(^{-1}\). To assess the exchangeable Ce(III), first the total Ce was determined using ICP-
AES, and then the Ce(IV) analysis was conducted using the Ce(IV) UV-VIS method
(Agrawal, Sekhar, et al., 1994). The Ce(IV) concentration was below detection limits (0.1
mg L\(^{-1}\)), suggesting that > 99% of exchangeable [Ce]\(_{\text{total}}\) was Ce(III). The Ce(III)
fluorimetric method (Rakicioglu and Akseli, 1998) was also attempted to quantify
[Ce(III)]. However, it did not yield in any useful informative due to the interference from
ions in background electrolyte (sulfates, nitrates, and most especially phosphates). In
summary, total Ce concentration was interpreted as predominantly Ce(III)\(_{\text{(aq)}}\).

Tables 2.2 and 2.3 list the catalogued impurities in the small and large NPs, respectively
(Nanostructured & Amorphous Materials, Inc., Houston, TX and US Research
Nanomaterials, Houston, TX). As reviewed in Ch 1, Ce bearing minerals (e.g., monazite
and bastnäsite) contain many lanthanide elements. It is likely that these lanthanide
elements (e.g., La, Pr, Y, Nd, Sm, Eu) are sources of impurities in synthetic CeO\(_2\) NPs.
Iron, Ce, and Si are also notable impurities (as high as 99 mg kg\(^{-1}\) in large NPs and 63 mg
kg\(^{-1}\) in small NPs). While Ca is considered as an isomorphic element for Ce(III) in the
CeO\(_2\) structure, SiO\(_2\) and Fe\(_2\)O\(_3\) might originate from the manufacturing process of these
NPs.
Phosphate adsorption envelope

Figure 2.1 features the phosphate sorption envelope onto the surface of small and large CeO$_2$ NPs (1 g L$^{-1}$), both sizes either spiked with a low (0.48 mM L$^{-1}$) or a high (2.39 mM L$^{-1}$) phosphate concentration. The data were collected over a pH range of ~ 3.5 – 10.5. As expected, the samples spiked with higher [PO$_4^{3-}$] exhibited higher levels of sorption than the samples spiked with lower [PO$_4^{3-}$]. The fact that the small NPs have much greater surface area than the larger NPs likely accounts for the different affinity for phosphate.

The pH dependent sorption behavior of the phosphate anion is demonstrated most clearly for the small NPs with high added PO$_4^{3-}$. The sorption trend is similar to that of aluminum oxides (De, 1961, Hsu and Rennie, 1962, Muljadi, Posner, et al., 1966, Torrent, Barron, et al., 1990) that have a high PZC (~ 9) like CeO$_2$. The sorption decreases strongly with increasing pH when CeO$_2$-S is reacted with either low or high PO$_4^{3-}$ concentrations; a more dramatic decrease is observed at the high PO$_4^{3-}$ concentration. As the pH$_{solution}$ approaches PZC of CeO$_2$ (~ 9) (Kosmulski, 2001), the surface of CeO$_2$ becomes more negative and repels anionic HPO$_4^{2-}$ and or PO$_4^{3-}$ species, resulting in a small amount of sorption. On the contrary, large NPs feature far less pH-dependent sorption behavior. Regardless of the different [PO$_4^{3-}$]$_{initial}$, pH does not affect the uptake of phosphate as greatly as it does for the small NPs. These seemingly pH-independent sorption mechanisms might be attributed to the surface precipitation of Ce(III)PO$_4$. Since large CeO$_2$ NPs contain more exchangeable Ce(III) than the small NPs,
it is possible that exchangeable Ce(III) facilitated the precipitation of Ce(III)PO$_4$ at the CeO$_2$-water interface. The solubility constant (K_{sp}: 1.00E-23) indicates that Ce(III)PO$_4$ is an extremely insoluble compound (Table 1.2). Under the reaction conditions, the system is supersaturated with respect to Ce(III)PO$_4$ (low PO$_4^{3-}$: saturation index value for Ce(III)PO$_4$(s) at pH 3.5 = 7.179, at pH 10.5 = 11.254; high PO$_4^{3-}$ at pH 3.5 = 7.845, at pH 10.5 = 11.951).

Phosphate adsorption isotherm

Figures 2.2 and 2.3 show the phosphate sorption isotherm in small and large CeO$_2$ NPs, respectively. At pH 4.5 and 7.5, phosphate sorption generally increases with increasing [PO$_4^{3-}$]$_{initial}$. A typical L(Langmuir)-shape isotherm curve (Sposito, 1984) is observed in Figures 2.2 and 2.3. A decreasing slope is observed as concentration increases since vacant sites decreases as the sorption sites are filled. Such sorption suggests very high affinity of phosphate for CeO$_2$ NPs. Similar experimental evidence has been reported by other studies (Ogata, Tominaga, et al., 2011, Recillas, Garcia, et al., 2012). The sorption values (for the same PO$_4^{3-}$ concentration) differed very little in both pH values (Figures 2.2 and 2.3), suggesting pH independent sorption behavior as a function of [PO$_4^{3-}$]$_{initial}$ at pH 4.5 – 7.5. Comparing the total phosphate sorption between two NPs, the small NPs exhibited a greater sorption than the large NPs did at all C$_{eq}$ values. The high surface area of the small CeO$_2$ NPs is likely resulting in more surface sites for dissolved phosphate.
Phosphate desorption isotherm

To assess the reversibility of sorbed phosphate, phosphate desorption experiments were conducted in samples from the phosphate sorption isotherm experiments (Figure 2.4). A large amount of desorption was observed over the course of 30 days. Under each reaction condition, predominant phosphate aqueous species are predicted to be H_2PO_4^- at pH 4.5 (log activity: -3.39 for the small NP system, -3.71 for the large NP system) and HPO_4^{2-} at pH 7.5 (log activity: -3.03 for both systems). In the case of the small NPs at pH 4.5, nearly 80% of sorbed phosphate was released after 30 days. The most irreversible effect was observed in the large NP at pH 7.5. Only ~45% of sorbed phosphate was released at pH 4.5. Overall, the release of phosphate kinetics was biphasic. The initial fast desorption was followed by a slow continuum release up to 30 days. The release was also pH dependent in both NPs. The total PO_4^{3-} desorption decreases with increasing pH from 4.5 to 7.5. This suggests that release of phosphate was not occurring via ligand (hydroxyl) exchange mechanisms. One can postulate the following mechanism for dissolution of CePO$_4$ bulk/surface precipitates. First, the saturation index of Ce(III)PO$_4$ was calculated using VisualMinteq ver 3.0 (Gustaffson, 2007). For the calculation, the concentration of exchangeable Ce(III) was first used as total labile Ce(III). The addition of phosphate was known to result in the formation of Ce(III)PO$_4$ in both NPs. Saturation index values of Ce(III)PO$_4$ for the large NP system are 5.95 - 6.59 at pH 4.5 and 8.76 at pH 7.5, and for the small NP system are 5.26 - 5.87 at pH 4.5 and 8.05 at pH 7.5. Greater saturation index values at higher pH values suggest that the formation of Ce(III)PO$_4(s)$ is enhanced with increasing pH form 4.5 to 7.5. If there is any structural Ce(III) impurity in Ce(IV)O$_2$
NPs, the surface precipitation of Ce(III)PO$_4$ cannot be excluded during the phosphate sorption. Considering the insoluble nature of Ce(III)PO$_4$$_{4(s)}$ at pH > 7, this could explain enhanced phosphate release at acidic pH.

Effects of pH and phosphate on CeO$_2$ NP dissolution kinetics

Figures 2.5 and 2.6 show the effect of pH and phosphate on the dissolution of CeO$_2$ NPs. Four different pH values (1.65, 4.45, 7.45, and 12.40) were used in the presence and absence of 100 µM PO$_4$$^{3-}$ (indicated in these figures as P). The experiments at pH 7.45 and 12.40 did not yield in the dissolution of Ce (i.e., dissolution was below the detection limit of ICP-AES, 0.01 mg L$^{-1}$). For this reason, only the data at pH 1.65 and 4.45 are presented.

To facilitate the discussion of the dissolution data, the rate constants for Ce dissolution data were estimated using the time period 24 – 120 h as shown in Figure 2.5. The highest dissolution was found at pH 1.65 without PO$_4$$^{3-}$. It reached ~ 10 mM Ce kg$^{-1}$ of CeO$_2$. The addition of PO$_4$$^{3-}$ suppressed the Ce dissolution. The rate constant decreased from 0.449 to 0.038 (mM Ce kg CeO$_2$$^{-1}$ h$^{-1}$) with the addition of PO$_4$$^{3-}$ at pH 1.65 (Table 2.4). At pH 4.45, the release of Ce decreased more than 50% comparing to that in the respective systems at pH 1.65. The rate constant changes from (0.0249 to 0.0060 mM Ce kg CeO$_2$$^{-1}$ h$^{-1}$) after with PO$_4$$^{3-}$, suggesting that PO$_4$$^{3-}$ suppressed the dissolution of CeO$_2$. When the concentration of dissolved PO$_4$$^{3-}$ was monitored during the dissolution (Figure 2.7), the release of PO$_4$$^{3-}$ was near negligible at pH 1.65 and 4.45, suggesting near 100%
Absorption of PO_4^{3-} on the CeO$_2$ surfaces. Several conclusions can be yielded from this experiment: 1) dissolution is a pH-dependent process, 2) CeO$_2$ NPs are insoluble at pH $>$ 7 and 3) addition of phosphate to CeO$_2$ NPs inhibits the dissolution of Ce species from the NPs. Dissolution mechanisms can be postulated as follows. Proton promoted dissolution of metal oxides has been extensively studied (Schwertmann, 1991, Stumm, 1997). It is known that the surface coordination properties of H$^+$ form an array of surface complexes whose reactivities determine the mechanisms of many surface-controlled processes. Dissolution is generally enhanced when the activity of proton is increased. Interestingly, ligand attachment on the mineral surfaces is known to inhibit non-reductive dissolution of various metal (hydr)oxides. Pronounced effects are commonly observed when ligands (e.g., phosphate, arsenate) form inner-sphere binuclear surface complexes (Biber, Afonso, et al., 1994, Rubasinghege, 2012). The effects observed with CeO$_2$ NPs are similar to those expected to occur with other oxide and aluminosilicate minerals.

Figure 2.6 describes the dissolution of large CeO$_2$ NPs as a function of pH with and without 100 µM phosphate. The steady release of Ce is observed in all systems after 24 h and the same trend as in the small NPs is observed in the large NPs. Proton promoted dissolution is more pronounced at pH 1.65, and the total dissolution at pH 4.45 is approximately 50% of total Ce release at pH 1.65. The effects of PO_4^{3-} on CeO$_2$ dissolution can be clearly seen in Figure 2.6. The rate constant also supports the evidence. The addition of PO_4^{3-} suppressed the Ce dissolution. The rate constant decreased from 0.061 to 0.0268 (mM Ce kg CeO$_2$$^{-1}$ h$^{-1}$) with the addition of PO_4^{3-} at pH
At pH 4.45, the release of Ce decreased ~ 50% comparing to that in the respective systems at pH 1.65. The rate constant changes from 0.0219 to 0.008 (mM Ce kg CeO$_2$^{-1} h$^{-1}$) after addition of PO$_4^{3-}$, suggesting that PO$_4^{3-}$ suppressed the dissolution of CeO$_2$. The rapid reduction of [PO$_4^{3-}$] in the system at pH 1.65 and 4.45 can be observed in Figure 2.8, indicating that the surface coverage of PO$_4^{3-}$ was quickly achieved less than 5 h.

When the total Ce dissolution was compared between two NPs, total Ce release was more than twice in the large NPs. At pH 1.65, the small NP features [Ce] of around 10 mM Ce kg$^{-1}$ CeO$_2$ for both added PO$_4^{3-}$ and no added PO$_4^{3-}$; the large NP features [Ce] close to 30 mM kg$^{-1}$ CeO$_2$ for no PO$_4^{3-}$ added and close to 25 mM Ce kg$^{-1}$ CeO$_2$ when PO$_4^{3-}$ was added. For pH 4.45, the small NP values were around 3 mM Ce kg$^{-1}$ CeO$_2$ for no PO$_4^{3-}$ added and around 2 mM Ce kg$^{-1}$ CeO$_2$ for added PO$_4^{3-}$ while the large NP values were around 15 mM Ce kg$^{-1}$ CeO$_2$ (no PO$_4^{3-}$) and 10 mM Ce kg$^{-1}$ CeO$_2$ (added PO$_4^{3-}$). In general, greater surface area of solids enhances the dissolution. Therefore, greater dissolution would normally be expected in smaller NPs. However, this is not the case. The larger release of Ce by the large NPs is probably attributed to the different exchangeable Ce(III) in each solid. As discussed earlier (Table 2.1), exchangeable Ce(III) in the large NPs was around three times greater than that in the small NPs.
2.6 Summary

The dissolution of manufactured CeO$_2$ NPs was studied as a function of pH in the absence and present of phosphate. Small and large uncapped CeO$_2$ NPs (average particle size: 33 nm and 78 nm) had positive zeta potentials (25 and 33 mV, respectively), and large surface areas (40 m2 g$^{-1}$ and 11 m2 g$^{-1}$, respectively). The pH dependent phosphate sorption was more pronounced in small NPs than in larger NPs. Adsorption isotherms showed that both NPs exhibited the L-type shape isotherm curve, revealing a high affinity for phosphate. Interestingly, the reversibility of sorbed PO$_4^{3-}$ increased with decreasing pH. The dissolution of Ce(III)PO$_4$ surface precipitate might be controlling the dissolved PO$_4^{3-}$ concentration. The dissolution of CeO$_2$ was most effective in both NPs at pH 1.65, and there was near negligible dissolution at pH > 7.5. Phosphate ligands effectively reduced the release of Ce in both NPs at pH 1.65 and 4.45.

The dissolution properties of CeO$_2$ NPs affected by pH and phosphate may be considered in assessing the fate of CeO$_2$ NPs in the aquatic and terrestrial environment. Phosphate is one of most common oxyanions present in surface and subsurface waters. The interaction between PO$_4^{3-}$ and Ce(III) impurities in manufactured CeO$_2$ NPs might be critical since it greatly affects the surface charge properties and structure. Especially, the formation of Ce(III) solubility products/surface precipitates involving the binding of a metal center (like Ce(III) or Ce(IV)) to a ligand (PO$_4^{3-}$) to form a coordination complex could potentially control the solubility of Ce in environment.
Figure 2.1. Phosphate sorption envelope onto both small (10-30 nm) and large (50-105 nm) CeO₂ nanoparticle surfaces for two different concentrations of PO₄³⁻ (standard deviation < 0.103 mmoles PO₄³⁻ sorbed kg⁻¹ CeO₂).
Figure 2.2. Phosphate sorption isotherm for small CeO$_2$ NP at pH 4.5 and 7.5. (Error bars included for all data points; some error bars are hidden within data symbols.)
Figure 2.3. Phosphate sorption isotherm for large CeO$_2$ NP at pH 4.5 and 7.5. (Error bars included for all data points; some error bars are hidden within data symbols.)
Figure 2.4. Desorption of phosphate from small and large CeO$_2$ NP surface at pH 4.5 and 7.5. (Error bars included for all data points; some error bars are hidden within data symbols.)
Figure 2.5. Dissolution of cerium from surface of small CeO$_2$ NP over five days at two different pH values in the absence and presence of 100 µM PO$_4$$^{3-}$ (indicated by “P”). Lines indicate the portion of the dissolution data from which rate constants were calculated.
Figure 2.6. Dissolution of cerium from surface of large CeO$_2$ NP over six days at two different pH values in the absence and presence of 100 µM PO$_4^{3-}$ (indicated by “P”). Lines indicate the portion of the dissolution data from which rate constants were calculated.
Figure 2.7. Dissolved phosphorus concentration during small cerium oxide NP dissolution experiments at two different pH values over seven days.
Figure 2.8. Dissolved phosphorus concentration during large cerium oxide NP dissolution experiments at two different pH values over seven days.
<table>
<thead>
<tr>
<th>Nanoparticle identification</th>
<th>Cerium purity</th>
<th>Particle size (nm)</th>
<th>Density (g cm$^{-3}$)</th>
<th>BET surface area (m2 g$^{-1}$)</th>
<th>Zeta potential (mV)</th>
<th>Exchangeable Ce(III) (mmoles kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO$_2$S</td>
<td>99.9%</td>
<td>32.5 (± 17.5)</td>
<td>7.13</td>
<td>40 (± 10)</td>
<td>25.98 (± 1.92)</td>
<td>0.30 (± 0.001)</td>
</tr>
<tr>
<td>CeO$_2$L</td>
<td>99.97%</td>
<td>77.5 (± 27.5)</td>
<td>7.13</td>
<td>11.5 (± 3.5)</td>
<td>33.11 (± 2.14)</td>
<td>1.56 (± 0.004)</td>
</tr>
</tbody>
</table>

Table 2.1. Characterization of physicochemical properties of manufactured cerium oxide nanoparticles. Based on the average particle size reported by Nanostructured & Amorphous Materials, Inc. (Houston, TX) and US Research Nanomaterials (Houston, TX), the following abbreviations were given: CeO$_2$S for 32.5nm and CeO$_2$L for 77.5nm. *The values are from dynamic light scattering analysis in this study. In the zeta potential measurement (suspension density 0.16 g L$^{-1}$ in milli-Q water), pH of large and small NPs are is 4.05 and 4.18, respectively.
<table>
<thead>
<tr>
<th>Impurity</th>
<th>Classification</th>
<th>Concentration (mg kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>La(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 86</td>
</tr>
<tr>
<td>Pr(6)O({11})</td>
<td>Rare earth oxide</td>
<td>< 36</td>
</tr>
<tr>
<td>Nd(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 22</td>
</tr>
<tr>
<td>Sm(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 10</td>
</tr>
<tr>
<td>Eu(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 10</td>
</tr>
<tr>
<td>Gd(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 10</td>
</tr>
<tr>
<td>Tb(_4)O(_7)</td>
<td>Rare earth oxide</td>
<td>< 10</td>
</tr>
<tr>
<td>Dy(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 10</td>
</tr>
<tr>
<td>Ho(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 10</td>
</tr>
<tr>
<td>Er(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 10</td>
</tr>
<tr>
<td>Tm(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 10</td>
</tr>
<tr>
<td>Yb(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 10</td>
</tr>
<tr>
<td>Lu(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 10</td>
</tr>
<tr>
<td>MgO</td>
<td>Alkaline earth oxide</td>
<td>< 12</td>
</tr>
<tr>
<td>CaO</td>
<td>Alkaline earth oxide</td>
<td>< 65</td>
</tr>
<tr>
<td>TiO(_2)</td>
<td>Transition metal oxide</td>
<td>< 5</td>
</tr>
<tr>
<td>Cr(_2)O(_3)</td>
<td>Transition metal oxide</td>
<td>< 5</td>
</tr>
<tr>
<td>MnO(_2)</td>
<td>Transition metal oxide</td>
<td>< 5</td>
</tr>
<tr>
<td>FeO(_3)</td>
<td>Transition metal oxide</td>
<td>< 24</td>
</tr>
<tr>
<td>CoO(_2)</td>
<td>Transition metal oxide</td>
<td>< 5</td>
</tr>
<tr>
<td>NiO</td>
<td>Transition metal oxide</td>
<td>< 5</td>
</tr>
<tr>
<td>CuO</td>
<td>Transition metal oxide</td>
<td>< 5</td>
</tr>
<tr>
<td>ZnO</td>
<td>Transition metal oxide</td>
<td>< 5</td>
</tr>
<tr>
<td>Y(_2)O(_3)</td>
<td>Transition metal oxide</td>
<td>< 10</td>
</tr>
<tr>
<td>ZrO(_2)</td>
<td>Transition metal oxide</td>
<td>< 5</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>Metal oxide</td>
<td>13</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>Metalloid oxide</td>
<td>< 56</td>
</tr>
<tr>
<td>PbO</td>
<td>Heavy metal oxide</td>
<td>< 5</td>
</tr>
</tbody>
</table>

Table 2.2. Impurities of manufactured cerium oxide nanoparticles, CeO\(_2\)-S (10-30 nm, supplied by US Research Nanomaterials, Inc.).
<table>
<thead>
<tr>
<th>Impurity</th>
<th>Classification</th>
<th>Concentration (mg kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>La(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 100</td>
</tr>
<tr>
<td>Pr(_6)O(__{11})</td>
<td>Rare earth oxide</td>
<td>< 50</td>
</tr>
<tr>
<td>Nd(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 100</td>
</tr>
<tr>
<td>Sm(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 50</td>
</tr>
<tr>
<td>Yb(_2)O(_3)</td>
<td>Rare earth oxide</td>
<td>< 0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>Alkaline earth oxide</td>
<td>< 100</td>
</tr>
<tr>
<td>Fe(_2)O(_3)</td>
<td>Transition metal oxide</td>
<td>< 100</td>
</tr>
<tr>
<td>NiO</td>
<td>Transition metal oxide</td>
<td>< 0.001</td>
</tr>
<tr>
<td>CuO</td>
<td>Transition metal oxide</td>
<td>< 0.001</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>Metalloid oxide</td>
<td>< 100</td>
</tr>
<tr>
<td>PbO</td>
<td>Heavy metal oxide</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Table 2.3. Impurities of manufactured cerium oxide nanoparticles, CeO\(_2\) L (50-105 nm, supplied by Nanostructured & Amorphous Materials, Inc.).
<table>
<thead>
<tr>
<th>Condition</th>
<th>Small NP (10-30 nm)</th>
<th>Large NP (50-105 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 1.65, PO₄³⁻ added</td>
<td>0.0380</td>
<td>0.0268</td>
</tr>
<tr>
<td>pH 1.65, no PO₄³⁻ added</td>
<td>0.0449</td>
<td>0.0610</td>
</tr>
<tr>
<td>pH 4.45, PO₄³⁻ added</td>
<td>0.0060</td>
<td>0.0080</td>
</tr>
<tr>
<td>pH 4.45, no PO₄³⁻ added</td>
<td>0.0249</td>
<td>0.0219</td>
</tr>
</tbody>
</table>

Table 2.4. Rates (mM Ce kg CeO₂⁻¹ h⁻¹) for dissolution of Ce species from CeO₂ nanoparticulate surface comparing size effect, pH effect, and ligand effect.
2.7 References

Institute of Technology. Stockholm, SWE.

phosphorus in the presence of organic ligands or fluoride. Soil Sci. Soc. Am. J.
62: 1538-1541.

Hedrick, J.B. and S.P. Sinha. 1994. Cerium-Based Polishing Compounds- Discovery to

Adsorption of phosphate by X-ray amorphous aluminium hydroxide. Canadian

compounds. In: S. G. Amara, E. Bamberg, R. Jahn, W. J. Lederer, A. Miyajima,
H. Murer, S. Offermanns, G. Schultz and M. Schweiger, editors, Reviews of

Kilbourn, B. 2003. Cerium and cerium compounds. Kirk-Othmer encyclopedia of

Removal of oxide nanoparticles in a model wastewater treatment plant: Influence
of agglomeration and surfactants on clearing efficiency. Environmental Science
& Technology 42: 5828-5833.

Marcus, Y. 1980. Ibid. 9.

Murphy, J. and J.P. Riley. 1986. A Modified Single Solution Method for the
Determination of Phosphate in Natural-Waters. Current Contents/Agriculture
Biology & Environmental Sciences: 16-16.

CHAPTER THREE
EFFECTS OF PHYSICOCHEMICAL PROPERTIES OF CeO₂ NANOPARTICLES ON SOIL DENITRIFYING PROCESSES

3.1 Abstract

Cerium-based compounds such as nanoparticulate ceria (NP CeO₂) have received much attention in the last several years due to their popular applications in industrial and commercial uses. To understand the impact of NP CeO₂ on microbially mediated nutrient cycles, a subchronic toxicity study of CeO₂ NPs on soil denitrification process was conducted as a function of particle size (33 and 78 nm), total Ce concentration (50-500 mg L⁻¹), and speciation (Ce(IV) vs. Ce(III)). Statistical analyses on the antimicrobial effect on soil denitrifiers were conducted using both steady-state evaluation and zero-order kinetic models in order to compare the toxicity effects. It was found that soluble Ce(III) was far more toxic than Ce(IV)O₂ NPs when an equal total concentration of Ce was evaluated. Particle-size dependent toxicity, species-dependent toxicity, and concentration-dependent toxicity were all observed in this study for both the steady-state and the kinetic evaluations. It was found that all Ce species exhibited particularly strong sorption properties with soil, and there are some chemical speciation changes in small NPs. The mechanism of CeO₂ NP toxicity to soil denitrifiers can be explained in terms of Ce chemical speciation and reactivity of CeO₂ in soils.
3.2 Introduction

In the last few decades, there has been rapid growth in the number of nanotechnology application for industrial uses and consumer products. Along with nanosilver and TiO$_2$, cerium oxide nanoparticles (CeO$_2$ NPs) are one of the most widely used manufactured NPs in the global market (Hendren, Mesnard, et al., 2011). It has been reported that global nanomaterial demands will increase by 20% per year and one estimate indicates that the global market for pure nanomaterials is expected to grow to $20.5 billion by 2015 (Palmberg and Tuomo, 2006), posing questions about the fate and toxicological impact of NPs in environment.

The environmental fate of CeO$_2$ NPs is highly dependent on its applications and uses. Cerium oxide nanoparticles are best known for their use as catalysts, fuel cells, glass pigmentators and polishers, and fuel additives (EPA, 2009). Although the popular usage of NP CeO$_2$ as a diesel fuel additive (Institute, 2001) could potentially escape in the emissions, a recent transport modeling study predicted that a major source of CeO$_2$ NPs to environment is likely to be from industrial processing plants (e.g., ceramic manufactures). It is likely to accumulate in sewage sludge at wastewater treatment plants, and CeO$_2$ discharge into the aquatic environment can be fairly limited (Limbach, Bereiter, et al., 2008). Thus, amendments of sludge to agricultural land become a major pathway of CeO$_2$ NP to the terrestrial environment (Cornelis, Ryan, et al., 2011). The EPA governs the allowed concentrations in biosolids of many metals with demonstrated
toxic effects; however, cerium is not one of these metals, meaning levels are unmonitored and unregulated (EPA, 2007). Unfortunately, due to the relativeness newness of discovery of CeO$_2$ NP environmental chemistry as a field, the impact of CeO$_2$ NPs on ecosystem health (e.g., toxicological effects on aquatic-terrestrial organisms) has not been well understood.

In general, there are two major considerations for NP toxicity: physical (e.g., size effects) and chemical effects (e.g., dissolution of ionic species). Nanoparticle toxicity characteristically exhibits size-dependent effects. For a large variety of NPs including species such as nano-silver, -silicon dioxide, and -titanium dioxide it has been demonstrated that smaller sizes (and thus larger reactivities) lead to heightened toxicity effects across biological systems. Nanoparticles tend to exhibit much higher toxicities than their bulk counterparts; this tendency is especially exaggerated in bacteria due to the NP’s higher affinity for attachment to bacterial cell walls (Jiang, Mashayekhi, et al., 2009) that could potentially perturb the electron transfer reaction and respiration. Capping agents (or lack thereof) also play a large part in NP toxicity. Capping agents stabilize NPs by covering a large portion of their surface area and preventing aggregation as well as introducing multiple functionalities such as enhanced solubility effects. Polymers are popular capping agents along with other organic materials (Lead and Smith, 2009).
Chemical toxicity has also been reported for a variety of NPs (carbon nanotube, fullerenes and TiO$_2$): cellular damage by reactive oxygen species (ROS) and dissolution of toxic ions/species. A primary mechanism of NP toxicity is the ability to generate ROS such as free radicals (Lead and Smith, 2009). Reactive oxygen species contain unpaired valence electrons which yield extremely high chemical reactivity and the ability to induce severe damage to cells, including DNA and RNA damage, oxidations of lipids and proteins, and enzyme (cytochrome P) deactivation. The release of metal ions from quantum dots (e.g., CdSe) and nanosilver can be highly toxic to bacterial cells (Liu, Sonshine, et al., 2010, Lubick, 2008) as well as organic coatings of NPs (Hoshino, Fujioka, et al., 2004, Mahendra, Zhu, et al., 2008).

In the case of CeO$_2$ NPs, both physically- and chemically-driven effects have been shown in recent investigations. Particle size-dependent toxicity was reported in a soil nematode, Caenorhabditis elegans (Roh, Park, et al., 2010), and in the bacteria E. coli (Pelletier, Suresh, et al., 2010) and B. subtilis (Pelletier, Suresh, et al., 2010). Several studies also showed concentration dependent toxicity to bacteria such as E. coli (Pelletier, Suresh, et al., 2010, Thill, Zeyons, et al., 2006) and B. subtilis (Pelletier, Suresh, et al., 2010), the aquatic cyanobacteria Anabaena CPB4337 (Rodea-Palomares, Boltes, et al., 2011) and the green alga P. subcapitata (Rodea-Palomares, Boltes, et al., 2011, Rogers, Franklin, et al., 2010). Interestingly, there are several reports showing no acute toxicity of CeO$_2$ NPs on two crustaceans Daphnia magna and Thamnocephalus platyurus (up to 5,000 mg L$^{-1}$).
(Hoecke, Quik, et al., 2009) and no growth inhibitory effect on *S. oneidensis* (Pelletier, Suresh, et al., 2010).

While these studies provided fundamental knowledge on CeO₂ NP toxicity, causes of toxicological response to these organisms still remain unclear since most studies have failed to document the role of Ce chemical speciation with respect to its toxicity. Cerium oxide nanoparticles are most often noted for their catalytic and antioxidant properties, which are largely affected by redox state of Ce. The nanoparticles are often largely composed of Ce(III) (up to 55% in some cases) as well as Ce(IV); the more Ce(IV) in the nanoparticles, the stronger the catalase mimetic activity (Babu, Velez, et al., 2007, Heckert, Karakoti, et al., 2008, Ivanov, Shcherbakov, et al., 2010, Karakoti, Monteiro-Riviere, et al., 2008, Nalabotu, Kolli, et al., 2011, Pirmohamed, Dowding, et al., 2010, Rzigalinski, Bailey, et al., 2003). Furthermore, Ce(III) is a more soluble form than Ce(IV) at environmentally relevant pH values (e.g., 4.5-7.5).

To gain a comprehensive understanding of CeO₂ NP toxicity, it seems critical to elucidate the speciation of Ce (i.e., trivalent or tetravalent). To address the relative importance of reduced soluble Ce(III)\(_{aq}\), subchronic toxicity studies were performed with Ce(III) and CeO₂ NPs on soil denitrifying bacterial communities in reduced soils. The response of the soil microbial community is important since recent studies have indicated that land application of biosolids to agricultural soils may be a major environmental exposure pathway (Limbach, Bereiter, et al., 2008) for CeO₂ NPs. In soils, denitrification processes
readily take place and are an extremely important part of the global nitrogen cycle.

Denitrifying bacteria such as *Pseudomonas*, *Bacillus*, and *Alcaligenes* serve to metabolize N-containing compounds via nitrate reductase and other important enzymes to turn oxides back into nitrogen gas or nitrogen oxides for energy generation. The denitrification process also has the benefits of ameliorating eutrophication and removing excess nitrate from drinking water; however, it is also capable of limiting primary productivity and contributing to global warming via nitrous oxide formation. Thus, characterization of toxicological effects of CeO$_2$ NPs to soil denitrifiers is strongly necessary as the scientific community moves forward in its understanding of the effect of NPs on soil bacteria as a whole.

In this study, batch denitrification experiments were conducted as a function of reaction conditions (e.g., particle sizes, concentration, and Ce speciation (Ce(III) vs. NP CeO$_2$)). The effects on denitrification process are discussed using the results of NP characterization (particle size, ratio of Ce(III)/Ce(IV), zeta potential) and solid state Ce speciation data using X-ray absorption near edge structure spectroscopy (XANES) analysis.
3.3 Materials

Soil Characterization

Surface soils (top 10 – 30 cm) of Toccoa sandy loam (coarse-loamy, thermic typic Udifluvents) were collected from the Clemson University organic farm (SC, USA) from an unfarmed side plot (in order to avoid composition change in bacteria from farming, nitrogen fixation disruption, etc.). The soils were collected in May and September of 2012. Characterization of soils was reported in the work by VandeVoort, et al. (VandeVoort and Arai, 2012). Cation exchange capacity (CEC), % organic matter (OM), and pH are 7.4 cmol$_c$ kg$^{-1}$, 1.5% and 5.2 ± 0.2, respectively. The clay mineralogy is quartz, kaolinite, hydroxyl interlayer vermiculite, gibbsite, hematite, and goethite.

Reagents

All reagents were prepared in degassed distilled deionized Milli-Q water (18.2 MΩ) unless otherwise mentioned in the text. The following ACS grade salts were used: cerium(III) sulfate octahydrate (Alfa Aesar, Ward Hill, MA), dextrose (D-glucose) anhydrous, sodium nitrate (Fisher Scientific, Pittsburgh, PA) and sodium sulfate (JT Baker, Phillipsburg, NJ).

Cerium Nanoparticle Characterization

Cerium oxide nanoparticles of two different sizes (small, 10 – 30 nm and large, 50 – 105 nm) were obtained from commercial companies (US Research Nanomaterials, Inc.)
Physicochemical properties of NPs are summarized in Table 2.1. Lanthanide impurities in the small and large NPs were also assessed to ensure that no cytotoxic effects could result from concentrated impurities (Tables 3.5 and 3.6).

3.4 Methods

Ce(III) and CeO₂ NP Sorption Isotherm in Soils

All experiments were conducted in duplicate under ambient conditions (22 ± 1.2 °C and pCO₂ = 10⁻³.₄₅ atm) unless otherwise mentioned in the text. A 6.2 (± 0.02) g portion of air dry soil was transferred to each 50 mL Nalgene tube. A 15 mL portion of 0.017 M Na₂SO₄ was added to each tube and the tubes were sealed and placed on a turn-over shaker overnight. After 24 h of shaking, 15 mL of Ce(III) sulfate solution or CeO₂ NPs was added to each tube in order to constitute samples at 50, 100, 250, and 500 mg L⁻¹ [Ce]ₜ. The pH of each sample was adjusted to 5.5 with 0.1 M NaOH, and the tubes were sealed and shaken for an additional 24 h. After shaking, Ce(III) samples were centrifuged at 17000 rpm for 10 min, then a 5 mL aliquot was drawn out with a syringe and filtered through 0.2 μm Millex® polyvinylidene fluoride (PVDF) syringe filters. The NPs were centrifuged at 17000 rpm for 50 min and aliquots were filtered through 0.2 μm PVDF filters. The centrifugation method was calculated using modified Stokes’ law. Filtrates were immediately acidified and analyzed for [Ce]ₜ using ICP-AES. Cerium sorption in soils was analyzed in order to develop a context for the sorption properties of cerium.
species after they were added to the denitrification batch experiments and to determine if
a large portion of the cerium species were likely sorbing to colloidal surfaces or
remaining in solution. The soils were determined to have a high sorption capacity for
Ce(III) (100% sorption of Ce at concentrations up to 200 mg L\(^{-1}\)).

Phosphate Sorption Isotherm in Soils

To simulate the reaction condition of denitrification experiments, the following reagents
were chosen (0.017 M Na\(_2\)SO\(_4\) as a background electrolyte and 30 mM of sodium acetate
buffer at pH 4.5). Portions of 6.2 ± 0.02 g of oven dry soils were weighed, and
transferred into 50 mL Nalgene high speed centrifuge tubes. Soil suspensions were
hydrated in 20 mL of 0.017 M Na\(_2\)SO\(_4\) solutions for 24 h, and then an appropriate amount
of 400 mM sodium acetate buffer solution at pH 4.5 was added to assure the final volume
of 30 mL, \([P]_{\text{total}} = 0.10–1.30\) mM and sodium acetate buffer = 30 mM. The pH was
readjusted to 4.5 (± 0.1) using 1 M HNO\(_3\). The tubes were then shaken on an end-over
shaker at 12 rpm for 48 h. After 48 h, the samples were centrifuged at 10,000 rpm for 13
min. Then, 5 mL of each supernatant solution were filtered through 0.20 µm Whatman
polyvinylidene difluoride (PVDF) filters. Samples were acidified with 10 % HNO\(_3\) and
then analyzed for phosphate using ICP-AES.

Batch Denitrification Experiments

Batch denitrification experiments were conducted in duplicate to evaluate the effect of
CeO\(_2\) NPs on the denitrification process. The following physical and chemical conditions
were varied: particle size (33 and 78 nm), [Ce] = 0, 50, 100, 250 mg L\(^{-1}\), Ce speciation (Ce(III) VS. Ce(IV)\(_2\) NPs). Cerium nanoparticle stock solutions (12.29 g L\(^{-1}\)) were freshly prepared in 0.017 M sodium sulfate that was used in the denitrification experiment. The use of high Ce concentrations was to meet the detection limit of X-ray absorption spectroscopic analysis in this study.

Fifty (± 0.03) g of fresh moist soil (at field capacity) was transferred into a 200 mL of background solution (1 % glucose, 50 mg L\(^{-1}\) NO\(_3\)\(^-\) as sodium nitrate, and 0.017 M sodium sulfate). Each 250 mL Nalgene bottles, which were wrapped with aluminum foil, were placed inside an anaerobic chamber for 24 h preceding sample constitution. After the 200 mL of solution was constituted for each soil sample, the bottles were kept in the glove bag. Caps were loosened to allow gaseous nitrogen species to escape during the incubation study. At each sampling period (every 3 h up to 70 h), the bottles were shaken and redox potential and pH values were immediately measured. Soil solution aliquots of 5 mL were taken and then filtered through PVDF 0.45 µm filters. Nitrate concentration was measured using a nitrate ion selective electrode (Analytical Sensors & Instruments Ltd., Sugar Land, TX). The use of the ISE is advantageous in these experiments because the sample is immediately analyzed without matrix modification. The ISE limits of detection of nitrate (0.4 to 70 mg L\(^{-1}\)) as well as pH and temperature demands of the instrument (pH range 2.5 to 11, 0 to 21 ± 20 °C) are well-suited for experimental conditions. A standard curve (0.1-5 mg L\(^{-1}\) NO\(_3\)\(^-\)) was generated using the same background matrices of soil solutions in the denitrification experiments. Known
interferences (ClO$_4^-$, I$^-$, ClO$_3^-$, F$^-$) for this ISE were found to be negligible. The nitrate analysis was repeated every 3 – 6 h until the denitrification process was complete (the nitrate levels in the samples dropped to below 1 mg L$^{-1}$). The assessment of toxicity was conducted using the steady-state approach for both 50% nitrate depletion and 90% nitrate depletion as well as with zero-order kinetic models to analyze the denitrification rate. The application of zero order kinetic models for the soil denitrification process has been demonstrated by several other researchers in the past (Boaventura and Rodrigues, 1997, Dawson and Murphy, 1972, van Haandel, Ekama, et al., 1981). In order to understand the statistical significance of each data set, T-tests were conducted using JMP®10 statistical software (Cary, NC).

Synchrotron based X-ray Microprobe Analysis

Synchrotron based micro(µ)-XRF mapping (50-10,000 µm2) was conducted on denitrification samples (as thin sections) at beam line X27A at National Synchrotron Light Source, Upton, NY.

This beam line is suited for Ce L$_3$ absorption energy (5,723 eV), and can conduct microfocused X-ray absorption near edge structure analysis to understand micron-scale valence state and or phase determination of Ce in soils. Cerium nanoparticle-reacted soils samples were used to prepare a thin section (30 µm) according to the method described by Arai et al., 2007 (Arai et al., 2007). Spent denitrification batches were first filtered through Whatman-2 filters, and air-dried in the anaerobic glove bag for 2 weeks. This
drying process was necessary for the Epotek 301 resin (Epoxy Technology, Inc. Billerica, Massachusetts, US) to cure at room temperature. To eliminate the background metal(loid) impurities, quartz slides and super glue were used for this process, as these materials have proven to be near metal(loid) free, which is necessary for backing materials during the μ-XRF analysis. The μ-XRF compositional maps of Ce were conducted at above the Ce K absorption edge using a Canberra SL30165 Si(Li) detector. Eleven spots were sampled for each map and of these, the three to four most representative spots with the cleanest spectra were featured in the reported data.

3.5 Results and Discussion

Sorption isotherm

Sorption of Ce(III) as well as small and large Ce(IV)O$_2$ NPs was evaluated in Toccoa sandy loam (soil properties are summarized in Table 3.1) at [Ce]$_{total}$ = 25, 50, 100, 200, and 500 mg L$^{-1}$. The Ce(III) sorption isotherm is shown in Figure 3.1. A typical L-shape isotherm curve (Sposito, 1984) shows that slope decreases as concentration increases since unreacted sites decreases as the sorption sites are filled. Such sorption suggests high affinity of Ce(III) in the soils. The Freundlich model (Figure 3.1b) shows a K_d value of 1198 L kg$^{-1}$. While sorption mechanisms cannot be elucidated without spectroscopic evidence, the retention could be indirectly described by a combination of adsorption on variable-charged mineral surfaces and the formation of bulk precipitates. When the dissolved PO$_4^{3-}$ concentration was monitored during the Ce(III) sorption, it decreases
with increasing [Ce(III)\(\text{aq}\)] from 50 mg L\(^{-1}\) to 500 mg L\(^{-1}\) (Figure 3.2), indirectly suggesting the complexation of Ce(III)\(\text{aq}\) with dissolved PO\(_4^{3-}\) soil solution. In fact, the saturation index was supersaturated with respect to bulk Ce(III)PO\(_4\) when the initial [Ce(III)] and Mehlich 1 extractable PO\(_4^{3-}\) (35 mg kg\(^{-1}\)) were used in the chemical speciation calculation using VisualMinteq ver. 3.0 (Gustaffson, 2007).

Due to the strong retention (> 98%) of CeO\(_2\) NPs in soils at all initial Ce concentrations, the equilibrium concentration of Ce in soil solutions was near zero. For this reason, sorption isotherm plots for CeO\(_2\) NPs are not shown. Instead, the distribution coefficient, \(K_d = \frac{\text{added [Ce as CeO}_2\] - [Ce] in filtrate)}{([Ce] in filtrate)}\), was estimated. The distribution coefficient for small and large NPs ranged from 5,101 to 102,039 L kg\(^{-1}\), and from 5,356 to 71,427 L kg\(^{-1}\), respectively. These values cover the \(K_d\) value previously reported by Cornelis et al. (Cornelis, Ryan, et al., 2011) in work reporting the sorption of bulk CeO\(_2\) salts in 16 different Australian soils with varying physical and chemical properties. When soils were reacted with 11.7 mmol kg\(^{-1}\) bulk CeO\(_2\), the resultant \(K_d\) value was 136,355 L kg\(^{-1}\). Unlike in the Ce(III) sorption isotherm, the changes in dissolved PO\(_4^{3-}\) concentration are not clearly correlated with Ce addition as CeO\(_2\) NPs. Instead, low concentrations remain (~ 0.01 – 0.04 mg L\(^{-1}\)) (Figure 3.2). This might be attributed to the strong PO\(_4^{3-}\) retention in CeO\(_2\) NPs (covered in the discussion section in Chapter 2). While the sorption isotherm provides important information about Ce affinity in soils, the chemical state of Ce in Ce(III) and CeO\(_2\) NPs reacted soils remains
unknown. The following section discusses synchrotron based X-ray microprobe analysis of Ce(III) and CeO₂ NP-reacted soils samples.

Synchrotron based X-ray microprobe analysis

X-ray fluorescence maps of Ce are shown in Figure 3.3a. Cerium hot spots with high concentrations appear as in yellowish green in each map. When soils were reacted with Ce(III)ₐq, the expected results were diffused large areas assuming that Ce(III) would adsorb on soil inorganic and organic components. Instead, Ce occurrences appear as hot spots (Figure 3.3a). Similarly, several hot spots in CeO₂ NPs reacted soils (Figures 3.3b and 3.3c). To better understand the chemical speciation of Ce in these soils, microfocused XANES data are discussed below.

Figure 3.4 summarizes the Ce speciation of hot spots in Figure 3.3a. Spectra were compared with known Ce(IV) sulfate and Ce(III) phosphate reference compounds. The Ce(III) shows a single whiteline peak at ~5723 eV, while Ce(IV) species have two whitelines (~5723 eV and ~5732 eV). In the soil sample, all XANES spectra contain a single whiteline peak, indicating the presence of Ce (III). When the pre- and post-edge features are compared, the spectra at three hot spots resemble that of Ce(III)PO₄. It is likely that some of Ce(III) was precipitated out with soluble phosphate in soils. Overall, the XANES analysis suggests that Ce(III)PO₄ species will not readily undergo oxidative transformation to Ce(IV) in the suboxic soils.
Figure 3.5 summarizes the micro-XANES spectra of NP reacted soils with several Ce reference compounds (Ce(III)PO$_4$ and Ce(III)$_2$S$_3$) including small and large CeO$_2$ NPs. The doublet feature in CeO$_2$ NPs indicate that CeO$_2$ NPs are at the predominantly Ce(IV) state. Interestingly, small Ce(IV)O$_2$ NPs seemed to undergo reduction in soils while large CeO$_2$ NPs remain as Ce(IV). In Chapter 2, the sorption capacity of PO$_4^{3-}$ in two NPs was discussed. While both NPs strongly retain PO$_4^{3-}$, the reversibility of PO$_4^{3-}$ was less in the large NPs. This might indirectly suggest the formation of Ce(III)PO$_4$ surface precipitates that were formed with exchangeable Ce(III) in large NPs. Since Ce(III)PO$_4$ is extremely insoluble, such mineral coatings potentially inhibit the electron transfer reaction in large NPs, resulting in lack of reduction in soils.

Batch denitrification experiments

Values for denitrification rates and depletion end-points are summarized in Table 3.2. The results of zero order kinetic modeling are shown in Figures 3.8, 3.9, and 3.10; from the equation of the line, the 90% and 50% depletions time were calculated by solving for the time at which only 5 mg L$^{-1}$ and 25 mg L$^{-1}$ NO$_3$-N remained in each sample. Rate data and depletion time data are interpreted separately; first, depletion time data will be discussed. Figures 3.11, 3.12, and 3.13 summarize pH and Eh values that were monitored during the denitrification process for Ce(III), small CeO$_2$ NPs, and large CeO$_2$ NPs, respectively. As denitrification progressed, pH values fluctuated between 5 and 5.7. Eh values became more and more negative, indicating the reaction condition was becoming more reduced over time. To better understand the effect of chemical speciation and
particle size, t-test statistical analysis was conducted on 1) steady-state endpoint data and 2) zero order kinetic rate as a function of chemical species and particle size. Below, the results of the steady-state endpoint analysis and the kinetic rate analysis are discussed separately, and then summarized.

Steady-state endpoint analysis

Figure 3.6 shows a histogram of the 90% nitrate depletion times for all species and concentrations. It can be seen in Table 3.2 that the 90% depletion times for all species across all concentrations differed significantly from the control vessel; thus, it can be concluded that all species suppressed the soil denitrification process. When the 50% depletion times were calculated, almost all of the 50% depletion time also differed from the control vessel, with the exception of 50 mg L\(^{-1}\) small NP and 250 mg L\(^{-1}\) large NP. The 90% depletion time for the control vessel (0 mg L\(^{-1}\) Ce) was a short 32.1 hours. Each species (ionic Ce(III), Ce(IV) as small Ce(IV)O\(_2\) NP, and Ce(IV) as large Ce(IV)O\(_2\) NP) was evaluated for toxicity at 50, 250, and 500 mg L\(^{-1}\). Again, the use of high Ce concentrations was to meet the detection limit of X-ray absorption spectroscopic analysis in this study. It can clearly be seen that for each species, the 90% depletion time increases with increasing concentration of Ce. The 50% depletion time is also shown to increase with increasing concentrations of Ce.
Steady state: effects of concentration

By far, ionic Ce(III) exhibited the highest toxicity of the three Ce species. At 50 mg L\(^{-1}\) Ce(III), the 90% depletion time was increased to 37.6 h. Increasing the concentration to 250 mg L\(^{-1}\) caused a drastic rise in 90% depletion time to 42.8 h; further increasing the concentration to 500 mg L\(^{-1}\) raised the 90% depletion time to 60 h. Statistical tests revealed that the 90% depletion times for all three concentrations differed significantly from each other (Table 3.3); thus, ionic Ce(III) exhibits concentration-dependent toxicity effects on nitrate depletion time in soil denitrification processes. The increase in depletion time with increasing concentration does not appear to follow a linear fashion; a 5x increase from 50 mg L\(^{-1}\) to 250 mg L\(^{-1}\) only raised the 90% depletion time by 5.2 h, whereas an additional 2x increase from 250 mg L\(^{-1}\) to 500 mg L\(^{-1}\) raised the 90% depletion time by a drastic 17.2 h. The observed dose-response relationship is consistent with normal toxicological expectations. For the 50% depletion times, only the Ce(III) species exhibited concentration-dependent toxicity.

The mechanism of Ce(III) toxicity to soil denitrifiers is not well-defined; however, based on the available literature, a likely mechanism can be postulated. Many of the lanthanides have been identified as ATPase inhibitors (Gruner, Sehrt, et al., 1992, Palasz and Czekaj, 2000). Lanthanides function so efficiently as ATPase inhibitors due to their ionic radii, which are extremely similar to that of Ca(II). In particular, Ce(III), is able to substitute for Ca(II) extremely well (Jakupec, Unfried, et al., 2005). This calcium-swapping feature allows for suppression of the activities of Ca(II) ions and it is the foundation of
cytophysiological effects of the lanthanides. It is postulated that the isomorphic capabilities of the ions allow them to replace Ca(II) in the binding sites of nucleases, thus interrupting activation and preventing growth metabolism of bacteria (Balusamy, Kandhasamy, et al., 2012). The effects of Ce(III) specifically as a Ca(II) ATPase inhibitor have not been studied thoroughly; however, the strong ability of other lanthanides (with less ability to easily substitute for Ca(II) than Ce(III) has) leads to the conclusion that an important cytotoxic pathway for Ce(III) could definitely be that of Ca(II) ATPase inhibition, as well as ATPase inhibition in general.

Normally, a trend is seen in toxicological literature revealing markedly more toxic effects for smaller nanoparticles than for larger nanoparticles (of the same species) (Carlson, Hussain, et al., 2008, Choi and Hu, 2008, Karlsson, Gustafsson, et al., 2009, Napierska, Thomassen, et al., 2009, Pan, Neuss, et al., 2007, Pelletier, Suresh, et al., 2010, Roh, Park, et al., 2010). However, the opposite effect was seen for CeO$_2$ nanoparticles in this study (small NP at 10-30 nm and large NP at 50-105 nm). Though this observation is counterintuitive, it can be explained by the relative Ce(III) impurities in the nanoparticles. The large CeO$_2$ NPs had much greater exchangeable Ce(III) impurity (1.56mM kg$^{-1}$) than the small CeO$_2$ NPs (0.3 mM kg$^{-1}$); since toxicity is controlled largely by Ce(III) species and not Ce(IV) (Ce(IV) is insoluble at pH > 3), it is likely that the nanoparticulate species able to yield more Ce(III) release would also cause more toxicity.
Like Ce(III), an unfortunately small amount of literature exists detailing possible toxicity mechanisms of CeO$_2$ NPs to denitrifying bacteria. However, the mechanism of CeO$_2$ NP toxicity is well-defined for other bacteria, especially *E. coli*; thus, it can be hypothesized that the mechanism is likely similar in denitrifiers. Multiple studies support the phenomena of CeO$_2$ NP adsorption to the outer membrane of bacterial cells without penetration (He, Kuang, et al., 2012, Kuang, He, et al., 2011, Pelletier, Suresh, et al., 2010, Thill, Zeyons, et al., 2006). Once adsorbed, the ratio of Ce(IV):Ce(III) has been shown to decrease sharply, indicating reduction of the Ce species taking place at the cell surface. Significant cytotoxicity has been associated with this adsorption and concurrent reduction, revealing that the surface adsorption of the NPs is associated with oxidative stress in the bacterial cells (Thill, Zeyons, et al., 2006). It has been confirmed that direct contact of the NPs with the surface of bacterial cells results in an increase in intracellular ROS levels, thus inducing cytotoxicity (Kuang, He, et al., 2011). In conclusion, the mechanism of toxicity for CeO$_2$ NPs to denitrifiers can likely be described as follows: the NPs adsorb to the surface of bacterial cells, but do not penetrate the cells. The direct contact between the cell and the NP results in reduction of Ce species, thus inducing oxidative stress in the bacterial cells. This oxidative stress leads to increased ROS production and, thus, cytotoxic effects.

Earlier, possible mechanisms of Ce(III) toxicity to soil denitrifiers were discussed. It is important to note that a discussion of ceria cytotoxicity would be incomplete without also considering the large amount of Ce(III) impurity that is inherent in the NPs (some
manufacturers have reported up to 55% Ce(III) impurity). Again, in the denitrification study, though all species showed significant toxicity, the NP-treated soils exhibited much less inhibition of denitrification (and thus, denitrifier toxicity) than the ionic Ce(III)-treated soils. Along with their Ce(III) impurities, CeO₂ NPs also tend to have a large amount of lanthanide impurities which could lend to further ATPase inhibition and cytotoxicity at high enough concentrations. At experimental conditions and concentrations, it is unlikely that the lanthanide impurities could be playing a role in observed cytotoxic effects (Tables 3.5 and 3.6), but the Ce(III) impurity is significant enough to possibly contribute (Table 2.1). For each lanthanide impurity, the literature was reviewed in order to assess the lowest known concentration for which toxicity effects are observed in bacteria. Since the literature on lanthanide oxides is very sparse, not all impurities have been studied for bacteria. For the impurities with no published bacterial toxicity studies, references were accumulated for other organisms. Several species featured no studies showing toxicity to any organism, but rather featuring beneficial effects. The results of this literature review are summarized for both the small and large NP impurities in Tables 3.5 and 3.6, which indicate that the lanthanide impurities in the NPs are not present in high enough concentrations to contribute to the observed toxic effects. It should also be noted that lanthanides have been demonstrated to feature the same strong affinity for phosphate as Ce (Aime, Botta, et al., 1998, Atkinson, Murray, et al., 2006, Majdan and Zdenek, 1993, Sherry, 1997) and thus, similar to Ce species, may become bound in natural systems and thus unavailable to lend to cytotoxic effects. In
conclusion, the lanthanide impurities in the NPs are not causing any toxicity effects due to a combination of low concentrations and little bioavailability.

For both nanoparticulate species, it should be made clear that concentration values denote the concentration of total Ce, not the concentration of CeO$_2$. Thus, the concentration 50 mg L$^{-1}$ denotes 50 mg L$^{-1}$ of Ce added in the form of CeO$_2$ NP. For the small NP, the addition of 50 mg L$^{-1}$ Ce to the denitrification vessel slowed the 90% depletion time to 36.6 h. This value is comparable to the 90% depletion times for Ce(III) at 50 mg L$^{-1}$ (37.6 h) and the large NP at 50 mg L$^{-1}$ (37.7 h). In fact, at 50 mg L$^{-1}$, none of the 90% depletion times are significantly different from each other (Table 3.3). For the small NP at 250 mg L$^{-1}$ the 90% depletion time was 38.1 h and at 500 mg L$^{-1}$ the time was slowed to 38.8 h. Though mathematically the 90% depletion times did increase with increasing concentration, statistical tests revealed no significant difference between any of the concentrations for the small NP (Table 3.3). This suggests that the 90% nitrate depletion time for the small CeO$_2$ NP is not concentration-dependent.

The large NP featured similar 90% depletion times; however, statistics did reveal concentration-dependent toxicity for the large NP (Table 3.3, Ce(IV)$_{50}$ vs 500). The 90% depletion time at 50 mg L$^{-1}$ was 37.7 h; at 250 mg L$^{-1}$, the time increased barely to 38.3 h; and lastly, at 500 mg L$^{-1}$, the 90% depletion time slowed further to 41.6 h. Thus far, concentration-dependent toxicity has been discussed. Size-dependent toxicity and species-dependent toxicity are also important considerations.
Steady state: effects of particle size

Size-dependent toxicity for the nanoparticles can be determined by comparing two different sized nanoparticles at the same concentration. As seen in Table 3.3, the 90% depletion times for the NPs at both 50 mg L\(^{-1}\) and 250 mg L\(^{-1}\) were not statistically different. However, at 500 mg L\(^{-1}\) the small and large NP exhibit significant differences in 90% depletion times. Thus, it can be concluded that size-dependent toxicity effects on 90% depletion time do exist for the NPs (though these effects may only be detectable for “high” concentrations). The same statistical trends exist for the 50% depletion time data.

Steady state: effects of Ce chemical species

Like size-dependent toxicity, species-dependent toxicity was also only featured at the 500 mg L\(^{-1}\) concentrations across species. As seen in Table 3.3, the comparisons at 50 mg L\(^{-1}\) and 250 mg L\(^{-1}\) were not significant when the small and large NPs were compared to Ce(III); however, Ce(III) at 500 mg L\(^{-1}\) showed significant difference from both the small NP at 500 mg L\(^{-1}\) and the large NP at 500 mg L\(^{-1}\) in terms of 90% depletion time. This should be attribute to the difference in exchangeable Ce(III) impurity in these NPs (see Ch2). Thus, species-dependent toxicity effects on 90% depletion time also exist for Ce compounds. The same statistical trends exist for the 50% depletion time data.

Kinetic analysis

Rate data is also important to consider for any toxicological assessment. Figure 3.7 indicates the denitrification rate data for all species and concentrations. An interesting
visual trend can be observed in this figure: denitrification rates for Ce(III) and the large CeO₂ NP decrease with increasing Ce concentration, but the denitrification rates for the small CeO₂ NP actually increase with increasing concentration. This trend disagreement is the reason it is important to perform steady state (nitrate depletion time) analysis as well as kinetic (rate) analysis.

Kinetic: effects of concentration

Denitrification rates are reported in terms of mg L⁻¹ of NO₃⁻N depleted per hour (mg L⁻¹ h⁻¹). The denitrification rate in the control vessel was 2.33 mg L⁻¹ h⁻¹ (Table 3.2). It can be seen in Table 3.2 that the kinetic rates for almost all vessels differed significantly from the control vessel; however, there were a few exceptions. The rate for the small NP at 500 mg L⁻¹ did not differ significantly from the control; the rates for the large NP at both 50 mg L⁻¹ and 250 mg L⁻¹ also did not differ significantly. The Ce(III) species rates differed from the control at all three concentrations while the small NP differed at two concentrations and the large NP differed at only one concentration. The lack of differences for the NPs is not largely meaningful in terms of the results of this study; if anything, this lack of differences reinforces the much stronger denitrification inhibitory effects of ionic Ce(III) species vs. CeO₂ NPs as demonstrated in the steady state analysis. It should also be noted that all Ce species kinetic rates were mathematically lower than the control vessel, though all rates did not statistically differ significantly.
The smallest kinetic rate indicates the slowest progression of denitrification and thus the most inhibitory, or toxic, effect. For Ce(III), kinetic rates slowed as the Ce concentration was increased. This type of behavior is expected typically in toxicological studies. At 50 mg L\(^{-1}\), the kinetic rate was 1.91 mg L\(^{-1}\) h\(^{-1}\); at 250 mg L\(^{-1}\), the rate was slowed to 1.74 mg L\(^{-1}\) h\(^{-1}\); and finally at 500 mg L\(^{-1}\) the rate was again decreased to 1.93 mg L\(^{-1}\) h\(^{-1}\).

Statistical analysis revealed that the rate at 500 mg L\(^{-1}\) differed significantly from the rate at both 50 mg L\(^{-1}\) and 250 mg L\(^{-1}\), indicating concentration-dependent rate toxicity effects for Ce(III).

For the small NP, the addition of 50 mg L\(^{-1}\) Ce to the denitrification vessel slowed the kinetic rate to 1.52 mg L\(^{-1}\) h\(^{-1}\). Surprisingly, the addition of more Ce did not slow the denitrification rate, but instead quickened it. At 250 mg L\(^{-1}\), the denitrification rate increased to 1.77 mg L\(^{-1}\) h\(^{-1}\) and at 500 mg L\(^{-1}\) the rate jumped again to 1.93 mg L\(^{-1}\) h\(^{-1}\) (which did not differ significantly from the control). Though mathematically the kinetic rates did decrease with increasing concentration, statistical tests revealed no significant difference between any of the concentrations for the small NP (Table 3.4). This means that the denitrification kinetic rate for the small CeO\(_2\) NPs is not concentration-dependent.

The large NP featured much faster kinetic rates than the small NP. Generally, smaller NPs are expected to yield in greater toxicity to bacterial processes (Choi and Hu, 2008, Napierska, Thomassen, et al., 2009, Pan, Neuss, et al., 2007). In the previous X-ray
microprobe analysis, Ce chemical speciation was not altered during the 30 d of incubation. It was nearly all Ce(IV), supporting the lack of Ce toxicity (i.e., fast kinetic rate). At 50 mg L⁻¹ the kinetic rate for the large NP was 2.23 mg L⁻¹ h⁻¹. This value, as well as the value for 250 mg L⁻¹ (2.17 mg L⁻¹ h⁻¹) did not differ significantly from the control. The kinetic rate at 500 mg L⁻¹ (1.90 mg L⁻¹ h⁻¹) did differ significantly from the control, but not from the kinetic rate of small NP at the same concentration. Given the increasing rate trend of the small NP and the decreasing rate trend of the large NP, it is likely a safe assumption that the expected behavior (slower rates for large NP) would have been observed had the concentration range been extended to include higher values. However, for the concentration range studied, Ce(III) and the large NP became more inhibitory with increasing concentration and the small NP became less inhibitory with increasing concentration. Statistical analysis revealed concentration-dependent toxicity effects on denitrification rate for the large NPs (Table 3.4, Ce(IV)l 250 vs 500).

Kinetic: effects of particle size

Size-dependent toxicity effects are the only area where the steady-state analysis and the kinetic rate analysis strongly disagree. As seen in Table 3.4, the denitrification rates for the NPs at both 250 mg L⁻¹ and 500 mg L⁻¹ were not statistically different. At these concentration, the strong sorption NPs (Kₐ: 5,101 to 102,039 L kg⁻¹ for small NPs, and from 5,356 to 71,427 L kg⁻¹ for large NPs) reduce the availability of NPs in soil solutions, resulting in the diminished particle size dependent toxicity. However, at 50 mg L⁻¹ the small and large NP exhibit significant differences in depletion times. Thus, it can
be concluded that size-dependent toxicity effects on depletion time do exist for the NPs (though these effects may only be detectable for “low” concentrations).

Kinetic: effects of Ce chemical species

When all three species are compared at identical concentrations, statistical tests reveal significant differences between Ce(III) and small NP at 500 mg L\(^{-1}\) (1.35 mg L\(^{-1}\) h\(^{-1}\) and 1.93 mg L\(^{-1}\) h\(^{-1}\), respectively) as well as significant differences between Ce(III) and the large NP at both 250 mg L\(^{-1}\) (1.35 mg L\(^{-1}\) h\(^{-1}\) and 2.17 mg L\(^{-1}\) h\(^{-1}\), respectively) and 500 mg L\(^{-1}\) (1.35 mg L\(^{-1}\) h\(^{-1}\) and 1.90 mg L\(^{-1}\) h\(^{-1}\), respectively) (Table 3.4). Thus, species-dependent toxicity effects exist on denitrification rate and Ce(III) is more toxic than the nanoparticulate Ce species at the same concentration. Another interesting result of species comparisons is that the kinetic rate for the small NP at 500 mg L\(^{-1}\) (1.93 mg L\(^{-1}\) h\(^{-1}\)) and for the large NP at 500 mg L\(^{-1}\) (1.90 mg L\(^{-1}\) h\(^{-1}\)) are extremely similar to the kinetic rate for Ce(III) at the much lower concentration of 50 mg L\(^{-1}\) (1.91 mg L\(^{-1}\) h\(^{-1}\)). At tenfold the concentration of ionic Ce(III) species, the NP species have the same effect on kinetic rate. This supports the conclusion that ionic Ce(III) species much more strongly suppress the denitrification processes than do CeO\(_2\) NP species.
3.6 Summary

The results of the steady state and kinetic analysis agreed strongly for almost all considerations. Conclusions supported by both the steady state and the kinetic analysis are as follows.

The first major conclusion of the statistical analyses is that the Ce species used in this study do exhibit depletion time and denitrification rate toxicity effects to soil denitrifying bacteria. For the steady state analysis, the 90% depletion times of all species at all concentrations differed significantly from the control vessel. For the kinetic rate analysis, the kinetic rates of all species differed from the control vessel for at least concentration.

The second major conclusion is that the ionic Ce(III) and the large CeO₂ NP exhibit concentration-dependent toxicity effects on both depletion time and kinetic rate. However, for both analyses, the small CeO₂ NP was not shown to exhibit any concentration-dependent effects.

The third major conclusion is where the results of the statistical analyses differ. In terms of steady state toxicity, the large NP was found to be significantly more toxic than the small NP when both were at the same concentration (500 mg L⁻¹). Thus, size-dependent toxicity effects are observed in the NPs and the large NP was found to suppress denitrification more strongly than the small NP in terms of depletion time. However, in
the kinetic rate analyses, it was found that the large NP was significantly less toxic than the small NP at the same concentration (50 mg L^{-1}). Thus, size-dependent toxicity effects again were observed, but this time the small NP was found to suppress denitrification more strongly than the large NP in terms of kinetic rate. The strong NP retention in soils might be providing greater opportunities for microbes to be exposed.

The fourth major conclusion is that ionic Ce(III) is significantly more toxic than the small CeO_2 NP or the large CeO_2 NP when all three are at the same total Ce concentration (500 mg L^{-1}). Thus, species-dependent toxicity was clearly observed and ionic Ce(III) exhibited significantly more toxic effects on depletion time and denitrification rate than either NP. X-ray microprobe analysis of Ce(III) spiked soils showed that trivalent state Ce(III) was retained in soils.

It can be seen by comparing these four major conclusions that the results from the steady state and kinetic analyses only disagree in one way: whether the small or large NP is less toxic. The steady-state analysis finds that size-dependent toxicity is only detectable at high concentrations while the kinetic rate analysis only predicts size-dependent toxicity at low concentrations. As previously stated, it is likely that the results of the kinetic rate analysis would possibly agree with the steady state findings that the large NP is more toxic if the concentration range had been expanded to include higher levels of Ce. However, it must be taken into account that 1) changes occur in the microbial community in soils, and 2) changes in NP physical properties occur as well. The bacterial community
could have shifted as the NPs underwent phase transformation which would likely impact
denitrification kinetics. Furthermore, if NPs gradually disperse/aggregate, this would also
likely affect denitrification kinetics. The strong sorption affinity for Ce(III) to soils was
demonstrated in Figure 3.1, confirming the clear likelihood of physicochemical
transformation of the Ce species via sorption mechanisms. Cerium species are already
fairly insoluble and are even more insoluble when PO\textsubscript{4}^{3-} ligand is present, as
demonstrated in Chapter 2. This conclusion, coupled with the results from Chapter 3,
support the possibility that Ce species have a large potential to build up in sediments
over time; thus, toxicological studies such as these detailing the environmental fate and
reactivity of CeO\textsubscript{2} NPs are largely necessary.
Figure 3.1. Sorption data in Toccoa sandy loam soil for Ce(III) as Ce(III)(NO$_3$)$_3$. Data is shown as a) sorption isotherm plot for Ce(III) and b) Freundlich model for the Ce(III) isotherm. Error bars indicate one standard deviation above and below value.
Figure 3.2. Dissolved phosphate concentration during Ce(III) or CeO$_2$ NPs sorption in Toccoa sandy loam shown in Figure 3.1. a) [PO$_4^{3-}$] during Ce(III) sorption, b) [PO$_4^{3-}$] during CeO$_2$ small NP sorption, and c) [PO$_4^{3-}$] during CeO$_2$ large NP sorption. Error bars indicate one standard deviation above and below value.
Figure 3.3. Microfocused(µ)-XRF maps of Ce Lβ1 fluorescence line in Toccoa entisol soil samples amended with a) Ce(III)(H: 2 mm X V: 2 mm), b) small CeO₂ NP (H: 3 mm X V: 3.5 mm), and c) large CeO₂ NP (H: 3 mm X V: 3 mm). The intensity of each color pixel is proportional to the relative concentration of the corresponding element. Spots (open white circles) indicate areas where µ-XANES spectra were taken (displayed in Figures 3.4 and 3.5).
Figure 3.4. Normalized microfocused(µ) Ce L$_3$-edge XANES spectra of Ce reference compounds (Ce(IV)(SO$_4$)$_2$, Ce(III)PO$_4$), and selected spots from µ-XRF maps of Ce(III)-treated soils shown in Figure-3.3a.
Figure 3.5. Normalized microfocused (μ) Ce L$_3$-edge XANES spectra of Ce reference compounds (small Ce(IV)$_2$O$_2$ NP, large Ce(IV)$_2$O$_2$ NP, Ce(III)PO$_4$, Ce(III)$_2$S$_3$), and selected spots from μ-XRF maps of NP-treated soils shown in Figures 3.3b and 3.3c.
Figure 3.6. Histogram of denitrification activity in Toccoa sandy loam as indicated by 90% nitrate depletion time. Time is measured from the point of maximum [nitrate] until [nitrate] decreases to < 5 mg L$^{-1}$. For each of the three sets Ce(III), small NP (Ce(IV)s), and large NP (Ce(IV)l), the first bar corresponds to a concentration of 50 mg L$^{-1}$ added Ce; the second bar, 250 mg L$^{-1}$; the third bar, 500 mg L$^{-1}$. The control bar corresponds to a concentration of 0 mg L$^{-1}$ added Ce.
Figure 3.7. Histogram of denitrification zero-order kinetic rates in Toccoa sandy loam. Kinetic fits for the rates shown in this figure are displayed in Figures 3.8, 3.9, and 3.10 below. For each of the three sets (Ce(III), small NP (Ce(IV)s), and large NP (Ce(IV)l)), the first bar corresponds to a concentration of 50 mg L\(^{-1}\) added Ce; the second bar, 250 mg L\(^{-1}\); and the third bar, 500 mg L\(^{-1}\). The control bar corresponds to a concentration of 0 mg L\(^{-1}\) added Ce.
Figure 3.8. Denitrification kinetic data of native soil bacteria in a reducing environment. Each graph displays nitrate depletion over time for one batch per treatment condition. The line represents zero-order kinetic modeling, and corresponds to values listed in Table 3.2. Each graph represents a different reaction condition: a) control; b) Ce(III) at 50 mg L$^{-1}$; c) Ce(III) at 250 mg L$^{-1}$; d) Ce(III) at 500 mg L$^{-1}$. All Ce(III) was added in the form of cerium(III) sulfate octahydrate.
Figure 3.9. Denitrification kinetic data of native soil bacteria in a reducing environment. Each graph displays nitrate depletion over time for one batch per treatment condition. The line represents zero-order kinetic modeling, and corresponds to values listed in Table 3.2. Each graph represents a different reaction condition: a) control; b) Ce(IV) at 50 mg L\(^{-1}\); c) Ce(IV) at 250 mg L\(^{-1}\); d) Ce(IV) at 500 mg L\(^{-1}\). All Ce(IV) was added in the form of small (10-30 nm) cerium oxide nanoparticle.
Figure 3.10. Denitrification kinetic data of native soil bacteria in a reducing environment. Each graph displays nitrate depletion over time for one batch per treatment condition. The line represents zero-order kinetic modeling, and corresponds to values listed in Table 3.2. Each graph represents a different reaction condition: a) control; b) Ce(IV) at 50 mg L⁻¹; c) Ce(IV) at 250 mg L⁻¹; d) Ce(IV) at 500 mg L⁻¹. All Ce(IV) was added in the form of large (50-105 nm) cerium oxide nanoparticle.
Figure 3.11. Measurements of pH (black lines) and Eh values (mV) (blue lines) during denitrification batch experiments for a) control; b) Ce(III) at 50 mg L\(^{-1}\), c) Ce(III) at 250 mg L\(^{-1}\), and d) Ce(III) at 500 mg L\(^{-1}\).
Figure 3.12. Measurements of pH (black lines) and Eh values (mV) (blue lines) during denitrification batch experiments for a) control; b) Ce(IV)s at 50 mg L\(^{-1}\), c) Ce(IV)s at 250 mg L\(^{-1}\), and d) Ce(IV)s at 500 mg L\(^{-1}\).
Figure 3.13. Measurements of pH (black lines) and Eh values (mV) (blue lines) during denitrification batch experiments for a) control; b) Ce(IV) at 50 mg L\(^{-1}\), c) Ce(IV) at 250 mg L\(^{-1}\), and d) Ce(IV) at 500 mg L\(^{-1}\).
<table>
<thead>
<tr>
<th>pH</th>
<th>Clay</th>
<th>% OM</th>
<th>CEC</th>
<th>Acidity</th>
<th>Exchangeable Cations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K⁺</td>
</tr>
<tr>
<td>5.2</td>
<td>K, HIV, H, G</td>
<td>1.53</td>
<td>7.4</td>
<td>5.2</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Table 3.1. Texture, physicochemical properties, organic matter, and clay mineralogy of Toccoa sandy loam surface soil. The values for CEC, acidity, and exchangeable cations are in cmol$_c$ kg$^{-1}$. K= kaolinite, HIV = hydroxyl interlayer vermiculite, G= goethite, H= hematite (VandeVoort and Arai, 2012).
<table>
<thead>
<tr>
<th>Condition</th>
<th>Total [Ce] (mg L⁻¹)</th>
<th>Rate, k (mg L⁻¹ NO₃⁻N depleted h⁻¹) ± 1 standard deviation</th>
<th>R^2</th>
<th>90% Depletion Time, t (h) ± 1 standard deviation</th>
<th>50% Depletion Time, t (h) ± 1 standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>2.33 ± 0.069</td>
<td>1</td>
<td>32.1 ± 0.552</td>
<td>23.5 ± 0.295</td>
</tr>
<tr>
<td>Ionic Ce(III)</td>
<td>50</td>
<td>1.91 ± 0.096*</td>
<td>0.915</td>
<td>37.6 ± 1.36*</td>
<td>27.1 ± 0.830*</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>1.74 ± 0.049*</td>
<td>0.999</td>
<td>42.8 ± 1.75*</td>
<td>31.3 ± 1.42*</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1.35 ± 0.107*</td>
<td>0.994</td>
<td>60.0 ± 1.88*</td>
<td>45.1 ± 0.670*</td>
</tr>
<tr>
<td>Small Ce(IV)O₂ NP</td>
<td>50</td>
<td>1.52 ± 0.215*</td>
<td>0.895</td>
<td>36.6 ± 1.34*</td>
<td>23.3 ± 3.21</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>1.77 ± 0.158*</td>
<td>0.999</td>
<td>38.1 ± 0.799*</td>
<td>26.8 ± 0.209*</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1.93 ± 0.152</td>
<td>0.996</td>
<td>38.8 ± 0.284*</td>
<td>28.4 ± 0.537*</td>
</tr>
<tr>
<td>Large Ce(IV)O₂ NP</td>
<td>50</td>
<td>2.23 ± 0.155</td>
<td>0.996</td>
<td>37.7 ± 0.195*</td>
<td>28.8 ± 0.804*</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>2.17 ± 0.030</td>
<td>1</td>
<td>38.3 ± 1.64*</td>
<td>29.1 ± 1.77</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1.90 ± 0.049*</td>
<td>0.981</td>
<td>41.6 ± 0.050*</td>
<td>31.1 ± 0.321*</td>
</tr>
</tbody>
</table>

Table 3.2. Denitrification kinetic rates and 90% and 50% depletion times for denitrification batch reaction vessels. Kinetic rate (k) was calculated from linear fits of zero-order kinetic models using the data presented in Figures 3.8, 3.9, and 3.10. R^2 values correspond to goodness of fit for these models. Each item under the Condition column describes the type of cerium (e.g. Ce(III) or small/large CeO₂ NP) followed by the cerium concentration in mg L⁻¹. The notation * indicates statistically significant difference from the control vessel at $p = 0.05$.
<table>
<thead>
<tr>
<th>Comparison</th>
<th>90% Depletion Time</th>
<th>50% Depletion Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T-test Value</td>
<td>T-test Value</td>
</tr>
<tr>
<td>Concentration dependency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce(III) 50 vs 250?</td>
<td>0.0433*</td>
<td>0.0465*</td>
</tr>
<tr>
<td>Ce(III) 50 vs 500?</td>
<td>0.0038*</td>
<td>0.0010*</td>
</tr>
<tr>
<td>Ce(III) 250 vs 500?</td>
<td>0.0056*</td>
<td>0.0094*</td>
</tr>
<tr>
<td>Ce(IV)s 50 vs 250?</td>
<td>0.165</td>
<td>0.1852</td>
</tr>
<tr>
<td>Ce(IV)s 50 vs 500?</td>
<td>0.121</td>
<td>0.1289</td>
</tr>
<tr>
<td>Ce(IV)s 250 vs 500?</td>
<td>0.199</td>
<td>0.0529</td>
</tr>
<tr>
<td>Ce(IV)l 50 vs 250?</td>
<td>0.342</td>
<td>0.4347</td>
</tr>
<tr>
<td>Ce(IV)l 50 vs 500?</td>
<td>0.0076*</td>
<td>0.0580</td>
</tr>
<tr>
<td>Ce(IV)l 250 vs 500?</td>
<td>0.106</td>
<td>0.1701</td>
</tr>
<tr>
<td>Species dependency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce(III) 50 vs Ce(IV)s 50?</td>
<td>0.272</td>
<td>0.1674</td>
</tr>
<tr>
<td>Ce(III) 250 vs Ce(IV)s 250?</td>
<td>0.0605</td>
<td>0.0662</td>
</tr>
<tr>
<td>Ce(III) 500 vs Ce(IV)s 500?</td>
<td>0.0180*</td>
<td>0.0010*</td>
</tr>
<tr>
<td>Ce(III) 50 vs Ce(IV)l 50?</td>
<td>0.473</td>
<td>0.0847</td>
</tr>
<tr>
<td>Ce(III) 250 vs Ce(IV)l 250?</td>
<td>0.0593</td>
<td>0.1517</td>
</tr>
<tr>
<td>Ce(III) 500 vs Ce(IV)l 500?</td>
<td>0.0230*</td>
<td>0.0038*</td>
</tr>
<tr>
<td>Size dependency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce(IV)s 50 vs Ce(IV)l 50?</td>
<td>0.231</td>
<td>0.1174</td>
</tr>
<tr>
<td>Ce(IV)s 250 vs Ce(IV)l 250?</td>
<td>0.452</td>
<td>0.1573</td>
</tr>
<tr>
<td>Ce(IV)s 500 vs Ce(IV)l 500?</td>
<td>0.0201*</td>
<td>0.0208*</td>
</tr>
</tbody>
</table>

Table 3.3. T-test results for 90% and 50% depletion times. The notation * indicates statistically significant difference at \(p = 0.05 \).
<table>
<thead>
<tr>
<th>Comparison</th>
<th>T-test value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration dependency</td>
<td></td>
</tr>
<tr>
<td>Ce(III) 50 vs 250?</td>
<td>0.105</td>
</tr>
<tr>
<td>Ce(III) 50 vs 500?</td>
<td>0.0163*</td>
</tr>
<tr>
<td>Ce(III) 250 vs 500?</td>
<td>0.0394*</td>
</tr>
<tr>
<td>Ce(IV)s 50 vs 250?</td>
<td>0.163</td>
</tr>
<tr>
<td>Ce(IV)s 50 vs 500?</td>
<td>0.0865</td>
</tr>
<tr>
<td>Ce(IV)s 250 vs 500?</td>
<td>0.206</td>
</tr>
<tr>
<td>Ce(IV)l 50 vs 250?</td>
<td>0.276</td>
</tr>
<tr>
<td>Ce(IV)l 50 vs 500?</td>
<td>0.0821</td>
</tr>
<tr>
<td>Ce(IV)l 250 vs 500?</td>
<td>0.0181*</td>
</tr>
<tr>
<td>Species dependency</td>
<td></td>
</tr>
<tr>
<td>Ce(III) 50 vs Ce(IV)s 50?</td>
<td>0.101</td>
</tr>
<tr>
<td>Ce(III) 250 vs Ce(IV)s 250?</td>
<td>0.423</td>
</tr>
<tr>
<td>Ce(III) 500 vs Ce(IV)s 500?</td>
<td>0.0289*</td>
</tr>
<tr>
<td>Ce(III) 50 vs Ce(IV)l 50?</td>
<td>0.0671</td>
</tr>
<tr>
<td>Ce(III) 250 vs Ce(IV)l 250?</td>
<td>0.0087*</td>
</tr>
<tr>
<td>Ce(III) 500 vs Ce(IV)l 500?</td>
<td>0.0250*</td>
</tr>
<tr>
<td>Size dependency</td>
<td></td>
</tr>
<tr>
<td>Ce(IV)s 50 vs Ce(IV)l 50?</td>
<td>0.0342*</td>
</tr>
<tr>
<td>Ce(IV)s 250 vs Ce(IV)l 250?</td>
<td>0.0820</td>
</tr>
<tr>
<td>Ce(IV)s 500 vs Ce(IV)l 500?</td>
<td>0.421</td>
</tr>
</tbody>
</table>

Table 3.4. T-test results for denitrification rates. The notation * indicates statistically significant difference at $p = 0.05$.
<table>
<thead>
<tr>
<th>Impurity</th>
<th>Maximum impurity in 500 mg L(^{-1}) Ce bottle (mg L(^{-1}))</th>
<th>Do demonstrated toxicity effects for bacteria or other organisms exist at this impurity concentration?</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>La(_2)O(_3)</td>
<td>0.053</td>
<td>No</td>
<td>(Balusamy, Kandhasamy, et al., 2012)</td>
</tr>
<tr>
<td>Pr(6)O({11})</td>
<td>0.022</td>
<td>No</td>
<td>MSDS</td>
</tr>
<tr>
<td>Nd(_2)O(_3)</td>
<td>0.014</td>
<td>No</td>
<td>No literature available</td>
</tr>
<tr>
<td>Sm(_2)O(_3)</td>
<td>0.006</td>
<td>No</td>
<td>(Aleksakhina, Miriasova, et al., 2002)</td>
</tr>
<tr>
<td>Eu(_2)O(_3)</td>
<td>0.006</td>
<td>No</td>
<td>MSDS</td>
</tr>
<tr>
<td>Gd(_2)O(_3)</td>
<td>0.006</td>
<td>No</td>
<td>(Jha, Prasad, et al., 2010)</td>
</tr>
<tr>
<td>Tb(_4)O(_7)</td>
<td>0.006</td>
<td>No</td>
<td>No literature available</td>
</tr>
<tr>
<td>Dy(_2)O(_3)</td>
<td>0.006</td>
<td>No</td>
<td>(Aleksakhina, Miriasova, et al., 2002)</td>
</tr>
<tr>
<td>Ho(_2)O(_3)</td>
<td>0.006</td>
<td>No</td>
<td>(Brown and Mathiasen, 2011)</td>
</tr>
<tr>
<td>Er(_2)O(_3)</td>
<td>0.006</td>
<td>No</td>
<td>(Blaise, Gagne, et al., 2008)</td>
</tr>
<tr>
<td>Tm(_2)O(_3)</td>
<td>0.006</td>
<td>No</td>
<td>No literature available</td>
</tr>
<tr>
<td>Yb(_2)O(_3)</td>
<td>0.006</td>
<td>No</td>
<td>(Zhang, Ma, et al., 2012)</td>
</tr>
<tr>
<td>Lu(_2)O(_3)</td>
<td>0.006</td>
<td>No</td>
<td>(Aleksakhina, Miriasova, et al., 2002)</td>
</tr>
</tbody>
</table>

Table 3.5. Calculated lanthanide impurities in denitrification vessels with small NPs. Impurity concentrations in the small NP can be found in Table 2.2.
<table>
<thead>
<tr>
<th>Impurity</th>
<th>Maximum impurity in 500 mg L(^{-1}) Ce bottle (mg L(^{-1}))</th>
<th>Do demonstrated toxicity effects for bacteria or other organisms exist at this impurity concentration?</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>La(_2)O(_3)</td>
<td>0.061</td>
<td>No</td>
<td>(Balusamy, Kandhasamy, et al., 2012)</td>
</tr>
<tr>
<td>Pr(6)O({11})</td>
<td>0.031</td>
<td>No</td>
<td>MSDS</td>
</tr>
<tr>
<td>Nd(_2)O(_3)</td>
<td>0.061</td>
<td>No</td>
<td>MSDS</td>
</tr>
<tr>
<td>Sm(_2)O(_3)</td>
<td>0.031</td>
<td>No</td>
<td>(Aleksakhina, Miriasova, et al., 2002)</td>
</tr>
<tr>
<td>Yb(_2)O(_3)</td>
<td>6.14 x 10(^{-6})</td>
<td>No</td>
<td>(Zhang, Ma, et al., 2012)</td>
</tr>
</tbody>
</table>

Table 3.6. Calculated lanthanide impurities in denitrification vessels with large NPs. Impurity concentrations in the large NP can be found in Table 2.3.
3.7 References

Marcus, Y. 1980. Ibid. 9.

RESEARCH SUMMARY AND CONCLUSIONS

In the United States and other countries, widespread uses and applications exist for compounds of the lanthanide cerium. A cerium compound of particular interest is nanoparticulate ceria, also known as cerium oxide (CeO$_2$). A review of the literature in Chapter 1 revealed that, by far, cerium oxide nanoparticles (CeO$_2$ NPs) are the most widely commercially used cerium compound. Due to the rise of nanotechnology in industry, the concentrations of engineered metal oxide nanoparticles being released to the environment are increasing daily, posing questions about the fate of these NPs in the environment.

In Chapter 1, it was found that the application of wastewater treatment plant biosolids to agricultural lands serves as a significant source of CeO$_2$ NP exposure to the terrestrial environment. In the last decade, the scientific community has begun to uncover the effects of CeO$_2$ NPs on ecosystem health through toxicological studies of plants, bacteria, aquatic organisms, and mammals. However, the research findings are often difficult to extrapolate to natural aquatic and terrestrial systems since the majority of studies do not consider the effect of natural geochemical conditions on the reactivity of CeO$_2$ NPs (e.g., solubility and chemical speciation). This gap in the literature presented an opportunity for the studies detailed in this thesis. In low-temperature geochemical environments, CeO$_2$ NPs are likely to react with ligands (e.g., protons, inorganic and organic acids) and/or
partition into geomedia, resulting in changes in chemical speciation. It can be expected that these geochemical reactions may alter the toxicity of CeO₂ NPs as particulates or as dissolution products.

While many studies were available detailing the effects of CeO₂ NPs in *E. coli* and similar bacteria, the literature did not include any studies of the effects of CeO₂ NP exposure in denitrifying bacteria such as *Pseudomonas, Bacillus*, or *Alcaligenes*. The studies presented capitalize upon the importance of denitrification in soil systems as well as the widespread lack of consideration of geochemical effects in existing literature. Based on the review of the literature in Chapter 1, two main research tasks were formulated: 1) assessing the toxicity effects of CeO₂ NP exposure to soil denitrifying bacteria, and 2) investigating the effect of physicochemical properties and geochemical conditions (e.g., particle size, concentration, pH, ligand concentration) of CeO₂ NPs on the soil denitrifying process. These tasks were accomplished via geochemistry experiments including dissolution and sorption in Chapter 2 and denitrification experiments in Chapter 3.

In Chapter 2, the dissolution of small (10 – 30 nm) and large (50 – 105 nm) uncapped manufactured CeO₂ NPs was studied as a function of pH in the absence and presence of phosphate in order to understand the physicochemical interactions of CeO₂ nanoparticles post-environmental release. It was found that Ce dissolution was negligible at pH > 7 and was only significant at pH < 5; dissolution became far more pronounced as pH decreased.
When 100 µM phosphate was present, dissolution from CeO\textsubscript{2} NPs was significantly reduced. Via the studies in Chapter 2, phosphate-suppressed CeO\textsubscript{2} dissolution was linked to the chemisorption of PO\textsubscript{4}3-. It was postulated that the Ce(III) impurity metal-centered complexation with PO\textsubscript{4}3- ligands could facilitate the formation of Ce(III)PO\textsubscript{4} surface precipitates at the CeO\textsubscript{2}-water interface. The pH dependent phosphate sorption was more pronounced in small NPs than in larger NPs. Adsorption isotherms showed that both NPs exhibited an L-type shaped isotherm curve, revealing a high affinity for phosphate. In conclusion, it was found in Chapter 2 that both pH and bioavailable phosphate ligands likely play an important role in controlling the release of Ce from CeO\textsubscript{2} NPs; thus, the dissolution properties of CeO\textsubscript{2} NPs affected by pH and phosphate should be considered in assessing the fate of CeO\textsubscript{2} NPs in the aquatic and terrestrial environment. Phosphate is one of most common oxyanions present in surface and subsurface waters; the interaction between PO\textsubscript{4}3- and Ce(III) impurities in manufactured CeO\textsubscript{2} NPs may be critical since it greatly affects both surface charge properties and structure.

The studies presented in Chapter 3 reveal the toxicity effects of multiple Ce species to the soil denitrifying bacteria community. To understand the impact of CeO\textsubscript{2} NPs on the microbially mediated nutrient cycles, a subchronic toxicity study of NPs on soil denitrification process was conducted as a function of particle size (10 and 50 nm), total Ce concentration (50 – 500 mg L-1), and speciation (Ce(IV) vs. Ce(III)). Statistical analyses on the antimicrobial effect on soil denitrifiers were conducted using both steady-state evaluation and zero-order kinetic models in order to compare the toxicity effects. It
was found that soluble Ce(III) was far more toxic than Ce(IV)O$_2$ NPs when an equal total concentration of Ce was evaluated. Particle-size dependent toxicity, species-dependent toxicity, and concentration-dependent toxicity were all observed in this study for both the steady-state and the kinetic evaluations. It was found that both Ce(III) and CeO$_2$ NP species exhibited particularly strong sorption properties with soil; XANES analysis also revealed some chemical speciation changes in small NPs in soil. The analysis indicated predominance of Ce species that were similar to Ce(IV) references for the large NP, but indicated reductive transformation and thus species that were similar to both the Ce(IV) and Ce(III) references for the small NPs. It is clear that even among two differently sized nanoparticles of the same species, different physical and chemical factors may contribute to toxicity effects. This is supported by much of the data in Chapter 2. The strong sorption affinity for Ce(III) and CeO$_2$ NPs to soils was also demonstrated in Chapter 3, confirming the clear likelihood of physicochemical transformation of the Ce species via sorption mechanisms. Cerium species are already fairly insoluble and are even more insoluble when PO$_4^{3-}$ ligand is present, as demonstrated in Chapter 2. This conclusion, coupled with the results from Chapter 3, support the possibility that Ce species have a large potential to build up in sediments over time; thus, toxicological studies such as these detailing the environmental fate and reactivity of CeO$_2$ NPs to soil bacterial communities are largely necessary.

In conclusion, the data from the studies presented in this thesis expand the scientific community’s current knowledge of CeO$_2$ NP toxicity to heterogeneous systems by
determining the impact of geochemical factors on CeO$_2$ NP toxicity to the soil denitrification process. These studies revealed that not only do CeO$_2$ NPs exert toxicity effects to soil denitrifying bacteria, but also that this process is subject to be affected both by physicochemical characteristics of the NPs and the geochemical conditions in the environment, including pH and phosphate ligand availability. Thus, the results of these studies should be considered in future evaluations of possible implications following environmental exposures to CeO$_2$ NPs.