Development of Anti-Fouling, Anti-Microbial Membranes by Chemical Patterning

Steven Weinman
Clemson University

Na Li
Clemson University

Viatcheslav Freger
Clemson University

Moshe Herzberg
Clemson University

Scott Husson
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/grads_symposium

Recommended Citation
Weinman, Steven; Li, Na; Freger, Viatcheslav; Herzberg, Moshe; and Husson, Scott, "Development of Anti-Fouling, Anti-Microbial Membranes by Chemical Patterning" (2015). Graduate Research and Discovery Symposium (GRADS). 144.
https://tigerprints.clemson.edu/grads_symposium/144
Development of Anti-Fouling, Anti-Microbial Membranes for Wastewater Treatment

Steven Weinmana, Na Lia, Viatcheslav Fregerb, Moshe Herzbergc, Scott Hussona

aDepartment of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29634
bWolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000 Israel
cZuckerberg Institute for Water Research, Ben Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion, 84990 Israel

Introduction

Over 1 billion people lack access to clean drinking water.

Treatment of impaired waters exposes membranes to feed waters containing biological and abiotic species, which leads to fouling and loss of membrane productivity over time.

Fouling is one of the largest costs associated with membrane processes in water treatment.

Hypothesis

Combining chemical coating (Figure 1) and patterning (Figure 2) will yield membrane surfaces that are more effective at fouling control than either method alone.

Surface Modification Fundamentals

Scheme 1 illustrates the surface modification strategy that uses surface-initiated ATRP

Overall Project Objectives

- Prepare and characterize membranes with surfaces that can switch reversibly between passive and active modes
- Evaluate surface chemistry effects on membrane performance
- Evaluate anti-fouling, anti-microbial function of membranes
- Prepare membranes that are patterned uniformly with chemical coatings that are chosen to limit fouling
- Evaluate the effects of patterning on membrane performance
- Evaluate the anti-fouling function of the chemical patterns

Transmission FTIR

CB-OH was synthesized successfully

Polymerization of CB-OH was successful from silicon substrates

FTIR showed successful, reversible switching between CB-OH and CB-Ring

PEGDE test ink was successfully patterned onto membranes

Future Work

- Vary initiator density and measure resultant polymer chain densities and possible effect on switching pH
- Perform polymerization from glass and QCM sensors for bacterial deposition and release studies
- Perform polymerization from NF and RO membranes and test performance.
- Develop polymeric stamp for patterning membranes
- Test fouling performance with colloidal particles and proteins
- Investigate effectiveness of different patterns and chemical coatings

Acknowledgements

This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1246875. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.

We thank the US-Israel BARD Foundation for financial support through Research Grant Agreement No. US-4654-13

2014 Tiger Grant Award Proposal Award