PERSON-SUPERVISOR FIT: IMPLICATIONS FOR ORGANIZATIONAL STRESS, ORGANIZATIONAL COMMITMENT, AND JOB SATISFACTION

Hilary Schoon
Clemson University, hschoon@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses
Part of the Industrial and Organizational Psychology Commons

Recommended Citation
https://tigerprints.clemson.edu/all_theses/391

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
ABSTRACT

Traditional fit literature has focused on person-organization fit. However, Kristof-Brown, Zimmerman, and Johnson (2005) recently introduced the idea of person-supervisor fit in a meta-analysis on fit. Person-supervisor fit was hypothesized to be the degree of similarity between personality dimensions, values, and goals. This paper first defines fit and then reviews the literature on the topics that apply to person-supervisor fit. This study was conducted with supervisors (faculty members) and subordinates (graduate student teaching and research assistants) from different departments in one university to determine the relationship between person-supervisor fit with subordinates’ organizational stress, subordinates’ organizational commitment, and subordinates’ job satisfaction. Results show that match between supervisor and subordinate personality dimensions, values, and goals did not have strong relationships with the outcome variables of interest. The one exception was a significant, strong correlation between value similarity and subordinates’ organizational commitment such that the more similar the values between the pair, the lower the organizational commitment.
ACKNOWLEDGEMENTS

I would first like to thank my family, especially my mother. The constant encouragement and support was necessary for the completion of this project as well as my entire educational journey. Next, I would like to thank my future family, particularly my fiancé. The patience, understanding, and support were incredibly beneficial to this venture.

I would also like to acknowledge my classmates for their contributions to this study over the last two years. Your help has been invaluable. Lastly, and most importantly, I would like to thank my committee, above all my advisor and chair of this project, Fred Switzer, for keeping me on track throughout this task.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>DEFINITION OF FIT</td>
<td>4</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>Literature Overview</td>
<td>7</td>
</tr>
<tr>
<td>Introduction to Leader-Member Exchange</td>
<td>7</td>
</tr>
<tr>
<td>History of Leader-Member Exchange</td>
<td>8</td>
</tr>
<tr>
<td>Leader-Member Exchange</td>
<td>8</td>
</tr>
<tr>
<td>Introduction to Similarity</td>
<td>10</td>
</tr>
<tr>
<td>Personality Similarity</td>
<td>11</td>
</tr>
<tr>
<td>Value Congruence</td>
<td>12</td>
</tr>
<tr>
<td>Goal Congruence</td>
<td>13</td>
</tr>
<tr>
<td>Organizational Stress</td>
<td>14</td>
</tr>
<tr>
<td>Organizational Commitment</td>
<td>15</td>
</tr>
<tr>
<td>Job Satisfaction</td>
<td>16</td>
</tr>
<tr>
<td>STUDY OVERVIEW</td>
<td>17</td>
</tr>
<tr>
<td>HYPOTHESES</td>
<td>19</td>
</tr>
<tr>
<td>METHOD</td>
<td>20</td>
</tr>
<tr>
<td>Participants</td>
<td>20</td>
</tr>
<tr>
<td>Faculty</td>
<td>20</td>
</tr>
<tr>
<td>Graduate Students</td>
<td>21</td>
</tr>
<tr>
<td>Materials</td>
<td>22</td>
</tr>
<tr>
<td>Personality Similarity</td>
<td>22</td>
</tr>
<tr>
<td>Value Congruence</td>
<td>22</td>
</tr>
<tr>
<td>Goal Congruence</td>
<td>23</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational Stress</td>
<td>23</td>
</tr>
<tr>
<td>Organizational Commitment</td>
<td>23</td>
</tr>
<tr>
<td>Job Satisfaction</td>
<td>24</td>
</tr>
<tr>
<td>Person-Supervisor Fit</td>
<td>24</td>
</tr>
<tr>
<td>Procedure</td>
<td>25</td>
</tr>
<tr>
<td>RESULTS</td>
<td>26</td>
</tr>
<tr>
<td>Missing data</td>
<td>26</td>
</tr>
<tr>
<td>Outliers</td>
<td>26</td>
</tr>
<tr>
<td>Data Collection</td>
<td>26</td>
</tr>
<tr>
<td>Objective Fit Difference Score Correlations</td>
<td>29</td>
</tr>
<tr>
<td>Polynomial Regression</td>
<td>32</td>
</tr>
<tr>
<td>Perceived Person-Supervisor Fit</td>
<td>33</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>34</td>
</tr>
<tr>
<td>Limitations</td>
<td>38</td>
</tr>
<tr>
<td>Implications</td>
<td>39</td>
</tr>
<tr>
<td>Conclusion</td>
<td>40</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>41</td>
</tr>
<tr>
<td>A: Graduate Student Survey</td>
<td>42</td>
</tr>
<tr>
<td>B: Supervisor Survey</td>
<td>56</td>
</tr>
<tr>
<td>C: Psychology Graduate Assistant Performance Questionnaire</td>
<td>71</td>
</tr>
<tr>
<td>D: Email to Department Chairs</td>
<td>72</td>
</tr>
<tr>
<td>E: Email to Program Coordinators</td>
<td>73</td>
</tr>
<tr>
<td>F: Email request for participation</td>
<td>74</td>
</tr>
<tr>
<td>G: Reminder email</td>
<td>75</td>
</tr>
<tr>
<td>H: Polynomial Regression</td>
<td>76</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>142</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1: Descriptive Statistics for Difference Scores .. 29
2: Hypothesis 1 Correlations (Objective Fit and Stress) ... 30
3: Hypothesis 2 Correlations (Objective Fit and Commitment) 30
4: Hypothesis 3 Correlations (Objective Fit and Satisfaction) 31
5: ANOVA for Unconstrained Model – Commitment by Values 32
6: Coefficients for Unconstrained Model – Commitment by Values 32
7: Subordinates’ Perceived Fit with Outcome Variables .. 33
INTRODUCTION

Companies spend valuable time, resources, and money creating events that socialize, train, and develop employees on a regular basis. Organizations want and need employees who will be successful in their chosen place of employment. Every organization contains several different characteristics that can affect how successful and happy an employee is at work. All of the effort that organizations put forth on behalf of workers can be useless if individuals have terrible relationships with their supervisors.

The purpose of this study is to examine the construct of person-supervisor fit. Person-supervisor fit has been conceptualized as the similarity between supervisor and subordinate personality dimensions, values, and goals. It is proposed that if these dimensions of fit match (or mis-match), there will be significant relationships with organizational outcomes. More specifically, the congruence between supervisor and subordinates personality dimensions (neuroticism, extraversion, openness to experience, conscientiousness, and agreeableness), values, and goals are hypothesized to relate to important outcome variables such as subordinates’ organizational stress, subordinates’ organizational commitment, and the subordinates’ job satisfaction.

Fit, or compatibility, between supervisors and their subordinates could be beneficial for organizations, supervisors, and subordinates alike. Good fit has been found to have many benefits for employee’s attitudes and behaviors. For example, job satisfaction, organizational commitment, job performance, tenure/turnover, and many other variables can positively or negatively be affected by person-organization and person-job fit (Lauver & Kristof-Brown, 2001). In the ideal situation, employees and their supervisors work well together and have a good relationship. This relationship can lead to satisfied
workers who are happy to come to work. When employees enjoy their work, they are less likely to commit counterproductive behaviors (Lau, Au, & Ho, 2003). For example, they are less likely to steal company property, come in late, miss work, commit computer fraud, or quit. On the other hand, happy employees could be more likely to perform organizational citizenship behaviors such as staying late, taking on extra work, or helping a coworker (Payne & Weber, 2006). Employees who enjoy their work are also more likely to take pride in their work and do a better job, possibly even more efficiently than those who do not enjoy their job. While these examples seem extreme, more research needs to be conducted to determine what types of impact and how strong an impact person-supervisor fit can have on an individual since fit affects the organization and the supervisor directly.

This study is unique because it combines three variables (personality similarity, value congruence, and goal congruence) that have been proposed as the primary components of the construct of person-supervisor fit. Usually these variables are examined individually. The distinctive characteristic of combining these variables, in addition to looking at very organizationally important outcome variables (organizational stress, organizational commitment, and job satisfaction), is likely to provide important knowledge on the topic of supervisor-subordinate relationships. This is true because it is likely that person-supervisor fit operates across a relatively wide range of dimensions and has a relatively broad range of influence. This study adds to the existing literature by examining both a range of dimensions that are likely to be important ones in person-supervisor fit and also a range of outcome variables that are likely to be affected by person-supervisor fit. This study is also unique in two other ways. First, it uses a person-supervisor fit scale. No
existing person-supervisor fit scales were located so such a scale was constructed for this study by adapting Cable & Judge’s (1996) person-organization fit scale. Second, this study was conducted in the context of a non-profit rather than a for-profit institution. While no explicit hypotheses about non-profit vs. for-profit organizations were tested, the non-profit organization may provide a stronger test of the hypotheses – for example, it is possible that employees of non-profit organizations may weight job values more heavily (i.e., may be more intrinsically motivated) than employees of for-profit organizations so that person-supervisor mismatches in job values have a stronger influence.

Again, this study’s purpose is to support that the fit, or compatibility, between a supervisor and subordinate will significantly relate to the outcomes of interest. In order to meet this goal, this paper will begin by presenting the necessary background information for the variables of interest. First, fit is clearly defined. Next, there is a literature review that begins with an overview. Leader-member exchange is the first major topic covered in the literature review. There is a section for an overview, history, and current research on leader-member exchange. Next, an explanation of similarity is discussed as an introduction to the predictor variables (personality similarity, value congruence, and goal congruence). The last portion of the background information presented is research concerning the outcome variables (organizational stress, organizational commitment, and job satisfaction). Next, the hypotheses of the study are presented. The methods, results, and discussion will directly follow this necessary background information.
DEFINITION OF FIT

Fit is the compatibility an individual feels with a particular element. There are two conceptualizations that describe fit. The first states that fit can be either supplementary or complementary. Supplementary fit is the overlap or similarity between an individual and a factor of interest. Hiring someone because they have knowledge on a topic that is specific to an organization would be an example of supplementary fit. In other words, the person fits because they are similar to others. On the other hand, complementary fit is found when there is an addition of something new by an individual that was previously missing. An example of complementary fit is the hiring of a teacher based on his/her ability to fill a need in a department. So this person fits with his/her new department because he/she helps complete it (Muchinsky & Monahan, 1987).

The second conceptualization of fit is the distinction between the needs-supplies and demands-ability perspectives. According to the needs-supplies model, the organization suits the individual’s needs, desires, or preferences. When the individual meets the needs of the organization, it is said that the demands-ability model being demonstrated (Caplan, 1987).

According to Kristof-Brown, Zimmerman, and Johnson (2005), there are three distinctive ways that fit can be measured. First, perceived fit is when an individual makes a direct judgment of the match between themselves and the environment. Subjective fit is being reviewed when person and environment variables from the same person are indirectly compared. Also objective fit can be obtained by indirect comparison between person and environment variables which are accounted for by different sources.
The different types of fit relating to work are broadly defined under the classification of person-environment fit. Person environment fit is the “compatibility between an individual and a work environment that occurs when their characteristics are well matched” (Kristof-Brown, et al., 2005, p. 281). Kristof (1996) first classified topics of interest under the broad classification of person-environment as person-vocation fit, person-job fit, person-organization fit, and person-group fit. In 2005, Kristof-Brown, et al. added person-supervisor fit to the pertinent types of person-environment fit in the workplace.

Person-vocation fit and person-job fit apply to a type of profession and specific job. Person-vocation fit is defined as the connection between the skills of a person and that of an occupational setting (Kristof, 1996). Measuring the similarity between an individual’s personality and that of a professional environment is the best way to evaluate person-vocation fit. More specifically, person-job fit is defined as the compatibility of individuals with particular employment. There are two different methods that researchers use to measure person-job fit: demands-abilities fit and needs-supplies fit. In order to satisfy the demands-abilities fit an individual must have the knowledge, skills, and abilities necessary to do the job. Conversely if the needs, desires, or preferences are met by the jobs performed, then good needs-supplies fit exists. Kristof et al. (2005) found that person-job fit was strongly correlated with job satisfaction ($r = .56$), organizational commitment ($r = .20$), and intent to quit ($r = -.46$).

The specific place and people that an individual works with are related to person-organization fit, person-group fit, and person-supervisor fit. Person-organization fit is defined as the “compatibility between individuals and the organizations in which they
work” (Kristof-Brown, et al., 2005, p. 1). Person-organization fit has been found to have strong correlations with job satisfaction ($r = .44$) and organizational commitment ($r = .51$). Person-group fit is defined as the compatibility between individuals and their cohort. Person-group fit correlates strongly with coworker satisfaction ($r = .42$) and group cohesion ($r = .47$).

Lastly, person-supervisor fit is defined as the compatibility between an employee and his/her supervisor. In the past, similar relationships such as interactions between leaders and members, recruiters and applicants, and mentors and protégés have been studied. While the term “person-supervisor fit” was only recently conceptualized, several older studies covered topics that are pertinent for the supervisor and subordinate relationships. These previous studies were used in a meta-analysis that discovered that person-supervisor fit is strongly correlated with job satisfaction ($r = .44$), supervisor satisfaction ($r = .46$), and leader-member exchange ($r = .43$; Kristof-Brown et al., 2005).
LITERATURE REVIEW

Literature Overview

A large amount of research on the relationship between supervisor and subordinates is centered on the domain of leader-member exchange (Kristof-Brown, et al., 2005). Before one can understand the fit between person and supervisor, it is important to understand what has been learned about the relationship between this important dyad. After delving into leader-member exchange, it is next important to understand the different approaches that have been taken to study person-supervisor fit. The common practice when studying person-supervisor fit is to look at personality similarity, value congruence, goal congruence, or some combination of the three.

Introduction to Leader-Member Exchange

Most research that applies to the idea of person-supervisor fit originated from studies investigating leader-member exchange. Therefore, it is important to understand exactly what leader-member exchange is, and how it is different from person-supervisor fit. Leader-member exchange is a developed or negotiated role between leader and member. Differential quality of exchange between leader and members occurs because of the leader’s need for efficiency (due to time constraints) and performance (Dienesch & Liden, 1986).

As Kristof-Brown, et al. (2005) points out, leader-member exchange studies the nature of the relationship rather than the match of underlying psychological characteristics. She chose not to include leader-exchange research in her meta-analysis on person-supervisor fit for this reason. However, while it is obvious that the quality of exchange and compatibility between supervisor and subordinate are two separate topics,
leader-member exchange research is a comparable subject where researchers can gain new ideas. For this reason, leader member exchange is covered in this paper.

History of Leader-Member Exchange

During the 1970’s opposing studies on leadership were being published on average leadership style and vertical dyad linkage. Average leadership style occurs when a leader is assumed to treat all subordinates very similarly, and vertical dyad linkage implies that leaders treat subordinates differently. As researchers began to study vertical dyad linkage and find support for differential relationships between different subordinates, the belief in average leadership style was left behind. When studying vertical dyad linkage, Liden and Graen (1980) found that subordinates who have higher quality exchanges with their supervisors tend to assume greater job responsibility, contribute more to their teams, and receive higher ratings than their peers with lower quality exchanges. Graen, Novak, and Sommerkamp (1982) officially renamed vertical dyad linkage as leader-member exchange.

Leader-Member Exchange

Theories of leader-member exchange imply that supervisors have a different variety of relationships with their different employees. Different types of interactions occur because there are differing quality social exchanges taking place between a supervisor and his/her subordinates. These different types of relationships lead the supervisor to treat employees differently. Employees with low-quality relationships are stuck doing unpopular tasks where they don’t interact often with their leader. More freedom, better job assignments, and increased opportunities to work with leaders are some of the
advantages of having a high quality leader-member exchange situation (Ashkanasy & O’Connor, 1997).

The quality of interactions can be improved by subordinate characteristics such as competence (Kim & Organ, 1982), trustworthiness, motivation (Liden & Graen, 1980), and attitude similarity (Schaubroeck & Lam, 2002). Leader-member exchange was found to be negatively related to turnover in a sample of systems analysts and computer programmers (Graen, Liden, & Hoel, 1982). Liden, Wayne, and Stilwell (1993) studied leader-member exchange with a sample taken from newly formed dyads in non-academic positions from two major universities in the United States. They found that leaders’ and members’ expectations, perceptions of similarity, and liking in early employment setting were predictors of leader-member exchange in the future. In other words, when leaders and members both expect positive things from each other, perceive each other to be similar, and both like each other, the quality of exchange between the two individuals will be higher.

Dienesch and Liden (1986) proposed that leader-member exchange is a multidimensional construct and suggested that affect, loyalty, and contribution were three dimensions that should be tested. Liden and Maslyn (1998) helped support this multidimensionality theory by demonstrating that leader-member exchange does, in fact, depend on several different dimensions. They did this by doing an item analysis with working students. Next, they did construct and criterion-related validation with employees from two organizations to obtain their working multidimensional leader-member exchange scale. Using this new multidimensional leader-member exchange
scale, they found that affect, loyalty, contribution, and professional respect were separate dimensions of leader-member exchange.

This development is important in helping to better understand the relationship between the development and maintenance of leader-member/supervisor-subordinate relationships. Next, similarity or congruence with special emphasis on the predictor variables (personality similarity, value congruence, and goal congruence) will be discussed.

Introduction to Similarity

Similarity is important in the relationship between supervisors and subordinates. According to Schaubroeck and Lam (2002), “deeper level” similarities such as attitudes, dispositions, values, goals, and intentions have more lasting effects as opposed to obvious demographic similarities that are often studied such as gender, age, or race. When traits are shared, individuals are more likely to work with each other successfully. This is because they use common references in perceiving, understanding, and behaving on social information. A supervisor trusts that an employee will behave as the supervisor desires without monitoring or incentives because the employee is similar to the supervisor (Schaubroeck & Lam, 2002). Two theories help explain why individuals prefer those that seem similar to themselves: self-categorization theory (Tsui, Egan, & O’Reilly, 1992) and similarity-attraction theory (Byrne, 1971). According to the self-categorization theory, we like to think of ourselves positively, and therefore we tend to think positively of those similar to us. The similarity-attraction theory, on the other hand, argues that attraction mediates the relationship between similarity and outcomes.
More specifically, personality similarity is an example of one of the deeper-level constructs that has a lasting connection to organizational outcomes. Personality is most commonly construed as five different dimensions. These dimensions are called the Big Five Factor Model of Personality. The Big Five Model is made up of neuroticism, extraversion, openness to experience, conscientiousness, and agreeableness. This model is important for three reasons. First, it gives a way to sort the personality characteristics into meaningful categories. Second, the Big Five Factor Model gives a common framework for doing research. Third, the model is supposed to cover all of the personality “space” (Smith & Canger, 2004).

Neuroticism refers to a tendency to experience anxiety, tension, self-pity, hostility, impulsivity, self-consciousness, irrational thinking, depression, and low self-esteem. Extraversion is displayed by being positive, assertive, energetic, social, talkative, and warm. One who is curious, artistic, insightful, flexible, intellectual, and original is high in openness to experience. Forgiving, kind, generous, trusting, sympathetic, compliant, altruistic, and trustworthy are descriptors of the dimension called agreeableness. Lastly, conscientiousness refers to a tendency to be organized, efficient, reliable, self-disciplined, achievement-oriented, rational and deliberate (John, 1989; McCrea & John, 1992).

Individuals who share personality traits use common referents in perceiving, interpreting, and acting on social information (Schaebroeck & Lam, 2002). Schaubroeck and Lam (2002) found that personality similarity between promotion candidates and their supervisors was a significant predictor of promotion decisions for these employees. Strauss et al. (2001) found that perceived personality similarity had significant, positive
relationships with supervisor and peer ratings of performance. Also, liking mediated the relationship between perceived personality similarity and performance ratings.

A study by Liao, Joshi, and Chuang (2004) tested restaurant employees’ personality dissimilarity with outcomes such as coworker satisfaction and organizational commitment. They found that Openness to Experience dissimilarity was negatively related to organizational commitment and coworker satisfaction. Additionally, it was found that extraversion dissimilarity was positively related to coworker satisfaction.

Value Congruence

Several studies have tested value congruence with aspects of leader-member exchange. Values are defined as learned tendencies to prefer certain events and states over others. When supervisors at seven organizations were asked to rate subordinates on achievement outcomes, better ratings were given when perceived values were similar (Weiss, 1978). Leaders and members have been found to rate each other better when they have more information about each other’s work-related attitudes according to a study including employed students and their supervisors (Wexley, Alexander, Greenwalt, & Couch, 1980). Using a student simulation, one study found that members report satisfactory social exchanges with their leaders when they also report having similar perceived values (Steiner, 1988). Phillips and Bedeian (1994) also found that in a sample of nurses’ and their supervisors a positive correlation exists between leaders’ perceptions of similarity of attitudes with members’ perceptions of exchange quality. Ashkanasy and O’Connor (1994) also found that leader-member exchange quality is related to similarity of values in work groups in seven service and industrial organizations. In addition, they found implications that positive quality exchange was related to two things: acceptance of
authority by the member and recognition of member’s independence by the leader. More broadly, fit between a person’s values and an organization’s values has been found to have positive outcomes such as organizational commitment (O’Reilly, Chapman, & Caldwell, 1991).

Now that the literature for all three person-supervisor fit dimensions has been reviewed, the three sections in the literature review will cover the outcome variables. First literature on organizational stress will be discussed. Next, organizational commitment will be covered. Lastly, the outcome measure of job satisfaction will be reviewed.

Goal Congruence

Adding to the research on congruence of values, congruence of goals is an important aspect of the relationship between supervisors and employees. Witt (1998) found in a sample made up of employees from five different organizations that negative politics have an impact on commitment and performance on employees when they have different priorities than their supervisor. However, when they have similar priorities to their supervisor, the politics do not have an impact on their commitment and performance. Vancouver and Schmidt (1991) found that goal congruence between teachers and principals was positively related to job satisfaction and organizational commitment, and negatively related to intentions to quit.

Now that the literature has been reviewed on the dimensions of person-supervisor fit, the outcome variables will be covered. First, organizational stress literature will be reviewed. Next, the research for organizational commitment will be covered. Lastly, the construct of job satisfaction will be reviewed.
Organizational Stress

Organizational stress is defined as “a particular relationship between the person and the environment that is appraised by the person as taxing or exceeding his or her resources and endangering his or her well-being” (Lazarus & Folkman, 1984, p. 19).

Organizational stress has been found to have several outcomes that affect the organization and the individual. Stress at work has been shown to have damaging effects on health outcomes such as physical and psychological health. In fact, it has been found that poor mental health and poor physical health are related to stressful working conditions (Ganster & Schaubroeck, 1991). This can cause organizational healthcare costs to elevate (Matteson & Ivancevich, 1987), employee’s performance to deteriorate (Motowidlo, Packard & Manning, 1986), and a generally dire employment quality to ensue (Ivancevich & Matteson, 1980). In general, lower job stress is better for everyone, as long as it is not too low to indicate boredom or disinterest.

Harris and Kacmar (2006) found that stress, particularly tension, is high when leader-member exchange quality is low, but decreases when leader-member exchange quality is moderate to moderately high. However, stress goes back up again when leader-member exchange quality is too high. They speculate that this occurs because as employees enjoy the perks of a good relationship with their boss, they also feel the need to over compensate to make up for these benefits.

While the level of leader-member exchange can greatly vary the stress in a supervisor/subordinate relationship, it seems the relationship would be much simpler with fit. Because leader-member exchange and person-supervisor fit are different constructs, it seems that they might have different outcomes. For example, the fit or compatibility
between a supervisor and subordinate might have a very different relationship regarding stress. It may be that stress at work is much higher for those employees who are not compatible with their supervisors, and job stress is lower for those pairs that have a better fit.

Organizational Commitment

Organizational commitment is a psychological state that characterizes an employee’s relationship with his/her organization and has implications for that employee’s ongoing association in the organization (Meyer & Allen, 1997). More specifically, it is known to possess three requirements: a strong belief in and acceptance of the organization’s goals values, a willingness to exert considerable effort on behalf of the individual, and a strong desire to maintain membership in the organization. Commitment has been researched for years and has consistently shown to be an important variable in understanding the work behavior of employees in organizations. This attitude has also been shown to be different from job satisfaction because it is more global and stable. (Mowday, Steers, & Porter, 1979).

Organizational commitment has been found to be positively related to several good work outcomes. A study with restaurant employees found that openness to experience dissimilarity negatively predicted organizational commitment (Liao, Joshi, & Chuang, 2004). As previously stated, Vancouver and Schmidt (1991) found that goal congruence between teachers and principals was positively related to organizational commitment. Also in the broader topic of the relation between an individual and organization’s values, similarities have been found to have positive outcomes such as organizational commitment (O’Reilly, Chatman, & Caldwell, 1991).
Job Satisfaction

Job satisfaction is defined as persistent feelings toward discriminable aspects of the job situation (Stanton, Balzer, Smith, Parra, & Ironson, 2001). Wilensky (1960) is attributed with the three main hypotheses concerning life-job satisfaction: spill-over hypothesis, compensation hypothesis, and segmentation hypothesis. The spill-over hypothesis states that work experiences extend to the other domains of life. The compensation hypothesis states that extra-work activities make up for experiences and rewards that are lacking at work. The segmentation hypothesis states that the work and non-work segments of life are completely separate. Research has shown that the spill-over hypothesis is the most applicable.

Job satisfaction is especially important because it relates to both the well-being of the individual as well as the outcomes of the organization. For example, job satisfaction has been linked to reduced burnout, lower turnover, improved organizational commitment, and enhanced effectiveness (Haley-Lock, 2007).

As previously mentioned, according to a meta-analysis person-supervisor fit is strongly correlated with job satisfaction (Kristof-Brown, et al., 2005). A study with a sample of restaurant employees found that agreeableness dissimilarity negatively predicted coworker satisfaction, and extraversion dissimilarity positively predicted coworker satisfaction. Also, openness to experience dissimilarity was found to be negatively related to coworker satisfaction (Liao, Joshi, & Chuang, 2004). Particularly with the aspect of goal congruence between teachers and principals, it was found that job satisfaction was positively related (Vancouver & Schmidt, 1991).
STUDY OVERVIEW

The purpose of the study is to investigate the relationship of compatibility between supervisors and subordinates and important organizational outcomes. This study intends to investigate the influence of person-supervisor fit in a university setting because there are large amounts of graduate students and university faculty that work together all over the world. In order to do this, the sample will be obtained from a medium-sized southeastern university. The sample of supervisors will be faculty members. The sample of subordinates will be graduate teaching assistants and research assistants who work under these supervisors. Demographics, personality similarity, value congruence, goal congruence, organizational stress, organizational commitment, job satisfaction, and perceived person-supervisor fit will be assessed from these two groups through online surveys. All participants will receive a link to the appropriate survey through an email requesting participation. All participation will be taking place in the spring semester.

When using this sample, it is imperative to keep in mind that graduate students and professors have two different types of relationships: supervisor/subordinate and professor/student. While the survey does include questions to find out if this overlap exists, it also was necessary to create the survey with such language that refers only to the employment relationship. In other words, the halo effect of the professor/student relationship (i.e., the academic relationship as opposed to the employment relationship) should not influence the results of the study.

This paper attempts to identify compatibility between supervisors and their subordinates on three measures: personality similarity, value congruence, and goal congruence. These three variables are used to predict three outcomes: organizational
stress, organizational commitment, and job satisfaction. It is important to realize that six out of seven of the measures used will test actual, objective fit. Perceived fit is tested using a subjective scale for the person-supervisor fit at the end of the survey.
HYPOTHESES

Hypothesis 1a: Personality Similarity will have a negative relationship with organizational stress. All five personality dimensions will be exploratory.

Hypothesis 1b: Value congruence will have a negative relationship with organizational stress.

Hypothesis 1c: Goal congruence will have a negative relationship with organizational stress.

Hypothesis 2a: Organizational commitment will have a positive relationship with Openness to Experience similarity. Other personality dimensions will be investigated as well.

Hypothesis 2b: Organizational commitment will have a positive relationship with value congruence.

Hypothesis 2c: Organizational commitment will have a positive relationship with goal congruence.

Hypothesis 3a: Job satisfaction will have a negative relationship with extraversion similarity and openness to experience similarity. Other personality dimensions will be tested also.

Hypothesis 3b: Job satisfaction will have a positive relationship with value congruence.

Hypothesis 3c: Job satisfaction will have a positive relationship with goal congruence.
METHOD

Participants

There were two groups of participants: faculty members (supervisors) and graduate students (subordinates). These groups were from different academic departments: Psychology (23%), Construction Science Management (3%), Environmental Design and Planning (1%), History (1%), Parks, Recreation, Tourism, and Management (9%), Bioengineering (19%), Forestry and Natural Resources (3%), Chemistry (24%), Biological Sciences (3%), Accountancy (1%), Industrial Engineering (4%), Electrical and Computer Engineering (8%), and Mechanical Engineering (1%). Due to the small amount of data coming from some departments, data was presented overall instead of by department. The overall response rate was approximately 34%. ($N = 272$). One department sent the email through the secretary instead of letting the research team send it. They did not give a total number of possible participants or pairs. So this department could not be used in calculating the response rate. Additionally, data that did not pair up was dropped which gave a useable response rate of approximately 15% ($n = 115$ individuals with 78 pairs). Some supervisors were responsible for supervising multiple graduate students which is why there is a sample size of 115 individuals with only 78 pairs.

Faculty Members. The majority (76.7%) of faculty members were male. Faculty members’ average age was 44. Faculty members were either white (79.1%) or Asian/pacific islander (20.9%). The average number of years the faculty members had been teaching at the collegiate level was 12 years with an average of 9 years at the
current university. On average, the faculty members had 3.77 graduate assistants which were usually picked (76%) rather than assigned (24%).

Graduate Students. The graduate student sample was 52.7% female and had an average age of 27 years old. 73% were white, 2.7% were African-American, 1.4% were Hispanic, 20.3% were Asian/Pacific Islander, and 2.7% classified themselves as “other.” 36.4% of graduate students were in their first year. 25.7% of graduate students were in their second year. 14.9% of graduate students were in their third year. 8.1% of students were in their fourth year. 6.8% of students were in their fifth year. 2.7% of students were in their sixth year. 5.4% of students choose not to respond to the question about their year in school. The vast majority of the graduate students worked in their primarily in their own department (94.4%). Students were partially masters’ candidates (36.5%) and partially PhD candidates (63.5%). Students had teaching assistantships (25.7%), research assistantships (50%) and sometimes both (24.3%). The majority of the time, students picked (64.4%) their assistantship rather than were assigned to it (35.6%). Students were varying distances from their supervisors’ offices: same room (1.4%), same hall (13.9%), same floor (37.5%), same building (44.4%), and different building (2.8%). Of the 19 students who answered the same question about their second supervisor, 5.6% were on the same hallway, 16.6% were on the same floor, 72.2% were in the same building, and 5.6% were in different buildings. 80.8% of student has a class with their supervisor. Of the 25 students that answered the same question about their second supervisor, 16% were also in a class with their second supervisor. The graduate students had worked under the faculty previously 56.2% of the time. Of the 18 students who answered the same question about their second supervisor, 44.4% had worked under this
supervisor previously. The graduate assistants were also asked about their perceived amount of work as compared to peers. 15.3% felt they worked considerably more than their peers. 26.4% felt that they worked more than their peers. 38.9% felt they worked about the same as their peers. 15.3% felt that they worked less than their peers. 4.1% felt that they worked considerably less than their peers.

Materials

Personality Similarity. Forty-four items were included to measure the Big Five personality constructs: Neuroticism (8), Extraversion (8), Agreeableness (9), Conscientiousness (9), and Openness to Experience (10). Responses for the forty-four items ranged from 1 (disagree strongly) to 5 (agree strongly). These items came from the Big Five Personality Inventory. This scale was created by John and Srivastave (1999) who found that the alpha reliabilities of the Big Five Inventory scales to range from .75 to .90 with an average of .80. See Appendix A, pages 42-45, items 1-44 and Appendix B, pages 56-59, items 1-44 for complete scale.

Value Congruence. To assess value congruence, Elizur and Sagie’s (1999) values questionnaire was used. There were two categories of values covered in this questionnaire: life values and work values. There were 21 items in the life values category, and 24 items in the work values category. The responses for items ranged from 1 (very unimportant) to 6 (very important). The original authors did not report reliability or validity data for this measure. However, it was used because it appeared to possess content validity. See Appendix A, pages 45-48, items 1-45 and Appendix B, pages 59-62, items 1-45 for the complete scale.
Goal Congruence. Goal congruence was assessed by a scale that was made from information found in the Psychology Department’s graduate student performance appraisal (see Appendix C) combined with scale and post-scale interviews of Psychology Department graduate students and faculty. This ensured that the goals fit the sample of faculty members and graduate students. There were nine questions that ranged from 1 (very unimportant) to 6 (very important). Two pilots of the scale were given to graduate students two days apart and showed acceptable test-retest reliability with a Pearson’s correlation of .817 ($p = .000$). Some examples of topics covered are being prepared, being on time, keeping appointments, etc. See Appendix A, page 48-49, items 1-13 and Appendix B, page 62-63, items 1-13 for complete scale.

Organizational Stress. The Stress in General Scale (Stanton, Balzer, Smith, Parra, & Ironson, 2001) was used to determine organizational stress. There were seven “pressure” items and eight “threat” items. The pressure subscale has previously been shown to have an alpha reliability of .83, and the threat subscale has previously been shown to have an alpha reliability of .81. Instead of following the three item response scale (yes, no, ?), all responses will be on a 5-point Likert scale ranging from 1 (never) to 5 (all of the time). See Appendix A, page 49-50, items 1-15 and Appendix B, pages 63-64, items 1-15 for complete scale.

Organizational Commitment. The shortened Organizational Commitment Questionnaire (Mowday, Steers, & Porter, 1979) was used to assess organizational commitment. This version has nine questions that were rated on a 7-point Likert-type scale where 1 = strongly disagree to 7 = strongly agree. Mowday, Steers, and Porter (1979) state that the coefficient alpha is consistently very high, usually ranging from .82
to .93, with a median of .90. Additionally, the test-retest reliability with retail trainees was $r = .72$ for a 2-month period and $r = .62$ for 3 months. Lastly, convergent validities across six diverse samples ranged from .63 to .74, with a median of .70. See Appendix A, page 50-51, items 1-9 and Appendix B, pages 64-65, items 1-9 for complete scale.

Job Satisfaction. The Job Descriptive Index (JDI) was used to assess job satisfaction (Smith, Kendall, & Hulin, 1969). There are five different sections in the Job Descriptive Index: work on present job, pay, opportunities for promotion, supervision, and coworkers. The three options for response were “Yes, it describes my work,” “No, it does not describe my work,” and “?, I cannot decide.” There were 72 items with a test-retest reliability ranging from .45 to .75. See Appendix A, page 51-55, items 1-72 and Appendix B, pages 65-69, items 1-72 for complete scale.

Person-Supervisor fit. Because no current person-supervisor fit scale exists, the person-organization fit scale created by Cable and Judge (1996) was altered. The items were altered so that the word organization was replaced with supervisor. Additionally, the scale was changed from three questions to nine to include values, goals, and personality for each of the three subjective questions. Examples of items are: “To what degree do you feel your personality/values/goals ‘match’ or fit with your assistant(s)/supervisor?”; “My personality/values/goals match those of my assistant(s)/supervisor.”; “Do you think the personality/values/goals of your assistant(s)/supervisor reflect your own values and personality?” The nine items responses ranged in response from 1 (not at all) to 5 (completely). Two identical pilot measures were given to graduate students two days apart to determine test-retest
reliability. The Pearson correlation obtained was .304 ($p = .026$). See Appendix A, page 55, items 1-9 and Appendix B, pages 69 items 1-9 for complete scale.

Procedure

Data were collected from faculty and their graduate teaching assistants and research assistants. Faculty and graduate students were asked to complete an online survey and were assured that their participation was confidential. Graduate assistants completed a graduate assistant survey (see Appendix A), and faculty completed the faculty survey (see Appendix B). Volunteers were identified by contacting department chairs to ask permission (see Appendix D) to include the faculty and graduate students from their departments. Once a department chair gave permission to survey their department, the graduate coordinator was contacted (see Appendix E) to obtain a list of faculty/student pairs. All participants were from a midsized university in the southeast.

In all cases, the following protocol was used. Surveys were distributed as a link in an email that explained the study and asked for participation (see Appendix F). Data were stored online until all data was collected. When a survey was not completed in full, the missing person was contacted once via email by the experimenter (see Appendix G) in an attempt to gain complete data.
RESULTS

Missing data

In general, pairwise deletion was used to deal with missing data. In other words, participants were excluded from only those analyses for which a particular data point was missing (as opposed to listwise deletion which excludes a participant from all analyses). Additionally when a dyad was not completed, the data were not used.

Outliers

Minima and maxima of the descriptive statistics and scatter plots of this data were examined for outliers. Only one potential outlier was found, which was a graduate student with unusual neuroticism scores. Because there was some ambiguity about whether or not this participant constituted a true outlier it was decided that this data would be retained in the analysis. Therefore no outliers were dropped.

Data collection

Data collection took place online through Survey Monkey to allow ease of taking the surveys and collecting the data. The data were stored electronically in an encrypted disk that was accessed through a password which was restricted to the research team.

A current controversy in the literature involves the proper way to analyze fit scores. The two proposed methods are difference scores and polynomial regression. Traditionally difference scores have been used, but some researchers have found fault with this method and propose using polynomial regression (Edwards, 1993). However, other researchers have noted limitations with this method also (Kristof, 1996). Because the two techniques are, to some degree, complementary, this study will use both data
analysis techniques in hopes that the weaknesses of each method will be compensated by the other.

When using difference scores, there are several disadvantages. For example, conceptual ambiguity, discarded information, and restrictive constraints are some of the problems associated with difference scores. The error of discarded information occurs when the absolute level of person and the environmental variables is lost, i.e., squaring or taking the absolute value of the difference obscures the direction of the difference (Edwards, 1993). Conceptual ambiguity occurs when the difference scores obscure the individual elements’ contributions to the overall score. The last disadvantage of difference scores is that the sign and magnitude of the coefficients in difference score equations function as restrictive constraints on the model being tested (cf. Edwards & Harrison, 1993; Edwards & Parry, 1993).

To obtain the appropriate difference score for this study, a score was obtained for the leader and subordinate in each dyad for their dimensions of person-supervisor fit (personality similarity, value congruence, and goal congruence). The score was obtained by taking the difference between the leader and subordinate’s scores on the person-supervisor fit scales. These difference scores were correlated with the students’ scores of the outcome variables (organizational stress, organizational commitment, and job satisfaction) to determine what type of correlation exists between the person-supervisor fit dimensions and the outcome variables of interest.

When using polynomial regression, some disadvantages are present also. There are concerns about multicollinearity, for example, because the higher-order terms (the squared and cross-product terms) are constructed from the lower-order terms. Also, this
method is highly dependent on sample size and power (Kristoff, 1996). In addition, researchers warn that polynomial regression should only be used in this way if guided by theory because of the difficulty in interpreting the meaning of the higher order terms (Edwards, 1994). Lastly, researchers fear that the difference scores might represent something conceptually different from their components that are analyzed in the polynomial regression technique (Tisak & Smith, 1994).

The first step of polynomial regression begins as a researcher decides on the functional form of the conceptual model. This model should best explain what underlies the data and identifies the matching constrained and unconstrained regression equations (Edwards & Parry, 1993). The model is next tested with each of these equations and compared. This allows the researcher to directly test the equation rather than assume it is correct (Kristoff, 1996). In this study the simplest form of model testing was used: First, the most constrained model (in which the dependent variable is solely a function of the (independent) contributions of the person and supervisor’s responses) was calculated. The R-squared from this model functioned as a baseline or comparison level. Then the unconstrained model (per Kristof) was calculated. This included the higher-order terms (per Edwards) for both the independent contributions of the person and supervisor responses (i.e., the squared terms) and the cross-product term that represents the effect of the interaction of the person and supervisor responses (i.e, the person-supervisor fit). A significant improvement in the R-squared for the unconstrained model would indicate that the unconstrained model was a better fit to the data and that the cross-product term (i.e., the fit term) should be examined for a significant contribution to the prediction of the dependent variable.
Objective Fit Difference Score Correlations

To test the hypotheses, a difference score was first found for each of the fit variables. This difference score was calculated by taking the square root of the squared difference between the subordinate’s score and the supervisor’s score on each variable. Note that this yields the magnitude of the difference but obscures the direction of the difference. This score reflects difference or non-congruence between supervisor and subordinate. A larger score is equivalent to a bigger difference between supervisor and subordinate. A perfect fit would yield a difference score of zero. Next, the differences scores were correlated (using Pearson product moment correlations) with the subordinates’ outcome variables’ scores. Descriptive statistics for the difference scores are presented in Table 1.

<table>
<thead>
<tr>
<th>Difference Values</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraversion</td>
<td>78</td>
<td>.00</td>
<td>2.75</td>
<td>.6058</td>
<td>.53493</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>78</td>
<td>.00</td>
<td>2.33</td>
<td>.6951</td>
<td>.47628</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>78</td>
<td>.00</td>
<td>1.56</td>
<td>.6082</td>
<td>.41601</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>78</td>
<td>.00</td>
<td>3.12</td>
<td>.7676</td>
<td>.61855</td>
</tr>
<tr>
<td>Openness to Experience</td>
<td>78</td>
<td>.00</td>
<td>1.70</td>
<td>.5346</td>
<td>.37202</td>
</tr>
<tr>
<td>Values</td>
<td>78</td>
<td>.00</td>
<td>2.20</td>
<td>.6754</td>
<td>.50763</td>
</tr>
<tr>
<td>Goals</td>
<td>78</td>
<td>.00</td>
<td>1.77</td>
<td>.5522</td>
<td>.44370</td>
</tr>
</tbody>
</table>

Hypothesis 1a stated that personality similarity would have a negative relationship with stress. Each of the five personality dimensions were investigated separately (See Table 1). For Hypothesis 1a, only Neuroticism similarity showed any trend toward a significant relationship between fit and stress, but the observed relationship was very weak ($r = .115$). It was, however, in the hypothesized direction: neuroticism similarity was found to have a (weak) negative relationship with organizational stress. In other words, highly dissimilar Neuroticism scores (high D) were weakly related to high stress...
(low score on stress measure). Hypothesis 1b and 1c stated that value and goal congruence would also have a negative relationship with stress. Hypotheses 1b and 1c were not supported (See Table 1).

Table 2: Hypothesis 1 Correlations (Fit and Stress)

<table>
<thead>
<tr>
<th></th>
<th>Extra</th>
<th>Agree</th>
<th>Consc</th>
<th>Neuro</th>
<th>Open</th>
<th>Values</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress Pearson Correlation</td>
<td>-.057</td>
<td>-.032</td>
<td>-.021</td>
<td>-.180</td>
<td>-.021</td>
<td>-.002</td>
<td>.046</td>
</tr>
<tr>
<td>Sig (2-tailed)</td>
<td>.622</td>
<td>.782</td>
<td>.856</td>
<td>.115</td>
<td>.854</td>
<td>.989</td>
<td>.691</td>
</tr>
</tbody>
</table>

Hypothesis 2a proposed that openness to experience would have a positive relationship with commitment to the organization. While no specific predictions were made for the other four personality dimensions, they were also investigated. Hypothesis 2a was not supported for any of the five personality dimensions (See Table 2). Hypothesis 2b stated that higher organizational commitment would be associated with value congruence. However, while Hypothesis 2b did have significant results ($r = .228$), they were in the opposite direction than was predicted. Results showed that value congruence actually had a negative relationship with organizational commitment (See Table 2). In other words, organizational commitment was highest for pairs with dissimilar values. Lastly, Hypothesis 2c stated that goal congruence would have a positive relationship with commitment. Hypothesis 2c was also not supported (See Table 2).

Table 3: Hypothesis 2 Correlations (Fit and Commitment)

<table>
<thead>
<tr>
<th></th>
<th>Extra</th>
<th>Agree</th>
<th>Consc</th>
<th>Neuro</th>
<th>Open</th>
<th>Values</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Org Comm Pearson Correlation</td>
<td>.044</td>
<td>-.005</td>
<td>-.005</td>
<td>-.062</td>
<td>.021</td>
<td>.228</td>
<td>.135</td>
</tr>
<tr>
<td>Sig (2-tailed)</td>
<td>.703</td>
<td>.967</td>
<td>.963</td>
<td>.592</td>
<td>.856</td>
<td>.044</td>
<td>.240</td>
</tr>
</tbody>
</table>
Hypothesis 3a predicted that job satisfaction would have a positive relationship with agreeableness similarity and a negative relationship with extraversion similarity and openness to experience similarity. The other three personality dimensions were also tested. Hypothesis 3a had marginally significant results for Extraversion Similarity \((r = .191) \) and Neuroticism Similarity \((r = -.199) \), but again the observed relationships were weak. No other personality variables were significantly related to job satisfaction (See Table 3). Extraversion similarity followed the predicted direction. Stated differently, job satisfaction had a negative (weak) relationship with extraversion similarity. So when pairs were very different in terms of extraversion, the subordinates’ job satisfaction was (weakly) higher. Neuroticism similarity, on the other hand, had a positive relationship with job satisfaction. So when pairs were very different in terms of neuroticism, job satisfaction was (weakly) lower. Hypothesis 3b and 3c stated that value and goal congruence would have a positive relationship with satisfaction. However, they were not supported (See Table 3). Lastly, a quick check for the separate dimensions of values (work values and life values) was done in relation to supervisor satisfaction. No relationship was found for either life values or work values with the outcome of satisfaction with supervisor.

<table>
<thead>
<tr>
<th></th>
<th>Extra</th>
<th>Agree</th>
<th>Consc</th>
<th>Neuro</th>
<th>Open</th>
<th>Values</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Sat</td>
<td>.191</td>
<td>-.146</td>
<td>-.039</td>
<td>-.199</td>
<td>.060</td>
<td>.130</td>
<td>.074</td>
</tr>
<tr>
<td>Correlation</td>
<td>.095</td>
<td>.201</td>
<td>.737</td>
<td>.081</td>
<td>.600</td>
<td>.258</td>
<td>.517</td>
</tr>
<tr>
<td>Sig (2-tailed)</td>
<td>.095</td>
<td>.201</td>
<td>.737</td>
<td>.081</td>
<td>.600</td>
<td>.258</td>
<td>.517</td>
</tr>
</tbody>
</table>
Polynomial Regression

The polynomial regression results mirrored the difference score analyses almost exactly. The p-values for the interaction term in the unconstrained model that represent fit were nearly all non-significant in relation to this study. The differences between the constrained and unconstrained models were not significant due to the congruence term. All polynomial regression results are available in Appendix H.

The one exception was the test for the relationship between organizational commitment and value congruence. The unconstrained model was significant; $F(5) = 2.392, p = .046$ (See Table 4). More specifically, the value congruence term was the only (marginally) significant term in the model; $t(4) = -1.735, p = .087$ (See Table 5). In other words, the difference between values of supervisor and subordinate were related to a significant difference in organizational commitment for the subordinate.

Table 5: ANOVA for unconstrained model - values by commitment

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>17.883</td>
<td>5</td>
<td>3.577</td>
<td>2.392</td>
<td>.046</td>
</tr>
<tr>
<td>Residual</td>
<td>107.659</td>
<td>72</td>
<td>1.495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>125.542</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Coefficients for unconstrained model – values by commitment

<table>
<thead>
<tr>
<th>Model</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>-25.572</td>
<td>24.626</td>
<td>-1.038</td>
<td>.303</td>
<td></td>
</tr>
<tr>
<td>Values_S</td>
<td>10.971</td>
<td>7.771</td>
<td>3.940</td>
<td>1.412</td>
<td>.162</td>
</tr>
<tr>
<td>Values_F</td>
<td>.500</td>
<td>4.903</td>
<td>.226</td>
<td>.102</td>
<td>.919</td>
</tr>
<tr>
<td>Values_S2</td>
<td>-.586</td>
<td>.643</td>
<td>-2.112</td>
<td>-.910</td>
<td>.366</td>
</tr>
<tr>
<td>Values_F2</td>
<td>.438</td>
<td>.449</td>
<td>1.833</td>
<td>.976</td>
<td>.332</td>
</tr>
<tr>
<td>Values_SF</td>
<td>-.920</td>
<td>.530</td>
<td>-2.526</td>
<td>-1.735</td>
<td>.087</td>
</tr>
</tbody>
</table>

Note: Values_S = The subordinates’ scores on the values measure; Values_F = The faculty members’ scores on the values measure; Values_S2 = The squared subordinates’ scores on the values measure; Values_F2 = The squared faculty members’ scores on the values measure; Values_SF = The faculty members’ scores multiplied by the subordinates’ scores on the value measure (i.e. congruence score)
These results match with the results of the simple difference score correlations. In fact, this relationship was the correlation with the highest significance. This could explain why it was the only significant congruence result according to the polynomial regression.

Perceived Person-Supervisor Fit

Subordinate perceived person-supervisor fit did not correlate significantly with any of the objective fit scores. However, subordinate perceived person-supervisor fit was significantly correlated with each of the outcome variables except in one case. When subordinates were judging the fit between their own goals and their supervisor’s goals – it was not significantly related to their stress measures. See Table 6 for all results.

Table 7: Subordinates’ Perceived Fit with Outcome Variables

<table>
<thead>
<tr>
<th>Fit</th>
<th>Stress</th>
<th>Commitment</th>
<th>Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personality Pearson’s Correlation</td>
<td>.365</td>
<td>.324</td>
<td>.528</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.003</td>
<td>.008</td>
<td>.001</td>
</tr>
<tr>
<td>Values Pearson’s Correlation</td>
<td>.405</td>
<td>.361</td>
<td>.684</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.001</td>
<td>.003</td>
<td>.001</td>
</tr>
<tr>
<td>Goals Pearson’s Correlation</td>
<td>.207</td>
<td>.504</td>
<td>.679</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.096</td>
<td>.001</td>
<td>.001</td>
</tr>
</tbody>
</table>
DISCUSSION

One definition of fit was “the compatibility an individual feels with a particular element.” In this case fit would be clearly shown as a match between person and supervisor. In this study, personality seems to be a good example of supplementary fit (as discussed in Chapter 1) with the exception of Extraversion (see below). In some ways personality fit might be almost a pure test of the compatibility definition of person-supervisor fit, i.e., it deals almost purely with the interpersonal relationship (relatively) independent of organizational values and goals. The fact that no strong relationships were found for personality fit (per this definition), may mean that this type of fit/compatibility is irrelevant to the outcomes measured. In other words job satisfaction or dissatisfaction may be determined by supervisor behaviors that are seen to be independent of personality characteristics (e.g., limits on pay raises due to lack of funding). Or, this lack of a relationship between personality fit and the outcome variables may mean that some type of compensatory mechanism is working. In other words, when there is a mismatch between person and supervisor, one or both parties may take steps to minimize the effects of the mismatch. These steps might be behavioral. It is even possible that those steps may take the form of "counter-personality" behaviors, i.e., people consciously act against their personality predispositions in order to remedy/minimize person-supervisor mismatch. Another possibility is that person-supervisor fit may not actually provide any direct benefit. Herzeberg, Mausner, and Snyderman (1959) proposed that "hygiene factors" such as pay or benefits had no active effect on job satisfaction (and only produced dissatisfaction when there were large
deficits in those factors). Perhaps person-supervisor fit acts as hygiene factor and only affects job dissatisfaction and then only when there are large mismatches.

The personality dimensions had the most interesting results related to the outcome variables in the sense that no substantial relationships were found. In other words, mismatches of personality did not seem to significantly relate to subordinates’ stress, commitment, or job satisfaction. Extraversion dissimilarity did seem to have a relation to higher job satisfaction, as predicted from previous research, but the effect was very weak. Liao, Joshi, and Chuang (2004) explain that extraversion functions more consistently with a complementary fit model. In other words, being different in terms of Extraversion improves an individual’s complementary fit at work. So the individual brings something unique to the group that is needed. Note that this illustrates a potential construct problem in examining the role of person-supervisor fit – ideally the exact mechanism of the fit should be specified for each dimension of fit. Otherwise, there is the danger of making hypotheses in this area non-falsifiable, i.e, an relationship could be hypothesized for both personality matches between person and supervisor (supplementary fit) and mismatches (complementary fit).

Neuroticism was, at best, weakly related to both stress and satisfaction. Neurotically dissimilar pairs had slightly higher stress and lower job satisfaction. Past research has shown that neurotic individuals have higher anxiety (Grant & Langan-Fox, 2007). However, this study is unique in that it tested how neuroticism works in pairs. Neuroticism was found to be the most related personality dimension in fit between supervisor and subordinate but even these relationships were small (e.g, correlation with stress was -.18, with job satisfaction -.20, with commitment -.06). It is interesting to note
this surprisingly small relation to organizational commitment however. Organizational commitment is defined as a more global attitude so perhaps something as specific as personality does not relate to organizational commitment in the specific relationship between a subordinate and a supervisor.

The value congruence dimension had one significant result related to organizational commitment, but it was in the opposite direction than was predicted. This result was the only relationship that was significant according to both the difference score correlations and the polynomial regression. Past research showed that value congruence is related to more organizationally committed individuals. However, this study showed that subordinates had lower organizational commitment when values were congruent. It is possible that when the subordinate and supervisor are very similar in their values, the subordinate commits to other aspects of their life rather than to the organization. It is likely that the subordinate is more committed to their particular supervisor rather than the organization as a whole.

Another definition of fit discussed in Chapter 1 was the needs-supplies model. In this definition the organization is expected to supply the individual's needs, desires, or preferences. In this study, the degree of fit in organizational goals would presumably have tapped into this construct, since the individual's goals (presumably) are based on that person's needs, desires, and preferences. Therefore a mismatch in goals between person and supervisor would violate the needs-supplies model and have a negative effect. However, no significant relationships were found related to the congruence of subordinate and supervisor goals. This is puzzling. Perhaps (as noted above) the person may look to the organization rather than the supervisor for supplying the person's needs.
However, given the result for value congruence, this seems unlikely. It is important to remember that the goal measure was created specifically for this study. Special care was taken to ensure that the goals tested were goals that would be important to the work between graduate students and faculty members. Perhaps these goals were possibly too specific.

Perceived fit was found to be distinct from objective fit as demonstrated by the lack of correlations between the two. In addition, perceived fit had several more significant correlations with the outcome variables than the calculated objective fit. This points to another important construct-level issue in person-supervisor fit: perhaps only the perception of fit matters rather than the objective fit for individuals’ stress, commitment, and satisfaction.

Future research should focus on investigating perceptions of person-supervisor fit and their relationships with outcome variables. Additionally, it seems critically important to determine why perceptions of fit do not align well with objective measures of fit. One possibility is that individuals rationalize their fit to be better than it actually is in order to help cope with the discrepancy.

The concept of person-supervisor fit is a very logical one. The face validity of this construct makes it an attractive explanation for variance in variables such as job satisfaction and organizational commitment. Perhaps in the case of person-supervisor fit, other outcomes should be studied. Maybe no major results were found related to objective person-supervisor fit because this research was studying largely attitudinal outcomes. More subtle behaviors such as increased propensity to look for other jobs, decreased levels of interaction with the supervisor, or fewer organizational citizenship
behaviors may occur when misfit is present between supervisors and subordinates. Potentially more extreme reactions such as theft, sabotage, and other counterproductive behaviors are possible with large person-supervisor mismatches.

Limitations

This study had many strengths and weaknesses. First, the sample was from one university which helps rule out extraneous factors associated with different organizations. However, this sample still came from within the same university with the same three employment types (faculty members, research assistants, and teaching assistants) which imposes limitations on the generalizability of the results. Further, as a not-for-profit institution the results of this study may not apply to for-profit companies. More studies would have to be done to determine if the same results would be found with different types of samples from different places. Second, gathering complete pair information for the objective fit measures was a strength of this study. However, there were still only 78 pairs analyzed with this research. Future investigations should include a larger sample. Additionally, it would be beneficial to include the total sample. Because participation was voluntary, range restriction is a concern. Unknown bias could have been introduced into the study by having only a sample of the total population. For example, pairs with bad fit could have decided not to fill out the survey for fear of results being discovered by their supervisor/subordinate. There were several countermeasures used to minimize this effect, (i.e. confidential results stored in encrypted, password protected file) but it still may have been an issue. Additionally the organization used for this study is known for having a large number of survey requests. This unavoidable fact may have led to possible participants ignoring the study. Also, the length of the questionnaire could have
easily deterred participants from filling out the survey. Lastly, individuals may be more likely to deal with misfit because the nature of the employment is short-term. Therefore, the effect sizes are probably smaller than usually would be found with regular (as opposed to temporary) employment.

Implications

Results from this study generally do not support the proposed relationship between fit (defined as similarity of personality dimensions, value and goal congruence) and important outcome variables such as subordinates’ organizational stress, organizational commitment, and job satisfaction. The strongest relationship found was between the subordinates’ organizational commitment and the value congruence between the subordinate and supervisor. However, this relationship was contradictory to former research. It is possible that this sample is not similar to past samples such that subordinates in this sample are temporary employees of a non-profit organization rather than full time employees of a for-profit company.

Additionally, personality had interesting relationships with the organizational outcomes, especially for neuroticism congruence. Neuroticism dissimilarity was associated with two negative outcomes for the individual and ultimately the organization. Being dissimilar in terms of neuroticism was weakly related to higher stress and lower job satisfaction. This result may be seen by some companies as justification to match neuroticism between supervisors and subordinates. However, the relationship was so weak that it may not be a good investment to spend large amounts of money in person-supervisor personality matching. More research would have to be done on this topic to gain better insight.
Poor fit, regardless of type, might not affect individuals as much as researchers originally proposed. Perhaps we are more resilient than we originally theorized. Poor fit may be undesirable to the individual, but something that can be coped with none the less. It is possible that only the perceptions of fit matter as opposed to the objective fit studied in this research. Because this was not a main hypothesis studied but rather a discovery found on the side, it is not in the breadth of this project to interpret this data. This research does point to a need for more research on the perception of fit and its relationship to individual and organizational outcomes.

Conclusions

This study is only a first step in understanding the implications of fit for individual and organizational outcomes such as organizational stress, organizational commitment, and job satisfaction. Further research must be undertaken to determine if these results are unique to this sample or generalizable to other workplaces.
APPENDIX
Appendix A

Graduate Student Survey
Please mark the most appropriate response for the following questions.

Demographics

1. What is your name?
2. What is the name of your supervisor?
3. What is your gender?
 - Male
 - Female
4. What is your age?
5. What is your ethnicity?
 - White, non-Hispanic
 - African American, non-Hispanic
 - Hispanic
 - Asian/Pacific Islander
 - Other – Please specify: __________________
6. What is your class standing?
 - First year
 - Second year
 - Third year
 - Forth year
 - Fifth year
 - Other – Please specify: __________________
7. What department is your degree housed in?
8. Do you work in your department?
 - Yes
 - No
9. If you work outside of your department, what office is this position located in?
10. What type of degree are you a candidate for?
 - Masters
 - Doctoral
11. Are you a teaching assistant (TA) or research assistant (RA)?
 - TA
 - RA
12. Did you pick your boss or were you assigned by your department?
 - Picked
 - Assigned
13. Are you taking a class taught by your supervisor?
 - Yes
 - No
14. Is this your first time working under your supervisor or a repeat position?
 - First time
 - Repeat position
15. How close is your office to your supervisor’s office?
 - Same room
 - Same hallway
 - Same floor
 - Same building
 - Different building
16. How much time do you spend on your assistantship compared to your fellow graduate students?
 - Considerably more
 - More
 - About the same
 - Less
 - Considerably less

Personality Similarity

Here are a number of characteristics that may or may not apply to you. For example, do you agree that you are someone who **likes to spend time with others**? Please choose your answer based on the extent to which you agree or disagree with that statement.

You are someone who is...

1. Is talkative
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly
2. Tends to find fault with others
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly
3. Does a thorough job
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

4. Is depressed, blue
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

5. Is original, comes up with ideas
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

6. Is reserved
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

7. Is helpful and unselfish with others
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

8. Can be somewhat careless
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

9. Is relaxed, handles stress well
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

10. Is curious about many different things
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

11. Is full of energy
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

12. Starts quarrels with others
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

13. Is a reliable worker
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

14. Can be tense
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

15. Is ingenious, a deep thinker
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

16. Generates a lot of enthusiasm
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

17. Has a forgiving nature
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

18. Tends to be disorganized
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly
19. Worries a lot
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

20. Has an active imagination
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

21. Tends to be quiet
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

22. Is generally trusting
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

23. Tends to be lazy
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

24. Is emotionally stable, not easily upset
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

25. Is inventive
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

26. Has an assertive personality
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

27. Can be cold and aloof
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

28. Perseveres until the task is finished
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

29. Can be moody
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

30. Values artistic, aesthetic experiences
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

31. Is sometimes shy, inhibited
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

32. Is considerate and kind to almost everyone
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

33. Does things efficiently
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

34. Remains calm in tense situations
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly
35. Prefers work that is routine
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

36. Is outgoing, sociable
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

37. Is sometimes rude to others
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

38. Makes plans and follows through with them
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

39. Gets nervous easily
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

40. Likes to reflect, play with ideas
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

41. Has few artistic interests
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

42. Likes to cooperate with others
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

43. Is easily distracted
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

44. Is sophisticated in art, music, or literature
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

Value Congruence
Please indicate for each of the following items to what extent it is important for your well being.

Life Values
1. Health
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

2. Happiness
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

3. Love
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

4. Security
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

5. Independence
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
<table>
<thead>
<tr>
<th></th>
<th>Important</th>
<th>Very Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Use of abilities</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>7. Meaningful life</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>8. Interesting life</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>9. Responsibility</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>10. Achievement</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>11. Recognition</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>12. Living conditions</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td>13. Comfortable home</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>14. Advancement</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>15. Having good friends</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>16. Esteem as a person</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>17. Comfortable life</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>18. Contribution to society</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>19. Status in society</td>
<td>Very unimportant</td>
<td>Unimportant</td>
</tr>
<tr>
<td></td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
</tr>
</tbody>
</table>
20. Riches, wealth
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

21. Influence
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

22. Job interest
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

23. Job responsibility
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

24. Fair supervisor
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

25. Independence
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

26. Use of abilities
- Very unimportant
- Unimportant
- Somewhat unimportant

27. Personal growth
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

28. Job achievement
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

29. Meaningful work
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

30. Advancement
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

31. Work feedback
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

32. Esteem as a person
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

33. Recognition for performance
- Very unimportant
- Unimportant
- Somewhat unimportant
34. Job security
- Somewhat important
- Important
- Very Important

35. Good company to work for
- Somewhat important
- Important
- Very Important

36. Influence at work
- Somewhat important
- Important
- Very Important

37. Work conditions
- Somewhat important
- Important
- Very Important

38. Job status
- Somewhat important
- Important
- Very Important

39. Pay
- Somewhat important
- Important
- Very Important

40. Co-workers
- Somewhat important
- Important
- Very Important

41. Influence in organization
- Somewhat important
- Important
- Very Important

42. Interaction with people
- Somewhat important
- Important
- Very Important

43. Benefits
- Somewhat important
- Important
- Very Important

44. Contribution to society
- Somewhat important
- Important
- Very Important

45. Convenient hours
- Somewhat important
- Important
- Very Important

Goal Congruence
Rate the importance of the following goals:

Instrumental, behavioral Goals:
1. Being prepared for labs, meetings, etc.
- Somewhat important
- Important
- Very Important
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Being on time for labs, meetings, etc.</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
<tr>
<td>3.</td>
<td>Keeping appointments</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
<tr>
<td>4.</td>
<td>Performing well</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
<tr>
<td>5.</td>
<td>Being thorough or accurate</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
<tr>
<td>6.</td>
<td>Obtaining feedback</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
<tr>
<td>7.</td>
<td>Taking initiative</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
<tr>
<td>8.</td>
<td>Making yourself available</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
<tr>
<td>9.</td>
<td>Preparing work correctly</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
<tr>
<td>10.</td>
<td>Exchanging feedback</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
<tr>
<td>Personal, higher level goals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Further develop skills</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
<tr>
<td>12.</td>
<td>Make discoveries</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
<tr>
<td>13.</td>
<td>Impact the field</td>
<td>Very unimportant</td>
<td>Unimportant</td>
<td>Somewhat unimportant</td>
<td>Somewhat important</td>
<td>Important</td>
</tr>
</tbody>
</table>

Work Stress

Please indicate for each of the following items how often the word or phrase describes your work.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Demanding</td>
<td>All of the time</td>
<td>Often</td>
<td>Sometimes</td>
<td>Rarely</td>
</tr>
<tr>
<td>2.</td>
<td>Pressured</td>
<td>All of the time</td>
<td>Often</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statement</td>
<td>All of the time</td>
<td>Often</td>
<td>Sometimes</td>
<td>Rarely</td>
<td>Never</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>3. Hectic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Calm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Relaxed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Many things stressful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Pushed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Irritating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Under control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Nerve-wracking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Hassled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Comfortable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. More stressful than I’d like</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Smooth Running</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Overwhelming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Organizational Commitment

Listed below is a series of statements that represent possible feelings that individuals might have about the company or organization for which they work. With respect to your own feelings about the particular organization for which you are now working (Clemson University), please indicate the degree of your agreement or disagreement with each statement by choosing one of the seven alternatives.

1. I am willing to put in a great deal of effort beyond that normally expected in order to help this organization be successful.
 - Strongly disagree
 - Moderately disagree
 - Slightly disagree
2. I talk up this organization to my friends as a great organization to work for.

- Neither disagree nor agree
- Slightly agree
- Moderately agree
- Strongly agree

3. I would accept almost any types of job assignment in order to keep working for this organization.

- Strongly disagree
- Moderately disagree
- Slightly disagree
- Neither disagree nor agree
- Slightly agree
- Moderately agree
- Strongly agree

4. I find that my values and the organization’s values are very similar.

- Strongly disagree
- Moderately disagree
- Slightly disagree
- Neither disagree nor agree
- Slightly agree
- Moderately agree
- Strongly agree

5. I am proud to tell others that I am part of this organization.

- Strongly disagree
- Moderately disagree
- Slightly disagree
- Neither disagree nor agree
- Slightly agree
- Moderately agree
- Strongly agree

6. This organization really inspires the very best in me in the way of job performance.

- Strongly disagree
- Moderately disagree
- Slightly disagree
- Neither disagree nor agree
- Slightly agree
- Moderately agree
- Strongly agree

7. I am extremely glad that I chose this organization to work for over others I was considering at the time I joined.

- Strongly disagree
- Moderately disagree
- Slightly disagree
- Neither disagree nor agree
- Slightly agree
- Moderately agree
- Strongly agree

8. I really care about the fate of this organization.

- Strongly disagree
- Moderately disagree
- Slightly disagree
- Neither disagree nor agree
- Slightly agree
- Moderately agree
- Strongly agree

9. For me, this is the best of all possible organizations for which to work

- Strongly disagree
- Moderately disagree
- Slightly disagree
- Neither disagree nor agree
- Slightly agree
- Moderately agree
- Strongly agree

Job Satisfaction

Work on Present Job

Think of the work you do at present. How well does each of the following words or phrases describe your work experience? Select the appropriate answer

1. Fascinating
 - Yes, it describes my work
 - No, it does not describe my work
 - ?, I cannot decide

2. Routine
 - Yes, it describes my work
 - No, it does not describe my work
 - ?, I cannot decide

3. Satisfying
 - Yes, it describes my work
 - No, it does not describe my work
 - ?, I cannot decide

4. Boring
 - Yes, it describes my work
 - No, it does not describe my work
5. Good
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

6. Creative
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

7. Respected
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

8. Hot
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

9. Pleasant
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

10. Useful
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

11. Tiresome
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

12. Healthful
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

13. Challenging
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

14. On your feet
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

15. Frustrating
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

16. Simple
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

17. Endless
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

18. Gives sense of accomplishment
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

Pay
Think of the pay you get now. How well does each of the following words or phrases describe your present pay? Select the appropriate answer.

19. Income adequate for normal expenses
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

20. Satisfactory Profit Sharing
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

21. Barely live on income
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

22. Bad
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

23. Income provides luxuries
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

24. Insecure
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

25. Less than I deserve
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide
26. Highly paid
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

27. Underpaid
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

Promotion
Think of the opportunities for promotion that you have now. How well does each of the following words or phrases describe these? Select the appropriate answer.

28. Good opportunities for advancement
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

29. Opportunities somewhat limited
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

30. Promotion on ability
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

31. Dead-end job
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

32. Good chance for promotion
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

33. Unfair promotion policy
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

34. Infrequent promotions
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

35. Regular promotions
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

36. Fairly good chance of promotion
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

Supervision
Think of the kind of supervisor that you get on your job. How well does each of the following words or phrases describe this? Select the appropriate response.

37. Ask my advice
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

38. Hard to please
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

39. Impolite
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

40. Praises good work
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

41. Tactful
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

42. Influential
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

43. Up-to-date
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

44. Doesn’t supervise enough
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

45. Quick tempered
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

46. Tells me where I stand
1. Yes, it describes my work
2. No, it does not describe my work
3. ?, I cannot decide

47. Annoying
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

48. Stubborn
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

49. Knows job well
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

50. Bad
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

51. Intelligent
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

52. Leaves me on my own
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

53. Lazy
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

54. Around when needed
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

Coworkers
Think of the majority of the people that you work with now or the people you meet in connection with your work. How well does each of the following words or phrases describe these people? Select the appropriate phrase.

55. Stimulating
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

56. Boring
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

57. Slow
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

58. Ambitious
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

59. Stupid
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

60. Responsible
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

61. Fast
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

62. Intelligent
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

63. Easy to make enemies
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

64. Talk too much
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

65. Smart
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

66. Lazy
 1. Yes, it describes my work
 2. No, it does not describe my work
 3. ?, I cannot decide

67. Unpleasant
Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

68. No privacy
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

69. Active
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

70. Narrow interests
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

71. Loyal
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

72. Hard to meet
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

Person-Supervisor Fit
Select the most appropriate response.

1. To what degree do you feel your personality "matches" or fits with your supervisor?
☐ Not at all
☐ A little
☐ Neutral
☐ Somewhat
☐ Completely

2. My personality matches that of my supervisor.
☐ Not at all
☐ A little
☐ Neutral
☐ Somewhat
☐ Completely

3. Do you think the personality of your supervisor reflects your own personality?
☐ Not at all
☐ A little
☐ Neutral
☐ Somewhat
☐ Completely

4. To what degree do you feel your values "match" or fit with your supervisor?
☐ Not at all
☐ A little
☐ Neutral
☐ Somewhat
☐ Completely

5. My values match those of my supervisor.
☐ Not at all
☐ A little
☐ Neutral
☐ Somewhat
☐ Completely

6. Do you think the values of your supervisor reflect your own values?
☐ Not at all
☐ A little
☐ Neutral
☐ Somewhat
☐ Completely

7. To what degree do you feel your goals "match" or fit with your supervisor?
☐ Not at all
☐ A little
☐ Neutral
☐ Somewhat
☐ Completely

8. My goals match those of my supervisor
☐ Not at all
☐ A little
☐ Neutral
☐ Somewhat
☐ Completely

9. Do you think the goals of your supervisor reflect your own goals?
☐ Not at all
☐ A little
☐ Neutral
☐ Somewhat
☐ Completely

Thank you for participating in this study on person-supervisor fit. We believe that good person-supervisor fit will lead to lower organizational stress, higher organizational commitment, and higher job satisfaction. If you have any questions about this study or would like to receive a report of the results please email Hilary Schoon at hschoon@clemson.edu or call at (864) 656 – 5274.
Appendix B
Supervisor Survey
Please mark the most appropriate response for the following questions.

Demographics
1. What is your gender?
 □ Male
 □ Female

2. What is your age?

3. What is your ethnicity?
 □ White, non-Hispanic
 □ African American, non-Hispanic
 □ Hispanic
 □ Asian/Pacific Islander
 □ Other – Please specify:

4. How long have you been teaching at the collegiate level?

5. How long have you been teaching at Clemson University?

6. How many graduate student assistants work directly under you?
 □ 1
 □ 2
 □ 3
 □ 4
 □ 5

7. Did you pick your assistant(s) or were they assigned by the department?
 □ Picked
 □ Assigned

Personality Similarity
Here are a number of characteristics that may or may not apply to you. For example, do you agree that you are someone who likes to spend time with others? Please choose your answer based on the extent to which you agree or disagree with that statement.

You are someone who is...
1. Is talkative
 □ Disagree strongly
 □ Disagree a little
2. Tends to find fault with others
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly
3. Does a thorough job
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly
4. Is depressed, blue
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly
5. Is original, comes up with ideas
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly
6. Is reserved
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly
7. Is helpful and unselfish with others
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly
8. Can be somewhat careless
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
9. Is relaxed, handles stress well
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

10. Is curious about many different things
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

11. Is full of energy
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

12. Starts quarrels with others
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

13. Is a reliable worker
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

14. Can be tense
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

15. Is ingenious, a deep thinker
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

16. Generates a lot of enthusiasm
 - Disagree strongly
 - Disagree a little

17. Has a forgiving nature
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

18. Tends to be disorganized
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

19. Worries a lot
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

20. Has an active imagination
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

21. Tends to be quiet
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

22. Is generally trusting
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

23. Tends to be lazy
 - Disagree strongly
 - Disagree a little
 - Neither agree or disagree
 - Agree a little
 - Agree strongly

24. Is emotionally stable, not easily upset
25. Is inventive
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

26. Has an assertive personality
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

27. Can be cold and aloof
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

28. Perseveres until the task is finished
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

29. Can be moody
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

30. Values artistic, aesthetic experiences
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

31. Is sometimes shy, inhibited
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

32. Is considerate and kind to almost everyone
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

33. Does things efficiently
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

34. Remains calm in tense situations
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

35. Prefers work that is routine
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

36. Is outgoing, sociable
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

37. Is sometimes rude to others
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

38. Makes plans and follows through with them
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly

39. Gets nervous easily
- Disagree strongly
- Disagree a little
- Neither agree or disagree
- Agree a little
- Agree strongly
30. Likes to reflect, play with ideas
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

31. Has few artistic interests
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

32. Likes to cooperate with others
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

33. Is easily distracted
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

34. Is sophisticated in art, music, or literature
 □ Disagree strongly
 □ Disagree a little
 □ Neither agree or disagree
 □ Agree a little
 □ Agree strongly

Value Congruence
Please indicate for each of the following items to what extent it is important for your well being.

Life Values
1. Health
 □ Very unimportant
 □ Unimportant
 □ Somewhat unimportant
 □ Somewhat important
 □ Important
 □ Very Important

2. Happiness
 □ Very unimportant
 □ Unimportant
10. Achievement
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

11. Recognition
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

12. Living conditions
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

13. Comfortable home
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

14. Advancement
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

15. Having good friends
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

16. Esteem as a person
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

17. Comfortable life
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

18. Contribution to society
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

19. Status in society
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

20. Riches, wealth
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

21. Influence
- Very unimportant
- Unimportant
- Somewhat unimportant
- Somewhat important
- Important
- Very Important

Work values

22. Job interest
- Very unimportant
- Unimportant
- Somewhat unimportant
23. Job responsibility
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

24. Fair supervisor
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

25. Independence
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

26. Use of abilities
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

27. Personal growth
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

28. Job achievement
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

29. Meaningful work
- Very unimportant

30. Advancement
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

31. Work feedback
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

32. Esteem as a person
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

33. Recognition for performance
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

34. Job security
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

35. Good company to work for
- Very unimportant
- Unimportant
- Somewhat unimportant
- Important
- Very Important

61
36. Influence at work
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

37. Work conditions
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

38. Job status
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

39. Pay
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

40. Co-workers
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

41. Influence in organization
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

42. Interaction with people
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important

43. Benefits
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

44. Contribution to society
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

45. Convenient hours
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

Goal Congruence
Rate the importance of the following goals:

Instrumental, behavioral Goals:
1. Being prepared for labs, meetings, etc.
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

2. Being on time for labs, meetings, etc.
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

3. Keeping appointments
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

4. Performing well
5. Being thorough or accurate
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

6. Obtaining feedback
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

7. Taking initiative
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

8. Making yourself available
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

9. Preparing work correctly
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

10. Exchanging feedback
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

Personal, higher level goals:
11. Further develop skills
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

12. Make discoveries
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

13. Impact the field
 - Very unimportant
 - Unimportant
 - Somewhat unimportant
 - Somewhat important
 - Important
 - Very Important

Work Stress
Please indicate for each of the following items how often the word or phrase describes your work.

1. Demanding
 - All of the time
 - Often
 - Sometimes
 - Rarely
 - Never

2. Pressured
 - All of the time
 - Often
 - Sometimes
 - Rarely
 - Never

3. Hectic
 - All of the time
 - Often
 - Sometimes
 - Rarely
 - Never

4. Calm
 - All of the time
 - Often
Organizational Commitment

Listed below is a series of statements that represent possible feelings that individuals might have about the company or organization for which they work. With respect to your own feelings about the particular organization for which you are now working (Clemson University), please indicate the degree of your agreement or disagreement with each statement by choosing one of the seven alternatives.

1. I am willing to put in a great deal of effort beyond that normally expected in order to help this organization be successful.
 - Strongly disagree
 - Moderately disagree
 - Slightly disagree
 - Neither disagree nor agree
 - Slightly agree
 - Moderately agree
 - Strongly agree

2. I talk up this organization to my friends as a great organization to work for.
 - Strongly disagree
 - Moderately disagree
 - Slightly disagree

<table>
<thead>
<tr>
<th>Statement</th>
<th>All of the time</th>
<th>Often</th>
<th>Sometimes</th>
<th>Rarely</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I am willing to put in a great deal of effort beyond that normally expected in order to help this organization be successful.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. I talk up this organization to my friends as a great organization to work for.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statement</th>
<th>All of the time</th>
<th>Often</th>
<th>Sometimes</th>
<th>Rarely</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Organizational Commitment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Listed below is a series of statements that represent possible feelings that individuals might have about the company or organization for which they work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Relaxed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Many things stressful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Pushed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Irritating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Under control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Nerve-wracking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Hassled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Comfortable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. More stressful than I’d like</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Smooth Running</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Overwhelming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. I would accept almost any types of job assignment in order to keep working for this organization.
 □ Strongly disagree
 □ Moderately disagree
 □ Slightly disagree
 □ Neither disagree nor agree
 □ Slightly agree
 □ Moderately agree
 □ Strongly agree

4. I find that my values and the organization’s values are very similar.
 □ Strongly disagree
 □ Moderately disagree
 □ Slightly disagree
 □ Neither disagree nor agree
 □ Slightly agree
 □ Moderately agree
 □ Strongly agree

5. I am proud to tell others that I am part of this organization.
 □ Strongly disagree
 □ Moderately disagree
 □ Slightly disagree
 □ Neither disagree nor agree
 □ Slightly agree
 □ Moderately agree
 □ Strongly agree

6. This organization really inspires the very best in me in the way of job performance.
 □ Strongly disagree
 □ Moderately disagree
 □ Slightly disagree
 □ Neither disagree nor agree
 □ Slightly agree
 □ Moderately agree
 □ Strongly agree

7. I am extremely glad that I chose this organization to work for over others I was considering at the time I joined.
 □ Strongly disagree
 □ Moderately disagree
 □ Slightly disagree
 □ Neither disagree nor agree
 □ Slightly agree

8. I really care about the fate of this organization.
 □ Strongly disagree
 □ Moderately disagree
 □ Slightly disagree
 □ Neither disagree nor agree
 □ Slightly agree
 □ Moderately agree
 □ Strongly agree

9. For me, this is the best of all possible organizations for which to work
 □ Strongly disagree
 □ Moderately disagree
 □ Slightly disagree
 □ Neither disagree nor agree
 □ Slightly agree
 □ Moderately agree
 □ Strongly agree

Job Satisfaction

Work on Present Job

Think of the work you do at present. How well does each of the following words of phrases describe your work experience? Select the appropriate answer:

1. Fascinating
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

2. Routine
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

3. Satisfying
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

4. Boring
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide

5. Good
 □ Yes, it describes my work
 □ No, it does not describe my work
 □ ?, I cannot decide
6. Creative
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

7. Respected
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

8. Hot
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

9. Pleasant
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

10. Useful
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

11. Tiresome
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

12. Healthful
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

13. Challenging
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

14. On your feet
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

15. Frustrating
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

16. Simple
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

17. Endless
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

18. Gives sense of accomplishment
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

Pay
Think of the pay you get now. How well does each of the following words or phrases describe your present pay? Select the appropriate answer.

19. Income adequate for normal expenses
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

20. Satisfactory Profit Sharing
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

21. Barely live on income
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

22. Bad
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

23. Income provides luxuries
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

24. Insecure
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

25. Less than I deserve
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

26. Highly paid
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide
27. Underpaid
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

Promotion
Think of the opportunities for promotion that you have now. How well does each of the following words or phrases describe these? Select the appropriate answer.

28. Good opportunities for advancement
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

29. Opportunities somewhat limited
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

30. Promotion on ability
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

31. Dead-end job
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

32. Good chance for promotion
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

33. Unfair promotion policy
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

34. Infrequent promotions
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

35. Regular promotions
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

36. Fairly good chance of promotion
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

Supervision
Think of the kind of supervisor that you get on your job. How well does each of the following words or phrases describe this? Select the appropriate response.

37. Ask my advice
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

38. Hard to please
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

39. Impolite
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

40. Praises good work
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

41. Tactful
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

42. Influential
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

43. Up-to-date
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

44. Doesn’t supervise enough
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

45. Quick tempered
 Yes, it describes my work
 No, it does not describe my work
 ?, I cannot decide

46. Tells me where I stand
 Yes, it describes my work
No, it does not describe my work
?, I cannot decide

47. Annoying
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

48. Stubborn
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

49. Knows job well
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

50. Bad
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

51. Intelligent
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

52. Leaves me on my own
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

53. Lazy
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

54. Around when needed
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

56. Stimulating
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

73. Boring
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

74. Slow
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

75. Ambitious
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

76. Stupid
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

77. Responsible
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

78. Fast
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

79. Intelligent
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

80. Easy to make enemies
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

81. Talk too much
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

82. Smart
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide

83. Lazy
☐ Yes, it describes my work
☐ No, it does not describe my work
☐ ?, I cannot decide
Person-Supervisor Fit
Select the most appropriate response.

1. To what degree do you feel your personality “matches” or fits with your supervisor?
 - Not at all
 - A little
 - Neutral
 - Somewhat
 - Completely

2. My personality matches that of my supervisor.
 - Not at all
 - A little
 - Neutral
 - Somewhat
 - Completely

3. Do you think the personality of your supervisor reflects your own personality?
 - Not at all
 - A little
 - Neutral

4. To what degree do you feel your values “match” or fit with your supervisor?
 - Not at all
 - A little
 - Neutral
 - Somewhat
 - Completely

5. My values match those of my supervisor.
 - Not at all
 - A little
 - Neutral
 - Somewhat
 - Completely

6. Do you think the values of your supervisor reflect your own values?
 - Not at all
 - A little
 - Neutral
 - Somewhat
 - Completely

7. To what degree do you feel your goals “match” or fit with your supervisor?
 - Not at all
 - A little
 - Neutral
 - Somewhat
 - Completely

8. My goals match those of my supervisor
 - Not at all
 - A little
 - Neutral
 - Somewhat
 - Completely

9. Do you think the goals of your supervisor reflect your own goals?
 - Not at all
 - A little
 - Neutral
 - Somewhat
 - Completely

Thank you for participating in this study on person-supervisor fit. We believe that good person-supervisor fit will lead to lower organizational stress, higher organizational commitment, and higher job...
satisfaction. If you have any questions about this study or would like to receive a report of the results please email Hilary Schoon at hschoon@clemson.edu or call at (864) 656 – 5274.
Appendix C

GRADUATE ASSISTANTSHIP PERFORMANCE QUESTIONNAIRE

Student ___________________ Assignment ___________________
Professor__________________

Likert response scale: 1=strongly disagree 7=strongly agree
(NA=not applicable)

1. The student is always prepared for labs, recitation sections, experiment
sessions, etc. ____

2. The student always arrives on time for labs, recitation sessions, experiment
sessions, etc. ____

3. The student keeps appointments with faculty and students. ____

4. The student performs well in leading his or her lab or recitation section. ____

5. The student is thorough and accurate in his or her assistantship work. ____

6. The student seeks out his or her supervising professor for additional job duties.

7. The student takes the initiative in learning the necessary skills or acquiring the
 necessary information to do his or her job. ____

8. The student makes him or herself available to undergraduate students for class
 help or information. ____

9. The student correctly prepares test materials, handouts, experiment materials,
 etc. ____

10. The student knows how to use library search facilities (both paper and
 electronic). ____
Appendix D

Email to Department Chairs

Hello. One of my graduate students in the Psychology department here at Clemson University is studying employee-supervisor fit. The purpose of the study is to learn more about value or goal compatibility between supervisors and subordinates. I am looking for your permission to first contact your program coordinator and then ultimately contact your faculty and graduate student assistants. We’ll be asking the faculty and graduate assistants themselves to fill out a survey online. We are hoping to better understand the role of fit in the working relationships between the supervisors and subordinates. My graduate student is willing to share with you the results of the study if you are interested. Please let me know if it is possible for me to do this project in your department. Thank you. – Fred
Appendix E

Email to Program Coordinator

Dear Program Coordinator of XXX department,

Hello. I am a graduate student in the Psychology department here at Clemson University. I am trying to gather data for my thesis. The purpose of my study is to learn about value and goal compatibility between supervisors and subordinates. Your Department Chair, INSERT NAME HERE, has approved this research in your department. I am recruiting faculty members for my study who have teaching assistants or research assistants to fill out an online survey. Additionally, I am looking for the graduate students in these positions to also fill out the online survey. The survey will take about 10 to 15 minutes to complete. I’m hoping to match the pairs together to better understand the role of fit in the working relationships between the supervisors and subordinates. I need a list of the faculty/graduate student pairs and their email addresses. I also am curious if your department assigns the assistantships or if the students/professors are allowed to choose. I am willing to share with you the results of my study if you are interested. Please let me know how we can best get started on this.

Thank you. – Hilary
Appendix F

Email request for participation

Hello. I am a graduate student in the Psychology department here at Clemson University. I am trying to gather data for my thesis. The purpose of my study is to learn about value and goal compatibility between supervisors and subordinates. I am recruiting for faculty members for my study who have teaching assistants or research assistants to fill out an online survey. Additionally, I am looking for the graduate students in these positions to also fill out the survey. The survey will take about ten to fifteen minutes to complete. I plan to match the pairs together to better understand the role of fit in the working relationships between supervisors and subordinates. While you are asked to identify yourself for matching purposes, the responses will remain confidential. If you would like a copy of the results, I can share these with you. I would really appreciate your participation. Just follow the link below to access the survey. Thank you. - Hilary
Appendix G

Reminder email

Hello again. I just wanted to check in about your participation in an online survey. Your participation was originally requested on XXXXX, XX 2008. However, your data has not been received. This data is for the completion of a thesis here on campus, and it is imperative that complete pairs be obtained. In case you don’t remember, the pairs we are requesting are faculty members and graduate assistants. The purpose of the study is to learn more about the value and goal compatibility between supervisors and subordinates. The survey takes ten to fifteen minutes to fill out. It would be greatly appreciated if you could fill out the survey by following the link below. –Hilary
Appendix H: Polynomial Regression

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Extra_S Extra_F.

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_research\GradResearch\HilaryS\D3 (corrected stress scores).sav

Variables Entered/Removed\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Extra_F, Extra_S(^a)</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.200(^a)</td>
<td>.040</td>
<td>.015</td>
<td>.61232</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Extra_F, Extra_S

ANOVA\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>1.175</td>
<td>2</td>
<td>.587</td>
<td>1.567</td>
<td>.215(^a)</td>
</tr>
<tr>
<td>Residual</td>
<td>28.120</td>
<td>75</td>
<td>.375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29.295</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Extra_F, Extra_S
b. Dependent Variable: Stress_S

Coefficients\(^a\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
</table>

76
1 (Constant) 2.212 .627 3.525 .001
Extra_S .069 .112 .070 .618 .539
Extra_F .232 .139 .189 1.671 .099

a. Dependent Variable: Stress_S

COMPUTE Extra_S2=Extra_S * Extra_S.
EXECUTE.
COMPUTE Extra_F2=Extra_F * Extra_F.
EXECUTE.
COMPUTE Extra_SF=Extra_S * Extra_F.
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Extra_S Extra_F Extra_S2 Extra_F2 Extra_SF.

Regression

Variables Entered/Removedb

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Extra_SF, Extra_F2, Extra_S2, Extra_F, Extra_Sa</td>
<td>. Enter</td>
<td></td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.352a</td>
<td>.124</td>
<td>.063</td>
<td>.59705</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Extra_SF, Extra_F2, Extra_S2, Extra_F, Extra_S

ANOVAb

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
</table>

77
Regression

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.432</td>
<td>4.357</td>
</tr>
<tr>
<td>Extra_S</td>
<td>3.054</td>
<td>1.639</td>
</tr>
<tr>
<td>Extra_F</td>
<td>-1.392</td>
<td>1.431</td>
</tr>
<tr>
<td>Extra_S2</td>
<td>-0.330</td>
<td>.155</td>
</tr>
<tr>
<td>Extra_F2</td>
<td>0.348</td>
<td>.183</td>
</tr>
<tr>
<td>Extra_SF</td>
<td>-0.187</td>
<td>.241</td>
</tr>
</tbody>
</table>

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agree_S2</td>
<td>Agree_F2</td>
<td>Agree_SF</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Extra_SF, Extra_F2, Extra_S2, Extra_F, Extra_S
b. Dependent Variable: Stress_S
a. All requested variables entered.

b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.181</td>
<td>.033</td>
<td>.007</td>
<td>.61470</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Agree_F, Agree_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>.956</td>
<td>2</td>
<td>.478</td>
<td>1.265</td>
<td>.288</td>
</tr>
<tr>
<td>Residual</td>
<td>28.339</td>
<td>75</td>
<td>.378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29.295</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Agree_F, Agree_S

b. Dependent Variable: Stress_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>2.421</td>
</tr>
<tr>
<td></td>
<td>Agree_S</td>
<td>.217</td>
</tr>
<tr>
<td></td>
<td>Agree_F</td>
<td>-.009</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Stress_S

REGRESSION

/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/Criteria=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Agree_S Agree_F Agree_S2 Agree_F2 Agree_SF.

Regression
Variables Entered/Removed\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agree_SF, Agree_S2, Agree_F2, Agree_S, Agree_F(^a)</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.202(^a)</td>
<td>.041</td>
<td>-.026</td>
<td>.62467</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Agree_SF, Agree_S2, Agree_F2, Agree_S, Agree_F

ANOVA\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>1.200</td>
<td>5</td>
<td>.240</td>
<td>.615</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>28.096</td>
<td>72</td>
<td>.390</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>29.295</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Agree_SF, Agree_S2, Agree_F2, Agree_S, Agree_F
b. Dependent Variable: Stress_S

Coefficients\(^a\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Constant)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.574</td>
<td>8.811</td>
<td>.179</td>
<td>.859</td>
</tr>
<tr>
<td></td>
<td>Agree_S</td>
<td>1.215</td>
<td>2.261</td>
<td>.997</td>
</tr>
<tr>
<td></td>
<td>Agree_F</td>
<td>-.538</td>
<td>2.609</td>
<td>-.488</td>
</tr>
</tbody>
</table>

80
a. Dependent Variable: Stress_S

COMPUTE Cons_S2=Cons_S * Cons_S.
EXECUTE.
COMPUTE Cons_F2=Cons_F* Cons_F.
EXECUTE.
COMPUTE Cons_SF=Cons_S* Cons_F.
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Cons_S Cons_F.

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_research\GradResearch\HilaryS\D3 (corrected stress scores).sav

Variables Entered/Removedb

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cons_F, Cons_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.209a</td>
<td>.044</td>
<td>.018</td>
<td>.61123</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Cons_F, Cons_S

ANOVAb

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>1.275</td>
<td>2</td>
<td>.638</td>
<td>1.706</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>28.020</td>
<td>75</td>
<td>.374</td>
<td></td>
</tr>
</tbody>
</table>
a. Predictors: (Constant), Cons_F, Cons_S

b. Dependent Variable: Stress_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>.3173</td>
<td>.794</td>
<td>3.994</td>
</tr>
<tr>
<td></td>
<td>Cons_S</td>
<td>.187</td>
<td>.134</td>
<td>.158</td>
</tr>
<tr>
<td></td>
<td>Cons_F</td>
<td>-.161</td>
<td>.145</td>
<td>-.126</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Stress_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Cons_S Cons_F Cons_S2 Cons_F2 Cons_SF.

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cons_SF, Cons_F, Cons_S2, Cons_S, Cons_F2</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.

b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.337*</td>
<td>.114</td>
<td>.052</td>
<td>.60054</td>
</tr>
</tbody>
</table>
Variables Entered/Removed\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cons_SF, Cons_F,</td>
<td></td>
<td>Enter</td>
</tr>
<tr>
<td></td>
<td>Cons_S2, Cons_S,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cons_F2(^a)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Predictors: (Constant), Cons_SF, Cons_F, Cons_S2, Cons_S, Cons_F2

a. Predictors: (Constant), Cons_SF, Cons_F, Cons_S2, Cons_S, Cons_F2

ANOVA\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig. (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>3.329</td>
<td>5</td>
<td>.666</td>
<td>1.846</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>25.966</td>
<td>72</td>
<td>.361</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>29.295</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Predictors: (Constant), Cons_SF, Cons_F, Cons_S2, Cons_S, Cons_F2

b. Dependent Variable: Stress_S

Coefficients\(^a\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cons_S</td>
<td>-2.240</td>
</tr>
<tr>
<td></td>
<td>Cons_F</td>
<td>2.620</td>
</tr>
<tr>
<td></td>
<td>Cons_S2</td>
<td>.336</td>
</tr>
<tr>
<td></td>
<td>Cons_F2</td>
<td>-.354</td>
</tr>
<tr>
<td></td>
<td>Cons_SF</td>
<td>-.015</td>
</tr>
</tbody>
</table>

\(^a\) Dependent Variable: Stress_S

COMPUTE Neuro_S2=Neuro_S * Neuro_S.
EXECUTE.

COMPUTE Neuro_F2=Neuro_F * Neuro_F.
EXECUTE.
COMPUTE Neuro_SF=Neuro_S * Neuro_F.
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/Criteria=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Neuro_S Neuro_F.

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_research\GradResearch\HilaryS\D3 (corrected stress scores).sav

Variables Entered/Removedb

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neuro_F, Neuro_Sa</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.406a</td>
<td>.165</td>
<td>.142</td>
<td>.57119</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Neuro_F, Neuro_S

ANOVAb

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>4.826</td>
<td>2</td>
<td>2.413</td>
<td>7.397</td>
<td>.001a</td>
</tr>
<tr>
<td>Residual</td>
<td>24.469</td>
<td>75</td>
<td>.326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29.295</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Neuro_F, Neuro_S
b. Dependent Variable: Stress_S

Coefficientsa

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Stress_S
Regression

Variables Entered/Removedb

\begin{tabular}{|c|c|c|c|}
\hline
Model & Variables Entered & Variables Removed & Method \\
\hline
1 & Neuro_SF, Neuro_F2, Neuro_S2, Neuro_F, Neuro_S & & Enter \\
\hline
\end{tabular}

a All requested variables entered.

b Dependent Variable: Stress_S

Model Summary

\begin{tabular}{|c|c|c|c|c|}
\hline
Model & R & a R Square & Adjusted R Square & a Std. Error of the Estimate \\
\hline
1 & .496 & .246 & .193 & .55399 \\
\hline
\end{tabular}

a Predictors: (Constant), Neuro_SF, Neuro_F2, Neuro_S2, Neuro_F, Neuro_S

ANOVAb

\begin{tabular}{|c|c|c|c|c|c|}
\hline
Model & Sum of Squares & df & Mean Square & F & Sig. \\
\hline
1 & Regression & 7.198 & 5 & 1.440 & 4.691 & .001a \\
\hline
 & Residual & 22.097 & 72 & .307 & & \\
\hline
\end{tabular}

a Sig.
a. Predictors: (Constant), Neuro_SF, Neuro_F2, Neuro_S2, Neuro_F, Neuro_S

b. Dependent Variable: Stress_S

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.332</td>
<td>1.491</td>
<td>.893</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neuro_S</td>
<td>1.602</td>
<td>.727</td>
<td>1.962</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neuro_F</td>
<td>.357</td>
<td>.865</td>
<td>.346</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neuro_S2</td>
<td>-.309</td>
<td>.114</td>
<td>-2.101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neuro_F2</td>
<td>-.032</td>
<td>.149</td>
<td>-.144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neuro_S_F</td>
<td>-.101</td>
<td>.139</td>
<td>-.395</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Stress_S

COMPUTE Open_S2=Open_S * Open_S.
EXECUTE.
COMPUTE Open_F2=Open_F * Open_F.
EXECUTE.
COMPUTE Open_SF=Open_S * Open_F.
EXECUTE.

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/Criteria=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Open_S Open_F.

Regression

[DataSet1] D:\Profiles\switze\My Documents\a_research\GradResearch\HilaryS\D3 (corrected stress scores).sav

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open_F, Open_S</td>
<td>. Enter</td>
<td></td>
</tr>
</tbody>
</table>

a. All requested variables entered.
Variables Entered/Removed\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open_F, Open_S(^a)</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.163(^a)</td>
<td>.026</td>
<td>.001</td>
<td>.61665</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_F, Open_S

ANOVA\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.776</td>
<td>2</td>
<td>.388</td>
<td>1.020</td>
<td>.365(^a)</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>75</td>
<td>.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_F, Open_S

b. Dependent Variable: Stress_S

Coefficients\(^a\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>2.360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open_S</td>
<td>.028</td>
</tr>
<tr>
<td></td>
<td>Open_F</td>
<td>.208</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Stress_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITEORIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Open_S Open_F Open_S2 Open_F2 Open_SF.
Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_research\GradResearch\HilaryS\D3 (corrected stress scores).sav

Variables Entered/Removed\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open_SF, Open_F, Open_S2, Open_S, Open_F2(^a)</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.292(^a)</td>
<td>.085</td>
<td>.022</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_SF, Open_F, Open_S2, Open_S, Open_F2

ANOVA\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>2.505</td>
<td>5</td>
<td>.501</td>
<td>1.346</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>26.791</td>
<td>72</td>
<td>.372</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29.295</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_SF, Open_F, Open_S2, Open_S, Open_F2
b. Dependent Variable: Stress_S

Coefficients\(^a\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>2.218</td>
</tr>
</tbody>
</table>

88
a. Dependent Variable: Stress_S

SAVE OUTFILE='D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly1.sav' /COMPRESSED.
COMPUTE Values_S2=Values_S * Values_S.
EXECUTE.
COMPUTE Values_F2=Values_F * Values_F.
EXECUTE.
COMPUTE Values_SF=Values_S* Values_F.
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Values_S Values_F.

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly1.sav

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Values_F, Values_S</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.164a</td>
<td>.027</td>
<td>.001</td>
<td>.61654</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Values_F, Values_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
</table>

89
Coefficients\(^a\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1 (Constant)</td>
<td>1.874</td>
<td>.978</td>
<td>1.917</td>
<td>.059</td>
</tr>
<tr>
<td>Values_S</td>
<td>.157</td>
<td>.153</td>
<td>.117</td>
<td>1.022</td>
</tr>
<tr>
<td>Values_F</td>
<td>.130</td>
<td>.122</td>
<td>.122</td>
<td>1.065</td>
</tr>
</tbody>
</table>

\(^a\) Dependent Variable: Stress_S

```plaintext
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Values_S Values_F Values_S2 Values_F2 Values_SF.
```

Model Summary

```
1     Regression       .786  2  .393  1.034  .361^a
Residual 28.509 75  .380  
Total 29.295 77

a. Predictors: (Constant), Values_F, Values_S
b. Dependent Variable: Stress_S
```

```
Variables Entered/Removed\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Values_SF, Values_S2, Values_F2, Values_F, Values_S(^a)</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Stress_S
```

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly1.sav
<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.175a</td>
<td>.031</td>
<td>-.037</td>
<td>.62803</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Values_SF, Values_S2, Values_F2, Values_F, Values_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>.897</td>
<td>5</td>
<td>.179</td>
<td>.455a</td>
<td>.808a</td>
</tr>
<tr>
<td>Residual</td>
<td>28.398</td>
<td>72</td>
<td>.394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29.295</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Values_SF, Values_S2, Values_F2, Values_F, Values_S
b. Dependent Variable: Stress_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-.603</td>
<td>12.648</td>
<td>-.048</td>
</tr>
<tr>
<td></td>
<td>Values_S</td>
<td>.157</td>
<td>3.991</td>
<td>.117</td>
</tr>
<tr>
<td></td>
<td>Values_F</td>
<td>1.207</td>
<td>2.518</td>
<td>1.132</td>
</tr>
<tr>
<td></td>
<td>Values_S2</td>
<td>.046</td>
<td>.330</td>
<td>.344</td>
</tr>
<tr>
<td>2</td>
<td>Values_F</td>
<td>-.063</td>
<td>.230</td>
<td>-.542</td>
</tr>
<tr>
<td>2</td>
<td>Values_S</td>
<td>-.100</td>
<td>.272</td>
<td>-.568</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Stress_S

COMPUTE Values_S2=Values_S * Values_S.
EXECUTE.
COMPUTE Values_F2=Values_F * Values_F.
EXECUTE.
COMPUTE Values_SF=Values_S * Values_F.
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
Regression

[DataSet1] D:\Profiles\switze\My Documents\a_research\GradResearch\HilaryS\Poly1.sav

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Values_F, Values_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.164*</td>
<td>.027</td>
<td>.001</td>
<td>.61654</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Values_F, Values_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.786</td>
<td>2</td>
<td>.393</td>
<td>1.034</td>
<td>.361*</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>75</td>
<td>.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Values_F, Values_S
b. Dependent Variable: Stress_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.874</td>
<td>.978</td>
<td>1.917</td>
</tr>
</tbody>
</table>

92
Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_research\GradResearch\HilaryS\Poly1.sav

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Values_S, Values_F, Values_S^2, Values_F^2, Values_F, Values_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.

b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.175^a</td>
<td>.031</td>
<td>.037</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Values_S, Values_S^2, Values_F^2, Values_F, Values_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>.897</td>
<td>5</td>
<td>.179</td>
<td>.455</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>28.398</td>
<td>72</td>
<td>.394</td>
<td></td>
</tr>
</tbody>
</table>

- Values_S | .157 | .153 | .117 | 1.022 | .310 |
- Values_F | .130 | .122 | .122 | 1.065 | .290 |

a. Dependent Variable: Stress_S
a. Predictors: (Constant), Values_SF, Values_S2, Values_F2, Values_F, Values_S

b. Dependent Variable: Stress_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-.603</td>
</tr>
<tr>
<td></td>
<td>Values_S</td>
<td>.157</td>
</tr>
<tr>
<td></td>
<td>Values_F</td>
<td>1.207</td>
</tr>
<tr>
<td></td>
<td>Values_S</td>
<td>.046</td>
</tr>
<tr>
<td>2</td>
<td>Values_F</td>
<td>-0.063</td>
</tr>
<tr>
<td>2</td>
<td>Values_S</td>
<td>-.100</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Stress_S

```lisp
COMPUTE Goals_S2=Goals_S * Goals_S.
EXECUTE.
COMPUTE Goals_F2=Goals_F * Goals_F.
EXECUTE.
COMPUTE Goals_SF=Goals_S * Goals_F.
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Goals_S Goals_F.
```

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goals_S</td>
<td></td>
<td>ENTER</td>
</tr>
<tr>
<td>Goals_F</td>
<td></td>
<td>ENTER</td>
</tr>
</tbody>
</table>

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_research\GradResearch\HilaryS\Poly1.sav

Variables Entered/Removed
a. All requested variables entered.

b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.043a</td>
<td>.002</td>
<td>-.025</td>
<td>.62442</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Goals_F, Goals_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>.053</td>
<td>2</td>
<td>.027</td>
<td>.068</td>
<td>.934a</td>
</tr>
<tr>
<td>Residual</td>
<td>29.242</td>
<td>75</td>
<td>.390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29.295</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Goals_F, Goals_S

b. Dependent Variable: Stress_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>3.407</td>
<td>1.058</td>
<td>3.221</td>
</tr>
<tr>
<td></td>
<td>Goals_S</td>
<td>.019</td>
<td>.157</td>
<td>.014</td>
</tr>
<tr>
<td></td>
<td>Goals_F</td>
<td>-.050</td>
<td>.139</td>
<td>-.041</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Stress_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Stress_S
/METHOD=ENTER Goals_S Goals_F Goals_S2 Goals_F2 Goals_SF.
Variables Entered/Removed\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goals_SF, Goals_S, Goals_F2, Goals_S2, Goals_F(^a)</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.

b. Dependent Variable: Stress_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.085(^a)</td>
<td>.007</td>
<td>-.062</td>
<td>.63554</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Goals_S, Goals_S, Goals_F2, Goals_S2, Goals_F

ANOVA\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>.214</td>
<td>5</td>
<td>.043</td>
<td>.106</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>29.082</td>
<td>72</td>
<td>.404</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>29.295</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Goals_S, Goals_S, Goals_F2, Goals_S2, Goals_F

b. Dependent Variable: Stress_S

Coefficients\(^a\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-3.337</td>
<td>14.406</td>
<td>-.232</td>
</tr>
</tbody>
</table>

\(^a\) All requested variables entered.

\(^b\) Dependent Variable: Stress_S
a. Dependent Variable: Stress_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRI TERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT JDI_S
/METHOD=ENTER Extra_S Extra_F.

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_research\GradResearch\HilaryS\Poly1.sav

Variables Entered/Removedb

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Extra_F, Extra_Sa</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.143a</td>
<td>.020</td>
<td>-.006</td>
<td>.31954</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Extra_F, Extra_S

ANOVAb

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.160</td>
<td>2</td>
<td>.080</td>
<td>.782</td>
<td>.461a</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Extra_F, Extra_S

b. Dependent Variable: JDI_S
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>7.658</td>
<td>75</td>
<td>.102</td>
</tr>
<tr>
<td>Total</td>
<td>7.817</td>
<td>77</td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Extra_F, Extra_S
b. Dependent Variable: JDI_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.683</td>
<td>.327</td>
<td>5.139</td>
</tr>
<tr>
<td></td>
<td>Extra_S</td>
<td>.007</td>
<td>.058</td>
<td>.013</td>
</tr>
<tr>
<td></td>
<td>Extra_F</td>
<td>.090</td>
<td>.072</td>
<td>.143</td>
</tr>
</tbody>
</table>

a. Dependent Variable: JDI_S

REGRESSION
MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT JDI_S
/METHOD=ENTER Extra_S Extra_F Extra_S2 Extra_F2 Extra_SF.

Regression

[DataSet1] D:\Profiles\switze\My Documents\a_research\GradResearch\HilaryS\Poly1.sav

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Extra_SF, Extra_F2, Extra_S2, Extra_F, Extra_S^2</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
</table>

98
ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>.869</td>
<td>5</td>
<td>.174</td>
<td>1.802</td>
<td>.123a</td>
</tr>
<tr>
<td>Residual</td>
<td>6.948</td>
<td>72</td>
<td>.096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7.817</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Extra_SF, Extra_F2, Extra_S2, Extra_F, Extra_S
b. Dependent Variable: JDI_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>(Constant)</td>
<td>2.828</td>
<td>2.267</td>
</tr>
<tr>
<td>Extra_S</td>
<td>.590</td>
<td>.853</td>
</tr>
<tr>
<td>Extra_F</td>
<td>-1.264</td>
<td>.745</td>
</tr>
<tr>
<td>Extra_S2</td>
<td>-.031</td>
<td>.080</td>
</tr>
<tr>
<td>Extra_F2</td>
<td>.249</td>
<td>.095</td>
</tr>
<tr>
<td>Extra_SF</td>
<td>-.095</td>
<td>.125</td>
</tr>
</tbody>
</table>

a. Dependent Variable: JDI_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT JDI_S
/METHOD=ENTER Agree_S Agree_F.
Variables Entered/Removed\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agree_F, Agree_S(^a)</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

\(a\). All requested variables entered.

\(b\). Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.285(^a)</td>
<td>.081</td>
<td>.057</td>
<td>.30944</td>
</tr>
</tbody>
</table>

\(a\). Predictors: (Constant), Agree_F, Agree_S

ANOVA\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>.636</td>
<td>2</td>
<td>.318</td>
<td>3.322</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>7.181</td>
<td>75</td>
<td>.096</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.817</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a\). Predictors: (Constant), Agree_F, Agree_S

\(b\). Dependent Variable: JDI_S

Coefficients\(^a\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.164</td>
</tr>
<tr>
<td></td>
<td>Agree_S</td>
<td>.185</td>
</tr>
<tr>
<td></td>
<td>Agree_F</td>
<td>.028</td>
</tr>
</tbody>
</table>

\(a\). Dependent Variable: JDI_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
Regression

[DataSet1] D:\Profiles\switze\My Documents\a_research\GradResearch\HilaryS\Poly1.sav

Variables Entered/Removed\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agree_SF, Agree_S2, Agree_F2, Agree_S, Agree_F</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.331(^a)</td>
<td>.110</td>
<td>.048</td>
<td>.31089</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Agree_SF, Agree_S2, Agree_F2, Agree_S, Agree_F

ANOVA\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>.858 5</td>
<td>.172</td>
<td>1.776</td>
<td>.129(^a)</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>6.959 72</td>
<td>.097</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.817 77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Agree_SF, Agree_S2, Agree_F2, Agree_S, Agree_F
b. Dependent Variable: JDI_S

Coefficients\(^a\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficient</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
</table>
B | Std. Error | Beta
---|---|---
1 (Constant) | -2.088 | 4.385 | -0.476 | 0.635
Agree_S | 0.543 | 1.125 | 0.863 | 0.483 | 0.631
Agree_F | 1.324 | 1.299 | 2.327 | 1.020 | 0.311
Agree_S | -0.033 | 0.093 | -0.413 | -0.360 | 0.720
Agree_F | -0.153 | 0.111 | -2.129 | -1.375 | 0.173
Agree_S | -0.021 | 0.158 | -0.177 | -0.133 | 0.895

a. Dependent Variable: JDI_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT JDI_S
/METHOD=ENTER Cons_S Cons_F.

Regression

Variables Entered/Removed b

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cons_F, Cons_S</td>
<td>Cons_S</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.086 a</td>
<td>0.007</td>
<td>-0.019</td>
<td>0.32166</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Cons_F, Cons_S

ANOVA b

102
Summary of ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regressor</td>
<td>.058</td>
<td>2</td>
<td>.029</td>
<td>.278</td>
<td>.758a</td>
</tr>
<tr>
<td>Residual</td>
<td>7.760</td>
<td>75</td>
<td>.103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7.817</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Cons_F, Cons_S

b. Dependent Variable: JDI_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1 (Constant)</td>
<td>2.330</td>
<td>.418</td>
</tr>
<tr>
<td>Cons_S</td>
<td>-.039</td>
<td>.071</td>
</tr>
<tr>
<td>Cons_F</td>
<td>-.040</td>
<td>.076</td>
</tr>
</tbody>
</table>

a. Dependent Variable: JDI_S

Regression

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/Criteria=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT JDI_S
/METHOD=ENTER Cons_S Cons_F Cons_S2 Cons_F2 Cons_SF.

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cons_SF, Cons_F, Cons_S, Cons_S2, Cons_S</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cons_SF, Cons_F, Cons_S2, Cons_S, Cons_F2<sup>a</sup></td>
<td>. Enter</td>
<td></td>
</tr>
</tbody>
</table>

^a Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.282<sup>a</sup></td>
<td>.079</td>
<td>.015</td>
<td>.31616</td>
</tr>
</tbody>
</table>

^a Predictors: (Constant), Cons_SF, Cons_F, Cons_S2, Cons_S, Cons_F2

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>.621</td>
<td>5</td>
<td>.124</td>
<td>1.242</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>7.197</td>
<td>72</td>
<td>.100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.817</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Predictors: (Constant), Cons_SF, Cons_F, Cons_S2, Cons_S, Cons_F2

^b Dependent Variable: JDI_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>7.805</td>
</tr>
<tr>
<td></td>
<td>Cons_S</td>
<td>-2.188</td>
</tr>
<tr>
<td></td>
<td>Cons_F</td>
<td>-.794</td>
</tr>
<tr>
<td></td>
<td>Cons_S2</td>
<td>.168</td>
</tr>
</tbody>
</table>

104
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT JDI_S
/METHOD=ENTER Neuro_S Neuro_F.

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_research\GradResearch\HilaryS\Poly1.sav

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neuro_F, Neuro_S</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.

b. Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.327a</td>
<td>.107</td>
<td>.083</td>
<td>.30505</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Neuro_F, Neuro_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.838</td>
<td>2</td>
<td>.419</td>
<td>4.505</td>
<td>.014a</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>6.979</td>
<td>75</td>
<td>.093</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.817</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Neuro_F, Neuro_S

b. Dependent Variable: JDI_S

Coefficients

Cons_F2 | -.018 | .149 | -.208 | -.120 | .905
Cons_SF | .232 | .180 | 1.944 | 1.293 | .200

a. Dependent Variable: JDI_S
<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Constant)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.393</td>
<td>.184</td>
<td>12.979</td>
<td>.000</td>
</tr>
<tr>
<td>Neuro_S</td>
<td>-.138</td>
<td>.046</td>
<td>-.327</td>
<td>-2.998</td>
</tr>
<tr>
<td>Neuro_F</td>
<td>-.003</td>
<td>.058</td>
<td>-.006</td>
<td>-.052</td>
</tr>
</tbody>
</table>

a. Dependent Variable: JDI_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT JDI_S
/METHOD=ENTER Neuro_S Neuro_F Neuro_S2 Neuro_F2 Neuro_SF.

Regression

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>VariablesEntered</th>
<th>VariablesRemoved</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neuro_SF, Neuro_F2, Neuro_S2, Neuro_F, Neuro_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.453(^a)</td>
<td>.205</td>
<td>.150</td>
<td>.29374</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Neuro_SF, Neuro_F2, Neuro_S2, Neuro_F, Neuro_S

ANOVA
<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.605</td>
<td>5</td>
<td>.321</td>
<td>3.721</td>
<td>.005a</td>
</tr>
<tr>
<td>Residual</td>
<td>6.212</td>
<td>72</td>
<td>.086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7.817</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Neuro_SF, Neuro_F2, Neuro_S2, Neuro_F, Neuro_S

b. Dependent Variable: JDI_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.238</td>
</tr>
<tr>
<td></td>
<td>Neuro_S</td>
<td>.912</td>
</tr>
<tr>
<td></td>
<td>Neuro_F</td>
<td>-.157</td>
</tr>
<tr>
<td></td>
<td>Neuro_S2</td>
<td>-.178</td>
</tr>
<tr>
<td>2</td>
<td>Neuro_F</td>
<td>.045</td>
</tr>
<tr>
<td></td>
<td>Neuro_S</td>
<td>-.029</td>
</tr>
</tbody>
</table>

a. Dependent Variable: JDI_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/Criteria=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT JDI_S
/METHOD=ENTER Open_S Open_F.

Variables Entered/Removed
<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open_F, Open_S</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.

b. Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.204a</td>
<td>.042</td>
<td>.016</td>
<td>.31606</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_F, Open_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>2</td>
<td>.163</td>
<td>1.627</td>
<td>.203a</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>75</td>
<td>.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_F, Open_S

b. Dependent Variable: JDI_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>2.591</td>
<td>.382</td>
<td>6.786</td>
</tr>
<tr>
<td></td>
<td>Open_S</td>
<td>-.015</td>
<td>.072</td>
<td>-.023</td>
</tr>
<tr>
<td></td>
<td>Open_F</td>
<td>-.135</td>
<td>.077</td>
<td>-.200</td>
</tr>
</tbody>
</table>

a. Dependent Variable: JDI_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN

108
Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_research\GradResearch\HilaryS\Poly1.sav

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open_SF, Open_F, Open_S2, Open_S, Open_F2</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.

b. Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.232a</td>
<td>.054</td>
<td>-.012</td>
<td>.32049</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_SF, Open_F, Open_S2, Open_S, Open_F2

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>.422</td>
<td>5</td>
<td>.084</td>
<td>.822</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>7.395</td>
<td>72</td>
<td>.103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.817</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_SF, Open_F, Open_S2, Open_S, Open_F2

b. Dependent Variable: JDI_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
</tbody>
</table>

109
Regression

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Values_F, Values_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

- All requested variables entered.
- Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.151</td>
<td>-.003</td>
<td>.31917</td>
</tr>
</tbody>
</table>

- Predictors: (Constant), Values_F, Values_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
</table>

110
Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.417</td>
<td>.506</td>
<td>2.800</td>
<td>.006</td>
</tr>
<tr>
<td></td>
<td>Values_S</td>
<td></td>
<td>.148</td>
<td>1.299</td>
</tr>
<tr>
<td></td>
<td>.103</td>
<td>.079</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Values_F</td>
<td></td>
<td>.034</td>
<td>.299</td>
</tr>
<tr>
<td></td>
<td>.019</td>
<td>.063</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: JDI_S

Regression

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CROITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT JDI_S
/METHOD=ENTER Values_S Values_F Values_S2 Values_F2 Values_SF.

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Values_SF, Values_S2, Values_F2, Values_F, Values_S2</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.

b. Dependent Variable: JDI_S
Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.240<sup>a</sup></td>
<td>.058</td>
<td>-.008</td>
<td>.31985</td>
</tr>
</tbody>
</table>

^a Predictors: (Constant), Values_SF, Values_S2, Values_F2, Values_F, Values_S

ANOVA^b

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regressions</td>
<td>5</td>
<td>.090</td>
<td>.883</td>
<td>.497<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>72</td>
<td>.102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Predictors: (Constant), Values_SF, Values_S2, Values_F2, Values_F, Values_S

^b Dependent Variable: JDI_S

Coefficients^a

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.097</td>
</tr>
<tr>
<td></td>
<td>Values_S</td>
<td>-.035</td>
</tr>
<tr>
<td></td>
<td>Values_F</td>
<td>.292</td>
</tr>
<tr>
<td></td>
<td>Values_S2</td>
<td>.084</td>
</tr>
<tr>
<td>2</td>
<td>Values_F</td>
<td>.053</td>
</tr>
<tr>
<td></td>
<td>Values_S</td>
<td>-.153</td>
</tr>
</tbody>
</table>

^a Dependent Variable: JDI_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
Regression

[DataSet1] D:\Profiles\switze\My Documents\a_research\GradResearch\HilaryS\Poly1.sav

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goals_F, Goals_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.113a</td>
<td>.013</td>
<td>-.014</td>
<td>.32080</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Goals_F, Goals_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>.099</td>
<td>2</td>
<td>.050</td>
<td>.481</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>7.718</td>
<td>75</td>
<td>.103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.817</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Goals_F, Goals_S
b. Dependent Variable: JDI_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.709</td>
</tr>
</tbody>
</table>

a.
Regression

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goals_SF, Goals_S, Goals_F2, Goals_S2, Goals_F a</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.

b. Dependent Variable: JDI_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.160 a</td>
<td>.026</td>
<td>-.042</td>
<td>.32526</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Goals_SF, Goals_S, Goals_F2, Goals_S2, Goals_F

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>.200</td>
<td>5</td>
<td>.040</td>
<td>.379</td>
<td>.862 a</td>
</tr>
<tr>
<td>Residual</td>
<td>7.617</td>
<td>72</td>
<td>.106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7.817</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a. Predictors: (Constant), Goals_SF, Goals_S, Goals_F2, Goals_S2, Goals_F

b. Dependent Variable: JDI_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>2.309</td>
</tr>
<tr>
<td></td>
<td>Goals_S</td>
<td>-.637</td>
</tr>
<tr>
<td></td>
<td>Goals_F</td>
<td>.462</td>
</tr>
<tr>
<td></td>
<td>Goals_S^2</td>
<td>.109</td>
</tr>
<tr>
<td>2</td>
<td>Goals_F^2</td>
<td>-.005</td>
</tr>
<tr>
<td></td>
<td>Goals_S^F</td>
<td>-.081</td>
</tr>
</tbody>
</table>

Regression

```
SAVE OUTFILE='D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav' /COMPRESSED.
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Commit_S
/METHOD=ENTER Extra_S Extra_F.
```

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Extra_F, Extra_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.

b. Dependent Variable: Commit_S
Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.115(^a)</td>
<td>.013</td>
<td>-.013</td>
<td>1.28514</td>
</tr>
</tbody>
</table>

\(^a\) Predictors: (Constant), Extra_F, Extra_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>2</td>
<td>.836</td>
<td>.506</td>
<td>.605(^a)</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>75</td>
<td>1.652</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Predictors: (Constant), Extra_F, Extra_S

b. Dependent Variable: Commit_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>3.873</td>
</tr>
<tr>
<td></td>
<td>Extra_S</td>
<td>.209</td>
</tr>
<tr>
<td></td>
<td>Extra_F</td>
<td>.141</td>
</tr>
</tbody>
</table>

\(^a\) Dependent Variable: Commit_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Commit_S
/METHOD=ENTER Extra_S Extra_F Extra_S2 Extra_F2 Extra_SF.

Regression

[DataSet1] D:\Profiles\switze\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a. All requested variables entered.

b. Dependent Variable: Commit_S

<table>
<thead>
<tr>
<th>Model Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

\(^a\) Predictors: (Constant), Extra_SF, Extra_F2, Extra_S2, Extra_F, Extra_S

<table>
<thead>
<tr>
<th>ANOVA(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Regression</td>
</tr>
<tr>
<td>Residual</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

\(^a\) Predictors: (Constant), Extra_SF, Extra_F2, Extra_S2, Extra_F, Extra_S

b. Dependent Variable: Commit_S

<table>
<thead>
<tr>
<th>Coefficients(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Regression</td>
</tr>
<tr>
<td>Extra_S</td>
</tr>
<tr>
<td>Extra_F</td>
</tr>
<tr>
<td>Extra_S2</td>
</tr>
<tr>
<td>Extra_F2</td>
</tr>
</tbody>
</table>

117
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/Criteria=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Commit_S
/METHOD=ENTER Agree_S Agree_F.

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav

Variables Entered/Removed\(^{b}\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agree_F, Agree_S</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Commit_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.312(^{a})</td>
<td>.097</td>
<td>.073</td>
<td>1.22929</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Agree_F, Agree_S

ANOVA\(^{b}\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>12.205</td>
<td>2</td>
<td>6.102</td>
<td>4.038</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>113.337</td>
<td>75</td>
<td>1.511</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>125.542</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Agree_F, Agree_S
b. Dependent Variable: Commit_S

Coefficients\(^{a}\)

| Extra_SF | .191 | .527 | .423 | .363 | .717 |

a. Dependent Variable: Commit_S
<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Constant)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.244</td>
<td>1.747</td>
<td>.712</td>
<td>.479</td>
</tr>
<tr>
<td></td>
<td>Agree_S</td>
<td>.812</td>
<td>.286</td>
<td>.322</td>
</tr>
<tr>
<td></td>
<td>Agree_F</td>
<td>.143</td>
<td>.259</td>
<td>.063</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Commit_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/Criteria=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Commit_S
/METHOD=ENTER Agree_S Agree_F Agree_S2 Agree_F2 Agree_SF.

Regression

[DataSet1] D:\Profiles\switzer\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agree_SF, Agree_S, Agree_F2, Agree_S, Agree_F</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Commit_S

<table>
<thead>
<tr>
<th>Mo model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.337a</td>
<td>.114</td>
<td>.052</td>
<td>1.24314</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Agree_SF, Agree_S2, Agree_F2, Agree_S, Agree_F

ANOVAb
Model Sum of Squares df Mean Square F Sig.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>14.273</td>
<td>5</td>
<td>2.855</td>
<td>1.847</td>
<td>.114a</td>
</tr>
<tr>
<td>Residual</td>
<td>111.268</td>
<td>72</td>
<td>1.545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>125.542</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Agree_SF, Agree_S2, Agree_F2, Agree_S, Agree_F

b. Dependent Variable: Commit_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1 (Constant)</td>
<td>2.980</td>
<td>17.535</td>
</tr>
<tr>
<td>Agree_S</td>
<td>-1.993</td>
<td>4.500</td>
</tr>
<tr>
<td>Agree_F</td>
<td>2.037</td>
<td>5.192</td>
</tr>
<tr>
<td>Agree_S</td>
<td>.287</td>
<td>.370</td>
</tr>
<tr>
<td>2 Agree_F</td>
<td>-.315</td>
<td>.444</td>
</tr>
<tr>
<td>Agree_S</td>
<td>.150</td>
<td>.630</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Commit_S

CORRELATIONS
/VARIABLES=Agree_S Commit_S
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

120
a. All requested variables entered.

b. Dependent Variable: Commit_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.090a</td>
<td>.008</td>
<td>-.018</td>
<td>1.2856</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Cons_F, Cons_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1.013</td>
<td>2</td>
<td>.506</td>
<td>.305</td>
<td>.738a</td>
</tr>
<tr>
<td>Residual</td>
<td>124.529</td>
<td>75</td>
<td>1.660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>125.542</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Cons_F, Cons_S

b. Dependent Variable: Commit_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>4.848</td>
<td>1.675</td>
<td>2.895</td>
</tr>
<tr>
<td></td>
<td>Cons_S</td>
<td>.184</td>
<td>.283</td>
<td>.075</td>
</tr>
<tr>
<td></td>
<td>Cons_F</td>
<td>-.119</td>
<td>.306</td>
<td>-.045</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Commit_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Commit_S
/METHOD=ENTER Cons_S Cons_F Cons_S2 Cons_F2 Cons_SF.
Regression

[DataSet] D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cons_SF, Cons_F, Cons_S2, Cons_S, Cons_F2</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Commit_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.213(^a)</td>
<td>.045</td>
<td>-.021</td>
<td>1.29013</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Cons_SF, Cons_F, Cons_S2, Cons_S, Cons_F2

ANOVAb

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>5</td>
<td>1.140</td>
<td>.685</td>
<td>.636(^a)</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>72</td>
<td>1.664</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Cons_SF, Cons_F, Cons_S2, Cons_S, Cons_F2
b. Dependent Variable: Commit_S

Coefficientsa

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>21.531</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Cons_SF, Cons_F, Cons_S2, Cons_S, Cons_F2
Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neuro_F, Neuro_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

* a. All requested variables entered.

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.009</td>
<td>.000</td>
<td>.027</td>
<td>1.29373</td>
</tr>
</tbody>
</table>

* a. Predictors: (Constant), Neuro_F, Neuro_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>.011</td>
<td>.006</td>
<td>.003</td>
<td>.997</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>125.530</td>
<td>75</td>
<td>1.674</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>125.542</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: Commit_S
Variables Entered/Removed\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neuro_F, Neuro_S(^a)</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

\(^a\)Predictors: (Constant), Neuro_F, Neuro_S

\(^b\)Dependent Variable: Commit_S

Coefficients\(^a\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td></td>
<td></td>
<td>5.096</td>
</tr>
<tr>
<td></td>
<td>Neuro_S</td>
<td>-.014</td>
<td>.195</td>
<td>-.008</td>
</tr>
<tr>
<td></td>
<td>Neuro_F</td>
<td>.010</td>
<td>.247</td>
<td>.005</td>
</tr>
</tbody>
</table>

\(^a\)Dependent Variable: Commit_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Commit_S
/METHOD=ENTER Neuro_S Neuro_F Neuro_S2 Neuro_F2 Neuro_SF.

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav

Variables Entered/Removed\(^b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neuro_SF, Neuro_F2, Neuro_S2, Neuro_F, Neuro_S(^a)</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

\(^a\)All requested variables entered.

\(^b\)Dependent Variable: Commit_S
Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.243a</td>
<td>.059</td>
<td>-.006</td>
<td>1.28094</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Neuro_SF, Neuro_F2, Neuro_S2, Neuro_F, Neuro_S

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>7.404</td>
<td>5</td>
<td>1.481</td>
<td>.902</td>
<td>.484a</td>
</tr>
<tr>
<td>Residual</td>
<td>118.138</td>
<td>72</td>
<td>1.641</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>125.542</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Neuro_SF, Neuro_F2, Neuro_S2, Neuro_F, Neuro_S
b. Dependent Variable: Commit_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td>Beta</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>8.591</td>
<td>3.448</td>
<td>2.492</td>
</tr>
<tr>
<td>Neuro_S</td>
<td>.590</td>
<td>1.682</td>
<td>.349</td>
<td>.351</td>
</tr>
<tr>
<td>Neuro_F</td>
<td>-3.875</td>
<td>1.999</td>
<td>-1.816</td>
<td>-1.939</td>
</tr>
<tr>
<td>Neuro_S</td>
<td>-.232</td>
<td>.264</td>
<td>-.763</td>
<td>-.879</td>
</tr>
<tr>
<td>2</td>
<td>Neuro_F</td>
<td>.664</td>
<td>.345</td>
<td>1.459</td>
</tr>
<tr>
<td>2</td>
<td>Neuro_S</td>
<td>.303</td>
<td>.322</td>
<td>.572</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Commit_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
Regression

Variables Entered/Removedb

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open_F, Open_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Commit_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.130a</td>
<td>.017</td>
<td>-.009</td>
<td>1.28274</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_F, Open_S

ANOVAb

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>2</td>
<td>1.067</td>
<td>.649</td>
<td>.526a</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>75</td>
<td>1.645</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>77</td>
<td>1.645</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_F, Open_S
b. Dependent Variable: Commit_S

Coefficientsa

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>5.781</td>
<td>3.731</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Open_S</td>
<td>.148</td>
<td>.507</td>
<td>.614</td>
</tr>
</tbody>
</table>

[Dataset1] D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav

Variables Entered/Removedb

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open_F, Open_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Commit_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.130a</td>
<td>.017</td>
<td>-.009</td>
<td>1.28274</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_F, Open_S

ANOVAb

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>2</td>
<td>1.067</td>
<td>.649</td>
<td>.526a</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>75</td>
<td>1.645</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>77</td>
<td>1.645</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_F, Open_S
b. Dependent Variable: Commit_S

Coefficientsa

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>5.781</td>
<td>3.731</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Open_S</td>
<td>.148</td>
<td>.507</td>
<td>.614</td>
</tr>
</tbody>
</table>
a. Dependent Variable: Commit_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Commit_S
/METHOD=ENTER Open_S Open_F Open_S2 Open_F2 Open_SF.

Regression

[DataSet1] D:\Profiles\switze\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav

Variables Entered/Removedb

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open_SF, Open_F, Open_S2, Open_S, Open_F2</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.

b. Dependent Variable: Commit_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.179a</td>
<td>.032</td>
<td>-.035</td>
<td>1.29919</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_SF, Open_F, Open_S2, Open_S, Open_F2

ANOVAb

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>4.013</td>
<td>5</td>
<td>.803</td>
<td>.476</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>121.528</td>
<td>72</td>
<td>1.688</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>125.542</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Open_SF, Open_F, Open_S2, Open_S, Open_F2
Variables Entered/Removedb

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open_SF, Open_F, Open_S2, Open_S, Open_F2a</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a Dependent Variable: Commit_S

Coefficientsa

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>16.416</td>
<td>12.867</td>
<td>1.276</td>
</tr>
<tr>
<td></td>
<td>Open_S</td>
<td>-3.792</td>
<td>3.835</td>
<td>-1.496</td>
</tr>
<tr>
<td></td>
<td>Open_F</td>
<td>-2.031</td>
<td>5.046</td>
<td>-.749</td>
</tr>
<tr>
<td></td>
<td>Open_S2</td>
<td>.322</td>
<td>.459</td>
<td>.962</td>
</tr>
<tr>
<td></td>
<td>Open_F2</td>
<td>.021</td>
<td>.605</td>
<td>.060</td>
</tr>
<tr>
<td></td>
<td>Open_F</td>
<td>.398</td>
<td>.626</td>
<td>.866</td>
</tr>
</tbody>
</table>

a Dependent Variable: Commit_S

Regression

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEP_VARIABLE Commit_S
/METHOD=ENTER Values_S Values_F.

[DataSet1] D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav
Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.309<sup>a</sup></td>
<td>.096</td>
<td>.071</td>
<td>1.23040</td>
</tr>
</tbody>
</table>

^a Predictors: (Constant), Values_F, Values_S

ANOVA^b

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>11.999</td>
<td>2</td>
<td>6.000</td>
<td>3.963</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>113.542</td>
<td>75</td>
<td>1.514</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>125.542</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Predictors: (Constant), Values_F, Values_S

Coefficients^a

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.123</td>
</tr>
<tr>
<td></td>
<td>Values_S</td>
<td>.852</td>
</tr>
<tr>
<td></td>
<td>Values_F</td>
<td>-.066</td>
</tr>
</tbody>
</table>

^a Dependent Variable: Commit_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
Regression

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Values_SF, Values_S2, Values_F2, Values_F, Values_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Commit_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.377a</td>
<td>.142</td>
<td>.083</td>
<td>1.22281</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Values_SF, Values_S2, Values_F2, Values_F, Values_S

ANOVAb

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>17.883</td>
<td>5</td>
<td>3.577</td>
<td>2.392</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>107.659</td>
<td>72</td>
<td>1.495</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>125.542</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Values_SF, Values_S2, Values_F2, Values_F, Values_S
b. Dependent Variable: Commit_S

Coefficientsa

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Commit_S
1 (Constant)

<table>
<thead>
<tr>
<th></th>
<th>Values_S</th>
<th>Values_F</th>
<th>Values_S</th>
<th>Values_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-25.572</td>
<td>24.626</td>
<td>-1.038</td>
<td>.303</td>
</tr>
<tr>
<td></td>
<td>10.971</td>
<td>7.771</td>
<td>3.940</td>
<td>1.412</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>4.903</td>
<td>.226</td>
<td>.102</td>
</tr>
<tr>
<td>2</td>
<td>-.586</td>
<td>.643</td>
<td>-2.112</td>
<td>-.910</td>
</tr>
<tr>
<td></td>
<td>.438</td>
<td>.449</td>
<td>1.833</td>
<td>.976</td>
</tr>
<tr>
<td>2</td>
<td>.438</td>
<td>.449</td>
<td>1.833</td>
<td>.976</td>
</tr>
<tr>
<td>F</td>
<td>-.920</td>
<td>.530</td>
<td>-2.526</td>
<td>-1.735</td>
</tr>
<tr>
<td></td>
<td>.366</td>
<td>.366</td>
<td>.366</td>
<td>.366</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Commit_S

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Commit_S
/METHOD=ENTER Goals_S Goals_F.

Regression

[DataSet1] D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav

Variables Entered/Removedb

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goals_F, Goals_S</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.

b. Dependent Variable: Commit_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.329a</td>
<td>.108</td>
<td>.085</td>
<td>1.22161</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Goals_F, Goals_S

ANOVAb
Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regressions...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.616</td>
<td>2</td>
<td>6.808</td>
<td>4.562</td>
<td>.013</td>
</tr>
<tr>
<td>Residual</td>
<td>111.925</td>
<td>75</td>
<td>1.492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>125.542</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Goals_F, Goals_S

b. Dependent Variable: Commit_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.956</td>
<td>2.069</td>
<td>.945</td>
</tr>
<tr>
<td></td>
<td>Goals_S</td>
<td>.883</td>
<td>.308</td>
<td>.313</td>
</tr>
<tr>
<td></td>
<td>Goals_F</td>
<td>-.308</td>
<td>.273</td>
<td>-.123</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Commit_S

REGRESSION

/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Commit_S
/METHOD=ENTER Goals_S Goals_F Goals_S2 Goals_F2 Goals_SF.

Regression

[Data Set 1] D:\Profiles\switzef\My Documents\a_Research\GradResearch\HilaryS\Poly2.sav

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goals_SF, Goals_S, Goals_F2, Goals_S2, Goals_F</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>
Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goals_SF,Goals_S,Goals_F2,Goals_S2,Goals_F</td>
<td>. Enter</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered.
b. Dependent Variable: Commit_S

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.370a</td>
<td>.137</td>
<td>.077</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Goals_SF, Goals_S, Goals_F2, Goals_S2, Goals_F

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>17.166</td>
<td>5</td>
<td>3.433</td>
<td>2.281</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>108.375</td>
<td>72</td>
<td>1.505</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>125.542</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Goals_SF, Goals_S, Goals_F2, Goals_S2, Goals_F
b. Dependent Variable: Commit_S

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-35.218</td>
</tr>
<tr>
<td></td>
<td>Goals_S</td>
<td>8.965</td>
</tr>
<tr>
<td></td>
<td>Goals_F</td>
<td>5.888</td>
</tr>
</tbody>
</table>

133
<table>
<thead>
<tr>
<th>Goals_S</th>
<th>2</th>
<th>-.321</th>
<th>.591</th>
<th>-1.189</th>
<th>-.543</th>
<th>.588</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goals_F</td>
<td>2</td>
<td>-.121</td>
<td>.528</td>
<td>-.490</td>
<td>-.230</td>
<td>.819</td>
</tr>
<tr>
<td>Goals_S</td>
<td>F</td>
<td>-.923</td>
<td>.634</td>
<td>-2.682</td>
<td>-1.456</td>
<td>.150</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Commit_S
REFERENCES

