This general University catalog contains information of particular interest to prospective students and to undergraduates. Students interested in graduate work should request The Graduate School Announcements from the Dean of Graduate Studies and University Research.

The information section on pages 55-85 contains information about admission requirements, expenses, buildings and grounds, housing facilities and ROTC. Educational benefits for veterans and current Selective Service regulations may be found on page 61.

The fifty curriculums of the University are listed on page 114 and the Colleges, Schools, and their major courses are described in detail beginning on the following pages: Agricultural Sciences, page 115; Architecture, page 135; Education, page 142; Engineering, page 164; Forest and Recreation Resources, page 180; Industrial Management and Textile Science, page 183; Liberal Arts, page 194; Nursing, page 202; Physical, Mathematical and Biological Sciences, page 204.

The courses of the University are listed alphabetically in the Description of Courses section beginning on page 230.

For information on admissions, entrance and placement examinations, and transfer credits write the Office of Admissions and Registration. For information on family housing on the campus, write the Associate Director of Housing.

Clemson University offers equal educational opportunity to all persons without regard to race, creed, color, or national origin.

This policy applies in all matters, including:
1. Admission and education of students.
2. Availability of student loans, grants, scholarships, and job opportunities.
3. Employment and promotion of teaching and non-teaching personnel.
4. Student and faculty housing situated on premises owned or occupied by the University.
5. Off-campus housing not owned by the University but listed with the University for referral purposes.
6. Activities conducted on premises owned or occupied by the University.
CLEMSON UNIVERSITY

RECORD
SEVENTY-NINTH YEAR

CATALOG NUMBER
1971-72

PRELIMINARY ANNOUNCEMENTS, 1972-73

Published quarterly by Clemson University, Clemson, South Carolina
Second-class postage paid at Clemson, South Carolina
1971

<table>
<thead>
<tr>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W F S</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6 7 8</td>
<td>9 10</td>
<td>11 12</td>
<td>13 14</td>
</tr>
<tr>
<td>15 16 17</td>
<td>18 19</td>
<td>20 21</td>
<td>22 23</td>
</tr>
<tr>
<td>24 25</td>
<td>26 27</td>
<td>28 29</td>
<td>30 31</td>
</tr>
</tbody>
</table>

1972

<table>
<thead>
<tr>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W F S</td>
</tr>
<tr>
<td>2 3 4 5 6 7 8</td>
<td>9 10 11 12 13 14 15</td>
<td>16 17 18 19 20 21 22</td>
<td>23 24 25 26 27 28 29</td>
</tr>
<tr>
<td>30 31</td>
<td>1 2 3 4 5 6 7</td>
<td>8 9 10 11 12 13 14</td>
<td>15 16 17 18 19 20 21</td>
</tr>
</tbody>
</table>

1973

<table>
<thead>
<tr>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
<td>8 9 10 11 12 13 14</td>
<td>15 16 17 18 19 20 21</td>
<td>22 23 24 25 26 27 28</td>
</tr>
<tr>
<td>29 30 31</td>
<td>1 2 3 4 5 6 7</td>
<td>8 9 10 11 12 13 14</td>
<td>15 16 17 18 19 20 21</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIVERSITY CALENDAR</td>
<td>4</td>
</tr>
<tr>
<td>PART I—PERSONNEL</td>
<td></td>
</tr>
<tr>
<td>Board of Trustees</td>
<td>7</td>
</tr>
<tr>
<td>Board of Visitors</td>
<td>8</td>
</tr>
<tr>
<td>Executive Officers</td>
<td>8</td>
</tr>
<tr>
<td>Administrative Officers and Staff</td>
<td>9</td>
</tr>
<tr>
<td>Academic Administration</td>
<td>9</td>
</tr>
<tr>
<td>Teaching and Research Faculties</td>
<td>12</td>
</tr>
<tr>
<td>Emeritus Faculty</td>
<td>45</td>
</tr>
<tr>
<td>Library Staff</td>
<td>47</td>
</tr>
<tr>
<td>Standing Committees of the University</td>
<td>47</td>
</tr>
<tr>
<td>Administration of Business and Financial Affairs</td>
<td>50</td>
</tr>
<tr>
<td>Administration of Development Activities</td>
<td>51</td>
</tr>
<tr>
<td>Administration of Student Affairs</td>
<td>52</td>
</tr>
<tr>
<td>PART II—INFORMATION</td>
<td>55</td>
</tr>
<tr>
<td>Administrative Organization</td>
<td>56</td>
</tr>
<tr>
<td>Requirements for Admission</td>
<td>58</td>
</tr>
<tr>
<td>Educational Benefits for Veterans and War Orphans</td>
<td>61</td>
</tr>
<tr>
<td>Selective Service</td>
<td>61</td>
</tr>
<tr>
<td>Expenses</td>
<td>62</td>
</tr>
<tr>
<td>Student Housing</td>
<td>67</td>
</tr>
<tr>
<td>Student Food Service</td>
<td>70</td>
</tr>
<tr>
<td>Student Health Service</td>
<td>72</td>
</tr>
<tr>
<td>Undergraduate Financial Aid</td>
<td>73</td>
</tr>
<tr>
<td>Honors and Awards</td>
<td>74</td>
</tr>
<tr>
<td>Guidance Services</td>
<td>74</td>
</tr>
<tr>
<td>Counseling Services</td>
<td>74</td>
</tr>
<tr>
<td>Placement Services</td>
<td>75</td>
</tr>
<tr>
<td>Buildings and Grounds</td>
<td>75</td>
</tr>
<tr>
<td>Reserve Officers' Training Corps</td>
<td>77</td>
</tr>
<tr>
<td>Historical Statement</td>
<td>82</td>
</tr>
<tr>
<td>Location</td>
<td>84</td>
</tr>
<tr>
<td>Alumni Relations</td>
<td>84</td>
</tr>
<tr>
<td>PART III—STUDENT LIFE AND ACTIVITIES</td>
<td>87</td>
</tr>
<tr>
<td>Student Body</td>
<td>88</td>
</tr>
<tr>
<td>Student Publications</td>
<td>88</td>
</tr>
<tr>
<td>Student Center</td>
<td>88</td>
</tr>
<tr>
<td>Cultural, Musical, Theatrical Activities</td>
<td>88</td>
</tr>
<tr>
<td>University Union Programs</td>
<td>90</td>
</tr>
<tr>
<td>Campus Leadership and Service</td>
<td>91</td>
</tr>
<tr>
<td>National Honor Societies</td>
<td>92</td>
</tr>
<tr>
<td>National Recognition Societies</td>
<td>92</td>
</tr>
<tr>
<td>Department and Professional Organizations</td>
<td>93</td>
</tr>
<tr>
<td>Social Fraternities and Sororities</td>
<td>95</td>
</tr>
<tr>
<td>Regional Clubs</td>
<td>96</td>
</tr>
<tr>
<td>Athletic Program</td>
<td>96</td>
</tr>
<tr>
<td>Automobile Privileges and Parking Regulations</td>
<td>97</td>
</tr>
<tr>
<td>PART IV—SCHOLASTIC REGULATIONS</td>
<td>99</td>
</tr>
<tr>
<td>PART V—DEGREES AND CURRICULANS</td>
<td>111</td>
</tr>
<tr>
<td>Undergraduate Curriculums</td>
<td>114</td>
</tr>
<tr>
<td>Description of Courses</td>
<td>230</td>
</tr>
<tr>
<td>PART VI—STUDENT REGISTER</td>
<td>417</td>
</tr>
<tr>
<td>INDEX</td>
<td>458</td>
</tr>
</tbody>
</table>

EDGE INDEX
Bend pages down and turn to black tab opposite index

GENERAL INFORMATION

REQUIREMENTS FOR ADMISSION

EXPENSES

STUDENT LIFE AND ACTIVITIES

SCHOLASTIC REGULATIONS

DEGREES AND CURRICULUMS

AGRICULTURAL SCIENCES

ARCHITECTURE

EDUCATION

ENGINEERING

FOREST AND RECREATION RESOURCES

INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

LIBERAL ARTS

NURSING

PHYSICAL, MATHEMATICAL AND BIOLOGICAL SCIENCES

DESCRIPTION OF COURSES
UNIVERSITY CALENDAR

SUMMER SESSIONS 1971

First Session
(Classes meet Monday-Friday)

May 17 .. Registration
May 18 .. Classes begin
June 23, 24 Examinations

Second Session
(Classes meet Monday-Friday except as indicated)

June 28 .. Orientation, new students
June 29 .. Registration
June 30 .. Classes begin
July 31 .. Classes meet
August 4, 5 Examinations
August 7 .. Graduation

SESSION 1971-72

First Semester

August 16, 17 Orientation, new students
August 18 Registration, all students
August 19 Late registration
August 20 Late registration fee applies
August 20 Classes begin, regular schedule
August 26 Last day for registration
August 26 Last day to add a subject
September 2 Last day to order diploma for mid-year graduation
September 16 Last day to drop a subject without record of drop
October 11 Preliminary reports due
November 10 Last day to withdraw without having grades recorded
November 10 Last day to drop a subject
November 24 Thanksgiving holidays begin after last class
November 29 Classes resume
December 6 Examinations begin
December 16 Mid-year graduation

Second Semester

January 3 Orientation, new students
January 4 Registration, all students
January 5 Late registration
January 6 Late registration fee applies
January 6 Classes begin, regular schedule
January 12 Last day for registration
January 19 Last day to add a subject
January 19 Last day to order diploma for May graduation
February 2 Last day to drop a subject without record of drop
February 28 Preliminary reports due

[4]
March 10 Spring holidays begin after last class
March 20 Classes resume
March 31 Last day to withdraw without having grades recorded
March 31 Last day to drop a subject
April 5 Honors and Awards Day—classes suspended at 12 noon
April 24 Examinations begin
May 5 Commencement

SUMMER SESSIONS 1972

First Session
(Classes meet Monday-Friday)

May 15 Registration
May 16 Classes begin
June 21, 22 Examinations

SESSION 1972-73

First Semester

August 21, 22 Orientation, new students
August 23 Registration, all students
August 24 Late registration
August 25 Late registration fee applies
August 25 Classes begin, regular schedule
August 31 Last day for registration
August 31 Last day to add a subject
September 7 Last day to order diploma for mid-year graduation
September 21 Last day to drop a subject
October 16 Preliminary reports due
November 15 Last day to withdraw without having grades recorded
November 22 Thanksgiving holidays begin after last class
November 27 Classes resume
December 11 Examinations begin
December 21 Mid-year graduation

Second Semester

January 8 Orientation, new students
January 9 Registration, all students
January 10 Late registration
January 11 Late registration fee applies
January 11 Classes begin, regular schedule
January 17 Last day for registration
January 17 Last day to add a subject
January 24 Last day to order diploma for May graduation
February 7 Last day to drop a subject without record of drop
March 5 Preliminary reports due
March 16 Spring holidays begin after last class
March 26 Classes resume
April 6 Last day to withdraw without having grades recorded
April 6 ... Last day to drop a subject
April 11 .. Honors and Awards Day—classes suspended at 12 noon
April 30 .. Examinations begin
May 11 ... Commencement

SUMMER SESSIONS 1973

First Session
(Classes meet Monday-Friday)

May 21 .. Registration
May 22 .. Classes begin
June 27, 28 Examinations

Second Session
(Classes meet Monday-Friday except as indicated)

July 2 ... Orientation, new students
July 3 ... Registration
July 4 ... Classes begin
August 4 Classes meet
August 8, 9 Examinations
August 11 Graduation
PART I

PERSONNEL
PART I—Personnel

BOARD OF TRUSTEES

LIFE MEMBERS

Edgar A. Brown, President of the Board.................. Barnwell
James F. Byrnes.. Columbia
Winchester Smith.. Williston
Robert R. Coker.. Hartsville
James C. Self... Greenwood
Frank J. Jervey.. Clemson
Patrick N. Calhoun.. Charlotte, N. C.

TERM EXPIRES 1974

A. M. Quattlebaum... Florence
L. D. Holmes.. Johnston
E. Oswald Lightsey... Hampton

TERM EXPIRES 1976

Paul Quattlebaum, Jr..................................... Charleston
W. Gordon McCabe, Jr.................................... Greenville
T. Kenneth Cribb... Spartanburg

A. W. Rigsby, Secretary.................................. Clemson

BOARD OF VISITORS

1971

Philip H. Prince... Spartanburg
(Hold-Over Member)
William Cain... Darlington
Henry C. Chambers... Beaufort
B. R. Littlejohn, Jr... Spartanburg
James D. McNair... Aiken
James R. Morrow... Greenville
Robert I. Newman.. Barnwell
Albert D. Oliphant... Chester
R. T. Phelps, Jr.. Greenwood
Robert R. Russell, Jr...................................... Columbia
John M. Spratt... York
Sidney W. Stubbs, Jr....................................... Charleston
Horace L. Tilghman, Jr.................................... Marion
EXECUTIVE OFFICERS
Robert Cook Edwards, B.S., LL.D. President
Victor Hurst, Ph.D. Vice President for Academic Affairs
and Dean of the University
Melford A. Wilson, B.S. in Commerce Vice President for Business and
Finance and Comptroller
Stanley Cosanko Nicholas, B.S. in M.E. ... Vice President for Development
Allen Wood Rigsby, M.A., J.D. Vice President for Executive Affairs
and University Counsel
Walter Thompson Cox, B.S. Vice President for Student Affairs
and Dean of Students

ADMINISTRATIVE OFFICERS AND STAFF

PRESIDENT’S OFFICE
Robert Cook Edwards, B.S., LL.D. President
Allen Wood Rigsby, M.A., J.D. Vice President for Executive Affairs
and University Counsel
Dorothy L. Abbott, A.B. Secretary to the President

ACADEMIC ADMINISTRATION
Victor Hurst, Ph.D. Vice President for Academic Affairs
and Dean of the University
Claud Bethune Green, Ph.D. Dean of Undergraduate Studies
Arnold Edward Schwartz, Ph.D. Dean of Graduate Studies and
University Research
Samuel Marsh Willis, Ph.D. Dean of University Extension

COLLEGE OF AGRICULTURAL SCIENCES
William Henry Wiley, Ph.D. Dean, College of Agricultural Sciences
Olen Branford Garrison, Ph.D., Director of Agricultural Experiment Station,
Director of Research in Agriculture
James Edwin Halpin, Ph.D. Associate Director of
Agricultural Experiment Station
Jess Willard Jones, Ph.D. Director of Resident Instruction
and Assistant to the Dean
William Joseph Lanham, Ph.D. Head, Department of Agricultural
Economics and Rural Sociology
Earl Thomas Carpenter, Ed.D. Head, Department of Agricultural
Education*
Absalom West Snell, Ph.D., Head, Department of Agricultural Engineering†
Luther Perdee Anderson, Ph.D., Head, Department of Agronomy and Soils
Richard Ferman Wheeler, Ph.D. Head, Department of Animal Science
William Monroe Effs, Ph.D. Head, Department of Plant Pathology
and Physiology
Willis Alonzo King, Ph.D. Head, Department of Dairy Science
Sidney Brooks Hays, Ph.D. Head, Department of Entomology
and Economic Zoology
Woodie Prentiss Williams, Ph.D. Head, Department of Food Science
Taze Leonard Senn, Ph.D. Head, Department of Horticulture
Bobby Dale Barnett, Ph.D. Head, Department of Poultry Science

* Agricultural Education curriculum is jointly administered by the College of Agricultural
Sciences and the College of Education.
† Agricultural Engineering curriculum is jointly administered by the College of Agri-
cultural Sciences and the College of Engineering.
COLLEGE OF ARCHITECTURE
HARLAN EWART McCLURE, M.Arch., F.A.I.A. ... Dean, College of Architecture
JAMES E. DALTON, M.Arch. ... Assistant to the Dean, College of Architecture
GAYLAND B. WITHERSPOON, M.Arch. ... Head, Department of Architectural Studies
RALPH E. KNOWLAND, M.B.A. ... Head, Department of Building Science
THOMAS EPSHIRE McPEAK, M.F.A. ... Head, Department of History and Visual Studies
EDWARD L. FALK, M.R.P. ... Acting Head, Department of Planning Studies

COLLEGE OF EDUCATION
HAROLD FOCHONE LANDRITH, Ed.D. ... Dean, College of Education
ELMER NEWTON TYNDALL, M.B.A., Colonel, United States Air Force—
 Head, Department of Aerospace Studies
EARL THOMAS CARPENTER, Ed.D. ... Head, Department of Agricultural Education
MORRIS AUDREY KING, Ed.D. ... Head, Department of Elementary and Secondary Education
ALFRED FRANKLIN NEWTON, Ed.D., Head, Department of Industrial Education
GEORGE KAMEIL MAERTENS, B.S., Colonel, United States Army—
 Head, Department of Military Science
MYRTON ALFRED PACKER, Ed.D. ... Coordinator, Office of Educational Services
ARTHUR KENNETH JENSEN,* Ph.D. ... Director, Vocational Education Media Center

COLLEGE OF ENGINEERING
LINVIL GENE RICH, Ph.D. ... Dean, College of Engineering
LYLE CHESTER WILCOX, Ph.D. ... Associate Dean for Professional Studies
SAMUEL F. HULBERT, Ph.D. ... Associate Dean for Engineering Research and Interdisciplinary Studies
JAMES LEON EDWARDS, M.S. ... Assistant to the Dean, College of Engineering
ROBERT ALLEN BANISTER, M.S. ... Coordinator, Office of Industrial and Municipal Relations
ABSALEM WEST SNELL, Ph.D., Head, Department of Agricultural Engineering
GILBERT CHASE ROBINSON, Sc.D. ... Head, Department of Ceramic Engineering
CHARLES EDWARD LITTLEJOHN, Ph.D. ... Head, Department of Chemical Engineering
HERBERT WILLIAM BUSCHING, Ph.D. ... Head, Department of Civil Engineering
LYLE CHESTER WILCOX, Ph.D. ... Acting Head, Department of Electrical and Computer Engineering
ROBERT WARDLAW MOORMAN, Ph.D. ... Head, Department of Engineering Mechanics
EVERETT LATTALA, M.E. ... Head, Department of Engineering Services
JOHN F. ANDREWS, Ph.D. ... Head, Department of Environmental Systems Engineering
JARRETT CHARLES HESTER, Ph.D. ... Head, Department of Mechanical Engineering
SAMUEL F. HULBERT, Ph.D., Acting Head, Division of Interdisciplinary Studies

COLLEGE OF FOREST AND RECREATION RESOURCES
WILLIAM HENRY DAVIS McGRUGOR, Ph.D. ... Dean, College of Forest and Recreation Resources
HERBERT BRANTLEY, Ph.D. ... Associate Dean, College of Forest and Recreation Resources;
 Head, Department of Recreation and Park Administration
ROBERT MAX ALLEN, Ph.D. ... Head, Department of Forestry

* On leave.
† Agricultural Education curriculum is jointly administered by the College of Agricultural Sciences and the College of Education.
‡ Agricultural Engineering curriculum is jointly administered by the College of Agricultural Sciences and the College of Engineering.
ACADEMIC ADMINISTRATION

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

WALLACE DABNEY TREVILLIAN, Ph.D. Dean, College of
Industrial Management and Textile Science

THOMAS DANIEL EFLAND, M.S. Associate Dean, Director of Research
FRANCIS ALAN CLOSE, Ph.D. Head, Department of Economics
CLINTON HOWARD WHITEHURST, Jr., Ph.D. Head, Department of Industrial Management

JOHN LAUREN LUNDBERG, Ph.D. Head, Department of Textiles
WILLIAM C. LAFFODAY, M.S. Director, Professional Development

HAROLD BETTS WILSON, B.S. Field Representative

COLLEGE OF LIBERAL ARTS

HEADLEY MORRIS COX, Ph.D. Dean, College of Liberty Arts
MARVIN ALPHEUS OWINGS, Ph.D. Head, Department of English
HARRY EUGENE STEWART, Ph.D. Head, Department of Languages
JOHN HARRISON BUTLER, Ed.D. Head, Department of Music

ROBERT STANSBURY LAMBERT, Ph.D. Head, Department of Social Sciences

COLLEGE OF NURSING

GERALDINE LABECKI, Ed.D. Dean, College of Nursing
LEON ROSWAL, M.A. Director, Associate Degree Program

COLLEGE OF PHYSICAL, MATHEMATICAL AND BIOLOGICAL SCIENCES

HENRY ELLIOTT VOGEL, Ph.D. Dean, College of Physical, Mathematical, and Biological Sciences

RUFUS KENT GUTHRIE, Ph.D. Associate Dean, College of Physical, Mathematical, and Biological Sciences

JESSUP MACLEAN SHIVELY, Ph.D. Head, Department of Biochemistry
CLYDE JEFFERSON UMPHELETT, Ph.D. Head, Department of Botany

HAROLD CARTH SPENCER, Ph.D. Head, Department of Chemistry and Geology

JOHN WILLIS KENELLY, Ph.D. Head, Department of Mathematical Sciences

MALCOLM JAMES BENJAMIN PAYNES, Ph.D. Head, Department of Microbiology

EPHRAIM POSEY STILLWELL, Jr., Ph.D. Head, Department of Physics

RUFUS KENT GUTHRIE, Ph.D. Acting Head, Department of Zoology

GRADUATE SCHOOL AND UNIVERSITY RESEARCH

ARNOLD EDWARD SCHWARTZ, Ph.D. Dean of Graduate Studies and University Research

ROBERT WALTER HENNINGSON, Ph.D. Assistant Dean of University Research

DIRECTOR OF THE LIBRARY

JOHN WALLACE GORDON GOURLAY, A.M.L.S. Director of the Library

EDUCATIONAL COUNCIL

TEACHING AND RESEARCH FACULTIES

ROBERT COOK EDWARDS
President
B.S., Clemson University; LL.D., The Citadel; LL.D., Wofford College

VICTOR HURST
Vice President for Academic Affairs and Dean of the University
Professor of Dairy Science
B.S., 1938, M.S., 1940, Rutgers University; Ph.D., University of Missouri, 1948

MAIN CAMPUS

ABERNATHY, ATWELL RAY, Associate Professor of Environmental Systems Engineering.

ACKERMAN, CARL WILLIS, Associate Professor of Animal Science.
B.S., 1953, M.S., 1960, Clemson University.

ACORN, JOHN THOMSON, Associate Professor of History and Visual Studies.

ACTON, JAMES CROCKETT, Assistant Professor of Food Science.
B.S., 1965, Ph.D., 1970, University of Georgia.

ADAIR, JOSEPH HENRY, Visiting Instructor in Education.

ADAMS, HOWITT DAYNE, Assistant Professor of History.
B.S., United States Naval Academy, 1937; M.A., Claremont Graduate School, 1964.

ADDITION, CLARENCE L. B., Instructor of Building Science.
B.Arch., Howard University, 1959.

ADKINS, THEODORE ROOSEVELT, JR., Professor of Entomology and Economic Zoology.

AKAS, NURI, Assistant Professor of Civil Engineering.

ALAM, KURSHEDD, Associate Professor of Mathematical Sciences.
B.S., 1941, M.S., 1943, Patna Science College; Ph.D., University of Minnesota, 1963.

ALBERT, HAROLD EDWARD, Assistant Professor of Political Science.
B.S., Madison College, 1957; B.D., United Theological Seminary, 1960; M.A.T., Miami University (Ohio), 1960.

ALBRECHT, JOHN ERNEST, Assistant Professor of Animal Science.

ALLEN, LEONARD RAY, Associate Professor of Agronomy and Soils.
B.S., Clemson University, 1952; M.S., 1962, Ph.D., 1965, Auburn University.

ALLEN, JOE FRANK, Associate Professor of Chemistry.
A.B., Berry College, 1955; M.S., University of Mississippi, 1959; Ph.D., Georgia Institute of Technology, 1963.

ALLEN, ROBERT MAX, Head of Forestry Department; Professor of Forestry.
B.S., 1947, M.S., 1951, Iowa State University; Ph.D., Duke University, 1958.

ALLEY, FORREST CHRISTOPHER, Professor of Chemical Engineering.
B.S., 1951, M.S., 1956, Auburn University; Ph.D., University of North Carolina, 1963.

ALPHIN, JOHN GILBERT, Associate Professor of Agricultural Engineering.

AMOSS, DONALD CURTIS, Assistant Professor of Electrical and Computer Engineering.

ANDERSON, GRANT WILLIAM, Associate Professor of Zoology.
B.S., D.V.M., Iowa State University, 1932; M.S., Virginia Polytechnic Institute, 1934.
Anderson, Luther Perdee, Head of Agronomy and Soils Department; Professor of Agronomy and Soils.
B.S., 1949, M.S., 1962, Clemson University; Ph.D., University of Georgia, 1968.

Andrews, John F., Head of Department of Environmental Systems Engineering; Professor of Environmental Systems Engineering.
B.S.C.E., 1951, M.S., 1953, University of Arkansas; Ph.D., University of California, 1964; P.E.

Arbena, Joseph Luther, Assistant Professor of History.
A.B., George Washington University, 1961; Ph.D., University of Virginia, 1970.

Arnold, Edwin Pratte, Instructor in German.
A.B., University of South Carolina, 1958; M.A., Kent State University, 1968.

Ashworth, Ralph Pace, Professor of Botany.
B.S., Wake Forest University, 1939; M.A., 1945, Ph.D., 1960, University of North Carolina.

Aucoin, Claire Russell, Assistant Professor of Mathematical Sciences.
A.B., Shorter College, 1951; M.S., Auburn University, 1954.

Aucoin, Clayton Verl, Professor of Mathematical Sciences.
B.A., Louisiana College, 1951; M.S., 1953, Ph.D., 1956, Auburn University; Post Doctorate, Stanford University, 1960-61.

Austin, John Henry, Professor of Environmental Systems Engineering.
B.C.E., Syracuse University, 1951; S.M., Massachusetts Institute of Technology, 1953; Ph.D., University of California, 1963; P.E.

Austin, Marilyn Ansevin, Instructor in Psychology.
B.A., Muskingum College, 1955; M.S.W., University of Illinois, 1968.

Bachop, William Earl, Assistant Professor of Zoology.
A.B., Western Reserve University, 1950; M.S., 1958, Ph.D., 1963, Ohio State University; Post Doctorate, University of Washington, 1965-69.

Bacon, John Roger, Assistant Professor of Chemistry.
B.S., Kansas State University, 1964; M.S., 1967, Ph.D., 1968, University of Iowa.

Bailey, Roy Horton, Jr., Associate Professor of Chemistry.
B.S., 1948, Ph.D., 1958, University of North Carolina.

Baker, George Homer, State Leader, 4-H and Youth Development Programs; Assistant Professor of Agronomy and Soils.
B.S., Clemson University, 1950.

Ball, Walter Lee, Associate Professor of Electrical and Computer Engineering.
B.E.E., 1949, M.E.E., 1955, Clemson University; P.E.

Banister, Robert Allen, Associate Professor of Engineering Graphics; Coordinator, Office of Industrial and Municipal Relations.
B.S., Clemson University, 1939; M.S., Bradley University, 1949.

Barfield, Rayford Elliott, Jr., Assistant Professor of English.
A.B., LaGrange College, 1961; M.A., University of Georgia, 1963; Ph.D., University of Tennessee, 1969.

Barker, Robert Earle, Instructor in Recreation and Park Administration.
B.S., Clemson University, 1970; M.S., Pennsylvania State University, 1971.

Barker, Robert H., Associate Professor of Textiles and Chemistry.
B.S., Clemson University, 1959; Ph.D., University of North Carolina, 1963.

Barker, William Jefferson, Associate Professor of Forestry.
B.S., North Carolina State University, 1934.

Barlage, William Berdell, Jr., Professor of Chemical Engineering.
B.S., Lehigh University, 1954; M.Ch.E., University of Virginia, 1955; Ph.D., North Carolina State University, 1960.

Barnes, William Carroll, Professor of Horticulture, Truck Experiment Station.
B.S., Clemson University, 1931; Ph.D., Cornell University, 1935.

Barnett, Andy Hubbard, Instructor in Economics.

Barnett, Bobby Dale, Head of Poultry Science Department; Professor of Poultry Science.
B.S., 1950, M.S., 1954, University of Arkansas; Ph.D., University of Wisconsin, 1957.

Barnett, Ortus Webb, Assistant Professor of Plant Pathology and Physiology.
14 Teaching and Research Faculties

BARNHILL, JAMES WALLACE, Assistant Professor of History.

BARON, WILLIAM, Associate Professor of Civil Engineering.
B.S.C.E., The College of the City of New York, 1960; M.S.C.E., 1963, Ph.D., 1966, Purdue University; P.E.

BARRON, RHEDA W., Assistant Professor of Accounting.

BARTMILL, CLYDE LEWIS, Associate Professor of Agricultural Engineering.
B.S., University of Illinois, 1955; M.S., 1961, Ph.D., 1971, University of Wisconsin.

BARTMESS, EUGENIE VENTRE, Instructor in Mathematical Sciences.
B.S., 1945, M.S., 1949, Louisiana State University.

BARTON, ROBERT FREERS, Assistant Professor of Speech.

BAUKNIGHT, LEHMAN M., Jr., Professor of Agricultural Economics and Rural Sociology.
B.S., 1935, M.S., 1949, Clemson University.

BAULD, NELSON ROBERT, JR., Professor of Engineering Mechanics.
B.S.M.E., 1958, M.S., 1960, West Virginia University; Ph.D., University of Illinois, 1963; P.E.

BAUMGARDNER, REGINALD ANDREW, Associate Professor of Horticulture.
B.S., Clemson University, 1957; M.S., 1960, Ph.D., 1962, University of Maryland.

BAKER, ANN WEBSTER, Associate Professor of Microbiology.

BAKER, LUTHER WILLS, Professor of Plant Pathology and Physiology.

BEARD, JOHN NELSON, JR., Assistant Professor of Chemical Engineering.
B.S., University of South Carolina, 1958; M.S., 1970, Ph.D., 1971, Louisiana State University.

BEASEY, LYNN WALTER, Instructor in Agricultural Economics and Rural Sociology.
B.S., Louisiana Tech, 1968; M.S., Louisiana State University, 1970.

BECKWITH, WILLIAM FREDERICK, Associate Professor of Chemical Engineering.

BEER, BETTINA KNUST, Instructor in History.
B.A., St. Lawrence University, 1963; M.A., Vanderbilt University, 1966.

BEER, JOACHIM RUDOLPH, Instructor in History.

BELL, MARSHALL CORNETT, Associate Professor of Mathematical Sciences.
A.B., 1933, M.A., 1936, University of North Carolina.

BENSON, ROBERT TIDD, Assistant Professor of Vocational Education.

BENTON, DON ALWIN, Assistant Professor of Agronomy and Soils.
B.S., Clemson University, 1941.

BERRY, ELIZABETH BRUNSON, Associate District Extension Leader; Assistant Professor of Home Economics.
B.S., Winthrop College, 1944.

BETTICH, HEINRICH ROBERT, Instructor in English.
B.A., Florida Atlantic University, 1969; M.S., University of North Carolina, 1971.

BEYERLEIN, ADOLPH LOUIS, Assistant Professor of Chemistry.
B.S., Fort Hays Kansas State College, 1960; Ph.D., University of Kansas, 1966.

BHATTIA, KUMAR GOBINDRAM, Instructor in Civil Engineering.
B.Sc., Birla Institute of Technology, 1963; M.M.E., University of Virginia, 1965.

BIERER, BERT W., Laboratory Director and Professor of Poultry Science, Live-stock-Poultry Laboratory, Columbia.
V.M.D., University of Pennsylvania, 1934.

BIRKHEAD, PAUL KENNETH, Associate Professor of Geology.

BISHOP, CARL BARNES, Associate Professor of Chemistry.
B.S., Clemson University, 1954; Ph.D., Michigan State University, 1959.
BISHOP, MURIEL BOYD, Assistant Professor of Chemistry.
B.A., Huntingdon College, 1952; M.S., Emory University, 1955; Ph.D., Michigan State University, 1961.

BLACK, JOSEPH WILLIAM, Lecturer in Medical Technology; Co-director, School of Medical Technology, and Pathologist, Anderson Memorial Hospital.
B.S., University of Kentucky, 1955; M.D., Bowman Gray School of Medicine, 1959.

BLACKMON, CYRIL WELLS, Assistant Professor of Plant Pathology and Physiology, Edisto Experiment Station.
B.S., Virginia Polytechnic Institute, 1949; M.S., Trinity University, 1953; Ph.D., Texas A&M University, 1958; Post Doctorate, Yale University, 1958-59.

BLACKWELL, PAUL EUGENE, Assistant Professor of Military Science.
Captain, Infantry, United States Army; B.S., 1963, M.S., 1965, Clemson University.

BLANCHE, JERRY DON, * Assistant Professor of Speech.

BLANFORD, CLAUDIA MARIA, Instructor in Nursing, Baccalaureate Program.

BOATMAN, KENNETH WAYNE, Assistant Professor of Military Science.
Captain, Field Artillery, United States Army; B.S., Peru State College, 1966.

BOLAND, W. ROBERT, Assistant Professor of Mathematical Sciences.
B.S., Davidson College, 1959; M.A., College of William and Mary, 1963; Ph.D., University of Colorado, 1968.

Bolen, Claude Waldron, Professor of History.
A.B., Emory and Henry College, 1931; M.A., 1935, Ph.D., 1941, Duke University.

Bond, John Howard, Associate Professor of Microbiology.
B.S., 1948, M.S., 1949, Louisiana State University.

Bookmyer, Beverly Brandon, Associate Professor of Physics.

Boone, Merritt Anderson, Professor of Poultry Science.
B.S., University of Nebraska, 1941; M.S., Michigan State University, 1947; Ph.D., University of Georgia, 1962.

Borgman, Robert Frederic, Associate Professor of Food Science; Director of Environmental Health Training Program.
D.V.M., 1947, M.S., 1949, Michigan State University; Ph.D., Kansas State University, 1959.

Bosdell, Francis Alvin, Assistant Professor of Industrial Education.

Bose, Anil Kumar, Associate Professor of Mathematical Sciences.
B.S., 1948, M.S., 1956, Calcutta University; Ph.D., University of North Carolina, 1964.

Bost, William Vick, Instructor in English.

Bowen, William Clayton, Associate Professor of Agricultural Education.
B.S., Clemson University, 1932; M.S., Colorado State University, 1940.

Boyd, Virlyn Alexander, Associate Professor of Agricultural Economics and Rural Sociology.
B.S.A., Berry College, 1941; M.S.A., University of Kentucky, 1948.

Bradbury, Douglas Wilson, Alumni Professor of Mechanical Engineering.
B.M.E., Clemson University, 1940; M.S.E., University of Michigan, 1959; P.E.

Brandon, Craig Arnold, Associate Professor of Mechanical Engineering.
B.S.M.E., Duke University, 1959; M.S., Stanford University, 1960; Ph.D., University of Tennessee, 1968; P.E.

Brandt, Graydon William, Associate Professor of Dairy Science.
B.S., Ohio State University, 1936; M.S., University of Nebraska, 1938; Ph.D., Ohio State University, 1958.

Brannock, Durant York, Jr., Assistant Professor of French.

Brannon, Carroll Cleveland, Associate Professor of Dairy Science.
B.S., Clemson University, 1934.

Brantley, Herbert, Associate Dean, College of Forest and Recreation Resources; Head of Recreation and Park Administration Department; Professor of Recreation and Park Administration.

Brawley, Joel Vincent, Jr. * Associate Professor of Mathematical Sciences.

* On leave.
Bailey, Raymond Derwood, Visiting Associate Professor of Planning Studies.
A.B., 1950, M.A., 1955, University of California; A.I.P.

Briscoe, Ida Carolyn, Assistant Professor of Education.

Brock, Alton Carr, Assistant Professor of Aerospace Studies.

Brodie, Edmund D., Assistant Professor of Zoology.

Brunk, Burt V., Associate Professor of Physics.
B.S., Pennsylvania State University, 1956; Ph.D., Princeton University, 1965.

Brown, Farrell Blenn, Associate Professor of Chemistry.
B.S., Lenoir-Rhyne College, 1957; M.S., 1960, Ph.D., 1962, University of Tennessee; Post Doctorate, Texas A & M University, 1962-63.

Brown, Lamar Hamilton, Associate Professor of Building Science.
B.Arch., Auburn University, 1948.

Brown, Robert L., Adjunct Professor of Industrial Management.
A.B., Samford University, 1947; M.A., University of Alabama, 1951; Ph.D., Purdue University, 1957.

Brown, Ralph Truman, Jr., Instructor in Agricultural Economics and Rural Sociology.

Brown, Susan Henrietta, Associate Professor of Industrial Management.

Bruley, Duane Frederick, Professor of Chemical Engineering.
B.S., University of Wisconsin, 1956; M.S., Stanford University, 1959; Ph.D., University of Tennessee, 1963; P.E.

Bryant, Hallman Bell, Assistant Professor of English.
B.A., Emory University, 1959; M.A., University of North Carolina, 1962; Ph.D., Vanderbilt University, 1967.

Buckner, Sam Levi, Assistant Professor of Education.
B.S., East Tennessee State University, 1960; M.A., Appalachian State University, 1968; Ed.D., Auburn University, 1970.

B uncay, Henry Robert, III, Professor of Bioengineering.
B.Ch.E., Cornell University, 1949; Ph.D., Syracuse University, 1954; P.E.

Burkett, Byron Verner, Jr., Assistant Professor of Vocational Education.

Burt, Philip Barnes, Associate Professor of Physics.
A.B., 1956, M.S., 1958, Ph.D., 1961, University of Tennessee.

Burtner, Frank Alan, Professor of Sociology.
B.A., M.A., University of Texas, 1938; Ph.D., University of North Carolina, 1958.

Busching, Herbert William, Head of Civil Engineering Department; Associate Professor of Civil Engineering.

Butler, John Harrison, Head of Music Department; Associate Professor of Music; Director of Bands.

Byrd, Wilbert Preston, Experiment Station Statistician; Professor of Experimental Statistics; Chairman, Experimental Statistics and Statistical Services.
B.S., 1949, M.S., 1952, North Carolina State University; Ph.D., Iowa State University, 1955; Post Doctorate, Oregon State University, 1971.

Caffrey, Cletus Baird, Associate Professor of Psychology.

Caley, Paul Cochran, Assistant Professor of Industrial Education.

Calhoun, Richard James, Alumni Professor of English.

Calvez, Daniel Jean, Instructor in French.
License ès Lettres, Angers University, 1965.
CAMPER, NYAL DWIGHT, Associate Professor of Plant Pathology and Physiology.

CAPEL, WILLIAM CLYDE, JR., Assistant Professor of Sociology.
A.B., Washington and Lee University, 1932; M.A., Columbia University, 1933.

CARD, EDITH BRYSON, Instructor in Music.
A.B., Furman University, 1944; M.M.E., Florida State University, 1957.

CARMACK, VERONICA DELORIA, Assistant Professor of Home Economics.
B.S., University of Kentucky, 1965; M.S., University of Tennessee, 1969.

CARNER, GERALD ROY, Assistant Professor of Entomology and Economic Zoology.

CARPENTER, EARL THOMAS, Head of Agricultural Education Department; Professor of Agricultural Education.

CARPENTER, KENNETH EDSON, Associate Professor of Architecture.
B.Arch., University of Oklahoma, 1962; M.Arch., University of Minnesota, 1967; A.I.A.

CARPENTER, TERYLE WILDER, Lecturer in Education.

CARROLL, ADGER BOWMAN, State Leader Extension Community and Resource Development Programs; Professor of Agricultural Economics and Rural Sociology.
B.S., 1958, M.S., 1961, Clemson University; Ph.D., North Carolina State University, 1966.

CARTER, CLIFTON WALKER, Assistant Professor of Engineering Graphics.
B.S., Clemson University, 1933.

CARTER, SYDNEY, Professor of Planning Studies.
B.Arch., Syracuse University, 1942; M.C.P., Harvard University, 1948; A.I.P.

CASEY, CLAIRE OMAR, Associate Professor of English.
B.S., Appalachian State University, 1947; A.M., Duke University, 1948.

CASTRO, WALTER ERNEST, Associate Professor of Engineering Mechanics.
B.S., Indiana Institute of Technology, 1959; M.S., Clemson University, 1962; Ph.D., University of West Virginia, 1965; P.E.

CATHER, MELIA J., Assistant Professor of Nursing, Baccalaureate Program.
B.S., Miami University, 1952; M.A., University of Washington, 1962.

CATO, LEWIS FELTON, Assistant Professor of Animal Science.

CHAPLIN, ROBERT LEE, JR., Associate Professor of Physics.
B.S., Clemson University, 1948; M.S., 1953, Ph.D., 1962, North Carolina State University.

CHASIE, MARYLON BACHE, Lecturer in Nursing, Baccalaureate Program.
B.S.N., Vanderbilt University, 1966; M.S., Boston University, 1969.

CHISHAM, JAMES ALLEN, Associate Professor of Operations Research.
B.S., University of Akron, 1958; M.S., 1960, Ph.D., 1963, University of Iowa; P.E.

CHOLEWINSKI, FRANK MICHAEL, Professor of Mathematical Sciences.

CLARK, J. EDWIN, Associate Professor of Civil Engineering.
B.S.C.E., 1957, M.E., 1964, University of South Carolina; Ph.D., North Carolina State University, 1967; P.E.

CLARK, JACK LEWIS, Associate Professor of Building Science.

CLEMENT, JERRY MCNEILL, Assistant Professor of Architecture.
B.Arch, Georgia Institute of Technology, 1968; M.Arch., University of Illinois, 1969.

CLINKSCALES, WILLIAM CHERRY, State 4-H and Youth Development Coordinator; Instructor in Agricultural Education.
B.S., South Carolina State College, 1965.

CLOSE, FRANCIS A., Head of Economics Department; Assistant Professor of Economics.
B.S., Florida State University, 1961; M.S., Georgia Institute of Technology, 1965; Ph.D., Florida State University, 1968.

COFFEEN, WILLIAM W., Associate Professor of Ceramic Engineering.
B.S., 1935, M.S., 1937, University of Illinois; Ph.D., Rutgers University, 1969.
COHON, DANIEL FRED, Superintendent and Professor of Plant Pathology and Physiology, Edisto Experiment Station.
 B.S., University of Western Ontario, 1952; Ph.D., Rutgers University, 1956.

COKER, EDWARD CALEB, JR., Associate Professor of Mathematical Sciences.
 B.S., University of South Carolina, 1928; M.A., University of North Carolina, 1930.

COLE, SPURGEON NOTHERN, Associate Professor of Psychology.

COLLINS, THOMAS FRANK, Assistant Professor of Physics.
 A.B., Mercer University, 1956; M.S., Clemson University, 1958.

COOK, BRUCE FARRELL, Assistant Professor of Music; Assistant Director of Bands.

COOK, WILTON FIERCE, Instructor in Horticulture.
 B.S., Clemson University, 1962; M.S., University of Florida, 1964.

COOKE, FRANCIS WALTER, Associate Professor of Materials Engineering and Bioengineering.
 B.S., Notre Dame University, 1957; Ph.D., Rensselaer Polytechnic Institute, 1966.

COOL, BINGHAM MERCUR, Professor of Forestry.
 B.S., Louisiana State University, 1940; M.S., Iowa State University, 1941; Ph.D., Michigan State University, 1957.

COOLEDGE, HAROLD NORMAN, JR., Alumni Professor of History and Visual Studies.

COOPER, JAMES BRONAUGH, Associate Professor of Poultry Science.
 B.S., 1935, M.S., 1938, University of Kentucky.

COPELAND, JIMMY BRYANT, Associate Director of Cooperative Extension Service; Professor of Agricultural Economics and Rural Sociology.
 B.S.A., University of Georgia, 1948; M.S., Clemson University, 1958; Ph.D., University of Wisconsin, 1966.

COPENHAVEN, JAMES KELLY, Acting Assistant Director of Bands; Acting Instructor in Music.

COUCH, JAMES HOUSTON, Associate Professor of Industrial Engineering.
 B.S., 1941, M.S., 1954, Clemson University.

COULTER, EDWIN MARTIN, Assistant Professor of Political Science.
 B.A., Furman University, 1962; Ph.D., University of Virginia, 1965.

COVER, ALAN SEYMOUR, Associate Professor of Mathematical Sciences.

COX, EUGENE CARY, Lecturer in Medical Technology; Co-director, School of Medical Technology, Greenville General Hospital.
 B.S., Furman University, 1954; M.D., Medical University of South Carolina, 1958.

COX, HEADLEY MORRIS, Dean, College of Liberal Arts; Professor of English.

COXE, EDWIN F., Associate Professor of Mechanical Engineering.
 B.S.M.E., University of South Carolina, 1950; M.S.M.E., Drexel Institute of Technology, 1959; Ph.D., University of South Carolina, 1967; P.E.

CRADDOCK, GARNET ROY, Professor of Agronomy and Soils.
 B.S., Virginia Polytechnic Institute, 1952; Ph.D., University of Wisconsin, 1955.

CRAIG, JAMES TELFORD, Associate Professor of Agricultural Engineering.
 B.S., Clemson University, 1951; M.S., University of Georgia, 1960.

CRAIG, KIRK ROBINS, Lecturer in Architecture.
 B.S., Clemson University, 1951; B.Arch., Cornell University, 1954; M.Arch., Harvard University, 1957; A.I.A.

CRAVEN, RUBY MAE, State Leader, Extension Home Economics Programs; Professor of Home Economics.
 B.S., Winthrop College, 1934; M.S., University of Tennessee, 1949; Ph.D., University of Wisconsin, 1963.

CROSS, JOAN TILTON, Instructor in English.

* On leave.
Cross, Robert Lyman, Assistant Professor of English.

Crouch, James Page, Associate Professor of Industrial Education.

Cunningham, Bennie Lee, State Leader, Extension Special Programs;
Associate Professor of Agricultural Education.
B.S., 1948, M.S., 1957, South Carolina State College.

Currin, Robert Eugene, III, Assistant Professor of Agronomy and Soils.
B.S., North Carolina State University, 1949; M.S., Clemson University, 1964.

Dalton, James, Assistant to the Dean, College of Architecture; Assistant Professor of Architecture.

Davenport, John Douglas, Associate Professor of Psychology.
B.S., Clemson University, 1943; M.A., Furman University, 1958; Ph.D., University of Maryland, 1967.

Davis, Cecil Cook, Professor of Industrial Management.

Davis, Rose Jones, Assistant Professor of Home Economics.

Davis, Ruby Sellers, Assistant Professor of History.
A.B., 1946, M.A., 1947, University of Georgia.

Dean, Jordan Arthur, Associate Professor of Modern Languages.
A.B., Wofford College, 1933; M.A., Vanderbilt University, 1934.

DeHaven, Ralph Kenneth, Assistant Professor of Agricultural Economics and Rural Sociology.
B.S., Southwest Missouri State College, 1964; M.S., 1966, Ph.D., 1969, University of Missouri.

Dickey, Joseph Freeman, Associate Professor of Dairy Science.

Dillman, Buddy L., Associate Professor of Agricultural Economics and Rural Sociology.
B.S., 1959, M.S., 1961, University of Arkansas; Ph.D., North Carolina State University, 1967.

Dillon, Charles Ronald, Assistant Professor of Botany.

Dixon, Marvin Warren, Assistant Professor of Mechanical Engineering.
B.S., 1964, M.S., 1965, Louisiana State University; Ph.D., Northwestern University, 1971.

Douglass, Thomas Ernest, Assistant Professor of English.

Dowler, William Minor, Plant Pathologist (USDA); Lecturer in Plant Pathology and Physiology.
B.S., 1954, M.S., 1958, University of Missouri; Ph.D., University of Illinois, 1961.

Drake, Thomas Lynn, Associate Professor of Electrical and Computer Engineering.

Dreskin, Erving Arthur, Lecturer in Medical Technology; Co-director, School of Medical Technology, Greenville General Hospital.
B.S., 1940, M.D., 1943, Tulane University.

Dudley, Sid Cameron, Assistant Professor of Industrial Management.
B.A., Mississippi State University, 1959; M.B.A., University of Arkansas, 1970.

Dunkle, Bernard Edward, Associate Professor of Engineering Graphics.
B.S., United States Naval Academy, 1935; M.S., Texas A&M University, 1956.

Dunkle, Sue King, Assistant Professor of Mathematical Sciences.
B.A., University of Southwestern Louisiana, 1934; M.A., University of Texas, 1936.

Durant, John Alexander, III, Assistant Professor of Entomology and Economic Zoology, Pee Dee Experiment Station.
B.S., 1961, M.S., 1963, Clemson University; Ph.D., Auburn University, 1966.

Dunham, Bill Gravely, Assistant Professor of Spanish.

Dusenberry, James S., Jr., Adjunct Professor of Bioengineering.
B.S., Erskine College, 1960; M.D., 1964, Radiologist Residency, 1968, Medical University of South Carolina.
EITTEL, Michael J., Associate Professor of Materials and Biomedical Engineering.
B.S., University of Tennessee, 1950; Ph.D., University of Illinois, 1954.

EL-BEHERY, Hassan, Associate Professor of Textile Science.

ELLING, Rudolf Ernest, Associate Professor of Civil Engineering and Engineering Mechanics.
B.S., Michigan State University, 1950; M.S., University of Illinois, 1952; Ph.D., Stanford University, 1967.

ELLIS, Orson Leo, Jr., Assistant Professor of Military Science.
Major, Armor, United States Army; B.S., University of Southern Mississippi, 1958.

ELROD, Alvon Creighton, Associate Professor of Mechanical Engineering.
B.M.E., 1949, M.M.E., 1951, Clemson University; Ph.D., Purdue University, 1959; P.E.

ENGLAND, Robert Durant, Associate Professor of History and Visual Studies.
B.A., University of Virginia, 1928; M.A., Oglethorpe University, 1934.

EPPS, William Monroe, Head of Plant Pathology and Physiology Department; Professor of Plant Pathology and Physiology; State Plant Pathologist.
B.S., Clemson University, 1937; Ph.D., Cornell University, 1942.

ESKEW, Elias Benton, Associate Professor of Agronomy and Soils.
B.S., Clemson University, 1943; M.S., Ohio State University, 1951.

EZELL, Danny Odell, Associate Professor of Horticulture.

FAIN, Charles Clifford, Associate Professor of Ceramic Engineering.

FAIRBROTHER, Elwood Lovell, Jr., Assistant Professor of Military Science.
Major, Armor, United States Army; B.S., Norwich University, 1960.

FAIREY, John Edward, III, Assistant Professor of Botany.
B.S., University of South Carolina, 1962; M.S., University of West Virginia, 1964.

FALK, Edward L., Acting Head of Planning Studies Department; Professor of Planning Studies.

FANNING, James Collier, Professor of Chemistry.
B.S., The Citadel, 1953; M.S., 1956, Ph.D., 1960, Georgia Institute of Technology; Post Doctorate, Tulane University, 1960-61.

FEAR, Arthur J., Associate Professor of Speech.
A.B., DePauw University, 1935; M.A., State University of Iowa, 1939; Ph.D., University of Southern California, 1966.
FEARRINGTON, DORIS BOULWARE, Assistant Professor of Home Economics.
B.S., Winthrop College, 1947; M.S., Simmons College and Harvard School of Public Health, 1952.

FELDER, HERMAN McDONALD, Jr., Associate Professor of English.
A.B., Wofford College, 1930; M.A., Vanderbilt University, 1937.

FENNELL, ROBERT EMMETT, Assistant Professor of Mathematical Sciences.
B.A., Bradley University, 1964; M.S., 1966, Ph.D., 1969, University of Iowa.

FERNANDEZ, ELENA GONZALES, Lecturer in Spanish.
A.B., Instituto de la Habana, 1942.

FERNANDEZ, GASTON JUAN, Associate Professor of Spanish.
B.L.S., Instituto de Segunda Enseñanza de Remedios; LL.D., University of Havana, 1942; M.A., University of North Carolina, 1967.

FERREE, ROY JAMES, Associate Professor of Horticulture.
B.S., Clemson University, 1939; M.S., Rutgers University, 1941.

FITCH, LEWIS T., Associate Professor of Electrical and Computer Engineering.
B.S.E.E., Duke University, 1954; M.S., North Carolina State University, 1960; Ph.D., Ohio State University, 1969.

FLATT, JAMES LEVERN, Associate Professor of Mathematical Sciences.

FLEISHMAN, HELEN MARIE, Instructor in Sociology.
B.S., 1951, M.S., 1955, University of Utah.

FLEMING, HORACE WELDON, Jr., Instructor in Political Science.

FOWLER, WILLIAM RANDALL, Jr., Assistant Professor of Psychology.
B.A., Emory University, 1960; Ph.D., Duke University, 1965.

FOX, RICHARD CHARLES, Professor of Entomology and Economic Zoology.

FRAKER, JOHN RICHARD, Instructor in Operations Research.
B.S., 1956, M.S., 1965, University of Tennessee; Ph.D., Clemson University, 1971.

FREEMAN, DONALD K., Jr., Lecturer in Nursing and in Psychology.

FREEMAN, EDWIN ARMISTEAD, Assistant Professor of Music.
B.S., Clemson University, 1949; B.Mus., Louisiana State University, 1954; M.A., Columbia University, 1968.

FREEMAN, PATRICIA GAIL, Instructor in Education.

FREEZE, CHESTER RICHARD, Professor of Education.

FRYE, REVIS MILLER, Assistant Professor of Recreation and Park Administration.
B.S., Western Carolina University, 1942; M.A., Columbia University, 1947.

FULMER, JOHN PATRICK, Assistant Professor of Horticulture.
B.S., 1953, M.S., 1955, Clemson University.

FULMER, LOUISE GRAY, Instructor in Mathematical Sciences.
A.B., Winthrop College, 1937.

FULTON, JOHN DAVID, Associate Professor of Mathematical Sciences.

FUNCHESS, WILLIAM HERBERT, District Extension Leader; Associate Professor of Agronomy and Soils.
B.S., 1948, M.S., 1960, Clemson University.

GAHAN, LAWRENCE WILLARD, Assistant Professor of Recreation and Park Administration.

GALLOWAY, ELIZABETH BOYCE, Assistant Professor of Education.

GANIM, VIRGINIA LYNN, Instructor in English.

GARNER, THOMAS HAROLD, Professor of Agricultural Engineering.
B.S., 1952, M.S., 1956, Ph.D., 1964, North Carolina State University; P.E.

GARRISON, OLEN BRANFORD, Director of Agricultural Experiment Station; Director of Research in Agriculture; Professor of Horticulture.
B.S., Clemson University, 1933; M.S., Louisiana State University, 1934; Ph.D., Cornell University, 1939.
Gauthreaux, Sidney Anthony, Jr., Assistant Professor of Zoology.
B.S., 1963; M.S., 1965; Ph.D., 1968, Louisiana State University; Post Doctorate, University of Georgia, 1968-70.

Geldard, John Francis, Associate Professor of Chemistry.
B.Sc., 1938; M.Sc., 1959; Ph.D., 1964, University of Sydney; Post Doctorate, University of Illinois, 1963-65.

Gerster, Giuseppe Alexander, Visiting Associate Professor of Architecture.
Dipl.-Arch., Eidgenossische Technische Hochschule, Zurich, 1962.

Gettys, William Edward, Associate Professor of Physics.
B.S., 1960; M.S., 1961, Clemson University; Ph.D., Ohio University, 1964.

Gilchrist, Ralph Wayne, Professor of Electrical and Computer Engineering.
B.S., Tri-State College, 1947; M.S., University of Michigan, 1951; Ph.D., Michigan State University, 1960; P. E.

Giles, Jerry Wayne, Assistant Professor of Aerospace Studies.
Captain, United States Air Force; B.S., Troy State University, 1961; M.A.T., Middle Tennessee State University, 1970.

Gilliland, Bobby Eugene, Associate Professor of Electrical and Computer Engineering.
B.S., Louisiana Polytechnic Institute, 1958; M.S., 1964, Ph.D., 1967, University of Arkansas; P. E.

Gilreath, John Atkins, Assistant Professor of Physics.
B.S., 1958, M.S., 1960, Clemson University.

Ging, John Leonard, Associate Professor of Physics.
B.A., Alfred University, 1953; M.S., Carnegie Institute of Technology, 1955; Ph.D., University of North Carolina, 1960.

Godbout, Rose A., Associate Professor of Nursing, Baccalaureate Program.
B.S., George Peabody College for Teachers, 1946; M.P.H., University of Minnesota, 1949.

Godfrey, Charles Everett, Jr., Lecturer in Recreation and Park Administration.

Godley, Willie Cecil, Professor of Animal Science.
B.S., Clemson University, 1943; M.S., 1949, Ph.D., 1955, North Carolina State University.

Goebel, Norbert Bernard, Associate Professor of Forestry.
B.Sc., Colorado A&M College, 1940; M.F., Duke University, 1946.

Golden, Willie Iverson, State Leader, Extension Agricultural Programs; Professor of Agricultural Economics and Rural Sociology.
B.S., 1958, M.S., 1959, University of Georgia; Ph.D., Texas A&M University, 1966.

Goodin, Curtis Paul, Associate Professor of Electrical and Computer Engineering.
B.S., University of Kentucky, 1948; M.S., Georgia Institute of Technology, 1957.

Goree, James Cleason, Associate Professor of Engineering Mechanics.

Gossett, Billy Joe, Associate Professor of Agronomy and Soils.
B.S., University of Tennessee, 1957; M.S., 1959, Ph.D., 1962, University of Illinois.

Cowdy, John Norman, Assistant Professor of Electrical and Computer Engineering.
B.S., Massachusetts Institute of Technology, 1967; M.S., 1968, Ph.D., 1971, University of Missouri at Columbia.

Grabem, Henry Willingham, Professor of Physics.
B.S., Birmingham-Southern College, 1957; M.S., 1961, Ph.D., 1962, University of Tennessee.

Graham, William Doyle, Jr., Associate Professor of Agronomy and Soils.
B.S., Texas Technology College, 1962; M.S., 1965, Ph.D., 1967, Purdue University.

Graham, George Elmer, Assistant Professor of Dairy Science.

Grant, Robert Carl, Assistant Professor of Aerospace Studies.
Major, United States Air Force; B.S., Clemson University, 1955; M.S., Southern Methodist University, 1964.

Gray, Furman R., Associate Professor of Industrial Management.
B.A., Furman University, 1951; C.P.A., S. C. Board of Examiners, 1956; M.S., University of Georgia, 1967.
GRAY, GORDON WALTER, Associate Professor of Education.

GREEN, CLAUD BETHUNE, Dean of Undergraduate Studies; Professor of English.
B.A., 1935, M.A., 1938, University of Georgia; Ph.D., Duke University, 1953.

GRIFFIN, BARBARA JEAN, Instructor in Agricultural Engineering.

GRIFFIN, DEUEL NORTON, Instructor in English.

GRIFFIN, VILLARD STUART, JR., Associate Professor of Geology.
B.A., 1959, M.S., 1961, University of Virginia; Ph.D., Michigan State University, 1965.

GRUBB, CHARLES ALAN, Assistant Professor of History.

GUM, COBURN, Associate Professor of English.

GUTHRIE, RUFUS KENT, Associate Dean, College of Physical, Mathematical, and Biological Sciences; Acting Head of Zoology Department; Professor of Microbiology.
B.A., 1948, M.A., 1950, University of Texas; Ph.D., Baylor University, 1954.

HALL, ELIZABETH J., Associate Professor of Nursing, Baccalaureate Program.
B.S., Simmons College, 1934; Ed.M., Boston University, 1946.

HALL, JAMES WAYNE, Professor of Chemical Engineering.
B.S., Texas A&M University, 1950; M.S., 1961, Ph.D., 1963, University of Texas; P.E.

HALPIN, JAMES EDWIN, Associate Director of Agricultural Experiment Station; Professor of Plant Pathology and Physiology; Director of Belle W. Baruch Research Institute in Forestry, Wildlife, and Marine Biology at Clemson.
B.S., 1950, M.S., 1951, Ph.D., 1955, University of Wisconsin.

HAMILTON, MAX GREENE, Associate Professor of Horticulture, Edisto Experiment Station.
B.S., North Carolina State University, 1949; Ph.D., Cornell University, 1953.

HAMMOND, ALEXANDER FRANCIS, Associate Professor of Engineering Graphics.

HANDLIN, DALE LEE, Assistant Professor of Animal Science.
B.S., Kansas State University, 1951; M.S., Texas A&M University, 1954.

HANNAH, HOWARD BARRY, Assistant Professor of English.

HARDEN, JOHN CHARLES, JR., Assistant to the Head, Mathematical Sciences Department; Associate Professor of Mathematical Sciences.
B.S., Mississippi College, 1947; M.A., University of Tennessee, 1949.

HARDIN, THURMAN CRAIG, Professor of Mechanical Engineering.
B.S.M.E., University of Tennessee, 1946; M.S.M.E., Virginia Polytechnic Institute, 1949; Ph.D., Georgia Institute of Technology, 1955.

HARE, WILLIAM RAY, JR., Associate Professor of Mathematical Sciences.
B.S., Henderson State Teachers College, 1957; M.S., 1959, Ph.D., 1961, University of Florida.

HARGEST, THOMAS S., Adjunct Professor of Mechanical Engineering and Bioengineering.

HARRIS, JACKIE RAY, Assistant Professor of Education.
B.A., Baylor University, 1956; M.Ed., North Texas State University, 1960; Ed.D., University of Houston, 1968.

HARRISON, EUGENE, Draper Professor of Mechanical Engineering.
B.S., 1951, M.S., 1952, Texas A&M University; Ph.D., Michigan State University, 1962.

HARSHMAN, RICHARD CALVERT, Professor of Chemical Engineering.
B.A., Ohio Wesleyan University, 1947; M.S., 1949, Ph.D., 1951, Ohio State University.

HARVEY, LAWRENCE HARMON, Associate Professor of Agronomy and Soils.
B.S.A., 1952, M.S., 1959, Ph.D., 1969; University of Georgia.

HASELTON, GEORGE MONTGOMERY, Associate Professor of Geology.
B.A., Colby College, 1951; M.A., Boston University, 1958; Ph.D., Ohio State University, 1967.
Hash, John Alex, Associate Professor of Agricultural Education.

Hatcher, Robert Dean, Jr., Associate Professor of Geology.

Haun, Joseph Rhodes, Associate Professor of Horticulture.
A.B., Berea College, 1946; M.S., 1950, Ph.D., University of Maryland.

Haw, Larry Stoddard, Instructor in Mathematics.
B.S., University of Southwestern Louisiana, 1952; M.Ed., Louisiana State University, 1957; M.S., University of Southwestern Louisiana, 1965.

Haymond, Robert Edward, Professor of Mathematical Sciences.
B.S., University of South Carolina, 1954; M.S., California Institute of Technology, 1950; Ph.D., University of Oregon, 1959.

Hays, Ruth Lanier, Assistant Professor of Zoology.

Hays, Sidney Brooks, Head, Department of Entomology and Economic Zoology; Associate Professor of Entomology and Economic Zoology.
B.S., 1953, M.S., 1958, Auburn University; Ph.D., Clemson University, 1962.

Heaton, Ralph Beacham, Jr., Instructor in English.
B.A., Furman University, 1964; M.A., University of Virginia, 1965.

Hebert, Robert Francis, Assistant Professor of Economics.

Hedden, Frank Howard, Associate Professor of Agricultural Engineering.
B.S., Clemson University, 1942; M.S., University of Georgia, 1950.

Helgert, Hermann Joseph, Assistant Professor of Electrical and Computer Engineering.

Henninson, Robert Walter, Professor of Dairy Science, Assistant Dean of University Research.

Henrickes, Donald Maurice, Associate Professor of Food Science.
B.S., University of Missouri, 1957; M.S., Purdue University, 1961; Ph.D., University of Missouri, 1965.

Henry, Louis Lee, Associate Professor of English.
B.S., Clemson University, 1953; M.A., 1958, Ph.D., 1965, Florida State University.

Hester, Jarrett Charles, Head of Mechanical Engineering Department; Associate Professor of Mechanical Engineering.

Higgins, Julia Hill, Instructor in Nursing, Associate Degree Program.

Hill, James Riley, Jr., Professor of Animal Science.
B.S., 1956, M.S., 1958, Clemson University; Ph.D., North Carolina State University, 1965.

Hill, Patricia Kneas, Associate Professor of History.

Hill, Robert White, Assistant Professor of English.

Himsworth, Francis Robert, Visiting Professor of Industrial Management.
B.S., 1931, Ph.D., 1933, Edinburgh University.

Hind, Alfred Thomas, Jr., Professor of Mathematical Sciences.
A.B., 1934, M.A., 1936, Emory University; Ph.D., University of Georgia, 1952.

Hindman, Marie Smith, Associate Professor of Home Economics.
B.S., Winthrop College, 1935; M.S., University of Tennessee, 1949.

Hinkle, Barbara Rawley, Instructor in Psychology.

Hipp, Opal Shepard, Instructor in Nursing, Baccalaureate Program.

Hite, James Cleveland, Associate Professor of Agricultural Economics and Rural Sociology.
B.S., Clemson University, 1963; M.A., Emory University, 1964; Ph.D., Clemson University, 1966.
HOBSON, JAMES HARVEY, *Alumni Professor of Chemistry.*
B.S., University of South Carolina, 1939; M.A., 1947, Ph.D., 1953, Emory University.

HODGES, VERNON SEYMOUR, *Professor of Architecture.*
S.B., Harvard College, 1934; M.Arch., Harvard University, 1939.

HOLAHAN, URSULA ANN, *Associate Professor of Home Economics.*
B.S., Cornell University, 1947; M.S., University of Minnesota, 1962.

HOLLEMAN, KENDRICK ALFRED, *Associate Professor of Poultry Science.*
B.S., Texas A&M University, 1958; M.S., University of Nebraska, 1962; Ph.D., University of Missouri, 1971.

HOLMAN, Harriet R., *Professor of English.*
A.B., Winthrop College, 1934; A.M., University of Michigan, 1939; Ph.D., Duke University, 1948.

HOLMAN, JAMES RICHARD, *Assistant Professor of Experimental Statistics and Assistant Statistician, Computer Center.*
B.S., Tennessee Technological University, 1965; Ph.D., Clemson University, 1968.

HOLMES, PAUL THAYER, *Associate Professor of Mathematical Sciences.*

HOLT, ALBERT HAMILTON, *Associate Professor of English.*
A.B., 1939, M.A., 1947, University of North Carolina; Ph.D., Vanderbilt University, 1958.

HOOD, CLARENCE ELAM, JR., *Associate Professor of Agricultural Engineering.*
B.S., 1959, M.S., 1961, Ph.D., 1964, North Carolina State University; P.E.

HOOK, NORRIS KEENAN, JR., *Assistant Professor of Military Science.*
Captain, Corps of Engineers, United States Army; B.S., Wofford College, 1965.

HORTON, JOHN BANNER, *Assistant Professor of Military Science.*
Major, Signal Corps, United States Army; B.A., Wake Forest University, 1960.

HOWARD, GORDON EDWARD, *Associate Professor of Recreation and Park Administration.*

HOWELL, NELDA KAY, *Associate District Extension Leader; Assistant Professor of Home Economics.*
B.S., East Carolina University, 1959; M.Ed., North Carolina State University, 1970.

HUBBARD, HERSHELL RAY, *Assistant Professor of Aerospace Studies.*
Captain, United States Air Force; B.S., University of Arizona, 1963; M.S., University of Oklahoma, 1968.

HUBBARD, JOHN WILLIAM, *Associate Professor of Agricultural Economics and Rural Sociology.*
B.S., Berea College, 1944; M.S., 1958, Ph.D., 1962, University of Kentucky.

HUBBARD, JULIUS CLIFFORD, JR., *Professor of Textiles.*
B.S., Clemson University, 1942; M.S., Georgia Institute of Technology, 1950.

HUDSON, LARRY Wilson, *Assistant Professor of Animal Science.*

HUDSON, WILLIAM CARNAU, *Associate Professor of Mechanical Engineering.*
B.M.E., 1946, M.S., 1957, Clemson University; M.S., University of Michigan, 1965; P.E.

HUGHES, BUDDY LEE, *Assistant Professor of Poultry Science.*
B.S., Clemson University, 1968; M.S., 1970, Ph.D., 1971, Oregon State University.

HUFFMAN, JOHN WILLIAM, *Professor of Chemistry.*

HUGHES, MORRIS BURDETTE, *Professor of Horticulture, Edisto Experiment Station.*
B.S., Michigan State University, 1935; Ph.D., University of California, 1943.

HULBERT, SAMUEL F., *Associate Dean for Engineering Research and Interdisciplinary Studies; Associate Professor of Materials Engineering; and Acting Head, Division of Interdisciplinary Studies.*

HUNTER, ROBERT HOWARD, *Professor of History and Visual Studies.*

IDOL, JOHN LANE, JR., *Associate Professor of English.*
B.S., Appalachian State University, 1958; M.A., 1961, Ph.D., 1965, University of Arkansas.
INGRAM, BYRON ROSS, Assistant Professor of Zoology.
A.B., University of North Carolina, 1933.

JACOBUS, OTHA JOHN, Assistant Professor of Chemistry.
B.S., Southwestern at Memphis, 1962; Ph.D., University of Tennessee, 1965; Post Doctorate, Princeton University, 1968-69.

JAMES, GERALD EVERETTE, Assistant Professor Environmental Systems Engineering.
B.S., University of Alabama, 1965; Ph.D., Purdue University, 1969.

JAMESON, LAKE HUGH, Associate Professor of Engineering Graphics.
B.S., Clemson University, 1942; M.S., North Carolina State University, 1952.

JANZEN, JACOB JOHN, Professor of Dairy Science.
B.S.A., University of Manitoba, 1944; M.S., 1947, Ph.D., 1952, University of Wisconsin; Post Doctorate, University of Wisconsin, 1952-53.

JEN, JOSEPH Jwu-Shan, Assistant Professor of Food Science.
B.S., National Taiwan University, 1960; M.S., Washington State University, 1964; Ph.D., University of California, Berkeley, 1969.

JENSEN, ARTHUR KENNETH, * Director of Vocational Education Media Center; Associate Professor of Education.
B.S., 1951, M.S., 1956, Ph.D., 1961, University of Wisconsin.

JOHNSON, ALBERT WAYNE, Assistant Professor of Entomology and Economic Zoology, Pee Dee Station.
B.S., 1966, M.S., 1968, Clemson University; Ph.D., Auburn University, 1971.

JOHNSON, BETTYE BISHOP, Instructor in Industrial Management.

JOHNSON, CHARLES ROBERT, Assistant Professor of Horticulture.
B.S., Colorado State University, 1964; Ph.D., Oregon State University, 1969.

JOHNSON, JAMES KARL, Jr., Associate Professor of Mechanical Engineering.
B.M.E., 1950, M.S., 1956, Clemson University; M.S., Georgia Institute of Technology, 1966; P.E.

JOHNSON, MICHAEL GRAHAM, Assistant Professor of Food Science.
B.S., 1964, M.S., 1966, University of Illinois, Urbana; Ph.D., University of California, Davis, 1970.

JOHNSTON, WALTER EDWARD, Associate Professor of Experimental Statistics.

JONES, CHAMP McMILLIAN, Professor of Agronomy and Soils.
B.S., Clemson University, 1939; M.S., Cornell University, 1940; Ph.D., Michigan State University, 1952.

JONES, EMMY VALENTINE, Instructor in Horticulture.

JONES, JACK EDENFIELD, Associate Professor of Poultry Science.

JONES, JESS WILLARD, Director of Resident Instruction; Professor of Agronomy.
B.S., Clemson University, 1937; M.S., 1938, Ph.D., 1953, Cornell University.

JONES, JOE KENNETH, District Extension Leader; Assistant Professor of Animal Science.
B.S., Clemson University, 1947.

JONES, ROBERT E., Jr., Lecturer in Medical Technology; Co-director, School of Medical Technology, and Pathologist, Anderson Memorial Hospital.
B.A., Duke University, 1956; M.D., Bowman Gray School of Medicine, 1960.

JONES, ULYSSES SIMPSON, Professor of Agronomy and Soils.
B.S., Virginia Polytechnic Institute, 1939; M.S., Purdue University, 1942; Ph.D., University of Wisconsin, 1947.

JORDAN, JOHNNY WAYNE, Instructor in Agricultural Economics and Rural Sociology.

JORDAN, WRIGHT SINUEFIELD, Assistant Professor of Horticulture.
B.S.A., 1959, M.S., 1961, University of Georgia; Ph.D., Pennsylvania State University, 1963.

* On leave.
JUTRAS Michel Wilfrid, Associate Professor of Agronomy and Soils.
B.S., University of Massachusetts, 1958; M.S., University of Connecticut, 1961; Ph.D., Iowa State University, 1964.

KAUFMANN, ANDERS J., Associate Professor of Building Science.
B.Arch., Cornell University, 1956; M.Arch., University of Pennsylvania, 1962; A.I.A.

KEINATH, THOMAS M., Assistant Professor of Environmental Systems Engineering.

KELLER, FREDERICK JACOB, Associate Professor of Physics.

KELLEY, CAROLYN JOYCE, Instructor in Nursing, Baccalaureate Program.

KELLY, JAMES WELBORN, Assistant Professor of Dairy Science.
B.S., 1939, M.S., 1962, Clemson University.

KELLY, MARY ANN, Instructor in Nursing, Associate Degree Program.

KENELLY, JOHN WILLIS, Head of Mathematical Sciences Department; Professor of Mathematical Sciences.
B.S., Southeastern Louisiana College, 1957; M.S., University of Mississippi, 1957; Ph.D., University of Florida, 1961.

KERSEY, ROBERT NOEL, JR., Associate Professor of Electrical and Computer Engineering.
B.S. in E.E., Georgia Institute of Technology, 1942; M.S., Clemson University, 1959.

KESLER, GEORGE DONALD, Assistant Professor of Forestry.

KILGORE, DONALD GIBSON, JR., Lecturer in Medical Technology; Co-director, School of Medical Technology, and Pathologist, Greenville General Hospital.
M.D., Southwestern Medical College of the University of Texas, 1949.

KING, EDWIN WALLACE, Professor of Entomology and Economic Zoology.
B.S., University of Massachusetts, 1941; M.S., Virginia Polytechnic Institute, 1947; Ph.D., University of Illinois, 1951; Post Doctorate, North Carolina State University, 1967-68.

KING, JOHN CALVIN, Instructor in Dairy Science.
B.S., Clemson University, 1937.

KING, MORRIS AUDREY, Head of Elementary and Secondary Education Department; Professor of Education.

KING, SAMUEL CARL, Assistant Professor of Spanish.

KING, WILLIS ALONZO, Head of Department of Dairy Science; Professor of Dairy Science.
B.S., Clemson University, 1936; M.S., 1938, Ph.D., 1940, University of Wisconsin.

KINGSLAND, GRAYDON CHAPMAN, Associate Professor of Plant Pathology and Physiology.
B.S., University of Vermont, 1953; M.S., University of New Hampshire, 1955; Ph.D., Pennsylvania State University, 1958.

KIRKWOOD, CHARLES EDWARD, JR., Associate Professor of Mathematical Sciences; Computer Analyst.
A.B., Lynchburg College, 1935; M.S., University of Georgia, 1937.

KIRCH, MARCERITE ANN, Instructor in French.
A.B., St. Mary's Dominican College, 1939; M.A., Louisiana State University, 1970.

KISSAM, JOHN BENJAMIN, Associate Professor of Entomology and Economic Zoology.

KLAWITTER, JEROME JOHN, Assistant Professor of Bioengineering.
B.S., Alfred University, 1964; M.S., 1966, Ph.D., 1970, Clemson University.

KNAPP, RONALD JAMES, Assistant Professor of Sociology.
KNOWLAND, RALPH EDWARD, Head of Building Science Department; Associate Professor of Building Science. B.Arch., University of Manitoba, 1944; M.B.A., University of Western Ontario, 1966; R.A.I.C.; A.I.A.

KNOX, SARAH STEWART, Associate District Extension Leader; Associate Professor of Home Economics. B.S., Winthrop College, 1933.

KOLDSKY, MARTIN R., JR., Assistant Professor of Aerospace Studies. Major, United States Air Force; B.S., Ball State University, 1952.

LABECKI, GERALDINE, Dean, College of Nursing; Director, Baccalaureate Degree Program in Nursing; Professor of Nursing. B.S., 1944, M.A., 1948, Teachers College, Columbia University; Ed.D., George Peabody College for Teachers, 1967.

LAFFODAY, WILLIAM C., Director for Professional Development and Lecturer in Marketing and Management. B.S., Clemson University, 1951; M.A., University of Virginia, 1952.

LAFLEUR, KERMIT STILLMAN, Associate Professor of Agronomy and Soils. B.A., 1937, M.S., 1964, Colby College; Ph.D., Clemson University, 1966.

LAGORNE, JOHN WALLACE, Associate Professor of Mathematical Sciences. B.S., Clemson University, 1932; M.A., Vanderbilt University, 1934.

LAILA, EVERETT, Head of Engineering Services Department; Professor of Industrial Engineering. B.S.M.E., 1954, M.S., 1957, University of Minnesota; P. E.

LAMBERT, JERRY ROY, Associate Professor of Agricultural Engineering. B.A.E., 1958, M.S.E., 1962, University of Florida; Ph.D., North Carolina State University, 1964; P. E.

LAMBERT, ROBERT STANSBURY, Head of Social Sciences Department; Professor of History. A.B., 1942, M.A., 1948, Ph.D., 1951, University of North Carolina.

LANDERS, KNOX SCHAFFER, Assistant Professor of Chemistry. B.S., 1951, M.S., 1955, University of Alabama.

LANDRITH, HAROLD FOCHONE, Dean, College of Education; Professor of Education. B.S., Clemson University, 1948; M.A., Vanderbilt University, 1949; Ed.D., University of Houston, 1960.

LANE, CARL LEATON, Associate Professor of Forestry. B.S., 1952, M.S., 1961, North Carolina State University; Ph.D., Purdue University, 1968.

LANHAM, WILLIAM JOSEPH, Head of Agricultural Economics and Rural Sociology Department; Professor of Agricultural Economics and Rural Sociology. B.S., 1943, M.S., 1951, Clemson University; Ph.D., North Carolina State University, 1963.

LAROCHE, EVANS ALLEN, Associate Professor of Textiles. B.S., Clemson University, 1942; M.S., Georgia Institute of Technology, 1951; Ph.D., University of South Carolina, 1971.

LASKAR, AMULYA LAL, Associate Professor of Physics. B.S., S. N. College, 1950; M.S., Calcutta University, 1952; Ph.D., University of Illinois, 1960.

LASKAR, RENU CHAKRAVARTI, Associate Professor of Mathematical Sciences. B.A., Patna University, 1950; M.A., Bilar University, 1955; Ph.D., University of Illinois, 1962.

LATHROP, JAY WALLACE, Professor of Electrical and Computer Engineering. B.S., 1948, M.S., 1949, Ph.D., 1952, Massachusetts Institute of Technology.

LATORRE, DONALD RUTLEDGE, Associate Professor of Mathematical Sciences. B.A., Wofford College, 1960; M.A., 1962, Ph.D., 1964, University of Tennessee.

LAW, ALBERT GILES, Associate Professor of Engineering Mechanics. B.S.C.E., University of Illinois, 1954; M.S.C.E., 1960, Ph.D., 1965, University of Wisconsin; P. E.
LAW, ERNEST HARRY, Assistant Professor of Engineering Mechanics.
B.Aero.E., Rensselaer Polytechnic Institute, 1962; M.S.E., Princeton University, 1965;

LAWS, HERBERT LIVINGSTON, Instructor in German.
B.A., Presbyterian College, 1953; M.A., University of Tennessee, 1957.

LAZAR, JAMES TARLTON, JR., Professor of Dairy Science.
B.S., Clemson University, 1943; M.S., Cornell University, 1949; Ph.D., North Carolina
State University, 1955.

LEAHY, CYNTHIA ANNE, Instructor in Nursing, Baccalaureate Program.
B.S.N., University of Miami, 1969; M.S.N., Emory University, 1971.

LeBOURDEAUX, JOHN YOUNG, Instructor in History.

LEDEBROR, FREDERICK BERNARD, Assistant Professor of Horticulture.
B.S., Oregon State University, 1960; M.S., 1966, Ph.D., 1969, University of Rhode
Island.

LEE, PETER, Associate Professor of Architecture.
B.Arch., University of Minnesota, 1958; M.Arch., Massachusetts Institute of Tech-
ology, 1967; A.I.A.

LEEMHUIS, ROGER PHILLIP, Assistant Professor of History.
A.B., Villanova University, 1959; M.A., University of Massachusetts, 1961; Ph.D.,
University of Wisconsin, 1970.

LEFORT, HENRY GERARD, Associate Professor of Ceramic Engineering.
B.Cer.E., Clemson University, 1952; M.S.Cer.E., 1957, Ph.D., 1960, University of
Illinois.

LEWS, ALEXANDER DODGE, Professor of Mechanical Engineering.
B.S. in M.E., University of Tennessee, 1939; M.M.E., Yale University, 1946; P.E.

LEWS, HODGES ALVIN, Instructor in French.
B.A., University of Georgia, 1963.

LIEBENROOD, GEORGE HAROLD, District Extension Leader; Associate Professor of
Animal Science.
B.S., Clemson University, 1951; M.Ed., Colorado State University, 1957.

LIGON, JAMES TEDDIE, Professor of Agricultural Engineering.
B.S., Clemson University, 1937; M.S., 1939, Ph.D., 1961, Iowa State University; P.E.

LINDSTROM, FREDERICK JOHN, Professor of Chemistry.
B.S., 1951, M.S., 1953, University of Wisconsin; Ph.D., Iowa State University, 1959.

LITTLE, KAY, Teaching Supervisor, School of Medical Technology, Anderson
Memorial Hospital.
B.S., Clemson University, 1967; Medical Technology (ASCP), 1967.

LITTLEJOHN, CHARLES EDWARD, Head of Chemical Engineering Department;
Professor of Chemical Engineering.
B.S., Clemson University, 1940; M.Ch.E., North Carolina State University, 1941;
Ph.D., Virginia Polytechnic Institute, 1952; P.E.

LLOYD, OLLIE WELDON, Instructor in Agricultural Economics and Rural
Sociology.
B.S., 1932, M.S., 1958, Clemson University.

LONG, JIM THOMAS, Professor of Electrical and Computer Engineering.
B.S.E.E., Clemson University, 1943; M.S. in E.E., 1949, Ph.D., 1964; Georgia Institute
of Technology.

LONG, NEEDHAM L., Lecturer in Medical Technology; Co-director, School of
Medical Technology, and Pathologist, Anderson Memorial Hospital.
B.S., University of Alabama, 1952; M.D., Medical College of Alabama, 1956.

LOVE, JACKSON SPENCER, JR., Assistant Professor of Civil Engineering.

LOYACANO, HAROLD A., JR., Assistant Professor of Entomology and Economic
Zoology.
B.S., Tulane University, 1962; M.S., Louisiana State University, 1967; Ph.D., Auburn
University, 1970.

LUDEMAN, JOHN KEITH, Assistant Professor of Mathematical Sciences.
B.A., Valparaiso University, 1963; M.A., Southern Illinois University, 1965; Ph.D.,
State University of New York at Buffalo, 1969.

LUKAWECZ, ANN RUSSELL, Lecturer in Nursing, Baccalaureate Degree Program.
A.B., Shurtle College, 1949; B.S., Emory University, 1952; M.A., University of
Chicago, 1959.
LUKBALDECK, STEANLEY MICHAEF, Associate Professor of Mathematical Sciences. B.S., Southeastern Louisiana College, 1953; M.S., 1957, Ph.D., 1961, Auburn University.

LUNDBERG, JOHN LAUREN, Head of Textile Department; Associate Professor of Textile Chemistry. B.Ch.E., University of Minnesota, 1948; Ph.D., University of California, 1952.

LYNN, HERMAN PINKEY, Associate Professor of Agricultural Engineering. B.S., 1949, M.S., 1968, Clemson University.

LYONS, DONALD W., Associate Professor of Textile Science and Mechanical Engineering. B.M.E., 1961, Ph.D., 1966, Georgia Institute of Technology; P.E.

LYTLE, JOHN STEVENS, Associate Professor of Agricultural Economics and Rural Sociology. B.S., 1962, M.S., 1963, Ph.D., 1966, Ohio State University.

MACAULAY, HUGH HOLLEMAN, JR., Alumni Professor of Economics. B.S., 1947, M.S., 1953, University of Alabama; Ph.D., Columbia University, 1957.

McCARVER, JACKSON HOWARD, Lecturer in Medical Technology; Co-director, School of Medical Technology, Greenville General Hospital. M.D., University of Pittsburgh, 1963.

MCCLAIN, EUGENE FREDERICK, Assistant Professor of Agronomy and Soils. B.S., 1953; M.S., 1957, University of California, 1953.

McCOLLough, JOE LAWRENCE, Assistant Professor of Philosophy. B.A., Wake Forest University, 1957; M.A., 1961, Ph.D., 1970, Emory University.

McCONNELL, JAMES CALVIN, JR., Assistant Professor of Animal Science. B.S., 1965, Ph.D., 1970, University of Tennessee.

McCORMAC, JACK CLARK, Associate Professor of Civil Engineering. B.S., The Citadel, 1948; M.S., Massachusetts Institute of Technology, 1949; P.E.

McGEE, CHARLES MCKAY, JR., Associate Professor of English. A.B., Furman University, 1934; A.M., Duke University, 1941.

McGREGOR, ROB ROY, JR., Assistant Professor of French. B.A., Erskine College, 1953; B.D., Columbia Theological Seminary, 1957; M.A., University of South Carolina, 1965; Ph.D., University of Georgia, 1969.

McGregor, William Henry Davis, Dean, College of Forest and Recreation Resources; Professor of Forestry. B.S., Clemson University, 1951; B.S.F. and M.F., University of Michigan, 1953; Ph.D., 1958.

McHugh, Carl Manning, Coordinator of Engineering Graphics; Associate Professor of Engineering Graphics. B.S., Clemson University, 1936; P.E.

McKENZIE, MARTIN CHAPIN, Associate Professor of Agricultural Engineering. B.S., Clemson University, 1937.

McLAUGHLIN, JOHN JOSEPH, Associate Professor of English. B.S., Temple University, 1950; M.A., 1963, Ph.D., 1966, University of California.

MCLEAN, EDWARD L., Assistant Professor of Agricultural Economics and Rural Sociology. B.S., 1961, M.S., 1964, University of Wisconsin; Ph.D., Iowa State University, 1968.

McLemore, Dan Lucien, Assistant Professor of Agricultural Economics and Rural Sociology. B.A., Presbyterian College, 1966; M.S., 1969, Ph.D., 1971, Clemson University.

MCNATT, JO ANN, Assistant Professor of French. B.A., Furman University, 1956; M.A., Emory University, 1959.

* On leave.
McPeak, Thomas Ephrem, Head of History and Visual Studies Department; Associate Professor of History and Visual Studies.

Macy, Jacques Berri, Assistant Professor of French.

Maertens, George Kamel, Head of Military Science Department, Professor of Military Science.
Colonel, Infantry, United States Army; B.S., United States Military Academy, 1943.

Malphrus, Lewis Daniel, Associate Professor of Agricultural Economics and Rural Sociology.
B.S., Clemson University, 1938; M.S., University of Tennessee, 1940; Ph.D., Purdue University, 1954.

Malstrom, Carl Wayne, Instructor of Electrical and Computer Engineering.
B.S., University of Tennessee at Chattanooga, 1960.

Manson, Joseph Richard, Assistant Professor of Physics.
B.S., University of Richmond, 1965; Ph.D., University of Virginia, 1969.

Manwiller, Alfred, Associate Professor of Agronomy and Soils.
B.S., 1938, M.S., 1939, Iowa State University; Ph.D., Pennsylvania State University, 1944.

Marbut, Samuel Alexander, Assistant Professor of Forestry.
B.S., University of Georgia, 1939.

Martin, John Allen, Jr., Associate Professor of Horticulture.
B.S., Clemson University, 1936.

Martin, John Campbell, Professor of Electrical and Computer Engineering.
B.E.E., Clemson University, 1948; M.S., Massachusetts Institute of Technology, 1953; Ph.D., North Carolina State University, 1962.

Marullo, Nicacio Philip, Associate Professor of Chemistry.
B.S., Queens College, 1952; Ph.D., Polytechnic Institute of Brooklyn, 1961; Post Doctorate, California Institute of Technology, 1960-61; Senior NSF Fellow, Princeton University, 1969, University of Strasbourg, 1970.

Marvin, John Henry, Jr., Associate Professor of Textiles.
B.S., Clemson University, 1941; M.S., Georgia Institute of Technology, 1960.

Marx, David James, Assistant Professor of Psychology.

Mathews, Andrew Clark, Professor of Botany.
A.B., 1928, M.A., 1931, Ph.D., 1939, University of North Carolina.

Matthews, James Edward, Associate Professor of Education.

Mattox, Ronald Darus, Lecturer in Vocational Education.
B.S., Georgia Southern College, 1968.

Maurer, Donald Edwin, Associate Professor of Industrial Education.

Maxwell, James Donald, Assistant Professor of Agronomy and Soils.
B.S., Mississippi State University, 1962; M.S., Cornell University, 1965; Ph.D., North Carolina State University, 1968.

Means, George Calvin, Jr., Professor of Architecture.
B.Arch., Western Reserve University, 1947; M.Arch., Georgia Institute of Technology, 1955; A.I.A.

Meeke, Charles Davenport, Assistant Professor of Engineering Graphics.
B.M.E., Clemson University, 1942.

Melaragno, Michele G., Associate Professor of Building Science.
Diploma, College Nazareno, 1948; Ph.D., University of Bari, 1959; P.E.

Melsheimer, Stephen Samuel, Assistant Professor of Chemical Engineering.
B.S., Louisiana State University, 1965; Ph.D., Tulane University, 1969.

Metzger, Hermann, Visiting Professor of Bioengineering.
Dipl. Ing., Technical University Darmstadt, 1961; Dr. Ing., Johannes Butenberg University, 1968.

Meyer, Stephen Paul, Assistant Professor of Military Science.
Captain, Corps of Engineers, United States Army; B.S., Drexel Institute of Technology, 1965.

Miles, James Franklin, Associate Professor of Agricultural Economics and Rural Sociology.
A.B., 1938, M.A., 1939, University of South Carolina; Ph.D., Cornell University, 1951.
Miller, Donald Piguet,* Associate Professor of Physics.
B.S., Texas A&M University, 1948; M.S., Tulane University, 1952; Ph.D., Polytechnic Institute of Brooklyn, 1962.

Miller, Landon Carl, Assistant Professor of Horticulture.
B.S., Clemson University, 1961; M.S., Virginia Polytechnic Institute, 1964; Ph.D., Auburn University, 1971.

Miller, Max Gardner, Associate Professor of Physics.
B.S., 1953, Ph.D., 1961, University of North Carolina.

Miller, Robert Walker, Jr., Assistant Professor of Plant Pathology and Physiology.
B.S., University of Delaware, 1964; M.S., University of Arizona, 1970; Ph.D., University of Delaware, 1971.

Mitchell, Charlie Robertson, Assistant Professor of Engineering Mechanics.
B.S., Virginia Polytechnic Institute, 1956; M.S.C.E., West Virginia University, 1961; P.E.

Mitchell, Jack Harris, Jr., Professor of Food Science.
B.S., Clemson University, 1933; Ph.D., Purdue University, 1941.

Mixon, Robert Floyd, Assistant Professor of Spanish.

Mizelle, William Otta, Jr., Instructor in Agricultural Economics and Rural Sociology.

Montgomery, Charles Ledford, Jr., Instructor in Speech.

Mooney, Franklin Kempton, Assistant Professor of Architecture.
B.Arch., Clemson University, 1962; M.Arch., Yale University, 1963.

Moore, Ronald Ralph, Adjunct Professor of Bioengineering.
B.S., Clemson University, 1964; D.M.D., University of Kentucky, 1970.

Moorman, Robert Wardlaw, Head of Engineering Mechanics Department; Professor of Engineering Mechanics.
B.C.E., Clemson University, 1940; M.S., 1947, Ph.D., 1955, University of Iowa; P.E.

Morgan, Harvey Eugene, Jr., Associate Professor of Industrial Education.
B.S., 1951, M.S., 1956, Clemson University.

Moyle, David Douglas, Assistant Professor of Materials Engineering and Bioengineering.

Mullins, Joseph Chester, Associate Professor of Chemical Engineering.

Murphy, Thomas Luther, Assistant Professor of Military Science.
Captain, Infantry, United States Army; B.A., North Georgia College, 1965.

Musen, Harold Louis, Professor of Agronomy and Soils, Edisto Experiment Station.
B.S., Tennessee Polytechnic Institute, 1949; M.S., Auburn University, 1951; Ph.D., Rutgers University, 1955.

Nash, Richard Fuller, Jr., Assistant Professor of Entomology and Economic Zoology.
B.S., 1956, M.S., 1965, Auburn University; Ph.D., Clemson University, 1968.

Nettles, William Carl, Associate Professor of Entomology and Economic Zoology.
B.S., Clemson University, 1930; M.S., Ohio State University, 1933.

Newton, Alfred Franklin, Head of Industrial Education Department; Professor of Industrial Education.

Nicholson, James Harvey, Assistant Professor of Mathematical Sciences.
B.A., Southern Methodist University, 1950; M.A., University of Texas, 1957.

Noblet, Raymond, Assistant Professor of Entomology and Economic Zoology.

Nolan, Clifford Newell, Professor of Agronomy and Soils.
B.S., University of Florida, 1951; M.S., University of Georgia, 1957; Ph.D., University of Florida, 1960.

* On leave.
NORDQUIST, LOWELL EUGENE, Instructor in Economics.
B.S., North Dakota State University, 1968; M.A., Western Michigan University, 1969.

NORTHERN, WILLIAM LAVRUS, Professor of Dairy Science.
B.S., North Carolina State University, 1950; M.Ag., West Virginia University, 1956;
Ph.D., University of Minnesota, 1970.

NOWACK, ROBERT FRANCIS, Associate Professor of Engineering Mechanics.
B.S., Carnegie-Mellon University, 1948; M.S., University of Pittsburgh, 1952.

O’DELL, GLEN DEWITT, Associate Professor of Dairy Science.
B.S., 1953, M.S., 1955, Clemson University; Ph.D., University of Georgia, 1970.

O’DELL, WAYNE TALMADGE, Director of Cooperative Extension Service;
Professor of Dairy Science.
B.S., 1948, M.S., 1951, Clemson University; Ph.D., Pennsylvania State University,
1958.

OCLE, WAYNE LEROY, Professor of Horticulture.
B.S., University of Tennessee, 1948; M.S., University of Delaware, 1950; Ph.D.,
University of Maryland, 1952.

OLIVE, EDWARD FLEMING, Assistant Professor of Education.
B.A., Louisiana Tech, 1949; M.Ed., Louisiana State University, 1954; Ed.D., Auburn
University, 1971.

OLIVER, EDWARD LEE, III, Assistant Professor of Military Science.

OLSEN, NORMAN LACOUR, JR., Associate Professor of English.

OLSON, EDWARD STURE, Associate Professor of Textile Chemistry.
B.S., 1938, M.S., 1960, Clemson University.

OWENS, RAMETH RICHARD, Assistant Professor of History.

OWENS, WALTON HARRISON, JR., Associate Professor of Political Science.
A.B., Emory University, 1958; M.A., 1961, Ph.D., 1967, Florida State University.

OWINGS, MARVIN ALPHEUS, Head of English Department; Professor of English.
A.B., Wofford College, 1931; M.A., 1933, Ph.D., 1941, Vanderbilt University.

PACKER, MYRTON ALFRED, Coordinator, Office of Educational Services;
Associate Professor of Education.
A.B., 1936, B.D., 1939, M.Ed., 1961, Wittenberg University; Ed.D., Florida State
University, 1964.

PAGET, ADRIAN LEWIS, Assistant Professor of Agricultural Economics and
Rural Sociology.
B.S., 1958, M.S., 1959, Clemson University.

PAGE, NORWOOD RUFUS, Head of Agricultural Chemical Services Department;
Professor of Agronomy and Soils.
B.S., Clemson University, 1939; M.S., North Carolina State University, 1941; Ph.D.,
University of Georgia, 1959.

PALMER, JAMES HOWELL, Assistant Professor of Agronomy and Soils.
B.S., Clemson University, 1964; M.S., University of Georgia, 1966; Ph.D., Clemson
University, 1969.

PALMER, MERRILL CRAIG, Director of Computer Center; Associate Professor of
Mathematical Sciences.
B.S., University of Chattanooga, 1947; M.A., Vanderbilt University, 1948.

PARK, EUGENE, Associate Professor of Mathematical Sciences.
A.B., University of Georgia, 1939; M.A., Lehigh University, 1941.

PARKS, CLYDE LEONARD, Associate Professor of Agronomy and Soils.
B.S., Tennessee Tech, 1950; M.S., Auburn University, 1956; Ph.D., Texas A&M
University, 1963.

PARRADO, PEDRO FRANCISCO, Assistant Professor of Spanish.
LL.D., University of Havana, 1941; M.A., University of Miami, 1970.

PARRY, THOMAS HERBERT, Assistant Professor of Education.

PATE, DOVE HENRY, JR., Assistant Professor of Industrial Education.
B.S., 1965, M.In.Ed., 1967, Clemson University; Ed.D., North Carolina State Uni-
versity, 1970.

PATTON, MICHAEL FRANKLIN, Lecturer in Medical Technology; Director of
Medical Technology, Spartanburg General Hospital.
M.D., Medical University of South Carolina, 1949.
PAYNE, JAMES EDWARD, Assistant Professor of Physics.

PAYNTER, MALCOLM JAMES BENJAMIN, Head of Microbiology Department; Associate Professor of Microbiology.

PEAVLER, ROBERT NEAL, Assistant Professor of Aerospace Studies.
Captain, United States Air Force; B.B.A., Oklahoma University, 1961.

PECK, ROBERT W., Assistant Professor of Mathematical Sciences and Computer Analyst.

PENNSCOTT, WILLIAM WALTER, Associate Professor of Education.

PERRY, LEONARD THOMAS, Instructor in Spanish.

PERRY, ROBERT LINDSAY, Associate Professor of Technical Operations.
B.M.E., 1947, M.M.E., 1953, Clemson University; P.E.

PHARR, WALTER MORGAN, JR., Instructor in Philosophy.
B.A., Mercer University, 1966; M.A., University of Virginia, 1970.

PHILLIPS, WILLIAM ARNOLD, Associate Professor of Architecture.

PINCKNEY, JOHN EDWARD, Associate Professor of Architecture.

PINDER, ALBERT REGINALD, Fred Harvey Hall Calhoun Professor of Chemistry.

PIPPIN, ROLAND NEWTON, Instructor in Sociology.

PIPPIN, WILLIAM LEON, JR., Instructor in History.

PITNER, JOHN BRUCE, Superintendent and Professor of Agronomy and Soils. Pee Dee Experiment Station.
B.S., 1938, M.S., 1939, Mississippi State University; Ph.D., University of Wisconsin, 1944.

PITTMAN, JERALD FRANKLIN, Professor of Agricultural Economics and Rural Sociology.
B.S., 1951, M.S., 1956, Clemson University; Ph.D., North Carolina State University, 1969.

PLYLAB, WAYNE DENNIS, Instructor in Economics.

POE, HERBERT VERNON, Associate Professor of Electrical and Computer Engineering.
B.S., North Carolina State University, 1944; M.S., Texas A&M University, 1950; P.E.

POLE, WILLIAM J., Associate Professor of Textile Chemistry.
B.S. in Textile, 1956, Ph.D., 1960, Georgia Institute of Technology.

POSTER, GERVERAND, III, Instructor in English.
B.A., University of South, 1965; M.A., Rice University, 1967.

POWELL, GARY LEE, Assistant Professor of Chemistry.
B.S., University of California at Los Angeles, 1962; Ph.D., Purdue University, 1967; Post Doctorate, Washington University, 1967-69.
POWERS, EDWARD LEE, Assistant Professor of Industrial Management.

PREVOST, AILEEN SAIN, Assistant Professor of Nursing, Associate Degree Program.
B.S.N., Queen's College, 1947; M.N., Emory University, 1957.

PRIVETTE, CHARLES VICTOR, Instructor in Agricultural Engineering.

PROCHASKA, BOBBY JOSEPH, Assistant Professor of Mathematical Sciences.
B.S., University of Southwestern Louisiana, 1963; M.S., Colorado State University; Ph.D., Clemson University, 1967.

PROCTOR, THOMAS CILMER, Associate Professor of Mathematical Sciences.

PRUITT, JAMES ROBERT, Adjunct Professor of Bioengineering.
B.S., The Citadel, 1956; M.D., Medical University of South Carolina, 1960.

RAY, JOHN ROBERT, Associate Professor of Physics.
B.S., Rose Polytechnic Institute, 1961; Ph.D., Ohio University, 1964.

REAMER, LARRY DONALD, Instructor in Forestry.

RECoulLEY, ALFRED LUNSFORD, III, Assistant Professor of English.

REEL, JEROME VINCENT, Jr., Associate Professor of History.
B.S., 1960, M.A., 1961, University of Southern Mississippi; Ph.D., Emory University, 1967.

REEVES, CALVIN BRIGHT, Assistant Professor of Dairy Science.
B.S., Oklahoma A&M, 1942; M.S., Ohio State University, 1947.

REGNIER, IRELAND G.,* Associate Professor of History and Visual Studies.

Reneke, James Allen, Associate Professor of Mathematical Sciences.

Rent, George Seymour, Assistant Professor of Sociology.

Rich, Linvil Gene, Dean, College of Engineering; Professor of Civil Engineering.
B.S., 1947, M.S., 1948, Ph.D., 1951, Virginia Polytechnic Institute; P.E.

Richardson, Eleanor Joyce, State 4-H and Youth Development Coordinator; Instructor in Home Economics.

Richardson, Joel Landrum, Associate Professor of Textiles.
B.S., Clemson University, 1942; M.S., North Carolina State University, 1960; P.E.

Richardson, Melvin Kendrick, Associate Professor of Engineering Mechanics.

Rife, Lawrence Albert, Associate Professor of Mathematical Sciences.
B.Sc., North Dakota State University, 1940; M.A., University of Nebraska, 1947.

Riggs, Gayle D.,* Associate Professor of Industrial Management.

Rimkus, Raymond Alston, Assistant Professor of Political Science.
B.A., University of Texas at Austin, 1966; M.A., University of Oklahoma, 1969.

Risher, Charles Franklin, Assistant Professor of Poultry Science.
B.S., Clemson University, 1953.

Roberson, Georgia Taylor, State 4-H and Youth Development Coordinator; Assistant Professor of Home Economics.
B.S., Winthrop College, 1945; M.Ed., University of Maryland, 1958.

Roberts, Carleton Whitman, Associate Professor of Textile Chemistry.
B.A., New York University, 1943; M.S., 1947, Ph.D., 1950, Polytechnic Institute of Brooklyn.

Roberts, Freddy Lee, Assistant Professor of Civil Engineering.
B.S.C.E., 1964, M.S.C.E., 1966, University of Arkansas; Ph.D., University of Texas, 1969.

* On leave.
ROBINSON, GILBERT CHASE, Head of Ceramic Engineering Department; Professor of Ceramic Engineering.
B.Cer.E., North Carolina State University, 1940; Sc.D., Alfred University, 1970; P. E.

ROCHESTER, MORGAN COLUMBUS, Professor of Agricultural Economics and Rural Sociology.
B.S., Clemson University, 1931; M.S., University of Florida, 1933; Ph.D., University of Wisconsin, 1943.

ROCKWELL, SUSAN, Instructor in Nursing, Baccalaureate Program.

RODGERS, JOHN HASFORD, Professor of Vocational Education.
B.S., 1952, M.S., 1953, Clemson University; Ph.D., Ohio State University, 1961.

ROGERS, ERNEST BRASINGTON, JR., Associate Professor of Agricultural Engineering.
B.S., Clemson University, 1948; M.S., Texas A&M University, 1952; P. E.

ROGERS, RODNEY OUTHWAITE, Assistant Professor of English.
B.S., in C.E., Southern Methodist University, 1941; M.C.E., Clemson University, 1956, P. E.

ROSALD, LEON, Director, Associate Degree Program in Nursing; Associate Professor of Nursing.
B.S., Adelphi College, 1951; M.A., Teachers College, Columbia University, 1954.

RUCKLE, WILLIAM HENRY, Associate Professor of Mathematical Sciences.
A.B., Lincoln University, 1960; M.S., 1962, Ph.D., 1963, Florida State University.

RUDISILL, CARL SIDNEY, Associate Professor of Mechanical Engineering.

RUDOWSKI, VICTOR ANTHONY, Assistant Professor of English.
B.A., Union College, 1955; Ph.D., Harvard University, 1964.

RUETER, FREDERICK HENRY, Assistant Professor of Economics.

RUHLE, RICHARD DAVID, JR., Visiting Lecturer in Industrial Management.

RUSSELL, CHARLES BRADLEY, Assistant Professor of Mathematical Sciences.

RUSSELL, DONALD ROBERT, Instructor in Mathematical Sciences.

RUSSO, KENNETH, Associate Professor of Architecture.
B.Arch., Oklahoma State University, 1957; M.Arch., Clemson University, 1965; A.I.A.

SALLEY, JAMES RAWORTH, JR., Associate Professor of Chemistry.
B.S., College of Charleston, 1937; M.S., Clemson University, 1953.

SALLEY, MARY KATHERINE, Lecturer in Vocational Education.
B.A., University of South Carolina, 1968.

SANDERS, WALTER M., III, Adjunct Professor of Environmental Systems Engineering.
B.S.C.E., Virginia Military Institute, 1953; M.S., 1956, Ph.D., 1963, Johns Hopkins University.

SARGENT, JAMES EDWARD, Instructor in History.

SARGENT, JANICE LOUISE, Instructor in Speech.

SAUCIER, JOSEPH ROGER, Visiting Assistant Professor of Forestry.
B.S., Louisiana State University, 1958; M.S., University of Georgia, 1963.

SAUER, BARRY WILLIAM, Assistant Professor of Bioengineering.
D.V.M., University of Georgia, 1966.

SAUNDERS, RICHARD LEROY, JR., Assistant Professor of History.

SAVITSKY, GEORGE BORIS, Professor of Chemistry.
B.S., Aurora University, 1947; Ph.D., University of Florida, 1959; Post Doctorate, Princeton University, 1959-61.

SAVITSKY, LUDMILA ALEXANDER, Lecturer in Russian.
A.B., Clemson University, 1971.
Sawyer, Corinne Holt, Associate Professor of English.
B.A., 1945, M.A., 1948, University of Minnesota; Ph.D., University of Birmingham, 1954.

Schoenike, Roland Ernst, Associate Professor of Forestry.
B.S., 1951, M.S., 1953, Ph.D., 1962, University of Minnesota.

Schwartz, Arnold Edward, Dean of Graduate Studies and University Research; Associate Professor of Civil Engineering.
B.S.C.E., 1958, M.S.C.E., 1960, University of Notre Dame; Ph.D., Georgia Institute of Technology, 1963; P.E.

Seamon, Leon Edward, Assistant Professor of Spanish.
B.S., Georgia Institute of Technology, 1962; M.A., University of Georgia, 1964.

Seifick, Harold John, Associate Professor of Horticulture.
B.S., 1935, M.S., 1937, Rutgers University.

Senn, Taze Leonard, Head of Horticulture Department; Professor of Horticulture.
B.S., Clemson University, 1939; M.S., 1950, Ph.D., 1958, University of Maryland.

Seo, Kenzo, Associate Professor of Mathematical Sciences.
B.S., Tokyo University of Education, 1953; M.S., 1958, Ph.D., 1962, Purdue University.

Shain, William Arthur, Associate Professor of Forestry.
B.S.F., 1953, M.F., 1957, University of Georgia; Ph.D., Michigan State University, 1963.

Shannon, Russell Delbert, Assistant Professor of Economics.

Shernock, Stanley Kent, Instructor in Sociology.

Sherrill, Max Douglas, Associate Professor of Physics.

Shively, Jessup MacLean, Head of Biochemistry Department; Associate Professor of Biochemistry.
B.S., 1957, M.S., 1959, Ph.D., 1962, Purdue University.

Shuler, Cyril O., Associate Professor of Industrial Management.
B.S., Clemson University, 1934; M.Litt., University of Pittsburgh, 1951; Ph.D., American University, 1966.

Siedschlag, Everett William, Instructor in Agricultural Economics and Rural Sociology.
A.B., University of Illinois, 1946.

Simon, Frederick T., J. E. Sirrine Professor of Textile Science.
B.S., Morris Harvey College, 1955; M.S., Marshall University, 1958.

Simms, John Barber, Assistant Professor of English.

Simms, Ernest Theodore, Jr., Associate Professor of Horticulture.
B.S.A., University of Georgia, 1954; M.Sc., 1959, Ph.D., 1962, Ohio State University.

Sitterly, Wayne Robert, Superintendent and Professor of Plant Pathology and Physiology, Truck Experiment Station.
B.S., Iowa State University, 1953; M.S., 1955, Ph.D., 1957, Purdue University.

Skardon, Beverly Norton, Assistant Professor of English.
B.S., Clemson University, 1938; M.A., University of Georgia, 1964.

Skelley, George Calvin, Jr., Associate Professor of Animal Science.

Skelton, Billy Ray, Associate Professor of Economics.
B.S., 1956, M.S., 1958, Clemson University; Ph.D., Duke University, 1964.

Skelton, Bobby Joe, Associate Professor of Horticulture.
B.S., 1957, M.S., 1960, Clemson University; Ph.D., Virginia Polytechnic Institute, 1966.

Skelton, Thomas Eugene, Associate Professor of Entomology and Economic Zoology.
B.S., 1953, M.S., 1956, Clemson University; Ph.D., University of Georgia, 1969.

Skinner, Cheryl Jensen, Instructor in Industrial Management.

Skove, Malcolm John, Professor of Physics.
B.S., Clemson University, 1956; Ph.D., University of Virginia, 1960.
SLANN, MARTIN WAYNE, Assistant Professor of Political Science.
A.B., University of Miami, 1964; M.A., University of Connecticut, 1966; Ph.D., University of Georgia, 1970.

SMITH, CHESTER ROLAND, Associate Professor of Industrial Management.
B.S., University of Alabama, 1941; M.A., 1947, Ph.D., 1950, University of Virginia.

SMITH, DONALD HUGH, Instructor in Sociology.

SMITH, FRED HARRISON, Associate Professor of Plant Pathology and Physiology.

SNELL, ABSALOM WEST, Head of Agricultural Engineering Department; Professor of Agricultural Engineering; Chairman of Directorate of the Water Resources Research Institute.
B.S., Clemson University, 1949; M.S., Iowa State University, 1952; Ph.D., North Carolina State University, 1964; P. E.

SNELLSIRE, ROBERT WILLIAM, Associate Professor of Electrical and Computer Engineering.

SNIPES, DAVID STRANGE, Assistant Professor of Geology.
B.S., Wake Forest University, 1950; Ph.D., University of North Carolina, 1965.

SOBCZYK, ANDREW FLORIAN, Samuel Maner Martin Professor of Mathematical Sciences.
B.A., 1935, M.A., 1936, University of Minnesota; Ph.D., Princeton University, 1939.

SOLS, JUAN DE LA CRUZ, Assistant Professor of Poultry Science.
B.S., New Mexico State University, 1962; M.S., University of New Hampshire, 1964; Ph.D., Auburn University, 1968.

SPARKS, LEGRAND MCIVER, Assistant Professor of Entomology and Economic Zoology.
B.S., 1941, M.S., 1957, Clemson University.

SPENCER, HAROLD GARTH, Head of Chemistry and Geology Department; Professor of Chemistry.
B.S.E., 1952, M.S., 1958, Ph.D., 1959, University of Florida.

SPIERS, JUDITH ELAINE, Instructor in Home Economics.
B.S., Winthrop College, 1967; M.S., University of Tennessee, 1971.

SPURLOCK, HOOPER CLYDE, Associate Professor of Agricultural Economics and Rural Sociology.
B.S., University of Tennessee, 1935; M.S., 1951, Ph.D., 1956, University of Florida.

STAFFORD, DONALD BENNETT, Associate Professor of Civil Engineering.
B.S., 1963, Ph.D., 1968, North Carolina State University; P.E.

STANLEY, EDWARD LEMUEL, Associate Professor of Mathematical Sciences.
B.S., East Tennessee State University, 1930; M.S., University of Tennessee, 1935.

STEADMAN, MARK SIDNEY, JR., Associate Professor of English.
A.B., Emory University, 1951; M.A., 1956, Ph.D., 1963, Florida State University.

STEED, JOHN HAROLD, Assistant Professor of Military Science.
Major, Field Artillery, United States Army; B.S., Clemson University, 1960.

STEINER, PINCKNEY ALSTON, Assistant Professor of Physics.
B.S., University of Georgia, 1959; Ph.D., Duke University, 1965; Post Doctorate, University of Copenhagen, 1964-66.

STEIRER, WILLIAM FRANK, JR., Assistant Professor of History.

STELLING, FRANK II., Adjunct Professor of Bioengineering.
B.S., Augusta College, 1934; M.D., Medical College of Georgia, 1938.

STEMMIRIDGE, GEORGE EUGENE, Associate Professor of Horticulture.
B.S., Clemson University, 1958; M.S., 1959, Ph.D., 1961, University of Maryland.

STEPHENS, ROBERT LORIN, Instructor in Agronomy and Soils.
B.S., 1958, M.S., 1968, Clemson University.

STEFF, JAMES MARVIN, Alumni Professor of Agricultural Economics and Rural Sociology.
A.B., Berea College, 1937; M.A., 1938, Ph.D., 1940, University of Virginia.

STEVENSOn, JOHN LOVETT, Associate Professor of Recreation and Park Administration.
STEWART, Harry Eugene, Head of Languages Department; Professor of French.

STILLWELL, Ephraim Posey, Jr., Head of Physics Department; Professor of
Physics.
B.S., Wake Forest University, 1956; M.S., 1958, Ph.D., 1960, University of Virginia.

STINAFF, Russell Dalton, Assistant Professor of Electrical and Computer
Engineering.
B.S., University of Akron, 1962; M.S., Purdue University, 1963; Ph.D., University

STOKES, Sara Turner, Instructor in Nursing, Associate Degree Program.
B.S.N., Vanderbilt University, 1952; M.S., Texas Women’s University, 1970.

STRADE, Gladys Anne, Instructor in French.
B.A., San Francisco College for Women, 1960; Licence ès Lettres, The Sorbonne,
1968.

SULLIVAN, John Russell, Associate Professor of Mathematical Sciences.
A.B., 1939, M.A., 1949, Georgetown University.

SUMAN, REYNOLD Foy, Associate Professor of Agronomy and Soils, Edisto
Experiment Station.

SUTHERLAND, Melford Hunt, Assistant Professor of Agricultural Economics
and Rural Sociology.
B.S., 1933, M.S., 1961, Clemson University.

TAYLOR, Julia Baskin, Associate Professor of Home Economics.
B.S., Winthrop College, 1936; M.S., University of Tennessee, 1951.

TEKILTS, Mary Ann, Instructor in Nursing, Associate Degree Program.

THODE, Frederick Wilbur, Associate Professor of Horticulture.
B.S., Clemson University, 1940; M.S., Cornell University, 1951.

THOMAS, Charles Allison, Jr., Associate Professor of Entomology and Eco-
nomic Zoology.

THOMPSON, Patricia, Teaching Supervisor, School of Medical Technology,
Greenville General Hospital.
B.S., Furman University, 1951; Medical Technology (ASCP), 1952.

THOMPSON, Regina, Assistant Professor of Nursing, Baccalaureate Program.
B.S., Bluefield State College, 1951; M.A., Teachers College, Columbia University,
1958.

THURSTON, James Norton, Alumni Professor of Electrical and Computer
Engineering.
B.E.E., Ohio State University, 1936; S.M., 1943, Sc.D., 1950, Massachusetts Institute
of Technology; F.E.

TITUS, Thomas George, Assistant Professor of Psychology.
B.A., State University of New York, 1966; M.A., 1968, Ph.D., 1970, University of
Louisville.

TODD, Boyd Joseph, Professor of Industrial Management and Mathematics.
B.S., 1946, M.S., 1948, Clemson University; Ph.D., North Carolina State University,
1969.

TOLINS, Irwin Solomon, Associate Professor of Operations Research.
B.S.C.E., 1948, M.S.C.E., 1949, Columbia University; M.S., Stanford University,
1969; Ph.D., Columbia University, 1961; P.E.

TOMBS, Averett Snead, Associate Professor of Zoology.
B.S., University of Richmond, 1954; M.S., Virginia Polytechnic Institute, 1956; Ph.D.,
Rutgers University, 1961; Post Doctorate, University of Virginia, 1965-66.

TOOMEY, Robert Edward, Adjunct Professor of Industrial Management.
B.S., Harvard University, 1940; M.Ed., Boston University, 1941; M.S., Columbia
University, 1951; LL.D., Clemson University, 1968.

TRAPPELL, Jerry Eugene, Instructor in Industrial Management.

TRASK, David Stephens, Instructor in History.
B.A., University of the South, 1966; M.A., University of Nebraska, 1968.

TREVILLIAN, WALLACE DABNEY, Dean, College of Industrial Management and
Textile Science; Professor of Economics.
B.S., 1940, M.A., 1947, Ph.D., 1954, University of Virginia.

* On leave.
TURK, DONALD EARLE, Associate Professor of Poultry Science.

TURNER, JAMES A., JR., Assistant Professor of Industrial Management.

TURNER, JOE MICHAEL, Instructor in Sociology.

TURNER, RAYMOND CLYDE, Assistant Professor of Physics.
B.S., Carnegie Institute of Technology, 1960; Ph.D., University of Pittsburgh, 1966.

TURNER, THOMAS GEORGE, JR., Instructor of History and Visual Studies.
B.S., Illinois State University, 1968.

TURNIPSEED, SAMUEL GUY, Professor of Entomology and Economic Zoology, Edisto Experiment Station.
B.A., University of North Carolina, 1956; M.S., Clemson University, 1958; Ph.D., North Carolina State University, 1961.

TUTTLE, JACK EDWIN, Associate Professor of History and Political Science.

TYNDALL, ELMER NEWTON, Head of Aerospace Studies Department; Professor of Aerospace Studies.

ULBRICH, CARLTON WILBUR, Assistant Professor of Physics.

ULBRICH, HOLLEY H., Part-time Assistant Professor of Economics.

UMPHLETT, CLYDE JEFFERSON, Head of Botany Department; Associate Professor of Botany.

UNDERWOOD, RICHARD ALLAN, Assistant Professor of English.

USREY, MALCOLM ORTHELL, Associate Professor of English.

VAN BLARICOM, LESTER OSCAR, Professor of Horticulture.
B.S., 1938, M.S., 1940, Ch.E., 1954, Oregon State University.

VAN LEAR, DAVID HYDE, Associate Professor of Forestry.

VAUGHN, EDWARD A., Assistant Professor of Textiles.

VAUGHN, JOHN RICHARD, JR., Lecturer in Recreation and Park Administration.
B.S., Clemson University, 1961; M.D., Medical University of South Carolina, 1966.

VELEZ, ALEJANDRO, Instructor of Economics.

VERICH, THOMAS MICHAEL, Instructor in History.

VIGLIONE, AUGUST, Assistant Professor of History.

VOGEL, HENRY ELLIOTT, Dean, College of Physical, Mathematical, and Biological Sciences; Professor of Physics.
B.S., Furman University, 1948; M.S., 1950, Ph.D., 1962, University of North Carolina.

VON ROSENBERG, JOSEPH LESLIE, JR., Associate Professor of Chemistry.

VON TUNGELN, GEORGE ROBERT, Associate Professor of Agricultural Economics and Rural Sociology.
B.S., 1951, M.S., 1956, Southern Illinois University.

WALKER, RICHARD FRANCIS, Assistant Professor of Zoology.
B.S., Rutgers University, 1961; M.S., New Mexico State University, 1969; Ph.D., Rutgers University, 1971.

WALKER, SARAH ANN, Assistant Professor of Recreation and Park Administration.
B.S., University of Wisconsin, 1964; M.S., Indiana University, 1966.
WALKER, WALTER SAXON, Associate Professor of Poultry Science.
B.S., Clemson University, 1951; M.Ed., University of South Carolina, 1957.

WALLENUS, KENNETH TED, Associate Professor of Mathematical Sciences.

WALTERS, JOHN VERNON, Professor of Textiles.
B.S., 1933, M.S., 1952, Clemson University.

WANG, SAMUEL, Associate Professor of History and Visual Studies.

WANNAMAKER, JOHN MURRAY, Associate Professor of Industrial Management.
B.S., 1950, M.S., 1960, University of South Carolina; Ph.D., Louisiana State University, 1966.

WANNAMAKER, PATRICIA WALKER, Associate Professor of German.
A.B., 1950, M.A., 1958, University of South Carolina; Ph.D., Louisiana State University, 1964.

WARNER, JOHN ROBINSON, Professor of Forestry.

WASHBURN, JAMES RUSSEL, Assistant Professor of Architecture.
B.S., New Mexico State University, 1957; M.Arch., Harvard University, 1959; A.I.A.

WATERS, WASHINGTON MARIAN, Lecturer in Medical Technology; Co-director, School of Medical Technology, Greenville General Hospital.
B.S., Furman University, 1948; M.D., Medical University of South Carolina, 1952.

WATKINS, BETTY PALMER, Assistant Professor of Vocational Education.
B.S., Winthrop College, 1951; M.S., University of Tennessee, 1962.

WATSON, CHARLES HUGH, Associate Professor of English.

WATSON, SAMUEL MCIVER, JR., Professor of Mechanical Engineering.
A.B., Elon College, 1936; B.S., 1937, M.S., 1942, North Carolina State University; Ph.D., Duke University, 1956.

WEBB, BYRON KENNETH, Associate Professor of Agricultural Engineering.
B.S., 1955, M.S., 1962, Clemson University; Ph.D., North Carolina State University, 1966; P.E.

WEBB, LLOYD GEORGE, Associate Professor of Entomology and Economic Zoology.
B.S., University of Georgia, 1938; M.S., Auburn University, 1941; Ph.D., Ohio State University, 1949.

WELTER, JOHN FINLAY, Assistant Professor of Poultry Science.
B.S., 1951, M.S., 1964, Clemson University.

WEST, SHARON GILL, Visiting Instructor in Education.

WEST, WILLIAM ELMER, Assistant Professor of Industrial Education.
B.S., Ohio University, 1958; M.A., 1964, Ph.D., 1969, Ohio State University.

WHEELER, RICHARD FERMAN, Head of Department of Animal Science; Professor of Animal Science.
B.S., 1941, B.S., 1947, Clemson University; M.S., Mississippi State University, 1949; Ph.D., University of Illinois, 1954.

WHITE, CHARLIE RAYMOND, Assistant Professor of Recreation and Park Administration.
B.S., North Carolina State University, 1966; M.S., Indiana University, 1967.

WHITE, DAVID FRANKLIN, JR., Assistant Professor of Philosophy.

WHITE, ROBERT HENRY, * Assistant Director of Research Coordinating Unit and Associate Professor of Vocational Education.
B.S., 1954, M.A., 1966, New Mexico State University; Ph.D., Ohio State University, 1967.

WHITEHURST, CLINTON HOWARD, JR., Head of Industrial Management Department; Professor of Industrial Management.
B.S., 1957, M.A., 1958, Florida State University; Ph.D., University of Virginia, 1962; Post Doctorate Edinburgh University, 1970.

WHITLEY, HARRETT ELLIOTT, Instructor in Nursing, Associate Degree Program.
B.S., Queens College, 1962; M.N., Emory University, 1969.

* On leave.
Whitney, John Barry, Jr., Professor of Botany.
B.S., University of Georgia, 1935; M.S., North Carolina State University, 1938; Ph.D., Ohio State University, 1941.

Whitten, William Clyde, Jr., Professor of Economics.
B.S., Clemson University, 1947; M.S., Georgia Institute of Technology, 1950; Ph.D., University of Alabama, 1964.

Wilcox, Lyle Chester, Associate Dean for Professional Studies and Acting Head, Electrical and Computer Engineering Department; Professor of Electrical and Computer Engineering.

Wiley, William Henry, Dean, College of Agricultural Sciences; Professor of Poultry Science.
B.S., 1936, M.S., 1937, Ph.D., 1949, Texas A&M University.

Willard, William Kenneth, Associate Professor of Zoology.
B.S.F., 1957, M.S., 1960, University of Georgia; Ph.D., University of Tennessee, 1965.

Willey, Edward Parker, Associate Professor of English.

Williamson, Paul Silas, Associate Professor of Agricultural Economics and Rural Sociology.
B.S., 1934, M.S., 1961, Clemson University.

Williams, Georgia Angela, Lecturer in German.
B.A., Clemson University, 1971.

Williams, John Boyce, District 4-H and Youth Development Coordinator; Assistant Professor of Agricultural Education.
B.S., Clemson University, 1938.

Williams, John Newton, II, Professor of Animal Science.
B.S., Alabama Polytechnic Institute, 1950; M.S., Mississippi State University, 1961; Ph.D., University of Tennessee, 1965.

Williams, Woodie Prentiss, Head of Department of Food Science; Professor of Food Science.
B.S., 1953, M.S., 1957, Mississippi State University; Ph.D., Texas A&M University, 1960.

Williamson, Horace Hampton, Associate Professor of Architecture.
B.S., 1951, B.Arch., 1952, Georgia Institute of Technology; M.Arch., M.S., Rensselaer Polytechnic Institute, 1969.

Willis, Samuel Marsh, Dean of University Extension; Professor of Industrial Management.
B.S., Clemson University, 1950; M.S., Georgia Institute of Technology, 1955; Ph.D., University of Alabama, 1962.

Wilson, Hugh Haynes, Professor of Ceramic Engineering.
B.S., 1948, M.S., 1949, North Carolina State University; Ph.D., Ohio State University, 1954; P.E.

Wilson, Thomas Hinds, Assistant Professor of Industrial Management.

Wilson, Thomas Virgil, Professor of Agricultural Engineering.
B.S., Clemson University, 1942; M.S., Purdue University, 1949; P.E.

Winston, Edmund Walter, Instructor in Music.

Winter, James Paul, Associate Professor of English.
A.B., Marshall University, 1930; M.A., Columbia University, 1932.

Wise, John Frederick, Assistant Professor of Animal Science.
B.S., 1949, M.S., 1965, Clemson University.

Witcher, Wesley, Professor of Plant Pathology and Physiology.
B.S., 1949, M.S., 1958, Virginia Polytechnic Institute; Ph.D., North Carolina State University, 1960.

Witherspoon, Gayland Brooks, Head of Architectural Studies Department; Associate Professor of Architecture.

* On leave.
WOLF, James S., Associate Professor of Materials Engineering.
B.S., 1954; M.S., 1960, Case Institute of Technology; Ph.D., University of Florida, 1965.

Wolla, Maurice LeRoy, Associate Professor of Electrical and Computer Engineering.
B.S., North Dakota State University, 1950; Ph.D., Michigan State University, 1966.

Wood, Kenneth Lee, Associate Professor of Physics.
B.S., Carston-Newman College, 1932; M.S., University of Tennessee, 1934.

Woodell, Charles Harold, Assistant Professor of English.

Woodruff, James Raymond, Associate Professor of Agronomy and Soils.
B.S., 1958; M.S., 1964, North Carolina State University; Ph.D., Clemson University, 1967.

Wooten, Thomas Ernest, Assistant Professor of Forestry.

Woolie, Thomas Bruce, Jr., Assistant Professor of Economics.

Yang, Tah-teh, Professor of Mechanical Engineering.
B.S., Shanghai Institute of Technology, 1948; M.S., Oklahoma State University, 1957;
Ph.D., Cornell University, 1961.

Young, Joseph Laurie, Professor of Architecture.
B.Arch., University of Texas, 1950; M.Arch., Georgia Institute of Technology, 1955;
A.I.A.

Zant, Robert Franklin, Assistant Professor of Industrial Management.

Zehr, Eldon Irvin, Assistant Professor of Plant Pathology and Physiology.

Ziegler, Joseph Anthony, Assistant Professor of Economics.
B.A., St. Mary's College, 1967; Ph.D., University of Notre Dame, 1971.

Zielinski, Paul Bernard, Associate Professor of Engineering Mechanics.
B.S.C.E., Marquette University, 1956; M.S., 1961, Ph.D., 1965, University of Wisconsin;
P.E.

Zimmer, Jack Adrian, Assistant Professor of Mathematical Sciences.

Zimmerman, James Kenneth, Assistant Professor of Biochemistry.
B.S., University of Nebraska, 1965; Ph.D., Northwestern University, 1969.

Zink, William Talbott, Associate Professor of Electrical and Computer Engineering.
B.S., United States Naval Academy, 1932; M.S. (E.E.), Drexel Institute, 1955; P.E.

Zipin, Paul Mark, Assistant Professor of Economics.
CLEMSON UNIVERSITY AT GREENVILLE

DAY, FRANK LOUIS, Director; Assistant Professor of English.
B.S., Gorham State College, 1954; M.A., University of Tennessee, 1959.

DAY, ALAN SCOTT, Instructor in Chemistry.
B.S., Hampden-Sydney College, 1966; Ph.D., Clemson University, 1971.

DICKENS, LARRY LUTHER, Instructor in Chemistry.
B.S., David Lipscomb College, 1966.

EDWARDS, MARY LANG OLESEN, Instructor in Biology.
B.A., Agnes Scott College, 1966; M.S., Clemson University, 1969.

FREEMAN, KELLER CUSHING, Part-time Instructor in Philosophy.
B.A., Erskine College, 1958; Ph.D., University of Georgia, 1963.

GRIMES, ALBERTA TUCKER, Guidance Counselor and Instructor in Education.
B.S., Southern University, 1934; M.A., Columbia University, 1951.

IBRAHIM, IRISS BRANN, Instructor in Mathematics.
B.S., Southeastern Louisiana College, 1964; M.S., Clemson University, 1966.

JACOBS, GLENN KEITH, Instructor in Mathematics.
B.A., University of Southern Mississippi, 1964; M.S., Clemson University, 1968.

RICE, MARGARET KOONTZ, Instructor in French.
A.B., Greensboro College, 1941; M.A., Columbia University, 1944.

ROMPALA, JOHN THADDEUS, Assistant Professor of Physics.
B.S., DePaul University, 1964; Ph.D., Clemson University, 1969.

SKELTON, LYND A WORLEY, Instructor in History.

STRICKLER, JOHN ROBERT, Instructor in English.
A.B., Bridgewater College, 1966; M.A., Appalachian State University, 1968.

THAKER, HARSHADRAY HARI LAL, Instructor in Economics.

VAN HOY, MILTON SPACTLER, Instructor in English and French.

WATSON, KATHERINE RAMSEY, Instructor in Mathematics.
B.A., College of William and Mary, 1938; M.M., University of South Carolina, 1965.

CLEMSON UNIVERSITY AT SUMTER

ANDERSON, JACOB CLARENCE, JR., Director; Assistant Professor of Mathematics.
B.S., University of Southwestern Louisiana, 1964; M.S., Clemson University, 1965.

ADAMS, PORTER HUGUENIN, JR., Instructor in Economics.
B.A., Clemson University, 1964; M.A., University of South Carolina, 1966.

BEATY, JAMES W., Instructor in English.

CAMERON, JOSEPH PRICE, Assistant Professor of Mathematics.
B.S., The Citadel, 1943; M.S., University of Georgia, 1950.

CAMPBELL, JAMES ALVIN, Instructor in History.
A.B., Erskine College, 1960; M.A., University of South Carolina, 1967.

COLLINS, SAMUEL ROBERT, Assistant Professor of Chemistry.
B.S., Harding College, 1946; M.S., Louisiana State University, 1953.

CRAIG, E. LEE, Instructor in English.

DARMODY, GORDON RICHARD, Assistant Professor of Physics.
B.A., Union College, 1953; M.Ed., Sam Houston State Teachers College, 1957.

DOYLE, JOHN JOSEPH, III, Assistant Professor of English.

LOGUE, JOHN FRANK, Instructor in Biology.

MULLEN, JOHN, JR., Instructor in Mathematics.
B.S., United States Naval Academy, 1944; M.A.T., Duke University, 1965.

NEWTON, MERLE ROBERT, Part-time Instructor in Sociology.
B.A., Baker University, 1951; M.A., Kansas University, 1953.

ROLLINGS, RAYMOND S., Instructor in Engineering.
B.C.E., University of North Carolina, 1947; M.C.E., Rensselaer Polytechnic Institute, 1950.
EMERITUS FACULTY

ALBERT, WILLARD BENJAMIN, B.S., M.S., Ph.D., Associate Professor Emeritus of Botany and Bacteriology.

ARMSTRONG, GEORGE MILLER, B.S., M.A., Ph.D., Head Emeritus of Botany and Bacteriology Department; Professor Emeritus of Botany and Bacteriology; Plant Pathologist Emeritus.

ARNDT, CHARLES HOMER, A.B., M.S., Ph.D., Plant Pathologist Emeritus.

AULL, GEORGE HUBERT, B.S., M.S., Ph.D., Head Emeritus of Agricultural Economics and Rural Sociology Department; Professor Emeritus of Agricultural Economics and Rural Sociology; Agricultural Economist Emeritus.

BROCK, DEWEY CLIFTON, B.S., M.A., Associate Professor Emeritus of Industrial Education.

BROWN, HUGH MONROE, B.A., M.A., Ph.D., Dean Emeritus, School of Textiles.

BROWN, JONAS WILLIAM, B.S., M.A., Associate Professor Emeritus of Mathematics.

BRUNER, MARLIN HARNER, B.S., M.F., Associate Professor Emeritus of Forestry; Forest Manager Emeritus, The Clemson Forest.

CAMPBELL, THOMAS ALEXANDER, Jr., B.S., M.E., Head Emeritus of Textile Department; Professor Emeritus of Textile Department; Professor Emeritus of Textiles.

CARTEE, EUGENE FRANKLIN, B.S., M.S., Professor Emeritus of Textiles.

CLARKE, ELWYN LORENZO, B.S. in C.E., C.E., Head Emeritus of Civil Engineering Department; Professor Emeritus of Civil Engineering.

COOPER, HERBERT PRESS, B.S., M.S., Ph.D., Dean Emeritus, School of Agriculture; Director Emeritus of South Carolina Agricultural Experiment Station; Professor Emeritus of Agronomy; Agronomist Emeritus.

EARLE, SAMUEL BRODUS, A.B., A.M., M.E., LL.D., Dean Emeritus, School of Engineering; Professor Emeritus of Mechanical Engineering; Director Emeritus, Engineering Experiment Station.

EPTING, CARL LAFAYETTE, A.B., A.M., Head Emeritus of Social Sciences Department; Professor Emeritus of History and Government.

FARRAR, MILTON DYER, B.S., M.S., Ph.D., Dean Emeritus, School of Agriculture; Senior Scientist Emeritus in Agriculture and Biological Sciences; Professor Emeritus of Entomology and Zoology.

FOSTER, HAROLD HOMER, A.B., M.A., Ph.D., Associate Professor Emeritus of Botany and Bacteriology.

GAGE, GASTON, B.S., M.Ed., Dean Emeritus of the School of Industrial Management and Textile Science; Head Emeritus of Yarn Manufacturing Department; Professor Emeritus of Carding and Spinning.
Goodale, Ben Edmund, B.S., M.S., Head Emeritus of Dairy Science Department; Professor Emeritus of Dairy Science; Dairy Scientist Emeritus.

Green, Joseph Coleman, B.A., M.A., Ph.D., Professor Emeritus of English.

Hodges, Baxter Howard, B.S., Assistant Professor Emeritus of Chemistry.

Huff, Lorenz Ditmar, A.B., M.S., Ph.D., Head Emeritus of Physics Department; Professor Emeritus of Physics.

Hunter, Howard Louis, B.Chem., Ph.D., Dean Emeritus, College of Arts and Sciences; Professor Emeritus of Chemistry.

Kirkley, Francis Edward, B.S., M.S., Associate Professor Emeritus of Agricultural Education.

Lehotsky, Koloman, Ing., Ph.D., Head Emeritus of Forestry Department; Professor Emeritus of Silviculture.

Lindsay, Joseph, Jr., A.B., M.S., Head Emeritus of Textile Chemistry and Dyeing Department; Professor Emeritus of Textile Chemistry and Dyeing.

Lindsey, Tate Jefferson, B.A., Ph.D., Professor Emeritus of Physics.

McCUTCHEEN, Alan Johnstone, B.S., C.E., Associate Professor Emeritus of Civil Engineering.

McGarity, Hugh Harris, B.F.A., M.F.A., Ph.D., Professor Emeritus of Music Education.

McKenna, Arthur Ernest, B.S., M.S., Senior Professor Emeritus of Textiles.

Marshall, John Logan, B.S., Head Emeritus of Industrial Arts Department; Professor Emeritus of Industrial Arts.

Monroe, James Beasley, B.S., M.S., Head Emeritus of Agricultural Education Department; Professor Emeritus of Agricultural Education.

Musser, Albert Myers, B.S., Head Emeritus of Horticulture Department; Professor Emeritus of Horticulture; Horticulturist Emeritus.

Paden, William Reynolds, B.S., M.S., Ph.D., Agronomist Emeritus.

Rausch, Karl William, B.S., M.E., Professor Emeritus of Mechanical Engineering.

Reed, Albert Raymond, A.B., M.S., Associate Professor Emeritus of Physics.

Reed, Charles Albert, A.B., M.S., Ph.D., Professor Emeritus of Physics.

Rhine, Orestes Pearl, A.B., A.M., Ph.D., Head Emeritus of Modern Language Department; Professor Emeritus of Modern Languages.

Riley, James Alvin, B.S., M.S., Superintendent Emeritus of Sandhill Experiment Station; Agronomist Emeritus of Sandhill Experiment Station.

Roderick, Donald Barclay, B.A., Chemistry Assistant Emeritus.

Rogers, William Bryan, B.S., Superintendent Emeritus of Edisto Experiment Station.

Rosenkranz, Duane Benjamin, A.B., M.A., Professor Emeritus of Botany.

Rush, John Millard, A.B., M.S., Ph.D., Professor Emeritus of Botany and Bacteriology.

Rutledge, Ray Watson, B.S., M.A., Ph.D., Professor Emeritus of Botany.

St. Hubert, Robert LaMontagne, P.A.C.F., Visiting Professor Emeritus of Architecture.

Shackelford, MacFarland, B.S., Assistant Professor Emeritus of Physics.

Sheldon, Dawson Clement, B.S., M.A., Ph.D., Head Emeritus of Mathematics Department; Professor Emeritus of Mathematics.

Simpson, Francis Marion, B.S., Visiting Professor Emeritus of Agricultural Economics.

Stribling, Bruce Hodgson, B.S., M.S., Associate Professor Emeritus of Agricultural Education.
STUART, CHARLES MORGAN, A.B., M.A., Associate Professor Emeritus of Mathematics.

TARRANT, WILLIAM EDWARD, Sr., B.S., M.Ed., Associate Professor Emeritus of Textiles.

THOMSON, DANIEL PARK, Jr., B.S., M.Ed., Associate Professor Emeritus of Textiles.

TRIVELY, ILO ALLEY, B.S., M.S., P.E., Professor Emeritus of Civil Engineering.

WAITE, EDWIN EMERSON, JR., B.S., M.A., Associate Professor Emeritus of Sociology and Psychology.

WARE, ROBERT EDWARD, B.S., Associate Professor Emeritus of Zoology.

WASHINGTON, WILLIAM HAROLD, B.S., M.S., Dean Emeritus, School of Education; Professor Emeritus of Vocational Education.

WHITE, THOMAS ARTHUR, B.S., M.S., Ph.D., Professor Emeritus of Agricultural Education.

WILLIAMS, WILLIAM BRATTON, B.S., M.S., Associate Professor Emeritus of Textiles.

WILSON, MILNER BRADLEY, JR., A.B., A.M., Associate Professor Emeritus of English.

LIBRARY STAFF

JOHN WALLACE GORDON GOURLAY, A.M.L.S. Director of the Library

MYRA ANN ARMISTEAD, M.L.S. Documents Librarian

MARY EMERSON BRAFF, B.L.S. Cataloger

PEGGY H. COVER, M.S. . . Head, Science, Technology and Agriculture Division

LOIS JONES GOODMAN, B.S. Cataloger

AGNES ADGER MANSFIELD, M.L.S. Assistant Reference Librarian

SUE H. MOSS, B.S. in L.S. Cataloger

MARGY H. NOWACK, A.B. Acquisitions Librarian

DOROTHY CHAUNCY PORTER, M.L.S. Head, Social Sciences and Humanities Division

GENEVIEVE L. REIDY, M.S. Reference Librarian

MARSHA SIMPSON STEPHENSON, M.L. Cataloger

SOPHIA E. SULLIVAN, M.S. Head, Catalog Department

PRISCILLA H. SUTCLIFFE, M.S.L.S. Special Collections Librarian

MARIAN HULL WITHINGTON, M.S.L.S. Reference Librarian

LAWRENCE R. WOOD, M.S.L.S. Serials Librarian

STANDING COMMITTEES OF THE UNIVERSITY, 1971-72

ADMISSIONS:

CURRICULUM:

V. Hurst, ex officio, Chairman; B. D. Barnett, L. W. Gahan, R. F. Hawthorne, R. H. Hunter, F. J. Keller, D. W. Lyons, W. H. Owens, J. H. Rodgers, Regina Thompson, M. L. Wolla, T. O. Young, H. M. Cox, ex officio; C. B. Green, ex officio; G. Labecki, ex officio; H. F. Landrith, ex officio; H. E. McClure, ex officio; W. H. D. McGregor, ex officio; L. G. Rich, ex officio; Corinne Sawyer, ex officio; A. E. Schwartz, ex officio; W. D. Trevillian, ex officio; K. N. Vickery, ex officio; H. E. Vogel, ex officio; W. H. Wiley, ex officio; S. M. Willis, ex officio.
ETHICS AND RELIGION:
C. E. Raynal, chairman; W. E. Copenhaver, W. T. Cox, T. C. Davis, V. Hurst, T. Murphey, H. R. Reynolds, L. B. Smith, B. E. Trent.

FACULTY BASIC RESEARCH:

FINE ARTS SERIES:

GRADUATE COUNCIL:

HONORS PROGRAM COUNCIL:

IMPROVEMENT OF UNDERGRADUATE TEACHING:

LIBRARY:

PATENT:

SAFETY AND FIRE PREVENTION COMMITTEE:

SCHEDULE:

SCHOLARSHIPS AND AWARDS:
N. L. Olsen, Jr., ex officio, chairman; N. R. Bauld, J. D. Davenport, R. H. Hunter, J. T. Lazar, H. E. Morgan, Jr., C. M. Poe, Susan Rockwell,
P. A. Steiner, J. R. Warner, J. C. Wells, W. C. Whitten, A. M. Bloss, ex officio; C. E. Coakley, ex officio; Susan Delony, ex officio; K. N. Vickery, ex officio.

SPECIAL ADVISORY COMMITTEE FOR DISPOSAL OF POISONOUS CHEMICALS:

SPECIAL ADVISORY COMMITTEE ON USE OF RADIOACTIVE MATERIALS:

TRAFFIC AND PARKING COMMITTEE:

FACULTY SENATE
ADMINISTRATION OF BUSINESS AND FINANCIAL AFFAIRS

Melford A. Wilson, B.S. in Commerce ... Vice President for Business and Finance and Comptroller
Melvin Eugene Barnett, M.S ... Budget Director
William F. Geer, Jr., B.S .. Senior Accountant
Vivian Raymond Harrell ... Data Processing Supervisor
Elmer H. McCarter, M.B.A .. Financial Analyst
Alden Lee Mc Cracken, B.S .. Supervisor of Grants and Contracts
Clyde E. Woodall, M.S ... Administrative Specialist

ACCOUNTING DIVISION
Trescott Newton Hinton, B.A ... Director of Accounting
Carl Edwin Henson, B.S ... Payroll Supervisor
Coy Harold Howard ... Accounts Payable Supervisor
James Thomas Roberts, B.S .. Accountant
William Allen Thompson, B.S .. Accounting Manager
Joseph Shelor Walker, B.S ... Bursar

PERSONNEL DIVISION
John B. Gentry, Ed.M ... Director of Personnel
Ray L. Thompson, B.S ... Associate Personnel Director
Walter E. Berry, B.S ... Safety Coordinator
William J. Stamey ... Insurance Assistant

PHYSICAL PLANT DIVISION
Roy Marcus Rochester, B.E.E., P.E .. Director of Physical Plant Division
Daniel Jerry Boyer, M.Arch., A.I.A .. Superintendent of Planning and Engineering
James Cleveland Carey, B.S .. Superintendent of Grounds and Special Services
George Carlisle Jones, B.S. in E.E .. Superintendent of Buildings
James Durham Martin, M.S .. Assistant Superintendent of Grounds and Special Services
Walter Aubrey Moore, B.S. in M.E .. Assistant Plant Engineer
Julian Leonidas Murph, B.S. in C.E., P.E .. Assistant Superintendent of Planning and Engineering
James Allen Stanley, Jr., B.S. in M.E ... Supervisor of Work Order Planning
Jack William Weeden ... Chief of Security

PURCHASING DIVISION
Earl Spencer Liberty, B.S ... Director of Purchasing
Jack Norman Wilson, B.A ... Senior Accountant, Property Control

AUXILIARY ENTERPRISES
Henry Hughes Hill, Jr., B.S ... Director of Auxiliary Enterprises
William Drye Cromer ... Supervisor, Central Office Services
Charles Dimmock ... Assistant Director of Auxiliary Enterprises
Thomas Roy Rhymes ... Manager, Laundry
Ernest Chisolm Watson, B.S .. Associate Director of Housing
John William Young, Jr., B.M.E .. Manager, Auxiliary Services

THE CLEMSON HOUSE HOTEL
Verner Eugene Cathcart .. Manager

ADMINISTRATIVE COUNCIL

[50]
ADMINISTRATION OF DEVELOPMENT ACTIVITIES

Stanley G. Nicholas, B.S. Vice President for Development

ALUMNI RELATIONS
Joseph E. Sherman, B.S. Director of Alumni Relations
George M. Moore, B.S. Associate Director of Alumni Relations
John C. Mann, B.A. Alumni Editor
Joseph J. Turner, B.S. Alumni Field Representative

JAMES L. STROM, B.S. Director

PLANNING AND CORPORATE RELATIONS

UNIVERSITY COMMUNICATIONS CENTER
William Harry Durham, M.A. Director, University Communications Center
James Pearson Burns Manager, Technical Services
Earl Thurman Cosens Chief Engineer
Diane E. Hadley, B.A. Artist
Charles William Haralson Supervisor, Central Photography
William E. Osteen Producer-Director
Ann H. Price, B.A. Writer

CLEMSON ALUMNI ASSOCIATION
1971

Officers
President Thomas C. Breazeale, '42 Knoxville, Tenn.
Vice President Ernest B. Rogers, '48 Clemson, S. C.
Secretary Joe Sherman, '34 Clemson, S. C.
Treasurer Trescott Hinton Clemson, S. C.

National Council
District 1 Daniel S. Lesesne, '38 Mt. Pleasant, S. C.
District 2 Virgil F. Linder, Jr., '69 Columbia, S. C.
District 3 Ernest B. Rogers, '48 Clemson, S. C.
District 4 I. L. Donkle, '49 Greenville, S. C.
District 5 John K. Benfield, '41 York, S. C.
District 6 Billy G. Rogers, '49 Dillon, S. C.
S. C. At-Large William G. DesChamps, '38 Bishopville, S. C.
Georgia Lawrence Starkey, '56 Atlanta, Ga.
N. Carolina J. Garner Bagnal, '34 Statesville, N. C.
U. S. At-Large Thomas C. Breazeale, '42 Knoxville, Tenn.
U. S. At-Large Davis T. Moorhead, '54 Annandale, Va.
Faculty Delegate Hugh H. Macaulay Clemson, S. C.
Student Delegate Gerry Hough, '72 Annapolis, Md.
Ex officio George H. Aull, Jr., '44 Alexandria, Va.
Ex officio Robert C. Edwards, '33 Clemson, S. C.
Ex officio Stanley G. Nicholas Clemson, S. C.
Ex officio T. Carroll Atkinson, Jr. Marion, S. C.
Ex officio Chris Suber, Jr. Anderson, S. C.
ADMINISTRATION OF STUDENT AFFAIRS

WALTER THOMPSON COX, B.S. Vice President for Student Affairs and Dean of Students
KENNETH NOTLEY VICKERY, B.S. Assistant Vice President for Student Affairs and Dean of Admissions and Registration

OFFICE OF THE DEAN OF STUDENTS
WALTER THOMPSON COX, B.S. Dean of Students
WILLIAM V. BOST, J.D. Assistant to the Vice President for Student Affairs
FRANK ALAN BURTNER, Ph.D. Director of Fraternity Affairs
CATHY ANNE CAMPBELL, B.A. Assistant Dean of Women
GEORGE EDWARD COAKLEY, B.S. Assistant Dean of Students
SUSAN GOODWIN DELONY, M.S. Assistant Dean of Students
FRANK JAMES HOWARD, B.S. Assistant to the Vice President for Student Affairs
JOHN C. NEWTON, B.S. Assistant Dean of Men

OFFICE OF ADMISSIONS, REGISTRATION, AND FINANCIAL AID
KENNETH NOTLEY VICKERY, B.S. Dean of Admissions and Registration
GERTRUDE RAMSAY BAILEY Recorder
EUGENIE VENTRE BARTMESS, M.S. Schedule Coordinator
REGINALD JUSTIN BERRY, B.S. Registrar
ARNOLD MANDIGO BLOSS, B.S. Director of Financial Aid
ALBERT B. MARX, M.S. Associate Director, Admissions and Registration
WILLIAM RICHARD MATTOX, M.S. Assistant Director of Admissions
STANLEY B. SMITH, JR., M.A. Admissions Officer

RESIDENCE HALLS OFFICE
MANNING N. LOMAX, B.S. Director of Residence Halls
JOEL L. FELSBURG, M.S. Manager of Residence Halls
ROBERT W. ROBINSON, JR., B.S. Manager of Residence Halls

PLACEMENT OFFICE
DAVIS GREGORY HUGHES, M.Ed. Director of Placement

COUNSELING CENTER
VIRGINIA SMITH HARDIE, Ed.D. Counseling Psychologist
JOHN RANDOLPH ANDERSON, M.S. Counselor
JOHN F. MULKEEN, Ed.D. Counselor

STUDENT HEALTH SERVICE
JUDSON ELAM HAIR, M.D. Director of Student Health Service
DONALD K. FREEMAN, M.D. Psychiatrist
JOHN RICHARD VAUGHN, M.D. Physician
RUTH DURHAM, R.N. Director of Nurses

MUSIC ACTIVITIES
JOHN HARRISON BUTLER, Ed.D. Director of Concert Band and Manager of Concert Series
BRUCE F. COOK, M.A. Director of Tiger Band
JAMES KELLY COPENHAVER, M.M.E. Acting Director of Tiger Band
JOSEPH EARL JACKSON, M.A. Director of Choral Music

* On leave.

[52]
UNIVERSITY UNION AND YMCA

BUFORD E. TRENT, M.E. Director of University Union and YMCA
NASH NEWTON GRAY, B.S. Associate Director, YMCA
OTIS DUELL NELSON, M.R.E Associate Director, YMCA
and Foreign Student Adviser
WILLIAM CARLISLE WOOTEN, B.C.E Youth Director, YMCA

ATHLETIC STAFF

HENSLEE CLIFFORD MCLELLAN, M.S. Director of Athletics
GEORGE U. BENNETT, B.S. Assistant Director of Athletics
ROBERT C. BRADLEY, B.S. Sports Information Director
JAMES BANKS McFADDEN, B.S. Director of Intramural Athletics
EUGENE P. WILLIMON, B.S. Executive Secretary, IPTAY
DUANE FREDERICK BRULEY, Ph.D. Head Coach, Tennis
HAROLD N. COOLEDGE, Jr., Ph.D. Head Coach, Fencing
H. C. GREENFIELD, M.S. Head Coach, Track and Cross Country
IBRAHIM M. IBRAHIM, Ph.D. Head Coach, Soccer
CECIL WAYNE INGRAM, M.S. Head Coach, Football
ROBERT MORGAN JONES, B.S. Head Coach, Golf
TAYLOR OSBORNE LOCKE, B.A. Head Coach, Basketball
CARL MANNING McHUGH, B.S. Head Coach, Swimming
BILLY HUGH WILHELM, A.B. Head Coach, Baseball

ATHLETIC COUNCIL

K. N. VICKERY, Chairman; T. D. EFLAND, W. J. LANHAM, R. W. MOORMAN,
B. J. PROCHASKA, J. V. REEL, J. L. YOUNG, CORRINE SAWYER, President, Faculty
Senate, ex officio; G. H. AUL, JR., Alumni Member; T. C. BREAZEALE, Alumni
Member; T. C. ATKINSON, JR., IPTAY Member; CHRIS SUBER, IPTAY Member;
L. D. HEFNER, Student Member; W. T. LAVENDER, Student Member.

LITTLEJOHN COLISEUM

ROBERT WILLIAM SMITH, B.S. Supervisor of Littlejohn Coliseum

UNIVERSITY BOOKSTORE

JOHN C. CURETON Manager of University Bookstore

UNIVERSITY CANTEENS

F. D. MILLER Manager of University Canteens
PART II

INFORMATION
PART II—Information

GENERAL INFORMATION

Clemson is a land-grant, state-supported university. Clemson is fully accredited by the Southern Association of Colleges and Schools. Curriculums are accredited by the American Chemical Society, Engineers' Council for Professional Development, National Architectural Accrediting Board, and Society of American Foresters.

The fifty undergraduate and forty-eight graduate curriculums under the Colleges of Agricultural Sciences, Architecture, Education, Engineering, Forest and Recreation Resources, Industrial Management and Textile Science, Liberal Arts, Physical, Mathematical, and Biological Sciences, College of Nursing, and the Graduate School form a background of training for the hundreds of occupations and professions in which Clemson graduates engage. The University is organized on a basis whereby it retains a clear entity through the interrelationships of colleges, schools, and departments providing a well-balanced fundamental and general educational program.

The enrollment of Clemson has grown from 446 students at the opening of the University in 1893 to 8,890 for the first semester, 1971-72, including 485 at the Greenville and Sumter campuses. Since the opening of the University, through the first semester 1971-72, 64,283 students have attended Clemson, and of this number, 22,648 have been awarded the bachelor's degree. During this same period, 99 associate degrees, 1,856 master's degrees, and 237 Doctor of Philosophy degrees have been awarded.

ADMINISTRATIVE ORGANIZATION

The government of the University is vested in a Board of 13 members, including 6 elected by the Legislature and 7 life and self-perpetuating members, in accord with the Clemson will. The President of the University is the chief executive and administrative officer appointed by the Board of Trustees; and under the President there are four areas of administration, each headed by a chief administrative officer responsible to the President. The organizational units under each of these officers are outlined below:

I. Vice President for Academic Affairs and Dean of the University
Dean of Undergraduate Studies
 1. The University Library
 2. The Summer Sessions

Dean of Graduate Studies and University Research
 1. The Graduate School
 2. The Computer Center
 3. The Office of University Research

Dean of University Extension
 1. Clemson University at Greenville
 2. Clemson University at Sumter
 A. College of Agricultural Sciences
 B. College of Architecture
 C. College of Education
 D. College of Engineering
 E. College of Forest and Recreation Resources
 F. College of Industrial Management and Textile Science
 G. College of Liberal Arts
 H. College of Nursing
 I. College of Physical, Mathematical and Biological Sciences
 J. The Belle W. Baruch Institute in Forestry, Wildlife Science and Marine Biology
 K. Water Resources Research Institute

II. Vice President for Business and Finance and Comptroller
 A. Accounting Division
 B. Personnel Division
 C. Physical Plant Division
 D. Purchasing Division
 E. Auxiliary Enterprises
 F. The Clemson House Hotel

III. Vice President for Development
 A. Alumni Relations
 B. Public Relations
 C. Communications Center
 E. Deferred Gifts
 D. Planning and Corporate Relations
IV. Vice President for Student Affairs and Dean of Students
 A. Office of the Dean of Students
 B. Residence Halls Office
 C. Office of Admissions, Registration, and Financial Aid
 D. University Union and YMCA
 E. Music Activities
 F. Placement Office
 G. Counseling Center
 H. Athletic Department
 I. Student Health Service
 J. University Canteens
 K. University Bookstore
 L. Littlejohn Coliseum

REQUIREMENTS FOR ADMISSION

Beginning Freshmen. To receive consideration for admission to Clemson, the applicant must present a transcript of his high school record and submit an official copy of his scores for the College Board tests used as an entrance examination. In reaching an admissions decision, the examination scores along with the student’s academic preparation, rank in class, and the recommendation of the high school principal will be weighed carefully.

In addition, candidates may qualify for entrance by:

(1) Achieving satisfactory scores on the College Board examinations and presenting a South Carolina High School Certificate (awarded by certificate examination). This provision applies only to adult candidates 21 or more years of age or to those who have served at least two years of active duty in the Armed Forces.

(2) Demonstrating unusual academic ability as a non-high school graduate. In special cases candidates who possess superior high school records and whose College Board scores are above the average for the freshman class may be considered.

Transfer Candidates. Entrance examinations are required of many students in this category, but a number may omit this step. Detailed requirements in this regard are outlined in the sub-section dealing with this subject.

Regardless of one’s status relative to entrance examination requirements, all transfer applicants must have an original transcript of their records sent to Clemson directly from each college or university attended. Also, unless so stated on the transcript, the candi-
date will need to present statements of honorable dismissal and of eligibility to return to the institution last attended.

Applicants meeting the requirements outlined above will be considered carefully with regard to the quality of their credentials. If accepted, work completed in other institutions with a grade at least one letter-grade higher than the lowest passing mark may be evaluated for transfer in terms of equivalent courses in the Clemson curriculum of one’s choice.

All Applicants. Various nonintellective factors will be considered in a few cases where it is impossible to make a positive decision on the strength of aptitude and previous academic performance alone.

Application Forms. Forms to be used in applying for admission to the University may be obtained by writing the Office of Admissions and Registration, Clemson University, Clemson, S. C. 29631.

Entrance Examinations. All freshman candidates for admission—and many transfer applicants also—must complete the College Entrance Examination Board SCHOLASTIC APTITUDE TEST. Those who at accredited colleges have completed 30 or more semester hours, or its equivalent, with a “C” average or above on all work attempted are exempt from this requirement. This exception does not apply to those enrolled in technical institutes, or in noncollege parallel programs at institutions offering both transfer and terminal curriculums. For August enrollment, one needs to complete the SAT no later than the preceding January.

In addition and with the exception of those transferring acceptable college credit in mathematics, candidates should take one of the College Board Achievement Tests in mathematics as placement in this subject will be determined by the score one achieves. It is suggested that students sit for the Level I examinations; however, either Level I or Level II is acceptable.

Applicants who have completed two or more years of high school French, German, Russian, or Spanish and who will enroll in a curriculum which includes a modern foreign language should take the appropriate language achievement test. These candidates may qualify for advanced placement with credit in language on the basis of a satisfactory score on this test.

Students attending unaccredited private schools are strongly advised to complete three achievement tests, including English, mathematics, and one subject of their choice.

August applicants will need to complete all achievement testing no later than the preceding May. Usually it is to one’s advantage
to take the achievement tests in March of the senior year in high school.

Candidates who have completed the required tests previously may have their scores reported to Clemson by directing a request to the College Entrance Examination Board together with a fee of $2. Others may secure a BULLETIN OF INFORMATION and an application for the tests from their local high school or at one of the Board’s offices, the addresses of which are: P. O. Box 592, Princeton, New Jersey 08540, and for residents of the West, P. O. Box 1025, Berkeley, California 94701. Only those scores reported directly to the Clemson University Admissions Office from Princeton or Berkeley will be acceptable.

All candidates are reminded to forward applications for the entrance examinations as indicated in the Bulletin of Information, and not to Clemson University.

Applicants for enrollment in Architecture must also take the ARCHITECTURAL SCHOOL APTITUDE TEST which is given at most schools of architecture in November, January, and March. Applications for this test may be obtained from a school of architecture or from Educational Testing Service, Princeton, New Jersey 08540.

Advanced Placement by Examination. In addition to earning credit by the usual method involving classroom attendance, students may receive credit toward their degree by completing a course successfully by examination only. Freshmen interested in exempting some of the elementary courses in this manner should participate in the College Board Advanced Placement Examination program, and have the results of these tests sent to Clemson.

Campus Visits and the Orientation Program. Interviews are not required in considering candidates, nor will the results of interviews affect admissions decisions. Most prospective students, nevertheless, desire and actually need to visit the campus prior to enrollment. Accordingly, the University has scheduled during the summer months a series of two-day orientation programs for entering freshmen, transfer students and their parents. Moreover, all new students are expected to attend one of these sessions.

During orientation one will have the opportunity to discuss his educational objective with an adviser, to preregister for the fall semester, and to learn about student life. Transfer students have their transcripts evaluated and select appropriate courses for their first semester at Clemson.
Regularly scheduled orientation sessions will be held during the months of June and July, with specific dates to be announced later. Those transferring may find it difficult to schedule the appropriate courses if they fail to attend one of these regular sessions; however, a modified session will be conducted in connection with the opening of the fall session for those students living at great distances from the University.

Matriculation. Upon arrival for the opening of the session, new students report to the Office of Admissions and Registration to complete enrollment. A student’s matriculation is equivalent to his pledge to conform to the rules of the institution. Any admission gained or matriculation made irregularly is subject to cancellation.

Students from Other Countries. A limited number of well qualified students from other countries are accepted. The application for admission must be in English on the official application form furnished by the Office of Admissions and Registration. Official transcripts of all high school and college level work which the applicant has undertaken should accompany the application. Also, the international candidate must complete the entrance examination referred to above.

EDUCATIONAL BENEFITS FOR VETERANS AND WAR ORPHANS

The Veterans Administration provides educational assistance for veterans and children of deceased or totally disabled veterans who meet requirements of applicable laws and regulations. Any veteran or child of a deceased or totally disabled veteran should communicate with the nearest Veterans Administration Office to determine whether or not he is entitled to any educational benefits.

SELECTIVE SERVICE

Registration. For the benefit of students who become 18 years of age during the school year, provision has been made for such students to register for Selective Service in the Office of Admissions and Registration on the campus. The registration is then sent through channels to the registrant’s local board. Regulations provide that registration may be accomplished on the 18th birthday or within five days thereafter.

Deferment. Due to the changes occurring periodically, all registrants should keep themselves informed of current regulations governing deferments. Questions concerning student deferments may be referred to the Office of Admissions and Registration.
Army ROTC Deferment. PMS's are authorized to issue initial ROTC deferments (Class 1-D) for freshman cadets who are eligible upon enrollment. Deferments are maintained throughout the entire course for eligible cadets.

EXPENSES

Settlement of University Fees. The schedule of semester charges for all undergraduate students—full- or part-time, and auditing—is shown on the pages which follow. The entire semester's expenses are due and payable at the beginning of each semester, and no student is officially enrolled until all semester expenses have been satisfied. In special cases the University will accept at the beginning of a semester a noninterest bearing promissory note for a portion of the semester residence-hall rent and semester-plan board fee. Amounts up to $75 for room rent and $110 for board fee may be included in the note. In such cases, a note for the first semester charges will be due October 10, and a note for the second semester charges will be due March 1.

A $60 advance payment of room rent is required for a room reservation for the fall semester. This payment must be made by cash, check, or money order and should be sent to the Residence Halls Manager's Office with the completed "Student Application for Room Reservation" card not later than July 1. The $60 advance payment of room rent will be deducted from the amount otherwise due for the first semester's expenses. All other transactions relating to payments should be conducted with the Accounting Division. All checks and money orders should be made payable to Clemson University. A personal check given in payment of University expenses which is returned by the bank unpaid, immediately creates an indebtedness to the University.

The University reserves the right to adjust charges to current costs.

Past Due Student Accounts. Any indebtedness to the University which becomes past due immediately jeopardizes the student's enrollment, and no such student will be permitted to graduate or register for a subsequent semester or summer school term. Further, any student who fails to pay all indebtedness to the University may not be issued an honorable discharge, transcript, or diploma.

Refund of Academic Fees for Students Enrolled for Less than a Full Semester. No adjustments in charges will be made on a semester's tuition and fees after five weeks from the date classes begin for the semester. Charges for periods of attendance of five
weeks or less during a semester shall be made on the following basis:

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two weeks or less</td>
<td>20%</td>
</tr>
<tr>
<td>More than 2 but not more than 3 weeks</td>
<td>40%</td>
</tr>
<tr>
<td>More than 3 but not more than 4 weeks</td>
<td>60%</td>
</tr>
<tr>
<td>More than 4 but not more than 5 weeks</td>
<td>80%</td>
</tr>
<tr>
<td>More than 5 weeks</td>
<td>100%</td>
</tr>
</tbody>
</table>

Special provision has been made for a student who is required to discontinue his enrollment to report for active duty in the Armed Forces of the United States. Such students shall be charged for tuition, University fee, and medical fee on a daily pro rata basis, holidays excepted, instead of the percentage basis stated above, provided that such discontinuance of enrollment is the result of circumstances, conditions, or actions over which the student has no control.

Refund of Dining Hall and Residence Hall Fees. Specific information relating to living-expense refunds is given in the sections on dormitories and dining hall.

Schedule of Charges. The schedule of semester charges for the 1972-73 session is as follows:

SCHEDULE OF SEMESTER CHARGES 1972-73 SESSION
(The University reserves the right to adjust charges to current costs.)

Resident of South Carolina (Full-time Student)

<table>
<thead>
<tr>
<th>Charge</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$75.00</td>
</tr>
<tr>
<td>Matriculation Fee</td>
<td>5.00</td>
</tr>
<tr>
<td>University Fee</td>
<td>205.00</td>
</tr>
<tr>
<td>Medical Fee</td>
<td>35.00</td>
</tr>
</tbody>
</table>

Semester Total Excluding Room and Board $320.00

Nonresident of South Carolina (Full-time Student)

<table>
<thead>
<tr>
<th>Charge</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$200.00</td>
</tr>
<tr>
<td>Matriculation Fee</td>
<td>5.00</td>
</tr>
<tr>
<td>University Fee</td>
<td>430.00</td>
</tr>
<tr>
<td>Medical Fee</td>
<td>35.00</td>
</tr>
</tbody>
</table>

Semester Total Excluding Room and Board $670.00
Room:

West Campus (Air-Conditioned with Telephones)

Johnstone Hall: New Sections A, F $205.00
Johnstone Hall: Old Sections D, E, F 180.00
Bowen, Bradley, Donaldson, Norris, Wannamaker Halls 220.00
Benet, Cope, Geer, Sanders, Young Halls 205.00

East Campus (Air-Conditioned with Telephones)

Barnett, High Rise 3, Lever, Manning, Mauldin Halls ... 220.00

West Campus (Air-Conditioned without Telephones)

Johnstone Hall: Old Sections A, B, C 165.00

Board (5-day plan, Monday through Friday) 220.00
Board (7-day plan) ... 275.00

Part-time Student. Undergraduate students taking less than 12 semester credit hours will be charged each semester according to the following schedule. These fees do not provide for admission to athletic events, concert series, etc.

<table>
<thead>
<tr>
<th></th>
<th>S. C. Resident</th>
<th>Nonresident Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriculation Fee (nonrefundable)</td>
<td>$ 5.00</td>
<td>$ 5.00</td>
</tr>
<tr>
<td>Tuition (per semester hour)</td>
<td>6.00</td>
<td>16.00</td>
</tr>
<tr>
<td>University Fee (per semester hour)</td>
<td>14.00</td>
<td>28.00</td>
</tr>
</tbody>
</table>

Auditing. Charges for auditing are made each semester according to the following schedule:

<table>
<thead>
<tr>
<th></th>
<th>S. C. Resident</th>
<th>Nonresident Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition (per semester hour)</td>
<td>$ 3.00</td>
<td>$ 8.00</td>
</tr>
<tr>
<td>University Fee (per semester hour)</td>
<td>7.00</td>
<td>14.00</td>
</tr>
</tbody>
</table>

Graduate Students. For further information concerning advanced degrees see *The Graduate Bulletin*, which may be obtained from the Office of the Dean of Graduate Studies and University Research.

Late Registration Service Charge. Registration for classes is scheduled for specific days, and certain definite procedures are outlined to prevent or reduce the problems incident to late registration. A student has not completed registration until all required steps have been taken, the final being the return of the Matriculation Card, the Student Directory Card, and if not preregistered for classes, the properly signed Class Registration Card to the Office of Admissions and Registration. Any student failing to register on the specified class registration days will incur a service charge of $10.
Late Payment Fee. Any student who registers for classes on or before a designated date each semester has three additional working days to make satisfactory settlement of all expenses without being charged a Late Payment Fee. Once begun, a Late Payment Fee of $5 per day will be charged until satisfactory settlement of all fees is made.

Definition of Student Residency — Higher Education

A. The word “student” as hereinafter used shall mean any person enrolled for studies in any state institution. The word “residence” or “reside” shall denote continuous and permanent physical presence within this State, provided that temporary absence for short periods of time shall not affect the establishment of a residence. The word “domicile” shall denote a person’s true, fixed, and permanent home and place of habitation. It is the place where he intends to remain, and to which he expects to return when he leaves without intending to establish a new domicile elsewhere. It is presumed not to include residency in housing provided for students at state institutions, as residency in such housing is by nature temporary. The word “minor” shall mean a person who has not attained the age of 21 years; the words “emancipated minor” shall mean a minor whose parents have entirely surrendered the right to the care, custody and earnings of such minor, and who no longer are under any legal obligation to support or maintain such minor. The word “parent” shall mean an unemancipated minor’s father; or if he has no father, his mother; or if one parent has custody of the minor, the parent having custody; or if there is a guardian or legal custodian of this person, then such guardian or legal custodian, provided that there are no circumstances indicating that such guardianship or custodianship was created primarily for the purpose of conferring the status of an in-state student on such unemancipated minor.

B. South Carolina residency shall be established as follows in determinations of tuition and fees to be paid by students entering or attending state institutions:

1. Persons who have been domiciled in South Carolina for a period no less than twelve months with an intention of making a permanent home therein, including persons in their majority, emancipated minors and unemancipated minors whose parents have been domiciled in this State for no less than twelve months with an intention of making a permanent home herein may be considered South Carolina residents for tuition and fee purposes at state institutions; provided further, that where the parents of an uneman-
cipated minor are living apart or are separated, divorced, or deceased, the residency of the child shall be determined by the place of domicile of the parent or legal guardian with whom the child normally resides. Students making application for residency status shall have the burden of proving that these requirements are met.

2. Where the domicile of a student or his parent or legal guardian changes after his enrollment at a state institution, tuition charges shall be adjusted as follows:

a) When domicile is taken in South Carolina, a student shall not become eligible for residency status for tuition and fee purposes until the beginning of the next semester after expiration of twelve months from date of domicile in this State.

b) When South Carolina domicile is lost, residency status for tuition and fee purposes ends on the last day of the semester in which the loss occurs; however, application of this subsection shall be at the discretion of the institution involved.

3. Marriage shall affect determinations of residency for tuition and fee purposes only insofar as it operates to emancipate minors or to evince an intention by the parties to make a permanent home in South Carolina.

C. Where it appears to the satisfaction of officials charged with administration of these provisions that a student has made willful misrepresentations of fact in an attempt to gain residency improperly, tuition and fees past due and unpaid must be repaid, plus interest at a rate of 8 percent per annum, plus a penalty amounting to 25 percent of the nonresident tuition and fees for one semester. No student shall be allowed to receive transcripts or graduate from any state institution until these provisions have been met.

D. Full-time faculty and administrative employees of state institutions, and the husbands, wives, or children of such employees, shall be excluded from the operation of this act.

E. Dependents of members of the armed services and federal employees stationed in South Carolina are permitted to attend the University, if accepted, by paying resident fees without regard to resident status, provided that if such military personnel or employees are ordered away from the State, their dependents may continue to have this privilege while they attend the University.

Any student or prospective student in doubt concerning his residence status must bear the responsibility for securing a ruling by stating his case in writing to the Dean of Admissions and Registration.
Books and Supplies. The cost of books is not included in the Schedule of Semester Charges. The cost of books and supplies at the beginning of the semester will be approximately $50, except for students enrolling in Architecture the cost will be approximately $75.

Student Depository. For the convenience of students, the University operates a depository in the Bursar's Office where money can be deposited and withdrawn as the occasion may demand. This service is purely local. Students are urged to deposit their money and not to keep it in their rooms.

Optional Expenses. It is not possible to give an estimate of a student's expenditures for such amusements as dancing, motion pictures, etc. This depends largely upon the disposition of the student. The University endeavors to reduce to a minimum the temptation to spend money needlessly, but the authorities cannot be responsible for a student's private expenditures. This must be a matter between the student and his parents.

Transcripts. Official transcripts of scholastic records are issued on request. One transcript is furnished free; additional copies are issued for $1 each. Remittances for transcripts should be made payable to Clemson University, but should accompany transcript requests and should be mailed to the Office of Admissions and Registration.

STUDENT HOUSING

The University residence halls will accommodate 5,174, two students being assigned to a room. The University also has 228 individual units for its married students. All unmarried first-year students entering the University directly from high school or preparatory school, not residing with parents, guardians, or close relatives, are required to live in University-owned residence halls. All students in their second or more years in college are eligible to live off campus. Students who are assigned a room in University residence halls will be required to sign a Residence Hall contract relating to terms and conditions of occupancy for the full academic year. Those students living off campus will fill out an off-campus locator card as part of the registration process and will report all changes of address as they occur. The Student Information Office maintains the off-campus locator file and provides information pertaining to off-campus students.

Application for Residence Hall and Advance Payment. An application for residence hall accommodations will be forwarded to those students who are accepted by the University for the fall semester,
provided they have paid the $50 admissions deposit. These applications are to be completed and returned with a $60 advance room payment to the Residence Halls Office at the earliest practicable date. After June 1, the $60 advance payment will not be accepted. Students requesting accommodations after that date must pay the full semester’s rent in order to receive a room assignment.

Students who have made an advance payment and later decide not to enroll or to live in the residence hall may obtain a refund of the advance payment provided notification of intent and request for refund is received at the Residence Halls Office prior to June 1. When such notification and refund request is not received by the deadline date, no refund of advance payment will be made.

Normally, residence hall accommodations are available to those students who enter the University at the beginning of the second semester; therefore, the advance payment is not now required of students entering at that time.

Notification of Assignments. As soon as room assignments are made, students are advised of the assignment and furnished information regarding occupancy.

Assignment Changes. Students who desire to move from the assigned room may request a room change at the Residence Halls Office. However, no approval of these requests will be made until after the last day for matriculation during any semester. Fee adjustments will be made when moving to a room which rents at a rate different from that of the originally assigned room.

Opening and Closing of Residence Halls. The University residence halls officially open for undergraduate students at 8 a.m. the day prior to matriculation date for new students and close at 8 p.m. the day scheduled for graduation exercises of the term or semester. Residence hall fees cover only the time between the day before matriculation and the scheduled date of graduation exercises or end of term when no graduation exercises are scheduled.

For official holidays which occur during the course of a semester, the University reserves the right to close certain halls and to require students remaining on the campus to move to another hall for the duration of the holiday period.

Student Responsibility for Damages. The University holds residents responsible for any damages other than normal wear that occur to their rooms and furnishings. Damages will be assessed by the University and the student will be billed for repairs or
replacements. Students should note on the property certificate immediately upon occupancy any conditions reflecting prior damages which have not been corrected.

Responsibility for Student Possessions. Although every precaution is taken to maintain adequate security, the University cannot assume the responsibility for the loss of or damage to student possessions resulting from any cause.

Refund of Residence Hall Fee. Except for the stated regulations governing the $60 advance payment to reserve a room for the first semester, refunds, when authorized, will be made on a daily pro rata basis.

Reservation of Right to Change Fees and Regulations. The University reserves the right to make changes in its fees, charges, rules, and regulations.

RESIDENCE HALLS

West Campus. Eleven fully air-conditioned residence halls are located on West Campus. Five of these, Benet, Young, Cope, Geer and Sanders Halls, will accommodate 732 students. Each room has walk-in type clothes lockers, individual study desks, single beds, and chairs. A lavatory is installed in each room. The remaining six residence halls, Johnstone, Donaldson, Bowen, Wannamaker, Bradley, and Norris Halls, will accommodate 2,858 students. Rooms in new annexes A and F of Johnstone Hall are equipped similarly to those mentioned above. Rooms in Donaldson, Bowen, Wannamaker, Bradley, and Norris Halls are carpeted and furnished with clothes lockers, individual study desks, single beds, and chairs. Rooms in Johnstone Hall, other than new A and F annexes, are furnished with individual clothes lockers, bunk-type beds, a study table, and chairs. A lavatory is installed in each room. All residence hall rooms, except those in Sections A, B and C in Johnstone Hall, have telephones. (See page 63, Schedule of Semester Charges for rates.)

East Campus. In this area there are 1,584 spaces available in five residence halls. Two of these, Mauldin and Barnett Halls, are modern four-story structures with 144 spaces each. The remaining three, Manning Hall, Lever Hall, and High Rise No. 3, are eleven-story structures all of which were constructed during the last five years. Each will house 432 students. All residence halls are air-conditioned and provide the most modern student accommodations. Rooms are arranged in suites of six accommodating twelve students.
Each room contains two closets, two chest of drawers with wall-hung mirrors, individual reading lamps, desks and chairs. Draperies must be furnished by the occupants. Studies and laundry rooms are available on each floor. Also, available in these residence halls are lounges, kitchenettes, T.V., and recreation rooms. All rooms located on East Campus are equipped with telephones.

MARRIED STUDENT HOUSING

Clemson provides comfortable and economical housing for its married students. There are three housing areas consisting of 78 single Prefab units, 100 East Campus apartments contained in 50 duplex buildings, and 50 Littlejohn apartments in eleven buildings.

All married student housing units have two bedrooms, living room, kitchen, and bath. East Campus apartments are the newest and are equipped with stove and refrigerator. The Littlejohn apartments and Prefabs are not equipped with stoves and refrigerators.

Booklets describing these facilities are available and will be furnished upon request to the Housing Office of the University. Monthly rental fees are: Prefabs, $36; Littlejohns, $51 for interior and $54 for end units; East Campus, $69.

STUDENT FOOD SERVICE

The University dining halls provide several food service plans for the students:

1. A 5-Day Board Plan (15 meals), Monday through Friday—holidays excluded. The fee for this plan is $440 per year and may be paid in two installments—one-half at the beginning of the first semester and the remainder at the beginning of the second semester.

2. A 7-Day Board Plan (21 meals), Monday through Sunday—holidays excluded. The fee for this plan is $550 per year and may be paid in two installments—one-half at the beginning of the first semester and the remainder at the beginning of the second semester.

Both the 5- and 7-Day Board Plans will begin immediately following the student’s obtaining a meal ticket and will end on the day which is scheduled for graduation. (5-Day Board Plan tickets will not be issued on Saturdays or Sundays.)

3. Students who are not on a board plan may purchase tickets for individual meals at prevailing prices. Except on special occasions, a la carte service will not be offered in the student dining halls.
All students who enter the University for the first time from high school or preparatory school and who live in University residence halls are required to subscribe to either the 5- or 7-Day Board Plan. Either the 5- or the 7-Day Board Plan is also recommended to upperclassmen who reside in University residence halls.

Upperclassmen and graduate students have the option at the time of their enrollment of electing either the 5- or the 7-Day Board Plan provided they agree to pay the board-plan fee for the period of their enrollment during the academic year.

A student having selected a Board Plan for the academic year may not withdraw as long as he remains enrolled, except in the case of marriage or circumstances which are determined by the University to be beyond his control.

LAUNDRY-DRY CLEANING

A plant with modern equipment is conveniently located on campus to service the laundry and dry-cleaning requirements of the student. Reasonable prices are charged for individual items on a cash-and-carry basis.

The University will not be liable for lost or damaged items unless reported within two days after the delivery date, and then for not more than the actual depreciated value of such articles as have been lost or damaged.

Coin-operated washing machines and dryers are available in the laundry building and several of the dormitories.

A student linen-rental service is also available. Information regarding this service will be forwarded to all students who are accepted for enrollment in the University.

MEDICAL EXAMINATIONS

Completion of a medical history and physical examination record is required of all new students entering Clemson University for the first time. This examination must be completed by the student and the student's own physician or the health service of the school from which he graduates or transfers. This examination must be reported on a special form provided for this purpose by the University and mailed directly to the Director of Student Health Service. This should be received at least four weeks prior to matriculation to give time for processing; otherwise, registration may be delayed. Incomplete forms will be returned.

The University requires that all new students have a current tetanus toxoid series or booster (within five years), a smallpox
vaccination (within four years) and also immunization against poliomyelitis. The oral (Sabin) type vaccine is preferred. All new students are also required to have a skin test for tuberculosis within one year prior to admission. If this test is positive, a chest X-ray is also required. All positive reactors will then be required to have an annual chest X-ray. These follow-up X-rays after admission will be done at the Student Health Service.

STUDENT HEALTH SERVICE

Student Health Service: Cost per Semester $35. Payment of the Student Health Service fee is required of all students living in University residence halls and all full-time students even though they do not reside in University housing. The Student Health Service is housed in the new Redfern Health Center and is complete with outpatient department and a 34-bed hospital. The staff consists of three full-time physicians, including the director, a psychiatrist, thirteen full-time registered nurses, a full-time registered laboratory technician, and a full-time registered X-ray technician. In addition, a sufficient number of nurses’ aides, secretarial workers, orderlies and maids for 24-hour-a-day operations are employed. The best of modern equipment is available for student use.

The Student Health Service at Clemson University has several important functions. All of these are aimed at keeping the student in good health so that he may effectively pursue his school work. There is, of course, the basic function of medical care for the ill and injured. This is a vital part of its work. In addition to this, the Student Health Service attempts to put strong emphasis on health rather than illness. This begins with the entrance medical form. In laying out this form an attempt is made to get information, examinations and preventive medical procedures carried out to better equip the staff in protecting the student from illness and to serve as a guide for the care of preexisting medical problems.

As the student progresses through his academic experiences, other procedures may be required or highly recommended. These are primarily an effort to teach the individual self-responsibility for maintenance of his own health, protection of the health of those around him, and locate possible hidden diseases. The Health Service also has the position as the source of medical information as well as responsibility for indicated medical action: diagnostic, therapeutic, and preventive.

The medical fee paid by each student covers the services of the University physicians, the health service staff and equipment for
most illnesses and injuries occurring on or around the campus. This coverage is given under conditions similar to that of one's own physician. There will be regular office hours plus the services of the nursing staff for minor ailments after hours. One physician is on call at night for emergencies whenever the school is open. The Health Service is closed between semesters.

There are certain things, however, that it does not include, such as fees for routine physical examinations for employment or transfer to another school, fees for outside physicians when called in for consultation, medical or surgical services performed away from the University, or for accidents occurring off the campus. The fee does cover medication for acute illness but not for chronic illness lasting over two weeks. Although ambulance transportation to a general hospital for serious illness or injury occurring on campus will, of course, be arranged, the expense for this service is the responsibility of the student. Transportation for less urgent ailments and routine visits can be arranged through the Health Service at the expense of the student. An emergency vehicle for local use is maintained by the Security Department.

The Student Government, with full approval of the administration, offers a plan of accident and sickness insurance to full-time students. Each year, prior to the beginning of the fall semester, complete information on this insurance plan will be sent to students. This insurance is inexpensive and is designed to cover major medical expense not covered by the Health Service. It is highly recommended.

UNDERGRADUATE FINANCIAL AID

The Office of Student Financial Aid, operating in conjunction with the University Honors and Awards Committee, is responsible for coordinating all types of financial assistance administered by the University. Currently available financial aids consist of scholarships, student loans, grants, and part-time employment. Sufficient aid is programmed to meet the requirements of all students meeting the criteria of financial need as determined by College Scholarship Service and academic ability/potential as evidenced by achievement at Clemson or, for entering students, high school records and College Entrance Examination Board Scholastic Aptitude Test scores.

CUTOFF DATES FOR RECEIPT OF APPLICATIONS ARE FEBRUARY 1 FOR GRANTS AND SCHOLARSHIPS AND JUNE 1 FOR LOANS.
A brochure describing financial aid programs and procedures for making application may be obtained by writing to the Office of Student Financial Aid, Clemson University.

HONORS AND AWARDS
The University offers a number of awards for outstanding achievement in specific fields and endeavors. Recipients are chosen by selection committees and are announced at the annual Honors and Awards Day program or other appropriate ceremonies. Detailed information relating to such awards is available in the offices of the academic deans and department heads.

GUIDANCE SERVICES
Guidance has an important role at all levels of education and particularly so during times of transition and articulation. To assist students in this period of emotional and academic adjustment, an orientation and counseling program has been established.

At the beginning of his university career, each student is assigned to a faculty adviser selected from his academic school. The faculty advisers provide information on courses of study, approve class schedules, interpret academic regulations, and suggest adjustments in making satisfactory progress toward graduation.

The residence hall program is organized to cope with personal problems and questions regarding procedures and policies of college life. Residence hall counselors and supervisors are primarily concerned with maintaining an environment compatible to serious study and with the educational potential of group living.

COUNSELING SERVICES
Counseling Services are located in Tillman Hall. These services are available free of charge to all registered students and spouses of registered students. These services are oriented to early identification of and assistance with academic, vocational, personal, and psychological problems. Testing facilities of a vocational and psychological nature are available. Students are encouraged to take advantage of the individual services of a counseling psychologist, a counselor, and of the Psychometric Services.

The service is dedicated to helping students in self-understanding, self-improvement, and in the attaining of academic and vocational goals. The aims of the service are preventive rather than curative.
PLACEMENT SERVICES

The University is glad to assist all who ask for help in securing summer or permanent employment; it does not assure positions for those who complete any of the courses of study.

The Placement Office coordinates and plans campus interview visits requested by representatives seeking graduates for positions with business, industry, and public service. It maintains current files of reported job opportunities and of alumni who wish to learn of available openings.

A Placement Bulletin is prepared periodically for distribution on the campus and for mailing to alumni upon request. It announces scheduled campus interviews and lists specific openings which may be of interest to students and alumni.

BUILDINGS AND GROUNDS

Change, challenge, and continuity are embodied in the architecture and landscape of Clemson University. The campus skyline is constantly changing, reflecting the new demands of the institution as it moves into the decade of the 70's and beyond.

While the challenges of the future—solving problems like environmental pollution—are symbolized by such buildings as the impressive new $2.4 million Rhodes Engineering Research Center (dedicated primarily to environmental and biomedical research), Clemson's long, rich tradition of education, scientific research, and public service is brought to mind by historic structures like the Tillman Hall tower, focal point of the campus, whose cornerstone was laid in 1891.

The campus proper consists of 600 acres and represents an investment of approximately $70 million in academic buildings, student housing, service facilities and equipment. Basically, this is the site of Thomas Green Clemson's plantation, willed to South Carolina in 1888 for the establishment of the University. Fort Hill, former home of both Mr. Clemson and his father-in-law, John C. Calhoun, has been preserved at the center of the campus as a national shrine.

Beyond the main campus, stretching into Oconee, Pickens, and Anderson counties, are another 24,000 acres of farm and agricultural and forestry research lands. Throughout the state are 6,800 more acres devoted to Agricultural Experiment Station research and 4-H Club activities.

The University's $60 million building program to meet projected needs of a 10,000 student body by 1975 is over 25 percent complete.
More than $32 million in new construction was added to the campus during the decade of the sixties.

One of the central features of campus development, the Robert Muldrow Cooper Library, was completed in 1966. This beautiful structure houses some 453,000 volumes and is the permanent home of papers and souvenirs belonging to both the Honorable James F. Byrnes and State Senator Edgar A. Brown, as well as valuable collections of papers and letters of John C. Calhoun and other famous South Carolina statesmen.

Other new facilities completed under the current building program are three high-rise residence halls which currently hold 1,296 students, a 34-bed hospital and out-patient clinic, an east campus cafeteria, an arts and sciences classroom building and 10-story faculty office tower, and the multi-purpose J. C. Littlejohn Coliseum, which seats 10,500 people for basketball games and 12,000 for speaking engagements, concerts and other functions.

Teaching and laboratory facilities of the College of Agricultural Sciences are housed in the R. F. Poole Agricultural Center complex. Another grouping serves the College of Engineering, including Olin Hall for Ceramic Engineering and Earle Hall for Chemical Engineering. These two buildings and their excellent equipment represent gifts from the Olin Foundation totaling nearly two million dollars.

Sirrine Hall is the home of the College of Industrial Management and Textile Science, where government and industrial cotton fiber testing laboratories are located. The College of Architecture is located in the modern, well-equipped Lee Hall. Other groupings of classrooms and laboratories serve the College of Education, the College of Liberal Arts, the College of Physical, Mathematical, and Biological Sciences, and the College of Nursing.

The current building program includes plans for construction of a $6 million University union and related facilities, a new building to house agricultural administration and the recently established College of Forest and Recreation Resources, a biological sciences building, and a $2.1 million addition to the College of Architecture.

The University's sixteen residence halls for men and women accommodate nearly 5,200 students. One hundred and fifty individual units and apartments provide living accommodations for another 289 married students.

Ten of the residence halls, with 2,244 students, are fully carpeted; there are telephones in 1,405 student rooms.
The University-owned Clemson House Hotel, with its 184 rooms and apartments, together with 112 faculty and staff housing units provides excellent community hotel facilities and permanent housing.

RESERVE OFFICERS’ TRAINING CORPS (ROTC)

The Department of the Army and the Department of the Air Force both maintain ROTC units at Clemson University. The mission of the Reserve Officers’ Training Corps is to produce officers having qualities of leadership and attributes essential to their progress and continued development as commissioned officers in either the Army or the Air Force of the United States. A four-year program, consisting of the basic course for freshmen and sophomores and the advanced courses for juniors and seniors, is offered by both services.

To enroll in basic ROTC, students must be at least 14 years of age and citizens of the United States at the time of entrance. They must be of good moral character and must sign a loyalty certificate. They must not be physically disqualified to the extent that drill would further aggravate the physical defect. Air Force candidates will be administered a written Air Force Officer Qualification Test and a physical examination during their freshman or sophomore year to determine eligibility for the advanced AFROTC course, and interested Army candidates will be administered a written Army Officer Qualification Test and a physical examination during their sophomore year to determine eligibility for advanced Army ROTC. Foreign students may enroll in the ROTC program provided they sign a statement of intention to become American citizens or receive the approval of their government.

Students enrolled in the advanced course are paid $100 per month, including one summer vacation. Pay while attending summer camp is computed differently and is considerably higher. Members of the advanced course are required to attend one summer camp before commissioning.

Students who have six months or more active military service and students who have successfully completed two or more years of ROTC training at the high school level may substitute such service and preparatory schooling for all or part of the Clemson basic ROTC course. Students in either of these categories should consult with the Head of the Military Science or Aerospace Studies Department concerning accreditation.
Students who complete the prescribed ROTC courses and receive a bachelor's degree will be awarded commissions in the Army or Air Force. Students who complete the basic course may receive 4 semester credit hours of elective credit; those selected for Advanced ROTC may substitute Aerospace Studies or Military Science courses for an additional 6 semester hours’ credit.

Uniforms are provided to ROTC students. The University requires a deposit of $25 from each basic student. This is refundable when the uniform is turned in, provided there is no damage to the uniform other than normal wear. Each advanced ROTC student is credited with a uniform allowance, paid by the Government to the University, which is used by the University to purchase officer-type uniforms for use during the junior and senior years. The uniform becomes the property of the student when he is commissioned.

AIR FORCE ROTC

The Air Force ROTC program provides for selected students an education vital to the career of a professional Air Force officer. Commissions in the United States Air Force are awarded to male and female students who qualify for enrollment and successfully complete the program.

The four-year program consists of the General Military Course (GMC) or basic course and the Professional Officer Course (POC). During the second year of the GMC, a cadet may apply for admission into the POC.

Cadets who enter in the POC under the four-year program attend a four-week training period at an Air Force base during the summer following their sophomore year. This provides an exposure to an Air Force environment which is beneficial in preparing cadets for future management positions.

The two-year program consists of a six-week preparatory training period at an Air Force base during the summer between the student's sophomore and junior years, and the POC. The six-week preparatory training replaces the GMC and the four-week field training period. Applicants for the two-year program must meet all eligibility requirements for POC enrollment.

To be eligible for enrollment in the POC a cadet must: (1) make application; (2) pass the Air Force Officer's Qualification Test; (3) pass the Air Force physical examination; (4) meet citizenship, age, and loyalty requirements; (5) possess leadership ability and good moral character; (6) successfully complete two academic
years of the GMC or have received credit for its equivalent; (7) enlist in the Air Force Reserve (Obligated Reserve Section); (8) have two academic years remaining (including graduate study) at Clemson University at the time of entrance; (9) be enrolled as a full-time student; (10) have attained the academic standards required by the University and the Air Force; (11) be selected by a board of Air Force officers.

Most male POC cadets are expected to become Air Force flying officers. Entry into the POC for nonflying candidates is on an extremely competitive basis.

Male POC cadets who intend to become Air Force pilots participate in the Flight Instruction Program (FIP) during their senior year. They receive, at Government expense, pilot training conducted by a civilian contract flying school. Students who are not qualified or do not desire pilot training may be considered for entry into the POC as candidates for navigator training or officer duty in non-flying categories.

AFROTC provides scholarships to highly qualified AFROTC cadets each year. Each scholarship pays tuition, fees, and $75 per academic year for books, in addition to $100 per month to the recipient.

The Air Force offers outstanding opportunities for an AFROTC graduate to pursue studies leading to an advanced degree. The educational delay program allows an AFROTC graduate to have his call to active duty delayed until he receives his advanced degree.

The Air Force Institute of Technology (AFIT) offers graduate programs in scientific, technical, and other professional fields. These programs are conducted at the AFIT resident school, Wright Patterson AFB, Ohio, at selected civilian institutions, and through training-with-industries programs. AFROTC graduates are eligible to apply for AFIT schooling after they are called to active duty. Air Force officers receive full pay and allowances while attending school under the AFIT program.

ARMY ROTC

The Army ROTC instruction stresses an academic college-level program in content, scope, and intensity. Emphasis is placed on the development of the student's leadership, bearing, discipline, judgment and sportsmanship which will be a distinct asset in any profession that he may choose, military or civilian.
The General Military Science Program is conducted at Clemson (See Part V of this catalog for a description of courses). The program consists of a Basic course for freshmen and sophomores and the Advanced program for juniors and seniors. A student who has successfully completed the Basic course, who meets the physical requirements, who has earned sufficient academic credits to be designated as an academic junior, and who is recommended by his instructors, may enter the Advanced course offered during the junior and senior years. Successful completion of the Advanced program qualifies the student for a regular or reserve commission.

Scholarship Program. Scholarships are available to selected ROTC students who are strongly motivated toward a career in the Army. Each scholarship pays for tuition, books and laboratory expenses, and, in addition, pays $100 a month for the duration of the award, except during the Advanced course summer training camp at the end of the junior year when the pay is at the rate of one-half the base pay of a second lieutenant with two or less years of service per month. Only students who participate in the four-year program are eligible. For further information concerning the scholarship program, contact the Office of the Professor of Military Science.

The requirements for formal enrollment in the Advanced ROTC Program are as follows:

Junior Year. Must have successfully completed all previous Military Science courses, have acquired a passing grade on a general intelligence test which is administered during the sophomore year, be physically qualified, and must have acquired the credits, a grade-point ratio of 2.0 and be designated an academic junior. The number of credits required for participation in the Advanced course complements the academic requirements of the University and insures that the cadet receives his commission and his diploma simultaneously.

Senior Year. Must have successfully completed all previous Military Science courses and have attended summer camp, must be an academic senior, and have the cumulative grade-point ratio required for graduation.

Exceptions, where warranted, to the above general rules may be made by the Head of the Military Science Department.

During the four years of general military instruction, students will have the opportunity to indicate their preference for assignment
to a particular branch. Final assignment authority remains with the Department of the Army and will be dependent upon such factors as the student’s major academic course, class standing, qualities of leadership, the requirements and existing vacancies in the various branches of the Army, in addition to the student’s choice.

Outstanding Army ROTC cadets who attain grades in the upper half of the class in academic subjects and the upper third in Military Science subjects during their junior year and who possess outstanding qualities of leadership, character, and aptitude for military service may, with the approval of the University President, be designated as Distinguished Military Students by the Head of the Military Science Department. Those who maintain this outstanding record during their senior year may be designated Distinguished Military Graduates. A Distinguished Military Student may apply for appointment as a Second Lieutenant in the Regular Army.

Flight Training Program. An Army ROTC student in his fourth year of Military Science, or having completed his fourth year of Military Science, but not completed his academic requirements for graduation, may enroll in the Army ROTC Flight Training Program. If accepted, the student will receive 35 hours of ground school and 36½ hours of flight training at Government expense, after which the student may qualify for his FAA license and be recommended for further flight training upon entry on active duty. To be accepted in the Flight Training Program the candidate must agree that if commissioned at time of graduation, he will volunteer for Army Aviation Flight Training and assignment, and to serve on active duty as a commissioned officer for not less than three consecutive years from the date of completion of the Army Aviation Flight Training Course, in addition to meeting other physical and mental requirements.

ROTC students receiving commissions in the Regular Army or Army Reserve have the opportunity to apply for graduate school. If accepted by the Army, the applicant may be allowed to delay entry upon active duty to complete graduate study.

The student who receives his commission through Army ROTC is appointed in the Army Reserve as a Second Lieutenant and called to active duty for two years. Graduates of the program who enter active duty for two years will acquire a six-year military obligation, only three of which would be in the Ready Reserve.
A recapitulation of Army service obligation is listed below:

<table>
<thead>
<tr>
<th></th>
<th>Reserve Officers</th>
<th>Regular Army</th>
<th>Reserve Flight Training Officers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Duty</td>
<td>2 years</td>
<td>3 years</td>
<td>4 years (Approx.)</td>
</tr>
<tr>
<td>Ready Reserve</td>
<td>3 years</td>
<td>2 years</td>
<td>0 years</td>
</tr>
<tr>
<td>Standby Reserve</td>
<td>1 year</td>
<td>1 year</td>
<td>2 years</td>
</tr>
</tbody>
</table>

ROTC Requirement. For those students who matriculate initially at Clemson after the spring semester 1970, ROTC will no longer be a requirement for graduation. In order to resolve the requirements and status of students matriculating prior to the end of the spring semester 1970, the following requirements apply:

To be eligible for graduation all male students not otherwise exempted whose initial matriculation in Clemson University was:

1. On or before August 29, 1968, must complete four semesters of ROTC courses.
2. After August 29, 1968, but prior to January 17, 1969, must complete three semesters of ROTC courses.
3. After January 16, 1969, but prior to January 5, 1970, must complete two semesters of ROTC courses.
4. After January 4, 1970, but prior to May 9, 1970, must complete one semester of an ROTC course.
5. After May 9, 1970, ROTC courses are not a requirement for graduation.

HISTORICAL STATEMENT

It was the fall of the year and likely one of those blustery days as the horsedrawn carriage slowly rolled to a stop on a Pendleton road in 1886.

The driver, a tall, distinguished-looking man in his late seventies, peered from the carriage as if looking for someone he knew. Soon, another aged man approached the carriage, exchanged greetings with the first, and the two men—Thomas Green Clemson and Senator Benjamin Ryan Tillman—drove away together toward historic Fort Hill, a plantation some four miles away and the former homestead of John C. Calhoun, Clemson's late father-in-law.

Mr. Clemson had invited Senator Tillman to his home to discuss their mutual conviction that South Carolina needed a separate college devoted to industrial and scientific education. At Fort Hill, they met with Col. D. K. Norris and Col. R. W. Simpson. There the four "spent nearly the whole day in talking over the new
project which Mr. Clemson had in mind and which he unfolded to us,” Tillman later wrote.

Perhaps the most significant result of this conference was Mr. Clemson’s decision to change a will he had made three years earlier and to execute a new will so as to serve better the great purpose which he had had in mind for many years.

Although his will of 1883 sought to provide for establishment of a scientific institution upon the Fort Hill place, Mr. Clemson later decided that his intention and purpose as stated in that will may be misunderstood.

In his new will, executed November 6, 1886, Mr. Clemson wrote that he desired to make his purpose plain and to make some other changes in the disposition of his property. He clearly explained the nature and purpose of his proposed institution, the establishment of which “is now the one great desire of my life.”

“It should afford thorough instruction in agriculture and the natural sciences connected therewith; it should combine, if practicable, physical and intellectual education, and should be a high seminary of learning in which the graduate of the common schools can commence, pursue and finish the course of studies terminating in thorough, theoretic and practical instruction . . .”

The first item of the new will concerned disposition of the 814 acres of the Fort Hill place and was largely taken from the 1883 will.

The will gave to the state all that part of the Fort Hill Estate inherited by Mrs. Clemson (the former Anna Maria Calhoun who died in 1875, thirteen years before her husband) from her mother and the bulk of Mr. Clemson’s other real and personal property. The latter amounted to a sum which, considering the purchasing power at the time, probably has been only a few times exceeded in a public benefaction in South Carolina.

Mr. Clemson’s will also provided for a seven-member Board of Trustees that would govern and manage the new institution. Named were: Cols. Simpson and Norris, M. L. Donaldson, R. E. Bowen, B. R. Tillman, J. E. Wannamaker, and J. E. Bradley, who with those chosen by the General Assembly, would constitute a governing board if the state accepted the bequest; but, who, in the event the state declined the bequest, would alone constitute a governing board for a private institution.
These seven trustees, along with other friends of the movement and the agricultural groups in the state, developed and organized a public opinion favorable to the plan.

In November, 1889, the South Carolina General Assembly accepted the terms of Mr. Clemson's will and following the decision of the U. S. Supreme Court to uphold the will, the State of South Carolina and the full Board of Trustees proceeded to convert the dream of Thomas G. Clemson into the reality of Clemson College.

The institution formally opened in July, 1893, with an enrollment of 446 students. The first graduating exercises were held in December, 1896, with a graduating class of 37—15 in the agricultural courses and 22 in engineering courses.

The college was also established under the Morrill Land-Grant Act passed by the National Congress in 1862. Clemson University, therefore, is a member of the national system of Land-Grant Colleges and Universities.

In 1964, in recognition of expanded offerings of the institution not only in the areas of agricultural and mechanical arts but also in the sciences and arts, the name of the institution was changed to Clemson University. This change by the legislature, effective July 1, 1964, followed a recommendation to that body by the Board of Trustees.

LOCATION

The University is located on the Fort Hill homestead of John C. Calhoun, in the foothills of the Blue Ridge Mountains. It has an elevation of 800 feet above sea level and commands an excellent view of the mountains to the north and west, some of which attain an altitude of over 5000 feet.

The University is located at Clemson, South Carolina, on the main line of the Southern Railway. U.S. Highways numbers 76 and 123 pass through Clemson, and daily bus service at regular intervals is available.

ALUMNI RELATIONS

The office of Alumni Relations coordinates all functions and services of the Alumni Office. The director of alumni relations is secretary of the Clemson Alumni Association and the Clemson Foundation through election by the governing boards of these two organizations.

Accurate records of addresses and information concerning alumni are being compiled by this office which also publishes a magazine and newsletter for distribution to the alumni.
The purpose of the Alumni Association is to serve the University and its alumni in every possible way. The Association holds its regular annual meeting at the University each June. Active membership is made up of former Clemson students who participate in the Clemson Alumni Loyalty Fund for the purpose of providing supplementary financial aid to the educational programs of the University.

The Clemson University Foundation was founded by interested members of the Alumni Association to raise an endowment to be used for the benefit of the University, its students, faculty, and alumni. Trustees of the Foundation are elected by the Association.

THE J. E. SIRRINE TEXTILE FOUNDATION

Funds in this foundation were contributed by the members of the textile industry in South Carolina. Income from this fund is administered by the trustees of the J. E. Sirrine Textile Foundation. They have used the income to benefit textile teaching and research at Clemson University. Under the present system it is used to (1) supplement University travel funds for faculty members, (2) sponsor the college library, (3) provide supplement to the salaries for two major professors, (4) provide two undergraduate scholarships and five graduate fellowships annually, one of which may be held by a faculty member, (5) sponsor annual seminars for South Carolina high school counselors, (6) support special research projects, and (7) sponsor the Clemson University Review of Industrial Management and Textile Science—a professional journal.
PART III

STUDENT LIFE
AND ACTIVITIES
PART III—Student Life and Activities

STUDENT BODY

The students of Clemson University believe that student government is necessary and beneficial and that every student should be represented in this government. All registered undergraduate and graduate students are, upon payment of the Student Activities Fee, members of the Student Body of Clemson University which in turn is represented by the student government.

Student government is actively sponsored and highly effective at Clemson. The three branches of government are patterned after our federal system; however, there are no political parties within the framework of this student organization. February and March are election months for student body officers. Elections for Student Senators are held in September. Students interested in self-government are encouraged to participate in this active student organization.

STUDENT PUBLICATIONS

The Chronicle is a student variety magazine published four times a year.

The Taps is the yearbook published by the students of the University.

The Tiger is a weekly paper published by the students of the University.

THE STUDENT CENTER

The student center, located in Johnstone Hall, has a student lounge with space for reading and television. On the third floor there are meeting rooms and the student chapel. Also in this area are the offices of student publications, such as The Tiger, student newspaper; the Taps, annual publication; and Radio Station WSBF. The visitors' lounge and the information center are on the first floor off the loggia. The bookstore, post office, and canteen are located on the levels below the loggia.

CULTURAL, MUSICAL, THEATRICAL ACTIVITIES

University Concert Series

Each year since 1940 Clemson University has sponsored a concert series. All Clemson students paying full-time student activities fees are admitted to these concerts without charge. Others, including faculty members, may purchase tickets at a moderate cost.
The Program of Concerts for 1972-73 is:

Itzhak Perlman, Violinist September 25, 1972
The Gregg Smith Singers November 14, 1972
"Heavy Organ," with Virgil Fox and Pablo's Lights February 19, 1973
Les Ballets Africains March 8, 1973
Houston Symphony Orchestra, Lawrence Foster Conducting, with Piano Soloist Horacio Gutierrez March 13, 1973

Architectural Foundation Lectures and Exhibits

The College of Architecture at Clemson is able to present annually an outstanding series of lectures, which are open to all Clemson students, through financial grants from the Clemson Architectural Foundation. The Foundation also presents an annual schedule of at least twelve art exhibits in the Architectural College gallery, which is open to the public weekdays between 9 a.m. and 4:30 p.m.

University Bands

Tiger Band. The Tiger Band and Color Guard, composed of approximately 120 members, participate in football games, pep rallies, functions, and parades throughout the South. This band has appeared in major stadiums in many states, including the Gator, Orange, Sugar, and Bluebonnet Bowls and has performed on national television. The Tiger Band makes several out-of-town trips during the fall season. A smaller "pep band" from its ranks performs at all home basketball games.

Concert Band. The Clemson Concert Band is composed of the better musicians on campus. It is formed at the end of the football season, and gives concerts both on and off the campus, including a tour in the spring. This organization plays music of the great composers in addition to lighter fare.

University Chorus. The University Chorus comprises some eighty students who perform a wide variety of choral music in concerts presented on campus and on an annual spring concert tour. An audition is required for new members, with prime consideration given to singing ability and balance of voices.

Clemson Players. This is the dramatic club of the University and is open to all students interested in dramatics. Four productions are presented annually.
UNIVERSITY UNION PROGRAMS

The purpose of the University Union on the campus is to serve the social, cultural, recreational, and spiritual needs of students. The University Union Governing Board, consisting of students, faculty, and alumni as well as the University Union Staff, has the responsibility of planning and administering Union programs. Programs already underway are the coffee house, small concerts and jam sessions, Scuba Club, karate, and tutoring programs. Many others are in the planning phase.

The University Union is divided into five departments—the University Union building, the Holtzendorff YMCA Center, Foreign Student Affairs, Religious Affairs, and Community Services.

Union Building Activities

Activities planned in the Union building will include lounges, TV room, billiards, bowling, coffee house, meeting rooms and club offices. A comprehensive social, recreational, and cultural program will be offered.

Holtzendorff YMCA

The "Y" is another area set aside for Union programs and includes a Health Club, game room, theatre, meeting rooms, coffee house, and other facilities. A major share of Union programming at the YMCA Center are activity groups such as karate, scuba diving, lifesaving, exercise groups, and interest groups.

Religious Affairs

Religious life on the campus is coordinated by the Union Director in cooperation with local University ministers and clergymen. The YMCA building provides a place for denominational groups not having a church at Clemson, as well as for many interdenominational groups. The Student Center in Johnstone Hall also contains a Student Chapel which is available for use on a regularly scheduled basis.

Student religious organizations at Clemson offer students an opportunity to grow spiritually and socially. These organizations are:

Agape
Baptist Student Union
Christian Science Organization
Campus Crusade for Christ
Episcopal Student Association
Hillel-Brandeis (Jewish)
Lutheran Student Association
Newman Student Association (Catholic)
The Navigators
Wesley Foundation (Methodist)
Westminster Fellowship (Presbyterian)

Foreign Student Affairs
More than 100 foreign students are enrolled at Clemson, and the University feels strongly that special emphasis should be placed on work with these students. The associate director of the YMCA is director of Foreign Student Affairs and gives guidance to its program of education, social life, personal counseling, and legal affairs.

Community Services
Many students at Clemson are concerned not only about fellow students but also about persons in the Clemson community and surrounding area. This concern becomes involvement and action as students go out into the community to serve as volunteer coaches, tutors, friends, counselors, candy strippers, helpers in day care centers, children’s homes, and in other different ways. The purpose of the Community Services program is to coordinate these efforts and services to better serve the campus and community.

The general purpose of the overall campus Union program is to serve student needs and interests, and the Union will continually seek to provide these opportunities for students on the Clemson University campus.

CAMPUS LEADERSHIP AND SERVICE

Block “C” Club—The Block “C” Club includes varsity lettermen in baseball, basketball, football, track, cheerleading, swimming, fencing, and soccer.

Tiger Brotherhood—A local honorary service fraternity composed of men students from the upper three classes who have demonstrated ability, character and loyalty to Clemson University.

Central Dance Association—The C.D.A. staff is responsible for planning and coordinating major dance weekends at which time name entertainment is brought to the campus.
WSBF—WSBF is an educational radio station managed, maintained, and operated by a student staff for the enjoyment of the Clemson student body and the surrounding academic community. The station broadcasts 24 hours a day on both open circuit FM and closed circuit AM from a modern studio in the University Student Center.

Order of Athena—A local honorary society for senior women who have maintained a high standard of scholarship, demonstrated leadership, and shown a spirit of service to the University.

NATIONAL HONOR SOCIETIES

Clemson University has chapters of the following members of the Association of College Honor Societies:

Alpha Epsilon Delta (Pre-medical—Men and Women)
Alpha Lambda Delta (Scholarship—Freshman Women)
Delta Sigma Rho–Tau Kappa Alpha (Forensics)
Phi Eta Sigma (Scholarship—Freshman Men)
Phi Kappa Phi (Scholarship—Senior Men and Women)
Tau Beta Pi (Engineering—Men and Women)
Tau Sigma Delta (Architecture and Allied Arts—Men and Women)

Other Honor Societies:

Sigma Xi (Scientific Research—Men and Women)
Xi Sigma Pi (Forestry—Men and Women)

NATIONAL RECOGNITION SOCIETIES

The following national recognition societies have chapters established at Clemson:

Alpha Phi Omega (Campus Service—Men)
Alpha Zeta (Agriculture)
Angel Flight (Air Force—Women)
Arnold Air Society (Air Force—Men)
Block and Bridle Club (Animal Science)
Blue Key (Scholarship, Leadership, Service—Men)
Iota Lambda Sigma (Industrial Education)
Pershing Rifles—Company C-4 (Military)
Pershing Rifles—4th Regimental Headquarters
Scabbard and Blade—Company K-7 (Military)
DEPARTMENT AND PROFESSIONAL ORGANIZATIONS

Agricultural Sciences Council
Agronomy Club (Kappa Alpha Sigma)
Alpha Tau Alpha (Agricultural Education)
American Agricultural Economics Association
American Association of Textile Chemists and Colorists
American Association for Textile Technology
American Ceramic Society
American Chemical Society
American Institute of Aeronautics and Astronautics
American Institute of Architects
American Institute of Chemical Engineers
American Society of Agricultural Engineers
American Society of Civil Engineers
American Society of Horticultural Science
American Society of Mechanical Engineers
American Society for Metals
American Society for Microbiology
Associated General Contractors of America, Inc.
Botany Club
Calhoun Forensic Society
Calhoun Literary Workshop
Capers (Co-ed Pershing Rifles)
Counter Guerrilla Platoon
Dairy Science Club
Delta Sigma Nu (Pre-med)
Food Science Club
Forestry Club
French Club
Future Military Wives Club
Gamma Alpha Mu (English)
Graphic Arts Society
Institute of Electronic and Electrical Engineers
Iota Mu Sigma (Industrial Management)
Keramos (Ceramics)
Light Brigade (Army—Women)
McConnell Society (German)
Medical Technology Organization
Microbiology Society
Mu Beta Psi (Music)
Newtonian Society (Mathematics)
Omicron Delta Epsilon (Agricultural Economics and Economics)
Outing Club
Phi Delta Chi
Phi Psi (Textile Arts)
Photography Club
Poultry Science Club
Pre-veterinary Club
Psi Mu Psi (Music—Women)
Recreation and Parks Administration Club
Sigma Pi Sigma (Physics)
Sigma Tau Epsilon (Arts and Sciences)
Society for the Advancement of Agricultural Education
Society for Advancement of Management
Society for American Military Engineers
Society of Physics Students
Society for Technical Operations
Student Education Association
Student Nurses Association
Zoology Club

GENERAL ORGANIZATIONS
Aero Club
Amateur Radio Club
Bowling Team
Campus Crusade for Christ
Carolina Sound Express
Dixie Skydivers Sport Parachute Club, Inc.
Fellowship of Christian Athletes
Fine Arts Film Club
Four-H Club
Girls’ Service Sorority
Kappa Alpha Sigma
Periaktoi
Phi Alpha Zeta
Rifle Club
Sailing Club
Skin and Scuba Diving Club
Sentimental Jazzmen (Music)
Sigma Psi Nu (Swimming)
Soccer Booster Club
Student League for Black Identity
Student Organizing Committee
Students for Educational Aid Survival
Tae Kwon Do Club (Karate)
University Democrats Club
University Political Caucus
University Republican Club
Weightlifting Club
Women's Fencing Club

SOCIAL FRATERNITIES AND SORORITIES

Fraternities
Alpha Gamma Rho (Colony)
Alpha Tau Omega
Beta Theta Pi
Chi Psi
Kappa Alpha
Kappa Sigma
Phi Delta Theta
Phi Gamma Delta (Colony)
Pi Kappa Alpha
Sigma Alpha Epsilon
Sigma Nu
Sigma Phi Epsilon
Theta Chi

The Interfraternity Council serves as the coordinating and governing body of the social fraternities.

Sororities
Chi Omega
Delta Delta Delta
Kappa Alpha Theta (Colony)
Kappa Kappa Gamma

The Panhellenic Council coordinates the activities of the social sororities.
REGIONAL CLUBS

The regional clubs of Clemson University are composed of international clubs, out-of-state clubs and clubs representing the various counties in the state. The regional clubs are made up of students who wish to unite with other students from their own home areas. These clubs include:

- Chinese Students
- India Association
- International Student Association
- Kappa Delta Kappa (Dillon County)
- Colleton County Club
- Pi Kappa Rho (Pickens County)

ATHLETIC PROGRAM

The University encourages students' interests in sports through a program of intercollegiate athletics and intramural sports.

It is a member of the Atlantic Coast Conference and its athletic teams, The Tigers, regularly play teams of that conference and other colleges. Membership of the Atlantic Coast Conference includes—in addition to Clemson University—Duke University, North Carolina State University, University of Maryland, University of North Carolina, University of Virginia, and Wake Forest University.

The intercollegiate athletic program includes football, basketball, baseball, track, tennis, golf, swimming, cross-country, soccer, and fencing. Each year over 200 teams are formed in softball, football, volleyball and basketball in the intramural program, with champions determined in each sport through a tournament.

Among the facilities for intramural and intercollegiate athletics at the University are tennis courts, baseball and track facilities, an indoor swimming pool, and a football stadium which will accommodate almost 50,000 people. The Littlejohn Coliseum, with a seating capacity of approximately 10,000 for basketball and up to 12,000 for other events, was completed in 1968. The Fike Fieldhouse is being renovated to accommodate intramural activities.
AUTOMOBILE PRIVILEGES AND PARKING REGULATIONS

All motor vehicles owned and operated on the campus by students, faculty, and staff members must be registered with the designated authorities. On registering, each student, faculty, or staff member will be offered a copy of the parking and traffic regulations and will be issued a decal which will indicate the areas in which the car may be parked.

Students are urged to familiarize themselves with all provisions of the Traffic Code contained in the Student Handbook of Clemson University.
PART IV

SCHOLASTIC REGULATIONS
PART IV—Scholastic Regulations

SCHOLASTIC REGULATIONS

Academic Standards. Proper discharge of all duties is required at Clemson University, and a student's first duty is his scholastic work. All students should be thoroughly acquainted with and cognizant of these basic requirements.

The Credit System. The semester hour is the basis of all credits. Generally, one recitation hour or three laboratory or shop hours a week for a semester constitute a semester hour. Thus, in Engl 101, English Composition, 3 cr. (3,0), as you will find this subject listed in the Degrees and Curriculums, the student takes three semester hours. When he completes this course satisfactorily, he is granted three semester credit hours on his record. The notation "3 cr. (3,0)" means that the course carries three credits, has three clock hours of theory or recitation per week, and no laboratory hours. Ch 101, General Chemistry, 4 cr. (3,3), carries four semester hours, has three hours of theory, and a three-hour laboratory period.

Semester Grades. The standing of a student in his work at the end of a semester is based upon daily classwork, tests or other work, and the final examinations. Faculty members may excuse from the final examinations all students having the grade of A on the work of the course prior to the final examination, but for all other students written examinations are required in all subjects at the end of each semester, except in certain laboratory or practical courses in which final examinations are not deemed necessary by the department faculty.

Scholastic reports are mailed to parents four times each year, including a preliminary statement of progress near the middle of each semester, and a final report at the end of each semester.

The Grading System. The grading system is as follows:

A—Excellent. Indicates that the student is doing work of a very high character. The highest grade given.

B—Good. Indicates work that is definitely above average, though not of the highest quality.

C—Fair. Indicates work of average or medium character.

D—Pass. Indicates work below average and unsatisfactory. The lowest passing grade.
F—Failed. Indicates that a student knows so little of the subject that it must be repeated in order that credit may be received.

I—Incomplete Work. Indicates that a relatively small part of the semester’s work remains undone. Grade I is not given a student who has made a grade F on his daily work. Students are allowed thirty days after the beginning of the next semester in which the student is enrolled to remove the incomplete grades unless (1) an extension of time is approved by the instructor concerned, or (2) within one year of residence after receiving such a grade, a student repeats the conditional course satisfactorily at Clemson, in which case no credit hours taken shall be recorded for the grade of I. A student who elects to repeat an incomplete course is responsible for notifying the Office of Admissions and Registration of his election during the semester in which the course is taken. This regulation applies only to the first time that a course is repeated.

In order to make up incomplete work, the student must first obtain a permit card from the Office of Admissions and Registration. This card serves as the authority for the removal of the I and also as a form for reporting the final grade.

WP—Withdrawn Passing. This grade indicates that the student withdrew from the course while doing satisfactory work. No credit hours taken are recorded for the grade of WP provided that the course is dropped prior to the last three weeks of classes in the semester. Only semester grades shall be given and recorded for courses dropped during the last three weeks.

WF—Withdrawn Failing. Indicates that the student withdrew from the course while doing unsatisfactory work. The credit hours of a subject on which the grade of WF is received are counted as credits taken in computing the student’s grade-point ratio.

Pass-Fail Option. Juniors or seniors enrolled in a four-year curriculum may take four courses (maximum of 14 credit hours), with not more than two courses in a given semester on a pass-fail basis. Transfer and five-year program students may take pass-fail courses on a pro rata basis.

Required courses, courses in the major field, or courses that are needed to fulfill departmental requirements may not be taken pass-fail.

Letter graded courses which have been failed may not be repeated pass-fail.
Honors Program may exercise an option as to acceptance of pass-fail grading for Honors courses.

Registration in pass-fail courses will be handled in the same manner as for regular enrollment. Departmental approval must be obtained via Approval Form and returned to the Registrar's Office in accordance with the University Calendar for adding courses.

Instructors will submit letter grades to the Office of Admissions and Registration. These grades will then be converted as follows: A, B, C to P (pass); D, F to F (fail). Only P (minimum letter grade of C), or F will be shown on a student's permanent record, and will not affect the grade-point ratio.

If a student changes to a major which requires a previously passed course, and this course has been taken pass-fail, he may request (a) to take the course on a letter-graded basis, (b) "pass" be changed to "C," (c) substitution of another course.

In the event limited enrollment in a class is necessary, priority will be given as follows: (a) majors, (b) letter-graded students, (c) pass-fail students, and (d) auditors.

Dropping Classwork. A subject dropped after the first four weeks of classwork is recorded as "Withdrawn Passing" or "Withdrawn Failing" depending upon the student's grade in the course at the time the subject was dropped.

Upon the recommendation of the instructor and the dean concerned, a student's standing will be investigated and he may be required to drop a subject because of neglect, or lack of application or preparation. No student will be dropped under this rule without approval of the President.

Removal of Failures. A student who has failed (made a grade F) in a subject cannot receive credit for that subject until it has been satisfactorily repeated hour for hour in class, except that in the case of correlated laboratory work, the number of hours to be taken shall be determined by the instructor. Where separate grades for class and laboratory work are given, that part of the subject shall be repeated in which the failure occurs.

Rescheduling Courses Failed. A student who wishes to reschedule a course he has failed must do so within his next year of residence, or, if the course is not offered during this year of residence, he must reschedule the course the first time it is offered thereafter during his attendance at Clemson.
Rescheduling Courses Passed. A student may repeat a course he has passed with a grade lower than B provided he does so within three semesters of residence after the completion of his original enrollment in the course.

Scheduling Remedial Mathematics. Any student who has passed a course in freshman mathematics is ineligible to enroll in Remedial Mathematics.

Withdrawal from the University. A student may withdraw from the University any time before the last three weeks of classes in the semester without having grades recorded. A student enrolled the last three weeks of classes shall have final semester grades recorded.

A student withdrawing from college after preliminary reports are due must be passing a minimum of 12 semester credit hours at the time of withdrawal to qualify for re-enrollment the following semester.

After the first withdrawal from college the student is eligible to continue his enrollment the following semester, provided he meets other applicable regulations. For each succeeding withdrawal, however, the student shall be ineligible to continue his enrollment the following semester unless there are extenuating circumstances approved by the Admissions Committee.

Grade Points. Four grade points are assigned for each credit hour on which the student receives the grade of A; 3 grade points for each credit hour of grade B; 2 grade points for each credit hour of grade C, and 1 grade point for each credit hour of grade D. No grade points are assigned for grades F, I, WP, or WF.

Grade-Point Ratio. In calculating a student's grade-point ratio, the total number of grade points accumulated by the student is divided by the total number of credit hours taken by the student at Clemson during the semester, session, or other period for which the ratio is calculated.

The grade-point ratio of students entering college for the first time will be determined as follows: Students entering during the summer sessions or fall semester will have only those courses passed for credit during the summer sessions and/or the following fall semester counted toward their grade-point ratio; students entering the spring semester will have only those courses passed for credit during the spring semester and/or the following summer sessions counted toward their grade-point ratio. This policy does not apply to transfer students.
Minimum Requirements for Continuing Enrollment. At the end of the academic year in May, all student records are inspected for quality. At that time in order to be able to continue his enrollment, a student who has taken a total of:

(a) 24 to 59 credit hours at Clemson must have a cumulative grade-point ratio of 1.30 or above.
(b) 60 to 89 credit hours at Clemson must have a cumulative grade-point ratio of 1.50 or above.
(c) 90 or more credit hours at Clemson must have a cumulative grade-point ratio of 1.70 or above.

A student completing a regular session has the privilege of continuing his enrollment through the immediately following summer session at Clemson or in Clemson parallel programs in an effort to meet the above requirements.

A student who has taken fewer than 90 credit hours at Clemson and who fails to meet the required grade-point ratio, as indicated in the table above, may apply for readmission after a minimum of one semester has elapsed. A student who has taken 90 or more credit hours and fails to meet the required grade-point ratio is permanently ineligible for readmission. Any exceptions to these minimum requirements for continuing enrollment and readmission must be approved by the Admissions Committee of the University.

Advanced Placement by Examination. In addition to earning credit by the usual method involving classroom attendance, students may receive credit toward their degree by completing a course successfully by examination only. Freshmen interested in exempting some of the elementary courses in this manner should participate in the College Board Advanced Placement Examination program, and have the results of these tests sent to Clemson.

Credit by Examination. Credit may be earned by means of a special examination without the necessity of class attendance subject to the following requirements:

(1) The applicant must present evidence which would indicate that he has received training or taken work which is approximately equivalent to that given in the course at Clemson for which an examination is requested and that an examination is warranted.
(2) The applicant must not have previously failed or audited the course at Clemson.
(3) The applicant must apply in writing for the examination and the request must be approved by the instructor, head of the de-
partment in which the course is taught, dean of the college or school in which the course is taught, and the Dean of Admissions and Registration.

(4) A grade of not less than C on the examination is necessary in order for the examinee to receive credit on the course. An examinee receiving credit under this provision receives credit for "hours taken," "hours earned," and grade points as well as the course grade.

(5) The time of the examination will be arranged by the student with the instructor concerned, but must be taken within one month after the date of final approval or it will be necessary for the student to initiate another request.

Work Taken at Another Institution. Clemson students may receive credit for work taken at another institution; however, approval of the work should be obtained by the student prior to scheduling the work. Information and forms relative to this approval may be obtained in the Office of Admissions and Registration. By obtaining advance approval the student is assured of receiving proper credit at Clemson provided he passes the work with a grade of C or higher.

Classification. All new students are classified as freshmen unless they have attended another college prior to entrance. For those students who have completed college work elsewhere, classification will be based on semester hours accepted at Clemson rather than the amount of work presented.

To be classified as a sophomore, a student must have completed at least 30 semester hours.

To be classified as a junior, a student must have completed at least 60 semester hours.

To be classified as a senior, a student must have completed at least 95 semester hours.

Regular Advancement in Classification. All students are urged to meet the requirements for sophomore classification by the beginning of the second year, for junior classification by the beginning of the third year, and for senior classification by the beginning of the fourth year. Failure to meet these requirements can jeopardize a student's academic standing with the University as well as jeopardize his deferment under the Selective Service even though he may be otherwise eligible for the deferment.
Course Prerequisites. Prerequisites for individual courses are enumerated under the course listings in the Description of Courses. In addition to these requirements, colleges, schools, and departments may also establish other standards as conditions for enrollment. In the College of Engineering a grade-point ratio of 1.80 or higher is required for registration in all engineering courses numbered 300 or higher. In the College of Nursing, a grade-point ratio of 1.80 or higher is required for registration in all nursing courses numbered 300 or higher.

Credit Load. Except for an entering freshman, who is restricted to the curriculum requirements of his major course, the credit load for an undergraduate must be approved by his class adviser. The class adviser will approve a credit load deemed in the best interest of the student based on such factors as course requirements, grade-point ratio, participation in other activities, and expected date of graduation.

Since grades are an important factor in determining credit loads, the student should be guided by the following table in presenting his schedule to his class adviser for approval:

<table>
<thead>
<tr>
<th>Grade-Point Ratio (Semester or Cumulative, Whichever Is Higher)</th>
<th>Recommended Maximum Number of Semester Hours to Be Scheduled</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 to 0.99</td>
<td>.14 to 16</td>
</tr>
<tr>
<td>1.00 to 1.99</td>
<td>.16 to 18</td>
</tr>
<tr>
<td>2.00 to 2.99</td>
<td>.18 to 20</td>
</tr>
<tr>
<td>3.00 to 4.00</td>
<td>.20 to 22</td>
</tr>
</tbody>
</table>

When any full-time student reduces his credit load below 12 hours, but is still carrying 9 or more, he may be suspended for at least the remainder of the semester upon recommendation of the Vice President for Student Affairs and approval of the President. When a student reduces his credit load below 9 hours he shall be suspended for at least the remainder of the semester.

Auditing Policies. Qualified students may audit courses upon the written approval of the professor, head of the department and the dean of the college or school concerned, and registration with the Dean of Admissions and Registration. Auditors are under no obligation of regular attendance, preparation, recitation, or examination and receive no credit. Participation in classroom discussion and laboratory exercises by auditors is at the discretion of the instructor. A student who has previously audited a course is ineligible for credit by examination.
A full-time undergraduate student with approval may audit courses at no additional charge as long as the student's credit load, including the course audited, is approved by his class adviser.

A graduate student regularly enrolled for a minimum of six semester hours may, with approval, audit one additional course without charge.

Members of the University teaching staff and the professional staff in research and agricultural extension may with approval audit courses without charge. Other full-time University employees may audit without charge with the additional approval of the employee's immediate supervisor and the Comptroller.

Residence Requirement for Graduation. In order to qualify for an undergraduate degree, a student must spend at least the last year of residence at Clemson and complete at Clemson a minimum of 30 of the last 36 credits presented for the degree.

Honors Program. The Honors Program at Clemson University provides for the fuller development of our most able students. They meet in small classes with outstanding professors and explore the subject matter of a course in greater depth than other students are able to do. The identification and selection of Honor Students begins with their freshman year, and Honors courses are provided at all four levels of undergraduate instruction. To remain in the Honors Program a student must maintain a cumulative grade-point ratio of 3.00.

An Honors Council composed of faculty members from each college and school is responsible for planning and supervising the Honors Program. *The Honors Program: A Student Handbook* is available for those who are interested.

Honors and Awards Day. Each spring an Honors and Awards Day is held for students who qualify for the honor list and for special awards. A cumulative grade-point ratio of 3.00 to 3.49 is required for listing with honor, 3.50 to 3.79 for high honor, and 3.80 or above for inclusion with highest honor.

Honor Graduates. Students who graduate in the Honors Program will have this fact indicated on their diplomas. Other graduates who meet the required qualifications are designated as having graduated with honor. A grade-point ratio of 3.00 to 3.49 is required for graduation with honor, 3.50 to 3.79 for high honor, and 3.80 or above for graduation with highest honor.
Examination on F Received in Last Semester. A candidate for a degree who, in the semester immediately prior to graduation, fails to graduate because of an F on one course taken in that semester may stand a special examination on the course provided:

(1) That the candidate can furnish evidence of having done satisfactory study for the examination.

(2) That the examination is not given until after the regular degree date.

(3) That the candidate has fulfilled, prior to the due date for candidates’ grades, all other requirements for his degree except those which can be fulfilled by passing the examination.

(4) That the candidate by removing the F by examination will finish all requirements for his degree which will be awarded on the next regular date for award of degrees.

Make-ups of I’s Received in Last Semester. A candidate for a degree who in the semester immediately prior to graduation receives one or more grades of I shall have an opportunity of removing the unsatisfactory grades provided the final grades are received in the Office of Admissions and Registration by the time grades for candidates for graduation are due.

A candidate who qualifies for graduation under this regulation will be awarded his degree on the regular date for the award of degrees.

Special Graduation Requirements. A cumulative grade-point ratio of 2.00 is required for graduation. Candidates for degrees are required to apply for their diplomas within two weeks following the opening of the final semester or the opening of the summer session prior to the date the degrees are to be awarded. These applications should be filled out in the Office of Admissions and Registration on the regular blanks provided.

All work for a degree must be completed, all financial settlements made, and all government property and library books returned by 5 p.m. on the Tuesday preceding graduation.

A student in line for graduation at the end of this semester who fails to graduate because of an F on one course taken this semester may stand a special examination under certain conditions on the course after the regular degree date. A senior who qualifies for graduation under this provision will be awarded his degree on the next regular date for the award of degrees. For further information see paragraph Examination on F Received in Last Semester.
A student in line for graduation at the end of a semester or summer term who meets all requirements for graduation except for a deficiency in his grade-point ratio resulting from a deficiency of not more than six grade points shall have the privilege of making up his deficiency by standing special reexaminations under certain conditions.

The examinations shall be taken after the regular degree date and in courses totaling not more than six semester credit hours which were passed during the last year of residence, and only one such examination may be taken on an individual course. When such examinations are taken under the above provision, the credit hours of the course or courses will not be counted as additional credit hours taken. Only the grade points over and above the grade points previously earned in the course may count toward raising the grade-point ratio.

A student who qualifies for graduation under this provision will be awarded his degree on the next regular date for the award of degrees.

If all work toward a degree is not completed within five years after entrance, the student may be required to take additional courses.
PART V

DEGREES AND CURRICULUMS
PART V—Degrees and Curriculums

BACHELORS' DEGREES

The degree of Bachelor of Science is awarded to those students who satisfactorily complete one of the four-year curriculums offered under the College of Agricultural Sciences, the College of Engineering, or the College of Forest and Recreation Resources. In the College of Education, the Bachelor of Science degree is awarded to those completing the requirements in Agricultural Education, Industrial Education, and Science Teaching. The Bachelor of Arts degree is granted to those completing the curriculum in Early Childhood Education, Elementary Education or the Secondary Education curriculum with a teaching major in Economics, English, History, Modern Languages, Mathematics, Natural Sciences, Political Science, Psychology, or Sociology. In the College of Industrial Management and Textile Science, the Bachelor of Arts degree is awarded to those completing the curriculum in Economics; and the Bachelor of Science degree is awarded to those completing the requirements in Accounting, Administrative Management, Financial Management, Industrial Management, Textile Chemistry, or Textile Science. In the College of Liberal Arts, the Bachelor of Arts degree is awarded to those students who satisfactorily complete the curriculum with major concentrations in English, History, Modern Languages, Political Science, Psychology, or Sociology. In the College of Nursing, the Bachelor of Science degree is awarded to those students completing requirements in the four-year Nursing curriculum. In the College of Physical, Mathematical, and Biological Sciences, the Bachelor of Science degree is awarded to those students completing the requirements in Botany, Chemistry, Geology, Mathematics, Medical Technology, Microbiology, Physics, Pre-medicine and Pre-dentistry, Zoology, and the Bachelor of Arts degree is awarded to those completing the Arts and Sciences curriculum with major emphases in chemistry, geology, mathematics, or physics.

The College of Architecture offers coordinated undergraduate and graduate curricula in the fields of architecture, building construction, city and regional planning, and visual studies. At undergraduate level the architectural student may elect to take either the Bachelor of Arts in Pre-architecture program or the Bachelor of Science Pre-architecture option. This four-year sequence is followed by an intensive two-year graduate program leading to the professional
degree Master of Architecture with concentration in building systems, general design, health facilities planning, or building science. The Pre-architectural sequences in arts or science include a minimum of 134 credit hours of study, and an additional 60 hours in the graduate program for a total of 194 credits.

A four-year curriculum is also available to persons wishing to prepare for a career in building construction. This course requires 134 hours of study for the Bachelor of Science in Building Construction degree.

After the four-year Pre-architecture degree program or other acceptable undergraduate programs, the qualified student may opt the two-year graduate professional curriculum in City and Regional Planning, encompassing 60 credit hours and leading to the Master of City and Regional Planning degree.

Graduates of pre-professional programs with appropriate creative accomplishment may elect the two-year graduate sequence in Visual Studies leading to the Master of Fine Arts degree in Painting, Sculpture, Graphics, Design, Printmaking, Photography or Multimedia. These programs each require a minimum of 60 credit hours of graduate professional study.

ASSOCIATE DEGREE

The College of Nursing offers, in addition to the baccalaureate program in nursing, an Associate in Arts degree program in nursing. This program normally requires four semesters—a minimum of 66 semester credit hours.

GRADUATE DEGREES

The degrees of Doctor of Philosophy, Master of Arts, Master of Science, Master of Agricultural Education, Master of Agriculture, Master of Architecture, Master of City and Regional Planning, Master of Education, Master of Engineering, Master of Fine Arts, Master of Forestry, Master of Industrial Education, and Master of Recreation and Park Administration are awarded to those students who satisfactorily complete prescribed graduate programs. Also, the Master of Business Administration degree is available through a joint program with Furman University.

For further information concerning advanced degrees see The Graduate School Announcements, which may be obtained from the Office of the Dean of Graduate Studies and University Research.
UNDERGRADUATE CURRICULUMS

Fifty undergraduate curriculums are offered under the Colleges of Agricultural Sciences, Architecture, Education, Engineering, Forest and Recreation Resources, Industrial Management and Textile Science, Liberal Arts, Physical, Mathematical and Biological Sciences, and the College of Nursing. The curriculums under each college and school are listed below:

COLLEGE OF AGRICULTURAL SCIENCES
- Agricultural Economics
- Agricultural Education
- Agricultural Engineering
- Animal Industries
- Biology (Entomology)
- Food Science
- Plant Sciences
- Pre-veterinary

COLLEGE OF ARCHITECTURE
- Building Construction
- Pre-architecture

COLLEGE OF EDUCATION
- Agricultural Education
- Early Childhood Education
- Elementary Education
- Industrial Education
- Science Teaching
- Secondary Education

COLLEGE OF ENGINEERING
- Agricultural Engineering
- Ceramic Engineering
- Chemical Engineering
- Civil Engineering
- Electrical and Computer Engineering
- Engineering Analysis

Mechanical Engineering
- Technical Operations

COLLEGE OF FOREST AND RECREATION RESOURCES
- Forestry
- Recreation and Park Administration

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE
- Accounting
- Administrative Management Economics
- Financial Management
- Industrial Management
- Textile Chemistry
- Textile Science

COLLEGE OF LIBERAL ARTS
- English
- History
- Modern Languages
- Political Science
- Psychology
- Sociology

COLLEGE OF NURSING
- Baccalaureate Program
- Associate Degree Program

* Jointly administered by the College of Agricultural Sciences and the College of Engineering.
† Jointly administered by the College of Education and the College of Agricultural Sciences.
‡ Jointly administered by the College of Agricultural Sciences and the College of Physical, Mathematical and Biological Sciences.
In the curriculums which follow are given the official titles and number of the courses, the descriptive titles, the number of semester hours credit, and in parentheses, the number of hours per week in class and laboratory, respectively.

COLLEGE OF AGRICULTURAL SCIENCES

Modern agriculture is the science, business, and art of producing, processing, and distributing plant and animal products, including those aspects of economics and human relations connected with these activities. Agriculture is a unique area in education because it applies the basic sciences to biological material for economic implications.

Today's agriculture includes much more than farm production. About 6 million people provide supplies and services for farmers, and 10 million process and distribute farm products. These two segments together with farm production, which employs 5 million workers, provide jobs somewhere in agriculture for 21 million Americans—approximately one-third of all jobs.

Thousands of agricultural graduates are needed each year in this basic industry. Our land-grant colleges and universities are now graduating considerably less than the total number needed to fill the jobs available each year—jobs important to every person, jobs with futures, jobs with challenge, jobs with personal and financial rewards.

The total program in Agriculture at this institution includes Resident Instruction, Research (Agricultural Experiment Station), and Extension (Agricultural Extension Service). Organized under Resident Instruction are curriculums in Agricultural Economics, Agricultural Education,* Agricultural Engineering,† Animal Industries (majors in Animal Science, Dairy Science, and Poultry Science), Biology (major in Entomology), Food Science, Plant Sciences

* Jointly administered by the College of Education and the College of Agricultural Sciences.
† Jointly administered by the College of Agricultural Sciences and the College of Engineering.
(majors in Agronomy—Crops and Soils, Horticulture—Fruit and Vegetable, and Horticulture—Ornamental), and Pre-veterinary Medicine.

The curriculums in Agriculture are continuously revised to meet the changing needs of this dynamic industry. In this connection, students in many of the curriculums now have the opportunity to specialize by choosing a minor in Science, Business, Production, International Agriculture, or a Second Department.

Science Minor—This minor emphasizes the basic sciences that prepare students to contribute to the advancement of knowledge in their respective fields. It is designed for students whose anticipated work requires considerable scientific training, usually including graduate studies. Employment opportunities include research with State Agricultural Experiment Stations, the United States Department of Agriculture, and industrial and commercial organizations; and teaching in colleges of agriculture, and other educational work with Federal, State and industrial organizations.

Business Minor—This minor emphasizes principles and practices of business management as applied to businesses and industries associated with agriculture. It is designed for students who plan to work with one of the many businesses and industries that provide supplies and services for the farmer, and process and distribute farm products. Employment opportunities include work related to meat and poultry processing, sales and service of farm machinery, manufacturing and sales of fertilizers and pesticides, dairy and food processing, grain and seed processing, feed manufacturing, banking and credit, insurance, farm management, land appraising, and the marketing of agricultural commodities.

Production Minor—This minor emphasizes the application of scientific principles to agricultural production. It is designed for students whose anticipated work requires broad general training in scientific and practical agriculture. Employment opportunities include general and specialized farming; agricultural extension services; teaching vocational agriculture; conservation of natural resources; agricultural communication; and agricultural services of the United States Department of Agriculture, State Departments of Agriculture and private enterprises.

International Agriculture Minor—This minor emphasizes the international aspects of agriculture and applies basic scientific principles and agricultural practices to worldwide agriculture. It is
designed for students who contemplate work in international agricultural positions either in the United States or abroad. Employment opportunities include positions with the Foreign Agricultural Service of the United States Department of Agriculture, with foundations such as the Ford Foundation, with the Agency for International Development, with industries such as United Fruit Company, and with other domestic and foreign interests.

Second Department Minor—This minor emphasizes special training in an area of study other than the major. A Second Department minor may be selected either within or outside of the College of Agricultural Sciences. It is designed for students who wish additional specialized training outside their major area of study. Additional information relative to employment opportunities open to students with a minor in a Second Department is given elsewhere in this catalog under the various curriculum listings.

To illustrate further the types of work in which graduates engage, a few of the many occupations of agricultural graduates are listed under each curriculum.

FRESHMAN YEAR CURRICULUMS

[For students in Agricultural Economics, Agricultural Education, Animal Industries (majors in Animal Science, Dairy Science, and Poultry Science), and Plant Sciences (majors in Agronomy—Crops and Soils, Horticulture—Fruit and Vegetable, and Horticulture—Ornamental.)]

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agric 101 Introd. to Agric.</td>
<td>Bot 102 Prin. of Botany</td>
</tr>
<tr>
<td>Ch 101 Gen. Chemistry</td>
<td>or Ch 112 Gen. Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 102 Amer. History</td>
<td>Math 104 Trigonometry</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td>Zool 102 Prin. of Zoology</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

[For students in Biology (major in Entomology),* and Food Science.]

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agric 101 Introd. to Agric.</td>
<td>Bot 102 Prin. of Botany</td>
</tr>
<tr>
<td>Ch 101 Gen. Chemistry</td>
<td>or Ch 112 Gen. Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td>Math 106 Cal. of One Var.</td>
</tr>
<tr>
<td>Math 104 Trigonometry</td>
<td>Zool 102 Prin. of Zoology</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

* Biology students majoring in Entomology take both Bot 104 and Zool 104.
AGRICULTURAL ECONOMICS AND RURAL SOCIOLOGY

The curriculum in Agricultural Economics places emphasis on a strong background in economic theory with applications to agricultural and agriculturally related businesses. Also included are courses in basic agricultural and biological sciences, liberal arts, and business. Students with a major in agricultural economics now have the opportunity to further specialize by selecting a minor in Science, Business, International Agriculture, or a Second Department.

Employment opportunities open to graduates with degrees in Agricultural Economics are many. They include research and teaching in institutions of higher learning; sales and promotional work for a variety of businesses; management positions in the farm loan departments of private banks or with cooperative farm credit agencies; public relations activities for various firms; market managers and directors; county agents; representatives of government agencies serving agriculture; and operators of numerous enterprises.

AGRICULTURAL ECONOMICS CURRICULUM

AGRICULTURAL ECONOMICS MAJOR
(See page 117 for Freshman Year)

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Agric 201 Introd. to Animal Ind.</td>
<td>Ag Ec 202 Agric. Economics</td>
</tr>
<tr>
<td>Agron 202 Soils</td>
<td>Ag Ec 305 Agric. Bus. Anal.</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>or Acct 201 Prin. of Accounting</td>
</tr>
<tr>
<td>History–Literature Requirement*</td>
<td>Agric 202 Introd. to Plant Sciences</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>History–Literature Requirement*</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Phys 207 Gen. Physics</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Junior Year</td>
<td></td>
</tr>
<tr>
<td>Ag Ec 309 Econ. of Agric.</td>
<td>Ag Ec 302 Agric. Firm Mgt.</td>
</tr>
<tr>
<td>Marketing</td>
<td>Ag Ec 352 Public Finance</td>
</tr>
<tr>
<td>Ag Ec 357 Natural Resource Econ.</td>
<td>Engl 301 Public Speaking</td>
</tr>
<tr>
<td>Econ 314 Inter. Econ. Theory</td>
<td>or Engl 304 Advanced Comp.</td>
</tr>
<tr>
<td>Ex St 301 Introd. Statistics</td>
<td>Ex St 462 Stat. Applied to Econ.</td>
</tr>
<tr>
<td>Minor</td>
<td>Minor</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
</tr>
<tr>
<td>Ag Ec 405 Seminar</td>
<td>Ag Ec 402 Econ. of Agric. Prod.</td>
</tr>
<tr>
<td>Ag Ec 452 Agricultural Policy</td>
<td>Ag Ec 406 Seminar</td>
</tr>
<tr>
<td>Gen 302 Genetics</td>
<td>Ag Ec 456 Prices</td>
</tr>
<tr>
<td>or RS 401 Human Ecology</td>
<td>RS 301 Rural Sociology</td>
</tr>
<tr>
<td>Minor</td>
<td>Approved Electives</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>Total</td>
</tr>
<tr>
<td>Total Semester Hours</td>
<td>134 Total Semester Hours</td>
</tr>
</tbody>
</table>

* One course to be selected from each of the following groups. (At least one literature course is required.)
Group II: Engl 204, 206, 208, 231, Hist 172, 173.
† See class adviser for available minors and course requirements.
AGRICULTURAL EDUCATION

The Agricultural Education curriculum is designed for students who wish to prepare for positions in vocational agriculture, agricultural occupations, and other teaching positions in the secondary schools; engage in other forms of educational work such as agricultural missionary, public relations, and agricultural extension; farming, soil conservation, and other governmental work; business and industry.

The curriculum provides for a broad education in general and professional education including student teaching. In addition to required courses giving a thorough background in the agricultural and biological sciences, a student may minor in Business, International Agriculture, or in a Second Department. Students in other departments may minor in Agricultural Education and be certified to teach.

AGRICULTURAL EDUCATION CURRICULUM

AGRICULTURAL EDUCATION MAJOR
(See page 117 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ed 201 Intro. to Agric. Ed.</td>
<td>3 (2,2)</td>
</tr>
<tr>
<td>Agric 202 Intro. to Plant Sciences</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>History-Literature Requirement*</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 207 Gen. Physics</td>
<td>4 (3,2)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total:</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgE 301 Soil and Water Conserva.</td>
</tr>
<tr>
<td>Agron 301 Fertilizers</td>
</tr>
<tr>
<td>Engl 301 Public Speaking</td>
</tr>
<tr>
<td>Approved Horticulture Elective</td>
</tr>
<tr>
<td>Minor†</td>
</tr>
<tr>
<td>Approved Electives</td>
</tr>
<tr>
<td>Total:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 452 Agric. Policy</td>
</tr>
<tr>
<td>Ent 301 General Entomology</td>
</tr>
<tr>
<td>Hort 407 Landscape Design</td>
</tr>
<tr>
<td>Pl Pa 401 Plant Pathology</td>
</tr>
<tr>
<td>Minor†</td>
</tr>
<tr>
<td>Approved Electives</td>
</tr>
<tr>
<td>Total:</td>
</tr>
</tbody>
</table>

134 Total Semester Hours

* One course to be selected from each of the following groups. (At least one literature course is required.)
Group II: Engl 204, 206, 208, 231, Hist 172, 173.
† See class adviser for available minors and course requirements.
†† Jointly administered by the College of Education and the College of Agricultural Sciences.
AGRICULTURAL ENGINEERING*

The graduate in Agricultural Engineering, with broad training in mathematics, physics, chemistry, and the biological sciences as well as comprehensive coverage of the engineering sciences, is well equipped to apply engineering to many functions affecting the well-being of mankind. The agricultural engineer is sought by industry and public service organizations primarily for his ability to apply engineering know-how to agricultural production and processing, and to the conservation of land and water resources. Specific areas of interest include power and machinery, soil and water resources engineering, electric power and processing, structures and environment, and food engineering.

The undergraduate Agricultural Engineering curriculum leads to the Bachelor of Science degree. Based upon fundamental training in the basic sciences, the curriculum includes such engineering sciences as mechanics, fluids, thermodynamics, electrical theory, computing devices and systems analyses. The basic agricultural sciences of soils, plants and animals are included so as to provide a foundation for Agricultural Engineering analysis and design. Recognition is also given to the necessity for being able to synthesize information from any of the applicable subject matter areas, including studies of energy conversion, engineering analysis and the engineering properties of biological materials, and with emphasis upon economy and integrity of design. Research is included in order to introduce the student to the scientific method. Courses in the humanities are required to provide the graduate engineer with a well-rounded educational experience.

The undergraduate curriculum is designed for both the student who wishes to terminate his formal academic training at the bachelor’s level, and also to provide the necessary prerequisites for those who wish to continue in graduate study. Graduate programs in Agricultural Engineering which lead to the Master of Science, the Master of Engineering, and the Doctor of Philosophy degrees are offered.

Since an Agricultural Engineering graduate has a broad training in engineering, in the sciences, in humanities, and in life sciences, he has the pick of opportunities in many areas. Opportunities in Agricultural Engineering include employment with industry as design engineers, research engineers, production engineers, and in sales and service; with state and federal agencies as teachers, re-

* The Agricultural Engineering curriculum is jointly administered by the College of Agricultural Sciences and the College of Engineering.
search engineers, and extension engineers; as field engineers with the Soil Conservation Service, Bureau of Reclamation, and similar organizations; and with agricultural enterprises as managers, contractors, equipment retailers and as consulting engineers.

The Agricultural Engineering curriculum is accredited by the Engineers’ Council for Professional Development.

AGRICULTURAL ENGINEERING CURRICULUM

AGRICULTURAL ENGINEERING MAJOR

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agr 101 Introd. to Agric.</td>
<td>Basic Science†</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engr 180 Engr. Concepts of Humanistic-Social Elective</td>
<td>Humanistic-Social Elective</td>
</tr>
<tr>
<td>or Humanistic-Social Elective</td>
<td>or Engr 180 Engr. Concepts</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Math 103 Cal. and Linear Alg.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>16</td>
<td>17 — 16</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

Agr 221 Soil and Water Res. Engr I	Agr 212 Fund. of Mechanization.
Literature Requirement*	Literature Requirement*
Phys 221 Therm. and Elec. Phen.	AS or MS or Elective
AS or MS or Elective	**17**
19	**17**

JUNIOR YEAR

Agr 353 Computational Systems	Agr 362 Energy Conv. in Ag. Sys.
Bot 102 Prin. of Botany	Agron 202 Soils
E&CE 307 Basic Elec. Engr.	E&CE 320 Electronics I
ME 311 Engr. Therm. I	**17**
Zool 102 Prin. of Zoology	Humanistic-Social Elective
17	**17**

SENIOR YEAR

Agr 471 Undergraduate Research	Agr 422 Soil & Water Res. Engr. I
EM 320 Fluid Mechanics	Bot 352 Plant Physiology
Free Elective	or Physiol.
17 — 16	**17**
138 Total Semester Hours	**18**

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† To be selected from Ch 102 or 112.

ANIMAL INDUSTRIES

ANIMAL SCIENCE

The Animal Science Department emphasizes subject matter dealing with the application of scientific principles to livestock production and processing.

Students will minor in Science, Business, Production, International Agriculture, or a Second Department.

Occupations for Animal Science graduates include livestock farming; cattle, swine and sheep breeding; extension livestock specialists; feed specialists; county agents; teaching and research in animal industry; positions with meat packing companies; feed dealers; freezer locker operators; livestock dealers; and livestock commission brokers.

ANIMAL INDUSTRIES CURRICULUM

ANIMAL SCIENCE MAJOR

(See page 117 for Freshman Year)

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Ch 223 Org. Chemistry†</td>
<td>Agric 202 Introd. to Plant Sciences 3 (2,3)</td>
</tr>
<tr>
<td>Ch 227 Org. Chem. Lab.†</td>
<td>An Sc 201 Introd. to Animal Sci. 2 (2,0)</td>
</tr>
<tr>
<td>or Ch 201 Gen. Chemistry</td>
<td>An Sc 203 Introd. to An. Sci. Lab. 1 (0,3)</td>
</tr>
<tr>
<td>or Bioch 210 Elem. Biochem.</td>
<td>History–Literature Requirement* 3 (3,0)</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>Phys 207 Gen. Physics 4 (3,2)</td>
</tr>
<tr>
<td>History–Literature Requirement*</td>
<td>Minor† 3</td>
</tr>
<tr>
<td>Zool 307 Animal Anat. and Phys. 3 (2,3)</td>
<td>AS or MS or Elective 1</td>
</tr>
<tr>
<td>Minor†</td>
<td>17</td>
</tr>
<tr>
<td>AS or MS or Elective 1</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Sc 301 Feeds and Feeding 3 (3,0)</td>
<td>An Sc 401 Beef Production 3 (3,0)</td>
</tr>
<tr>
<td>An Sc 353 Meats 2 (2,0)</td>
<td>An Sc 403 Beef Prod. Lab. 1 (0,3)</td>
</tr>
<tr>
<td>An Sc 355 Meats Lab. 1 (0,3)</td>
<td>Dy Sc 453 Animal Reprod. 3 (3,0)</td>
</tr>
<tr>
<td>Gen 302 Genetics 4 (3,3)</td>
<td>Minor† 3</td>
</tr>
<tr>
<td>Micro 305 Gen. Microbiology 4 (3,3)</td>
<td>Approved Electives 7</td>
</tr>
<tr>
<td>Approved Elective 3</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

| 134 Total Semester Hours |

* One course to be selected from each of the following groups. (At least one literature course is required.)
Group II: Engl 204, 206, 208, 231, Hist 172, 173.
† Required for Science Minor.
‡ See class adviser for available minors and course requirements.
§ To be selected from the following: Phil 201, Pol Sc 301, Psych 201, RS 301, 401, Soc 201.
DAIRY SCIENCE

The major in Dairy Science is designed to provide the student with an understanding of scientific principles and the application of these principles in the scientific, technical, and business phases of the dairy industry. Completion of required studies in the sciences and humanities and selected courses by the student in areas of personal interest prepares the graduate for a successful chosen profession. A career in the dairy industry is a rewarding one, not only monetarily, but in rendering a service in providing a wholesome, nutritious food for mankind.

Opportunities for dairy science graduates are many. They include the management of production and processing facilities, quality control work for processing units and production organizations, industrial promotion and public relations work in both production and processing fields, dairy and food products engineering, special services, public health service, teaching and research. Special service opportunities are available in state and national breed association work, breeding organizations, industrial supplies, production and processing equipment and supplies. Opportunities in educational activities include positions with industrial associations, state and federal services and federal programs with foreign assignments.

Students majoring in Dairy Science may choose a minor in Science, Business, Production, International Agriculture, or a Second Department.

ANIMAL INDUSTRIES CURRICULUM

DAIRY SCIENCE MAJOR
(See page 117 for Freshman Year)

<table>
<thead>
<tr>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>Agric 202 Introd. to Plant Sciences</td>
</tr>
<tr>
<td>Ch 223 Org. Chemistry</td>
</tr>
<tr>
<td>or Ch 201 Gen. Chemistry</td>
</tr>
<tr>
<td>or Bioch 210 Elem. Biochem.</td>
</tr>
<tr>
<td>Dy Sc 201 Introd. to Dairy Science</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
</tr>
<tr>
<td>History—Literature Requirement*</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy Sc 307 Market Milk</td>
</tr>
<tr>
<td>Fd Sc 305 Dairy and Food Engr.</td>
</tr>
<tr>
<td>Fd Sc 414 Fd. Qual. Control Lab.</td>
</tr>
<tr>
<td>or Dy Sc 310 Dy. Cattle Select.</td>
</tr>
<tr>
<td>Micro 305 Gen. Microbiology</td>
</tr>
<tr>
<td>Minor</td>
</tr>
</tbody>
</table>

18 — 17
Poultry Science

The Poultry Science major is expected to gain knowledge in the basic disciplines within which the poultry industry operates and specialized knowledge on the biology of the avian species. Technical poultry courses emphasize the nutrition, physiology, genetics and pathology of domesticated birds and the environmental requirements for incubation of eggs, production of meat and eggs and handling of products.

Minors in Science, Business, Production, International Agriculture, or a Second Department provide for the specialized interest of the student within the broad area encompassed by Poultry Science.

Job opportunities for Poultry Science majors who minor in Science include teaching, extension and research positions in colleges, government laboratories or in industry. This usually involves graduate work. Business minors are especially equipped to move into management positions in the small to large corporations in feed manufacturing, production, processing, and marketing of poultry products. Production minors are trained for operation of poultry farms, general farms, or as extension agents working with farmers. International Agriculture minors are expected to export the technical information and techniques so successful in the American poultry industry to a protein-short world. Many American poultry firms are operating on a worldwide basis and our own government and foreign nations are interested in assistance in transferring poultry knowledge to underdeveloped areas.

Students who hope to work in broad agricultural areas that include poultry and other agricultural segments may find a minor in...
a Second Department helpful. This includes such opportunities as agricultural chemicals, pharmaceuticals, biologicals, feed manufacturers, breeding organizations, marketing organizations, publishers, advertisers, and poultry farmers involved in another enterprise.

ANIMAL INDUSTRIES CURRICULUM

POULTRY SCIENCE MAJOR
(See page 117 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophomore Year</td>
<td>Econ 201 Principles of Econ. ... 3 (3,0)</td>
</tr>
<tr>
<td>Agric 202 Intro. to Plant Sciences</td>
<td>Ch 223 Org. Chemistry†</td>
</tr>
<tr>
<td>Ch 223 Org. Chemistry†</td>
<td>Ch 227 Org. Chem. Lab.†</td>
</tr>
<tr>
<td>or Ch 201 Gen. Chemistry</td>
<td>or Bioch 210 Elem. Biochem.</td>
</tr>
<tr>
<td>Gen 302 Genetics</td>
<td>History–Literature Requirement*</td>
</tr>
<tr>
<td>History–Literature Requirement*</td>
<td>PS 352 Breeder Flock and Hatchery Mgt.</td>
</tr>
<tr>
<td>PS 201 Intro. to Poultry Science</td>
<td>PS 353 Breeder Flock and Hatchery Mgt. Lab.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Junior Year</td>
<td>Senior Year</td>
</tr>
<tr>
<td>An Sc 301 Feeds and Feeding</td>
<td>PS 401 Animal Environ. Tech.</td>
</tr>
<tr>
<td>Engl 301 Public Speaking</td>
<td>PS 403 Anim. Environ. Tech. Lab.</td>
</tr>
<tr>
<td>PS 355 Poul. Prod. Grad. & Tech.</td>
<td>PS 458 Avian Microbiology and Parasit.</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Minor§</td>
</tr>
<tr>
<td>Minor§</td>
<td>Approved Electives</td>
</tr>
<tr>
<td>Senior Year</td>
<td>Internship Hours</td>
</tr>
<tr>
<td>PS 401 Animal Environ. Tech.</td>
<td>PS 460 Seminar</td>
</tr>
<tr>
<td>PS 458 Avian Microbiology and Parasit.</td>
<td>Minor§</td>
</tr>
<tr>
<td>Dept. Major Requirement†</td>
<td>Approved Electives</td>
</tr>
<tr>
<td>Minor§</td>
<td>15</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>16</td>
</tr>
</tbody>
</table>

* One course to be selected from each of the following groups. (At least one literature course is required.)

- Group II: Engl 204, 206, 208, 231, Hist 172, 173.

† Science minors should schedule Ch 223, 227. Business minors may substitute Acct 201.

‡ To be selected from the following: Phil 201, Pol Sc 301, Psych 201, RS 301, 401, Soc 201.

§ See class adviser for available minors and course requirements.

¶ See class adviser for department major requirements.
BIOLOGY (Entomology Major)

The Entomology major in the Biology curriculum is described below.

ENTOMOLOGY

Entomology is that branch of science that deals with the study of insects. In many ways insects are the most important group of animals that affect man. At the present time insects are costing the American public approximately four billion dollars annually. There will always be a need for qualified entomologists and the financial rewards to members of this profession are comparable to those enjoyed by most other scientists.

Depending on training, ability, and interest, entomologists find employment in such areas as the following: (1) research entomologist with several federal agencies, the state experiment stations, or private research foundations; (2) teaching entomology and/or zoology at the college or university level; (3) industrial research and the development of more efficient insecticides; (4) quarantine and regulatory work at both state and federal levels; (5) sales and management for agricultural chemical or the pest control industries; (6) the federal and state extension services; (7) many other specialized areas where a knowledge of insects is essential, such as beekeeping or disease transmission.

BIOLOGY CURRICULUM

ENTOMOLOGY MAJOR

(See page 117 for Freshman Year)

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agric 201 Introd. to Animal Indus.</td>
<td>Agric 202 Introd. to Plant Sciences</td>
</tr>
<tr>
<td>Ch 223 Org. Chemistry</td>
<td>Ch 224 Org. Chemistry</td>
</tr>
<tr>
<td>Ch 227 Org. Chemistry Lab</td>
<td>Ch 228 Org. Chemistry Lab</td>
</tr>
<tr>
<td>or Ch 201 Gen. Chemistry</td>
<td>or Bioch 210 Elem. Biochem</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>or Ch 313 Quant. Analysis</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>and Ch 317 Quant. Anal. Lab.</td>
</tr>
<tr>
<td>Approved Elective†</td>
<td>Ent 301 General Entomology</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>15</td>
<td>3 (3,0)</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Ent 401 Field Cr. St. Prod. Insects</th>
<th>Ent 402 Fruit, Nut, Veg. Insects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 207 Gen. Physics</td>
<td>Phys 208 Gen. Microbiology</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Approved Electives†</td>
</tr>
<tr>
<td>Approved Electives†</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
</tr>
</tbody>
</table>
Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 301 Public Speaking</td>
<td>Ent 410 Insect Taxonomy</td>
</tr>
<tr>
<td>Ent 405 Insect Morphology</td>
<td>Ent 462 Seminar</td>
</tr>
<tr>
<td>Ent 461 Seminar</td>
<td>Gen 302 Genetics</td>
</tr>
<tr>
<td>Pl Pa 401 Plant Pathology</td>
<td>Zool 460 Gen. Physiology</td>
</tr>
<tr>
<td>Zool 411 Animal Ecology</td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td>Approved Electives†</td>
<td>Approved Electives†</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (1,6)</td>
</tr>
<tr>
<td>4 (3,3)</td>
<td>1 (1,0)</td>
</tr>
<tr>
<td>1 (1,0)</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>3 (2,3)</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>3 (2,3)</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>134 Total Semester Hours</td>
</tr>
</tbody>
</table>

*To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
†Agron 202 must be included.
‡To be selected from the following: Ag Ec 202, Econ 202, Geog 301, 302, Hist 102, 171, 172, 173, Phil 201, 302, Pol Sc 101, 201, 301, 302, Psych 201, Rel 301, 302, RS 301, 401, Soc 201.

FOOD SCIENCE

The Food Science curriculum is designed to prepare students for the many career opportunities in technical and management areas of the food industry. The food industry, being the nation's largest industry, is becoming increasingly technical and requires large numbers of professional food scientists. World food supplies, particularly those rich in protein, are becoming increasingly critical in many parts of the globe. This situation is expected to accelerate the demand for food scientists.

Opportunities for graduates in Food Science include research positions in government organizations and state experiment stations, supervisory, administrative, research, and quality control positions in food processing industries, inspection and grading work with state and federal agencies, consulting, and teaching and extension activities with universities and colleges. Students graduating in Food Science are well prepared to pursue postgraduate training in areas such as microbiology, biochemistry, nutrition, as well as in Food Science.

The student majoring in Food Science will select a minor in *Science, Business, International Agriculture*, or a *Second Department* which will emphasize training in an area other than Food Science and which is designed to supplement the major course of study.
FOOD SCIENCE CURRICULUM

FOOD SCIENCE MAJOR

(See page 117 for Freshman Year)

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 223 Org. Chem.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ch 227 Org. Chem. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>or Ch 201 Gen. Chemistry</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>History–Literature Requirement*</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 207 Gen. Physics</td>
<td>4 (3,2)</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>3</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL 18

JUNIOR YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fd Sc 305 Dairy and Food Engr.</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Fd Sc 311 Food Processing</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Fd Sc 313 Food Processing Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Micro 305 Gen. Microbiology</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Minor‡</td>
<td>3</td>
</tr>
<tr>
<td>Approved Elective</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL 16

SENIOR YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex St 301 Intro. Statistics</td>
<td>3 (2,2)</td>
</tr>
<tr>
<td>Fd Sc 413 Biochem. of Foods</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>Fd Sc 415 Human Nutrition</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>Minor‡</td>
<td>6</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>4</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 17

134 Total Semester Hours

* One course to be selected from each of the following groups. (At least one literature course is required.)

Group II: Engl 204, 206, 208, 231, Hist 172, 173.

† To be selected from the following: Hist 102, Soc 201, Phil 201, Pol Sc 301, Psych 201, RS 301, 401.

‡ See class adviser for available minors and course requirements.

PLANT SCIENCES

The Plant Sciences curriculum includes three majors—Agronomy—Crops and Soils, Horticulture (Fruit and Vegetable), and Horticulture (Ornamental).

AGRONOMY—CROPS AND SOILS

Agronomy is the science that deals with crops and soils. The crop science area includes plant breeding and genetics as related to crop improvement and variety introductions. Special emphasis is also placed on the science of weed control and management for field, forage and pasture crops.

Soil science covers soil formation, classification, management and fertility. The student acquires a basic understanding in chemistry, physics, and biology as related to soil properties and land use.
Training in this area also includes those factors associated with land-pollution problems.

The science-oriented graduate can pursue research with both public and private agencies investigating problems associated with improving the world’s crops and soils, determining pesticide residues in soil and water, or charting fertilizer ion movement through the soil-plant system. Research agronomists are currently studying the soils obtained from the moon.

Positions for Agronomy graduates are available with the Agricultural Extension Service, the Soil Conservation Service, Forest Service, Farmers Home Administration, Production Credit Associations and other public agencies. International opportunities are also available to the agronomist. Agronomists are employed with agri-chemical, seed and other industries as technical, supervisory and sales agronomists. Banks and other financial institutions employ agronomists as appraisers and farm managers. Other agronomists may return to the farm either as a manager or owner-manager.

The science of Agronomy is basic to all agriculture and the graduate will find many opportunities to serve in modern agriculture.

Students majoring in Agronomy—Crops and Soils will declare a minor in Science, Business, Production, International Agriculture, or a Second Department.

PLANT SCIENCES CURRICULUM
AGRONOMY—CROPS AND SOILS MAJOR
(See page 117 for Freshman Year)

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Agric 202 Introd. to Plant Sciences 3 (2.3)</td>
<td>Agric 201 Introd. to Animal Ind... 3 (2.3)</td>
</tr>
<tr>
<td>Ch 223 Org. Chemistry 3 (3.0)</td>
<td>Agron 202 Soils ... 3 (2.0)</td>
</tr>
<tr>
<td>Ch 227 Org. Chemistry Lab, 1 (0.3)</td>
<td>History—Literature Requirement* 3 (3.0)</td>
</tr>
<tr>
<td>or Ch 201 Gen. Chemistry 4 (3.3)</td>
<td>Minor* 6</td>
</tr>
<tr>
<td>or Bioch 210 Elem. Biochem. 4 (3.3)</td>
<td>AS or MS or Elective 1</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ. 3 (3.0)</td>
<td>16</td>
</tr>
<tr>
<td>History—Literature Requirement* 3 (3.0)</td>
<td></td>
</tr>
<tr>
<td>Phys 207 Gen. Physics 4 (3.2)</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective 1</td>
<td></td>
</tr>
</tbody>
</table>
Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agron 301 Fertilizers†</td>
<td>Agron 308 Soil and Plant Anal. 3 (1,6)</td>
</tr>
<tr>
<td>Agron 410 Cotton and Other</td>
<td>Agron 320 Forage & Past. Crops‡ 3 (3,0)</td>
</tr>
<tr>
<td>Fiber Crops†</td>
<td>Agron 322 Forage Crops Lab.† 1 (0,2)</td>
</tr>
<tr>
<td>or Agron 411 Grain Crops 2 (2,0)</td>
<td>Agron 410 Cotton and Other</td>
</tr>
<tr>
<td>or Agron 412 Tobacco and</td>
<td>Fiber Crops† 2 (2,0)</td>
</tr>
<tr>
<td>Spec. Use Crops 2 (2,0)</td>
<td>or Agron 411 Grain Crops 2 (2,0)</td>
</tr>
<tr>
<td>Bot 352 Plant Physiology 4 (3,3)</td>
<td>or Agron 412 Tobacco and</td>
</tr>
<tr>
<td>Gen 302 Genetics 4 (3,3)</td>
<td>Spec. Use Crops 2 (2,0)</td>
</tr>
<tr>
<td>Micro 305 Gen. Microbiology 4 (3,3)</td>
<td>Social Science Elective§ 3</td>
</tr>
<tr>
<td>Minor†</td>
<td>Minor† 6</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

Senior Year

Agron 403 Soil Genesis and Classification† 2 (1,3)	Agron 405 Plant Breeding† 3 (2,2)
Agron 407 Prin. of Weed Control† 3 (2,2)	Agron 452 Soil Fert. and Mgt.† 2 (2,0)
Agron 455 Seminar 1 (1,0)	Agron 456 Seminar 1 (1,0)
Minor† 3 — 7	Minor† 0 — 4
Approved Electives 6	Approved Electives 12 — 8
15 — 19	**18 — 14**

*One course to be selected from each of the following groups. (At least one literature course is required.)

Group II: Engl 204, 206, 231, Hist 172, 173.

† See class adviser for available minors and course requirements.

§ To be selected from the following: Phil 201, Pol Sc 301, Psych 201, RS 301, 401, Soc 201.

HORTICULTURE (Fruit and Vegetable)

This major provides the student with a basic education in science and the humanities, and the application of both in the scientific, technical, and business phases of the fruit and vegetable industry.

Opportunities in this field of study include vegetable and fruit farm management; inspection of fresh fruit, vegetable and other food products as well as nursery stock. There are many other opportunities as in plant breeding, agricultural extension service work, horticultural research, horticultural teaching and writing, and fruit and vegetable processing. Other occupations include sales and field work with seedsmen and nurserymen, and manufacturers of food, fertilizer, and pesticide products.

Students majoring in the fruit and vegetable phase of Horticulture may choose a minor in Science, Business, Production, International Agriculture, or a Second Department.
PLANT SCIENCES CURRICULUM

HORTICULTURE (FRUIT AND VEGETABLE) MAJOR
(See page 117 for Freshman Year)

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agron 202 Soils</td>
<td>Agric 201 Introd. to Animal Ind... 3 (2.3)</td>
</tr>
<tr>
<td>Ch 223 Org. Chemistry</td>
<td>Ent 301 General Entomology ... 3 (2.3)</td>
</tr>
<tr>
<td>Ch 227 Org. Chemistry Lab.</td>
<td>History–Literature Requirement* ... 3 (3.0)</td>
</tr>
<tr>
<td>or Ch 201 Gen. Chemistry</td>
<td>Phys 207 Gen. Physics ... 4 (3.2)</td>
</tr>
<tr>
<td>or Bioch 210 Elem. Biochem.</td>
<td>Approved Electives ... 3</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>AS or MS or Elective ... 1</td>
</tr>
<tr>
<td>History–Literature Requirement*</td>
<td></td>
</tr>
<tr>
<td>Hort 201 Gen. Horticulture</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>Gen 302 Genetics</td>
<td>Bot 352 Plant Physiology ... 4 (3.3)</td>
</tr>
<tr>
<td>Hort 305 Plant Propagation</td>
<td>Hort 302 Prin. Veg. Prod. ... 3 (2.3)</td>
</tr>
<tr>
<td>Hort 352 Commercial Pomology</td>
<td>Hort 451 Small Fruit Culture ... 3 (2.3)</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Micro 305 Gen. Microbiology ... 4 (3.3)</td>
</tr>
<tr>
<td>Minor†</td>
<td>Minor† ... 3</td>
</tr>
<tr>
<td>Approved Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
</tr>
<tr>
<td>Hort 405 Nut Tree Culture</td>
<td>Hort 410 Seminar ... 1 (1.0)</td>
</tr>
<tr>
<td>Hort 407 Landscape Design</td>
<td>Hort 456 Vegetable Crops ... 3 (3.0)</td>
</tr>
<tr>
<td>Hort 409 Seminar</td>
<td>Minor† ... 6</td>
</tr>
<tr>
<td>Hort 464 Post Harvest Hort.</td>
<td>Approved Electives ... 4</td>
</tr>
<tr>
<td>PI Pa 401 Plant Pathology</td>
<td></td>
</tr>
<tr>
<td>Minor†</td>
<td></td>
</tr>
<tr>
<td>Approved Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>134 Total Semester Hours</td>
</tr>
</tbody>
</table>

* One course to be selected from each of the following groups. (At least one literature course is required.)
Group II: Engl 204, 206, 208, 231, Hist 172, 173.
† To be selected from the following: Phil 201, Pol Sc 301, Psych 201, RS 301, 401, Soc 201.
†† See class adviser for available minors and course requirements.

HORTICULTURE (Ornamental)

This major is designed to give students a scientific background and technical facilities in the field of Ornamental Horticulture. Subject matter covers plant materials culture, uses, and planning of ground spaces.

Graduates find careers in nursery work, floriculture, landscape designing, landscape contracting, turf management, and park supervision. Other occupations are research personnel, teachers, extension workers, and representatives of fertilizer, machinery, and chemical companies.

Students desiring to major in Ornamental Horticulture may choose a minor in Science, Business, Production, International Agriculture, or a Second Department.
PLANT SCIENCES CURRICULUM
HORTICULTURE (ORNAMENTAL) MAJOR
(See page 117 for Freshman Year)

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgE 301 Soil and Water Con.</td>
<td>Agron 202 Soils</td>
</tr>
<tr>
<td>Ch 223 Org. Chemistry</td>
<td>Ent 301 General Entomology</td>
</tr>
<tr>
<td>Ch 227 Org. Chemistry Lab.</td>
<td>History—Literature Requirement*</td>
</tr>
<tr>
<td>or Ch 201 Gen. Chemistry</td>
<td>Phys 207 Gen. Physics</td>
</tr>
<tr>
<td>or Bioch 210 Elem. Biochem.</td>
<td>Approved Electives</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>History—Literature Requirement*</td>
<td>3</td>
</tr>
<tr>
<td>Hort 201 Gen. Horticulture</td>
<td>17</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Bot 352 Plant Physiology</th>
<th>Hort 304 Plant Materials II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen 302 Genetics</td>
<td>Hort 303 Landscape Design</td>
</tr>
<tr>
<td>Hort 303 Plant Materials I</td>
<td>Hort 310 Floriculture</td>
</tr>
<tr>
<td>Hort 305 Plant Propagation</td>
<td>MinorI</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Approved Electives</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

17

Senior Year

<table>
<thead>
<tr>
<th>Hort 408 Floral Design and Retail Marketing</th>
<th>Hort 406 Nursery Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hort 409 Seminar</td>
<td>Hort 410 Seminar</td>
</tr>
<tr>
<td>Hort 412 Turf Management</td>
<td>Pl Pa 401 Plant Pathology</td>
</tr>
<tr>
<td>Hort 480 Prob. in Landscape Des.</td>
<td>MinorI</td>
</tr>
<tr>
<td>Minor†</td>
<td>Approved Electives</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

17

134 Total Semester Hours

* One course to be selected from each of the following groups. (At least one literature course is required.)

Group II: Engl 204, 206, 208, 231, Hist 172, 173.

† To be selected from the following, Phil 201, Pol Sc 301, Psych 201, RS 301, 401, Soc 201.

† See class adviser for available minors and course requirements.

PRE-VETERINARY MEDICINE

The curriculum in Pre-veterinary Medicine is designed to meet the general requirements for admission to certain schools of veterinary medicine. Since the requirements for entrance to these schools are not uniform, the student in planning his program should consider the specific requirements of the school he expects to attend. Under the Southern Regional Educational Plan, ten qualified students from South Carolina may enter the College of Veterinary Medicine at the University of Georgia each year. Under the provisions of the compact, these students are exempt from out-of-state charges while studying Veterinary Medicine at the University of Georgia.

Students enrolled in the Pre-veterinary Medicine curriculum have a choice of one of three options: (1) apply for admission to the College of Veterinary Medicine after completion of the
first two years of the curriculum. Only the exceptional student is accepted with a minimum of two years of college training; (2) apply for admission to the College of Veterinary Medicine after completion of the three-year Pre-veterinary curriculum; (3) upon completion of the three-year Pre-veterinary curriculum, the student may transfer to a major at Clemson University in Animal Science, Dairy Science, Poultry Science, or Zoology and complete the requirements for a Bachelor of Science degree with one additional year’s work. Curriculum requirements for Pre-veterinary Medicine transfer students to majors in Animal Science, Dairy Science, and Poultry Science are listed below. (See page 228 for Zoology requirements.)

![Table](https://via.placeholder.com/150)

PRE-VETERINARY MEDICINE CURRICULUM

FOR MAJORS IN ANIMAL SCIENCE, DAIRY SCIENCE, AND POULTRY SCIENCE

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 101 Prin. of Biology</td>
<td>Agric 201 Intro. to Animal Ind.</td>
</tr>
<tr>
<td>Ch 101 Gen. Chemistry</td>
<td>Bot 102 Prin. of Botany</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Ch 112 Gen. Chemistry</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Zool 102 Prin. of Zoology</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Zool 104 Lab. Exer. in Zoology</td>
</tr>
<tr>
<td></td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>

PRE-VETERINARY MEDICINE CURRICULUM

ANIMAL SCIENCE MAJOR

(See Freshman Year above)

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agric 202 Intro. to Plant Sciences</td>
<td>Ch 224 Org. Chemistry</td>
</tr>
<tr>
<td>Ch 223 Org. Chemistry</td>
<td>Ch 228 Org. Chemistry Lab.</td>
</tr>
<tr>
<td>Ch 227 Org. Chemistry Lab.</td>
<td>Gen 302 Genetics</td>
</tr>
<tr>
<td>History–Literature Requirement*</td>
<td>History–Literature Requirement*</td>
</tr>
<tr>
<td>Phys 207 Gen. Physics</td>
<td>Nutr 201 Intro. to Nutrition</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Phys 208 Gen. Physics</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>

Junior Year

(See class adviser for course requirements)

- One course to be selected from each of the following groups. (At least one literature course is required.)

- Group II: Engl 204, 206, 208, 231; Hist 172, 173.

- To be selected from Econ 201, Hist 101, 102, Phil 201, Pol Sc 301, Psych 201, RS 301, 401, Soc 201.
PRE-VETERINARY MEDICINE CURRICULUM

DAIRY SCIENCE MAJOR
(See page 133 for Freshman Year)

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agric 302 Intro to Plant Sciences</td>
<td>Ch 294 Org. Chemistry</td>
</tr>
<tr>
<td>or Dy Sc 307 Market Milk</td>
<td>Ch 228 Org. Chemistry Lab</td>
</tr>
<tr>
<td>Ch 223 Org. Chemistry</td>
<td>Gen 302 Genetics</td>
</tr>
<tr>
<td>Ch 227 Org. Chemistry Lab</td>
<td>History—Literature Requirement</td>
</tr>
<tr>
<td>History—Literature Requirement*</td>
<td>Nutr 201 Intro. to Nutrition</td>
</tr>
<tr>
<td>Social Science Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Approved Electives†</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

Dy Sc 307 Market Milk	Agron 202 Soils
or Agric 202 Intro. to Plant Sci.	An Sc 301 Feeds and Feeding
Dy Sc 453 Animal Reproduction	Dy Sc 306 Chemical and Physical
Micro 305 Gen. Microbiology	Nature of Milk
Approved Electives†	Approved Electives†
	17

SENIOR YEAR

(See class adviser for course requirements)

* One course to be selected from each of the following groups. (At least one literature course is required.)

Group II: Engl 204, 206, 208, 231, Hist 172, 173.

† Select 3 credits from the following: Fd Sc 305, Dy Sc 310, 409.
‡ Select 6 credits from the following: Fd Sc 414, Dy Sc 402, 404, 410, 452, Micro 402.
§ To be selected from Econ 201, Hist 101, 102, Phil 201, Pol Sc 301, Psych 201, RS 301, 401, Soc 201.

PRE-VETERINARY MEDICINE CURRICULUM

POULTRY SCIENCE MAJOR
(See page 133 for Freshman Year)

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 223 Org. Chemistry</td>
<td>Ch 294 Org. Chemistry</td>
</tr>
<tr>
<td>Ch 227 Org. Chemistry Lab</td>
<td>Ch 228 Org. Chemistry Lab</td>
</tr>
<tr>
<td>Gen 302 Genetics</td>
<td>Gen 302 Genetics</td>
</tr>
<tr>
<td>History—Literature Requirement*</td>
<td>History—Literature Requirement*</td>
</tr>
<tr>
<td>Phys 207 Gen. Physics</td>
<td>Nutr 201 Intro. to Nutrition</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Phys 208 Gen. Physics</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>PS 359 Mgt. of Egg, Broiler, and</td>
</tr>
<tr>
<td></td>
<td>Turkey Enterprises</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

An Sc 301 Feeds and Feeding	Agric 202 Intro. to Plant Sciences
Micro 305 Gen. Microbiology	Engl 301 Public Speaking
PS 355 Poultry Products Grading and Technology	PS 352 Breeder Flock and
PS 401 Animal Envir. Technology	Hatchery Management
PS 403 Animal Envir. Tech. Lab	PS 353 Breeder Flock and
	17

SENIOR YEAR

(See class adviser for course requirements)

* One course to be selected from each of the following groups. (At least one literature course is required.)

Group II: Engl 204, 206, 208, 231, Hist 172, 173.

† To be selected from Econ 201, Hist 101, 102, Phil 201, Pol Sc 301, Psych 201, RS 301, 401, Soc 201.
COLLEGE OF ARCHITECTURE

The Clemson University College of Architecture provides coordinated pre-professional and professional degree programs at undergraduate and graduate levels in preparation for careers in Architecture, City and Regional Planning, Visual Studies, and Building Construction. These curriculums are not offered elsewhere in the state. The pre-professional offerings of the College also provide an excellent basis for graduate studies in Landscape Architecture and Art and Architectural History.

In addition to the courses and curriculums structured for the professional students of the College, cultural offerings in both lecture and studio courses are available to the general student population and required in certain other schools and colleges.

A rich annual series of exhibitions in the Rudolph Lee Gallery of the College and lectures by figures of international importance in the environmental arts and sciences are presented by the Clemson Architectural Foundation and open to the public. An unusual bond has existed between the architects of the state and region and the College since the first offering of architectural courses to a few students in 1914. The South Carolina Chapter of the American Institute of Architects in 1955 asked that a strong school be established and pledged its continuing unified support of school programs as the prime project of the organization. Sweeping administrative and curricular changes brought a five-year curriculum and full accreditation that year. Following three years of rapid development the College was made an autonomous professional school by action of the Board of Trustees in 1958.

During the decade just ending, the College has sought to select its students with increasing care and to broaden and strengthen its offerings and its faculty. As might be expected, the curriculums and objectives are under continuing study.

To better prepare professional students, a two-degree six-year program is required for those majoring in architecture.

The College enjoys contracts for creative research in several areas, and receives an annual support budget from the Clemson Architectural Foundation to enrich its program. It is a member of the Association of Collegiate Schools of Architecture, the Associated Schools of Construction, collaborates with the South Carolina Chapter of the American Institute of Planners, and is accredited by the
National Architectural Accrediting Board, and the Association of Collegiate Schools of Planning.

The Architectural Foundation, a nonprofit corporation, was established in January 1956 under the Laws of the State of South Carolina and under the sponsorship of the South Carolina Chapter of the American Institute of Architects to facilitate the continuous improvement of architectural education and of the art and technology of building in South Carolina by providing financial and other assistance to the College of Architecture at Clemson University. By this means students in the College of Architecture at Clemson have been able to enjoy instruction, facilities, and conditions of superior quality.

The advantages to the student evolving from the Clemson Architectural Foundation are many. Among them are the programs of celebrated guest critics and lecturers, excellent exhibits of many types—paintings, sculpture, architecture, construction, furniture, ceramics, textiles and other allied arts and crafts—traveling expenses for student field trips and professional activities, and student loans and grants. Visual-aid facilities and gifts to the library are examples of permanent assets provided through Foundation support.

Intangible but important is the sense of unity and of high purpose resulting from the activities of the Clemson Architectural Foundation which now permeates the entire architectural scene in South Carolina: the architects, their friends in the building industry and the faculty of the College.

The College of Architecture is housed in a modern building constructed for its program in 1958. Space, nevertheless, is limited and enrollment restricted to students with capacity and motivation. A major addition to the building is projected for completion by 1973. At present the requisite functions are provided on two levels arranged around a central landscaped court. Design studios and the library occupy the entire second level. The first level accommodates the auditorium, classrooms, two art studios, the Exhibition Gallery, and administrative and faculty offices. A ground floor houses shops, photo laboratory, and sculpture studio, jury room and gallery preparations and storage. All areas are air-conditioned.
ENTRANCE REQUIREMENTS

In the interest of both students and the conservation of University resources and to maintain a program on the highest level, admission to the College of Architecture must necessarily be on a selective basis. Annual enrollment quotas are established consistent with space available. Selection considerations include secondary school record and performances in the College Board examination (SAT Test.) A personal interview with the Dean or Department Head should be arranged by the applicant as early as possible in the year before admission.

Applicants for Architecture are required to take the Architectural Aptitude Examination as administered by the Educational Testing Service of Princeton, and although these are not used as criterion for admission, the results are helpful to both the applicant and the admission committee.

Applications for the Aptitude Examination may be obtained from the Educational Testing Service, Princeton, New Jersey 20933. This test is administered at Clemson and other regional testing centers in October, January, and March.

Students wishing admission are advised to make application to the University early in the fall or winter of their senior year in high school and to make arrangements for a personal interview with the Dean of the College as soon as possible. The Admissions Council of the College will further interview entering students during freshman matriculation week of each academic year.

THE PROGRAMS OF STUDY

ARCHITECTURE

The architect as a practicing professional has the creative responsibility of designing the buildings which shape our physical environment. To understand the humanistic, economic and technological nature of environmental problems, he must have a sound general education. This professional education must prepare him for a life of continuing change, in which problems to be solved will be large and small, for every sort of function, in every type of climate and for every condition of budget.

The curriculum in architecture is six years in length, embracing both a four-year Bachelor of Arts in Pre-architecture program and a four-year Bachelor of Science in Pre-architecture sequence, with a balance of general education and professional study followed by
two intensive years of graduate work leading to the first professional degree, Master of Architecture.

BUILDING CONSTRUCTION

The nation's leading industry in terms of annual dollar volume is Building Construction. Building contracting is a dynamic field and although organizations vary considerably in type, size and complexity, those in leadership positions must invariably have capability (education) in management, construction science, relevant technical disciplines, and the humanities. The curriculum in Building Construction has been structured to provide young people with the unique balance of studies needed to equip them for key roles in the industry. There is a tremendous demand for graduates of the curriculum. The course is four years in length and leads to the Bachelor of Science degree in Building Construction.

CITY AND REGIONAL PLANNING

The City Planner is a member of an essential and complex profession concerned with the programming and guiding of urban and regional development. Our expanding society presents unusual opportunities for Planning graduates in private firms and on public agency staffs. When asked what made a good planner, a leading British professional replied, "A sensitive, creative leader who has lived a bit." He must be able to integrate recommendations of a wide range of specialists. The sociologist, economist, traffic engineer and ecologist, plays significant roles in urban growth and change, but the city planner and urban designer must bring the city to physical form with balance and imagination.

Students admitted as candidates for the Master of City and Regional Planning degree must have the following qualifications:

(a) Meet the admissions requirements for the University Graduate School.

(b) Have a baccalaureate degree approved by the school in such fields as: architecture, civil engineering, economics, landscape architecture, law, political science, or sociology.

Candidates entering the curriculum from a nondesign discipline will be required to take a special parallel course designed for their needs, and accordingly may be excused from courses in which they have achieved proficiency.
History and Visual Studies

The Department of History and Visual Studies provides required undergraduate courses in architectural and art history and visual arts. The Department also offers a two-year graduate program leading to the Master of Fine Arts degree in Ceramics, Painting, Sculpture, Printmaking, Graphic Design, Photography, and Multimedia. The graduate curricula have an emphasis in creative professional work of high standard. Maximum flexibility is provided in the management of these courses to foster innovation and imaginative solutions to fine arts problems.

Pre-Architecture Curriculum

Bachelor of Arts in Pre-Architecture

<table>
<thead>
<tr>
<th>First Semester</th>
<th>First Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 101 Arch. Analysis</td>
<td>3 (1.6)</td>
<td>Arch 102 Arch. Analysis</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td>2 (3.0)</td>
<td>Math 106 Cal. of One Var.</td>
</tr>
<tr>
<td>Math 104 Trigonometry</td>
<td>2 (3.0)</td>
<td>Modern Language (Elementary)</td>
</tr>
<tr>
<td>Modern Language (Elementary)</td>
<td>4 (3,1)</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 215 Arch. History I</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Arch 253 Arch. Design I</td>
<td>5 (0,15)</td>
</tr>
<tr>
<td>BldSc 201 Building Science I</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Modern Language (Intermediate)</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Vis 203 Vis. Arts Studio</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Semester</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 315 Arch. History III</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Arch 353 Arch. Design III</td>
<td>5 (0,15)</td>
</tr>
<tr>
<td>BldSc 301 Building Science III</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Elective</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Semester</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 421 Arch. Seminar</td>
<td>2 (2.0)</td>
</tr>
<tr>
<td>Arch 453 Arch. Design V</td>
<td>5 (0,15)</td>
</tr>
<tr>
<td>BldSc 401 Building Science V</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Elective</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Vis 205, 207, 209, 211, 213, 215, 217.

Elective Policy:

Major: To fulfill requirements for a major in Pre-architecture students must take, in addition to specified courses, a minimum of 9 credits above the sophomore level in areas of Art and Architectural History, Building Science, City and Regional Planning, Architectural Design, or Visual Studies.

Military and Air Science: A maximum of 4 elective credits may be earned in basic military or air science and a maximum of 6 elective credits may be earned in advanced military or air science.

English Literature: A minimum of 6 elective credits are required in the area of literature.

Minor Concentration: Students should select, no later than the end of their sophomore year, a minor field of concentration from the following areas: English, Mathematics, Modern Language, Philosophy, Life Sciences, Physical Sciences, Social Sciences. The minor concentration requires a total of 15 credits with at least 3 credits above the sophomore level. A minor may include specified courses.
PRE-ARCHITECTURE CURRICULUM

BACHELOR OF SCIENCE IN PRE-ARCHITECTURE

First Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 101 Arch. Analysis</td>
<td>Arch 102 Arch. Analysis</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>3 (1,6)</td>
<td>3 (1,6)</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>4 (5,0)</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 215 Arch. History I</td>
<td>AAH 216 Arch. History II</td>
</tr>
<tr>
<td>Arch 253 Arch. Design I</td>
<td>Arch 254 Arch. Design II</td>
</tr>
<tr>
<td>BldSc 201 Building Science I</td>
<td>BldSc 202 Building Science II</td>
</tr>
<tr>
<td>Engl 201 Prin. of Economics</td>
<td>Engl 202 Prin. of Economics</td>
</tr>
<tr>
<td>Vis 203 Vis. Arts Studio</td>
<td>Visual Studies*</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>5 (0,15)</td>
<td>5 (0,15)</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>3 (1,6)</td>
<td>3 (1,6)</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 315 Arch. History III</td>
<td>AAH 316 Arch. History IV</td>
</tr>
<tr>
<td>Arch 353 Arch. Design III</td>
<td>Arch 354 Arch. Design IV</td>
</tr>
<tr>
<td>BldSc 301 Building Science III</td>
<td>BldSc 302 Building Science IV</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>5 (0,15)</td>
<td>5 (0,15)</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 421 Arch. Seminar</td>
<td>Arch 422 Arch. Seminar</td>
</tr>
<tr>
<td>Arch 453 Arch. Design V</td>
<td>Arch 454 Arch. Design VI</td>
</tr>
<tr>
<td>BldSc 401 Building Science V</td>
<td>BldSc 402 Building Science VI</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>2 (2,0)</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>5 (0,15)</td>
<td>5 (0,15)</td>
</tr>
<tr>
<td>4 (3,3)</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

134 Total Semester Hours

*Vis 205, 207, 209, 211, 213, 215, 217.

Elective Policy:

Major: To fulfill requirements for a major in Pre-architecture students must take, in addition to specified courses, a minimum of 9 credits above the sophomore level in areas of Art and Architectural History, Building Science, City and Regional Planning, Architectural Design, or Visual Studies.

Military and Air Science: A maximum of 4 elective credits may be earned in basic military or air science and a maximum of 6 elective credits may be earned in advanced military or air science.

English Literature: A minimum of 6 elective credits are required in the area of literature.

Minor Concentration: Students should select, no later than the end of their sophomore year, a minor field of concentration from the following areas: English, Mathematics, Modern Language, Philosophy, Life Sciences, Physical Sciences, Social Sciences. The minor concentration requires a total of 15 credits with at least 3 credits above the sophomore level. A minor may include specified courses.
BUILDING CONSTRUCTION CURRICULUM

BACHELOR OF SCIENCE IN BUILDING CONSTRUCTION

FIRST YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 101 Arch. Analysis</td>
<td>Arch 102 Arch. Analysis</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

SECOND YEAR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 215 Arch. History I</td>
<td>AAH 216 Arch. History II</td>
</tr>
<tr>
<td>Acct 201 Prin. of Accounting</td>
<td>Acct 202 Prin. of Accounting</td>
</tr>
<tr>
<td>BldSc 201 Building Science I</td>
<td>BldSc 202 Building Science II</td>
</tr>
<tr>
<td>BldSc 241 Construction Org. and Estimating</td>
<td>BldSc 242 Construction Planning and Scheduling</td>
</tr>
<tr>
<td>Econ 201 Prin. of Economics</td>
<td>Econ 202 Prin. of Economics</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

THIRD YEAR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 315 Arch. History III</td>
<td>AAH 316 Arch. History IV</td>
</tr>
<tr>
<td>BldSc 301 Building Science III</td>
<td>BldSc 302 Building Science IV</td>
</tr>
<tr>
<td>BldSc 341 Construction Data Systems</td>
<td>BldSc 342 Construction Labor Management</td>
</tr>
<tr>
<td>CE 201 Surveying</td>
<td>IM 312 Commercial Law</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

FOURTH YEAR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 421 Arch. Seminar</td>
<td>Arch 422 Arch. Seminar</td>
</tr>
<tr>
<td>BldSc 401 Building Science V</td>
<td>BldSc 402 Building Science VI</td>
</tr>
<tr>
<td>BldSc 441 Construction Econ.</td>
<td>BldSc 442 Construction Mgt.</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

134 Total Semester Hours

Elective Policy:

Major: To fulfill the requirements for a major in Building Construction students must take, in addition to specified courses, a minimum of 8 credits above the sophomore level in the area of Accounting, Economics, Industrial Management, Building Science, or Planning Studies.

Military and Air Science: A maximum of 4 elective credits may be earned in basic military or air science and a maximum of 6 elective credits may be earned in advanced military or air science.

English: A minimum of 6 elective credits are required in the area of literature and oral expression.
The purpose of the College of Education is to prepare teachers, special service personnel, and school leaders; to provide professional services to education in South Carolina; and to carry out basic and applied research in education. Curriculums are organized to give students the opportunities to (1) acquire a broad general education through liberal arts and science courses; (2) develop depth of knowledge in the teaching area; (3) gain an understanding of the historical, philosophical and psychological backgrounds of American Education; and (4) acquire knowledge of and skill and experience in using effective teaching techniques.

Curriculums for those preparing to teach have been especially designed by committees from each department offering a teaching major and the College of Education. The Clemson University Teacher Education Committee, composed of representatives from the teaching-major departments and public schools, serves in a curriculum advisory capacity to the Dean of the College of Education.

Programs leading to the Bachelor of Science degree are available in Agricultural Education, Industrial Education, and Science Teaching (Biological Sciences, Chemistry, Earth Science, Physical Sciences, or Mathematics). Students preparing to teach in these fields should register as freshmen in the appropriate curriculum in the College of Education.

Students preparing to teach Economics, English, History, Mathematics, French, German, Spanish, Natural Sciences, Political Science, Psychology, or Sociology should register in the Bachelor of Arts program in Secondary Education. Those preparing for the elementary level should register for the Bachelor of Arts program in Elementary Education or in Early Childhood Education.

Any student who has been admitted to the University and who is eligible for continuing enrollment may be admitted to the College of Education. However, admission to specific curriculums is selective and requires meeting established criteria. Students who transfer to the College of Education as upperclassmen will be required to meet all the basic requirements for admission to that Education curriculum.

Application to a specific curriculum should be made to the office of the Dean or to the department concerned during the semester.
preceding that in which the student wishes to obtain admission. Completion of Sc Ed Form 01 and a personal interview are required as part of the application to a specific teacher education curriculum. Sc Ed Form 02, Application for Directed Teaching, should be filed with the faculty adviser no later than May 1 preceding the school year in which student teaching is to be scheduled.

Directed Teaching is on a “block schedule.” The other three classes are scheduled to meet during the first half of the semester, and Directed Teaching is scheduled for the last half.

Qualified students who complete a minimum of six semester hours in junior-senior honors courses in Education and a minimum of six semester hours of honors courses in the teaching field may graduate with Departmental Honors.

A student completing at least six semester hours in junior-senior honors courses in Education and a minimum of six semester hours of junior and senior honors courses outside the teaching area may graduate with Senior Division Honors.

BACHELOR OF ARTS CURRICULUMS

EARLY CHILDHOOD EDUCATION

The curriculum in Early Childhood Education leads to a Bachelor of Arts degree in Early Childhood Education. It prepares students for teaching positions in kindergarten or grades 1-3. A minimum of 132 semester hours is required for graduation.

Application to Directed Teaching (Ed 484) should be made in writing no later than May 1 prior to the school year in which student teaching is to be scheduled. A student whose cumulative grade-point ratio is lower than the requirement for graduation will not be permitted to register for this course.

EARLY CHILDHOOD EDUCATION CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1.0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
<td>Hist 102 American History</td>
</tr>
<tr>
<td>Hist 101 American History</td>
<td>3 (3.0)</td>
<td>Math 116 Contemporary Math. for Elementary Teachers II</td>
</tr>
<tr>
<td>Math 115 Contemporary Math. for Elementary Teachers I</td>
<td>3 (3.0)</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Modern Language</td>
<td>4 (3.1)</td>
<td>Science I</td>
</tr>
<tr>
<td>Science I</td>
<td>3 — 4</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hist 102 American History</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Math 116 Contemporary Math. for Elementary Teachers II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modern Language</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>
Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist 171 or 172 West, Civilization</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 215 Algebra for Elem. Teach.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Science†</td>
<td>4 — 3</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>17 — 16</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist 172 or 173 West, Civilization</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 216 Geom. for Elem. Teach.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Science†</td>
<td>4 — 3</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>17 — 16</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of American Ed.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Ed 302 Educational Psychology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Engl 351 Children’s Literature</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>In Ed 372 Arts and Crafts</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Mus 400 Music in Elementary</td>
<td></td>
</tr>
<tr>
<td>School Classroom</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Block Schedule—Either Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 303 Evol. of Visual Arts</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Ed 336 Behavior Preschool Child.</td>
<td>2 (2.2)</td>
</tr>
<tr>
<td>Ed 461 Teaching Read. in Elem.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Ed 466 Cur. for Early Child. Ed.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 458 Health Education</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Ed 481 Methods and Materials</td>
<td></td>
</tr>
<tr>
<td>Ed 484 Directed Teaching</td>
<td>6 (1.15)</td>
</tr>
<tr>
<td>Mus 210 Music Appreciation</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Semester Hours

132

*Note: To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Must include Biol 101, Bot 102, 104, or Zool 102, 104, and a two-semester sequence in Chemistry, Geology, Physics, or Physical Science.

Elementary Education

The curriculum in Elementary Education leads to a Bachelor of Arts degree in Elementary Education. It prepares students for teaching positions on the elementary level. Provisions are made for more detailed study in an instructional interest area. A minimum of 132 semester hours is required for graduation.

Application to Directed Teaching (Ed 481) should be made in writing no later than May 1 prior to the school year in which student teaching is to be scheduled. A student whose cumulative grade-point ratio is lower than the requirement for graduation will not be permitted to register for this course.

Elementary Education Curriculum

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Hist 101 American History</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 115 Contemporary Math. for Elementary Teachers I</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>4 (3.1)</td>
</tr>
<tr>
<td>Science†</td>
<td>3 — 4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18 — 19</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Hist 102 American History</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 116 Contemporary Math. for Elementary Teachers II</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>4 (3.1)</td>
</tr>
<tr>
<td>Science†</td>
<td>3 — 4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17 — 18</td>
</tr>
</tbody>
</table>
Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist 171 or 172 West. Civilization 3 (3,0)</td>
<td>Hist 172 or 173 West. Civilization 3 (3,0)</td>
</tr>
<tr>
<td>Literature Requirement* 3 (3,0)</td>
<td>Literature Requirement* 3 (3,0)</td>
</tr>
<tr>
<td>Math 215 Algebra for Elem. Teach. 3 (3,0)</td>
<td>Math 216 Geom. for Elem. Teach. 3 (3,0)</td>
</tr>
<tr>
<td>Modern Language 3 (3,0)</td>
<td>Modern Language 3 (3,0)</td>
</tr>
<tr>
<td>Science 4 — 3</td>
<td>Science 4 — 3</td>
</tr>
<tr>
<td>AS or MS or Elective 1</td>
<td>AS or MS or Elective 1</td>
</tr>
<tr>
<td>17 — 16</td>
<td>17 — 16</td>
</tr>
</tbody>
</table>

Junior Year

Block Schedule—Either Semester

<table>
<thead>
<tr>
<th>Ed 301 History of American Ed. 3 (3,0)</th>
<th>Ed 302 Educational Psychology 3 (3,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 351 Children’s Literature 3 (3,0)</td>
<td>Hist 313 History of S. C. 3 (3,0)</td>
</tr>
<tr>
<td>In Ed 372 Arts and Crafts 3 (2,3)</td>
<td>Social Science Elective† 3</td>
</tr>
<tr>
<td>Mus 400 Music in Elementary 3 (3,0)</td>
<td>Interest Area 3</td>
</tr>
<tr>
<td>Social Science Elective† 3</td>
<td>Electives 3</td>
</tr>
<tr>
<td>Interest Area 3</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>

Senior Year

Block Schedule—Either Semester

<table>
<thead>
<tr>
<th>AAH 303 Evol. of Visual Arts 3 (3,0)</th>
<th>Ed 458 Health Education 3 (3,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 334 Child Growth & Develop. 3 (3,0)</td>
<td>Ed 481 Directed Teaching 6(1,15)</td>
</tr>
<tr>
<td>Ed 461 Teaching Read. in Elem. 3 (3,0)</td>
<td>Ed 485 Methods and Curriculum in Elem. Math. and Science 3 (3,0)</td>
</tr>
<tr>
<td>Interest Area 6</td>
<td>or Ed 486 Methods and Cur. in Elem. Social Studies and Lang. Arts 3 (3,0)</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

132 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Economics, geography, political science, sociology, philosophy, religion.
‡ Must include Biol 101, Bot 102, 104, or Zool 102, 104, and a two-semester sequence in chemistry, geology, physics, or physical science.

Secondary Education

Programs leading to a Bachelor of Arts degree in Secondary Education are available to students preparing to teach Economics, English, History, Mathematics, French, German, Spanish, Natural Sciences, Political Science, Psychology, or Sociology on the secondary school level. The teaching field should be selected as early as possible in order that appropriate freshman and sophomore courses may be taken.

Each curriculum requires a major concentration in the teaching field. Specific courses and sequences have been designated by the teacher education committees to meet requirements for those planning to teach. Students who have elective courses in the teaching area should consult the departmental adviser prior to scheduling these courses.

The Professional Education courses should be completed in sequence prior to registering for the block schedule. Application to Directed Teaching (Ed 412) should be made in writing no later than May 1 preceding the school year in which student teaching is to be scheduled. A student whose cumulative grade-point ratio
is lower than the requirement for graduation will not be permitted to register for Directed Teaching.

Education 412 is conducted on a full-day basis, "block schedule," for one-half semester. Students taking Ed 412 will register for Ed 424, 458, and Mus 210, these three courses being taught on a five-day basis during the first half of the semester.

SECONDARY EDUCATION CURRICULUMS

TEACHING AREA: ECONOMICS

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freshman Year</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (3,0)</td>
</tr>
<tr>
<td>Engl 101 Orientation</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 101 Math. Anal. I</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>4 (3,1)</td>
</tr>
<tr>
<td>Science†</td>
<td>3 — 4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>18 — 19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 201 Principles of Econ.</td>
</tr>
<tr>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>Math 203 Elem. Stat. Infer.</td>
</tr>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>Science†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>17 — 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of American Ed.</td>
</tr>
<tr>
<td>Teaching Major</td>
</tr>
<tr>
<td>Elective</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Block Schedule—Either Semester)</td>
</tr>
<tr>
<td>AAH 303 Evol. of Visual Arts</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth & Dev.</td>
</tr>
<tr>
<td>Ed 498 Sec. Sch. Reading</td>
</tr>
<tr>
<td>Teaching Major</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Biol 101, Bot 102, 104, or Zool 102, 104, and a two-semester sequence in chemistry, physics, geology, or physical science.
† This semester is a block schedule and must be taken as listed.

Note: The teaching major requires twenty-four semester hours of junior and senior courses consisting of Econ 314, 407; nine semester hours from Econ 302, 403, 404, 410, 412, 420; distributed as follows:

- Group A: Econ 314, 407.
- Group B: Three courses from: Econ 302, 403, 404, 410, 412, 420.
- Group C: The remaining hours selected from Econ 301, 302, 305, 306, 308, 309, 403, 404, 410, 412, 416, 420, 422, Ex St 462, IM 404, 405, 406, Ag Ec 456, Mgt Sc 311.
TEACHING AREA: ENGLISH

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Math 102 Math. Anal. II</td>
</tr>
<tr>
<td>Modern Language</td>
<td>4 (3,1)</td>
</tr>
<tr>
<td>Science§</td>
<td>3 — 4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>15 — 16</td>
<td>14 — 15</td>
</tr>
</tbody>
</table>

Sophomore Year

Hist 171 or 172 West. Civilization	Hist 172 or 173 West. Civilization
Literature Requirement*	Literature Requirement*
Modern Language	Modern Language
Science§	4 — 3
Social Science Elective†	Social Science Elective†
AS or MS or Elective	1
17 — 16	**17 — 16**

Junior Year

Ed 301 History of American Ed.	Ed 302 Educational Psychology
Hist 361 History of England	Hist 363 History of England
Teaching Major	Teaching Major
Elective	Elective
18	**18**

Senior Year

(Block Schedule—Either Semester)

AAH 303 Evol. of Visual Arts	Ed 412 Directed Teaching‡
Ed 335 Adol. Growth & Dev.	Ed 424 Meth. & Mat. in Sec. Sch.
Ed 498 Sec. Sch. Reading	Ed 458 Health Education
Teaching Major	Mus 210 Music Appreciation
15	**15**

129 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.

† Economics, geography, political science, sociology, philosophy, religion.

‡ This semester is a block schedule and must be taken as listed.

§ Biol 101, Bot 102, 104, or Zool 102, 104, and a two-semester sequence in chemistry, physics, geology, or physical science.

Note: The teaching major requires twenty-four semester hours of junior and senior English courses, and it must include: Engl 304, 352, 402, 404, 405, 422 or 423, 440 and 461 or 462. Those receiving departmental certification for Engl 304 are required to complete one additional course on the 400 level.
Teaching Area: History

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>Math 102 Math. Anal. II</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Science§</td>
</tr>
<tr>
<td>Science§</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>18 - 19</td>
<td>17 - 18</td>
</tr>
</tbody>
</table>

Sophomore Year

Hist 101 American History	Hist 102 American History
Literature Requirement*	Literature Requirement*
Modern Language	Modern Language
Science§	Science§
Social Science Elective‡	Social Science Elective‡
AS or MS or Elective	AS or MS or Elective
	Total
	17 - 16

Junior Year

Ed 301 History of American Ed.	Ed 302 Educational Psychology
Teaching Major	Teaching Major
Elective	Elective
	Total
	15

Senior Year

<table>
<thead>
<tr>
<th>(Block Schedule—Either Semester)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A AH 303 Evol. of Visual Arts</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth & Dev.</td>
</tr>
<tr>
<td>Ed 498 Sec. Sch. Reading</td>
</tr>
<tr>
<td>Teaching Major</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Economics, geography, political science, sociology, philosophy, religion.
‡ This semester is a block schedule and must be taken as listed.
§ Biol 101, Bot 102, 104, or Zool 102, 104, and a two-semester sequence in chemistry, physics, geology, or physical science.

Note: The teaching major requires twenty-four semester hours of junior and senior history courses: Hist 313, and at least one course from Group A, and two courses each from Group B and C.

Group C: Hist 331, 332, 340, 341, 342.
<table>
<thead>
<tr>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
</tr>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>Science</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Math 108 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>Science</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
</tr>
<tr>
<td>Literature Requirement</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
</tr>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>Science</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of American Ed.</td>
</tr>
<tr>
<td>Math 301 Stat. Methods I</td>
</tr>
<tr>
<td>Math 308 College Geometry</td>
</tr>
<tr>
<td>Social Science Elective</td>
</tr>
<tr>
<td>Elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year (Block Schedule—Either Semester)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 335 Adol. Growth & Dev.</td>
</tr>
<tr>
<td>Ed 498 Sec. Sch. Reading</td>
</tr>
<tr>
<td>Math 412 Introd. to Mod. Alg.</td>
</tr>
<tr>
<td>Math Electives</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

*To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Economics, geography, political science, sociology, philosophy, religion.
‡ This semester is a block schedule and must be taken as listed.
§ Biol 101, Bot 102, 104, or Zool 102, 104, and a two-semester sequence in chemistry, physics, geology, or physical science.

TEACHING AREA: MODERN LANGUAGES
(FRENCH, GERMAN, OR SPANISH)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Math 102 Math. Anal. II</td>
</tr>
<tr>
<td>Math 101 Math. Anal. I</td>
<td>3 (3,0)</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Modern Language</td>
<td>4 (3,1)</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Science§</td>
<td>3 — 4</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total Semester Hours</td>
<td>15 — 16</td>
<td></td>
</tr>
</tbody>
</table>

| Second Semester | | |
|-----------------|-----------------|
| | 14 — 15 |

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Science§</td>
<td>4 — 3</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total Semester Hours</td>
<td>17 — 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of American Ed.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>9</td>
</tr>
<tr>
<td>Elective</td>
<td>6</td>
</tr>
<tr>
<td>Total Semester Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 303 Evol. of Visual Arts</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth and Dev.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 498 Sec. Sch. Reading</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>6</td>
</tr>
<tr>
<td>Total Semester Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Economics, geography, political science, sociology, philosophy, religion.
§ Biol 101, Bot 102, 104, or Zool 102, 104, and a two-semester sequence in chemistry, physics, geology, or physical science.

Note: The French teaching major consists of 24 semester hours including Fr 303, 304, 305. Electives from Fr 306, 307, 308, 403, 404, 405, 406, 407, 408.
The German teaching major consists of 24 semester hours including Ger 303, 304, 305. Electives from Span 306, 307, 308, 401, 402, 405, 406.

A student desiring to become certified to teach a second Modern Language must complete the third year of the second language.
<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Cai 101 General Chemistry</td>
<td>Cai 102 General Chemistry</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Math 102 Math. Anal. I</td>
</tr>
<tr>
<td>Modern Language</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 101 Prin. of Biology</td>
<td>Bot 102 Prin. of Botany</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>Bot 104 Lab. Exer. in Bot.</td>
</tr>
<tr>
<td>Literation Requirement</td>
<td>or Zool 102 Prin. of Zoology</td>
</tr>
<tr>
<td>Math 203 Elem. Stat. Infer.</td>
<td>and Zool 104 Lab. Exer. in Zool.</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Literature Requirement</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of Amer. Ed.</td>
<td>Ed 302 Educational Psych.</td>
</tr>
<tr>
<td>Geol 201 Phys. Geol.</td>
<td>Geol 202 Hist. Geol.</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Science Elective§</td>
<td>Science Elective§</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 303 Evol. of Visual Arts</td>
<td>Ed 412 Directed Teaching†</td>
</tr>
<tr>
<td>Astr 205 Descriptive Astronomy</td>
<td>Ed 424 Meth. & Mat. in Sec. Schs.</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth & Develop.</td>
<td>Ed 458 Health Education</td>
</tr>
<tr>
<td>Ed 498 Sec. School Reading</td>
<td>Mus 210 Music Appreciation</td>
</tr>
<tr>
<td>Science Elective§</td>
<td>15</td>
</tr>
</tbody>
</table>

130 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Economics, geography, political science, sociology, philosophy, religion.
‡ The last semester of the senior year is a block schedule and must be taken as listed.
§ Science electives to be taken in biological sciences, chemistry, physics, geology.
TEACHING AREA: POLITICAL SCIENCE

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
</tr>
<tr>
<td>Math 101 Math. Anal. I</td>
</tr>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>Science†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Math 102 Math. Anal. II</td>
</tr>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>Science†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

Total Semester Hours: 18 - 19

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist 101 American History</td>
</tr>
<tr>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>Pol Sc 101 Introd. to Pol. Sci. I.</td>
</tr>
<tr>
<td>Science†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist 102 American History</td>
</tr>
<tr>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>Pol Sc 201 Introd. to Pol. Sci. II.</td>
</tr>
<tr>
<td>Science†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

Total Semester Hours: 17 - 16

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of Amer. Ed.</td>
</tr>
<tr>
<td>Teaching Major</td>
</tr>
<tr>
<td>Elective</td>
</tr>
</tbody>
</table>

Total Semester Hours: 15

SENIOR YEAR

<table>
<thead>
<tr>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 303 Evol. of Visual Arts</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth & Develop.</td>
</tr>
<tr>
<td>Ed 498 Sec. School Reading</td>
</tr>
<tr>
<td>Teaching Major</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 412 Directed Teaching†</td>
</tr>
<tr>
<td>Ed 424 Meth. & Mat. in Sec. Sch.</td>
</tr>
<tr>
<td>Ed 458 Health Education</td>
</tr>
<tr>
<td>Mus 210 Music Appreciation</td>
</tr>
</tbody>
</table>

Total Semester Hours: 15

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.

† Biol 102, Bot 102, 104, or Zool 102, 104, and a two-semester sequence in chemistry, physics, geology, or Phy Sc 101, 102.

1 This semester is a block schedule and must be taken as listed.

Note: The teaching major requires twenty-four semester hours of junior and senior Political Science courses.

Pol Sc 101, 201, and 302, plus 21 semester hours in courses drawn from four of the following fields, including one course in comparative government:

1. American Government—Pol Sc 302, 403, 409
2. Public Administration—Pol Sc 321
3. Constitutional Law—Pol Sc 331, 432, 433, 434
4. Political Behavior—Pol Sc 341, 442, 443
5. Political Thought—Pol Sc 351, 352
6. International Relations—Pol Sc 361, 462, 463, 464, 469, 473
7. Comparative Governments—Pol Sc 371, 372 (Recommended)
TEACHING AREA: PSYCHOLOGY

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>Engl 102 Eng. Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Hist 172 or 173 West. Civilization</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>Math 102 Math. Anal. I</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Science§</td>
<td>3 — 4</td>
</tr>
<tr>
<td>Science§</td>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 — 19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature Requirement</td>
<td>Literature Requirement</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Psych 202 Intro. Exp. Psych.</td>
</tr>
<tr>
<td>Psych 201 General Psychology</td>
<td>Science§</td>
</tr>
<tr>
<td>Science§</td>
<td>Social Science Elective§</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>17 — 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of Amer. Ed.</td>
<td>Ed 302 Ed. Psychology</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>Teaching Major</td>
</tr>
<tr>
<td>Elective</td>
<td>Social Science Elective§</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 303 Evol. of Visual Arts</td>
<td>Ed 412 Directed Teaching§</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth & Develop.</td>
<td>Ed 424 Meth. & Mat. in Sec. Schs.</td>
</tr>
<tr>
<td>Ed 498 Sec. School Reading</td>
<td>Ed 458 Health Education</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>Mus 210 Music Appreciation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

129 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.

† Economics, geography, philosophy, political science, religion, sociology.

‡ This semester is a block schedule and must be taken as listed.

§ Biol 101, Bot 102, 104, or Zool 102, 104, and a two-semester sequence in chemistry, physics, geology, or physical science.

Note: The teaching major requires 24 semester hours of junior and senior courses selected from Psych 302, 351, 331, 341, 351, 361, 363, 401, 402, 403, 422, 442, 471, 490, 498, Ed 302, 335 (Ed 302 is counted in the teaching area).
TEACHING AREA: SOCIOLOGY

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>Math 102 Math. Anal. II</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Science†</td>
</tr>
<tr>
<td>Science†</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
</tr>
</tbody>
</table>

First Semester Total Hours: 18 — 19

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Literature Requirement†</th>
<th>Literature Requirement†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Language</td>
<td>Soc 202 Social Problems</td>
</tr>
<tr>
<td>Soc 201 Introductory Soc.</td>
<td>Science†</td>
</tr>
<tr>
<td>Science†</td>
<td>Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester Total Hours: 17 — 16

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Ed 301 History of Amer. Ed.</th>
<th>Ed 302 Ed. Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Major</td>
<td>Teaching Major</td>
</tr>
<tr>
<td>Elective†</td>
<td>Elective†</td>
</tr>
</tbody>
</table>

Junior Year Total Hours: 18 — 15

SENIOR YEAR

Block Schedule—Either Semester

<table>
<thead>
<tr>
<th>AAH 303 Evol. of Visual Arts</th>
<th>Ed 412 Directed Teaching†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 498 Sec. School Reading</td>
<td>Ed 453 Health Education</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>Mus 210 Music Appreciation</td>
</tr>
<tr>
<td>Elective†</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year Total Hours: 17 — 15

*To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Electives must include Econ 201, 202, Phil 201, 302, Pol Sc 301.
‡ This semester is a block schedule and must be taken as listed.
§ Biol 101, Bot 102, 104, or Zool 102, 104, and a two-semester sequence in chemistry, physics, geology, or physical science.

The Agricultural Education curriculum is designed for students who wish to prepare for positions in vocational agriculture, agricultural occupations, and other teaching positions in the secondary schools; engage in other forms of educational work such as agricultural missionary, public relations and agricultural extension; farming, soil conservation and other governmental work; business and industry.

The curriculum provides for a broad education in general and professional education including student teaching. In addition to required courses giving a thorough background in the agricultural and biological sciences, a student may minor in business or international agriculture or in one subject-matter field. Students in other departments may minor in Agricultural Education and be certified to teach.

AGRICULTURAL EDUCATION CURRICULUM †

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agric 101 Introd. to Agric.</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Biol 101 Prin. of Biology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Hist 102 American History</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td>2 (3.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 102 Prin. of Botany</td>
<td>2 (2.0)</td>
</tr>
<tr>
<td>Bot 104 Lab. Exercises in Bot.</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>or Zool 104 Lab. Exer. in Zool.</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Ch 102 General Chemistry</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>or Ch 112 Gen. Chemistry</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 104 Trigonometry</td>
<td>2 (3.0)</td>
</tr>
<tr>
<td>Zool 102 Prin. of Zoology</td>
<td>2 (2.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ed 201 Introd. to Agric. Ed.</td>
<td>3 (2.2)</td>
</tr>
<tr>
<td>Agric 202 Introd. to Plant Sciences</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>History-Literature Requirement*</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Phys 207 Gen. Physics</td>
<td>4 (3.2)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgE 301 Soil and Water Conserv.</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Agron 301 Fertilizers</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Minor†</td>
<td>3</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 302 Agric. Firm Mgt.</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>An Sc 301 Feeds and Feeding</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>For 305 Elements of Forestry</td>
<td>2 (2.0)</td>
</tr>
<tr>
<td>For 307 Elem. of Forestry Lab.</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Minor†</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
The curriculum in Industrial Education is designed to prepare students for careers in the teaching of industrial subjects and in training programs in industry. To accomplish these purposes the curriculum is divided into three areas of specialization leading to the degree of Bachelor of Science in Industrial Education. At the end of his freshman year, each student will select one of three options: Industrial Arts Education, Vocational-Technical Education, or Education for Industry. Each option requires 135 semester hours of course work.

The Industrial Arts Education option is for those students who desire to teach industrial arts in the secondary schools. Industrial arts is the subject area in the public school system which attempts to provide youth with an interpretation of American industry. It is a general education subject designed to give students exploratory experience in the classroom and laboratory. Majors in this option are qualified for full certification as secondary school teachers of industrial arts.

The Vocational-Technical Education option is designed to prepare teachers of vocational and technical subjects in the Senior High Schools, Area Vocational Schools, and Technical Education Centers. All elective courses in this option will be in an area of specialization or related fields. Teachers graduating from this option will possess the skills and knowledge required to teach the occupation or family of occupation in their area of specialization.

The Education for Industry option is designed to prepare students to enter industry as training specialists. Due to the expansion of technology and industrial development, there is a rapidly increasing demand for training specialists and training directors in industry.
<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>In Ed 101 Introd. to Ind. Ed</td>
<td>In Ed 102 Woodworking I</td>
</tr>
<tr>
<td>Science Elective†</td>
<td>Science Elective§</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Total: 15</td>
<td>Total: 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Junior Year</th>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
<td>Third Semester</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>In Ed 204 Graphic Arts</td>
<td>In Ed 204 Graphic Arts</td>
<td>3 (1.8)</td>
</tr>
<tr>
<td>Literature Requirement§</td>
<td>Literature Requirement§</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Psych 201 Gen. Psychology</td>
<td>Psych 201 Gen. Psychology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total: 17</td>
<td>Total: 18</td>
<td>Total: 18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Engl 301 Economics of Labor</td>
<td>Engl 301 Public Speaking</td>
</tr>
<tr>
<td>Ed 302 Ed. Psychology</td>
<td>IM 408 Work Simp. & Std.</td>
</tr>
<tr>
<td>IM 307 Personnel Management</td>
<td>In Ed 405 Course Org. & Eval.</td>
</tr>
<tr>
<td>In Ed 302 Dwell. Mat. & Constr.</td>
<td>In Ed 408 Train. Prog. in Ind.</td>
</tr>
<tr>
<td>In Ed 303 Electricity</td>
<td>Text 460 Textile Processes</td>
</tr>
<tr>
<td>Approved Elective‡</td>
<td>Approved Elective‡</td>
</tr>
<tr>
<td>Total: 17</td>
<td>Total: 18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Total Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Engl 301 Public Speaking</td>
<td>Engl 496 Pub. Relations</td>
</tr>
<tr>
<td>IM 408 Work Simp. & Std.</td>
<td>Soc 351 Ind. Soc.</td>
</tr>
<tr>
<td>In Ed 405 Course Org. & Eval.</td>
<td>Approved Elective‡</td>
</tr>
<tr>
<td>In Ed 408 Train. Prog. in Ind.</td>
<td>Total: 18</td>
</tr>
<tr>
<td>Text 460 Textile Processes</td>
<td>Total: 18</td>
</tr>
<tr>
<td>Approved Elective‡</td>
<td>Total: 18</td>
</tr>
</tbody>
</table>

Total: 135 Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.

† Social Science electives to be selected from history, sociology, economics, political science, religion, or philosophy.

§ Science electives to be selected from chemistry, physics, geology, physical science, biology, botany, or zoology. At least two fields must be represented.

Note: One summer (400 clock hours) of field experience is required of each student following the completion of his sophomore year.
INDUSTRIAL ARTS EDUCATION OPTION

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th></th>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
<td>Engl 102 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>In Ed 101 Intro. to Ind. Ed.</td>
<td>1 (1.0)</td>
<td>In Ed 102 Woodworking I</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Math 101 Math. Analysis I</td>
<td>3 (3.0)</td>
<td>Math 102 Math. Analysis II</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Science Elective†</td>
<td>4 (3.3)</td>
<td>Science Elective†</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>3 (3.0)</td>
<td>Social Science Elective†</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
<td>AS or MS or Elective</td>
<td></td>
</tr>
<tr>
<td>EG 201 Engr. Graph. for Ind. Ed.</td>
<td>3 (1.6)</td>
<td>EG 202 Graphic Tech. for Ind. Ed.</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>In Ed 202 Woodworking II</td>
<td>2 (1.3)</td>
<td>In Ed 204 Graphic Arts</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>In Ed 203 Basic Metal Process</td>
<td>3 (1.6)</td>
<td>In Ed 205 Power Technology</td>
<td>3 (2.2)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3.0)</td>
<td>In Ed 313 Arts & Crafts</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Science Elective†</td>
<td>4 (3.3)</td>
<td>Literature Requirement*</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
<td>Social Science Elective†</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AS or MS or Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 302 Ed. Psychology</td>
<td>3 (3.0)</td>
<td>Ed 335 Adol. Growth & Develop.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3 (3.0)</td>
<td>In Ed 305 Machining Practices</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>In Ed 302 Dwell, Mat. & Constr.</td>
<td>2 (1.2)</td>
<td>In Ed 333 Design</td>
<td>3 (2.2)</td>
</tr>
<tr>
<td>In Ed 303 Electricity</td>
<td>3 (1.6)</td>
<td>In Ed 414 Electronics</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>3 (3.0)</td>
<td>In Ed 422 Hist. & Phil. of Ind. & irrit.</td>
<td></td>
</tr>
<tr>
<td>Text 460 Textile Processes</td>
<td>3 (3.0)</td>
<td>Voc. Ed.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Approved Elective†</td>
<td>2 (2.0)</td>
<td>In Ed 441 Comp. Shop Practices</td>
<td>2 (2.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>135 Total Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 303 Evol. of Visual Arts</td>
<td>3 (3.0)</td>
<td></td>
</tr>
<tr>
<td>Ed 406 Hist. & Phil. of Ed.</td>
<td>3 (3.0)</td>
<td></td>
</tr>
<tr>
<td>In Ed 405 Course Org. & Eval.</td>
<td>3 (3.0)</td>
<td></td>
</tr>
<tr>
<td>In Ed 410 Des. & Op.</td>
<td>3 (2.2)</td>
<td></td>
</tr>
<tr>
<td>Ind. Ed. Lab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved Elective†</td>
<td>6 (6.0)</td>
<td></td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Social Science electives to be selected from history, sociology, economics, political science, religion, or philosophy. At least two fields must be represented with six, but not more than six hours, in one field.
‡ See class adviser for list of approved electives.
§ Science electives to be selected from chemistry, physics, geology, biology, botany, zoology, or physical science. At least two fields must be represented, one of which must be in the biological sciences.
Vocational-Technical Education Option

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>In Ed 101 Intro. to Ind. Ed.</td>
<td>In Ed 102 Woodworking I</td>
</tr>
<tr>
<td>Science Elective§</td>
<td>Science Elective§</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

Total for First Semester: 15
Total for Second Semester: 16

Sophomore Year

<table>
<thead>
<tr>
<th>In Ed 350 Industrial Cooperative Experience</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG 201 Engr. Graph. for Ind. Ed.</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>In Ed 202 Woodworking II</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>In Ed 203 Basic Metal Processes</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Science Elective§</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

Total for Sophomore Year: 16

Summer

In Ed 350 Industrial Cooperative Experience | 6

Junior Year

<table>
<thead>
<tr>
<th>In Ed 450 Industrial Cooperative Experience</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 302 Ed. Psychology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>In Ed 302 Dwell. Mat. & Constr.</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>In Ed 303 Electricity</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>Approved Elective</td>
<td>(in field of specialization)†</td>
</tr>
</tbody>
</table>

Total for Junior Year: 15

Summer

In Ed 450 Industrial Cooperative Experience | 6

Senior Year

<table>
<thead>
<tr>
<th>In Ed 450 Industrial Cooperative Experience</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 303 Evol. of Visual Arts</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Ed 406 Hist. & Phil. of Ed.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>In Ed 405 Course Org. & Eval.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>In Ed 416 Des. & Op.</td>
<td>3 (2.2)</td>
</tr>
<tr>
<td>Approved Elective</td>
<td>(in field of specialization)†</td>
</tr>
</tbody>
</table>

Total for Senior Year: 15

Total for Entire Program: 135

*To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Social Science electives to be selected from history, sociology, economics, political science, religion, or philosophy. At least two fields must be represented with six, but not more than six hours, in one field.
‡ See class adviser for list of approved electives.
§ Science electives to be selected from chemistry, physics, geology, physical science, biology, botany, or zoology. At least two fields must be represented, one of which must be in the biological sciences.
SCIENCE TEACHING

The program leading to a Bachelor of Science degree in Science Teaching is designed for students planning to teach Mathematics, Biology, Chemistry, Earth Science, or Physical Sciences on the secondary school level.

It requires a major concentration in Mathematics, Biological Sciences, Chemistry, Earth Science, or Physical Sciences. The required science electives are included to give some degree of competency in a field other than the major area.

A student must have a minimum of 130 semester hours of credit for graduation.

TEACHING AREA: BIOLOGICAL SCIENCES

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 112 General Chemistry</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>Math 108 Cal. of One Var.</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Math 104 Trigonometry</td>
<td>1</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 101 Prin. of Biology</td>
<td>Bot 102 Prin. of Botany</td>
</tr>
<tr>
<td>Chemistry Elective</td>
<td>and Bot 104 Lab. Exercises in Bot.</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>or Zool 102 Prin. of Zoology</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Chemistry Elective</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 302 Surv. of Plant Kingdom</td>
<td>Bot 352 Plant Physiology</td>
</tr>
<tr>
<td>Ed 301 History of Amer. Ed.</td>
<td>or Zool 458 Cell Physiology</td>
</tr>
<tr>
<td>Science Elective</td>
<td>Gen 302 Genetics</td>
</tr>
<tr>
<td>Social Science Elective§</td>
<td>Micro 305 Gen. Microbiology</td>
</tr>
<tr>
<td>Elective</td>
<td>Social Science Elective§</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year (Block Schedule—Either Semester)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 303 Evol. of Visual Arts</td>
<td>Ed 412 Directed Teaching†</td>
</tr>
<tr>
<td>Ed 498 Sec. School Reading</td>
<td>Ed 458 Health Education</td>
</tr>
<tr>
<td>Major Elective</td>
<td>Mus 210 Music Appreciation</td>
</tr>
<tr>
<td>Elective</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>130 Total Semester Hours</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Botany, genetics, microbiology, zoology.
‡ Block schedule must be taken as shown.
§ Economics, geography, philosophy, political science, religion, sociology.
TEACHING AREA: EARTH SCIENCE

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Biol 101 Prin. of Biology</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1,0)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>3 (3,0)</td>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Math 101 Math. Analysis I§</td>
<td>3 (3,0)</td>
<td>Math 102 Math. Analysis II</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geol 201 Phys. Geology</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 207 General Physics</td>
<td>4 (3,2)</td>
</tr>
<tr>
<td>Zool 102 Prin. of Zoology</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>Zool 104 Lab. Exercise in Zool.</td>
<td>1 (0,2)</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Astr 301 Gen. Astronomy</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 301 History of Amer. Ed.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Geol 306 Mineralogy</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Math 203 Elementary Statistical Inference</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>(Block Schedule—Either Semester)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 303 Evol. of Visual Arts</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth & Develop.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 498 Sec. School Reading</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

- 130 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Economics, geography, philosophy, political science, religion, sociology.
§ Prerequisite: Satisfactory score on the Mathematics Test, Level I, or Math 104.

TEACHING AREA: CHEMISTRY

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 112 General Chemistry</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>3 (3,0)</td>
<td>Math 108 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 101 Prin. of Biology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 206 Cal. of Sever. Var.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Phys 207 Gen. Physics</td>
<td>4 (3,2)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 102 Prin. of Botany</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>Bot 104 Lab. Exercises in Bot.</td>
<td>1 (0,2)</td>
</tr>
<tr>
<td>or Zool 102 Prin. of Zoology</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>and Zool 104 Lab. Exer. in Zool.</td>
<td>1 (0,2)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 208 Gen. Physics</td>
<td>4 (3,2)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
TEACHING AREA: MATHEMATICS

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>or Ch 112 General Chemistry</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>4 (3,0)</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Phys 207 Gen. Physics</td>
<td>4 (3,0)</td>
</tr>
<tr>
<td>Bot 102 Prin. of Botany</td>
<td>or Zool 102 Prin. of Zoology</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>zool 104 Lab. Exer. in Zool</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var. Alg.</td>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 308 College Geometry</td>
<td>Math 295 Found. of Anal.</td>
</tr>
<tr>
<td>Science Elective</td>
<td>4 (3,0)</td>
</tr>
<tr>
<td>Social Science Elective‡</td>
<td>Phys 208 Gen. Physics</td>
</tr>
<tr>
<td>Elective</td>
<td>2 (3,0)</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td>AS or MS Elective</td>
</tr>
<tr>
<td>Math 301 Stat. Th. & Meth. I</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 308 College Geometry</td>
<td>Math 408 Topics in Geom.</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Social Science Elective‡</td>
<td>Math 411 Linear Algebra</td>
</tr>
<tr>
<td>Elective</td>
<td>3 (3,0)</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Block Schedule—Either Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAF 303 Evol. of Visual Arts.</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth & Develop.</td>
</tr>
<tr>
<td>Ed 498 Sec. School Reading</td>
</tr>
<tr>
<td>Math 412 Intro. to Mod. Alg.</td>
</tr>
<tr>
<td>Math Elective‡</td>
</tr>
<tr>
<td>Math Elective‡</td>
</tr>
<tr>
<td>6 (6,0)</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Block schedule must be taken as shown.
§ Economics, geography, philosophy, political science, religion, sociology.
TEACHING AREA: PHYSICAL SCIENCES

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 112 General Chemistry</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>Ed 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>Math 106 Cal. of One Var</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Math 104 Trigonometry</td>
<td>1</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 101 Prin. of Biology</td>
<td>Bot 102 Prin. of Botany</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>Bot 104 Lab. Exercises in Bot.</td>
</tr>
<tr>
<td>Phys 207 General Physics</td>
<td>and Zool 104 Lab. Exer. in Zool.</td>
</tr>
<tr>
<td>Science Elective</td>
<td>Ch 201 Elem. Org. Chemistry</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>1 (0,2)</td>
</tr>
<tr>
<td>4 (3,2)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Astr 301 General Astronomy</td>
<td>Astr 302 General Astronomy</td>
</tr>
<tr>
<td>Ed 301 History of Amer. Ed.</td>
<td>Ed 302 Educational Psychology</td>
</tr>
<tr>
<td>Geol 201 Physical Geology</td>
<td>Geol 202 Historical Geology</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Phys 460 Mod. Physics for H. S. Teachers</td>
</tr>
<tr>
<td>Elective</td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td></td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>4 (3,3)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

(Blocks Schedule—Either Semester)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAH 303 Evol. of Visual Arts</td>
<td>Ed 412 Directed Teaching†</td>
</tr>
<tr>
<td>Ed 498 Sec. School Reading</td>
<td>Ed 458 Health Education</td>
</tr>
<tr>
<td>Elective</td>
<td>Mus 210 Music Appreciation</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>3 (3,0)</td>
<td></td>
</tr>
</tbody>
</table>

18

130 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Block schedule must be taken as shown in either semester of the senior year.
† Economics, geography, philosophy, political science, religion, sociology.
COLLEGE OF ENGINEERING

The College of Engineering offers professional curricular programs and programs in both Engineering Analysis and Technical Operations. Each of the programs offered leads to a wide range of career opportunities and serves as preparation for further study at the graduate level.

Professional Curriculums: Six four-year, professional-oriented curriculums are offered by the College of Engineering; namely, Agricultural Engineering, Ceramic Engineering, Chemical Engineering, Civil Engineering, Electrical and Computer Engineering, and Mechanical Engineering. Each of these curriculums is accredited by the Engineers’ Council for Professional Development, the recognized national accrediting agency for professional curriculums in engineering. The curriculum in Agricultural Engineering is jointly administered by the College of Agricultural Sciences and the College of Engineering.

Although the College of Engineering does not offer specific options or majors in each of these professional curriculums, the instruction includes many phases of each respective field. Thus, a Civil Engineering student is graduated in Civil Engineering rather than Structural Engineering, Highway Engineering, Sanitary Engineering, or other such options. However, a student who wishes to study within the areas encompassed by these options will find adequate courses within the Civil Engineering curriculum to prepare himself for work in any of these areas. In the same way the other engineering curriculums include thorough education in various phases of the field of specialization without over-emphasizing one phase to the neglect of others. The professional curriculums lead to a Bachelor of Science degree in the specific professional area.

The courses required in all professional curriculums for the freshman year are as follows:

<table>
<thead>
<tr>
<th></th>
<th>First Semester</th>
<th></th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Basic Science</td>
<td>3 — 4</td>
</tr>
<tr>
<td>Engr 180 Engineering Concepts or Humanistic—Social Elective</td>
<td>3 (2,2)</td>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Engr 101 English Composition</td>
<td>3 (3,0)</td>
<td>Humanistic—Social Elective</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>or Engr 180 Engr. Concepts</td>
<td>3 (2,2)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>Math 108 Cal. and Lin. Alg.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Phys 123 Mech. and Wave Phen.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 — 18</td>
<td></td>
</tr>
</tbody>
</table>

* Agricultural Engineering students take Agric 101, Introduction to Agriculture, in addition to other courses in the first semester.
† Agricultural Engineering and Ceramic Engineering students may take either Ch 102 or 112, General Chemistry. Chemical Engineering students are required to take Ch 112, General Chemistry.
Engineering Analysis Curriculum: This curriculum is a four-year, engineering science-oriented course of study. Its objectives are two-fold. These are (1) to prepare a student for employment in areas of engineering activity requiring a high level of analytical competency, and (2) to provide a flexible undergraduate preparation for the study of engineering at the graduate level.

The curriculum leads to the Bachelor of Science degree in Engineering Analysis. Requirements for this degree are stated in terms of subject matter area rather than in terms of specific courses. This latitude of course selection permits maximum accommodation of the individual student’s interests and career objectives. Degree requirements are as follows:

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics (including 12 credits of post-calculus mathematics)</td>
</tr>
<tr>
<td>Basic Science (including 8 semester hours of physics)</td>
</tr>
<tr>
<td>Engineering Science (distributed in at least six engineering science areas)</td>
</tr>
<tr>
<td>Area of Concentration</td>
</tr>
<tr>
<td>Humanistic-Social Studies</td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

The educational objectives of the program will be met by the selection of an area of concentration which will be chosen from several specialty areas offered within the other professional engineering curriculums. The selection of specific courses, particularly in the junior and senior years, will then depend primarily on the choice of the area of concentration.

Maximum flexibility within this program is achieved by permitting a student to defer his choice of specialization until the junior year or later. Such deferral will then allow students from junior and senior colleges not offering engineering to transfer into the program with little or no loss in academic credit.

Technical Operations Curriculum: This curriculum is a four-year, student-interest oriented course of study which leads to a Bachelor of Science degree in Technical Operations. It provides a broad base of fundamentals and their application in the areas of electricity, heat, and mechanics. In addition, approved electives amounting to approximately two semesters of work permit developing a program to match the student’s aptitudes and interests as related to industrial and other employment opportunities. These

1 Additional information on both the Engineering Analysis and the Technical Operations programs is available from the Office of the Dean of Engineering.
opportunities are found in such areas as production supervision and management, planning industrial production methods, technical sales, technical purchasing, building construction, quality control, technical personnel management and supervision of plant environmental and energy systems.

The difference between the Bachelor of Science degree in the engineering curriculums and the Bachelor of Science degree in the Technical Operations program rests, in general, on the former being concerned with original system design and the latter with operation and adaptation of that design to meet the needs of mankind. The Technical Operations curriculum is designed to meet a broad base of general practitioner-type needs in industry and other types of enterprise in contrast to those requiring an in-depth specialist.

The curriculum leads to the Bachelor of Science degree in Technical Operations. Requirements for the degree are as follows:

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
</tr>
<tr>
<td>Basic Science (including 8 semester hours of physics)</td>
</tr>
<tr>
<td>Humanistic-Social Studies</td>
</tr>
<tr>
<td>Technical Operations</td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td>As or MS or Elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

The technical operations courses are only offered during the junior and senior years of the program. Hence, a student from a junior college may transfer into the program at the junior level with little or no loss of academic credit.

AGRICULTURAL ENGINEERING

The graduate in Agricultural Engineering, with broad training in mathematics, physics, chemistry, and the biological sciences as well as comprehensive coverage of the engineering sciences, is well equipped to apply engineering to many functions affecting the well-being of mankind. The Agricultural Engineer is sought by industry and public service organizations primarily for his ability to apply engineering know-how to agricultural production and processing, and to the conservation of land and water resources. Specific areas of interest include power and machinery, soil and water resources engineering, electric power and processing, structures and environment, and food engineering.

The Agricultural Engineering curriculum is jointly administered by the College of Agricultural Sciences and the College of Engineering.
The undergraduate Agricultural Engineering curriculum leads to the Bachelor of Science degree. Based upon fundamental training in the basic sciences, the curriculum includes such engineering sciences as mechanics, fluids, thermodynamics, electrical theory, computing devices and systems analyses. The basic agricultural sciences of soils, plants and animals are included so as to provide a foundation for Agricultural Engineering analysis and design. Recognition is also given to the necessity for being able to synthesize information from any of the applicable subject matter areas, including studies of energy conversion, engineering analysis and the engineering properties of biological materials, and with emphasis upon economy and integrity of design. Research is included in order to introduce the student to the scientific method. Courses in the humanities are required to provide the graduate engineer with a well-rounded educational experience.

The undergraduate curriculum is designed for both the student who wishes to terminate his formal academic training at the bachelor's level, and also to provide the necessary prerequisites for those who wish to continue in graduate study. Graduate programs in Agricultural Engineering which lead to the Master of Science, the Master of Engineering, and the Doctor of Philosophy degrees are offered.

Since an Agricultural Engineering graduate has a broad training in engineering, in the sciences, in humanities, and in life sciences, he has the pick of opportunities in many areas. Opportunities in Agricultural Engineering include employment with industry as design engineers, research engineers, production engineers, and in sales and service; with state and federal agencies as teachers, research engineers, and extension engineers; as field engineers with the Soil Conservation Service, Bureau of Reclamation, and similar organizations; and with agricultural enterprises as managers, contractors, equipment retailers and as consulting engineers.

The Agricultural Engineering curriculum is accredited by the Engineers' Council for Professional Development.
AGRICULTURAL ENGINEERING CURRICULUM

(See page 164 for Freshman Year)

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgE 221 Soil and Water Res. Engr. I</td>
<td>AgE 212 Fund. of Mechanization 3 (2,3)</td>
</tr>
<tr>
<td>EG 109 Engr. Graph. Com.</td>
<td>Biol 101 Prin. of Biology 3 (3,0)</td>
</tr>
<tr>
<td>EM 201 Engr. Mech. (Statics)</td>
<td>EM 202 Engr. Mech. (Dynamics) 3 (3,0)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>Literature Requirement* 3 (3,0)</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>Math 208 Engr. Mech. 1 3 (5,0)</td>
</tr>
<tr>
<td>Phys 221 Ther. and Elec. Phen.</td>
<td>AS or MS or Elective 1 3 (0,3)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JUNIOR YEAR

AgE 353 Computational Systems	AgE 362 Energy Conv. in Ag. Sys. 3 (2,3)	
AgE 355 Engr. Anal. and Creat.	AgE 465 Engr. Prop. of Biol. Mat. 3 (2,3)	
Bot 102 Prin. of Botany	Agron 202 Soils 3 (2,0)	
EECE 307 Basic Elec. Engr.	EECE 330 Electronics I 2 (2,0)	
EM 304 Mechanics of Materials	Phys 222 Opt. and Mod. Phys. 3 (3,0)	
ME 311 Engr. Thermo. I	Humanistic—Social Elective 3 (3,0)	
Zool 102 Prin. of Zoology		17
		17

SENIOR YEAR

AgE 431 Agric. Struct. Design	AgE 416 Agric. Machinery Design 3 (2,3)	
AgE 471 Undergraduate Research	AgE 422 Soil & Water Res. Engr. II 3 (2,3)	
Econ 201 Principles of Econ.	AgE 442 Agric. Proc. Engr. 3 (2,3)	
EM 320 Fluid Mechanics	Bot 353 Plant Physiology 4 (3,3)	
Math 301 Stat. Theory and Meth. I	or Zool 307 Animal Anatomy 3 (2,3)	
Free Elective	and Physiol. 3 (2,3)	
	or Micro 305 Gen. Microbiology 4 (3,3)	
		18
		19 — 18

To be selected from the following: Engl 203, 204, 205, 206, 207, 208.

CERAMIC ENGINEERING

Ceramic Engineering offers rewarding careers for persons interested in making useful products. The ceramic products range from items important to everyday life, such as brick, cement, and glass to more exotic products, such as ceramic fuel elements for nuclear reactors, ceramic parts for electronic equipment and ceramic nose cones, ceramic heart valves, and other prosthetic parts for medical research. A variety of occupations are available to the ceramic engineering graduate thus making it possible to select a type of work that is compatible with individual preferences. Some graduates work as researchers, developing new ceramic knowledge; others are design engineers, creating new processes or new products; still others are engaged in technical sales, supervision of plant operations or in management.

South Carolina possesses a wide variety of ceramic minerals which rank with forests as the richest natural resources in the State and make it possible for South Carolina to contribute raw
materials to every major classification of the ceramic industry. South Carolina has a diversified ceramic industry with plants manufacturing portland cement, glass containers, glass fibers, sewer pipes, brick, refractories, special raw materials, and electronic ceramics.

The curriculum of Ceramic Engineering leads to the degree of Bachelor of Science in Ceramic Engineering, and graduate courses are offered leading to advanced degrees. The course is based on a study of the fundamental courses in chemistry, physics, mathematics, and geology, and advanced courses are designed to apply these fundamental sciences to Ceramic Engineering. Courses in the humanities and social sciences together with courses in engineering sciences form major parts of the curriculum. A large number of elective courses permits the individual student to plan a program that is compatible with his particular interests, talents, and educational goals.

The Ceramic Engineering building and equipment are recognized as outstanding throughout the nation. These facilities were provided by a grant from the Olin Foundation.

CERAMIC ENGINEERING CURRICULUM
(See page 164 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrE 201 Introd. to Cer. Engr.</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>CrE 204 Lab. Procedures</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Phys 221 Ther. & Elec. Phen.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Planned Elective</td>
<td>3</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 331 Physical Chem.</td>
</tr>
<tr>
<td>CrE 304 Exp. Design</td>
</tr>
<tr>
<td>CrE 307 Thermal Process</td>
</tr>
<tr>
<td>EM 201 Engr. Mech. (Statics)</td>
</tr>
<tr>
<td>Math 301 Stat. Theory & Meth.</td>
</tr>
<tr>
<td>Planned Elective</td>
</tr>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrE 402 Solid St. Cer.</td>
</tr>
<tr>
<td>E&CE 320 Electronics I</td>
</tr>
<tr>
<td>EM 304 Mech. of Mat.</td>
</tr>
<tr>
<td>Planned Electives</td>
</tr>
<tr>
<td>Free Elective</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

138 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.

Note: 9 credits of Planned Electives must be taken in humanistic-social science courses. 19 credits of Planned Electives should be technical courses selected with the help of class adviser.
CHEMICAL ENGINEERING

The graduate of the science-oriented, research-minded Chemical Engineering Department is finding intellectually stimulating and financially rewarding positions in all phases of modern endeavor. The traditional chemical process industries which produce the industrial chemicals upon which our modern society is based require large numbers of chemical engineers. In addition, because of the fundamental nature of the Chemical Engineering curriculum, the graduate is avidly sought by industries in many areas of specialized technology such as nuclear power, aviation and space, fibers and textiles, pharmaceuticals, pulp and paper, computers, foods, metals, ceramics, instrumentation and automatic control, and petroleum. The chemical engineer is in the forefront of the fight against environmental pollution, and is leading the way in applying engineering technology to the solution of medical and health-related problems.

The Chemical Engineering curriculum is unique in that it is built upon a firm base in three sciences (chemistry, physics, and mathematics), hence the chemical engineer is able to apply scientific knowledge to the solution of problems involving both chemical and physical principles. In chemical engineering courses emphasis is placed upon why things happen as they do and not how; upon enduring principles and not present or past methods. The student is taught to realize that all material things are chemical in nature; hence the chemical engineer, in the practice of his profession, may be called upon to work with anything on the face of the earth. He will be concerned with the conception, design, construction, and management of complete systems of men, processes, computers, and procedures for the most efficient production of chemicals and related products. He produced all the materials required to land men on the moon, he produced uranium to power nuclear reactors, he produced instant foods, he created the synthetic fiber industry, etc. The scope of chemical engineering is broad and the profession is interdisciplinary in nature.

In spite of the strong scientific flavor of the Chemical Engineering curriculum the faculty is constantly striving to impress upon the student that he is studying engineering and not pure science. The ultimate purpose of engineering is to serve mankind by making practical use of scientific and engineering theories and laboratory schemes, thus the engineer must always design his processes to produce products at minimum cost. The chemical engineer in in-
dustry must, in brief, be concerned that his company be profitable since it could not exist otherwise.

In industry the chemical engineer may pursue one of two parallel lines of advancement. One path leads to management, and it should be noted that the top managers of most chemical companies are technically educated men. The second and equally rewarding path is in engineering research and development. In this latter category are found the men who have developed the processes and products which shape the modern world in which we live.

The majority of chemical engineers terminate their formal education at the B.S. level, but the Chemical Engineering curriculum also provides an excellent foundation for further education at the graduate level. The most common advanced study path chosen by chemical engineering graduates is continuation in Chemical Engineering to the Master of Science or Doctor of Philosophy degree which provides the added depth of knowledge often required in engineering research and development, as well as the opportunity for specialization. Moreover, the Chemical Engineering graduate, with his excellent background in chemistry, physics, and mathematics as well as in engineering, is well prepared for graduate study in such fields as nuclear engineering, biomedical engineering, environmental engineering, and business and patent law. In addition, by choosing the proper biology courses as electives, the student can receive excellent preparation for entrance into medical or dental schools. Upon receiving their M.D. degree, individuals having chosen chemical engineering as a pre-medical course will be exceptionally well prepared to deal with present and future technological advances in medical practice as well as for work in many research areas.

The Chemical Engineering Department at Clemson is housed in Earle Hall, one of the newest and best equipped buildings for chemical engineering education in the nation. All members of the Chemical Engineering faculty have been educated at the doctoral level and the department offers work leading to the Master of Science and Doctor of Philosophy degrees as well as the Bachelor of Science degree.
CHEMICAL ENGINEERING CURRICULUM

(See page 164 for Freshman Year)

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 223 Organic Chem.</td>
<td>Ch 224 Organic Chemistry</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>Comp Sc 210 Algorithm. Process. for Engr.†</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>Literature Requirement†</td>
</tr>
<tr>
<td>AS or MS or Free Elective</td>
<td>AS or MS or Free Elective</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 331 Physical Chem.</td>
<td>Ch 332 Physical Chemistry</td>
</tr>
<tr>
<td>ChE 301 Unit Op. Theory I</td>
<td>ChE 302 Unit Op. Theory II</td>
</tr>
<tr>
<td>Free Elective</td>
<td>EM 304 Mech. of Materials</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Or ChE 210 if offered.

Civil Engineering

Civil Engineering is the broadest in scope of the engineering professions, being the parent stem from which most of the other branches of engineering have developed. All branches of Civil Engineering rest on a comparatively compact body of principles, in which the students are thoroughly trained in the classroom, the drafting room, the laboratory, and the field. Particular effort is made to develop those qualities essential to success in any field of endeavor and to fit the graduate to become a useful citizen—a good businessman as well as a successful engineer.

The practice of civil engineering involves the planning, design, construction, maintenance, and use of large structures and systems to control and improve the environment for modern civilization. The structures may serve many purposes, such as buildings for commerce and industry, bridges for transportation, vehicles for space exploration, or dams for the control and storage of water or for generation of power. The systems provide essential services: water supply; waste
water treatment; rail, air, and water transportation; and systems of highways. Projects such as these require that the civil engineer be trained in the social and economic issues as well as in basic science, engineering science, and technology. Though he may specialize in a particular branch of civil engineering, such as structural or transportation, he will need some acquaintance with all subdivisions of civil engineering as well as of other branches of engineering.

The course in Civil Engineering at Clemson University leads to the degree of Bachelor of Science and is planned to equip the graduate with a working knowledge of the above subjects. The student receives training in the basic sciences of mathematics, chemistry, and physics, and is introduced gradually to the engineering sciences and the technical courses in civil engineering. By the end of the junior year the student will have had courses in structural design, construction materials, transportation engineering, and soil mechanics. These will enable him to choose technical electives in his senior year in the subdivision of his choice. The nontechnical electives are sufficient in number to provide breadth in the arts and humanities, and assure that the graduate has a well-rounded education.

The civil engineering graduate is prepared to work immediately upon graduation in practically any of the areas of the profession. He may find himself in responsible charge at an early date, so every effort is made to train him at Clemson in the ethical standards demanded by the profession. All courses are directed toward the development of initiative, self-reliance, and integrity in the student.

The department is located in Lowry Hall, a modern air-conditioned structure erected in 1958. The laboratories are well equipped, and the classrooms are light and conducive to study. The building has an internal television system and the 220-seat auditorium is one of the most attractive ones on the campus.
CIVIL ENGINEERING CURRICULUM
(See page 164 for Freshman Year)

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 301 Introd. to Struc. Sci.</td>
<td>3</td>
</tr>
<tr>
<td>CE 320 Conc. & Bit. Materials</td>
<td>2</td>
</tr>
<tr>
<td>CE 310 Introd. to Mat. Sci.</td>
<td>3</td>
</tr>
<tr>
<td>EM 202 Engr. Mech. (Dynamics)</td>
<td>3</td>
</tr>
<tr>
<td>ESE 401 Environ. Engr.</td>
<td>3</td>
</tr>
<tr>
<td>Math Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 305 Civil Engr. Meth.</td>
<td>2</td>
</tr>
<tr>
<td>or EG 109 Engr. Graph. Com.</td>
<td>2</td>
</tr>
<tr>
<td>EM 304 Mech. of Materials</td>
<td>3</td>
</tr>
<tr>
<td>EM 305 Mech. of Materials Lab.</td>
<td>1</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3</td>
</tr>
<tr>
<td>Math 208 Engr. Math. I</td>
<td>4</td>
</tr>
<tr>
<td>Phys 222 Opt. and Mod. Phys.</td>
<td>3</td>
</tr>
<tr>
<td>Phys 224 Modern Phys. Lab.</td>
<td>1</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 302 Struc. Design I</td>
<td>3</td>
</tr>
<tr>
<td>CE 310 Trans. Engr.</td>
<td>4</td>
</tr>
<tr>
<td>Econ 201 Prim. of Economics</td>
<td>3</td>
</tr>
<tr>
<td>E&CE Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanistic-Social Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 402 Struc. Design II</td>
<td>3</td>
</tr>
<tr>
<td>CE 425 Engr. Relations</td>
<td>3</td>
</tr>
<tr>
<td>EM 421 Hydro. & Hyd.</td>
<td>2</td>
</tr>
<tr>
<td>ME 311 Engr. Thermo. I</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
<tr>
<td>138 Total Semester Hours</td>
<td></td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Each class adviser has a list of approved electives from which students may make selections. Any exceptions to this list must have the approval of the department head.

ELECTRICAL AND COMPUTER ENGINEERING

Electrical and computer engineering is the largest and most diversified of the engineering disciplines. Its technical society membership is more than double that of any other and the responsibilities of the profession range from highly analytical problem solving to detailed design of electronics, communications and computing systems. Electrical and computer engineers have traditionally occupied key positions in a wide variety of engineering programs and their educational program must be structured to allow for this diversity of career objectives. The Electrical and Computer Engineering Department allows this flexibility of course selection in its curriculum. A liberal number of humanistic-social electives provide the graduate with the ability to address himself to both the “how” and the “why” of engineering.

The flexibility of the curriculum allows either a sampling from the many aspects of Electrical and Computer Engineering or a concentration in a specific area. The student’s interests and career objectives are carefully considered by the Electrical and Computer Engineering advising staff in structuring a program of study.
Electrical and Computer Engineering can be subdivided into the rather broad areas of networks and systems analysis, communications, electronics, computer science, and power. A brief discussion of each of these follows.

Systems and electric network analysis provides the fundamental core materials in the curriculum. These 18 credits of required work constitute the fundamental studies in analysis and experimentation which receive subsequent further development in elective courses. Computer simulation, mathematical modeling, experimental design and scientific reasoning are representative of the topics covered.

Computers, both analog and digital, are studied extensively in the Electrical and Computer Engineering program. Few areas in engineering present the promise of continued growth that is offered by the computing industry. In preparing the student to meet this challenge, the department offers courses in real-time computing, computer language structures, the theory and design of digital computers, computation and simulation of physical systems, information processing and data handling. The department operates its own digital and analog computing laboratories and has remote terminal equipment to the University Computer Center.

The study of electronics continues to be one of the most active professional areas in Electrical and Computer Engineering. Changes in this field have occurred so rapidly that equipment designed five years ago is obsolete by present design criteria. The vacuum tube gave way to the transistor sixteen years ago and just recently the integrated circuit has replaced the discrete solid-state device. The Electrical and Computer Engineering curriculum includes basic work in the theory of operation of solid-state devices, the design of solid-state circuits and the study of integrated circuit technology. Electronic laboratories within the department contain the most modern equipment available for the study of these devices, including special microscopic and micro-manipulation equipment needed in the study of minute integrated circuits.

The study of power systems analysis and energy conversion is carried out in a recently renovated power laboratory. This new facility contains the machinery and instrumentation necessary to explore solid-state-static motor control, dynamic speed and torque measurement techniques and power system stability.

Communication theory may be the most comprehensive field of specialization found in Electrical and Computer Engineering. It includes course work in information theory, electromagnetic theory, switching circuits and electronics. Engineers working in communi-
cation find themselves studying switching equipment in telecommunications, working on the plasma blackout problem in missile reentry, studying the design implications of complex missile detection and defense systems or they may be designing antennas and transmitting equipment for space satellites. Some will be trying to comprehend the nature of bioelectricity by studying the human brain.

The Honors Program in the Department of Electrical and Computer Engineering has for the past five years accounted for a large percentage of the honors students in the University. All qualified Electrical and Computer Engineering students are strongly urged to take advantage of this program since it will provide them with an opportunity to participate in some uncommonly rewarding educational experiences during their final two years of study. Honors students receive individualized professional guidance and special laboratory privileges in many of their courses. Honors students in the past have designed electronic devices, have written complex computer programs and have studied technical material which ordinarily would be reserved for students at the graduate level. Students are asked to contact their Electrical and Computer Engineering adviser for more information.

ELECTRICAL AND COMPUTER ENGINEERING CURRICULUM

(See page 164 for Freshman Year)

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature Requirement</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>4 (5.0)</td>
</tr>
<tr>
<td>Phys 221 Thermal and Elec. Phen.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Technical Elective†</td>
<td>2</td>
</tr>
<tr>
<td>Humanistic-Social Elective†</td>
<td>3</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Literature Requirement	3 (3.0)
Math 208 Engr. Math. I	4 (5.0)
Phys 222 Opt. and Mod. Phys.	3 (3.0)
Phys 224 Modern Phys. Lab.	1 (0.3)
Humanistic-Social Elective†	3
Technical†/Humanistic-Social Elective†	3
AS or MS or Elective	1
Total	18

JUNIOR YEAR

E&CE 320 Electronics I	2 (2.0)
E&CE 325 Electronics and Electromagnetics Lab. I	1 (0.2)
E&CE 329 Logic and Comput. Devices	3 (2.2)
E&CE 330 Systems I	3 (3.0)
E&CE 331 Electric Circuits Workshop I	3 (2.2)
E&CE 340 Electric and Magnetic Fields I	2 (2.0)
Technical Elective†	3
Total	17

E&CE 321 Electronics II	2 (2.0)
E&CE 326 Electronics and Electromagnetics Lab. II	1 (0.2)
E&CE 332 Systems II	2 (2.0)
E&CE 333 Electric Circuits Workshop II	3 (2.2)
E&CE 341 Electric and Magnetic Fields II	2 (2.0)
Humanistic-Social Elective†	3
Technical Elective†	3
Free Elective	3
Total	19
First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E&CE 410 Systems III</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>E&CE 411 Elec. Sys. Workshop</td>
<td>2</td>
</tr>
<tr>
<td>E&CE 422 Electronics III</td>
<td>2</td>
</tr>
<tr>
<td>Technical Electives†</td>
<td>9</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>19</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E&CE 450 Systems IV</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>E&CE 451 Systems Design</td>
<td>2 (0.4)</td>
</tr>
<tr>
<td>Humanistic–Social Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective†</td>
<td>9</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† A minimum of 6 credits with Electrical and Computer Engineering designations are required among the technical electives. A distribution among the engineering sciences of not less than 9 credits is also required.
‡ A list of approved humanistic–social electives is available from the student’s adviser. Any exceptions to this list must be approved in writing by the department head.

MECHANICAL ENGINEERING

Mechanical engineers are involved in the solution to mankind’s basic problems: the maintenance and development of food, shelter, clothing, health, transportation, and communications. These problems require that the mechanical engineer be prepared to work in a wide variety of areas including bioengineering, advanced power systems, environmental and life support systems, propulsion and transportation systems, food technology, textile processing and manufacturing, materials machining and processing, housing and construction techniques, ocean systems, and plant operation, production, and maintenance. His functions may range from technical management to basic research and development, but they all involve innovative problem-solving skills. The training received in such a program must be sufficiently general to serve these diverse areas, yet sufficiently thorough to assure technical competence for prolonged periods.

In preparing an individual to function in both nontechnical and technical areas for a professional career which will generally span 40-45 years, it is essential that the entire man be developed. In accomplishing this development a rather broad educational pattern is followed. It begins with a thorough preparation in the basic sciences: mathematics, chemistry, and physics. Parallel to this development the student gains proficiency in the necessary communications skills, reading and writing, and is taught to see himself as a nontechnical being in society through a study of history, political science, economics, etc. Next in the process comes a rigorous study of the engineering sciences: electrical, thermal, and mechanical sciences which are built upon mathematics, chemistry, and physics.

Upon completion of these fundamentals the program then begins to develop the applications and synthesis areas which distinguish the engineer from the scientist. The applications occur in the areas
of energy conversion and transfer, mechanical design, and systems analysis.

The energy conversion and transfer area deals primarily with applications of the thermal sciences; thermodynamics, heat transfer, and fluid mechanics to various processes. For instance, one might consider the conversion of the chemical energy of fuels of other forms of energy to power ground transportation, high-speed commercial or military aircraft, or space vehicles. One might also consider means of converting this energy to a means of powering various refrigeration, air-conditioning and environmental control systems or evaluate systems for the direct use of solar energy to provide power, fresh water, and food for the underdeveloped countries of the world.

In the mechanical design area the student applies his recently acquired knowledge of strength of materials; mechanisms for converting motion; stress, strain, and deflection theories; automatic control theory; and lubrication and wear concepts to mechanical systems ranging from prosthetic devices for the handicapped to completely automated machines for manufacturing plants. Included in the range of applications which the student may pursue is the analysis of artificial knee, hip, and shoulder joints; an evaluation of new construction techniques for low-cost housing development; or study of remote manipulating schemes for work on the ocean floor. The applications in this area are numerous and bear on all man's basic problems.

The systems analysis area involves the use of mathematics, computer sciences (both analog and digital types), instrumentation, and a basic understanding of both mechanical and energy-conversion areas in the analytical and mathematical analysis of complex, real-world, physical systems. These systems may be made up of various electrical, mechanical, thermal, and hydraulic components. In this activity the student begins to apply all the fundamentals and applications previously acquired to the solution to real problems.

As an integral part of the entire program, and particularly near the conclusion of his study, the student is immersed in the relevant problem-solving aspects of engineering. He is shown that life does not present problems in a well-defined fashion and is taught the methodology of attacking problems not presented in "textbook" format. The "nontechnical" aspects of human factors, costs, environmental impact, and esthetics are considered in real problems taken from industry, the medical profession, or faculty interests. As the student attacks these problems he develops, under close faculty guidance, a methodology of thinking, planning, and imple-
menting that will serve him in his career regardless of the particular field he chooses to enter. The student then possesses the fundamentals and the problem-solving methodology which will serve him for a career which may see aerospace wax and wane; the environment be a cause of alarm and then become well managed; foodstuffs change drastically in content and appearance; man rebuild his own body; and housing and communications be totally different from anything projected today. He is technically well prepared to manage, plan or perform any of the technical duties involved.

However, the mechanical engineer is not a totally technical being. His problem-solving skills are of great worth to his community and to society, and it is a goal of our educational process to broaden these skills and to instill in each graduate a sense of responsibility to society. The technical "loner" cannot be tolerated in the high technology society of tomorrow, no more so than today. Therefore, a significant portion of the Mechanical Engineering curriculum is devoted to study in the humanistic-social areas. The student may elect, with departmental approval, courses in political science, economics, philosophy, sociology, history, etc., in order to acquire a better understanding of his "nontechnical" world. Thus, those students who pursue a degree in Mechanical Engineering are trained in engineering fundamentals, their applications, and the "nontechnical" areas to assume a position of leadership in industry and society. In fact, these same thought processes and problem-solving skills developed in the mechanical engineering program serve as good preparation for a number of professions including politics, sales, human relations or general business areas, and many highly successful "nontechnical" individuals in society today are graduates of mechanical engineering programs.

Beyond the Bachelor of Science level discussed above, the Department of Mechanical Engineering offers study leading to the Master of Engineering, the Master of Science, and the Doctor of Philosophy degrees.

MECHANICAL ENGINEERING CURRICULUM
(See page 164 for Freshman Year)

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>EM 201 Engr. Mech. (Statics)</td>
<td>3 (3.0)</td>
<td>EM 202 Engr. Mech. (Dynamics)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3.0)</td>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>ME 201 Innovative Design I</td>
<td>2 (1.3)</td>
<td>ME 202 Innovative Design II</td>
</tr>
<tr>
<td>Phys 221 Thermal & Elec. Phen.</td>
<td>3 (3.0)</td>
<td>Phys 222 Opt. and Mod. Phys.</td>
</tr>
<tr>
<td>AS or MS or Elective†</td>
<td>1</td>
<td>Phys 224 Mod. Phys. Lab.</td>
</tr>
<tr>
<td>16</td>
<td>AS or MS or Elective†</td>
<td>17</td>
</tr>
</tbody>
</table>
First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E&CE 331 Elec. Cir. Workshop</td>
<td>3 (2.2)</td>
</tr>
<tr>
<td>EM 304 Mech. of Materials</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>EM 320 Fluid Mech.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>ME 311 Engr. Thermo. I</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>ME 313 Inst. & Meas.</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>Humanistic–Social Elective†</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E&CE 308 Electronics and Electromechanics</td>
<td>3 (2.2)</td>
</tr>
<tr>
<td>ME 304 Heat Transfer I</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>ME 312 Engr. Thermo. II</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>ME 314 Engr. Exp.</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>ME 316 Dynamic Sys. Anal.</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>ME 321 Fluid Dynamics</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsE 310 Material Sci.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>ME 401 Prin. of Mech. Engr. Des.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>ME 404 Automatic Control</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>ME 413 Mech. Engr. Lab.</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Technical Electives†</td>
<td>6</td>
</tr>
<tr>
<td>Humanistic–Social Elective†</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

138 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† All electives must be approved in advance by departmental adviser.

COLLEGE OF FOREST AND RECREATION RESOURCES

The College of Forest and Recreation Resources is concerned with the management, use, and stewardship of all of our forest resources and with man’s well-being through wise use of his leisure. These two general areas of study offer broad opportunities in the management of our forest and recreation resources for their maximum service to the present and future generations of man.

The College of Forest and Recreation Resources offers curriculums designed to prepare students for professional careers in the following areas.

The Forestry curriculum includes the fundamental and applied sciences needed in the management of the forest environment for its products and services. Forestry prepares graduates for employment as managers and administrators of forest lands for production of timber, water, wildlife, esthetic values, and recreational use.

The Recreation and Park Administration curriculum prepares recreation directors for counties, towns and cities, institutions, industries and youth-serving agencies. A park management emphasis may be pursued leading to a career with federal, state, county, and municipal park systems.

FORESTRY

The Forestry curriculum combines a broad education in liberal arts and the physical, mathematical, and biological sciences with the applied forestry sciences needed in the management of the forest and forest environment for their products and services. Foresters of professional standing are employed in various capacities by private concerns and by federal, state, and other public agencies.
Because of the nature of their education, foresters are qualified for a broad spectrum of employment possibilities. They may be engaged as managers, administrators, or owners of forest lands or forest-based businesses; as technical specialists in the production of timber, useable water, wildlife, and esthetic values, and in the recreational use of the forest; or as professionals in other areas where the conservation of our natural resources is a matter of concern. Foresters earning advanced degrees find employment in academic work and in research conducted both by public and private agencies.

The undergraduate curriculum provides a strong program in the basic knowledge and skills required of a professional forester. The curriculum is also designed to provide the necessary prerequisites for those students that desire to continue in graduate study. The Department of Forestry offers graduate programs that lead to a Master of Science or a Master of Forestry degree.

The Forestry curriculum is accredited by the Society of American Foresters.

FORESTRY CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 101 Prin. of Biology</td>
<td>3 (3,0)</td>
<td>Bot 102 Prin. of Botany†</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Bot 104 Lab. Exer. in Botany†</td>
</tr>
<tr>
<td>EG 105 Engineering Graphics†</td>
<td>2 (0,6)</td>
<td>Ch 102 General Chemistry†</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>For 101 Intro. to Forestry</td>
<td>1 (1,0)</td>
<td>For 102 Intro. to Forestry</td>
</tr>
<tr>
<td>Math 108 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>Math 108 Cal. and Lin. Algebra</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>Zool 102 Prin. of Zoology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agron 202 Soils†</td>
<td>3 (2,2)</td>
</tr>
<tr>
<td>Econ 201 Prin. of Economics</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>For 205 Dendrology†</td>
<td>4 (3,5)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 207 Gen. Physics</td>
<td>4 (3,2)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

FORESTRY SUMMER CAMP§

For 251 Forest Plants	2
For 252 Forest Engineering	4
For 253 Forest Mensuration	4
For 254 Forest Products	1
	9

* To be selected from the following: Biol 203, 204, 205, 206, 207, 208.
† Courses generally prerequisite to summer camp.
§ Students planning to eat in the University Dining Halls are advised to purchase individual meals rather than board plans during summer camp, because several days of travel away from campus can be anticipated during which students will be responsible for their own meals and lodging.

Note: The emphasis areas in Forestry are forest management, forest economics and marketing, forest biology, forest game management, forest recreation, forest harvesting, forest influences, forest protection, forest biometrics, forest soils, and the humanities. The student selects one of these and in consultation with his adviser schedules approved courses for that particular emphasis area. (See emphasis area credits on page 182.)
RECREATION AND PARK ADMINISTRATION

The curriculum in Recreation and Park Administration provides training for students who desire to become recreation supervisors and directors and park administrators. Graduates plan and supervise recreation programs in industry, institutions, municipalities and rural communities. The program which leads to a Bachelor of Science degree is designed to provide competencies in recreation administration, management, development, planning, and research. It requires 135 semester hours, including field training during one summer, for completion.

The department offers graduate study leading to a Master of Recreation and Park Administration degree.

RECREATION AND PARK ADMINISTRATION CURRICULUM

FRESHMAN YEAR

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 101 Prin. of Biology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Hist 102 American History</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 101 Mathematical Analysis</td>
<td>1 (3,0)</td>
</tr>
<tr>
<td>RPA 101 Introd. to Comm. Rec.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 102 Prin. of Botany</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>and Bot 104 Lab. Exer. in Bot.</td>
<td>1 (0,2)</td>
</tr>
<tr>
<td>or Zool 102 Prin. of Zoology</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>and Zool 104 Lab. Exer. in Zool.</td>
<td>1 (0,2)</td>
</tr>
<tr>
<td>Econ 201 Prin. of Economics</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>RPA 102 Hist. & Prin. O’door Rec.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Soc 201 Introd. Sociology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 203 or 204 Surv. of Eng. Lit.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Physical Science†</td>
<td>4</td>
</tr>
<tr>
<td>Psych 201 Gen. Psychology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>RPA 204 Sports in Recreation</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Zool 102 Principles of Zoology</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>or Bot 102 Prin. of Botany</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct 201 Prin. of Accounting</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Physical Science†</td>
<td>4</td>
</tr>
<tr>
<td>RPA 203 Per. & Comm. Health</td>
<td>3 (3,3)</td>
</tr>
<tr>
<td>RPA 205 Prog. Plan. for Rec.</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>
First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Hort 303 Plant Materials I</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>RPA 302 Camp Org. & Admin.</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>RPA 306 Prin. of Outdoor Ed.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

15

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 335 Adol. Growth & Develop.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Hort 308 Landscape Design</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>RPA 307 Pk. Maint. & Oper.</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>RPA 308 Meth. & Tech. Rec.</td>
<td></td>
</tr>
<tr>
<td>Leadership</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

16

SUMMER

RPA 405 Field Training in Recreation 8

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 352 Public Finance</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>IM 307 Personnel Management</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>RPA 403 Facility & Site Planning</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>RPA 409 Methods of Rec.</td>
<td></td>
</tr>
<tr>
<td>Research I</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

15

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>For 426 A Survey of Forest Policy</td>
<td>2 (2.0)</td>
</tr>
<tr>
<td>or For 305 Elements of Forestry</td>
<td>2 (2.0)</td>
</tr>
<tr>
<td>Pol Sc 302 State & Local Gov.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>RPA 402 Recreation Admin.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>RPA 410 Methods of Rec.</td>
<td></td>
</tr>
<tr>
<td>Research II</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Soc 331 Urban Sociology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
</tr>
</tbody>
</table>

135 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Two-semester sequences in chemistry, geology, physics, or physical science.

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

The programs of the College of Industrial Management and Textile Science embrace three major areas, teaching, research, and public service. The College is responsible for seven graduate programs (two in cooperation with other administrative units), seven undergraduate programs, and a "non credit" series of professional development courses for business and industry. The undergraduate curriculums are in the areas of Accounting, Administrative Management, Economics, Financial Management, Industrial Management, Textile Science, and Textile Chemistry. These curriculums are designed to prepare the students for a variety of careers, as well as to furnish an education on which to build for a lifetime. The curriculums recognize the need for an understanding of the basic principles of science and appreciation for the nature of human beings, and the comprehension of the economic, political, and social environment. Flexibility in course selection and choice of areas for emphasis is made possible by secondary concentrations and minors as indicated.

ACCOUNTING

This curriculum leads to the Bachelor of Science degree in Accounting. The program of courses is designed to prepare students for professional careers in accounting and management. The major study of accounting is well supported by sequential courses in English, mathematics, management, economics, and sociology.
The graduate in Accounting is well prepared for entrance in law school, graduate school, or the practice of accountancy, either public, private, or governmental. The study of Accounting in preparation for a career in other areas of Management will provide mastery over an essential tool which reinforces experience and judgment in the decision-making process.

ACCOUNTING CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td>SECOND SEMESTER</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Acct 201 Principles of Acct.</td>
</tr>
<tr>
<td>Hist 173 Western Civilization</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>Math 108 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Science Elective†</td>
<td>Science Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th>JUNIOR YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct 202 Principles of Acct.</td>
<td>Acct 301 Intermediate Acct.</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>Comp Sc 205 Elem. Comp. Prog.</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>Econ 202 Principles of Econ.</td>
</tr>
<tr>
<td>Math 207 Multi. Dim. Cal.</td>
<td>IM 201 Introd. to Ind. Mgt.</td>
</tr>
<tr>
<td>Soc 201 Introd. Soc.</td>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Math 301 Stat. Theory & Meth. 1</td>
</tr>
<tr>
<td>16</td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th>132 Total Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct 410 Bud. and Exec. Cont.</td>
<td>Acct 415 Auditing</td>
</tr>
<tr>
<td>Acct 411 Advanced Acct.</td>
<td>Engl 301 Public Speaking</td>
</tr>
<tr>
<td>Mgt Sc 414 Stat. Analysis</td>
<td>IM 404 Managerial Econ.</td>
</tr>
<tr>
<td>Approved Elective</td>
<td>IM 415 Manag. Dec. Making</td>
</tr>
<tr>
<td>15</td>
<td>Approved Elective</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Science elective includes any natural or physical science.

ADMINISTRATIVE MANAGEMENT

The Bachelor of Science degree in Administrative Management is designed for those students interested in careers as professional managers in the less technical areas of management. Such areas include marketing, personnel administration, purchasing, and public administration at the local, state and national levels. In addition, the qualified graduate of this curriculum will have a background suitable for pursuing graduate study in such areas as marketing,
transportation, finance, and economics, as well as the behavioral sciences.

The programs of study included in Administrative Management curriculum is designed to provide the student with (1) an appreciation of the social, political, and economic environments in which business firms must operate; (2) knowledge of the functional areas of business, their interrelationship and use of analytical methods in solving problems; and (3) a facility in the use of mathematics, statistics, and the behavioral sciences in performing managerial functions.

ADMINISTRATIVE MANAGEMENT CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>or Phy Sc 101 Physical Sci. I</td>
<td>4 (3,2)</td>
<td>or Phy Sc 102 Physical Sci. II</td>
</tr>
<tr>
<td>Engl 101 English Comp.</td>
<td>3 (3.0)</td>
<td>Engl 102 English Comp.</td>
</tr>
<tr>
<td>Hist 173 Western Civilization</td>
<td>3 (3.0)</td>
<td>Math 102 Math. Analysis 1</td>
</tr>
<tr>
<td>Math 101 Math. Analysis 1</td>
<td>3 (3.0)</td>
<td>Pol Sc 201 Introd. to Pol. Sci. I</td>
</tr>
<tr>
<td>Pol Sc 101 Intro. to Pol. Sci. I</td>
<td>3 (3.0)</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>1</td>
<td>Elective</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>Total</td>
</tr>
</tbody>
</table>

Sophomore Year			
Acct 201 Prin. of Acct.	3 (3.0)	Acct 202 Prin. of Acct.	3 (3.0)
Econ 201 Prin. of Econ.	3 (3.0)	Econ 202 Prin. of Econ.	3 (3.0)
Literature Requirement*	3 (3.0)	IM 201 Intro. to Ind. Mgt.	3 (3.0)
Math 203 Elem. Stat. Inference	3 (3.0)	IM 299 Computer Prog. I	1 (0.3)
Soc 201 Intro. Soc.	3 (3.0)	Psych 201 General Psychology	3 (3.0)
Elective	1	Soc 202 Social Problems	3 (3.0)
Total	**16**	Elective	1
Total	**16**	**Total**	**17**

Junior Year			
Acct 303 Cost Accounting	3 (3.0)	IM 308 Marketing Strategy	3 (3.0)
Econ 301 Econ. of Labor	3 (3.0)	IM 313 Com. Law	3 (3.0)
IM 304 Quality Control	3 (3.0)	Mgt Sc 310 Intro. to Mgt. Science	3 (3.0)
IM 306 Corporate Fin.	3 (3.0)	Pol Sc 321 Gen. Public Adm.	3 (3.0)
IM 312 Com. Law	3 (3.0)	Soc 331 Urban Sociology	3 (3.0)
or IM 307 Personnel Mgt.	3 (3.0)	**Total**	**15**
Total	**15**	**Total**	**17**

Senior Year			
Acct 410 Budget & Exec. Con.	3 (3.0)	IM 409 Mgt. Simulation	0 (0.3)
Engl 304 Adv. Composition	3 (3.0)	IM 410 Marketing Research I	1 (1.0)
IM 402 Op. Plan. & Cont.	3 (3.0)	or IM 407 Dir. Research	1 (1.0)
IM 418 Mgt. Information Sys.	3 (3.0)	IM 412 Marketing Anal. II	3 (3.0)
or IM 405 Econ. of Trans.	3 (3.0)	IM 415 Manag. Dec. Making	3 (3.0)
Elective	6	IM 499 Comp. Prog. II	1 (0.3)
Mgt Sc 414 Stat. Anal.	3 (3.0)	or IM 404 Managerial Econ.	3 (3.0)
Elective	6	**Total**	**17**
Total	**18**	**Total**	**17**

* Students selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Students who are concentrating their electives in Textiles should consult the Director of Textile Undergraduate Education for alternative course recommendations.
ECONOMICS

The curriculum leading to the Bachelor of Arts degree in Economics is designed to combine a broad general education with a thorough understanding of economics.

The economics curriculum is administered in the College of Industrial Management and Textile Science. Although separate and distinct from the Bachelor of Arts program in the College of Liberal Arts, it shares several ingredients with that program. The two programs share an identical freshman year sequence, identical minor concentrations in most cases, and many of the same approved electives.

The degree requirements, effective for freshmen entering 1967-68 and thereafter, are given below. The Bachelor of Arts degree in Economics requires 130 semester hours for graduation; and whenever scheduling permits, the student will be required to take the courses in the sequence given. The curriculum shown, however, can be considered adequate preparation for graduate study in economics only if it is taken with the mathematics minor.

ECONOMICS CURRICULUM

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Math 101 Math., Analysis I</td>
<td>Math 102 Math., Analysis II</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Natural Science†</td>
<td>Natural Science†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18 —17</td>
<td>18 —17</td>
</tr>
</tbody>
</table>

Sophomore Year

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>Econ 202 Principles of Econ.</td>
</tr>
<tr>
<td>Hist 101 American History</td>
<td>Hist 102 American History</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Modern Language</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct 201 Prin. of Accounting</td>
<td>Econ 407 Natl. Income and</td>
</tr>
<tr>
<td>Humanities†</td>
<td>Humanities†</td>
</tr>
<tr>
<td>Major</td>
<td>Major</td>
</tr>
<tr>
<td>Minor†</td>
<td>Minor†</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>6</td>
</tr>
<tr>
<td>Minor</td>
<td>6</td>
</tr>
<tr>
<td>Approved Elective</td>
<td>4 — 3</td>
</tr>
<tr>
<td></td>
<td>16 — 15</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Election of a two-semester sequence of the same science is required.
‡ The sequence of Math 101, 102, 203, and 106 may be replaced by Math 106, 108, and 301, or by Math 106, 108, and Ex St 301.
§ Where the student selects a minor which carries prerequisites, the prerequisite courses will be counted as approved electives.
¶ Courses for the Humanities requirement may not be selected from the minor field. Humanities include art, English, foreign language, music, philosophy, and religion.

Note: Those seeking teacher certification will be required to complete more than 130 semester hours.

Twenty-four semester hours above the sophomore level are required including Econ 314 and 407. Courses must also include 9 semester hours selected from Econ 302, 403, 404, 410, 412, and 420. The remaining hours may be selected from Econ 301, 302, 305, 306, 308, 309, 403, 404, 409, 410, 412, 413, 414, 416, 419, 420, 421, 422, 423, 424, Ex St 462, Mgt Sc 311, IM 404, 405, 406, and Ag Ec 456. (Econ 314 should be scheduled to follow immediately after Econ 202.)

Minor Concentration

A major in economics must select a minor concentration under one of the options as follows:

1. Secondary (minor) concentration as listed:
 - Accounting (to include Acct 202, 301, 302, 303, 410) Mathematics
 - Biology Modern Languages
 - Chemistry Philosophy
 - English Physics
 - Geology Political Science
 - History Psychology
 - History Sociology

Students who consider the Bachelor of Arts curriculum in Economics and desire to go into secondary school teaching should elect to take the degree in Education with a teaching area in Economics. The courses will be those required for teaching certificates as specified by the South Carolina Department of Education as well as those economics courses required for an Economics major.

Specific requirements for most minors may be found under the section on the College of Liberal Arts and the College of Physical, Mathematical, and Biological Sciences, Bachelor of Arts curriculum. Requirements for a major in Education with a teaching area in Economics are shown under the College of Education.
A minor in Economics is provided for other degree programs consisting of 15 hours above the sophomore level which must include Econ 314 and 407.

(2) The "Cluster Minor." This minor concentration is designed to allow students a somewhat wider choice of course materials than is possible with the conventional subject-matter minor. The general requirement for the "Cluster Minor" is 15 semester credits in courses numbered higher than 300 (except where noted differently), chosen according to one of the plans as follows:

Group I—Social Sciences*
 History
 Political Science
 Psychology
 Sociology

Group II—Philosophy and Religion

Group III—Administration *
 Accounting
 Industrial Management

Group IV—Life Sciences †
 Bacteriology
 Botany
 Genetics
 Zoology

Group V—Physical Sciences †
 Chemistry
 Geology
 Physics

APPROVED ELECTIVES

A list of approved electives for both degree and quality requirements may be obtained from the departmental secretary or from an adviser.

FINANCIAL MANAGEMENT

The curriculum for the Bachelor of Science degree in Financial Management provides the student with a course of study in preparation for a career in such areas as banking, insurance, brokerage and related activities. The student should be well prepared to serve on the financial staff of practically any business firm for the

* At least two courses must be taken in each subject chosen.
† No course in the 100 series is acceptable toward the cluster minor and not more than two courses in the 200 series. At least two courses must be taken in each subject chosen.
purpose of planning, providing, and controlling the capital of the firm. This curriculum should also prepare the student for service in government and agencies and programs of government. The graduate with this degree should be adequately prepared for entrance in law or graduate school.

The course work consists largely of courses in English, Mathematics, Accounting, Economics, Management, and the Social Sciences. The special interests of the individual student may be pursued through elective credit.

FINANCIAL MANAGEMENT CURRICULUM

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Engl 101 English Comp.</td>
<td>Econ 201 Prin. of Econ.</td>
</tr>
<tr>
<td>Hist 173 Western Civilization</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>IM 201 Intro. to Ind. Mgt.</td>
<td>Math 102 Math. Analysis II</td>
</tr>
<tr>
<td>Math 101 Math. Analysis I†</td>
<td>Pol Sc 101 Intro. to Pol. Sci. 1</td>
</tr>
<tr>
<td>Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Econ 202 Prin. of Econ.</td>
<td>Comp Sc 205 Elem. Comp. Prog.</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>Soc 201 Introd. Soc.</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Acct 303 Cost Acct.</td>
<td>Acct 305 Income Taxation</td>
</tr>
<tr>
<td>Econ 306 Risk & Insurance</td>
<td>Econ 302 Money and Banking</td>
</tr>
<tr>
<td>Econ 314 Inter. Econ. Theory</td>
<td>IM 306 Corp. Finance</td>
</tr>
<tr>
<td>IM 308 Marketing Strategy</td>
<td>IM 307 Personnel Mgt.</td>
</tr>
<tr>
<td>IM 312 Coml. Law</td>
<td>IM 313 Coml. Law</td>
</tr>
<tr>
<td>Soc 331 Ind. Soc.</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Acct 410 Bud. & Exec. Cont.</td>
<td>Acct 415 Auditing</td>
</tr>
<tr>
<td>Econ 422 Monetary Theory & Pol.</td>
<td>Econ 412 Int. Trade</td>
</tr>
<tr>
<td>Engl 304 Adv. Composition</td>
<td>Engl 301 Public Speaking</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Credits earned in Math 106, 108, 207, 301, and Mgt Sc 414 may be substituted toward Math 101, 102, 203, and eight elective credits. See class adviser.
INDUSTRIAL MANAGEMENT

This curriculum is designed to adequately prepare students for positions of major responsibility in industry, business, government or further academic study. During the first year education in the mathematical and physical sciences is emphasized. In the second, third, and senior years the student’s work expands into the areas of industrial engineering, finance, management and the social sciences. As preparation for careers in professional management, the Industrial Management curriculum is predicated on the philosophy that the individual must manage first himself, coupling this objective with the acquisition of a general education and then acquiring a mastery of the “tools” of management.

INDUSTRIAL MANAGEMENT CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 Gen. Chemistry</td>
<td>4 (3.3)</td>
<td>Ch 102 Gen. Chemistry</td>
</tr>
<tr>
<td>EG 103 Engr. Com.</td>
<td>3 (1.6)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>or Hist 173 Western Civilization</td>
<td>3 (3.0)</td>
<td>Hist 173 Western Civilization</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
<td>or EG 103 Engr. Com.</td>
</tr>
<tr>
<td>IM 100 Introd. to Ind. Mgt.</td>
<td>0 (1.0)</td>
<td>Math 108 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5.0)</td>
<td>Phys 122 Mech. and Wave Phen.</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Act 201 Prin. of Accounting</td>
<td>3 (3.0)</td>
<td>Act 202 Prin. of Accounting</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3.0)</td>
<td>Econ 202 Principles of Econ.</td>
</tr>
<tr>
<td>Math 207 Multi. Dim. Cal.</td>
<td>3 (3.0)</td>
<td>IM 201 Introd. to Ind. Mgt.</td>
</tr>
<tr>
<td>Phys 221 Thermal & Elec. Phen.</td>
<td>3 (3.0)</td>
<td>IM 299 Computer Prog. I</td>
</tr>
<tr>
<td>Phys 223 Electron Phys. Lab.</td>
<td>1 (0.3)</td>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>Soc 201 Introd. Soc.</td>
<td>3 (3.0)</td>
<td>Math 301 Stat. Theory & Methods I</td>
</tr>
<tr>
<td>Elective</td>
<td>1</td>
<td>Elective</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Act 303 Cost Accounting</td>
<td>3 (3.0)</td>
<td>IM 304 Quality Control</td>
</tr>
<tr>
<td>Econ 314 Inter. Econ. Theory</td>
<td>3 (3.0)</td>
<td>IM 308 Marketing Strategy</td>
</tr>
<tr>
<td>IE 307 Survey of Engr.</td>
<td>3 (3.0)</td>
<td>Mgt Sc 311 Introd. to Econ.</td>
</tr>
<tr>
<td>IM 322 Legal Env. of Bus.</td>
<td>3 (3.0)</td>
<td>Soc 351 Ind. Soc.</td>
</tr>
<tr>
<td>Area Concentration†</td>
<td>3</td>
<td>Area Concentration†</td>
</tr>
<tr>
<td>or Technical Elective</td>
<td>3</td>
<td>or Technical Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Act 410 Bwd. and Exec. Cont.</td>
<td>3 (3.0)</td>
<td>IM 402 Op. Plan. and Cont.</td>
</tr>
<tr>
<td>Engl 304 Adv. Composition</td>
<td>3 (3.0)</td>
<td>IM 404 Managerial Econ.</td>
</tr>
<tr>
<td>IM 408 Work Simp. & Stand.</td>
<td>3 (3.0)</td>
<td>IM 407 Directed Research</td>
</tr>
<tr>
<td>or IM 418 Mgt. Inform. Sys.</td>
<td>3 (3.0)</td>
<td>or IM 410 Marketing Research</td>
</tr>
<tr>
<td>Mgt Sc 414 Stat. Analysis</td>
<td>3 (3.0)</td>
<td>IM 409 Mgt. Simulation</td>
</tr>
<tr>
<td>Area Concentration†</td>
<td>3</td>
<td>IM 415 Manag. Dec. Making</td>
</tr>
<tr>
<td>or Technical Elective</td>
<td>3</td>
<td>IM 499 Computer Prog. II</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Area Concentration†</td>
</tr>
<tr>
<td>132 Total Semester Hours</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† A student not selecting a specified area concentration must select twelve hours from the areas of Industrial Management, Accounting, Hospital Administration, Management Science, Economics, Mathematics, Computer Science, Engineering, Textiles, Sociology, Chemistry or Physics. Electives need not be concentrated in a single discipline. However, if a student does not complete the area concentration as specified, then completed courses in such areas as political science, history, and psychology, must count as electives—not technical electives.
AREA CONCENTRATIONS

During the junior and senior years the student may select courses from one of the following areas for the purpose of emphasizing a particular area of the curriculum. Area concentrations constitute 12 credits and may be extended to 18 credits with the approval of the student's major adviser.

A. Ceramics
B. Economics
C. Defense Studies
D. Health and Hospital Administration
E. Human Resources Management
F. Industrial Engineering
G. Industrial Statistics
H. Management Science
I. Marketing Analysis
J. Regional Science
K. Textiles

TEXTILE CHEMISTRY

The Textile Chemistry curriculum prepares students for a wide variety of positions in the textile-fiber-polymer complex of industries that provide so much of the industrial income of the Southeast. The program gives excellent preparation for graduate study in many fields including the sciences, engineerings, management, and the interdisciplines such as textile, fiber, and polymer science. In his first two years, the student acquires the firm foundation in chemistry, physics, mathematics, and English essential to any serious study of science. In his third and fourth years, the student continues his studies of chemistry and begins to apply his knowledge in studies of polymer and fiber science, dyeing, finishing, yarn and fabric formation, and textile structures. Supporting courses in the humanities, English, and economics are included.

A total of 132 semester hours is required for graduation; of these, 32 semester hours are electives which may include up to ten semester hours of Air Science or Military Science. At least 20 semester hours of electives will form a coherent group in an area of particular interest and need to the student in his scientific and professional development. Ordinarily these courses will be junior or senior level courses in textile science, textile chemistry, other sciences, engineering, mathematics, or management. In the second semester of his sophomore year, the student, with the advice and consent of the Head of the Textile Department or the Director of Undergraduate Textile Education, will develop a study plan and will select these elective courses so as to maximize his training and development in his chosen field of study.
Senior students are encouraged to participate in original research and seminar programs. These activities, for which academic credits are given, introduce the student to scientific research and development in the chemistry of textiles, fibers, and polymers.

The Textile Department offers the degrees, Master of Science in Textile Chemistry, Master of Science in Textile Science, and Doctor of Philosophy in Textile and Polymer Science, and in cooperation with the Chemistry Department, the Doctor of Philosophy in Chemistry with a major in Textile Chemistry.

TEXTILE CHEMISTRY CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Year</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 172 or 173 West. Civilization</td>
<td>IM 299 Comp. Program. 1</td>
</tr>
<tr>
<td>Text 122 Intro. to Textiles</td>
<td>Phys 122 Mech. & Wave Phen.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Sophomore Year</td>
<td>Junior Year</td>
</tr>
<tr>
<td>Ch 223 Organic Chemistry</td>
<td>Ch 331 Physical Chemistry</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>Econ 201 Principles of Econ.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
</tr>
<tr>
<td>TC 457 Dyeing & Fin. I</td>
<td>TC 458 Dyeing & Fin. II</td>
</tr>
<tr>
<td>TC 459 Dyeing and Fin. Lab. I</td>
<td>TC 460 Dyeing and Fin. Lab. II</td>
</tr>
<tr>
<td>Text 313 Fabric Formation</td>
<td>Text 322 Prop. of Text. Structure</td>
</tr>
<tr>
<td>Text 321 Fiber Science</td>
<td>Electives†</td>
</tr>
<tr>
<td>Electives†</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>132 Total Semester Hours</td>
<td></td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Class advisers have lists of approved electives and will suggest sequences of courses.
TEXTILE SCIENCE

The Textile Science curriculum prepares students for a wide variety of positions in research and development, production, standards, and management in the textile-fiber-polymer complex of industries and in related industries. The program gives excellent preparation for graduate study in many fields. The first two years are devoted to the study of the chemistry, physics, mathematics, and English essential to the study of textile, fiber, and polymer science. In his third and fourth years, the student studies the science and technology necessary for development and production of fibers, yarns, woven, and nonwoven textile structures, and synthetic polymers.

A total of 132 semester hours is required for graduation; of these, 34 semester hours are electives which may include up to ten semester hours of Air Science or Military Science. At least 20 semester hours of electives will form a coherent group in an area of particular interest and need to the student in his scientific and professional development. Ordinarily, these courses will be junior or senior level courses in textile science, textile chemistry, other sciences, engineering, mathematics, or management. In the second semester of his sophomore year, the student, with the advice and consent of the Head of the Textile Department or the Director of Undergraduate Textile Education, will develop a study plan and will select these elective courses so as to maximize his training and development in his chosen field of study.

Senior students are encouraged to participate in original research and seminar programs. These activities, for which academic credits are given, introduce the student to scientific research and development in textiles, fibers, and polymers.

The Textile Department offers the degrees, Master of Science in Textile Science, Master of Science in Textile Chemistry, and Doctor of Philosophy in Textile and Polymer Science, and, in cooperation with the Chemistry Department, the Doctor of Philosophy in Chemistry with a major in Textile Chemistry.
TEXTILE SCIENCE CURRICULUM

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4</td>
<td>3.3</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td>Hist 173 Western Civilization</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>Text 122 Intro. to Textiles</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 102 General Chemistry</td>
<td>4</td>
<td>3.3</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td>IM 299 Comp. Program. I</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Math 108 Cal. and Lin. Alg.</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>Phys 122 Mech. & Wave Phen.</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Freshman Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophomore</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Hours

<table>
<thead>
<tr>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td></td>
</tr>
</tbody>
</table>

To be selected from the following: Engl 203, 204, 205, 206, 207, 208.

Class advisers have lists of approved electives and will suggest sequence of courses.

COLLEGE OF LIBERAL ARTS

The College of Liberal Arts, in addition to its six major curriculums leading to the degree of Bachelor of Arts, makes indispensable contributions to the programs of all other divisions of the University, including nearly all the instruction in the humanities and the social sciences. Major concentrations may be elected in English, History, Modern Languages, Political Science, Psychology, and Sociology; minor concentrations are offered in these disciplines and in Philosophy. In cooperation with other Colleges of the University, minor concentrations are also available in Biology, Chemistry, Economics, Fine Arts, Geology, Mathematics, and Physics. Supporting work is offered in Music and in interdisciplinary humanistic studies.

The College of Liberal Arts offers programs leading to graduate degrees in English and in History.
BACHELOR OF ARTS CURRICULUM

GENERAL INFORMATION

The curriculum leading to the degree of Bachelor of Arts is designed to meet the needs of students who desire a broad general education, with emphasis upon the humanities and the social sciences, as a preparation for intelligent citizenship, for general commercial and industrial life, for government service, and for teaching. This curriculum also provides excellent background for the study of law or journalism.

As soon as feasible in his college career, and not later than the end of his sophomore year, the student seeking the Bachelor of Arts degree will select a major and a minor field of concentration from the following areas:

<table>
<thead>
<tr>
<th>Major</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Biology</td>
</tr>
<tr>
<td>History</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Modern Languages</td>
<td>Economics</td>
</tr>
<tr>
<td>Political Science</td>
<td>English</td>
</tr>
<tr>
<td>Psychology</td>
<td>Fine Arts</td>
</tr>
<tr>
<td>Sociology</td>
<td>Geology</td>
</tr>
<tr>
<td></td>
<td>History</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td>Modern Languages</td>
</tr>
<tr>
<td></td>
<td>Political Science</td>
</tr>
<tr>
<td></td>
<td>Philosophy</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td>Psychology</td>
</tr>
<tr>
<td></td>
<td>Sociology</td>
</tr>
<tr>
<td></td>
<td>“Cluster Minor”</td>
</tr>
</tbody>
</table>

To fulfill requirements for a major concentration, a student takes 24 semester hours credit from courses above the sophomore level, including certain courses specified by the major department; the minor concentration requires 15 credits from courses above the sophomore level, including certain specified courses.

The total number of semester credits required for the degree is 130; of these, at least 12 should be earned in humanities courses numbered 300 or higher, and at least 12 in Social Sciences courses numbered 300 or higher. The humanities are for this purpose considered to include Art, English, Languages, Music, Philosophy, and Religion as well as courses entitled Humanities; the Social Sciences
are here considered to include Economics, Geography, History, Political Science, Psychology, and Sociology.

Students in the Bachelor of Arts program who expect to teach in the public schools may elect Education courses required for teaching certificates by the South Carolina State Department of Education, such courses to be approved by their own departmental advisers.

BACHELOR OF ARTS DEGREE

BASIC CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Natural Science†</td>
<td>Natural Science†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

17 — 18

Sophomore Year

<table>
<thead>
<tr>
<th>Literature Requirement*</th>
<th>Modern Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approved Electives</th>
<th>AS or MS or Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

16

Junior Year

<table>
<thead>
<tr>
<th>Major and Minor Areas</th>
<th>Approved Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>8 — 6</td>
</tr>
</tbody>
</table>

17 — 15

Senior Year

<table>
<thead>
<tr>
<th>Major and Minor Areas</th>
<th>Approved Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>6 — 5</td>
</tr>
</tbody>
</table>

15 — 14

130 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† A two-semester sequence of the same science (Chemistry, Physics, Geology, or Physical Science), or Biol 101, Zool 102, 104, or Bot 102, 104.
MAJOR CURRICULUMS IN THE COLLEGE OF LIBERAL ARTS

ENGLISH

For a major concentration in English, the recommended program of study consists of the courses stipulated in the basic curriculum and 24 semester hours of English, arranged as follows:

Group I—Engl 402 or 404, 405, 422 or 423.
Group II—Nine semester credits according to one of the following plans:
 (A) Engl 461; 425 or 427 or 429 or 431 or 437; 416 or 438 or 439.
 (B) Engl 462; 409 or 443; 445 or 446.
 (C) Engl 461, 462, and one of these courses: 409, 410, 413, 416, 424, 425, 427, 429, 431, 437, 438, 439, 443, 445.
Group III—Six additional semester credits from courses numbered above 400.

Engl 304, Advanced Composition, or departmental certification of proficiency in composition is required. English majors are expected to complete Hist 361, 363, and to complete the third year of a foreign language or the second year of two foreign languages. Additional approved electives are added as needed to meet the minimum of 130 semester hours required for graduation.

HISTORY

The recommended program of study consists of the required courses in the Bachelor of Arts curriculum; 24 semester credits in the Social Sciences † at the 100-200 level including at least 12 credits from Hist 101, 102, 171, 172, 173; completion of the third year of a foreign language; Hist 499; and 21 additional semester credits in history, arranged as follows:

Group I—At least six credits from these courses: Hist 306, 307, 313, 314, 315, 410, 411, 412, 413, 414.
Group II—At least six credits from these courses: Hist 361, 363, 371, 386, 473, 475, 476, 477, 479, 480, 481, 482, 483, 484.
Group III—At least six credits from these courses: Hist 331, 332, 340, 341, 342, 441.

History majors become eligible to take Hist 499 when they have completed 96 semester hours and at least 5 courses in history at the 300-400 level (excluding Hist 301).

* English 332 may be included in this group by special arrangement with the Head of the Department of English.
‡ Economics, Geography, History, Political Science, Psychology, Sociology.
Additional approved electives are added as needed to meet the minimum of 130 semester hours required for graduation.

MODERN LANGUAGES

A student may elect a major concentration in a single language or a concentration split between two languages; however, the department recommends a minor concentration outside the Department of Languages.

I. The recommended program of study for a major in French, German, or Spanish consists of the courses stipulated in the basic Liberal Arts curriculum and 24 hours in the language arranged as follows: 303, 304, 305, and either 306, 307, or 308, plus 12 semester hours on the 400 level.

II. The recommended program for a split major in Modern Languages consists of the courses stipulated in the basic Liberal Arts curriculum, 18 semester hours in the primary language, and 12 semester hours in the secondary language, arranged as follows:

- **Primary Language.** 303, 304, 305, and either 306, 307, or 308, plus 6 semester hours on the 400 level.
- **Secondary Language.** 12 semester hours from courses numbered higher than 300.

Additional approved electives are added as needed to meet the minimum of 130 semester hours required for graduation.

POLITICAL SCIENCE

For a major concentration in Political Science, the recommended program of study consists of the required courses in the Bachelor of Arts curriculum; Pol Sc 201, 101 (formerly 202) or 301; Ex St 301; and 24 semester hours of Political Science drawn from at least four of these fields:

1. American Government—Pol Sc 302, 403, 409
2. Public Administration—Pol Sc 321, 422, 423, 426, 428
3. Constitutional Law—Pol Sc 331, 432, 433, 434
4. Political Behavior—Pol Sc 341, 442, 443
5. Political Thought—Pol Sc 351, 352
7. Comparative Governments—Pol Sc 371, 372, 473, 479

Additional approved electives are added as needed to meet the minimum of 130 semester hours required for graduation.
PSYCHOLOGY

The recommended program of study for a major concentration in Psychology consists of the required courses in the Bachelor of Arts curriculum, Psych 201 and 202, Math 203 or Ex St 301, Psych 363, and 21 additional hours of Psychology drawn from the following courses:

Additional approved electives are added as needed to meet the minimum of 130 semester hours required for graduation.

SOCIOLOGY

The recommended program of study for a major concentration in Sociology consists of the required courses in the Bachelor of Arts curriculum, Soc 201, 206, Econ 201, 202, Phil 201, 302, Pol Sc 301, Ex St 301, Soc 411, 421, and 18 additional hours drawn from these courses: Pol Sc 341, Soc 306, 311, 321, 322, 324, 331, 341, 351, 361, 371, 381, 391, 393, 411, 421, 431, 441, 451, 481, 499, RS 359, 401.

MINOR CONCENTRATIONS

Students seeking the Bachelor of Arts degree may choose one of several minor concentrations available. The requirements for each area are detailed below.

Biology. A minor concentration in Biology requires 15 semester credits in the biological sciences numbered higher than 200.

Chemistry. A minor concentration in Chemistry requires Ch 101, 102, and 15 additional credits in chemistry, the courses to be selected in consultation with the Department of Chemistry.

English. A minor concentration in English requires 15 semester credits in English above the sophomore level, arranged as follows:

Group I—Engl 405 and either 422 or 423.

Group II—One of these courses: Engl 402, 404, 410, 413, 424, 425, 427, 429, 431, 437, 443, 445, 446, 461, 462.

Group III—Six additional credits from English courses numbered higher than 400.

Engl 304, Advanced Composition, or departmental certification of proficiency in composition is required.
Fine Arts. The minor concentration in Fine Arts consists of Hum 201-202 or Arch 101-102 and 15 semester credits from the following courses, of which at least 9 must be earned in courses numbered 300 or higher, and no more than 9 in any discipline selected:

Architectural History (all courses);
Arch 415, 416;
Engl 305, 308, 310, 311, 331, 332, 333;
Hum 203;
Mus 151, 152, 205, 206, 210, 251, 252, 305, 306, 311, 315, 316, 362, 365, 421, 422, 423;
Phil 305;
Visual Studies (all courses).

Geology. A minor concentration in Geology requires 15 semester credits from the following courses: Geol 201, 202, 306, 309, 402, 403, 404, 411, 412.

History. A minor concentration in History requires Hist 101, 102, and 15 additional credits in History, including at least one course from each of these groups:

Group II—Hist 361, 363, 371, 386, 473, 475, 476, 477, 479, 480, 481, 482, 483, 484.
Group III—Hist 331, 332, 340, 341, 342, 441.

Mathematics. A minor concentration in Mathematics requires Math 106, 108, 206, and 9 additional credits in mathematics, including at least two of these courses: Math 208, 295, 301, Comp Sc 205, and any 400-level course in Mathematics or Computer Science.

Modern Languages. A minor concentration in Modern Languages requires 15 semester credits in one modern language from courses numbered higher than 300, including at least one course on the 400 level.

Philosophy. A minor concentration in Philosophy requires Phil 201, 302, and 15 semester credits from the following courses: Phil 211, 303, 304, 305, 309, 312, 318, 322, 344, 422, 425.

Physics. A minor concentration in Physics requires Phys 122 and 15 additional semester credits in Physics, including Phys 221, 222.

Political Science. A minor concentration in Political Science requires Pol Sc 101 (formerly 202) or 301; 201, and 15 additional semester credits selected from at least three of the fields of Political Science listed above under the major curriculum for Political Science.
Psychology. A minor concentration in Psychology requires Psych 201, 202, and 15 semester credits from the following courses: Psych 302, 303, 321, 331, 341, 351, 361, 363, 401, 402, 403, 422, 442, 471, 475, 498; Ed 302 and 335 (if taken prior to fall 1968); Comp Sc 205.

The “Cluster Minor.” This minor concentration is designed to allow students a somewhat wider choice of course materials than is possible with the conventional subject-matter minor. The general requirement for the “Cluster Minor” is 15 semester credits in courses numbered higher than 300 (except where noted differently), chosen according to one of the plans listed below. Courses within the student’s major area may not be included in the “Cluster Minor.”

Group I—Social Sciences*
- Economics
- History
- Political Science
- Psychology
- Sociology

Group II—Philosophy and Religion

Group III—Administration*
- Accounting
- Economics
- Industrial Management

Group IV—Life Sciences †
- Bacteriology
- Botany
- Genetics
- Zoology

Group V—Physical Sciences †
- Chemistry
- Geology
- Physics

* At least two courses must be taken in each subject chosen.
† No course in the 100 series is acceptable toward the cluster minor and not more than two courses in the 200 series. At least two courses must be taken in each subject chosen.
Approved Electives for Students in the College of Liberal Arts

Class advisers in the College of Liberal Arts will normally approve the following courses as electives, but the Dean of Liberal Arts retains the prerogative of limiting the total number of credits that may be approved in a discipline or area:

All courses offered in the College of Liberal Arts and the College of Physical, Mathematical, and Biological Sciences except: Ch 450; EnGl 111; Geol 406; Phys 460; Psych 211; Math 100, 115, 116, 215, 216;
All courses in Economics;
All courses in Accounting;
Architectural History courses to a limit of 12 credits;
Arch 253, 415, 416;
Comp Sc 205, 421;
Cr Ar 101, 102;
Education courses required for certification in South Carolina (other courses by special arrangement);
Ex St 301, 462;
In Ed 204, 440;
IM 201, 299, 307, 312, 313, 322, 405;
Mgt Sc 311, 413, 414;
RPA 304;
RS 301;
Text 333;
Visual Studies courses to a limit of 9 credits.

College of Nursing

The College of Nursing provides two programs designed to prepare undergraduate men and women students for a career in nursing.

The program leading to the Bachelor of Science in Nursing degree is designed to prepare nurses for the practice of professional nursing in a variety of settings—hospitals, industry, clinics, and public health agencies. The program offers the foundation for graduate study in nursing, and an unlimited opportunity for men and women for sound career development in professional nursing. The baccalaureate program is four academic years and one six-week summer term in length. The student is enrolled in liberal arts and basic science courses during the first two years. These courses are arranged sequentially in order to provide the foundation
for professional courses which are planned for the junior and senior years. In addition, advanced liberal arts courses are taken during the junior and senior years. Clinical nursing experiences under the guidance of the College of Nursing faculty will take place with patients in the Greenville Hospital System and with local public health agencies.

The program leading to the Associate in Arts degree is designed to prepare the graduate at the technical level of nursing for direct patient-centered nursing under supervision in hospitals and other institutional health centers. The associate degree program may be completed in two academic years. The nursing major accounts for fifty percent of the total credit hours. This technical background is balanced by courses in the biologic and social sciences and the humanities. Clinical learning experiences planned as an integral part of the program, under the guidance of the College of Nursing faculty, take place with patients in the Anderson Memorial Hospital.

Students enrolled in the College of Nursing must meet the course requirements as described for each program in order to qualify for the degree and for licensure to practice Nursing.

BACHELOR OF SCIENCE IN NURSING CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 101 Prin. of Biology</td>
<td>3 (3,0)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Math 102 Math. Analysis II</td>
</tr>
<tr>
<td>Math 101 Math. Analysis I</td>
<td>3 (3,0)</td>
<td>Zool 102 Prin. of Zoology</td>
</tr>
<tr>
<td>Nurs 100 Orientation</td>
<td>1 (1,0)</td>
<td>Zool 104 Lab. Exer. in Zoology</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Option: Modern Language | 4 (3,1) | Option: Modern Language | 4 (3,1) |

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 210 Elem. Biochem.</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Literature Requirement</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Micro 305 Gen. Microbiology</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Psych 201 Gen. Psych.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Zool 461 Anatomy</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

SUMMER (First Session)

| Nurs 208 Problem Solving in Nursing | 3 (2,3) |
| History Elective | 3 (3,0) |

6
ASSOCIATE IN ARTS IN NURSING CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Junior Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurs 309 Human Values in Nurs, 3</td>
<td>Nurs 310 Perspectives in Nursing</td>
<td></td>
</tr>
<tr>
<td>Nurs 311 Nurs. During Alterations in Life Patterns, 4</td>
<td>Nurs 312 Nurs. of Acute and Chronicallly Distressed</td>
<td></td>
</tr>
<tr>
<td>Nurs 313 The Prom. of Health, 3</td>
<td>Nurs 314 Nursing in the Home, 3</td>
<td></td>
</tr>
<tr>
<td>Nutr 451 Human Nutrition, 3</td>
<td>Soc 311 The Family, 3</td>
<td></td>
</tr>
<tr>
<td>Soc 202 Social Problems, 3</td>
<td>Elective†</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>129 Total Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurs 415 Nurs. as a Social Force, 3</td>
<td>Nurs 422 Cur. Research in Nurs., 3</td>
</tr>
<tr>
<td>Nurs 417 Intensive Nursing, 4</td>
<td>Nurs 425 Independent Study in Nursing</td>
</tr>
<tr>
<td>Nurs 419 The Multiprob. Family, 3</td>
<td>Psych 302 Social Psychology, 3</td>
</tr>
<tr>
<td>Nurs 421 Hist. & Philoso. of Nurs., 3</td>
<td>Elective†</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Electives from the following: Humanities, Literature, Philosophy, Music.

Note: Nusr 207 and 208 open to students enrolled in baccalaureate degree program only. 1.50 grade-point ratio required for registration in nursing courses 300 and above.

COLLEGE OF PHYSICAL, MATHEMATICAL AND BIOLOGICAL SCIENCES

The College of Physical, Mathematical, and Biological Sciences, attuned to the times and its needs, offers nine major curriculums leading to the degree of Bachelor of Science. These are Botany, Chemistry, Geology, Mathematics, Medical Technology, Microbiology, Physics, Pre-medicine and Pre-dentistry, and Zoology.

In addition, a curriculum in Arts and Sciences, with a major emphasis in either Chemistry, Geology, Mathematics, or Physics can be pursued. The fulfillment of the requirements of this curriculum results in a Bachelor of Arts degree.

Not only are the departments in the College of Physical, Mathematical, and Biological Sciences concerned with their own programs but they work closely with the other academic departments.
in the University. This interweaving of the Physical, Mathematical and Biological Sciences with other disciplines, such as economics, engineering, management, and others, allows a student greater flexibility and responsibility in designing his own program.

BACHELOR OF ARTS CURRICULUM

The curriculum leading to the Bachelor of Arts degree is designed to meet the needs of those students who desire a broad general education. The first two years are spent in introductory work in various areas in order to give the student breadth of view. This type of background enables the student to take a more intelligent part in the selection of his major and minor fields of concentration. The major areas in the College of Physical, Mathematical, and Biological Sciences are Chemistry, Geology, Mathematics, and Physics.

There are a great number of choices in the minor area from the different academic departments in the University. Thus, a student has a larger degree of flexibility and responsibility in designing his curriculum in the Bachelor of Arts program. The minor fields are:

- Biology
- Chemistry
- Economics
- English
- Fine Arts
- Geology
- History
- Mathematics
- Modern Languages
- Philosophy
- Physics
- Political Science
- Psychology
- Sociology

Furthermore, a cluster minor may be taken. The cluster minor concentration should consist of 15 semester credits in courses numbered higher than 300 (with some exceptions). The subject area of the major should be excluded from the grouping in the minor. The groups available in the cluster minor are:

- Group I—Social Sciences
- Group II—Philosophy and Religion
- Group III—Fine Arts
- Group IV—Administration
- Group V—Life Sciences

The major concentration requires 24 semester hours and the minor 15 semester hours above the sophomore level unless otherwise indicated. These fit in the basic curriculum for the three upper-class years with minor variations depending on the specific major or minor selected. Consequently, a student not positive of
his major or minor field has the advantage of making his decision while in the curriculum with a minimum loss of credit.

MAJOR FIELDS OF CONCENTRATION

CHEMISTRY

For a major concentration a recommended program of study is shown below, with 130 semester hours required for graduation.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Modern Language</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Ch 223 Organic Chemistry†</td>
<td>Ch 224 Organic Chemistry</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>Hist 171 or 172 West. Civilization</td>
</tr>
<tr>
<td>Math 206 Cal. of Sew. Var.</td>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Modern Language</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Hist 172 or 173 West. Civilization</td>
<td>Chemistry Major</td>
</tr>
<tr>
<td>Chemistry Major</td>
<td>Minor</td>
</tr>
<tr>
<td>Minor</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Chemistry Major</td>
<td>Chemistry Major</td>
</tr>
<tr>
<td>Minor</td>
<td>Minor</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

130 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† The organic chemistry will count toward the 24 hours of the chemistry major.

GEOLOGY

For a major concentration a recommended program of study is shown below, with 128 semester hours required for graduation.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Modern Language</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
Physical, Mathematical and Biological Sciences

Sophomore Year

- **First Semester**
 - Geol 201 Physical Geology: 4 (3.3)
 - Literature Requirement: 3 (3.0)
 - Math 206 Cal. of Sev. Var.: 4 (5.0)
 - Modern Language: 3 (3.0)
 - AS or MS or Elective: 1

- **Second Semester**
 - Geol 202 Historical Geology: 4 (3.3)
 - Literature Requirement: 3 (3.0)
 - Modern Language: 3 (3.0)
 - Approved Electives: 4
 - AS or MS or Elective: 1

Junior Year

- **First Semester**
 - Geol 306 Mineralogy: 3 (2.3)
 - Hist 171 or 172 West. Civilization: 3 (3.0)
 - Humanities: 3
 - Major: 3
 - Minor: 3
 - Approved Elective: 3

- **Second Semester**
 - Geol 309 Petrology: 3 (2.3)
 - Hist 172 or 173 West. Civilization: 3 (3.0)
 - Humanities: 3
 - Major: 3
 - Minor: 3
 - Approved Elective: 3

Senior Year

- **First Semester**
 - Geol 402 Structural Geology: 3 (2.2)
 - Major: 3
 - Minor: 6
 - Social Sciences: 3

- **Second Semester**
 - Geol 404 Economic Geology: 3 (3.0)
 - Major: 3
 - Minor: 3
 - Social Sciences: 3
 - Approved Elective: 3

Freshman Year

- **First Semester**
 - Engl 101 English Composition: 3 (3.0)
 - Hist 171 or 172 West. Civilization: 3 (3.0)
 - Modern Language: 4 (5.0)
 - Modern Language: 4 (3.1)
 - AS or MS or Elective: 1

- **Second Semester**
 - Comp Sc 205 Elem. Comp. Prog.: 3 (3.0)
 - Math 108 Cal. and Lin. Alg.: 4 (5.0)
 - Modern Language: 4 (3.1)
 - AS or MS or Elective: 1

Sophomore Year

- **First Semester**
 - Literature Requirement: 3 (3.0)
 - Math 206 Cal. of Sev. Var.: 4 (5.0)
 - Math 301 Stat. Th. & Methods I.: 3 (3.0)
 - Modern Language: 3 (3.0)
 - Elective: 3
 - AS or MS or Elective: 1

- **Second Semester**
 - Hist 172 or 173 West. Civilization: 3 (3.0)
 - Literature Requirement: 3 (3.0)
 - Math 295 Foundations of Analysis: 3 (3.0)
 - Elective: 3
 - AS or MS or Elective: 1

Junior Year

- **First Semester**
 - Econ 201 Principles of Econ.: 3 (3.0)
 - Math 411 Linear Algebra: 3 (3.0)
 - Minor: 3
 - Natural Science: 4
 - Social Sciences: 3

- **Second Semester**
 - Math Elective: 3
 - Mus 210 Music Appreciation: 3 (3.0)
 - Or AAH 303 Evol. of Visual Arts: 3 (3.0)
 - Minor: 3
 - Natural Science: 4
 - Social Sciences: 3

To be selected from the following: Engl 203, 204, 205, 206, 207, 208.

MATHEMATICS

For a major concentration a recommended program of study is shown below, with 128 semester hours required for graduation.
Degrees and Curriculums

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>or Math 419 App. Comb. Alg. I</td>
<td>or Math 454 Adv. Cal. II</td>
</tr>
<tr>
<td>or Math 453 Adv. Cal. I</td>
<td>Minor</td>
</tr>
<tr>
<td>Minor</td>
<td>Humanities</td>
</tr>
<tr>
<td>Elective§</td>
<td>Elective§</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>128 Total Semester Hours</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† The Foundations of Analysis will count toward the 24 hours of the Mathematics major.
‡ Those electing not to take ROTC should take four hours of electives during an appropriate semester.
§ Elective must be approved by adviser.

Physics

For a major concentration a recommended program of study is shown below, with 128 semester hours required for graduation.

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 112 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>Hist 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>Phys 101 Current Topics in Mod. Physics</td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Literature Requirement§</th>
<th>Literature Requirement§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Language</td>
<td>Modern Language</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Junior Year

Phys 321 Mechanics I	Phys 322 Mechanics II
Humanities	Phys 340 Elect. & Mag. I
Minor	Humanities
Modern Language	Minor
Electives	Modern Language
	15

Senior Year

Phys 455 Quantum Phys. I	Physical Elective
Physical Elective	Minor
Minor	Social Science
Social Science	Elective
	16
	128 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.

Note: For a major or minor concentration in Physics, Phys 221 and 222 will count.
MINOR CONCENTRATIONS

Biology. The recommended programs of study consists of 15 semester hours from the field of biological sciences in addition to Biol 101, Bot 102, 104, and Zool 102, 104.

Economics. The recommended program of study consists of Econ 201, 202, and 15 semester hours selected from the following (including 314 and 407): Econ 301, 302, 305, 306, 308, 309, 314, 403, 404, 407, 410, 412, 416, 420, 421, 422, 424, Ex St 462, IM 404, 405, 406, Ag Ec 456, Mgt Sc 311.

English. The recommended program of study includes the required courses for the Bachelor of Arts curriculum and 15 semester hours of English, arranged as follows:

Group I—Six semester credits from these courses: Engl 405 and either 422 or 423.

Group II—Three semester credits from these courses: Engl 402, 404, 425, 427, 429, 431, 437, 443, 445, 446, 461, 462.

Group III—Six additional semester credits from English courses numbered higher than 400.

Engl 304, Advanced Composition, or departmental certification of proficiency in composition is required.

Fine Arts. The minor concentration in Fine Arts consists of Hum 201-202 or Arch 101-102 and 15 semester credits from the following courses, of which at least 9 must be earned in courses numbered 300 or higher, and no more than 9 in any discipline selected:

AAH 315, 316;
Arch 415, 416;
Engl 305, 308, 310, 311, 331, 332, 333;
Hum 203;
Mus 151, 152, 205, 206, 210, 251, 252, 305, 306, 311, 315, 316, 362, 365, 421, 422, 423;
Phil 305;
Visual Studies (all courses).

History. The recommended program of study consists of 15 semester hours with a minimum of three hours from each of the following groups:

Group II—Hist 361, 363, 371, 386, 473, 475, 476, 477, 479, 480, 481, 482, 483, 484.

Group III—Hist 331, 332, 340, 341, 342.

Modern Languages. A minor concentration in Modern Languages requires 15 semester credits in one modern language from
courses numbered higher than 300, including at least one course on the 400 level.

Philosophy. The recommended program of study consists of 15 semester hours of course work beyond Phil 201, 302—drawn from Phil 211, 303, 304, 305, 309, 312, 318, 322, 344, 422, 425.

Political Science. The recommended program of study consists of 15 semester hours beyond Pol Sc 101 (or 202 or 301) and 201 in courses drawn from at least three of the following fields:

1. American Government—Pol Sc 302, 403, 409
2. Public Administration—Pol Sc 321
3. Constitutional Law—Pol Sc 331, 432, 433
4. Political Behavior—Pol Sc 341, 433, 442
5. Political Thought—Pol Sc 351, 352
6. International Relations—Pol Sc 361, 462, 463, 464, 469, 473
7. Comparative Governments—Pol Sc 371, 372, 473

Psychology. The recommended program of study consists of required courses Psych 201, 202 and 15 semester hours to be selected from Psych 302, 303, 321, 331, 341, 351, 361, 363, 401, 402, 403, 422, 442, 471, 498, Comp Sc 205.

Sociology. A minor consists of 15 semester hours beyond Soc 201, 202 to be selected from Pol Sc 341, Soc 311, 321, 322, 324, 331, 341, 351, 361, 371, 381, 391, 411, 421, 431, 451, 481, 499, RS 359.

CLUSTER MINORS

Group I—Social Sciences

No fewer than two courses in each subject chosen:
- Economics
- History
- Political Science
- Psychology
- Sociology

Group II—Philosophy and Religion

Group III—Fine Arts

Of these courses, 9 semester credits must be taken in courses numbered 300 or higher:
- AAH 315, 316;
- Arch 415, 416;
- Engl 305, 308, 310, 311, 331, 332, 333;
- Mus 151, 152, 205, 206, 210, 251, 252, 305, 306, 311, 315, 316, 362, 365, 421, 422, 423;
Phil 305;

Group IV—Administration
No fewer than two courses in each subject chosen:
Economics
Accounting
Industrial Management

Group V—Life Sciences
No course in the 100 series is applicable and not more than two courses in the 200 series. No fewer than two courses in each subject chosen:
Bacteriology
Botany
Genetics
Zoology

Group VI—Physical Sciences
No course in the 100 series is applicable and not more than two courses in each subject chosen:
Astronomy
Chemistry
Geology
Mathematics
Physics

BACHELOR OF SCIENCE CURRICULUMS

BOTANY

Botany is that portion of Biology dealing with plants, their structure, classification, growth, and development. The Botany major is designed to prepare students for employment as biologists in sales, service, or research in industry or government service. It also provides the background in the fundamental physical and biological sciences necessary for graduate study in the basic and many of the applied plant sciences. Adequate electives are provided so that a student may take additional courses in the area or areas of his special interest.
CHEMISTRY

Chemistry, an experimental discipline based on observation guided by molecular theory, is of fundamental importance in much of modern science and technology. Its molecular concepts form the basis for ideas about complex material behavior. Due to the fundamental nature and extensive application of chemistry, an unusually large variety of challenging opportunities to contribute in the science-oriented community are open to the student whose education is built around the principles of this discipline.

The curriculum in chemistry provides, through its advanced chemistry courses and large number of elective hours, a program that may be suited to a student’s specific needs, whether he be interested in graduate work; industrial chemistry, sales or supervision; or related professional fields including medicine. Significant features of the program are the student’s extensive participation in experimental laboratory work and his association with teachers who also pursue research activities. The undergraduate and graduate
studies are closely connected, and an undergraduate may elect to take part in a research investigation during his junior and senior years.

CHEMISTRY CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>AS or MS or Elective†</td>
<td>AS or MS or Elective†</td>
</tr>
<tr>
<td></td>
<td>15 — 17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature Requirement*</td>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>AS or MS (Elective)</td>
<td>AS or MS (Elective)</td>
</tr>
<tr>
<td></td>
<td>17 — 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 313 Quan. Analysis</td>
<td>Ch 332 Phys. Chemistry</td>
</tr>
<tr>
<td>Ch 315 Quan. Anal. Lab.</td>
<td>Ch 411 Instr. Analysis</td>
</tr>
<tr>
<td>Ch 331 Phys. Chemistry</td>
<td>Ch 442 Chem. Lit.</td>
</tr>
<tr>
<td>Ch 339 Phys. Chemistry Lab.</td>
<td>Ger 102 Elem. German</td>
</tr>
<tr>
<td>Ger 101 Elem. German</td>
<td>Elective†</td>
</tr>
<tr>
<td>Elective†</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>17 — 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 435 Atom. & Mol. Struct.</td>
<td>Electives†</td>
</tr>
<tr>
<td>Ch 436 Phys. Chem. Lab.</td>
<td>16</td>
</tr>
<tr>
<td>Electives†</td>
<td>130 Total Semester Hours</td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Electives: For the degree of B.S. in Chemistry, a student must elect at least 18 hours in English, Languages, History, Political Science, Economics, Sociology, Psychology, etc. At least one advanced lecture course (400 level) in chemistry and one advanced laboratory must be elected.

GEOLGY

Geology is a relatively young science. The word itself is only about 200 years old. It means the science of the earth. Such a science must be involved with the physics and chemistry of materials which comprise the earth, but equally important it must consider the development of life on earth. Fundamentally, then, the chemical, physical, and biological responses to various environments on and in the earth must be thoroughly understood so that the historical development of the earth may be deduced, predictions of the future inferred, and natural resources intelligently developed.

Industry in our modern civilization is dependent on minerals and rocks. Metals have their origin in them as do our chief power
sources, coal, petroleum, and radioactive minerals. The power and wealth of nations depend largely on their exploration, control and development of mineral wealth.

Geologists today are entering upon a new era. Widening horizons are indicated by employment not only in mineral-producing industries but by railroads, municipalities, engineering firms, and water authorities. For this reason, it is important that the geologists' education rest on a broad yet rigorous base.

This curriculum provides the student with the fundamentals in the geological sciences and excellent support in the other basic sciences. On successful completion of the Bachelor of Science program the student should be adequately prepared for employment or for graduate study in any field of geology.

GEOLOGY CURRICULUM

<table>
<thead>
<tr>
<th></th>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3.3)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5.0)</td>
<td>Math 108 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Modern Language§</td>
<td>4 (3.1)</td>
<td>Modern Language§</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>Total</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR			
Geol 201 Physical Geology	4 (3.3)	Geol 202 Historical Geology	4 (3.3)
Hist 171 or 172 West. Civilization	3 (3.0)	Hist 172 or 173 West. Civilization	3 (3.0)
Literature Requirement*	3 (3.0)	Literature Requirement*	3 (3.0)
Math 206 Cal. of Sev. Var.	4 (5.0)	Modern Language	3 (3.0)
Modern Language	3 (3.0)	Phys 122 Mech. & Wave Phen.	3 (3.0)
AS or MS or Elective	1	AS or MS or Elective	1
Total	18	**Total**	17

JUNIOR YEAR			
Biol 101 Prin. of Biology	3 (3.0)	Bot 102 Prin. of Botany	2 (2.0)
Geol 306 Mineralogy	3 (2.3)	and Bot 104 Lab. Exer. in Bot.	1 (0.2)
Phys 221 Thermal & Elec. Phen.	3 (3.0)	or Zool 102 Prin. of Zoology	2 (2.0)
Phys 223 Electron Phys. Lab.	1 (0.3)	and Zool 104 Lab. Exer. in Zool.	1 (0.2)
Electives†	5	Ex St 301 Introd. Statistics	3 (2.2)
Total	15	Geol 309 Petrology	3 (2.3)
Geol 313 Strat. and Sed.	3 (3.0)	Geol 313 Strat. and Sed.	3 (3.0)
Phys 222 Optics & Mod. Phys.	3 (3.0)	Phys 224 Modern Phys. Lab.	1 (0.3)
Phys 224 Modern Phys. Lab.	1 (0.3)	**Total**	16
Summer Geology Field Camp†	6		

SENIOR YEAR			
Geol 402 Structural Geology	3 (2.2)	Geol 310 Optical Mineralogy	3 (2.2)
Geol 403 Invert. Paleontology	3 (2.3)	Geol 404 Economic Geology	3 (3.0)
Approved Electives†	9	Approved Electives†	9
Total	15	**Total**	15
134 Total Semester Hours			

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† At least 12 hours must be elected from the humanities and/or social sciences.
‡ Clemson University does not conduct a field camp in geology, but attendance at a camp approved by the geology staff is required.
§ German or French is recommended. Two years in the same language is required.
MATHEMATICS

The mathematics curriculum is designed to give basic training to those students whose ultimate goal is the creation of mathematical concepts and methods that are of basic and general applicability to the desired subject whether it be physics, computer science, communication theory, data processing, statistics, operations research, economics, or any branch of the physical sciences in which a strong mathematical background is a prerequisite. In addition to containing basic mathematics courses which are needed to prepare the student for the present day mathematical world, the curriculum allows the student in his junior year to select one of seven optional sets of courses which will provide an introduction to an area where mathematics is applied. These options are physics, operations research, computer science, managerial science, communications, chemistry, and statistics.

This curriculum provides an adequate background for the student who plans to pursue graduate study in mathematics and at the same time adequately prepares the student to fill many interesting positions in space research, computer development, business, or government research.

MATHEMATICS CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3.3)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
<td>Comp Sc 205 Elem. Comp. Prog.</td>
</tr>
<tr>
<td>Hist 172 or 173 West. Civilization</td>
<td>3 (3.0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>Math 108 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>AS or MS or Elective†</td>
<td>1</td>
<td>AS or MS or Elective†</td>
</tr>
<tr>
<td>Literature Requirement</td>
<td>3 (3,0)</td>
<td>Literature Requirement</td>
</tr>
<tr>
<td>Math 208 Cal. of Sev. Var.</td>
<td>4 (5,0)</td>
<td>Math 208 Engr. Math. I</td>
</tr>
<tr>
<td>Math 301 Stat. Th. & Methods I</td>
<td>3 (3,0)</td>
<td>Math 295 Foundations of Analysis</td>
</tr>
<tr>
<td>Phys 122 Mech. & Wave Phen.</td>
<td>3 (3,0)</td>
<td>Phys 221 Thermal & Elec. Phen.</td>
</tr>
<tr>
<td>Elective†</td>
<td>3</td>
<td>Phys 223 Electron Phys. Lab.</td>
</tr>
<tr>
<td>AS or MS or Elective†</td>
<td>1</td>
<td>Elective†</td>
</tr>
<tr>
<td>Fr 101 Elem. French§</td>
<td>4 (3,1)</td>
<td>Econ 201 Principles of Econ.</td>
</tr>
<tr>
<td>or Ger 101 Elem. German§</td>
<td>4 (3,1)</td>
<td>Fr 102 Elem. French§</td>
</tr>
<tr>
<td>Math 411 Linear Algebra</td>
<td>3 (3,0)</td>
<td>or Ger 102 Elem. German§</td>
</tr>
<tr>
<td>Math 453 Adv. Calculus I</td>
<td>3 (3,0)</td>
<td>Math 402 Th. of Probability</td>
</tr>
<tr>
<td>or Math 463 Math. Anal. I</td>
<td>3 (3,0)</td>
<td>Math 454 Adv. Calculus II</td>
</tr>
<tr>
<td>Option</td>
<td>3</td>
<td>or Math 464 Math. Anal. II</td>
</tr>
<tr>
<td>Phys 222 Optics & Mod. Phys.</td>
<td>3 (3,0)</td>
<td>Option</td>
</tr>
<tr>
<td>Phys 224 Modern Phys. Lab.</td>
<td>1 (0,3)</td>
<td></td>
</tr>
</tbody>
</table>

15

17

18

17

16
First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>Math 403 Stat. Inference</td>
<td>3</td>
</tr>
<tr>
<td>or Math 404 Intro. to Stoch. Proc.</td>
<td>3</td>
</tr>
<tr>
<td>or Math 405 Stat. Th. & Methods II</td>
<td>3</td>
</tr>
<tr>
<td>Math 412 Intro. to Mod. Alg.</td>
<td>3</td>
</tr>
<tr>
<td>or Math 419 App. Comb. Alg.</td>
<td>3</td>
</tr>
<tr>
<td>Option</td>
<td>3</td>
</tr>
<tr>
<td>Elective†</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math Elective</td>
<td>3</td>
</tr>
<tr>
<td>Option</td>
<td>3</td>
</tr>
<tr>
<td>Electives†</td>
<td>9</td>
</tr>
</tbody>
</table>

15 Total Semester Hours

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E&CE 320 Electronics I</td>
<td>2</td>
</tr>
<tr>
<td>E&CE 321 Electronics II</td>
<td>2</td>
</tr>
<tr>
<td>E&CE 325 Elec. & E'tromag. Lab.</td>
<td>1</td>
</tr>
<tr>
<td>E&CE 326 Elec. & E'tromag. Lab.</td>
<td>1</td>
</tr>
<tr>
<td>E&CE 330 Systems I</td>
<td>3</td>
</tr>
<tr>
<td>E&CE 331 Elec. Cir. Workshop I</td>
<td>3</td>
</tr>
<tr>
<td>E&CE 332 Systems II</td>
<td>2</td>
</tr>
<tr>
<td>E&CE 333 Elec. Cir. Workshop II</td>
<td>3</td>
</tr>
</tbody>
</table>

17 Total Semester Hours

OPTIONS:

A. CHEMISTRY

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 331 Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Ch 332 Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Ch 339 Physical Chem. Lab.</td>
<td>1</td>
</tr>
<tr>
<td>Ch 340 Physical Chem. Lab.</td>
<td>1</td>
</tr>
<tr>
<td>Ch 402 Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Ch 435 Atomic & Molec. Structure</td>
<td>3</td>
</tr>
<tr>
<td>Ch 436 Physical Chem. Lab.</td>
<td>1</td>
</tr>
</tbody>
</table>

15 Total Semester Hours

B. COMMUNICATIONS

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 202 Principles of Econ.</td>
<td>3</td>
</tr>
<tr>
<td>Econ 314 Inter. Econ. Th.</td>
<td>3</td>
</tr>
<tr>
<td>Math 452 Linear Programming</td>
<td>3</td>
</tr>
<tr>
<td>Math 473 Intro. to Nonlin. Opt.</td>
<td>3</td>
</tr>
<tr>
<td>Mgt Sc 311 Intro. to Econometrics</td>
<td>3</td>
</tr>
</tbody>
</table>

15 Total Semester Hours

C. COMPUTER SCIENCE

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp Sc 409 Introd. to Num. Anal. I</td>
<td>3</td>
</tr>
<tr>
<td>Comp Sc 410 Introd. to Num. Anal. II</td>
<td>3</td>
</tr>
<tr>
<td>Comp Sc 421 Introd. to Assembler Lang. Prog.</td>
<td>3</td>
</tr>
<tr>
<td>Comp Sc 428 Algo. Lang. & Comp.</td>
<td>3</td>
</tr>
<tr>
<td>Math 452 Linear Programming</td>
<td>3</td>
</tr>
</tbody>
</table>

15 Total Semester Hours

D. MANAGERIAL SCIENCE

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 302 Principles of Econ.</td>
<td>3</td>
</tr>
<tr>
<td>Econ 314 Inter. Econ. Th.</td>
<td>3</td>
</tr>
<tr>
<td>Math 452 Linear Programming</td>
<td>3</td>
</tr>
<tr>
<td>Math 473 Intro. to Nonlin. Opt.</td>
<td>3</td>
</tr>
<tr>
<td>Mgt Sc 311 Intro. to Econometrics</td>
<td>3</td>
</tr>
<tr>
<td>or IM 404 Managerial Econ.</td>
<td>3</td>
</tr>
</tbody>
</table>

15 Total Semester Hours

E. OPERATIONS RESEARCH

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM 402 Oper. Plan. & Control</td>
<td>3</td>
</tr>
<tr>
<td>Math 404 Intro. to Stoch. Proc.</td>
<td>3</td>
</tr>
<tr>
<td>Math 429 Num. Anal. I</td>
<td>3</td>
</tr>
<tr>
<td>Math 452 Linear Programming</td>
<td>3</td>
</tr>
<tr>
<td>Math 473 Intro. to Nonlin. Opt.</td>
<td>3</td>
</tr>
</tbody>
</table>

15 Total Semester Hours

F. PHYSICS

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 321 Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>Phys 322 Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>or Astr 404 Astrodynamics</td>
<td>3</td>
</tr>
<tr>
<td>or Phys 441 Elec. & Magnetism</td>
<td>3</td>
</tr>
<tr>
<td>Phys 340 Elec. & Magnetism</td>
<td>3</td>
</tr>
</tbody>
</table>

15 Total Semester Hours

G. STATISTICS

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 404 Intro. to Stoch. Proc.</td>
<td>3</td>
</tr>
<tr>
<td>Math 405 Stat. Th. and Methods II</td>
<td>3</td>
</tr>
<tr>
<td>Math 408 Stat. Th. and Methods III</td>
<td>3</td>
</tr>
</tbody>
</table>

12 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Those electing not to take ROTC should take four hours of electives during an appropriate semester.
‡ Electives must be approved by adviser.
§ Those qualifying for advanced placement should take languages during freshman year.
MATHEMATICS CURRICULUM WITH BIOLOGY OPTION

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 102 Principles of Botany</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>Bot 104 Lab. Exercise in Botany</td>
<td>1 (0,2)</td>
</tr>
<tr>
<td>Comp Sc 205 Elem. Computer Programming</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 108 Calculus & Lin. Alg.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Phys 208 General Physics</td>
<td>4 (3,2)</td>
</tr>
<tr>
<td>AS or MS or Elective†</td>
<td>1</td>
</tr>
<tr>
<td>Total Semester Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

Ch 101 General Chemistry	4 (3,3)
Literature Requirement*	3 (3,0)
Math 208 Calculus of Sev. Var.	4 (5,0)
Math 301 Stat. Th. & Methods I	3 (3,0)
Zool 102 Principles of Zoology	2 (2,0)
Zool 104 Lab. Exercise in Zoology	1 (0,2)
AS or MS or Elective†	1
Total Semester Hours	**18**

JUNIOR YEAR

Ch 224 Organic Chemistry	3 (3,0)
Ch 228 Organic Chemistry Lab.	1 (0,3)
Fr 102 Elem. French	4 (3,1)
or Ger 102 Elem. German§	4 (3,1)
Math 411 Linear Algebra	3 (3,0)
Math 453 Advanced Calculus I	3 (3,0)
or Math 463 Math. Analysis I	3 (3,0)
Total Semester Hours	**14**

SENIOR YEAR

Hist 172 or 173 West. Civilization	3 (3,0)
Math 401 Stat. Inference	3 (3,0)
or Math 404 Introd. to Stoch. Proc.	3 (3,0)
or Math 403 Stat. Th. & Methods II	3 (3,0)
Math 412 Introd. to Mod. Alg.	3 (3,0)
or Math 419 Appl. Comb. Alg. I	3 (3,0)
Zool 301 Comp. Vertebrate Anat.	3 (2,3)
or Bot 205 Survey of Plant King.	4 (3,3)
Elective§	5 — 4
Total Semester Hours	**17**

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† Those electing not to take ROTC should take four hours of electives during an appropriate semester.
§ Electives must be approved by adviser.
§ Those qualifying for advanced placement should take languages during freshman year.

MEDICAL TECHNOLOGY

Medical Technologists are qualified to perform a wide variety of chemical, microscopical, and bacteriological tests to aid physicians in the detection, diagnosis, and treatment of disease. Some medical technologists are responsible to a medical doctor, generally a pathologist, while others work under the supervision of a medical scientist who specializes in a particular branch of clinical science. The largest group of medical technologists work in hospital laboratories.
In cooperation with the Anderson Memorial Hospital, the Greenville General Hospital, and Self Memorial Hospital in Greenwood, Clemson offers a four-year curriculum leading to the Bachelor of Science in Medical Technology. The student spends the first three years of this program in classwork at Clemson and the fourth year at one of the participating hospitals, according to the student's choice and previous agreement with the hospital. While in residence in Anderson, Greenville, or Greenwood, the student will take specified courses under instructors on the hospital staff. During the fourth year of work, both room and board are furnished by the hospital.

Upon satisfactory completion of the prescribed courses, the student will be awarded the Bachelor of Science degree in Medical Technology.

<table>
<thead>
<tr>
<th>MEDICAL TECHNOLOGY CURRICULUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FRESHMAN YEAR</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
</tr>
<tr>
<td>Hist 101 American History</td>
</tr>
<tr>
<td>Math 101 Mathematical Analysis</td>
</tr>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

| **SOPHOMORE YEAR** |
Ch 223 Organic Chemistry	3 (3,0)
Ch 227 Organic Chem. Lab.	1 (0,3)
Econ 201 Principles of Econ.	3 (3,0)
Hist 102 American History	3 (3,0)
Literature Requirement	3 (3,0)
Zool 102 Prin. of Zoology	2 (2,0)
Zool 104 Lab. Exer. in Zoology	1 (0,2)
AS or MS or Elective	1
Total	17

| **JUNIOR YEAR** |
Ch 313 Quan. Analysis	3 (3,0)
Ch 317 Quan. Anal. Lab.	1 (0,3)
Hist 171 or 172 West. Civilization	3 (3,0)
Phys 208 Gen. Physics	4 (3,2)
Zool 307 An. Anat. & Physio.	3 (2,3)
Electives	2
Total	16

| **SECOND SEMESTER** |
Ch 112 General Chemistry	4 (3,3)
Engl 102 English Composition	3 (3,0)
Math 102 Mathematical Analysis	3 (3,0)
Med Tech 101 Intro. to M. Tech.	1 (1,0)
Modern Language	4 (3,1)
AS or MS or Elective	1
Total	19
Microbiology

Microbiology is the science which deals with the study of microscopic and submicroscopic forms of life, with emphasis on the bacteria and viruses. It also includes the study of yeasts, fungi, protozoa and unicellular algae. Microorganisms are of great importance to man for good or for ill. The microbiologist seeks to describe these minute life forms in terms of their structures, functions and processes of reproduction, growth and death, at both the cellular and molecular levels. He is also concerned with their interactions with the inanimate environment, with other living creatures, including the human, and their economic importance.

The microbiology major provides a thorough training in the basic microbiological skills. Furthermore, the student receives instruction in the areas of mathematics, physics, chemistry, and biochemistry, all of which are essential to the training of a modern-day microbiologist. At the same time, through a wide choice of electives, the program provides flexibility so that a student may prepare for any of several career choices after graduation. The microbiology graduate may enter graduate school in the fields of microbiology, biochemistry, bioengineering or related disciplines; he may enter a medical or dental school; or pursue a career in one of the many industries or public service departments dependent upon microbiology. Some of these are the fermentation and drug industries, medical and public health microbiology, various food industries, and agriculture.
MICROBIOLOGY CURRICULUM

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisl 101 Principles of Biology</td>
<td>Bot 102 Principles of Botany</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Bot 104 Lab. Exer. in Botany</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Ch 112 General Chemistry</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Math 104 Trigonometry</td>
<td>Math 106 Calculus of One Var.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Zool 102 Principles of Zoology</td>
</tr>
<tr>
<td></td>
<td>Zool 104 Lab. Exer. in Zoology</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Ch 223 Organic Chemistry</th>
<th>Bioc 301 Molecular Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 227 Organic Chemistry Lab.</td>
<td>Ch 224 Organic Chemistry</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>Ch 228 Organic Chemistry Lab.</td>
</tr>
<tr>
<td>Micro 305 General Microbiology</td>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>Social Science Elective§</td>
<td>Microbiology Elective$</td>
</tr>
<tr>
<td>Zoology Elective</td>
<td>Botany Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>18—19</td>
<td>18—17</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Engl 301 Public Speaking</th>
<th>Gen 302 Genetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Elective†</td>
<td>Physics Elective†</td>
</tr>
<tr>
<td>Approved Electives¶</td>
<td>Social Science Elective§</td>
</tr>
<tr>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Social Science Elective§</th>
<th>Micro 411 Pathogenic Bact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved Electives†</td>
<td>Approved Electives†</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

134 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† To be selected from the following courses: First semester either Phys 207 or 122; and second semester either Phys 208, or 221, 223.
§ A minimum of 15 credits must be selected from the following courses: Bot 451, 457, Micro 402, 404, 410, 413, 414, 415, 416, 491, Pl Pa 456, PS 458, Zool 403, 456.
¶ To be selected from the following courses: Econ 201, 202, Hist 102, 171, 172, 173, Phil 201, 302, Pol Sc 101, 201, 301, 302, Psych 201, Rel 301, 302, RS 301, Soc 201.

Note: Credits for sophomore year should total 36.

PHYSICS

Physics is the fundamental science. The word physics comes from the Greek term meaning nature. Therefore, physics is a science dedicated to the study of all natural phenomena. Physics is the foundation for the other experimental sciences. The physics curriculum is designed with this point of view.

The first two years of the physics curriculum is generally the same as that for mathematics, the other physical sciences and engineering. During the junior and senior years the physics student is given a strong background in the basic physics courses at an advanced level and is allowed to specialize in a variety of other fields by selecting one of eight options. The options are astrophysics, biophysics, chemical physics, computer science, electronics, geophysics,
mathematical physics, and physics. After completing one of these curriculums the student is prepared for positions in industry (e.g., aircraft, electronics, petroleum, textiles, pharmaceutical) and government laboratories (e.g., space research). Those students who select the physics or mathematical physics options are well equipped for graduate study in physics.

PHYSICS CURRICULUM WITH OPTIONS IN THE PHYSICAL AND MATHEMATICAL SCIENCES

<table>
<thead>
<tr>
<th></th>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 112 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 172 or 173 West. Civilization</td>
<td>3 (3,0)</td>
<td>Math 108 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>Phys 132 Gen. Physics I</td>
</tr>
<tr>
<td>Phys 101 Current Topics in Mod. Physics</td>
<td>1 (0,2)</td>
<td>Approved Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fr 101 Elem. French‡</td>
<td>4 (3,1)</td>
<td>Fr 102 Elem. French‡</td>
</tr>
<tr>
<td>or Ger 101 Elem. German‡</td>
<td>4 (3,1)</td>
<td>or Ger 102 Elem. German‡</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3,0)</td>
<td>Literature Requirement*</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>4 (5,0)</td>
<td>Math 208 Engr. Math. I</td>
</tr>
<tr>
<td>Phys 223 Electron Phys. Lab. I.</td>
<td>1 (0,3)</td>
<td>Phys 224 Modern Phys. Lab.</td>
</tr>
<tr>
<td>Phys 231 Gen. Physics II</td>
<td>3 (3,0)</td>
<td>Phys 232 Gen. Physics III</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math 309 Engr. Math. III</td>
<td>3 (3,0)</td>
<td>Phys 322 Mechanics II</td>
</tr>
<tr>
<td>Phys 321 Mechanics I</td>
<td>3 (3,0)</td>
<td>Phys 326 Exp. Physics II</td>
</tr>
<tr>
<td>Phys 325 Exp. Physics I</td>
<td>4 (2,6)</td>
<td>Phys 340 Elec. & Magnetism I</td>
</tr>
<tr>
<td>Approved Elective†</td>
<td>3</td>
<td>Option†</td>
</tr>
<tr>
<td>Option§</td>
<td>3</td>
<td>Approved Elective†</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys 441 Elec. & Magnetism II</td>
<td>3 (3,0)</td>
<td>Physics (as approved)</td>
</tr>
<tr>
<td>Phys 455 Quantum Physics I</td>
<td>3 (3,0)</td>
<td>Approved Elective†</td>
</tr>
<tr>
<td>Phys 465 Thermo. & Stat. Mech.</td>
<td>3 (3,0)</td>
<td>Option§</td>
</tr>
<tr>
<td>Approved Elective†</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Option§</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

128 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† A minimum of 12 hours of electives must be chosen from course offerings in the Humanities and Social Sciences.
‡ Math 411 may be taken in lieu of Math 309.
§ See OPTIONS, p. 222.
‡ Russ 101, 102 may be substituted.
OPTIONS:

A. ASTROPHYSICS
- Astr 301 General Astronomy
- Astr 302 General Astronomy
- Astr 404 Astrodynamics
- Phys 456 Quantum Physics II

B. CHEMICAL PHYSICS
- Ch 331 Physical Chem.
- Ch 332 Physical Chem.
- Ch 435 Atomic & Molec. Struct.
- Phys 456 Quantum Physics II

C. COMPUTER SCIENCE
- Comp Sc 205 Elem. Comp. Prog.
- Comp Sc 409 Numerical Anal.
- Comp Sc 421 Introd. to Assembler Lang. Prog.
- Comp Sc 428 Algorith. Lang. & Compilers
- or Phys 446 Solid St. Phys.
- or Math 429 Numerical Anal.

D. ELECTRONICS
- E&CE 320 Electronics I
- E&CE 325 Electronics Lab. I
- E&CE 330 Systems I
- E&CE 331 Elec. Ctr. Workshop I
- E&CE 332 Systems II

E. GEOPHYSICS
- Geol 201 Physical Geology
- Geol 306 Mineralogy
- Any two: Geol 309 Petrology
- Geol 402 Struc. Geol.
- Phys 446 Solid St. Phys.

F. MATHEMATICAL PHYSICS
- Math 453 Advanced Cal. I
- Math 454 Advanced Cal. II
- Phys 456 Quantum Physics II
- Math (as approved)

G. PHYSICS
- Phys 446 Solid St. Phys.
- Phys 456 Quantum Physics II
- Math (as approved)

PHYSICS CURRICULUM WITH BIOPHYSICS OPTION

The biophysics option is designed to provide a substantial background in physics as well as the biological and physical sciences. Thus, a student will be well prepared to pursue graduate study in biophysics or the biological and medical fields.

A total of 25 credit hours of approved biophysics electives is required, of which a minimum of 3 hours must be chosen in physics or mathematics, 6 hours from biological areas, and 12 hours, including 3 credit hours of laboratory, from the following chemistry and biochemistry courses: Ch 223, 224, 227, 228, 331, 332, 339, 340, Bioch 423, 424, 425, 426. Normally, Ch 223 and 227 will be scheduled for the first semester of the sophomore year.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Biology Elective</td>
<td>Biophysics Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>
PHYSICAL, MATHEMATICAL AND BIOLOGICAL SCIENCES

FIRST SEMESTER

Literature Requirement*	3 (3.0)
Math 206 Cal. of Sev. Var.	4 (5.0)
Phys 223 Electron Physics Lab.	1 (0.3)
Phys 231 Gen. Physics II	3 (3.0)
Biophysics Elective	4
AS or MS or Elective	1

SECOND SEMESTER

Literature Requirement*	3 (3.0)
Math 208 Engr. Math. I	4 (5.0)
Phys 224 Mod. Physics Lab.	1 (0.3)
Phys 232 Gen. Physics III	3 (3.0)
Biophysics Elective	4
AS or MS or Elective	1

16

JUNIOR YEAR

Fr 101 Elem. French§	4 (3.1)
or Ger 101 Elem. German§	4 (3.1)
Hist 171 or 172 West. Civilization	3 (3.0)
Phys 321 Mechanics I	3 (3.0)
Phys 325 Exp. Physics I	4 (2.6)
Biophysics Elective	4

18

SENIOR YEAR

Phys 455 Quantum Physics I	3 (3.0)
Phys 465 Thermo. & Stat. Mech.†	3 (3.0)
Biophysics Elective	3
Approved Elective†	5

14

129 Total Semester Hours

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
† A minimum of 12 hours of electives must be chosen from course offerings in the Humanities and Social Sciences.
‡ An approved Physics course may be substituted for Phys 465 if the student successfully completes Ch 331, 332.
§ Russ 101, 102 may be substituted.

PRE-MEDICINE AND PRE-DENTISTRY

Medicine and dentistry need individuals with a diversity of educational backgrounds and a wide variety of talents and interests. The philosophies of education, specific premedical and predental courses requirements, other qualifications for enrollment, and systems of training vary among the medical and dental schools, but all recognize the desirability of a broad education—a good foundation in the natural sciences (mathematics, chemistry, biology, and physics), highly developed communication skills, and a solid background in the social sciences and humanities. The absolute requirements for medical and dental school admission (16 credit hours in chemistry, 8 credit hours in biology, 8 credit hours in physics, 6 credit hours in English, and 6 credit hours in mathematics) are purposefully limited in order to allow latitude for developing individualized undergraduate programs of study.

The student preparing for a career in medicine or dentistry can major in the behavioral or natural sciences, and many do major in one of the sciences; however, this is not necessary. The Association of American Medical Colleges and the American Association of Dental Schools recommend that the premedical and predental student should feel free to develop his major area of interest, realiz-
ing that the medical and dental school is more interested in the quality and scope of the work accomplished than in the time spent or the major field chosen. It is possible to major in a nonscience area, carrying the necessary science courses as electives; however, since so much of medicine and dentistry is derived from a scientific basis, the student who majors in a nonscientific field and elects the minimum number of required science courses must excel in them to insure the adequacy of his preparation.

A suggested curriculum in Pre-medicine and Pre-dentistry, offered here, is designed to meet the general entrance requirements of most medical and dental schools and, as well, to provide a broad education in the natural sciences, the social sciences, the humanities, and communication skills.

Those preparing for the study of medicine are advised to complete four years of undergraduate work before entering a medical school, although some medical schools will admit an exceptional student after three years of preparation. Many dental schools will accept the better student after three years of preparation.

PRE-MEDICINE AND PRE-DENTISTRY CURRICULUM

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 101 Prin. of Biology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 101 Prin. of Biology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 112 General Chemistry</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3.3)</td>
</tr>
<tr>
<td>Math 108 Cal. & Lin. Alg.</td>
<td>4 (5.0)</td>
</tr>
<tr>
<td>Zool 102 Prin. of Zoology</td>
<td>2 (2.0)</td>
</tr>
<tr>
<td>Zool 104 Lab. Exer. in Zoology</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 223 Organic Chemistry</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Ch 227 Org. Chemistry Lab.</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Hum 201 Introd. to Humanities</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Literature Requirement*</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Phys 122 Mech. & Wave Phen.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Soc 201 Introd. Sociology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Gen 302 Genetics</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Zool 301 Comp. Vert. Anat.</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Psych 201 Gen. Psychology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Electives</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

*To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
Physical, Mathematical and Biological Sciences

FIVE-YEAR INTEGRATED PROFESSIONAL CURRICULUM IN MEDICINE

Clemson University and the Medical University of South Carolina have established jointly a curriculum in Pre-medicine and Medicine which will permit a student who has successfully completed it to be graduated at the end of five years (60 months) with an M.D. degree from the Medical University and a B.S. degree from Clemson University.

Selection of students to participate in this program is the joint responsibility of Clemson University and the Medical University of South Carolina. Once a student is admitted to the program he continues in it as long as his record of academic achievement meets the minimum requirements as spelled out below.

The admissions process will begin at Clemson. Students who satisfactory meet Clemson's criteria for admission to the program (graduate in the upper 25 percent of his graduating class, and have a predicted grade-point ratio of 2.8 or better in his freshman year, as determined by Clemson University) will be so notified and at the same time will be informed that they must also meet the criteria established by the Medical University for admission to the program. Students will not be considered as having been accepted into this program until they have been notified in writing by both institutions, Clemson University and the Medical University, that they have satisfactorily met the admissions criteria of both institutions. The deadline for applications to the Clemson portion of the program is February 1, and neither nonresident nor transfer students are eligible.

The prescribed curriculum at Clemson University involves two years (24 months) of study. Successful completion of the curriculum at Clemson would include the student's having a cumulative grade-point ratio of at least 3.0, with not less than a grade-point ratio of 2.8 for any one semester. Upon the successful completion of the prescribed curriculum at Clemson University, the student will transfer to the College of Medicine of the Medical University of South Carolina for the completion of the requirements for an M.D. degree, this program to be completed within three years (36 months). Entering and remaining in the first two years (24 months) at Clemson of the proposed five-year program is purely voluntary. The student can withdraw and transfer to another curriculum at any time. He must withdraw if he fails to meet the grade-point ratio requirements.
Clemson University will offer a curriculum for the first two years (24 months) as outlined below. During the initial enrollment period at Clemson, however, a plan of study covering the entire period of enrollment at Clemson will be designed for each student. This plan of study will consider the student's individual capabilities and needs and the results of any advanced placement which he may achieve upon entering Clemson. The Medical University will offer to the students coming from Clemson in this program the opportunity to exempt by special examination certain of their required courses in the following areas: Biochemistry, Biometry, Cell Biology, Genetics, Microbiology, and Physiology.

In summary, the plan consists of a five-year integrated curriculum achieved through (1) the use of summers; (2) the possibility of advanced placement at both Clemson University and the Medical University of South Carolina; and (3) the option of basic science courses in the preprofessional curriculum. The key to this curriculum is flexibility.

CURRICULUM AT CLEMSON UNIVERSITY

1. Advanced placement examinations, with credit in Chemistry, Mathematics, Biology, History and English are offered at Clemson University prior to the student entering the preprofessional curriculum.

2. Core courses required of all those entering the curriculum:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101, 102, 223-227, 224-228</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Biol 101, Zool 301, Micro 305</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Engl 101, 102, 203, 204, 217</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Math 106, 108</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Phys 122, 221-223</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Psych 201</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Soc 201</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Econ 201</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hist 171, 172(3)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>
3. Twenty-one hours, at least nine of which must be concentrated in one of the following areas: at the 200, 300, or 400 level of courses, in addition to those specified in the Core: Chemistry, Economics, English, Fine Arts, Geology, Mathematics, Microbiology, Modern Languages, Philosophy, Physics, Political Science, Psychology, Sociology, Zoology.

4. Students in the curriculum are encouraged to strike a balance between the basic sciences and the humanities/social sciences. A total of 92 credits is required in addition to units earned through advanced placement examinations.

5. The following courses are recommended for those preparing for advanced placement examinations at the Medical University of South Carolina:

Bioch 423, 424; Gen 302, 451; Math 301, or Ex St 301; Micro 411, 412, 414, 415, 416; Zool 458.

FIVE-YEAR INTEGRATED PROFESSIONAL CURRICULUM IN MEDICINE

<table>
<thead>
<tr>
<th>First Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>Ch 101 General Chemistry 4 (3,3)</td>
<td>Ch 112 General Chemistry 4 (3,3)</td>
</tr>
<tr>
<td>Engl 101 English Composition 3 (3,0)</td>
<td>Engl 102 English Composition 3 (3,0)</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var. 4 (5,0)</td>
<td>Math 108 Cal. and Lin. Alg. 4 (5,0)</td>
</tr>
<tr>
<td>Psych 201 Gen. Psychology 3 (3,0)</td>
<td>Soc 201 Introd. Sociology 3 (3,0)</td>
</tr>
<tr>
<td>Zool 102 Prin. of Zoology 2 (2,0)</td>
<td>Zool 301 Comp. Vert. Anat. 3 (3,3)</td>
</tr>
<tr>
<td>Zool 104 Lab. Exer. in Zoology 1 (0,2)</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Summer</td>
</tr>
<tr>
<td>Ch 223 Organic Chemistry 3 (3,0)</td>
<td>Ch 224 Organic Chemistry 3 (3,0)</td>
</tr>
<tr>
<td>Ch 227 Organic Chemistry Lab. 1 (0,3)</td>
<td>Ch 228 Organic Chemistry Lab. 1 (0,3)</td>
</tr>
<tr>
<td>Literature Requirement* 3 (3,0)</td>
<td>Literature Requirement* 3 (3,0)</td>
</tr>
<tr>
<td>Total 17</td>
<td>Total 17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
<th>19</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 201 Prin. of Economics 3 (3,0)</td>
<td>Hist 172 or 173 West. Civilization 3 (3,0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engl 217 Vocabulary Building 3 (3,0)</td>
<td>Phys 221 Therm. & Elec. Phen. 3 (3,0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist 171 or 172 West. Civilization 3 (3,0)</td>
<td>Phys 223 Electron Phys. Lab. 1 (0,3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro 305 Gen. Microbiology 4 (3,3)</td>
<td>Concentration 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys 122 Mech. & Wave Phen. 3 (3,0)</td>
<td>Electives 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective 3</td>
<td>Total 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Optional: (A period in which the student may rest, work, make up deficiencies, or take additional courses.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration 3</td>
<td>92 Total Semester Hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 6</td>
<td>Total 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
PRE-PHARMACY

Pharmacy is a five-year program, the first two years of which can be taken at Clemson. The student who does Pre-pharmacy here will transfer, as a rule, to the School of Pharmacy of the Medical University of South Carolina, where the final three years will be completed and by which institution the degree in Pharmacy will be awarded.

PRE-PHARMACY CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 101 Prin. of Biology</td>
<td>Biology 112 General Chemistry</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 105 General Chemistry</td>
</tr>
<tr>
<td>Eng 101 English Composition</td>
<td>Eng 105 English Composition</td>
</tr>
<tr>
<td>History 171 or 172 West. Civilization</td>
<td>History 172 or 173 West. Civilization</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Zoology 102 Prin. of Zoology</td>
</tr>
<tr>
<td></td>
<td>Zoology 104 Lab. Exer. in Zoology</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

FRESHMAN YEAR

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature Requirement</td>
<td>Literature Requirement</td>
</tr>
<tr>
<td>Sociology 201 Introd. Sociology</td>
<td>Sociology 202 Social Problems</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Electives</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

68 Total Semester Hours

*To be selected from the following: Eng 203, 204, 205, 206, 207, 208.

ZOOLOGY

Zoology is the descriptive and experimental science that investigates all aspects of animal life. Zoology ranges from comprehensive studies by ecologists to intensive studies of the ultra-small by electron microscopists. Knowledge of zoology is necessary to understand the past, control the present, and shape the future.

Zoology majors receive broad classroom, laboratory, and field training in classical and modern zoology, along with the latter's emphasis on physics, chemistry, and mathematics.

Zoology majors planning to enter eventually either: (1) graduate school in Zoology, (2) professional careers in the Health Sciences, (3) graduate school in Bioengineering, or (4) graduate school in Biophysics, Biochemistry, or Biomathematics are advised to select the appropriate specialized option listed in the Zoology curriculum. Zoology majors not planning to enter either the health professions or graduate school in Zoology are advised to select the General Option, whose flexibility permits selection of electives useful in business, government, and other occupations.
ZOOLOGY CURRICULUM WITH OPTIONS

FIRST SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol 101 Principles of Biology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 106 Calc. of One Var.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

15

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 102 Principles of Botany§</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>Bot 104 Lab. Exercise in Botany§</td>
<td>1 (0,2)</td>
</tr>
<tr>
<td>Ch 102 General Chemistry</td>
<td>4 (3,0)</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Elective†</td>
<td>6</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

17

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 223 Organic Chemistry</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ch 227 Organic Chemistry Lab.</td>
<td>3 (0,3)</td>
</tr>
<tr>
<td>Literature Requirement§</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 207 General Physics†</td>
<td>4 (3,2)</td>
</tr>
<tr>
<td>Zool 201 Invertebrate Zoology</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>or Zool 202 Vertebrate Zool.</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

16

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Gen 302 Genetics</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Zool 302 Vertebrate Embryology</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Botany Elective</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

16

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zool 411 Animal Ecology</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Zool 460 General Physiology</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Option and Electives</td>
<td>12</td>
</tr>
</tbody>
</table>

18

OPTIONS:

A. PRE-GRADUATE SCHOOL

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioE 401 Computers for Bioscientists</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Ex St 301 Introductory Statistics</td>
<td>3 (2,2)</td>
</tr>
<tr>
<td>Zool 310 Evolution</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>Zool 470 Animal Ethology</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Zool 491 Special Problems in Zoology</td>
<td>2 (0,6)</td>
</tr>
</tbody>
</table>

11

B. PRE-HEALTH PROFESSIONS

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioE 401 Comp. for Bioscientists</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Ex St 301 Introductory Statistics</td>
<td>3 (2,2)</td>
</tr>
<tr>
<td>Micro 305 General Microbiology</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Zool 310 Comparative Vertebrate Anatomy</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Zool 458 Cell Physiology</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Zool 470 Animal Ethology</td>
<td>3 (2,3)</td>
</tr>
</tbody>
</table>

22

C. PRE-BIOMEDICAL ENGINEERING

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioE 301 Engr. Aspects Biol. Med.</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>Comp Sc 205 Elem. Computer</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 108 Calc. and Lin. Algebra</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Math 206 Cal. of Sel. Variables</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Phys 224 Modern Physics Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Phys 232 General Physics for Physics Majors III</td>
<td>3 (3,0)</td>
</tr>
</tbody>
</table>

17

D. PRE-BIOCHEMISTRY, BIOMATHEMATICS, BIOPHYSICS

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp Sc 205 Elem. Computer</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 108 Cal. and Lin. Algebra</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Math 206 Cal of Sel. Variables</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Phys 224 Modern Physics Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Phys 232 General Physics for Physics Majors III</td>
<td>3 (3,0)</td>
</tr>
</tbody>
</table>

22

E. GENERAL PROGRAM

21

*To be selected from the following: Engl 203, 204, 205, 206, 207, 208.
†A minimum of 9 elective hours must be chosen from course offerings in the Humanities and Social Sciences. A minimum of 21 elective hours must be selected from course offerings of the Department of Zoology.
‡Phys 132, 223, and 231 replace Phys 207 and 208 for students taking options C or D.
§Bot 202 may be taken in lieu of Bot 102 and 104.
DESCRIPTION OF COURSES

This list of courses includes for each course the catalog number, title of course, credit in semester hours, class laboratory hours per week, and the description of the course. In general, courses numbered 100-199 are freshman courses; 200-299, sophomore courses; 300-399, junior courses; and 400-499, senior courses. Courses numbered 600 or above are graduate courses and are open only to students admitted to the Graduate School, except that seniors with exceptional records may be enrolled with special permission. Where courses are offered on a schedule, there is a designation F, S, or SS following the title of each course, indicating whether it is customarily offered in the fall, spring, or summer school.

ACCOUNTING

Professor: C. C. Davis
Associate Professors: F. R. Gray, J. M. Wannamaker
Assistant Professors: R. W. Barron, J. A. Turner
Instructors: B. B. Johnson, C. Skinner

ACCT 201—PRINCIPLES OF ACCOUNTING—3 cr. (3 and 0)
Practice in handling real and nominal accounts, together with an introduction to the use of various types of books of original entry, statements of profit and loss, and balance sheets.

ACCT 202—PRINCIPLES OF ACCOUNTING—3 cr. (3 and 0)
Continuation of Acct 201 with special attention to corporation and partnership accounting with emphasis on adjustment procedures and the analysis of financial statements. Prerequisite: Acct 201.

ACCT 301—INTERMEDIATE ACCOUNTING—3 cr. (3 and 0)
A course in the theory of accountancy designed to follow introductory theory presented in the basic principles courses. Intermediate accounting seeks to broaden the student’s knowledge of financial accounting theory and practice. Prerequisite: Acct 201, 202.

ACCT 302—INTERMEDIATE ACCOUNTING—3 cr. (3 and 0)
A continuation of Accounting 301 with emphasis on managerial accounting. Prerequisite: Acct 201, 202.

ACCT 303—COST ACCOUNTING—3 cr. (3 and 0)
The application of cost analysis to manufacturing and distributing problems. Analysis of the behavior characteristics of business costs and a study of principles involved in standard cost systems. Lectures and problems. Prerequisite: Acct 201, 202.

ACCT 305—INCOME TAXATION—3 cr. (3 and 0)
Interpretation of Federal Income Tax laws, regulations, and court decisions with practice in application of these laws to the returns of individuals, partnerships, and corporations. Prerequisite: Junior standing.
ACCT 403—ACCOUNTING RESEARCH—2 cr. (2 and 0)
A directed research course for those students interested in a career in
accounting. Prerequisite: Acct 301, 302.

ACCT 405—ADVANCED FEDERAL TAXES—3 cr. (3 and 0)
Tax planning and research. Advanced phases of income taxation with
emphasis on special problems applicable to corporations, partnerships, estates
and trusts. Prerequisite: Acct 305.

ACCT 407—ACCOUNTING RESEARCH—1 cr. (1 and 0)
A directed research course for those students interested in a career in
accounting. Prerequisite: Acct 301, 302.

ACCT 410—BUDGETING AND EXECUTIVE CONTROL—3 cr. (3 and 0)
The study and application of selected techniques used in the planning and
control functions of business organizations. Prerequisite: Acct 303.

ACCT 411—ADVANCED ACCOUNTING—3 cr. (3 and 0)
A study of accounting principles and practices emphasizing parent-subsidiary
accounting. Prerequisite: Acct 301, 302.

ACCT 415—AUDITING—3 cr. (3 and 0)
Professional and practical auditing theory. Review of internal controls, audit
procedures, and development of audit programs for various types of businesses;
consideration of auditor’s professional and ethical standards. Prerequisite: Acct 301, 302.

ACCT 420—CPA REVIEW—3 cr. (3 and 0)
Intensive practice in analyzing and solving CPA level accounting problems.
Prerequisite: Acct 411.

ACCT 605—ADVANCED FEDERAL TAXES—3 cr. (3 and 0)
ACCT 610—BUDGETING AND EXECUTIVE CONTROL—3 cr. (3 and 0)
ACCT 611—ADVANCED ACCOUNTING—3 cr. (3 and 0)
ACCT 615—AUDITING—3 cr. (3 and 0)

AEROSPACE STUDIES

Professor: COL. E. N. TYNDALL, Head
Assistant Professors: MAJ. A. C. BROCK, MAJ. R. C. GRANT, MAJ. M. R.
KOLDYKE, JR., CAPT. H. R. HUBBARD, CAPT. R. M. PEAVLER

GENERAL MILITARY EDUCATION PROGRAM

AS 109—WORLD MILITARY SYSTEMS—1 cr. (1 and 1)
An introduction to factors of national power, principles and nature of war;
legislation, organization and function of the Department of Defense; history,
missions, and organization of the United States Air Force. Corps Training
includes drill fundamentals, customs and courtesies of the service.

AS 110—WORLD MILITARY SYSTEMS—1 cr. (1 and 1)
Surveys the history and development of U.S. strategic offensive and de-
defensive forces including their missions, functions and organization; conventional
nuclear weaponry, civil defense, aircraft and missile defense, concepts of
present and projections of future strategic defense requirements. Corps Training includes drill and ceremonies and Air Force career opportunities.

AS 209—World Military Systems—1 cr. (1 and 1)

A continuation of the study of world military forces placing special emphasis on the General Purposes forces of the Air Force, Army and Navy and their role throughout the entire spectrum of warfare. Also included are the roles of the aerospace support forces which enable the combat forces to carry out their primary missions. Corps Training.

AS 210—World Military Systems—1 cr. (1 and 1)

A study of the trends and implications in international affairs highlighting the struggle, the search and the prospects for peace. Special emphasis is given the conflict between democracy and communism, the alliances and collective security agreements of the United States to preserve peace and some of the specific problems and solutions involved in the search for peace. Corps Training.

PROFESSIONAL OFFICER EDUCATION PROGRAM

AS 309—Growth and Development of Aerospace Power—3 cr. (3 and 1)

A comprehensive study of the development of Aerospace Power and the USAF, its doctrine, mission and organization. Course objectives are accomplished through a student-centered program with emphasis on all phases of communicative skills development. Corps Training emphasizes leadership development and Air Force career opportunities.

AS 310—Growth and Development of Aerospace Power—3 cr. (3 and 1)

A study of current and planned space programs. Reviews the characteristics of the solar system and operating principles associated with the major components of space exploration systems. As in AS 309, course objectives are accomplished through a student-centered program with emphasis on all phases of communicative skills development. Corps Training includes drill and ceremonies and the environment of the Air Force officer.

AS 409—Concepts of Air Force Leadership—3 cr. (3 and 1)

AS 410—Concepts of Air Force Management—3 cr. (3 and 1)

A continuation of the study of professionalism with the stress on management principles and functions. An introduction to systems and approaches to decision making and resource control used in the Air Force. Includes participation in problem-situation exercises. The course concludes with instruction to prepare cadets for active duty in the Air Force. Corps Training emphasizes advanced leadership functions.
AGRICULTURAL ECONOMICS

Professors: L. M. Bauknight, Jr., A. B. Carroll, W. J. Lanham, Head;
J. M. Stepp

Associate Professors: B. L. Dillman, J. C. Hite, J. W. Hubbard, J. S. Lytle,
H. C. Spurlock, G. R. von Tungeln

Assistant Professor: R. K. DeHaven

AG EC 202—AGRICULTURAL ECONOMICS—3 cr. (3 and 0) F, S
An analytical survey of the various subdivisions of agricultural economics, to include farm organization, enterprise analysis, land economics, marketing, farm prices, governmental farm policies, and the relation of agriculture to the national and international economy. Prerequisite: Econ 201.

AG EC 302—AGRICULTURAL FIRM MANAGEMENT—3 cr. (2 and 3) F, S
Economic principles underlying the organization and operation of agricultural firms and related business enterprises. Particular emphasis is directed to management aspects of the farm as a production unit. Prerequisite: Ag Ec 202 or Econ 202.

AG EC 305—AGRICULTURAL BUSINESS ANALYSIS—3 cr. (2 and 3) F, S
The principles of financial statement analysis applied to management of farms and other agricultural business firms. Emphasis is placed on enterprise analysis, profitability determination, and other aspects of internal financial operations. Prerequisite: Ag Ec 202 or Econ 202.

AG EC 309—ECONOMICS OF AGRICULTURAL MARKETING—3 cr. (3 and 0) F, S
A general course in marketing agricultural commodities, with particular emphasis upon food products. Efficiency criteria, consumer behavior, market organizations and institutions, and marketing functions are analyzed. Prerequisite: Econ 201.

AG EC 351—ADVERTISING AND MERCHANDISING—3 cr. (3 and 0) F, S
A general introduction to advertising and merchandising theories and some practice with basic techniques. A partial list of subjects covered includes: function of advertising, propriety in advertising, institutions, media, market research, consumer appeals, loss leaders, mass displays, trademarks and brands, writing copy, color, layout, agencies and integrated advertising campaigns. Prerequisite: Junior standing.

AG EC 352—PUBLIC FINANCE—3 cr. (3 and 0) F, S, SS
Principles of financing government, sources of public revenue, objects of public expenditures, problems of fiscal administration, and the application of fiscal policies in stabilizing the national economy.

AG EC 357—NATURAL RESOURCE ECONOMICS—3 cr. (3 and 0) F, S, SS
The principles and problems involved in the use of soil, water, forest, and mineral resources, with special emphasis on economic aspects of alternative methods of resource utilization. Prerequisite: Econ 201.

AG EC 402—ECONOMICS OF AGRICULTURAL PRODUCTION—3 cr. (3 and 0) F
An economic analysis of agricultural production involving (a) the concept of the farm as a firm, (b) principles for decision making, (c) the quantitative nature and use of production and cost functions and their interrelations and
application of these principles to resource allocation on farms and among areas. **Prerequisite:** Permission of instructor.

AG Ec 403—Land Economics—3 cr. (3 and 0)

A study of the characteristics of land and of the physical, legal, social and economic principles and problems relating to the control and use of land resources. **Prerequisite:** Permission of instructor.

AG Ec 405—Seminar—1 cr. (1 and 0) F

An examination of the relation of economics and sociology to specific problems. **Prerequisite:** Major in Agricultural Economics.

AG Ec 406—Seminar—1 cr. (1 and 0) S

A continuation of Ag Ec 405.

AG Ec 451—Agricultural Cooperation—2 cr. (2 and 0) F

The principles and practices of business organization and management governing the successful operation of cooperative business enterprises. Major emphasis is placed upon cooperative selling, processing, purchasing, and service enterprises that serve farm people. **Prerequisite:** Econ 201.

AG Ec 452—Agricultural Policy—3 cr. (3 and 0) F, S

A review of public agricultural policy programs in the United States and a critical examination of current and proposed government policies and programs affecting the agricultural sector of the economy. Included are economic considerations as related to past and current farm price and income problems. **Prerequisite:** Ag Ec 202 or Econ 202.

AG Ec 456—Prices—3 cr. (3 and 0) F, S

A review of the basic theory of price under competitive conditions and various modifications; nature, measurement and causes of daily, seasonal and cyclical price fluctuations; geographical price relationships; nature, function and behavior of futures markets; government price programs. **Prerequisite:** Ag Ec 202 or Econ 202.

AG Ec 460—Agricultural Finance—2 cr. (2 and 0) F, S

The financial needs of agriculture and of the organization, functions and interrelationships of agencies developed to meet these needs. **Prerequisite:** Econ 201.

AG Ec 602—Economics of Agricultural Production—3 cr. (3 and 0)

AG Ec 603—Land Economics—3 cr. (3 and 0)

AG Ec 651—Agricultural Cooperation—2 cr. (2 and 0)

AG Ec 652—Agricultural Policy—3 cr. (3 and 0)

AG Ec 656—Prices—3 cr. (3 and 0)

AG Ec 660—Agricultural Finance—2 cr. (2 and 0)

AG Ec 701—Agribusiness Management Principles—3 cr. (3 and 0)

AG Ec 802—Agricultural Production Economics Problems—3 cr. (3 and 0)

AG Ec 804—Water Resource Policies—3 cr. (3 and 0)

AG Ec 805—Seminar in Marine Resources Management and Policy—3 cr. (3 and 0)
Agricultural Education 235

Ag Ec 806—Economic Development in Agricultural Areas—3 cr. (3 and 0)
Ag Ec 807—Market Structure in Agricultural Industries—3 cr. (3 and 0)
Ag Ec 808—Applied Quantifications in Agricultural Economics—3 cr. (3 and 0)
Ag Ec 814—Contemporary Economic Problems—3 cr. (3 and 0)
Ag Ec 851—Seminar in Research Methodology—1 cr. (1 and 0)
Ag Ec 891—Thesis Research—Credit to be arranged.
Ag Ec 904—Seminar in Resource Economics—3 cr. (3 and 0)
Ag Ec 906—Seminar in Area Economic Development—3 cr. (3 and 0)
Ag Ec 907—Agricultural Marketing Problems—3 cr. (3 and 0)
Ag Ec 991—Doctoral Research—Credit to be arranged.

AGRICULTURAL EDUCATION*

Professors: E. T. Carpenter, Head; J. H. Rodgers
Associate Professors: W. C. Bowen, J. A. Hash

Ag Ed 201—Introduction to Agricultural Education—3 cr. (2 and 2)
Principles of education, development of agricultural education, and an introduction to the formulation of instructional programs for the teaching of agricultural courses.

Ag Ed 401—Methods in Agricultural Education—3 cr. (2 and 2)
Appropriate methods of teaching vocational agriculture in high schools. The course includes procedures for organizing teaching programs, teaching high school students, and directing F.F.A. activities.

Ag Ed 406—Directed Teaching—6 cr. (0 and 18)
Guided participation in the professional responsibilities of a teacher of vocational agriculture including an intensive study of the problems encountered and the competencies developed. A half semester of directed teaching in selected schools is required. Prerequisite: Ag Ed 401, 422.

Ag Ed 422—Introduction to Adult Education—3 cr. (2 and 2)
History and nature of adult education in the United States, with emphasis on adult education for rural people.

Ag Ed 431—Methods in Conservation Education—3 cr. (3 and 0)
A study of various techniques appropriate to teaching conservation. Instruction is applicable to both elementary and high school teachers. (Offered in Summer School only.)

Ag Ed 463—Advanced Conservation Education—3 cr. (3 and 0)
The broader aspects of conservation education. The course includes historical, geographical, and national conservation problems. (Offered in Summer School only.)

* Jointly administered by the College of Education and the College of Agricultural Sciences.
AG Ed 465—Program Development in Agricultural Education—3 cr. (3 and 0)
Each student will determine needs and resources in a specific community and plan a program to meet these needs.

AG Ed 467—Adult Education in Agriculture—3 cr. (2 and 3)
Principles and practices appropriate to the solution of problems encountered in instructional programs for adult farmers.

AG Ed 601—Methods in Agricultural Education—3 cr. (2 and 3)

AG Ed 663—Advanced Conservation Education—3 cr. (3 and 0)

AG Ed 665—Program Development in Agricultural Education—3 cr. (3 and 0)

AG Ed 667—Adult Education in Agriculture—3 cr. (2 and 3)

AG Ed 803—Evaluation in Agricultural Education—3 cr. (2 and 3)

AG Ed 804—Special Problems—3 cr. (2 and 3)

AG Ed 805—Administration and Supervision in Agricultural Education—3 cr. (3 and 0)

AG Ed 815—Advanced Methods of Teaching Farm Mechanics—3 cr. (2 and 3)

AG Ed 820—Teaching Young Farmers—3 cr. (3 and 0)

AG Ed 825—Supervision of Student Teaching—3 cr. (3 and 0)

AG Ed 869—Seminar—1-3 cr. (1-3 and 0)

AG Ed 891—Introduction to Research in Education—3 cr.

Agricultural Engineering*

Professors: T. H. Garner, J. T. Ligon, A.W. Snell, Head; T. V. Wilson
Associate Professors: J. G. Alphin, C. L. Barth, J. T. Craig, C. E. Hood, Jr., J. R. Lambert, E. B. Rogers, Jr., B. K. Webb

AGE 205—Farm Shop—3 cr. (2 and 3) S
Correct methods and underlying reasons in proper use and maintenance of hand and power tools are emphasized. Principal topics include: carpentry, painting and finishing, soldering and sheet metal work, farm concrete, pipefitting and plumbing, and farm and home water supply systems.

AGE 206—Agricultural Mechanization—3 cr. (2 and 3) F, S
The agricultural student is taught to apply physical principles and sound reasoning to the mechanization of modern agricultural production and processing enterprises. Planning efficient operational systems and wise selection of equipment, based on function and economic suitability, are stressed. Prerequisite: Math 103, 104, Phys 207.

AGE 212—Fundamentals of Mechanization—3 cr. (2 and 3) S
Functional analysis of selected agricultural equipment and the economic performance of machine systems; also, the utility and principles of applied

* Jointly administered by the College of Agricultural Sciences and the College of Engineering.
technology and processes essential to providing a background for engineering design, research and development. **Prerequisite:** EG 109.

AgE 221—Soil and Water Resources Engineering I—3 cr. (2 and 3) F

Physical relationships of factors governing rainfall disposition are used as bases for defining the hydrology of agricultural watersheds. The surveying necessary for design and application of resource management measures and structures is taught. **Prerequisite:** Math 106.

AgE 301—Soil and Water Conservation—3 cr. (2 and 3) F

Engineering and agronomic principles are applied to water management in agriculture. Elementary surveying, mathematics, crops and soil fundamentals are embodied into principles and practices of erosion control, drainage, water conservation and irrigation. **Prerequisite:** Math 103, 104.

AgE 352—Farm Power—3 cr. (2 and 3) F, SS, '73 and alternate years.

Farm tractors and stationary power units. Principles of operation, preventive maintenance, adjustment and general repair are emphasized. **Prerequisite:** AgE 206.

AgE 353—Computational Systems—2 cr. (1 and 3)

This course involves the advanced utilization of digital computation for the solution of agricultural engineering problems including simulation of biological systems. Basic operating principles and applications of analog computation will be stressed. **Prerequisite:** Engr 180, Math 208.

AgE 355—Engineering Analysis and Creativity—2 cr. (1 and 3) F

The creative and analytical portions of the engineering design process are developed in a problem approach. Application of physical and mathematical principles, analytical and experimental modeling and intelligent assumption making are stressed. Students are also introduced to the techniques of systems analysis. **Prerequisite:** Math 208, Phys 221.

AgE 360—Farm and Home Utilities—3 cr. (2 and 3)

S, SS, '72 and alternate years.

A course for seniors and graduate students in agriculture curriculums, involving a study of electric and other utilities on the farm and in the home. Selection installation and maintenance of wiring systems, motors and controls, home water systems and sewage disposal systems are emphasized. **Prerequisite:** Junior standing.

AgE 362—Energy Conversion in Agricultural Systems—3 cr. (2 and 3) S, '73 and alternate years.

The energy requirements of agricultural systems with emphasis upon energy conversion methods. Characteristics of various sources of energy will be considered including economic aspects. The present energy conversion mechanisms used in agriculture will be studied and their limitations considered. **Prerequisite:** ME 311.

AgE 416—Agricultural Machinery Design—3 cr. (2 and 3) S

Engineering analysis of machines and basic agricultural operations and systems requiring machine functions. Fundamentals of machine design with applications to agricultural machinery. Velocity and acceleration, analyses, dimension determination, power transmission, and vibrations in machinery are studied. **Prerequisite:** EM 304.
AGE 422—SOIL AND WATER RESOURCES ENGINEERING II—3 cr. (2 and 3) S
Basic soil-water-plant relationships are used to establish criteria for the
analysis and design of facilities and structures for conservation, water control,
drainage and irrigation. Engineering relationships involved in the design of
such facilities are emphasized. Prerequisite: Math 208, EM 320.

AGE 431—AGRICULTURAL STRUCTURES DESIGN—3 cr. (2 and 3)
F, '73 and alternate years.
Analytic and synthetic design of building components, including fastening
devices, as determined by both live and dead loads with emphasis on statically
determinant members and their positions and utilization in frames and trusses.
Major materials considered are wood, steel, and concrete. Corequisite: EM
304.

AGE 442—AGRICULTURAL PROCESS ENGINEERING—3 cr. (2 and 3)
S, '74 and alternate years.
Design of unit operations components used in agricultural processing. Engi-
neering principles and instrumentation as applied to control systems, heat
transfer, materials handling, storage and related subjects are emphasized.
Prerequisite: ME 311, E&CE 308.

AGE 465—ENGINEERING PROPERTIES OF BIOLOGICAL MATERIALS—3 cr.
(2 and 3) S, '73 and alternate years.
The thermal, electrical, mechanical, and chemical characteristics of biological
materials, organisms, and metabolic processes are studied in relationship to
engineering analysis and synthesis. The effects of environmental factors im-
posed by engineering processes are evaluated. Prerequisite: Math 208, EM 304,
Biol 101.

AGE 471—UNDERGRADUATE RESEARCH—1 cr. (0 and 3) F
A course to acquaint senior students in Agricultural Engineering with the
scientific method. Literature investigations, planning and executing of an
experiment are integral parts of the course. Prerequisite: Senior standing in
Agricultural Engineering.

AGE 473—SPECIAL TOPICS IN AGRICULTURAL ENGINEERING—3 cr. (3 and 0)
A comprehensive study of special topics in the field of agricultural engineer-
ing not covered in other courses. Special emphasis will be placed on inde-
pendent pursuit of detailed investigations.

AGE H473—SPECIAL TOPICS IN AGRICULTURAL ENGINEERING—3 cr. (3 and 0)
Honors section of AgE 473; admission by invitation.

AGE 616—AGRICULTURAL MACHINERY DESIGN—3 cr. (2 and 3)

AGE 622—SOIL AND WATER RESOURCES ENGINEERING II—3 cr. (2 and 3)

AGE 631—AGRICULTURAL STRUCTURAL DESIGN—3 cr. (2 and 3)

AGE 642—AGRICULTURAL PROCESS ENGINEERING—3 cr. (2 and 3)

AGE 652—FARM POWER—3 cr. (2 and 3)

AGE 660—FARM AND HOME UTILITIES—3 cr. (2 and 3)

AGE 665—ENGINEERING PROPERTIES OF BIOLOGICAL MATERIALS—3 cr.
(2 and 3)
Agriculture

AgE 801—Special Problems in Agricultural Engineering—3 cr.
(3 and 0)

AgE 806—Instrumentation in Agricultural and Biological Research—3 cr. (2 and 3)

AgE 811—Tillage and Soil Dynamics—3 cr. (3 and 0)

AgE 822—Water Movement in Soils—3 cr. (3 and 0)

AgE 865—Heat and Moisture Transfer in Biological Materials—3 cr.
(3 and 0)

AgE 873—Radiological Health—3 cr. (2 and 3)

AgE 874—Radiological Health Engineering—3 cr. (2 and 3)

AgE 882—Systems Engineering—3 cr. (2 and 3)

AgE 891—Research—Credit to be arranged.

AgE 901—Special Problems in Agricultural Engineering—3 cr.
(3 and 0)

AgE 991—Doctoral Research—Credit to be arranged.

AGRICULTURAL MECHANIZATION

Associate Professors: J. G. Alphin, C. L. Barth, J. T. Craig, C. E. Hood, Jr., J. R. Lambert, E. B. Rogers, Jr., B. K. Webb

AgM 712—Farm Machinery Management—3 cr. (2 and 3)

AgM 733—Analysis of Agristructures—3 cr. (3 and 0)

AgM 781—Special Topics in Agricultural Mechanization—3 cr.
(3 and 0)

AGRICULTURE

Associate Professors: J. B. Cooper, J. C. Hite, M. W. Jutras, B. J. Skelton, G. R. von Tungeln

Assistant Professor: R. K. DeHaven

Agric 101—Introduction to Agriculture—1 cr. (1 and 0) F, S

Guides to effectively study; agricultural sciences; scope of the agricultural industry; agriculture of South Carolina and the United States; organization and function of the land-grant institution and other agencies serving agriculture; career opportunities.

Agric 201—Introduction to Animal Industries—3 cr. (2 and 3) F, S

Fundamental and descriptive aspects of the animal industries as applied biology and major segments of food production and distribution systems. The subject matter will be presented by Animal Science, Dairy Science, and Poultry Science Departments.
Agric 202—Introduction to Plant Sciences—3 cr. (2 and 3) F, S
A fundamental course in plant sciences, including Agronomic and Horticultural crops of the major agricultural areas of the world, and emphasizing the crops of South Carolina. Included in the laboratory exercises are applications of the basic biological concepts of morphology, heredity, physiology and ecology to the production of food, fiber and ornamentals for an expanding population. The laboratory exercises are mostly self-tutorial; the students take the labs on their own, any time during the semester at their own discretion.

Agric 301—International Agriculture—3 cr. (3 and 0) F
This course is designed to acquaint the student with current international agriculture. Topics covered include: international agricultural production and consumption patterns, stage of agricultural and industrial development in various countries of the world, current and projected future production-consumption-population balance, world trade patterns in agricultural products, world agricultural marketing problems (including tariffs, balance of trade, import quotas, and common markets). Also included are allied subjects such as population trends and agricultural mechanization.

Agric 401—International Agriculture Seminar—1 cr. (1 and 0) S
This seminar will be directed toward current topics in international agriculture. Seminar speakers will include invited guests from such agencies as the Foreign Agricultural Service, the Food and Agriculture Organization, The Ford Foundation, the Rockefeller Foundation, and the Agency for International Development. Other speakers will include staff members in the College of Agriculture and Biological Sciences that have had foreign assignments in their professional fields. Some sessions will be devoted specifically to employment opportunities in international agriculture.

Agronomy—Crops and Soils

Associate Professors: E. B. Eskew, B. J. Gossett, W. D. Graham, M. W. Jutras, K. S. LaFleur, J. R. Woodruff
Assistant Professor: J. D. Maxwell

Agron 202—Soils—3 cr. (2 and 2) F, S
A basic foundation in soil science is presented with emphasis on the chemical and physical properties of soil, the activities of the living soil organisms, and the origin and classification of soils. Prerequisite: Ch 101, 102, or a geology sequence including Geol 201, or permission of instructor.

Agron 301—Fertilizers—3 cr. (3 and 0) F
Mining, manufacture, and properties of minerals and chemicals that are sources of elements essential for plant growth. How these elements are taken by roots from the soil and converted to plants for food, fiber, shelter, and ornamentals.

Agron 308—Soil and Plant Analysis—3 cr. (1 and 6) S
A laboratory study of the physical and chemical properties of soils and methods of their determination. The relation of these properties to the potential fertility and management of soils is emphasized. Methods of plant analysis
and the use of plant analysis data as a diagnostic tool in plant nutrition is also studied. **Prerequisite:** Agron 202.

Agron 320—**Forage and Pasture Crops**—3 cr. (3 and 0) S

The characteristics, establishment, utilization and maintenance of crops for hay, silage, and pasture. Crops valuable in South Carolina are emphasized. **Prerequisite:** Agric 202, Agron 202, or consent of instructor.

Agron 322—**Forage Crops Laboratory**—1 cr. (0 and 2) S

Identification, rating, and management of the important forage and pasture species of the Southeast. Research methodology is emphasized and a research problem required. **Prerequisite:** Agron 202.

Agron 402—**Land Pollution Control**—3 cr. (3 and 0)

Application of the principles of soil science to the use of land for the purpose of disposing of an ever increasing quantity of pollutants and wastes from an ever increasing population of animals, plants, and man. The practices now in use and their limitations will be discussed with regard especially to the maximum capacity of land to consume wastes and its ability to rejuvenate itself. A mission-oriented course to emphasize the quality of land and how it influences the lives of us all. **Prerequisite:** Agron 202, 403, or permission of instructor.

Agron 403—**Soil Genesis and Classification**—2 cr. (1 and 3) F

Theoretical and practical phases of soil survey, formation and classification in relation to land usage and plant adaptability. **Prerequisite:** Agron 202 or consent of instructor.

Agron 405—**Plant Breeding**—3 cr. (2 and 2) S

The application of genetic principles to the development of improved crop plants. Principal topics include the genetic and cytogenetic basis of plant breeding, mode of reproduction, techniques in selfing and crossing, methods of breeding, inheritance in the major crops, and biometrical methods. **Prerequisite:** Gen 302.

Agron 407—**Principles of Weed Control**—3 cr. (2 and 2) F

Weeds, their introduction, ecology, methods of reproduction, dissemination, and control; chemistry and mode of action of herbicides, equipment and techniques of application; a characterization of the common weeds of the Southeast. **Prerequisite:** Agric 202, Agron 202, or consent of instructor.

Agron 410—**Cotton and Other Fiber Crops**—2 cr. (2 and 0) S, '73 and alternate years.

History, morphology, physiology, and fundamental principles and practices of production, harvesting, marketing, processing, and utilization of cotton and certain other fiber crops. Emphasis will be placed on the effect of environmental and production factors as they affect fiber quality and subsequent utilization. **Prerequisite:** Agric 202, Agron 202, or consent of instructor.

Agron 411—**Grain Crops**—2 cr. (2 and 0) F, '72 and alternate years.

A fundamental study involving principles of production, harvesting, processing, marketing, and utilization of soybeans, corn, sorghum, and the small grains. Emphasis will be placed on factors affecting grain quality as related to utilization of grain. **Prerequisite:** Agric 202, Agron 202, or consent of instructor.
Agron 412—Tobacco and Special Use Crops—2 cr. (2 and 0) S, '74 and alternate years.
Principles involved in the production, harvesting, curing, grading, and marketing of high quality flue-cured tobacco. Brief coverage of special use crops, such as peanuts, sugar cane, etc. Prerequisite: Agric 202, Agron 202, or consent of instructor.

Agron 452—Soil Fertility and Management—2 cr. (2 and 0) S
Principles of crop rotations, soil fertility, soil management, and other factors necessary for the practical utilization of soils. Prerequisite: Agron 202 or consent of instructor.

Agron 455—Seminar—1 cr. (1 and 0) F
Student presentation of current agronomic topics of special interest in crop production appearing in recent scientific journals and other publications.

Agron 456—Seminar—1 cr. (1 and 0) S
Student presentation of current topics of special interest in the field of soil science appearing in recent scientific journals and other publications.

Agron 601—Fertilizers—3 cr. (3 and 0)

Agron 602—Land Pollution Control—3 cr. (3 and 0)

Agron 603—Soil Genesis and Classification—2 cr. (1 and 3)

Agron 605—Plant Breeding—3 cr. (2 and 2)

Agron 607—Principles of Weed Control—3 cr. (2 and 2)

Agron 608—Soil and Plant Analysis—3 cr. (1 and 6)

Agron 610—Cotton and Other Fiber Crops—2 cr. (2 and 0)

Agron 611—Grain Crops—2 cr. (2 and 0)

Agron 612—Tobacco and Special Use Crops—2 cr. (2 and 0)

Agron 620—Forage and Pasture Crops—3 cr. (3 and 0)

Agron 622—Forage Crops Laboratory—1 cr. (0 and 2)

Agron 652—Soil Fertility and Management—2 cr. (2 and 0)

Agron 655—Seminar—1 cr. (1 and 0)

Agron 656—Seminar—1 cr. (1 and 0)

Agron 801—Crop Physiology and Nutrition—3 cr. (3 and 0)

Agron 802—Pedology and Soil Classification—3 cr. (2 and 3)

Agron 804—Theory and Methods of Plant Breeding—3 cr. (3 and 0)

Agron 805—Soil Fertility—3 cr. (3 and 0)

Agron 806—Special Problems—Credit to be arranged.

Agron 807—Soil Physics—3 cr. (2 and 3)

Agron 808—Soil Chemistry—3 cr. (2 and 3)

Agron 812—Crop Ecology and Land Use—3 cr. (3 and 0)

Agron 820—Pesticide Residues in the Environment—3 cr. (3 and 0)

Agron 825—Seminar—1 cr. (1 and 0)
Agron 891—Research—Credit to be arranged.
Agron 991—Doctoral Research—Credit to be arranged.

ANIMAL PHYSIOLOGY

Assistant Professors: W. E. Bachop, C. A. Gauthreaux, Ruth L. Hays, J. C. McConnell, Jr., R. Noblet

(See courses listed under Animal Science, Dairy Science, Entomology, Poultry Science, and Zoology)

AN Ph 801—Electron Microscopy of Animal and Plant Tissues—3 cr. (1 and 6)
AN Ph 802—Digestive and Excretory Physiology—3 cr. (2 and 3)
AN Ph 803—Cardiovascular and Respiratory Physiology—4 cr. (3 and 3)
AN Ph 804—Muscle and Nerve Physiology—4 cr. (3 and 3)
AN Ph 805—Pharmacology—3 cr. (2 and 3)
AN Ph 806—Experimental Animal Physiology—3 cr. (1 and 6)
AN Ph 807—Special Problems in Animal Physiology—1-3 cr.
AN Ph 808—Mammalian and Avian Endocrinology—3 cr. (3 and 0)
AN Ph 851—Animal Physiology Seminar I—1 cr. (1 and 0)
AN Ph 852—Animal Physiology Seminar II—1 cr. (1 and 0)
AN Ph 991—Doctoral Research—Credit to be arranged.

ANIMAL SCIENCE

Professors: W. C. Godley, J. R. Hill, Jr., R. F. Wheeler, Head

Associate Professors: R. L. Edwards, G. C. Skelley

Assistant Professors: D. L. Handlin, J. C. McConnell, Jr.

AN Sc 201—Introduction to Animal Science—2 cr. (2 and 0)
This course deals with basic principles concerning the breeding, feeding, management and marketing of beef cattle, swine, sheep, and horses.

AN Sc 203—Introduction to Animal Science Laboratory—1 cr. (0 and 3)
A course designed to demonstrate the basic elements of livestock breeding, feeding and management. Beef cattle, swine, sheep, and horses will be used. Evaluation of slaughter animals and carcasses is included.

AN Sc 301—Feeds and Feeding—3 cr. (3 and 0) F, S
Feed nutrients, digestion, metabolism of feed stuffs, nutritive ratios, feeding standards, and the balancing of rations. Prerequisite: An Sc 201, 203 or equivalent, and Ch 201 or consent of instructor.
AN SC 303—FEEDS AND FEEDING LABORATORY—1 cr. (0 and 3) S
Practical work in mixing and balancing rations and identifying feed stuffs.
Prerequisite: An Sc 201, 203 or equivalent, and Ch 201, or consent of instructor.

AN SC 305—MEAT GRADING AND SELECTION—2 cr. (1 and 3) F, '72 and alternate years.
Classification, grading and selection of beef, lamb and pork carcasses, and wholesale cuts. Factors influencing quality and value. Students enrolled in this course are eligible to compete in Intercollegiate Meat Judging Contests.
Prerequisite: An Sc 201, 203.

AN SC 306—LIVESTOCK SELECTION AND EVALUATION—2 cr. (1 and 3) S
Selection, breed characteristics and grading of beef cattle, sheep and swine. Students enrolled in this course are eligible to compete in the Southeastern Intercollegiate Livestock Judging Contest.
Prerequisite: An Sc 201, 203.

AN SC 351—MEAT IDENTIFICATION AND UTILIZATION—1 cr. (0 and 3)
Selection of meat and identification of cuts, processing techniques, nutritive value, meat preservation, research techniques, muscles, and bones.

AN SC 353—MEATS—2 cr. (2 and 0) F
The chemical and physical composition of meat, meat hygiene; nutritive value; curing; freezing; and meat by-products.
Prerequisite: An Sc 201, 203.

AN SC 355—MEATS LABORATORY—1 cr. (0 and 3) F
The selection and grading of meat animals and carcasses. Practical work in slaughtering of animals and in the cutting, curing, and freezing of meats. Emphasis is placed on the identification of wholesale and retail cuts.
Prerequisite: An Sc 201, 203.

AN SC 401—BEEF PRODUCTION—3 cr. (3 and 0) F
Breeding, feeding, management, and grading of beef cattle. Emphasis is placed on year-round grazing.
Prerequisite: An Sc 301 or consent of instructor.

AN SC 403—BEEF PRODUCTION LABORATORY—1 cr. (0 and 3) F
Practical application of beef production practices.
Prerequisite: An Sc 301 or consent of instructor.

AN SC 405—ADVANCED LIVESTOCK SELECTION AND EVALUATION—1 cr.
(0 and 3) F, '73 and alternate years.
A continuation of An Sc 306 for students who are interested in participating in judging contests or in receiving special training in the selection of breeding cattle, sheep, and swine. Judging and grading of market classes are considered.
Prerequisite: An Sc 306.

AN SC 406—SEMINAR—2 cr. (2 and 0) S
Special problems in animal production. Each student is given a subject on which he makes weekly reports before a seminar group.
Prerequisite: An Sc 301 or consent of instructor.

AN SC 407—HORSE AND SHEEP PRODUCTION—2 cr. (2 and 0) F, '72 and alternate years.
The breeding, feeding, and care of horses and sheep; the shearing and marketing of sheep and wool; the adaptability of breeds; and parasite and disease control.
Prerequisite: An Sc 301 or consent of instructor.
AN Sc 408—Pork Production—3 cr. (3 and 0) S
Feeding, breeding, management, and marketing of hogs. Emphasis is placed on winter and summer forages, protein supplements, mineral mixtures, and sanitation practices. In laboratory grading, selection, feeding, management and care of swine is given attention. Prerequisite: An Sc 301 or consent of instructor.

AN Sc 409—Horse and Sheep Production Laboratory—1 cr. (0 and 3) F, '72 and alternate years.
Horse and sheep production practices. Prerequisite: An Sc 301 or consent of instructor.

AN Sc 410—Pork Production Laboratory—1 cr. (0 and 3) S
Practical application of swine production practices. Prerequisite: An Sc 301 or consent of instructor.

AN Sc 452—Animal Breeding—3 cr. (3 and 0) S
The fundamental principles relating to the breeding and improvement of livestock including variation, heredity, selection, linebreeding, inbreeding, cross-breeding, and other related subjects. Prerequisite: Gen 302.

AN Sc 601—Beef Production—3 cr. (3 and 0)
AN Sc 603—Beef Production Laboratory—1 cr. (0 and 3)
AN Sc 608—Pork Production—3 cr. (3 and 0)
AN Sc 610—Pork Production Laboratory—1 cr. (0 and 3)
AN Sc 652—Animal Breeding—3 cr. (3 and 0)
AN Sc 802—Topical Problems—1-3 cr. (1-3 and 0)
AN Sc 803—Meat Technology—3 cr. (3 and 0)
AN Sc 804—Methods in Animal Breeding—3 cr. (3 and 0)
AN Sc 805—Nutrition of Meat Animals—3 cr. (3 and 0)
AN Sc 891—Research—Credit to be arranged.

ART AND ARCHITECTURAL HISTORY

Professors: H. N. Cooledge, Jr., V. S. Hodges, R. H. Hunter
Associate Professors: J. T. Acorn, R. D. England, T. E. McPeak, Head;
I. G. Regnier,* S. Wang
Instructor: T. G. Turner

AAH 215—Architectural History I—3 cr. (3 and 0)
Total Environment: its demands and restrictions, as evidenced by the building and planning of men from ancient times to the present.

AAH 216—Architectural History II—3 cr. (3 and 0)
Continuation of AAH 215.

AAH 302—Art and Architecture Tour—3 cr. (3 and 0)
A tour of selected cities, either foreign or American, will be organized periodically primarily in a Summer Session. The purpose of the tour is to provide students with firsthand experience with the dynamic qualities of

* On leave.
original works of painting and sculpture and especially the spatial qualities of architecture and the relationships of great works of architecture to their environment. The tour will be accompanied by lectures and will require examinations and/or reports.

AAH 303—The Evolution of the Visual Arts—3 cr. (3 and 0)
A consideration of man’s necessity for and development of the Visual Arts with particular attention to the environmental factors in society which demand art as a medium of communication. Illustrated lectures and collateral reading. Not open, except by special permission, to students in the College of Architecture. Preference to students in Education. Prerequisite: Sophomore standing.

AAH 304—The Evolution of the Environmental Arts—3 cr. (3 and 0)
A consideration of man’s necessity for and development of the Environmental Arts (Architecture, Landscape Architecture, City and Regional Planning) with particular attention to the total environment of man and its demands and restrictions upon the architect and planner. Illustrated lectures and collateral reading. Not open, except by special permission, to students in the College of Architecture. Preference to students in Education. Prerequisite: AAH 303 or permission of instructor.

AAH 315—Architectural History III—3 cr. (3 and 0)
Cultural Focus: its problems and expression, as evidenced by selected examples of architecture and planning from ancient times to the present, considered in depth.

AAH 316—Architectural History IV—3 cr. (3 and 0)
Continuation of AAH 315.

AAH 411—Directed Research in Art History—3 cr. (3 and 0)
Comprehensive studies and research of special topics not covered in other courses. Emphasis will be placed on field studies, research activities, and current developments in art history.

AAH 412—Directed Research in Art History—3 cr. (3 and 0)
Continuation of AAH 411.

AAH 413—Twentieth Century Visual Arts—3 cr. (3 and 0)
A seminar course dealing with twentieth century visual art forms in relation to the factors that have influenced the artist and the consequence of his production on society.

AAH 417—Studies in the Art and Architecture of the Ancient World I—3 cr. (3 and 0)
A consideration of the visual arts and architectural monuments of the Ancient World (Egypt, the Near East, Greece, and Rome), with a study in depth of selected examples from the period.

AAH 418—Studies in the Art and Architecture of the Ancient World II—3 cr. (3 and 0)
A consideration of the visual arts and architectural monuments of the Ancient World (Egypt, the Near East, Greece, and Rome), with a study in depth of selected examples from the period.
AAH 419—STUDIES IN THE ART AND ARCHITECTURE OF THE EARLY MIDDLE AGES I—3 cr. (3 and 0)

A consideration of the visual arts and architectural monuments of the Early Middle Ages (Byzantium and Western Europe from the 4th through 12th centuries), with a study in depth of selected examples from the period.

AAH 420—STUDIES IN THE ART AND ARCHITECTURE OF THE EARLY MIDDLE AGES II—3 cr. (3 and 0)

A consideration of the visual arts and architectural monuments of the Early Middle Ages (Byzantium and Western Europe from the 4th through 12th centuries), with a study in depth of selected examples from the period.

AAH 421—STUDIES IN THE ART AND ARCHITECTURE OF THE LATE MIDDLE AGES I—3 cr. (3 and 0)

A consideration of the visual arts and architectural monuments of the Late Middle Ages (Western Europe from the 12th to the 15th centuries), with a study in depth of selected examples from the period.

AAH 422—STUDIES IN THE ART AND ARCHITECTURE OF THE LATE MIDDLE AGES II—3 cr. (3 and 0)

A consideration of the visual arts and architectural monuments of the Late Middle Ages (Western Europe from the 12th to the 15th centuries), with a study in depth of selected examples from the period.

AAH 423—STUDIES IN THE ART AND ARCHITECTURE OF THE RENAISSANCE I—3 cr. (3 and 0)

A consideration of the visual arts and architectural monuments of the Renaissance (Western Europe from the 15th through the 18th centuries), with a study in depth of selected examples from the period.

AAH 424—STUDIES IN THE ART AND ARCHITECTURE OF THE RENAISSANCE II—3 cr. (3 and 0)

A consideration of the visual arts and architectural monuments of the Renaissance (Western Europe from the 15th through the 18th centuries), with a study in depth of selected examples from the period.

AAH 425—STUDIES IN THE ART AND ARCHITECTURE OF THE TECHNOLOGICAL REVOLUTION I—3 cr. (3 and 0)

A consideration of the visual arts and architectural monuments of the Technological Revolution (Western Europe and America from 1685 to 1935), with a study in depth of selected examples from the period.

AAH 426—STUDIES IN THE ART AND ARCHITECTURE OF THE TECHNOLOGICAL REVOLUTION II—3 cr. (3 and 0)

A consideration of the visual arts and architectural monuments of the Technological Revolution (Western Europe and America from 1685 to 1935), with a study in depth of selected examples from the period.

AAH 427—STUDIES IN THE DEVELOPMENT OF ARCHITECTURAL TECHNOLOGY I—3 cr. (3 and 0)

A consideration of the development of architectural technology from ancient through contemporary times with a study in depth of selected examples from each period.
AAH 428—Studies in the Development of Architectural Technology II—3 cr. (3 and 0)
A consideration of the development of architectural technology from ancient through contemporary times with a study in depth of selected examples from each period.

AAH 429—Studies in the Art and Architecture of India and the Far East I—3 cr. (3 and 0)
A consideration of the visual arts and architectural monuments of India and the Far East, with a study in depth of selected examples from the period.

AAH 430—Studies in the Art and Architecture of India and the Far East II—3 cr. (3 and 0)
A consideration of the visual arts and architectural monuments of India and the Far East, with a study in depth of selected examples from the period.

AAH 611—Directed Research in Art History—3 cr. (3 and 0)
AAH 612—Directed Research in Art History—3 cr. (3 and 0)
AAH 613—Twentieth Century Visual Arts—3 cr. (3 and 0)
AAH 815—History Seminar I—3 cr. (3 and 0)
AAH 816—History Seminar II—3 cr. (3 and 0)

ARCHITECTURE

Professors: H. E. McClure, C. C. Means, J. L. Young

Assistant Professors: J. M. Clement, J. E. Dalton, F. K. Mooney

Lecturer: K. R. Craig

Visiting Associate Professor: G. A. Gerster

Arch 101—Architectural Analysis—3 cr. (1 and 6)
An introduction to the elements of architecture with lectures, demonstrations, and limited studio exercises conducted by representative faculty of the major study areas of the College of Architecture.

Arch 102—Architectural Analysis—3 cr. (1 and 6)
Continuation of Arch 101.

Arch 253—Architectural Design I—5 cr. (0 and 15)
Studio work with adjunct demonstrations and lectures concerned with basic architectural design problems. Prerequisite: Arch 102 or permission of instructor.

Arch 254—Architectural Design II—5 cr. (0 and 15)
Continuation of Arch 253.

Arch 331—Architectural Applications of Computer Science—2 cr. (2 and 0)
A two-semester course sequence, including computer theory and programming. Architectural applications of the computer as a resource will be studied;

* On leave.
including use in problem solving in functional relationships of space, materials performance specifications, structural design and graphic usage.

ARCH 332—ARCHITECTURAL APPLICATIONS OF COMPUTER SCIENCE—2 cr. (2 and 0)
A continuation of Arch 331. **Prerequisite:** Arch 331.

ARCH 353—ARCHITECTURAL DESIGN III—5 cr. (0 and 15)
Studio work with adjunct demonstrations and lectures concerned with intermediate architectural design problems. **Prerequisite:** Arch 254.

ARCH 354—ARCHITECTURAL DESIGN IV—5 cr. (0 and 15)
Continuation of Arch 353.

ARCH 403—SEMINAR IN THE ANALYSIS AND CRITICISM OF ARCHITECTURAL AND TOWN BUILDING WORKS—3 cr. (3 and 0)
A seminar in the analysis and criticism of architectural and town building works. The course sequence will include historic and contemporary examples, literary searches, field trips, essays, and oral reports. **Prerequisite:** Fourth year design standing or permission of instructor.

ARCH 415—ARCHITECTURAL HISTORY III—3 cr. (3 and 0)
The architectural history of Western Europe and the Americas from 1453 to 1775, with particular attention to the Renaissance, Baroque, and Revivalist schools. **Prerequisite:** Arch 316.

ARCH 416—ARCHITECTURAL HISTORY IV—3 cr. (3 and 0)
The architectural history of Western Europe and the Americas from 1775 to 1915 with particular attention to the architecture of the Industrial Revolution and the development of the academies. **Prerequisite:** Arch 415.

ARCH 421—ARCHITECTURAL SEMINAR—2 cr. (2 and 0)
A seminar dealing with pertinent topics related to environmental and technological considerations in architecture and the building industry. Conducted by representative faculty of the College of Architecture. **Prerequisite:** Senior standing or permission of instructor.

ARCH 422—ARCHITECTURAL SEMINAR—2 cr. (2 and 0)
Continuation of Arch 421.

ARCH 453—ARCHITECTURAL DESIGN V—5 cr. (0 and 15)
Studio work with adjunct demonstrations and lectures concerned with advanced architectural design problems. **Prerequisite:** Arch 354.

ARCH 454—ARCHITECTURAL DESIGN VI—5 cr. (0 and 15)
Continuation of Arch 453.

ARCH 475—MECHANICAL PLANT—2 cr. (2 and 0)
The water supply, plumbing, heating and ventilating systems of present-day buildings.

ARCH 476—MECHANICAL PLANT—2 cr. (2 and 0)
Air-conditioning, electrical systems, lighting, mechanical transportation and acoustics as applied to contemporary buildings.
Arch 481—Architectural Office Practice—2 cr. (2 and 0)
General consideration of architectural office procedure. Study of the professional relationship of the architect to client and contractor, including problems of ethics, law, and business.

Arch 482—Architectural Office Practice—2 cr. (2 and 0)
A continuation of Arch 481.

Arch 490—Directed Studies—1-5 cr.
Comprehensive studies and research of special topics not covered in other courses. Emphasis will be placed on field studies, research activities, and current developments in architecture.

Arch 603—Seminar in the Analysis and Criticism of Architectural and Town Building Works—3 cr. (3 and 0)

Arch 675—Mechanical Plant—2 cr. (2 and 0)
Arch 676—Mechanical Plant—2 cr. (2 and 0)

Arch 681—Architectural Office Practice—2 cr. (2 and 0)
Arch 682—Architectural Office Practice—2 cr. (2 and 0)

Arch 853—Graduate Architectural Design—8 cr. (3 and 15)
Arch 854—Graduate Architectural Design—8 cr. (3 and 15)

Arch 855—Thesis Research—2 cr. (0 and 6)
Arch 857—Graduate Architectural Design—10 cr. (4 and 18)

Arch 858—Architectural Thesis—17 cr. (5 and 36)
Arch 861—Economic Seminars—3 cr. (3 and 0)

Arch 890—Directed Studies—1-5 cr.
Arch 891—Architectural Structural Seminar—2 cr. (2 and 0)
Arch 892—Architectural Structural Seminar—2 cr. (2 and 0)
Arch 893—Architectural Structures Seminar—2 cr. (2 and 0)

ASTRONOMY

Associate Professor: Beverly B. Bookmyer
Assistant Professor: T. F. Collins

Astr 205—Descriptive Astronomy—3 cr. (3 and 0)
An elementary survey of astronomy for students not majoring in physical science, mathematics or engineering. A brief history, the solar-planetary system, star clusters, stellar evolution and the Milky Way Galaxy are discussed in a phenomenological rather than technical manner. Planetarium visits will be used to supplement the text.

Astr 206—Descriptive Astronomy Laboratory—1 cr. (0 and 2)
An introduction to lunar, stellar and planetary observing to acquaint the student with the various celestial objects. Laboratory exercises and planetarium visits will be used to supplement the lecture course. Prerequisite: Registration in Astr 205.
Astr 301—General Astronomy—3 cr. (3 and 0)
A study of the astronomical universe for physical science, mathematics or engineering majors. The solar system and celestial coordinates will be emphasized. Planetarium visits and night observing sessions will supplement the text. Prerequisite: One year of college physics.

Astr 302—General Astronomy—3 cr. (3 and 0)
A continuation of Astr 301 but with emphasis on stellar and galactic astronomy and cosmology. Prerequisite: Astr 301.

Astr 404—Astrodynamics—3 cr. (3 and 0)
Astronomical coordinate systems, orbit determinations, multiple body problems, perturbations, nongravitational and relativistic effects and observational theory. Special attention to problems of artificial satellites. Prerequisite: Phys 321.

Astr 604—Astrodynamics—3 cr. (3 and 0)

Biochemistry
Associate Professors: D. M. Henricks, D. E. Turk, J. M. Shively, Head
Assistant Professors: J. J. Jen, J. K. Zimmermann

Bioch 210—Elementary Biochemistry—4 cr. (3 and 3)
A discussion of the kinds of compounds found in living organisms, their biochemical reactions and significance. The laboratory work parallels classroom study. Prerequisite: Ch 102.

Bioch 301—Molecular Biology—3 cr. (3 and 0) F
An introduction to the nature, production, and replication of biological structure at the molecular level, and its relation to function. Prerequisite: Organic chemistry.

Bioch 406—Physiological Chemistry—4 cr. (3 and 3)
The chemical basis of the mammalian physiological processes of muscle contraction, nerve function, respiration, kidney function, and blood homeostasis is studied. Composition of specialized tissue such as muscle, nerve, blood and bone, and regulation of water, electrolytes and acid-base balance is discussed. This course is oriented toward the student who needs an introduction to certain aspects of mammalian biochemistry to more fully understand a related discipline. Prerequisite: Bioch 210 or organic chemistry.

Bioch 423—Principles of Biochemistry—3 cr. (3 and 0)
The study of the organic chemistry of amino acids, monosaccharides, fatty acids, purines, pyrimidines and associated compounds leads to a fuller understanding of the chemical properties of proteins, carbohydrates, lipids, and nucleic acids that made them so important in biological processes. Relationships between the structure and function of these molecules and the modern techniques used to establish them are stressed. Prerequisite: Ch 224 or equivalent.

Bioch 424—Principles of Biochemistry—3 cr. (3 and 0)
A continuation of Bioch 423.
252 Description of Courses

BioCh 425—General Biochemistry Laboratory—1 cr. (0 and 3)
Experiments selected to illustrate current methods used in biochemical research.

BioCh 426—General Biochemistry Laboratory—1 cr. (0 and 3)
A continuation of Bioch 425.

BioCh 491—Special Problems in Biochemistry—1-3 cr. (0 and 3-9) SS
Orientation, i.e., experimental planning, execution, and reporting in biochemical research. Prerequisite: Senior standing.

BioCh 606—Physiological Chemistry—4 cr. (3 and 3)

BioCh 623—Principles of Biochemistry—3 cr. (3 and 0)

BioCh 624—Principles of Biochemistry—3 cr. (3 and 0)

BioCh 625—General Biochemistry Laboratory—1 cr. (0 and 3)

BioCh 626—General Biochemistry Laboratory—1 cr. (0 and 3)

BioCh 810—Advanced Biochemical Techniques—3 cr. (1 and 6)

BioCh 815—Lipids—2 cr. (2 and 0)

BioCh 817—Chemistry and Metabolism of Hormones—2 cr. (2 and 0)

BioCh 819—Intermediary Metabolism—3 cr. (3 and 0)

BioCh 820—Nucleic Acids—2 cr. (2 and 0)

BioCh 821—Proteins—2 cr. (2 and 0)

BioCh 822—Enzymes—3 cr. (3 and 0)

BioCh 823—Carbohydrates—2 cr. (2 and 0)

BioCh 831—Physical Biochemistry—3 cr. (3 and 0)

BioCh 851—Biochemistry Seminar—1 cr. (1 and 0)

BioCh 852—Biochemistry Seminar—1 cr. (1 and 0)

BioCh 871—Advanced Topics—1-3 cr. (1-3 and 0)

BioCh 891—Research—Credit to be arranged.

BIOENGINEERING

Associate Professors: W. E. Castro, F. W. Cooke, M. J. Eitel, B. E. Gilliland, S. F. Hulbert, Program Coordinator; J. S. Wolf, M. L. Wolla

Visiting Professor: H. Metzger

BioE 301—Engineering Aspects of Biology and Medicine—2 cr. (2 and 0)
The relationships of various branches of engineering to biology and medicine. Structural engineering fluid flow, and mass transfer in living systems.
Artificial organs, biomaterials, implants, instrumentation, microbial systems, and other engineering challenges are discussed.

BioE 302—BIOMATERIALS—2 cr. (2 and 0)

Engineering testing and classification of biomaterials (stress, strain, viscosity, impact resistance, ductility, corrosion resistance, wear resistance); prostheses; artificial organs; effect of body environment on synthetic materials; methods for designing new materials. *Prerequisite:* BioE 301.

BioE 305—SURVEY OF MICROBIAL PROCESS ENGINEERING—2 cr. (2 and 0)

The importance of microbial processes to ecology, pollution, industry, and inexpensive foods. Descriptions of large-scale processes. Prospects for unconventional protein sources. Biochemical engineering, elementary process design, mass transfer problems, simple computer models, economic significance, and environmental consequences. *Prerequisite:* BioE 301.

BioE 401—COMPUTERS FOR BIOSCIENTISTS—1 cr. (1 and 0)

Analog and digital simulation of biochemical and biological processes. Systems approaches, dynamic analysis, interactions between laboratory research and computer models. *Prerequisite:* One semester of calculus or permission of instructor.

BioE 460—BIO-PROCESS DEVELOPMENT—2 cr. (1 and 3)

Theory and practice process development for biological operations such as vaccine production, fermentation, microbial conversions, and product isolation. *Prerequisite:* One semester of organic chemistry.

BioE 601—COMPUTERS FOR BIOSCIENTISTS—1 cr. (1 and 0)

BioE 800—SEMINAR IN BIOENGINEERING—1 cr. (1 and 0)

BioE 801—BIOMATERIALS—3 cr. (3 and 0)

BioE 802—RESEARCH TECHNIQUES IN BIOMATERIALS EVALUATION—3 cr. (1 and 6)

BioE 803—POLYMERS AS BIOMATERIALS—3 cr. (3 and 0)

BioE 810—BIOCHEMICAL ENGINEERING—3 cr. (3 and 0)

BioE 812—BIOELECTROCHEMISTRY—3 cr. (3 and 0)

BioE 846—ELEMENTS OF BIOENGINEERING I—3 cr. (3 and 0)

BioE 847—ELEMENTS OF BIOENGINEERING II—3 cr. (3 and 0)

BioE 850—SPECIAL TOPICS IN BIOMEDICAL ENGINEERING—3 cr. (3 and 0)

BioE 860—ECOLOGICAL MODELS—3 cr. (2 and 3)

BioE 870—BIOMEDICAL PHENOMENA—3 cr. (3 and 2)

BioE 871—BIOELECTRIC PHENOMENA—3 cr. (2 and 2)

BioE 891—RESEARCH—Credit to be arranged.

BioE 980—INTERNSHIP—1.5 cr. (5-0 and 0-40)

BioE 991—DOCTORAL RESEARCH—Credit to be arranged.
BOTANY

Biology

(For curriculums and offerings see also Biochemistry, Botany, Microbiology, and Zoology)

Biol 101—Principles of Biology—3 cr. (3 and 0) F, S, SS
The chemical, structural, and functional principles of living cells. Consideration of the chemical and physical composition of protoplasm as related to the function of this living material in basic biological processes. The principles of genetics, ecology, and evolution.

Biol 700—Principles of Biology—3 cr. (2 and 3)

Biol 750—Biology for High School Teachers—3 cr. (3 and 0)

Biol 801—Electron Microscopy of Biological Material—3 cr. (3 and 0)

Botany

(See also Biology)

Associate Professor: C. J. Umphlett, Head
Assistant Professors: C. R. Dillon, J. E. Fairey, III
Adjunct Associate Professor: N. D. Camper

Bot 102—Principles of Botany—2 cr. (2 and 0) F, S, SS
The application of biological principles to plants as exemplified by the structures and functions of vascular plants. Followed by a survey of the plant kingdom.

Bot 104—Laboratory Exercises in Botany—1 cr. (0 and 2) F, S, SS
Demonstrations and experiments to illustrate the structures and functions of plants considered in Bot 102.

Bot 145—Environmental Dynamics—2 cr. (2 and 0) F
A nontechnical, nonlaboratory course designed to instill a sense of appreciation for the finiteness of our planet and the extent to which it may be exploited. Introduction will be made to basic concepts underlying population growth characteristics, genetic adaptations, energy relationships between producers and consumers, the description of pollutants and their causes and effects. A survey will be made of the various types of environments.

Bot 202—Survey of the Plant Kingdom—4 cr. (3 and 3) S
A survey of the major groups of plants, their structure, development, and reproduction. Evolutionary relationships as exemplified by comparisons of body organization and life cycles will be emphasized. Prerequisite: Bot 102.

Bot 352—Plant Physiology—4 cr. (3 and 3) F, S
The relations and processes which have to do with the maintenance, growth and reproduction of plants, including absorption of matter and energy, water relations of the plant, utilization of reserve products and liberation of energy. Prerequisite: Bot 102, Ch 101, 102, Phys 207, or 221, and 223.

Bot H352—Plant Physiology—4 cr. (3 and 3) F, S
Honors option for Bot 352; admission by special arrangement.
Bot 355—Histology—2 cr. (0 and 6)
The principles of fixing, cutting and staining plant tissues and the various other processes of micro-technique and their application to specific forms of plants with emphasis on the flora of South Carolina. Prerequisite: Bot 102.

Bot 356—Taxonomy of Vascular Plants—3 cr. (1 and 6) S
The identification, classification, distribution and interrelationship of vascular plants with emphasis on the flora of South Carolina. Prerequisite: Bot 101.

Bot H356—Taxonomy of Vascular Plants—3 cr. (1 and 6) S
Honors option for Bot 356; admission by special arrangement.

Bot 404—Cytology—3 cr. (3 and 0) F, ’71 and alternate years.
A detailed consideration of the morphology and ultrastructures of cells. Prerequisite: Bot 352, Zool 102, 104, or permission of instructor.

Bot H404—Cytology—3 cr. (3 and 3) F, ’71 and alternate years.

Bot 406—Plant Anatomy—3 cr. (2 and 3) F, ’70 and alternate years.
The origin and development of the organs and tissue systems of vascular plants and a comparative study of the structure of roots, stems, leaves, flowers, and fruits. Prerequisite: Bot 102.

Bot H406—Plant Anatomy—3 cr. (2 and 3) F, ’70 and alternate years. Honors option for Bot 406; admission by special arrangement.

Bot 451—Morphology of the Fungi—3 cr. (2 and 3) F, ’70 and alternate years.
The morphology and taxonomy of the fungi, with special emphasis on species of economic importance. Prerequisite: Bot 102.

Bot 455—Vascular Plant Morphology—3 cr. (2 and 3) S
Consideration of the structure, reproduction, and phylogenetic relationships of representative vascular plants. Prerequisite: Bot 102, 202.

Bot 457—Phycology—3 cr. (2 and 3) S, ’71 and alternate years.
The taxonomy, morphology, and ecology of freshwater algae with emphasis on the local flora. Prerequisite: Bot 102 or permission of instructor.

Bot H457—Phycology—3 cr. (2 and 3) S, ’71 and alternate years. Honors option for Bot 457; admission by special arrangement.

Bot 459—Plant Ecology—3 cr. (2 and 3) S
The fundamental principles of the relations between plants and their environment. Although autecology is discussed, the basic emphasis throughout the course is synecology. Prerequisite: Bot 102.

Bot H459—Plant Ecology—3 cr. (2 and 3) S
The honors option of Bot 459; admission by special arrangement.

Bot 491—Special Problems in Botany—2 cr. (0 and 6)
Research problems in selected areas of botany to provide an introduction to research planning and techniques for Botany majors. Prerequisite: Senior standing and permission of the department head.

Bot 604—Cytology—3 cr. (3 and 0)
Bot 606—Plant Anatomy—3 cr. (2 and 3)
Bot 651—Morphology of the Fungi—3 cr. (2 and 3)
Bot 652—Plant Physiology—4 cr. (3 and 3)
Bot 656—Taxonomy of Vascular Plants—3 cr. (1 and 6)
Bot 657—Phycology—3 cr. (2 and 3)
Bot 659—Plant Ecology—3 cr. (2 and 3)
Bot 802—Mycology—4 cr. (3 and 3)
Bot 805—Special Problems in Botany—Credit to be arranged.
Bot 807—Seminar—1 cr. (1 and 0)
Bot 811—Inorganic Plant Metabolism—4 cr. (3 and 3)
Bot 812—Organic Plant Metabolism—3 cr. (3 and 0)
Bot 813—Plant Growth and Development—3 cr. (3 and 0)
Bot 821—Plant Taxonomy I—4 cr. (2 and 6)
Bot 822—Plant Taxonomy II—4 cr. (2 and 6)
Bot 891—Research—Credit to be arranged.
Bot 991—Doctoral Research—Credit to be arranged.

BUILDING SCIENCE

Associate Professors: L. H. Brown, J. L. Clark, A. J. Kaufmann, R. E. Knowland, Head; M. G. Melaragno
Instructor: C. L. B. Addison

BldSc 201—Building Science I—3 cr. (3 and 0)
Analysis of physical and environmental requirements of architectural spaces. Consideration of factors and resources involved in the selection of systems materials and controls.

BldSc 202—Building Science II—3 cr. (3 and 0)
Continuation of BldSc 201.

BldSc 241—Construction Organizations and Estimating—5 cr. (2 and 9)
An introduction to the construction process. Evaluation of plans, specifications and resource requirements and preparations of detailed quantity surveys.

BldSc 242—Construction Planning and Scheduling—5 cr. (2 and 9)
Study and analysis of construction projects with specific emphasis on resource planning and manual methods for critical path scheduling. Prerequisite: BldSc 241.

BldSc 301—Building Science III—3 cr. (3 and 0)
Theory and design of simple, determinate structures and the design of environmental systems and controls.

BldSc 302—Building Science IV—3 cr. (3 and 0)
Continuation of BldSc 301.

BldSc 341—Construction Data Systems—5 cr. (2 and 9)
An introduction to machine programming. Emphasis on construction applications of data processing equipment and the utilization of existing information systems. Prerequisite: BldSc 242.
BldSc 342—Construction Labor Management—5 cr. (2 and 9)
A study of labor-management relations in the construction industry. Evaluation of productivity, incentive methods and bargainings processes. Prerequisite: Junior standing.

BldSc 401—Building Science V—4 cr. (3 and 3)
A study of complex structural and environmental systems.

BldSc 402—Building Science VI—4 cr. (3 and 3)
Continuation of BldSc 401.

BldSc 432—Concrete Formwork—2 cr. (2 and 0)
The study of materials, methods design and estimating of formwork for concrete situations. Prerequisite: EM 304 or BldSc 301.

BldSc 441—Construction Economics—5 cr. (2 and 9)
A study of construction economics with specific emphases on capital budgeting, decision making and investment theory. Prerequisite: Acct 202, Econ 202.

BldSc 442—Construction Management—5 cr. (2 and 9)
Preparation of detailed estimates, resource allocation, scheduling and contractual documents. Comprehensive studies and research in special topics selected by individual students.

CERAMIC ARTS

Professor: G. C. Robinson
Associate Professor: H. G. Lefort

Cr Ar 101—Pottery Materials—3 cr. (2 and 3)
The occurrence and properties of pottery raw materials. Attention is devoted to the occurrence of natural pottery materials in South Carolina, and the methods and equipment used in preparing these materials.

Cr Ar 102—Pottery Drying and Firing—3 cr. (3 and 0)
The drying and firing processes used in pottery making. A discussion is included on the design and construction of simple pottery kilns and the student is required to build and operate a small outdoor kiln. The laboratory work demonstrates the drying and firing behavior of pottery.

Cr Ar 301—Pottery Glazes—3 cr. (3 and 0)
The materials and methods used in preparing glazes and a study of the methods used in decorating pottery products. Prerequisite: Cr Ar 101, 102.

Cr Ar 401—Advanced Pottery—3 cr. (2 and 3)
An advanced study of clay and pottery materials designed to use science to understand creative pottery techniques. Included are understanding clay material workability and forming techniques, the physical aspects of finishing formed ware and also of drying, the function of auxiliary pottery materials, heat and temperature measurements, the chemistry and physical aspects of firing, glazing, jewelry enameling, kiln, and other pottery equipment construction with emphasis on topics useful to teachers in establishing school laboratories. Not open to engineering students.

Cr Ar 601—Advanced Pottery—3 cr. (2 and 3)
CERAMIC ENGINEERING

Professors: G. C. Robinson, Head; H. H. Wilson
Associate Professors: W. W. Coffeen, C. C. Fain, H. G. Lefort

CrE 201—INTRODUCTION TO CERAMIC ENGINEERING—2 cr. (2 and 0)
An introduction to ceramic engineering together with a study of ceramic forming operation. Exercises are provided in the analysis of processing problems, the evaluation of background information and the creation of new solutions to processing problems.

CrE 202—CERAMIC MATERIALS—3 cr. (3 and 0)
The properties and uses of commonly used ceramic materials. Equilibrium diagrams are used to gain an understanding of the effect of heat on the materials.

CrE 204—LABORATORY PROCEDURES—1 cr. (0 and 3)
An introduction to ceramic laboratory procedures. Primary consideration will be given to the evaluation of sources of error and significance of measurement in the major ceramic test procedures.

CrE 299—DIGITAL COMPUTATION—1 cr. (0 and 3)
An introduction to digital computer programming for students majoring in Ceramic Engineering. Emphasis is placed on the computer languages in use at Clemson University, and their application to the solution of simple problems in ceramic engineering. Prerequisite: Sophomore standing.

CrE 302—THERMO-CHEMICAL CERAMICS—3 cr. (3 and 0)
High-temperature equilibrium using the laws of physical chemistry as applied to ceramic systems in both solid and liquid states. An introduction to the crystal chemistry of ceramic raw materials, and the effect of crystalline form on their high-temperature behavior.

CrE 303—CERAMIC PRODUCTS—2 cr. (2 and 0)
The application of ceramic products to a variety of use environments. Refractories, structural ceramics, coated metals and corrosion-resistant products are included. The course is for both engineering and nonengineering majors.

CrE 304—EXPERIMENT DESIGN—1 cr. (0 and 3)
An exercise in the planning and organization of experiments in the ceramic field.

CrE 306—FUELS COMBUSTION AND HEAT TRANSFER—1 cr. (0 and 3)
Combustion devices, the calculation of combustion problems and heat transfer.

CrE 307—THERMAL PROCESSING OF CERAMICS—3 cr. (3 and 0)
The accomplishment of changes in structure and composition through the application of thermal energy. The course includes a study of simultaneous transfer of heat and mass, fluid flow, determinants of rates in a variety of reactions and calculations of the energy requirements to accomplish change in structure or composition.

CrE 309—RESEARCH METHODS—2 cr. (0 and 6)
The planning and solution of selected research problems.
CpE 310—INTRODUCTION TO MATERIAL SCIENCE—3 cr. (3 and 0)
A beginning course in material science designed primarily for engineering students. The course is a study of the relation between the electrical, mechanical and thermal properties of products and the structure and composition of these products. All levels of structure are considered from gross structures easily visible to the eye through electronic structure of atoms.

CpE 402—SOLID STATE CERAMICS—3 cr. (3 and 0)
The effects of the composition, form, and shape of ceramic raw materials on the manufacturing processes and final properties of ceramic products. Included are fundamental studies of such phenomena as deflocculation, plasticity, sintering and the behavior of ceramic products in electrical circuits. Prerequisite: Junior standing.

CpE 403—GLASSES—3 cr. (3 and 0)
Glass structure and composition and their relation to the properties of glasses. Consideration is given to the processing variables which control the properties of glasses including glass products, enamels, glazes, and vitreous bonds.

CpE 404—CERAMIC COATINGS—3 cr. (3 and 0)
The raw materials, methods of manufacture, and properties of ceramic coatings. Prerequisite: CpE 302.

CpE 406—CERAMIC PROJECT—2 cr. (0 and 6)
The completion of an original research into a ceramic problem. Prerequisite: CpE 302.

CpE 407—PLANT DESIGN—3 cr. (1 and 6)
The application of the fundamentals of ceramic engineering to problems in plant design. Prerequisite: Senior standing in Ceramic Engineering.

CpE 410—ANALYTICAL PROCESSES—3 cr. (2 and 3)
An introductory course on the theory and use of X-ray diffraction and spectroscopic methods. Prerequisite: Junior standing.

CpE 412—RAW MATERIAL PREPARATION—3 cr. (3 and 0)
The equipment and processes used in the crushing and grinding of raw materials, the separation and classification of particle sizes, and the separation and purification of minerals by mineral dressing methods.

CpE 416—ELECTRONIC CERAMICS—3 cr. (3 and 0)
The theory and measurement of the electronic properties of ceramic products.

CpE 418—PROCESS CONTROL—3 cr. (3 and 0)
Process control techniques and apparatus with particular emphasis on temperature measurement and control systems. The application of laboratory techniques to the control of product quality and process efficiency is included. Prerequisite: Junior standing.

CpE 419—SCIENCE OF ENGINEERING MATERIALS—3 cr. (3 and 0)
This course is planned to acquaint engineers with the thermal, electrical, and chemical characteristics of engineering materials. It emphasizes fundamental consideration of the structure of matter in the solid and glassy states, solid state reactions, and the influence of particle and aggregate structure to speed of reaction and product properties. The reasons for the properties of materials at elevated temperatures and room temperatures are related to these fundamentals.
CrE H419—Science of Engineering Materials—3 cr. (3 and 0)
Same as CrE 419 except that this honors section is open to students only by invitation.

CrE 420—Science of Engineering Materials—3 cr. (3 and 0)
A continuation of CrE 419 with emphasis on applications of fundamentals in nuclear reactors and nuclear power plants. Consideration is given to the development of ceramics for fuel elements, moderator materials, control rods, shielding and in radioactive waste disposal.

CrE 421—Experiments in Material Science for Teachers—3 cr. (2 and 3)
Many of the topics in the earth science, physical science, physics and chemistry courses of grammar school and high school have interesting application in research and production of engineering materials. A series of experiments have been developed which support specific topics in grammar and high school science courses. These experiments have been designed to be suitable for use in schools and with equipment usually present in school laboratories. The laboratory part of this course is devoted to providing the students with experience and background in these experiments while the lecture topics include consideration of the thermal, electrical, chemical properties of materials as determined by their composition and structure. This course has been prepared especially for elementary and high school teachers of science, and is not open to engineering students.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrE 602</td>
<td>Solid State Ceramics</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 603</td>
<td>Glasses</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 604</td>
<td>Ceramic Coatings</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 610</td>
<td>Analytical Processes</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>CrE 612</td>
<td>Raw Material Preparation</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 616</td>
<td>Electronic Ceramics</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 618</td>
<td>Process Control</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 619</td>
<td>Science of Engineering Materials</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 620</td>
<td>Science of Engineering Materials</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 621</td>
<td>Experiments in Material Science for Teachers</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>CrE 701</td>
<td>Special Problems</td>
<td>3 cr.</td>
<td>(1-3 and 0)</td>
</tr>
<tr>
<td>CrE 807</td>
<td>Specialized Ceramics</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 809</td>
<td>High-Temperature Materials</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 810</td>
<td>Ceramic Engineering Thermodynamics</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 811</td>
<td>Ceramic Engineering Kinetics</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 812</td>
<td>Current Topics in Ceramic Engineering</td>
<td>1 cr.</td>
<td>(1 and 0)</td>
</tr>
<tr>
<td>CrE 813</td>
<td>Nuclear Ceramics</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 814</td>
<td>Ceramic Physical Processing</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CrE 815</td>
<td>Colloidal and Surface Science</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>
Chemical Engineering

CrE 816—Constitution and Structure of Glasses—3 cr. (3 and 0)
CrE 821—Analytical Procedures and Equipment I—3 cr. (2 and 3)
CrE 822—Analytical Procedures and Equipment II—3 cr. (2 and 3)
CrE 823—Thermal Properties of Ceramic Materials—3 cr. (3 and 0)
CrE 824—Mechanical Properties of Ceramic Materials—3 cr. (3 and 0)
CrE 825—Magnetic and Electrical Ceramic Material—3 cr. (3 and 0)
CrE 826—Ceramic Coatings—3 cr. (3 and 0)
CrE 828—Solid State Ceramic Science—3 cr. (3 and 0)
CrE 891—Research—Credit to be arranged.

CHEMICAL ENGINEERING

Professors: F. C. Alley, W. B. Barlage, D. F. Bruley, J. W. Hall, R. C. Harshman, C. E. Littlejohn, Head
Associate Professors: W. F. Beckwith, J. C. Mullins
Assistant Professors: J. N. Beard, S. S. Melsheimer

ChE 201—Introduction to Chemical Engineering—3 cr. (2 and 3)
An introduction to the concepts of chemical engineering and a study of PVT relations for gases and vapors, material and energy balances, equilibria in chemical systems, and combined material and energy balances. Pre-requisite: Ch 102.

ChE 202—Stagewise Separation Operations—4 cr. (3 and 3)
A first course in the theory and design of separation operations using the stagewise technique. Specific operations studied will be distillation and solvent extraction. A feature of the course is the inclusion of engineering graphical communication by sketching of laboratory separations equipment. Pre-requisite: ChE 201.

ChE 210—Digital Computation and Numerical Methods—3 cr. (3 and 0)
An introduction to digital computational techniques using a specific procedure oriented language and the use of numerical methods for the solution of chemical engineering problems. The course will introduce students to computational methods to be used in subsequent chemical engineering courses. Pre-requisite: ChE 201, Math 108.

ChE 301—Unit Operations Theory I—3 cr. (3 and 0)
The general principles of chemical engineering and a study of the following unit operations: Fluid Flow, Fluid Transportation, Heat Transmission and Evaporation. Special emphasis is placed on theory and its practical application to design. Pre-requisite: ChE 202, and Junior standing.

ChE 302—Unit Operations Theory II—3 cr. (3 and 0)
A study of selected unit operations based on diffusional phenomena. Primary attention will be given to differential contact operations such as absorption, humidification, and gas-liquid contact. Pre-requisite: ChE 301 and Junior standing.
CHE 306—Unit Operations Laboratory I—1 cr. (0 and 3)
Laboratory work in the unit operations of fluid flow, heat transfer, and evaporation. Stress is laid on the relation between theory and experimental results and on report writing. *Prerequisite:* CHE 301 and Junior standing.

CHE 331—Chemical Engineering Thermodynamics I—3 cr. (3 and 0)
A first basic course in static equilibria. Topics include the First and Second Law of Thermodynamics, real and ideal gases, thermodynamic properties of fluids, phase changes, and heats of reaction. *Prerequisite:* CHE 331, CHE 202, Math 208, and Junior standing; or permission of the department head.

CHE H331—Chemical Engineering Thermodynamics I—3 cr. (3 and 0)
Honors section of CHE 301; admission by invitation.

CHE 352—Chemical Engineering Systems Analysis—4 cr. (3 and 3)
Mathematical modeling of lumped and distributed parameter chemical engineering systems and analog computer solutions. The modeling of large-scale systems and an introduction to optimization. *Prerequisite:* Junior standing in Chemical Engineering or permission of instructor.

CHE 401—Transport Phenomena—3 cr. (3 and 0)
Heat, mass, and momentum transport with emphasis being laid on how the three processes are related. A former theoretical foundation is laid for the previous work in unit operations. *Prerequisite:* CHE 302 and Senior standing.

CHE 411—Transport Phenomena—3 cr. (3 and 0)
Honors section of CHE 401; admission by invitation.

CHE 407—Unit Operations Laboratory II—2 cr. (0 and 6)
Laboratory work for the diffusional unit operations. Competent technical reports are required. *Prerequisite:* Enrollment in CHE 401 and Senior standing.

CHE 415—Introduction to Nuclear Engineering I—3 cr. (3 and 0)
Designed to acquaint the nonnuclear engineer with some of the engineering aspects of nuclear science. Topics include a brief survey of particle physics; nuclear reactions; energy transformations; nuclear reactors, their design, construction and use; radiation damage to materials of construction; and special problems in nuclear engineering peculiar to the basic engineering disciplines. *Prerequisite:* Junior or Senior standing in engineering, chemistry, or physics.

CHE 416—Introduction to Nuclear Engineering II—3 cr. (3 and 0)
A continuation of CHE 415. Topics to include reactor principles, plutonium production, reactor types, materials of reactor construction, control instruments, and waste disposal. *Prerequisite:* CHE 415.

CHE 421—Process Development, Design, and Optimization of Chemical Engineering Systems I—3 cr. (2 and 3)
A study of the steps in creating a chemical process design from the original concept to successful completion and operation of the plant. Topics include engineering economics, systems analysis, simulation, optimization, process equipment sizing and selection, and the application of analog and digital computers. *Prerequisite:* Completion of all required 200- and 300-level courses in chemistry, chemical engineering, and mathematics.
CHE 422—Process Development, Design, and Optimization of Chemical Engineering Systems II—3 cr. (0 and 9)
A continuation of CHE 421. The principles of process development, design, and optimization are applied in a comprehensive problem carried from a general statement of the problem to detailed design and economic evaluations. Prerequisite: CHE 401, 421, 430, 450.

CHE 424—Introduction to Industrial Pollution—3 cr. (3 and 0)
An introduction to air and water pollution problems associated with chemical processing, transportation, and power generation. Basic processes and mechanisms utilized in the control of liquid and gaseous wastes are discussed from a standpoint of equipment design and economics. Present and future trends in pollution legislation are reviewed. Prerequisite: Senior standing in chemical engineering, or permission of instructor.

CHE 425—Chemical Process Engineering—3 cr. (3 and 0)
An advanced treatment of chemical engineering unit operations and unit processes. The course is designed to give the undergraduate more depth in these areas. Prerequisite: Permission of instructor.

CHE 430—Chemical Engineering Thermodynamics II—3 cr. (3 and 0)
A continuation of CHE 331. Subjects include heat engines, compressors, refrigeration, phase equilibria, and chemical reaction equilibria. Prerequisite: CHE 331 and Senior standing.

CHE 440—Senior Inspection Trip—0 cr.
A three- or four-day trip is made to visit selected chemical plants. Using lectures by plant personnel supplemented by conducted tours of chemical plant installations, the student is introduced to current industrial practice. Prerequisite: Senior standing in chemical engineering.

CHE 450—Chemical Engineering Kinetics—3 cr. (3 and 0)
An introduction to the kinetics of chemical reactions. Topics include homogeneous and heterogeneous reactions, batch and flow reaction systems, catalysis, and design of industrial reactors. Prerequisite: Senior standing in chemical engineering or permission of department head.

CHE 452—Molecular and Turbulent Transport—3 cr. (3 and 0)
A theoretical treatment of the fundamental mechanisms of molecular and turbulent heat, mass, and momentum transport with the major emphasis given to the interrelation of all three mechanisms. Evaluation and correlation of transport properties and both steady state and unsteady state processes are considered. An elective course for nonchemical engineering students. Prerequisite: Senior standing in chemistry, engineering, or physics, and Math 208.

CHE 453—Process Dynamics—3 cr. (3 and 0)
Basic process control and the effect of feedback in various systems. The mathematical analysis of the dynamic response of process systems to step and sinusoidal changes. Determination of the optimum settings for various combinations of proportional, reset and derivative control. Prerequisite: Junior or Senior standing in engineering, physics, or chemistry, and Math 309, or permission of department head.
ChE 491—Special Projects in Chemical Engineering—1-3 cr. (1-3 and 0)
As a need arises, special topics requested by students or offered by the faculty will be taught. Review of current research in an area, technological advances and national engineering goals are possible topic areas.

ChE H491—Special Projects in Chemical Engineering—1-3 cr. (1-3 and 0)
Honors Section of ChE 491; admission by invitation.

ChE 601—Transport Phenomena—3 cr. (3 and 0)
ChE 607—Unit Operations Laboratory II—2 cr. (0 and 6)
ChE 615—Introduction to Nuclear Engineering I—3 cr. (3 and 0)
ChE 616—Introduction to Nuclear Engineering II—3 cr. (3 and 0)
ChE 621—Process Development, Design, and Optimization of Chemical Engineering Systems—3 cr. (2 and 3)

ChE 622—Process Development, Design, and Optimization of Chemical Engineering Systems II—3 cr. (0 and 9)

ChE 625—Chemical Process Engineering—3 cr. (3 and 0)
ChE 630—Chemical Engineering Thermodynamics II—3 cr. (3 and 0)
ChE 650—Chemical Engineering Kinetics—3 cr. (3 and 0)
ChE 652—Molecular and Turbulent Transport—3 cr. (3 and 0)
ChE 653—Process Dynamics—3 cr. (3 and 0)

ChE 802—Process Dynamics and Control—3 cr. (3 and 0)
ChE 803—Heat, Mass, and Momentum Transfer—3 cr. (3 and 0)
ChE 804—Chemical Engineering Thermodynamics—3 cr. (3 and 0)
ChE 805—Chemical Engineering Kinetics—3 cr. (3 and 0)
ChE 806—Chemical Engineering Calculations I—3 cr. (3 and 0)
ChE 807—Chemical Engineering Calculations II—3 cr. (3 and 0)
ChE 808—Chemical Engineering Design and Analysis—3 cr. (1 and 6)
ChE 809—Waste Treatment—3 cr. (3 and 0)
ChE 810—Biochemical Engineering—3 cr. (3 and 0)
ChE 821—Heat Transport—3 cr. (3 and 0)
ChE 822—Mass Transfer and Differential Contact Operations—3 cr. (3 and 0)

ChE 823—Mass Transfer and Stagewise Contact Operations—3 cr. (3 and 0)

ChE 829—Biological Engineering—3 cr. (0 and 0)
ChE 830—Chemical Technology—3 cr. (3 and 0)
ChE 840—Graduate Laboratory—Credit to be arranged.
ChE 845—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
ChE 846—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
CHE 847—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
CHE 852—Air Pollution Control Processes—3 cr. (3 and 0)
CHE 853—Industrial Air Hygiene—3 cr. (3 and 0)
CHE 854—Environmental Instrumentation and Measurements—3 cr. (2 and 3)
CHE 891—Research—Credit to be arranged.
CHE 902—Process Dynamics and Control—3 cr. (3 and 0)
CHE 903—Transport Phenomena—3 cr. (3 and 0)
CHE 904—Chemical Engineering Thermodynamics—3 cr. (3 and 0)
CHE 905—Chemical Engineering Kinetics—3 cr. (3 and 0)
CHE 945—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
CHE 946—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
CHE 947—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
CHE 954—Environmental Systems Design—3 cr. (3 and 0)
CHE 991—Doctoral Research—Credit to be arranged.

CHEMISTRY
Assistant Professors: J. R. Bacon, R. H. Bailey, Jr., A. L. Beyerlein, Muriel B. Bishop, J. F. Geldard, O. J. Jacobus, K. S. Landers, G. L. Powell

CH 101—General Chemistry—4 cr. (3 and 3)
Students are introduced to the elementary concepts of chemistry through classroom and laboratory experience. The course emphasizes chemical reactions and the use of symbolic representation, the mole concept and its applications, and molecular structure. Prerequisite: Registration in Math 101, 103, or 106.

CH 102—General Chemistry—4 cr. (3 and 3)
A continuation of Ch 101 which includes solutions, rates of reactions, chemical equilibrium, electrochemistry, survey of some elements and their chemistry, and an introduction to organic chemistry. The laboratory includes the qualitative analysis of selected elements. Recommended for students taking one year of chemistry or continuing in Ch 201.

CH 1102—General Chemistry—4 cr. (3 and 3)
Same as Ch 102 except that this honors section is open to students by invitation only.

CH 112—General Chemistry—4 cr. (3 and 3)
A continuation of Ch 101 which emphasizes solutions, thermodynamic concepts, kinetics and oxidation-reduction reactions. The laboratory empha-
sizes solution chemistry and qualitative analyses. Recommended for students continuing in Ch 223.

CH 201—General Chemistry—4 cr. (3 and 3)
A continuation of Ch 102 which extends the introduction to organic chemistry and includes the chemistry of carbohydrates, lipids, and proteins and their role in metabolic processes. Prerequisite: Ch 102 or permission of instructor.

CH 223—Organic Chemistry—3 cr. (3 and 0)
An introductory course covering the principles of organic chemistry and the derivation of these principles from a study of the properties, preparations, and interrelationships of the important classes of organic compounds. Prerequisite: Ch 112 or permission of instructor.

CH 224—Organic Chemistry—3 cr. (3 and 0)
A continuation of Ch 223.

CH 225—Organic Chemistry Laboratory—2 cr. (0 and 6)
The laboratory techniques involved in the synthesis, separation and purification, and characterization of typical examples of the classes of organic compounds. Prerequisite: Registration in Ch 223.

CH 226—Organic Chemistry Laboratory—2 cr. (0 and 6)
A continuation of Ch 225. Prerequisite: Registration in Ch 224.

CH 227—Organic Chemistry Laboratory—1 cr. (0 and 3)
The synthesis and properties of typical examples of the classes of organic compounds. Prerequisite: Registration in Ch 223.

CH 228—Organic Chemistry Laboratory—1 cr. (0 and 3)
A continuation of Ch 227. Prerequisite: Registration in Ch 224.

CH 229—Organic Chemistry Laboratory—1 cr. (0 and 3)
A one-semester laboratory for chemical engineering students. Prerequisite: Registration in Ch 224.

CH 313—Quantitative Analysis—3 cr. (3 and 0)
The fundamental principles of volumetric, gravimetric and certain elementary instrumental chemical analyses. Prerequisite: Organic chemistry.

CH 315—Quantitative Analysis Laboratory—2 cr. (0 and 6)
The laboratory techniques of volumetric, gravimetric, and elementary instrumental analysis.

CH 317—Quantitative Analysis Laboratory—1 cr. (0 and 3)
The standard techniques of analytical chemistry—gravimetric, volumetric, and instrumental.

CH 331—Physical Chemistry—3 cr. (3 and 0)
Includes the gaseous state, thermodynamics, chemical equilibria, and atomic and molecular structure, from both experimental and theoretical points of view. Prerequisite: Math 206, physics.
Chemistry 267

CH 332—Physical Chemistry—3 cr. (3 and 0)
Continuation of Ch 331 including chemical kinetics, liquid and solid state, phase equilibria, solutions, electrochemistry and surfaces.

CH 339—Physical Chemistry Laboratory—1 cr. (0 and 3)
Experiments are selected to be of maximum value to Chemistry and Chemical Engineering majors. Prerequisite: Registration in Ch 331.

CH 340—Physical Chemistry Laboratory—1 cr. (0 and 3)
A continuation of Ch 339. Prerequisite: Registration in Ch 332.

CH 402—Inorganic Chemistry—3 cr. (3 and 0)
A comprehensive survey of the field of inorganic chemistry through lectures and lecture experiments. Development of modern theories of atomic structure and valence, and a detailed study of the elements and their compounds, based on the periodic system and including both well-known and rarer elements. Prerequisite: Ch 331, 332.

CH 403—Inorganic Chemistry—3 cr. (3 and 0)
A continuation of Ch 402 with emphasis on the synthesis and properties of inorganic compounds. Prerequisite: Ch 402.

CH 411—Instrumental Analysis—4 cr. (2 and 6)
Demonstration and operation of modern optical and electronic precision-measuring devices as they apply to the processes and analytical, physical and organic chemistry. Prerequisite: Physical chemistry.

CH 421—Advanced Organic Chemistry—3 cr. (3 and 0)
A survey of modern organic chemistry with an emphasis on synthesis and mechanism. Prerequisite: Ch 224, 332, or equivalent.

CH 422—Advanced Organic Chemistry Laboratory—2 cr. (0 and 6)
Modern laboratory techniques are used in the synthesis and identification of organic compounds. Prerequisite: Registration in Ch 421 or permission of instructor.

CH 428—Organic Spectroscopy—3 cr. (2 and 2)
A survey of modern spectroscopic techniques used in the determination of molecular structure. Emphasis is on interpretation of spectra: nuclear magnetic resonance, ultraviolet, infrared and mass spectroscopy, optical rotatory dispersion and circular dichroism. Two hours theory and two hours practical problem solving per week. Prerequisite: Organic and physical chemistry.

CH 435—Atomic and Molecular Structure—3 cr. (3 and 0)
An introduction to the principles of wave mechanics as applied to various forms of spectroscopy and the elucidation of molecular structure. Emphasis is placed upon the quantum aspects of electronic, vibrational, and rotational transitions as well as nuclear magnetic resonance, the Raman effect and photo-electron spectroscopy.

CH 436—Physical Chemistry Laboratory—1 cr. (0 and 3)
To be taken in conjunction with Ch 435. Experiments in various areas of spectroscopy are designed for quantitative interpretation of data. Students also gain familiarity with some spectroscopic instruments.
CH 441—Glass Manipulation—2 cr. (0 and 6)
A course designed to teach the fundamentals of glass manipulation and its
application to the construction and repair of simple laboratory apparatus. Prerequi-
site: Senior standing.

CH 442—Chemical Literature—1 cr. (1 and 0)
This course is designed to give the student practice in the use of chemical
literature, the writing of technical reports and the presentation of same before
the faculty of the Department of Chemistry. Prerequisite: Junior standing in
chemistry.

CH 443—Research Problems—3 cr. (0 and 9)
Original investigation of an assigned problem in a fundamental branch of
chemistry. This work must be carried out under the supervision of a member
of the staff. Prerequisite: Senior standing in chemistry.

CH 444—Research Problems—3 cr. (0 and 9)
A continuation of CH 443.

CH 454—Inorganic Synthesis—2 cr. (0 and 6)
A laboratory course designed to acquaint the student with various methods
and techniques employed in the preparation and handling of inorganic com-
pounds.

CH 472—Organic Synthesis—4 cr. (2 and 6)
A course designed to teach the student techniques and principles as applied
in a research laboratory. Both macro and semi-macro methods are used in the
preparation of several organic compounds. Prerequisite: Organic chemistry.

CH 491—Introduction to Radiochemistry—3 cr. (2 and 3)
The natural and synthetic radioisotopes, including the consideration of atomic
and nuclear structure, properties of radiation and tracer techniques and their
application. The laboratory is concerned with the methods of detection and
measurement of the various types of radiation and the various applications of
trace techniques. Prerequisite: Senior or Graduate standing and permission of
instructor.

CH 602—Inorganic Chemistry—3 cr. (3 and 0)
CH 603—Inorganic Chemistry—3 cr. (3 and 0)
CH 611—Instrumental Analysis—4 cr. (2 and 6)
CH 613—Quantitative Analysis—3 cr. (3 and 0)
CH 615—Quantitative Analysis Laboratory—2 cr. (0 and 6)
CH 617—Quantitative Analysis Laboratory—1 cr. (0 and 3)
CH 621—Advanced Organic Chemistry—3 cr. (3 and 0)
CH 622—Advanced Organic Chemistry Laboratory—2 cr. (0 and 6)
CH 628—Organic Spectroscopy—3 cr. (2 and 2)
CH 631—Physical Chemistry—3 cr. (3 and 0)
CH 632—Physical Chemistry—3 cr. (3 and 0)
CH 635—Atomic and Molecular Structure—3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 636</td>
<td>Physical Chemistry Laboratory</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>CH 639</td>
<td>Physical Chemistry Laboratory</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>CH 640</td>
<td>Physical Chemistry Laboratory</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>CH 654</td>
<td>Inorganic Synthesis</td>
<td>2 cr.</td>
<td>(0 and 6)</td>
</tr>
<tr>
<td>CH 672</td>
<td>Organic Synthesis</td>
<td>4 cr.</td>
<td>(2 and 6)</td>
</tr>
<tr>
<td>CH 691</td>
<td>Introduction to Radiochemistry</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>CH 700</td>
<td>Physical Science for High School Teachers</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 701</td>
<td>Review of General Chemistry I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 702</td>
<td>Review of General Chemistry II</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>CH 805</td>
<td>Theoretical Inorganic Chemistry</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 806</td>
<td>Special Topics in Inorganic Chemistry</td>
<td>1-4 cr.</td>
<td></td>
</tr>
<tr>
<td>CH 807</td>
<td>Chemistry of the Transition Elements</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 808</td>
<td>Chemistry of the Nonmetallic Elements</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 811</td>
<td>Analytical Chemistry</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 812</td>
<td>Chemical Spectroscopic Methods</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>CH 814</td>
<td>Electroanalytical Chemistry</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>CH 821</td>
<td>Organic Chemistry I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 822</td>
<td>Organic Chemistry II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 823</td>
<td>Organic Reaction Mechanisms</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 824</td>
<td>Fundamental Principles of Polymer Chemistry</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 825</td>
<td>Current Topics in Organic Chemistry</td>
<td>1 cr.</td>
<td>(1 and 0)</td>
</tr>
<tr>
<td>CH 831</td>
<td>Chemical Thermodynamics</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 834</td>
<td>Statistical Thermodynamics</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 835</td>
<td>Chemical Kinetics</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 837</td>
<td>Quantum Chemistry</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 851</td>
<td>Seminar</td>
<td>0-2 cr.</td>
<td></td>
</tr>
<tr>
<td>CH 861</td>
<td>Principles of Biochemistry</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CH 891</td>
<td>Research</td>
<td>Credit to be arranged.</td>
<td></td>
</tr>
<tr>
<td>CH 920</td>
<td>Advanced Topics in Organic Chemistry</td>
<td>1-4 cr.</td>
<td>(1-4 and 0)</td>
</tr>
<tr>
<td>CH 930</td>
<td>Advanced Topics in Physical Chemistry</td>
<td>1-4 cr.</td>
<td>(1-4 and 0)</td>
</tr>
<tr>
<td>CH 950</td>
<td>Microanalytical Techniques</td>
<td>3 cr.</td>
<td>(1 and 6)</td>
</tr>
<tr>
<td>CH 991</td>
<td>Doctoral Research</td>
<td>Credit to be arranged.</td>
<td></td>
</tr>
</tbody>
</table>
CITY AND REGIONAL PLANNING

Professors: S. Carter, E. L. Falk, Acting Head; V. S. Hodges
Visiting Associate Professor: R. D. Bray

CRP 411—INTRODUCTION TO CITY AND REGIONAL PLANNING—3 cr. (3 and 0)
Overview of urban land-use planning. Analysis of current work in each significant phase of planning. Discussion of goal formulation, foundation studies, land-use planning methods and considerations, and continuing evaluation and modification of an urban-planning process.

CRP 412—CITY AND REGIONAL PLANNING THEORY—3 cr. (3 and 0)
The philosophical, methodological, and ethical aspects of planning will be explored through selected readings, student reports, lectures and discussion. A critical examination of current planning theories.

CRP 421—URBAN SOCIAL STRUCTURE—3 cr. (3 and 0)
The social, economic, and political aspects of communities of varying sizes and types. Elements will include housing, education, recreation, social services, governmental structure, and related community institutions.

CRP 441—HISTORY OF PLANNING—3 cr. (3 and 0)
The development of the urban plan from ancient to modern times.

CRP 472—PLANNING ADMINISTRATION AND PRACTICE—3 cr. (3 and 0)
The organization and administration of types of planning agencies and their relationship to other governmental and private organizations.

CRP 473—GOVERNMENT AND PLANNING LAW—3 cr. (3 and 0)
A complete coverage of the laws and ordinances relating to redevelopment, subdivision control, zoning, official mapping, and other topics including interpretation, philosophy, enabling legislation, and model ordinances. The legal basis of current and long-range planning policy will be discussed. Prerequisite: CRP 472.

CRP 483—SEMINAR ON PLANNING COMMUNICATION—3 cr. (3 and 0)
Informal means open for plan implementation. The organization of effective public information and education programs, use of citizens’ advisory committees, and application of other implementation techniques. Lectures, student reports, selected readings, and visiting speakers.

CRP 611—INTRODUCTION TO CITY AND REGIONAL PLANNING—3 cr. (3 and 0)
CRP 612—CITY AND REGIONAL PLANNING THEORY—3 cr. (3 and 0)
CRP 621—URBAN SOCIAL STRUCTURE—3 cr. (3 and 0)
CRP 641—HISTORY OF PLANNING—3 cr. (3 and 0)
CRP 672—PLANNING ADMINISTRATION AND PRACTICE—3 cr. (3 and 0)
CRP 673—GOVERNMENT AND PLANNING LAW—3 cr. (3 and 0)
CRP 683—SEMINAR ON PLANNING COMMUNICATION—2 cr. (2 and 0)
CRP 822—URBAN SYSTEMS—3 cr. (3 and 0)
CRP 831—ECONOMICS OF LAND USE PLANNING—3 cr. (3 and 0)
CRP 853—INTRODUCTION TO PLANNING STUDIO—3 cr. (3 and 0)
CRP 854—Planning Studio II—3 cr. (0 and 9)
CRP 863—Planning Studio III—3 cr. (0 and 9)
CRP 864—Planning Thesis—6 cr. (0 and 18)
CRP 881—Seminar in Quantitative Methods I—3 cr. (3 and 0)
CRP 882—Seminar in Quantitative Methods II—3 cr. (3 and 0)
CRP 884—Public Facility Planning—3 cr. (3 and 0)
CRP 893—City and Regional Planning Internship—3 cr. (0 and 0)
CRP 894—City and Regional Planning Internship—3 cr. (0 and 0)

CIVIL ENGINEERING

Associate Professors: W. Baron, H. W. Busching, Head; J. E. Clark, R. E. Elling, J. C. McCormac, J. P. Rostron, A. E. Schwartz, D. B. Stafford

Assistant Professors: Nuri Aekas, B. L. Edge, J. S. Love, Jr., F. L. Roberts

Instructor: K. G. Bhatia

CE 201—Surveying—3 cr. (2 and 3)
Elementary plane surveying for other than Civil Engineering students. Coverage includes measurement of distance, leveling, horizontal and vertical angles, stadia and topography, area and volume calculations, construction surveying. Field exercises provide practice in the use of surveying instruments. Prerequisite: Math 106.

CE 205—Civil Engineering Methodology—2 cr. (1 and 3)
Concepts of civil engineering analysis and design, case histories and project studies, introduction to theory and practice of plane surveying, measurements and errors, differential leveling, and topographic mapping. Laboratory includes typical design and construction problems. Prerequisite: Math 106.

CE 206—Geometrics—2 cr. (1 and 3)
Application of geometrics to civil engineering problems, computations and triangulation, coordinate systems, electronic methods of measuring distances, photogrammetry, introduction to digital computation and elementary programming. Prerequisite: CE 205.

CE 301—Introduction to Structural Science—3 cr. (2 and 2)
Analysis of statically determinate and indeterminate structural elements and systems. Influence lines for beams and trusses, calculation of rotations and deflections by integration, moment area, conjugate beam and unit load methods. Indeterminate analysis by force and displacement methods and moment distribution. Prerequisite: EM 304, CE 206.

CE 302—Structural Design I—3 cr. (2 and 2)
Design and detail of components and connections for timber and metal structures. Prerequisite: CE 301.

CE 310—Transportation Engineering—4 cr. (3 and 2)
Planning, location, design, operation, and administration of highways, railroads, airports and other transportation facilities, including economic con-
siderations, pavement design, and digital computer applications to geometric and earthwork computation. **Prerequisite:** CE 206; **corequisite:** CE 331.

CE 320—**Concrete and Bituminous Materials**—2 cr. (1 and 3)
Investigation and selection of aggregates for portland cement concrete and asphaltic concrete; latest methods of design of portland cement mixes and asphaltic concrete mixes; field control and adjustments; field trips to nearby construction jobs. **Prerequisite:** EM 304 and Junior standing.

CE 330—**Soil Mechanics**—3 cr. (2 and 2)
Mechanical and physical properties of soils and their relation to soil action in problems of engineering, such as classification, permeability, shearing strength, consolidation, stress distribution and bearing capacity of soils. **Prerequisite:** EM 304 and Junior standing.

CE 360—**Civil Engineering Systems Analysis**—3 cr. (2 and 3)
Development of mathematical models for complex civil engineering systems. Digital and analog computer solution techniques. Application to large-scale systems in all phases of civil engineering. Introduction to CSMP and ICES. **Prerequisite:** Math 208 and permission of instructor.

CE 402—**Structural Design II**—3 cr. (2 and 2)
Design and detail of reinforced concrete members using elastic and ultimate strength theories, introduction to prestressed concrete. **Prerequisite:** CE 301, 320.

CE 410—**Traffic Engineering: Operations**—3 cr. (3 and 0)
Basic characteristics of motor-vehicle traffic; techniques for making traffic engineering investigations; design and application of traffic control devices; traffic design of parking facilities; traffic laws and ordinances; public relations. **Prerequisite:** CE 310.

CE 412—**Urban Transportation Planning**—3 cr. (3 and 0) F
Urban travel characteristics; characteristics of transportation systems; transportation and land-use studies; trip distribution and trip assignment models; city patterns and subdivision layout. **Prerequisite:** CE 310.

CE 415—**Seminar in Traffic Engineering**—1 cr. (0 and 2)
Discussion, readings, and practical applications of the operational methods of traffic engineering and consideration of the problems confronting the city, county, and state traffic engineer.

CE 417—**Airphoto Interpretation I**—3 cr. (2 and 3)
A brief review of the basic geometry of aerial photographs, characteristics of geologic and topographic features identifiable from aerial photographs, and site characteristics related to soil profile. Laboratory work includes soil mapping, selection of construction sites, and location of soil deposits for engineering purposes. **Prerequisite:** Junior standing and/or permission of instructor.

CE 419—**General Photogrammetry**—3 cr. (2 and 3) S
Fundamentals of mapping by the use of aerial photographs; characteristics, production and use of aerial photographs; study of the operation of popular photogrammetric instruments including aerial cameras, stereoscopic viewing and plotting equipment; practice in the use of stereocomparator and multiplex plotting instruments; scale, tilt, and coordinate calculations; construction of photomosaics. **Prerequisite:** Math 108 and Junior standing.
CE 420—MECHANICAL PROPERTIES OF MATERIALS—3 cr. (3 and 0)
The course provides a comprehensive introduction to the analysis of mechanical response of materials. Emphasis is placed on the behavior of solid materials that are used in civil engineering structures but are not considered in depth in other undergraduate courses. Plastics, fibers, and composite materials are studied. Students are assisted in investigating a realistic problem in materials technology. Prerequisite: Permission of instructor.

CE 424—CONSTRUCTION METHODS—2 cr. (2 and 0)
A survey of the principal methods and equipment used in the construction industry. Critical path scheduling and short reports are required. Prerequisite: Senior standing.

CE 425—ENGINEERING RELATIONS—3 cr. (3 and 0)
Business, legal, and ethical relations in engineering practice. Prerequisite: Senior standing.

CE 431—APPLIED SOIL MECHANICS—3 cr. (2 and 2)
Relationship of local geology to soil formations, ground water, planning of site investigation, sampling procedures, laboratory determination of design parameter, foundation design, and settlement analysis. Prerequisite: CE 330.

CE 434—CONSTRUCTION COSTS AND ESTIMATES—3 cr. (2 and 2)
Interpretation of specifications and plan reading necessary for the proper estimation of quantities of materials and costs of engineering structures. The course is presented from both the designer's and the constructor's viewpoint in order to fit the young engineer with the essential details an inspector or a construction engineer should have at his command. Prerequisite: Senior standing.

CE 435—ENGINEERING PROJECT ANALYSIS—3 cr. (2 and 2)
Advanced analysis of engineering projects. Theory of economic, financial and intangible analysis of large-scale construction projects. Practical exercises in cost-benefit studies and construction decisions. Prerequisite: Permission of instructor.

CE 453—ADVANCED STRUCTURAL ANALYSIS—3 cr. (3 and 0)
Slopes and deflections of beams and trusses by energy methods. Analysis of statically indeterminate structures and construction of influence lines by virtual-work method. Application of moment distribution and slope deflection methods. Prerequisite: CE 301.

CE 462—PORT AND HARBOR ENGINEERING—3 cr. (3 and 0)
A unified treatment of the basic principles used in the design, construction, and operation of ports and harbors. Emphasis is placed on the philosophy behind port layout and the optimal site and size selections, as well as optimal port operations. The basic principles and economic factors in small craft harbor design are studied. The requirements for harbor maintenance and the design of harbor protection structures are presented. This integrated treatment covers in varying degrees the application of soil, structure, and fluid mechanics as well as some economic optimizing criteria.

CE 490—SPECIAL PROJECTS—1-3 cr. (1-3 and 0)
Studies or laboratory investigations on special topics in the Civil Engineering field which are of interest to individual students and staff members. Arranged
Description of Courses

on a project basis with a maximum of individual student effort and a minimum of staff guidance. Prerequisite: Senior standing.

CE H490—Special Projects—1-3 cr. (1-3 and 0)
Honors section of CE 490; admission by invitation.
(Noncivil engineering students only.)

CE 610—Traffic Engineering: Operations—3 cr. (3 and 0)
CE 612—Urban Transportation Planning—3 cr. (3 and 0)
CE 615—Seminar in Traffic Engineering—1 cr. (0 and 2)
CE 617—Airphoto Interpretation I—3 cr. (2 and 3)
CE 619—General Photogrammetry—3 cr. (2 and 3)
CE 620—Mechanical Properties of Materials—3 cr. (3 and 0)
CE 634—Construction Costs and Estimates—3 cr. (2 and 3)
CE 635—Engineering Project Analysis—3 cr. (2 and 2)
CE 653—Advanced Structural Analysis—3 cr. (3 and 0)
CE 662—Port and Harbor Engineering—3 cr. (3 and 0)
CE 801—Structural Engineering I—3 cr. (3 and 0)
CE 802—Prestressed Concrete Analysis and Design—3 cr. (3 and 0)
CE 803—Reinforced Concrete Structural Systems—3 cr. (3 and 0)
CE 804—Theory and Design of Thin Plates—3 cr. (3 and 0)
CE 805—Plastic Design of Steel Structures—3 cr. (3 and 0)
CE 806—Design of Steel Members—3 cr. (3 and 0)
CE 807—Numerical and Approximate Methods of Structural Analysis—3 cr. (3 and 0)
CE 808—Finite Element Methods in Structural Analysis—3 cr. (3 and 0)
CE 811—Highway Geometric Design—3 cr. (2 and 3)
CE 812—Airphoto Interpretation II—3 cr. (2 and 3)
CE 813—Highway and Airport Pavement Design—3 cr. (3 and 0)
CE 814—Traffic Flow Theory—3 cr. (3 and 0)
CE 815—Highway Safety Engineering—3 cr. (3 and 0)
CE 816—Highway Planning—3 cr. (3 and 0)
CE 818—Airport Planning and Design—3 cr. (3 and 0)
CE 819—Transportation Research—2-4 cr.
CE 820—Cement and Concrete—3 cr. (2 and 3)
CE 821—Bituminous Paving Materials—3 cr. (2 and 3)
CE 822—Aggregates as Construction Materials—3 cr. (2 and 3)
CE 823—Inelastic Behavior of Engineering Materials—3 cr. (3 and 0)
CE 825—Distribution and Properties of Soils—3 cr. (3 and 0)
CE 831—FOUNDATION ENGINEERING—3 cr. (2 and 3)
CE 832—ADVANCED SOIL MECHANICS—3 cr. (3 and 0)
CE 833—PHYSICAL AND PHYSIO-CHEMICAL PROPERTIES OF SOILS—3 cr. (2 and 3)
CE 835—DESIGN OF EARTH STRUCTURES—3 cr. (3 and 0)
CE 889—SPECIAL PROBLEMS I—1-3 cr.
CE 890—SPECIAL PROBLEMS II—1-3 cr.
CE 891—RESEARCH—3 cr.
CE 901—THEORY AND DESIGN OF SHELLS—3 cr. (3 and 0)
CE 902—STRUCTURAL VIBRATIONS—3 cr. (3 and 0)
CE 991—DOCTORAL RESEARCH—Credit to be arranged.

COMPUTER SCIENCE
(Department of Mathematical Sciences)

Professors: R. E. Haymond, A. T. Hind, Jr., J. W. Kenelly
Associate Professors: A. S. Cover, C. E. Kirkwood, Jr., M. C. Palmer
Assistant Professors: W. R. Boland, J. C. Peck, J. A. Zimmer
Instructor: Eugenie V. Bartmess

Comp Sc 205—ELEMENTARY COMPUTER PROGRAMMING—3 cr. (3 and 0)
A detailed study of an algebraic computer programming language and its
use in solving problems. The language will be selected as appropriate to the
computer presently available.

Comp Sc 206—ADVANCED PROGRAMMING IN FORTRAN—3 cr. (3 and 0)
A continuing study of computer programming with the Fortran language.
Emphasis on subroutine computation with application to problems in science
and engineering. Prerequisite: Comp Sc 205.

Comp Sc 207—ADVANCED PROGRAMMING IN PL/1—3 cr. (3 and 0)
A programming course utilizing the advanced features of the PL/1 language.
Topics include dynamic storage allocation, string manipulation, compile-time
facilities, error handling, and list processing. Prerequisite: Comp Sc 205.

Comp Sc 210—ALGORITHMIC PROCESSES FOR ENGINEERS—3 cr. (3 and 0)
Concept and properties of an algorithm, language and notations for describ-
ing algorithms, analysis of computational problems, development of algorithms,
and applications to include polynomial interpolation, zeros of equations, systems
of equations, matrix manipulations, and solution of differential equations.

Comp Sc 308—DATA PROCESSING FOR BUSINESS APPLICATIONS—3 cr.
(3 and 0)
An introduction to the Cobol language with application to business data
processing. Emphasis is placed on the organization and processing of data
files. Prerequisite: Comp Sc 205.

Comp Sc 409—INTRODUCTION TO NUMERICAL ANALYSIS I—3 cr. (3 and 0)
An introduction to the problems of classical numerical analysis emphasizing
computational procedures and application. Topics include: polynomial inter-
polation, matrix methods, systems of linear equations, nonlinear equations,
numerical solution of ordinary differential equations. Prerequisite: Comp Sc 205, E&E 299, Math 208.

Comp Sc 410—Introduction to Numerical Analysis II—3 cr. (3 and 0)

Comp Sc 421—Introduction to Assembler Language Programming—3 cr. (3 and 0)
Computer structure, machine language, assembler language, subroutine linkage, input and output through the operating system, macro definition and conditional assembly. Prerequisite: Comp Sc 205.

Comp Sc 422—Advanced Assembler Language Programming—3 cr. (3 and 0)
A treatment of computer operating systems with special attention being given to IBM systems. This includes a comprehensive study of macro development, job control language, data management, linkage editor, utilities, advanced assembler language and debugging techniques. Prerequisite: Comp Sc 421.

Comp Sc 423—Fundamentals of Software Design—3 cr. (3 and 0)
A detailed study of computer organization in terms of both hardware and software. Topics include interrupt systems, primitive level input/output, job control, advanced data management techniques, linkage editor and utility systems, fundamentals of communications systems. In the early part of the course considerable emphasis is placed on a study of the IBM 360 while in the latter part a variety of other manufacturers' equipment is described. Prerequisite: Comp Sc 205.

Comp Sc 428—Algorithmic Languages and Compilers—3 cr. (3 and 0)
Formed description of algorithmic languages and the techniques used in their compilation, study of syntax, semantics, procedures, replication, iteration, and recursion in these languages, including comparisons of commonly used languages. Prerequisite: Comp Sc 205, Math 295 or equivalent.

Comp Sc 609—Introduction to Numerical Analysis I—3 cr. (3 and 0)

Comp Sc 610—Introduction to Numerical Analysis II—3 cr. (3 and 0)

Comp Sc 621—Introduction to Assembler Language Programming—3 cr. (3 and 0)

Comp Sc 622—Advanced Assembler Language Programming—3 cr. (3 and 0)

Comp Sc 623—Fundamentals of Software Design—3 cr. (3 and 0)

Comp Sc 628—Algorithmic Languages and Compilers—3 cr. (3 and 0)

Note: The following courses are computer related and of interest to computer scientists: Math 428, 429, 452, 628, 629, 652, 861, 862, 863, 864, 987.
DAIRY SCIENCE

Professors: R. W. HENNINGSON, V. HURST, J. J. JANZEN, W. A. KING, Head; J. T. LAZAR, JR.

Associate Professors: C. C. BRANNON, J. F. DICKEY, G. D. O'DELL

DY Sc 201—INTRODUCTION TO DAIRY SCIENCE—3 cr. (2 and 3) F
A fundamental course designed to give the student a working knowledge of Dairy Science. Studies include history of dairying, dairy breeds and cattle evaluation, nutrition, physiology, housing, quality milk production, quality control and the evaluation of milk and its products, the manufacture of milk products and their value in the human food supply.

DY Sc 306—THE CHEMICAL AND PHYSICAL NATURE OF MILK—3 cr.
(2 and 3) S
The nature and properties of the major and minor constituents of milk, the effect of chemical and physical treatment on milk constituents, and analytical methods necessary to determine the composition and properties of milk and its constituents. The philosophy and development of quality control.

DY Sc 307—MARKET MILK—3 cr. (2 and 3) F, '72 and alternate years.
Composition, procurement, processing, distribution, quality control, public health aspects, basic chemistry and bacteriology of industrial milk supplies and cultured products.

DY Sc 310—DAIRY CATTLE SELECTION—1 cr. (0 and 3)
F, '72 and alternate years.
Emphasis is placed upon the selection of dairy cattle for profitable herd operations. Evaluations of herd classifications, fitting, showing, and true type are made.

DY Sc 402—DAIRY MANUFACTURES—4 cr. (3 and 3)
S, '74 and alternate years.
The principles and practice of the manufacture of ice cream and related dairy products, the principles of the manufacturer of condensed and evaporated milks and milk powders, and the physical, chemical and biological factors involved.

DY Sc 404—PLANT MANAGEMENT—3 cr. (2 and 3)
S, '73 and alternate years.
The organization and operation of dairy and food plants and the coordination of all functions into an orderly business enterprise. Emphasis will be given to management's responsibility concerning the procurement, processing, quality control and distribution of food products. Business and industrial techniques are used to develop maximum efficiencies.

DY Sc 409—DAIRY SCIENCE SEMINAR—2 cr. (2 and 0)
F, '73 and alternate years.
Special research problems in production and manufactures are studied. Individual topics not fully covered in classwork are assigned for special report before class and members of Dairy Science Staff.

DY Sc 410—DAIRY SCIENCE SEMINAR—2 cr. (2 and 0)
S, '74 and alternate years.
A continuation of Dy Sc 409 with emphasis on current research literature and research methods.
Instructors:

Associate Professors:

Prerequisite: Comparative concepts of nation, individual S, '73 and alternate years.

Fundamental principles in the care, feeding, and management of dairy cattle of all ages. Topics include general consideration in selecting a breed and the individual cow, calf raising, growth and development of dairy heifers, care and management of the milking herd and feeding for milk production.

DY Sc 453—ANIMAL REPRODUCTION—3 cr. (3 and 0) F

Reproductive physiology and endocrinology of mammals with emphasis on farm animals and frequent reference to reproduction in laboratory animals and humans.

DY Sc 455—ANIMAL REPRODUCTION LABORATORY—1 cr. (0 and 3) F

This course will supplement Dy Sc 453. Practical work will include comparative anatomy and histology of the male and female reproductive organs; semen collection, evaluation and processing; techniques of artificial insemination, sexual behavior and the principles of pregnancy tests for humans. Prerequisite: To be taken concurrently or to follow Dy Sc 453.

DY Sc 602—DAIRY MANUFACTURES—4 cr. (3 and 3)

DY Sc 604—PLANT MANAGEMENT—3 cr. (2 and 3)

DY Sc 606—CHEMICAL AND PHYSICAL NATURE OF MILK—3 cr. (2 and 3)

DY Sc 607—MARKET MILK—3 cr. (2 and 3)

DY Sc 652—DAIRY CATTLE FEEDING AND MANAGEMENT—3 cr. (2 and 3)

DY Sc 653—ANIMAL REPRODUCTION—3 cr. (3 and 0)

DY Sc 655—ANIMAL REPRODUCTION LABORATORY—1 cr. (0 and 3)

DY Sc 801—TOPICAL PROBLEMS—1-3 cr.

DY Sc 802—GENETICS OF DAIRY CATTLE IMPROVEMENT—3 cr. (3 and 0)

DY Sc 803—PHYSIOLOGY OF REPRODUCTION AND MILK SECRETION—3 cr. (3 and 0)

DY Sc 805—NEWER KNOWLEDGE OF DAIRY NUTRITION—3 cr. (3 and 0)

DY Sc 807—FERMENTED DAIRY PRODUCTS—3 cr. (2 and 3)

DY Sc 808—INDUSTRIAL DAIRY SCIENCE—3 cr. (3 and 0)

DY Sc 891—RESEARCH—Credit to be arranged.

ECONOMICS

Professors: H. H. Macaulay, Jr., W. C. Whitten, Jr.

Associate Professor: B. R. Skelton

Assistant Professors: F. A. Close, Head; R. F. Hebert, F. H. Rueter, R. D. Shannon, H. H. Ulbruch, T. B. Yandle, Jr., J. A. Ziegler, P. M. Zipin

ECON 200—ECONOMIC CONCEPTS—3 cr. (3 and 0)

A comprehensive course including both micro and macro economic concepts for the student not having theoretical course requirements beyond the

* Part-time.
principles level or for the student expecting to take a selected group of the 300 level courses in economics.

ECON 201—Principles of Economics—3 cr. (3 and 0)
The fundamental principles of pricing, stabilization and growth in a modern economy. Topics include supply and demand, employment theory and fiscal policy, the banking system and monetary policy, and the economics of growth.

ECON H201—Principles of Economics—3 cr. (3 and 0)
An enrichment of the subject matter of Econ 201 through assigned readings and individualized instruction; admission by invitation.

ECON 202—Principles of Economics—3 cr. (3 and 0)
Continuation of Econ 201 with an intensive study of the economics of the firm, the pricing of resources, and international economic relations. The theory is given relevance through the analysis of current economic problems. Prerequisite: Econ 201.

ECON H202—Principles of Economics—3 cr. (3 and 0)
An enrichment of the subject matter of Econ 202 through assigned readings and individualized instruction; admission by invitation. Prerequisite: Econ 201 or H201.

ECON 301—Economics of Labor—3 cr. (3 and 0)
The economics of the labor market, the problems of the industrial worker, and the methods of adjusting labor-management disputes. Prerequisite: Econ 200 or 201.

ECON 302—Money and Banking—3 cr. (3 and 0)
Considers the function of money and banking in both the product and financial markets. Special emphasis is placed on monetary theory and current problems of monetary policy. Prerequisite: Econ 200 or 201, 202.

ECON 305—Investment Analysis—3 cr. (3 and 0)
A study of techniques useful in analyzing alternative investment opportunities, with emphasis on corporate securities. Investment planning and portfolio management are considered. Prerequisite: Econ 200 or 201.

ECON 306—Risk and Insurance—3 cr. (3 and 0)
Studies the nature of risk and the role of insurance in risk management from individual and business viewpoints by considering insurance carriers, contracts, underwriting and regulation. Prerequisite: Econ 200 or 201.

ECON 308—Collective Bargaining—3 cr. (3 and 0)
The practices, procedures, legal foundations, and legal structure associated with collective bargaining. The form and content of the labor contract, the grievance machinery, and the mediation and arbitration institutions will also be studied. Prerequisite: Econ 200 or 201.

ECON 309—Government and Business—3 cr. (3 and 0)
The relationships between government and business, including among other topics, governmental efforts to enforce competition, to regulate public utilities, and to protect the special interests of laborers, farmers, and consumers. Prerequisite: Econ 200 or 201.
Econ 314—Intermediate Economic Theory—3 cr. (3 and 0)
An analytical study of the basic concepts of value and distribution under alternative market conditions. Prerequisite: Econ 201, 202.

Econ 350T—Economics of the Consumer and the Firm in a Market System—3 cr. (3 and 0)
Scarcity resources impose the necessity of choice on society; the rationale of the market system in the allocation of these scarce resources, basic market theory and its application to contemporary economic problems in American society; the solutions of a nonmarket system will be contrasted. Open only to public school teachers of social studies.

Econ 351T—Economics of Employment, the Price Level, and Growth—3 cr. (3 and 0)
National income accounting concepts will be studied; also money and banking, monetary policy, fiscal policy, and an analysis of their relationship to national income, employment, the price level, and economic growth. Open only to public school teachers of social studies.

Econ 403—Development of Economic Thought—3 cr. (3 and 0)
A study of the origin and evolution of ideas with some emphasis on the historical context, the problems which inspired these ideas, and the nature of the solutions which they provided: from ancient days to the present. Prerequisite: Econ 200 or 201, 202.

Econ 404—Comparative Economic Systems—3 cr. (3 and 0)
A comparative analytical and historical study of the principal economic systems which have been important in the modern world including among others, capitalism and socialism. Prerequisite: Econ 200 or 201, 202.

Econ 407—National Income and Employment Analysis—3 cr. (3 and 0)
An intensive study of selected economic theories with special emphasis on income and employment. Part of the course is devoted to the analysis of national income accounts and income. Prerequisite: Econ 200 or 201, 202.

Econ 409—The Economics of Income Distribution—3 cr. (3 and 0)
Examines the extent and causes of poverty, the effects of discrimination on income inequality, and studies the various public policy remedies and their economic consequences.

Econ 410—Economic Development—3 cr. (3 and 0)
Consideration and analysis of economic and related problems of the underdeveloped countries. Attention will be given to national and international programs designed to accelerate solution of these problems. Prerequisite: Econ 200 or 201, 202.

Econ 412—International Trade—3 cr. (3 and 0)
A study of economic principles particularly applicable to trade between nations. Topics covered include the balance of payments, determination of foreign exchange rates, price and income effects on the composition and level of trade, and commercial policy. Prerequisite: Econ 314.

Econ 413—International Finance—3 cr. (3 and 0)
With primary emphasis upon international monetary relations, the course surveys history and theory. Topics covered include exchange-rate determi-
nation, exchange-stability conditions, the purchasing-power-parity doctrine, the effects of devaluation and exchanging speculation. (Not open to students who have taken Econ 412.) Prerequisite: Econ 302.

ECON 414—THE ECONOMICS OF INTERNATIONAL COMPETITION—3 cr. (3 and 0)
Analyze the structural and institutional frameworks under which international competition occurs with emphasis on the comparative economic effects of alternative frameworks on comparative advantage and economic growth.

ECON 416—DEVELOPMENT OF THE MODERN ECONOMY—3 cr. (3 and 0)
An analysis of the historical forces and influences which have contributed to the emergence and development of the modern economy. Prerequisite: Econ 200 or 201, 202.

ECON 419—ECONOMICS OF DEFENSE—3 cr. (3 and 0)
Examines the American defense establishment in terms of resources utilized, the alternative uses of these resources and the contribution to the national economy and scientific progress that is generated by these resources in a defense use. Particular attention is given to economic problems inherent in shifting resources from non-defense to defense uses and vice versa as well as among alternative defense uses. Prerequisite: Acct 201, Econ 200 or 201.

ECON 420—ECONOMICS OF TAXATION—3 cr. (3 and 0)
An intensive study of a limited number of problems in taxation with particular emphasis on the economic effects that cause and result from certain taxes. Topics include averaging, incentives to work, incidence, concepts of equity, excess burden, definitions of income, depletion, and capital gains. Prerequisite: Econ 314.

ECON 421—URBAN ECONOMICS—3 cr. (3 and 0)
Economic problems associated with the concentration of population in central places are examined. The historical development of cities and the associated economic implications for individuals, firms, and society are studied. Legislation of economic importance to urban living is analyzed. Prerequisite: Econ 200 or 201, 202.

ECON 422—MONETARY THEORY AND POLICY—3 cr. (3 and 0)
An intensive study of the role of monetary factors in economic change. Modern monetary theories and their empirical relevance for policy are developed against a background of monetary history and institutions. Prerequisite: Econ 302 or permission of instructor.

ECON 423—ECONOMICS OF HOUSING—3 cr. (3 and 0)
A study of the economics of the provision for housing in a growing society. The problem will be examined within the context of economic theory. Empirical evidence will be evaluated; current national, regional, and local situations will be examined. Public policy on housing and various alternative solutions to the problem will be studied.

ECON 424—THE ORGANIZATION OF INDUSTRIES—3 cr. (3 and 0)
Empirical, historical, and theoretical analyses of market structure and concentration in American industry: the effects of oligopoly, monopoly, and
cartelization upon price, output and other policies of the firm; antitrust and other public policies and problems will be studied. Prerequisite: Econ 314.

ECON 603—DEVELOPMENT OF ECONOMIC THOUGHT—3 cr. (3 and 0)
ECON 604—COMPARATIVE ECONOMIC SYSTEMS—3 cr. (3 and 0)
ECON 607—NATIONAL INCOME AND EMPLOYMENT ANALYSIS—3 cr. (3 and 0)
ECON 610—ECONOMIC DEVELOPMENT—3 cr. (3 and 0)
ECON 612—INTERNATIONAL TRADE—3 cr. (3 and 0)
ECON 613—INTERNATIONAL FINANCE—3 cr. (3 and 0)
ECON 616—DEVELOPMENT OF THE MODERN ECONOMY—3 cr. (3 and 0)
ECON 619—ECONOMICS OF DEFENSE—3 cr. (3 and 0)
ECON 620—ECONOMICS OF TAXATION—3 cr. (3 and 0)
ECON 621—URBAN ECONOMICS—3 cr. (3 and 0)
ECON 622—MONETARY THEORY AND POLICY—3 cr. (3 and 0)
ECON 623—ECONOMICS OF HOUSING—3 cr. (3 and 0)
ECON 624—THE ORGANIZATION OF INDUSTRIES—3 cr. (3 and 0)
ECON 650T—ECONOMICS OF THE CONSUMER AND THE FIRM IN A MARKET SYSTEM—3 cr. (3 and 0)
ECON 651T—ECONOMICS OF EMPLOYMENT, THE PRICE LEVEL, AND GROWTH—3 cr. (3 and 0)
ECON 800—ADVANCED ECONOMIC ANALYSIS—3 cr. (3 and 0)
ECON 802—ADVANCED ECONOMIC CONCEPTS AND APPLICATIONS I—3 cr. (3 and 0)
ECON 803—ADVANCED ECONOMIC CONCEPTS AND APPLICATIONS II—3 cr. (3 and 0)
ECON 810—SEMINAR IN ECONOMIC METHODOLOGY—3 cr. (3 and 0)
ECON 811—SEMINAR IN LABOR ECONOMICS—3 cr. (3 and 0)
ECON 812—SEMINAR IN THE DEVELOPMENT OF ECONOMIC THOUGHT—3 cr. (3 and 0)
ECON 813—SEMINAR IN COMMUNITY GOODS AND ENVIRONMENTAL QUALITY—3 cr. (3 and 0)
ECON 814—WELFARE ECONOMICS—3 cr. (3 and 0)
ECON 820—SEMINAR IN THE ECONOMICS OF TAXATION—3 cr. (3 and 0)
ECON 821—ECONOMIC THEORY I—3 cr. (3 and 0)
ECON 822—ECONOMIC THEORY II—3 cr. (3 and 0)
ECON 831—SEMINAR IN URBAN DEVELOPMENT ECONOMICS—3 cr. (3 and 0)
ECON 891—RESEARCH—Credit to be arranged.
ECON 900—SEMINAR IN ADVANCED ECONOMIC THEORY—3 cr. (3 and 0)
EDUCATION

Professors: C. R. Freeze, M. A. King, Head; H. F. Landrith, M. A. Packer
Associate Professors: G. W. Gray, J. A. Hash, J. E. Matthews, W. W. Pennscott

Assistant Professors: I. Carolyn Briscoe, S. L. Buckner, Elizabeth B. Galloway, J. R. Harris, E. F. Olive, T. H. Parry

Instructors: J. H. Adair, Teryle W. Carpenter, Sharon G. West

Ed 011—Basic Reading—5 cr. (5 and 0)
Designed for students who have not acquired adequate reading skills as demonstrated by scores on entrance examinations or diagnostic tests. Study skills, vocabulary, content reading and diagnosis of students’ problems, including counseling for vocational and academic potential. Course meets five hours per week.

Ed 013—Basic Reading—5 cr. (5 and 0)
A continuation of Ed 011. Designed for students who have not acquired adequate reading skills as demonstrated by scores on entrance examinations or diagnostic tests. Study habits, vocabulary, content reading and diagnosis of students’ problems including counseling for vocational and academic potential. Course meets five hours per week.

Ed 100—Orientation—1 cr. (1 and 0)
Lectures and discussions on teaching in addition to serving as teacher aides. Required of all students in Early Childhood Education, Elementary Education, Secondary Education, and Science Teaching.

Ed 101—Reading Improvement—1 cr. (0 and 2)
Developmental reading for University students who desire to improve reading skills; open to any University student, but priority given to referrals.

Ed 102—Efficient Reading—1 cr. (0 and 3)
Specific goals are to increase reading rate and flexibility of reading rate with a satisfactory level at comprehension, and to broaden general and technical vocabulary. Individual diagnosis provides an individual program developed under the direction of the reading instructor.

Ed 301—History of American Education—3 cr. (3 and 0)
Development of educational systems, theories and practices against a background of American social and intellectual history. Prerequisite: Junior standing or permission of instructor.

Ed H301—History of American Education—3 cr. (3 and 0)
Honors section of Ed 301; admission by invitation.

Ed 302—Educational Psychology—3 cr. (3 and 0)
The nature, capacities, equipment, growth, and development of the learner.

Ed H302—Educational Psychology—3 cr. (3 and 0)
Honors section of Ed 302; admission by invitation.

Ed 334—Child Growth and Development—3 cr. (3 and 0)
A study of the physical and emotional growth and development of the child. Prerequisite: Ed 302 or Psych 201.
Description of Courses

Ed 335—Adolescent Growth and Development—3 cr. (3 and 0)
The physical and emotional growth and development of the adolescent. Prerequisite: Ed 302 or Psych 201.

Ed 335—Adolescent Growth and Development—3 cr. (3 and 0)
Honors section of Ed 335; admission by invitation.

Ed 336—Behavior of the Preschool Child—3 cr. (2 and 2)
A study of behavior of the preschool child, including observation and participation. Prerequisite: Ed 302 or Psych 201.

Ed 401—The Community College—3 cr. (3 and 0)
History and philosophy of the junior college, its functions, organization and administration.

Ed 405—Principles of Guidance—3 cr. (3 and 0)
Principles, procedures, and policies of the guidance services. For all personnel workers. Prerequisite: 6 semester hours in education or psychology.

Ed 406—History and Philosophy of Education—3 cr. (3 and 0)
An analysis of the development of modern education practices and philosophies with emphasis upon the historical and philosophical development in the United States.

Ed 412—Directed Teaching in Secondary School Subjects—6 cr. (1 and 15)
A program of supervised observation and teaching in cooperation with selected public schools in which opportunities are provided for prospective teachers to obtain experiences in the subject area. Students to be sectioned according to teaching fields: English, History and Social Sciences, Mathematics, Modern Languages, Science. (Enrollment is limited to seniors or graduates who have completed prerequisite courses and who have the accumulated grade-point ratio necessary for graduation.)

Ed 424—Methods and Materials in Secondary School Instruction—3 cr. (3 and 0)
Development of instructional practices and materials appropriate for the secondary school; familiarization with curriculum materials. Students to be sectioned according to teaching area: English, History and Social Science, Mathematics, Modern Languages, Science.

Ed 428—The Systems Approach to Education—3 cr. (2 and 3)
The course will include the development of task analysis techniques, development and use of behavioral objectives, writing of the curriculum and incorporation of the various types of media into a systematic instructional program. Prerequisite: Ed 497 or consent of instructor.

Ed 431—Special Institute Course: Early Childhood Education—3 cr. (3 and 0)
Subject areas organized according to Institute needs.

Ed 432—Special Institute Course: Elementary School—3 cr. (3 and 0)
Subject areas organized according to Institute needs.

Ed 433—Special Institute Course: Secondary School—3 cr. (3 and 0)
Subject areas organized according to Institute needs.
Ed 434—Special Institute Course: Current Problems in Education—3 cr. (3 and 0)
Subject areas organized according to Institute needs.

Ed 435—Special Institute Course: Curriculum—3 cr. (3 and 0)
Subject areas organized according to Institute needs.

Ed 436—Special Institute Course: Supervision and Administration—3 cr. (3 and 0)
Subject areas organized according to Institute needs.

Ed 458—Health Education—3 cr. (3 and 0)
A study of the information needed for effective cooperation with parents, physicians and public health agencies in the promotion and improvement of community health, including problems of personal hygiene, health records, immunization, and control of communicable disease.

Ed 459—Fundamentals of Basic Reading—3 cr. (3 and 0)
Study of reading skills in relation to the psychological bases; developmental principles; historical and current issues in reading practices.

Ed 460—Curriculum Development in the Elementary School—3 cr. (3 and 0)
An analysis and evaluation of newer practices in curriculum planning in the elementary school.

Ed 461—Teaching Reading in the Elementary School—3 cr. (3 and 0)
Study of the various phases of reading and their relation to the elementary program. Emphasis on modern practices in the classroom teaching of reading.

Ed 462—Reading Diagnosis and Remediation—3 cr. (2 and 3)
A clinical course in diagnostic and remedial procedures in the teaching of reading. Practice in the use of diagnostic instruments, interpretation of results, and case studies, with recommended remediation. Laboratory hours to be arranged with each individual. Prerequisite: 3 semester hours in reading or permission of instructor.

Ed 465—Secondary School Curriculum—3 cr. (3 and 0)
A study of the principles, techniques, and trends in secondary school curriculum development and evaluation.

Ed 466—Curriculum for Early Childhood Education—3 cr. (3 and 0)
Critical study of early childhood curriculum for nursery schools, kindergarten and early elementary grades.

Ed 471—The Exceptional Child—3 cr. (3 and 0)
Survey of exceptionality including handicapped and gifted children; nature, cause, and treatment of difficulties; educational problems.

Ed 472—Psychology of Mental Retardation—3 cr. (3 and 0)
Psychological aspects of mental retardation; learning, motivation, and personality development.

Ed 473—Teaching the Mentally Retarded—3 cr. (3 and 0)
Study, selection, and preparation of curricular materials; methods of teaching retarded children within the preadolescent and adolescent range. Prerequisite: Ed 472 or equivalent.
Ed 481—Directed Teaching in the Elementary School—6 cr. (1 and 15)
Supervised observation and teaching experiences in cooperation with selected elementary schools. (Enrollment is limited to seniors or graduates who have completed prerequisite courses and who have the accumulated grade-point ratio for graduation.)

Ed 483—Methods and Materials for Early Childhood Education—3 cr. (3 and 0)
Study of methods and materials applicable to nursery schools, kindergarten, and early elementary grades.

Ed 484—Directed Teaching in Early Childhood Education—6 cr. (1 and 15)
Supervised observation and teaching experiences in cooperation with nursery, kindergartens, and early elementary schools. (Enrollment is limited to seniors or graduates who have completed prerequisite courses and who have the accumulated grade-point ratio for graduation.)

Ed 485—Methods and Curriculum in Elementary Mathematics and Science—3 cr. (3 and 0)
Develop understandings, skills, and attitudes in the elementary mathematics and science curriculum, with emphasis on strategies, techniques, and materials for teaching elementary mathematics and science.

Ed 486—Methods and Curriculum in Elementary Social Studies and Language Arts—3 cr. (3 and 0)
Study of the elementary program with emphasis upon social studies and language arts materials, curriculum, and methodology.

Ed 491—Descriptive Statistics—3 cr. (3 and 0)
Basic descriptive statistics and research methodology applicable to education, psychology, and other social sciences.

Ed 494—School and Community Relationships—3 cr. (3 and 0)
A study of the interdependence of the school and community, with emphasis on educational implications.

Ed 497—Audio-Visual Aids in Education—3 cr. (3 and 0)
The techniques and uses of audio-visual aids in improving teaching effectiveness.

Ed 498—Teaching Secondary School Reading—3 cr. (3 and 0)
Methods and materials of teaching basic and developmental reading skills; programming special services in reading instruction. Demonstrations of tests and devices.

Ed 601—The Community College—3 cr. (3 and 0)

Ed 605—Principles of Guidance—3 cr. (3 and 0)

Ed 606—History and Philosophy of Education—3 cr. (3 and 0)

Ed 628—The Systems Approach to Education—3 cr. (2 and 3)

Ed 631—Special Institute Course: Early Childhood Education—3 cr. (3 and 0)

Ed 632—Special Institute Course: Elementary School—3 cr. (3 and 0)
Ed 633—Special Institute Course: Secondary School—3 cr. (3 and 0)
Ed 634—Special Institute Course: Current Problems in Education—
3 cr. (3 and 0)
Ed 635—Special Institute Course: Curriculum—3 cr. (3 and 0)
Ed 636—Special Institute Course: Supervision and Administration—
3 cr. (3 and 0)
Ed 660—Curriculum Development in the Elementary School—3 cr.
(3 and 0)
Ed 662—Reading Diagnosis and Remediation—3 cr. (2 and 3)
Ed 665—Secondary School Curriculum—3 cr. (3 and 0)
Ed 671—The Exceptional Child—3 cr. (3 and 0)
Ed 672—Psychology of Mental Retardation—3 cr. (3 and 0)
Ed 673—Teaching the Mentally Retarded—3 cr. (3 and 0)
Ed 694—School and Community Relationships—3 cr. (3 and 0)
Ed 697—Audio-Visual Aids in Education—3 cr. (3 and 0)
Ed 698—Teaching Secondary School Reading—3 cr. (3 and 0)
Ed 707—Readings in Education—3 cr. (3 and 0)
Ed 720—School Personnel Administration—3 cr. (3 and 0)
Ed 721—Legal Phases of School Administration—3 cr. (3 and 0)
Ed 722—Field Experiences in School Administration and Supervision—
3 cr. (2 and 3)
Ed 801—Seminar in Human Growth and Development—3 cr. (3 and 0)
Ed 802—Human Development: Psychology of Learning—3 cr.
(3 and 0)
Ed 803—Advanced Methods of Teaching in the Secondary School—
3 cr. (3 and 0)
Ed 804—Advanced Methods of Teaching in the Elementary Grades—
3 cr. (3 and 0)
Ed 808—Educational Tests and Measurements—3 cr. (3 and 0)
Ed 809—Analysis of the Individual—3 cr. (3 and 0)
Ed 810—Techniques of Counseling—3 cr. (3 and 0)
Ed 811—School Finance—3 cr. (3 and 0)
Ed 813—Educational and Vocational Informational Services and
Placement—3 cr. (3 and 0)
Ed 814—Field Experiences in Elementary School Guidance—3 cr.
(2 and 3)
(2 and 3)
Ed 816—Field Experiences in Personnel Services in Higher
Education—3 cr. (2 and 3)
Ed 817—Clinical Studies in Counseling and Guidance—1-3 cr.

Ed 818—Field Problems in School Administration and Supervision of Instruction—3 cr. (2 and 3)

Ed 830—Techniques of Supervision—The Public Schools—3 cr. (3 and 0)

Ed 831—Evaluation of Secondary School Instruction—3 cr. (3 and 0)

Ed 832—Evaluation of Instruction in the Elementary Schools—3 cr. (3 and 0)

Ed 840—Research Utilization—3 cr. (3 and 0)

Ed 851—Organization and Administration of the Elementary Schools—3 cr. (3 and 0)

Ed 852—Organization and Administration of the Secondary School—3 cr. (3 and 0)

Ed 861—Organization and Supervision of Reading Programs—3 cr. (3 and 0)

Ed 862—Clinical Research in Reading—3 cr. (3 and 0)

Ed 863—Practicum in Reading—3 cr. (2 and 2)

Ed 871—Interpersonal and Group Relationships—3 cr. (3 and 0)

Ed 881—Individual Testing I—3 cr. (3 and 0)

Ed 882—Individual Testing II—3 cr. (3 and 0)

Ed 890—Introduction to Research in Education—3 cr. (3 and 0)

ELECTRICAL AND COMPUTER ENGINEERING

Professors: R. W. Gilchrist, J. W. Lathrop, J. T. Long, J. C. Martin, J. N. Thurston, L. C. Wilcox, Acting Head

Assistant Professors: D. C. Amoss, J. N. Gowdy, H. J. Helgert, R. D. Stinaff

Instructors: J. R. Fraker, C. W. Malstrom

E&CE 298—Digital Computation: Systems and Programs—1 cr. (1 and 0) F, S

An introduction to digital computation and digital computer systems: Historical background; components of the computer system; information flow; storage; basic algorithms; flow charting; and introduction to instruction writing.

E&CE 299—Digital Computation—2 cr. (1 and 2) F, S

A programming course designed to prepare students for the efficient use of digital computers. Fortran and PL-1 languages are used. An ideal course for those desiring a short but comprehensive introduction to computing. **Prerequisite:** E&CE 298.
E&CE 307—Basic Electrical Engineering—3 cr. (3 and 0) F, S
A course designed for the student needing a general knowledge of the following topics: electric circuit theory, electronics, and energy conversion devices. Prerequisite: Math 206, Phys 221, 223.

E&CE 308—Electronics and Electromechanics—3 cr. (2 and 2) F, S
A study of electronic devices and systems, as well as magnetic circuits and energy conversion methods. A previous knowledge of basic circuit theories assumed. Prerequisite: E&CE 331.

E&CE 312—Electromechanics—3 cr. (2 and 2) S
The principles of energy conversion are introduced with emphasis on electromagnetic and electromechanical devices. From these, the mathematical and equivalent circuit models are developed, considering nonlinear magnetic characteristics and linear approximation. These models facilitate representation of the devices in extended systems. In-laboratory studies are made on the characteristics of saturable reactors, magnetic amplifiers, loudspeakers, transformers, d-c motors and generators, and a-c motors and generators. These characteristics are compared with those of the mathematical models. Prerequisite: E&CE 330, 331, 340.

E&CE 315—Information Theory—3 cr. (3 and 0) S
A course designed for those interested in developing a precise definition of information, and then applying this definition to the study of communication. Coding and the effect of noise on the system will be discussed. In the last part of the course upper bounds on the rate at which a process can transmit information will be obtained. Prerequisite: E&CE 327 or Math 301.

E&CE 320—Electronics I—2 cr. (2 and 0) F, S
The fundamental principles of solid-state electronic devices including the structural properties of semiconductors, charge carrier motion, p-n junction theory, and electrical circuit models of transistors. Emphasis is given to the physical principles describing the operation of modern electronics components. Prerequisite: Phys 221, 222.

E&CE 321—Electronics II—2 cr. (2 and 0) F, S
Solid-state circuit theory covering the design of small signal—low frequency amplifiers and multistage and feedback systems; applications involving operational amplifiers, field effect transistors, and integrated circuits are covered. Prerequisite: E&CE 320, 330, 331.

E&CE 325—Electronics and Electromagnetics Laboratory I—1 cr. (0 and 2) F, S
Laboratory projects dealing with instrumentation and measurement procedures associated with solid-state electronic devices and electromagnetic fields. Prerequisite: Concurrent enrollment in E&CE 320, 340.

E&CE 326—Electronics and Electromagnetics Laboratory II—1 cr. (0 and 2) F, S
Experimentation in electronics circuits design and electronic systems analysis, including integrated circuits. Projects relating to studies of time varying fields, transmission lines, wave guides, and antennas are included. Prerequisite: E&CE 325. Concurrent enrollment in E&CE 321, 341.
E&CE 327—ENGINEERING APPLICATIONS OF PROBABILITY AND RANDOM VARIABLES—3 cr. (3 and 0) F

An introduction to probability and random variables with emphasis on engineering applications. Subjects which will be covered include: probability space, conditional probabilities, independent events, Bernoulli trials, random variables, distribution functions, functions of random variables, and correlation and power spectrum of stationary random processes. Prerequisite: Math 208.

E&CE 329—LOGIC AND COMPUTING DEVICES—3 cr. (2 and 2) F, S

A study of logic with an introduction to propositional calculus and Boolean Algebra. Number systems and representation of information. The use of electric devices to implement logic functions and computing elements. The organization and structure of computing systems. Prerequisite: Approval of department.

E&CE 330—SYSTEMS I—3 cr. (3 and 0) F, S

The systems concept and system analysis methods are developed. The system model is developed through the study of functions and data forms, perfect drivers, response, two terminal elements, system geometry, linear algebra and subsystems. Branch, node, mesh, and state models are considered. Solution methods include the use of the analog and digital computer. Nonlinear components are introduced in simple systems. Prerequisite: Math 208 or approval of department.

E&CE H330—SYSTEMS I—3 cr. (3 and 0) F, S

Honors section of E&CE 330; admission by invitation.

E&CE 331—ELECTRIC CIRCUITS WORKSHOP I—3 cr. (2 and 2) F, S

Computational sessions, demonstrations and laboratory projects are coordinated with E&CE 330 (Systems I) in the area of electrical phenomenon. Electrical instrumentation and measurement procedures are introduced to illustrate component modeling and network response. Applications involving both continuous and discrete behavior are discussed. Problem solving using digital and analog computers is emphasized. Prerequisite: Concurrent enrollment with E&CE 330.

E&CE H331—ELECTRIC CIRCUITS WORKSHOP I—3 cr. (2 and 2)

Honors section of E&CE 331; admission by invitation.

E&CE 332—SYSTEMS II—2 cr. (2 and 0)

A continuation of Systems I. Transforms of equations and functions and formulation of system equations in the S-domain. Two-part and N-terminal components studies include input-output and transfer parameters, measurement procedures, and system reduction methods. Solution methods include the use of transforms, analog computers and digital computers. Optimization methods are introduced. Prerequisite: E&CE 330.

E&CE 333—ELECTRIC CIRCUITS WORKSHOP II—3 cr. (2 and 2) F, S

A continuation of E&CE 331. Transfer function concepts, multiterminal component modeling and computer simulations are among topics covered. A variety of electrical devices and systems are discussed including machinery and other energy conversion and solid-state devices. Prerequisite: Concurrent enrollment in E&CE 332.
E&CE 340—Electric and Magnetic Fields I—2 cr. (2 and 0) F, S
An introduction to classical electromagnetics. Topics include vector analysis, Coulomb's law, electric field intensity, Gaussian's law, potential theory, solution of Laplace's equation, D.C. magnetic fields, magnetic circuits and devices, and forces in magnetic fields. Prerequisite: Math 208.

E&CE 341—Electric and Magnetic Fields II—2 cr. (2 and 0) F, S
Continuation of E&CE 340 to include time-varying fields, Maxwell's equations, transmission lines, waveguides, and antennas. Prerequisite: E&CE 340.

E&CE 350—Principles of Digital Computer Systems—3 cr. (2 and 2) F
Introduction to machine structure and programming systems. Topics include: general machine organization and operation, information flow within a machine, internal and external data types and structures, data transfers and communication with external devices, and interrelation between software and hardware. The various levels of programming systems are considered, but the main emphasis is placed on machine language. Prerequisite: Approval of department.

E&CE 351—Real-Time Application of Digital Computers—3 cr. (2 and 2) S
Introduction to the application and operation of digital computers in a real-time or time-critical environment. Topics include: interrupt and data-break facilities, analog-to-digital and digital-to-analog signal conversion, timing considerations, digital computer interfaces, and on-line acquisition and reduction of data. Software concepts include multitask real-time executives, schedulers, dynamic resource allocation algorithms, level executors, background-foreground systems, and device handlers. Prerequisite: E&CE 350 or approval of department.

E&CE 352—Machines, Languages, and Algorithms—3 cr. (3 and 0) S
An introduction to several theoretical topics necessary for a broad fundamental knowledge of computation. The topics covered fall generally into three major areas: finite state models, formal languages, and computability. Emphasis is placed on relating formalisms to practical considerations such as logical design of digital machines and the limitations of machine computation. Prerequisite: Junior standing in Engineering or Physical Sciences or approval of department.

E&CE 401—Seminar—1 cr. (1 and 0)
Emphasis is placed on methods of presenting engineering concepts appropriate to an industrial environment. Recent developments in the field of electrical engineering are discussed as examples with consideration being given to their economic as well as scientific significance. A library research paper is a required part of the course. Prerequisite: Senior standing.

E&CE 403—Energy Conversion—3 cr. (3 and 0) F
Various methods of energy conversion, both electromechanical and direct. Fuel cells, magnetohydrodynamics, nuclear and other methods are discussed along with more conventional systems. Prerequisite: Approval of department.

E&CE 404—Semiconductor Devices—2 cr. (2 and 0) S
Consideration of the principles of operation, the external characteristics, and the applications of some of the more important semiconductor devices presently
available. **Prerequisite:** Introductory Electronics course and approval of department.

E&CE 405—Special Problems—Variable credit. F, S

Electrical Engineering problems assigned to the student according to his needs and capabilities. The purpose is to give students a chance to do projects, either theoretical or experimental, on subjects not covered in other courses. **Prerequisite:** Approval of department.

E&CE H405—Special Problems—Variable credit.

A special honors course of Electrical Engineering problems assigned to the student according to his needs and capabilities. The purpose is to give students a chance to do projects, either theoretical or experimental, on subjects not covered in other courses. **Prerequisite:** Approval of department.

E&CE 406—Introduction to Integrated Circuits—3 cr. (3 and 0) F

Integrated circuit technology, devices and applications. Discussion of fabrication methods, survey of standard circuit characteristics, design and layout principles, linear and digital circuit applications. **Prerequisite:** Senior standing.

E&CE 410—Systems III—3 cr. (3 and 0) F, S

An extension of Systems II into more advanced topics including flow concepts, stability, synthesis, optimization, and analysis with digital machines using—CSMP-ECAP and other simulation programs. **Prerequisite:** E&CE 332.

E&CE 411—Electrical Systems Workshop—2 cr. (0 and 4) F, S

A continuation of E&CE 333. Larger more complex systems are considered. Projects illustrating state space and classical control theory are undertaken. Network synthesis and analysis through digital simulations are also covered. **Prerequisite:** E&CE 333.

E&CE 412—Digital Control Systems—3 cr. (3 and 0) S

A discussion of the technical and economic aspects of the field of digital control. Major emphasis is placed on the various hardware, installation, and use topics in the field as well as theoretical discussions of the theory of computer automatic control and systems optimization. A comprehensive preview of the status of current theoretical investigations and their place in the industrial control scene. Associated computer control hardware, such as process sensors, signal systems, and final control elements are also examined. Digital and hybrid simulation studies, as well as logic control system designs augment the theoretical presentations.

E&CE 419—Electrical Machinery Laboratory I—1 cr. (0 and 2) F

A laboratory course designed to accompany E&CE 421. Includes measurements of A.C. and D.C. machine parameters, analog computer simulation with emphasis on control. **Prerequisite:** Enrollment in E&CE 421.

E&CE 420—Power Systems Analysis—3 cr. (3 and 0) S

Study of electric power system operation. Subjects covered include transmission lines, load-flow studies, economic dispatching, symmetrical components, fault calculations, and introduction to power system stability. **Prerequisite:** E&CE 312.
E&CE 421—ELECTRICAL MACHINERY—3 cr. (3 and 0) F
Characteristics of A.C. and D.C. machines are studied with emphasis on dynamic operation and control. Prerequisite: E&CE 333, 341.

E&CE 422—ELECTRONICS III—2 cr. (2 and 0) F, S
An introduction to logic circuits, switching devices, and electronic storage systems. Frequency response of electronic components and systems, oscillator fundamentals, principles of modulation and power supply design are also covered. Prerequisite: E&CE 321, 333.

E&CE 426—DIGITAL COMPUTER DESIGN—3 cr. (3 and 0) S
Design of the basic arithmetic and logical units of a digital computer. Study of timing and control problems. Design of a small computing system. Prerequisite: E&CE 329.

E&CE 427—OPERATIONAL AMPLIFIERS—2 cr. (2 and 0) S
The fundamentals, design, and applications of the operational amplifier. Prerequisite: E&CE 320 or equivalent.

E&CE 428—COMMUNICATIONS THEORY I—3 cr. (3 and 0) F
A course in modern communications theory. Topics covered are Fourier transforms, power spectra, correlation, signals in linear networks, amplitude modulation, frequency modulation, sampling and pulse modulation. Prerequisite: E&CE 321.

E&CE 429—COMPUTER ORGANIZATION—3 cr. (3 and 0) F
A computer system is organized as a collection of subsystems. The functional characteristics of each subsystem along with the information flow and interactions between these subsystems are studied. The functional specifications of selected computer systems are discussed to illustrate representative computer organizations. The interaction of hardware and software is stressed. Topics include: bus structures, memory organization and heirarchy, memory protection, memory relocation and allocation techniques, interrupt structures, arithmetic units, input-output structures, state generation, central processor organization, and control function implementation. Prerequisite: E&CE 350, 351, or approval of department.

E&CE 430—COMMUNICATIONS THEORY II—3 cr. (3 and 0) S
A continuation of E&CE 428 with emphasis on the statistical properties of signals. Topics covered are random signals and noise, signal space and continuous channels, digital data systems, optimum detection theory. Prerequisite: E&CE 327, 428.

E&CE 431—DIGITAL ELECTRONICS—3 cr. (3 and 0) S
Electronic devices and circuits of importance to digital computer operation. Active and passive waveshaping, waveform generation, memory, switching, and logic circuits are topics included. Prerequisite: E&CE 321.

E&CE 432—INSTRUMENTATION—3 cr. (3 and 0) F
Theory and analysis of transducers and related circuits and instrumentation. Generalized configurations and performance characteristics of instruments will be considered. Transduction devices for measuring physical parameters such as motion, force, torque, pressure, flow, and temperature will be discussed. Prerequisite: E&CE 321 or approval of department.
E&CE 433—DIGITAL ELECTRONICS LABORATORY—1 cr. (0 and 2) S
A laboratory course designed to accompany E&CE 431. Prerequisite: Concurrent registration in E&CE 431.

E&CE 434—POWER ELECTRONICS—3 cr. (3 and 0) F
A study of electronic devices and systems which are designed to control or regulate large amounts of power. Included are SCR applications to inverters, motor controls, high-current power supplies, frequency converters, etc. Also, high-current switching systems, voltage stabilizers, and other power applications of electronics are considered. Prerequisite: E&CE 422.

E&CE 435—COMMUNICATIONS CIRCUITS—3 cr. (3 and 0) S
Communication circuits used in amplification, modulation, detection and other signal processing in modern communication systems. Recent developments in electronic devices, such as integrated circuits, will be considered as circuit components along with other solid state and vacuum electronic devices. Prerequisite: E&CE 422.

E&CE 436—RADIATION AND WAVE PROPAGATION—3 cr. (3 and 0) F
Electromagnetic waves, waveguides, and antennas. Prerequisite: E&CE 341.

E&CE 437—LASER TECHNOLOGY AND APPLICATIONS—3 cr. (3 and 0) S
An introduction to the design factors and operating principles of solid-state, gas, and semiconductor lasers, couched in the language of electrical engineering and electron physics. Applications of laser technology to such areas as communications, computers, measurements, and medicine are presented. The theory and applications of holography are explored. Special problems and demonstrations relative to electrical engineering application of lasers are designed to augment the theoretical presentations.

E&CE 438—PROCESS INSTRUMENTATION AND CONTROL SYSTEMS—3 cr. (3 and 0) F
The development of process instrumentation and control systems are examined with an emphasis on complete systems planning and design. All aspects of process measurement and control problems are presented beginning with the acquired data and ending with a control signal from a final control element. Hardware concepts and techniques are emphasized. Prerequisite: E&CE 432 or consent of instructor.

E&CE 450—SYSTEMS IV—3 cr. (3 and 0) F, S
A continuation of Systems III. Modern control system concepts including matrices and vector spaces, state equations, sample data systems, controllability and observability, nonlinear systems and synthesis. Also advanced computations in optimizing parametric programming and simulation are done using the analog, digital, and hybrid computers. Prerequisite: E&CE 410.

E&CE 451—SYSTEM DESIGN WORKSHOP—2 cr. (0 and 4) F, S
A project-oriented course which brings together electrical engineering students of dissimilar training into teams or project groups. Assignments are made to each group which are designed to help develop an appreciation for individual and creative thinking as well as team effort. Prerequisite: E&CE 411.

E&CE 452—PROGRAMMING SYSTEMS—3 cr. (3 and 0) S
A second course in programming languages and systems. Topics include: assemblers, compilers and syntactical methods; string manipulation and list
Electrical and Computer Engineering

processing; concepts of executive programs and operating systems; introduction to time-sharing systems. *Prerequisite:* E&CE 350; 352 is recommended.

E&CE 460—Computer-Aided Analysis and Design—3 cr. (3 and 0) F
Principles and methods suited to the solution of engineering problems on the digital computer. Topics include widely used methods for the solution of the systems of algebraic and/or differential equations which arise in the modeling of engineering systems, data approximation and curve fitting, continuous system simulation languages, and design-oriented programming systems. *Prerequisite:* E&CE 332 or approval of department.

E&CE 461—Analog/Hybrid Computation and Simulation—3 cr. (2 and 2) S
A continuation of the introductory analog concepts considered in E&CE 331 and 333. Topics include nonlinear modeling, function generation, signal processing, and an introduction to hybrid computing. *Prerequisite:* E&CE 333 or approval of department.

E&CE 603—Energy Conversion—3 cr. (3 and 0)
E&CE 606—Introduction to Integrated Circuits—3 cr. (3 and 0)
E&CE 610—Systems III—3 cr. (3 and 0)
E&CE 611—Electrical Systems Workshop—2 cr. (0 and 4)
E&CE 612—Digital Control Systems—3 cr. (3 and 0)
E&CE 619—Electrical Machinery Laboratory I—1 cr. (0 and 2)
E&CE 620—Power System Analysis—3 cr. (3 and 0)
E&CE 621—Electrical Machinery—3 cr. (3 and 0)
E&CE 622—Electronics III—2 cr. (2 and 0)
E&CE 626—Digital Computer Design—3 cr. (3 and 0)
E&CE 627—Operational Amplifiers—2 cr. (2 and 0)
E&CE 628—Communications Theory I—3 cr. (3 and 0)
E&CE 629—Computer Organization—3 cr. (3 and 0)
E&CE 630—Communications Theory II—3 cr. (3 and 0)
E&CE 631—Digital Electronics—3 cr. (3 and 0)
E&CE 632—Instrumentation—3 cr. (3 and 0)
E&CE 633—Digital Electronics Laboratory—1 cr. (0 and 2)
E&CE 634—Power Electronics—3 cr. (3 and 0)
E&CE 635—Communications Circuits—3 cr. (3 and 0)
E&CE 636—Radiation and Wave Propagation—3 cr. (3 and 0)
E&CE 637—Laser Technology and Applications—3 cr. (3 and 0)
E&CE 638—Process Instrumentation and Control Systems—3 cr. (3 and 0)
E&CE 650—Systems IV—3 cr. (3 and 0)
E&CE 651—System Design Workshop—2 cr. (0 and 4)
E&CE 652—Programming Systems—3 cr. (3 and 0)
E&CE 660—Computer-Aided Analysis and Design—3 cr. (3 and 0)
E&CE 661—Analog/Hybrid Computation and Simulation—3 cr. (2 and 2)
E&CE 801—Analysis of Linear Systems I—3 cr. (3 and 0)
E&CE 802—Analysis of Linear Systems II—3 cr. (3 and 0)
E&CE 803—Seminar—1 cr. (1 and 0)
E&CE 804—Network Synthesis I—3 cr. (3 and 0)
E&CE 805—Network Synthesis II—3 cr. (3 and 0)
E&CE 806—Nonlinear Networks and Systems I—3 cr. (3 and 0)
E&CE 807—Power System Stability—3 cr. (3 and 0)
E&CE 808—Energy Conversion—3 cr. (3 and 0)
E&CE 809—Advanced Computer Control Systems—3 cr. (3 and 0)
E&CE 810—Modern Control Theory I—3 cr. (3 and 0)
E&CE 811—Modern Control Theory II—3 cr. (3 and 0)
E&CE 812—Sampled Data Systems—3 cr. (3 and 0)
E&CE 814—Nonlinear Automatic Controls—3 cr. (3 and 0)
E&CE 815—Random Data Measurements and Analysis—3 cr. (3 and 0)
E&CE 816—Linear Integrated Circuits—3 cr. (3 and 0)
E&CE 819—Detection and Estimation Theory—3 cr. (3 and 0)
E&CE 820—Theory of Communications I—3 cr. (3 and 0)
E&CE 821—Theory of Communications II—3 cr. (3 and 0)
E&CE 822—Information Theory—3 cr. (3 and 0)
E&CE 823—Integrated Circuit Technology—3 cr. (3 and 0)
E&CE 824—Applications of Integrated Circuits—3 cr. (3 and 0)
E&CE 825—Solid-State Electronics—3 cr. (3 and 0)
E&CE 826—Large-Scale Integration—3 cr. (3 and 0)
E&CE 827—Instrumentation and Measurements—3 cr. (3 and 0)
E&CE 830—Electromagnetics I—3 cr. (3 and 0)
E&CE 831—Electromagnetics II—3 cr. (3 and 0)
E&CE 832—Antenna Theory I—3 cr. (3 and 0)
E&CE 834—Microwave Electronics—3 cr. (3 and 0)
E&CE 836—Optical Electromagnetics and Quantum Electronics—3 cr. (3 and 0)
E&CE 844—Digital Signal Processing—3 cr. (3 and 0)
E&CE 850—Computation and Simulation—3 cr. (3 and 0)
E&CE 851—Theory and Design of Digital-Analog Machines—3 cr. (3 and 0)
E&CE 852—Digital Computers and Information Processing—3 cr. (3 and 0)
E&CE 853—Computer Data Displays—3 cr. (3 and 0)
E&CE 854—Advanced Simulation Studies—3 cr. (3 and 0)
E&CE 855—Artificial Intelligence—3 cr. (3 and 0)
E&CE 856—Pattern Recognition—3 cr. (3 and 0)
E&CE 857—Coding Theory—3 cr. (3 and 0)
E&CE 858—Automata Theory—3 cr. (3 and 0)
E&CE 860—Engineering Application of Optimization—3 cr. (3 and 0)
E&CE 861—Foundation and Methodology of Systems Engineering—3 cr. (3 and 0)
E&CE 863—Advanced Physical Systems I—3 cr. (3 and 0)
E&CE 864—Advanced Physical Systems II—3 cr. (3 and 0)
E&CE 870—BiOSYSTEMS Analysis—3 cr. (3 and 0)
E&CE 890—Selected Topics in Electrical Engineering—3 cr. (3 and 0)
E&CE 891—Research—3 cr.
E&CE 991—Doctoral Research—Credit to be arranged.

ENGINEERING

Engr 180—Engineering Concepts—3 cr. (2 and 2)
An introduction to the profession of engineering. An analysis of role and responsibilities of the engineer in contemporary society. The engineering process, from problem formulation to the evolution of creative design, is demonstrated through comprehensive project studies. The course provides the student with insight into the relationship between science and engineering through discussions of typical problems frequently encountered in engineering systems. The course emphasizes the utility and significance of computing devices in present-day engineering practice. An introduction to computer programming and a discussion of computer system architecture are among the topics covered.

Engr 491—Seminar—1-3 cr. (1-3 and 0)
A study of the dynamic role of engineering in relationship to man and his environment. Topics not covered in formal courses will be presented to keep students abreast of today's rapidly changing technology. Prerequisite: Permission of instructor.
ENGINEERING GRAPHICS

Professor: E. Laitala, Head
Associate Professors: B. E. Dunkle, A. F. Hammond, L. H. Jameson, C. M. McHugh
Assistant Professors: C. W. Carter, C. D. Meeks
Instructor: C. O. Huey

EG 101—Freehand Sketching—1 cr. (0 and 3)
Principles of technical sketching, including the development of skills in technical lettering and freehand orthographic and pictorial drawing.

EG 103—Engineering Communications—3 cr. (1 and 6)
The role of engineering communication in engineering and management. Graphic communication includes lettering, sketching, orthographic projection, auxiliary projection, sections and conventional practices, dimensioning, working drawings. Architectural drawing, charts and graphs, presentation techniques. Manufacturing philosophy; interrelation between product design and production processes. For Industrial Management majors.

EG 104—Engineering Communication and Design—2 cr. (0 and 6)
The role of engineering communication from the manager's point of view. Working drawings relating product design and production processes. Architectural drawing nomography, charts and graphs, presentation techniques. Prerequisite: EG 109 or consent of instructor.

EG 105—Engineering Graphics—2 cr. (0 and 6)
A course in graphical communication. Freehand sketching, orthographic and auxiliary projection, sectional views, and conventional practices, dimensioning, reading drawings.

EG 109—Engineering Graphical Communication—2 cr. (0 and 6)
Graphical methods of communicating ideas and information in engineering. Development of the student's ability to visualize three dimensional forms and spatial relationships through the study of creative freehand sketching and basic fundamentals of engineering representation. Use of drafting aids, introduction to computer graphics, curve plotting, reproduction methods.

EG 110—Engineering Communication (For Technical Operations)—2 cr. (0 and 6)

EG 201—Engineering Graphics for Industrial Education—3 cr. (1 and 6)
A comprehensive study of Engineering Graphics fundamentals. The course includes lettering, use of instruments, technical sketching, multi-viewing drawing, auxiliary projection, descriptive geometry, sectional views, dimensioning, fasteners, detail and assembly drawings.

EG 202—Graphical Technology for Industrial Education—3 cr. (1 and 6)
Continuation of EG 201 with emphasis on depth in graphical communication. Working drawings to include detail and assembly drawings. Inter-
sections and developments. Specifications, standards. Architectural drawings. Production illustration, pedagogy of graphics, pragmatic and creative design. **Prerequisite:** EG 201.

EG 301—ADVANCED ENGINEERING GRAPHICS—3 cr. (1 and 6)

Application of the fundamental principles of Engineering Graphics to the solution of three dimensional spatial problems in the design of various engineering systems. Creative functional design, introduction to graphical kinematics and computer-aided design. **Prerequisite:** EG 109 or 202.

EG 302—GRAPHICAL COMPUTATION—3 cr. (2 and 3)

Graphic layouts of empirical equations. The application of graphical solution of equations, nomography, and the graphical calculus to the solution of problems in engineering and science. Graphical solution of differential equations. **Prerequisite:** EG 109, Math 106 or equivalent.

ENGINEERING MANAGEMENT

Professors: C. C. Davis, B. J. Todd, C. H. Whitehurst, Jr.

Associate Professors: F. R. Gray, E. A. LaRoche, G. D. Riggs, C. O. Shuleb, C. R. Smith, J. M. Wannamaker

Assistant Professors: T. H. Gunter, Jr., J. A. Turner

EMgt 910—Seminar in Production Management—2 cr. (2 and 0)

EMgt 911—Seminar in Decision Theory—2 cr. (2 and 0)

EMgt 912—Seminar in Finance—3 cr. (3 and 0)

EMgt 913—Systems Analysis—3 cr. (3 and 0)

EMgt 991—Doctoral Research—Credit to be arranged.

ENGINEERING MECHANICS

Professors: N. R. Bauld, Jr., R. W. Moorman, Head

Associate Professors: W. E. Castro, R. E. Elling, J. G. Goree, A. G. Law, R. F. Nowack, M. K. Richardson, P. B. Zielinski

Assistant Professors: E. H. Law, C. R. Mitchell

EM 200—Statics (Scalar)—3 cr. (3 and 0)

Forces and force systems and their external effect on bodies; principally the condition of equilibrium for two-dimensional structures. Both analytical and graphical techniques are employed, and the rigor of physical analysis is emphasized. **Prerequisite:** Math 108.

EM 201—ENGINEERING MECHANICS (Statics)—3 cr. (3 and 0)

Forces and force systems and their external effect on bodies; principally the condition of equilibrium. The techniques of vector mathematics are employed, and the rigor of physical analysis is emphasized. **Prerequisite:** Phys 122, concurrent registration in Math 206.

EM H201—ENGINEERING MECHANICS (Statics)—3 cr. (3 and 0)

An honors section of EM 201; admission by invitation.

* On leave.
EM 202—ENGINEERING MECHANICS (DYNAMICS)—3 cr. (3 and 0)
A continuation of EM 201. The principal topics are kinematics and kinetics of particles and rigid bodies of finite size. Techniques of vector mathematics are employed. Prerequisite: EM 201, Math 206.

EM H202—ENGINEERING MECHANICS (DYNAMICS)—3 cr. (3 and 0)
An honors section of EM 202; admission by invitation.

EM 211—PARTICLE MECHANICS: STATICS AND DYNAMICS—3 cr. (3 and 0)
Force and force systems and their effect on particles; the conditions of equilibrium and the kinematics and kinetics of particle motion. The techniques of vector mathematics are employed, and the rigor of physical analysis is emphasized. Prerequisite: Phys 122, Math 206.

EM 304—MECHANICS OF MATERIALS—3 cr. (3 and 0)
The relationships between external loads on solid bodies or members and the resulting internal effects and dimension changes, including the derivation of rational formulas for stresses and deformations and the identification and use of important mechanical properties of engineering materials. Prerequisite: EM 201, Math 206.

EM H304—MECHANICS OF MATERIALS—3 cr. (3 and 0)
An honors section of EM 304; admission by invitation.

EM 305—MECHANICS OF MATERIALS LABORATORY—1 cr. (0 and 3)
Theoretical relationships considered in EM 304 are verified. Students observe the behavior under load and the failure of engineering materials; identify and evaluate mechanical properties of materials important to design and manufacturing processes; and are acquainted with various testing methods, testing machines, and instruments. Prerequisite: Must be accompanied or preceded by EM 304.

EM 320—FLUID MECHANICS—3 cr. (3 and 0)
The behavior of fluids at rest or in motion, including the study of fluid properties. Emphasis is placed upon a rational, analytical approach from which are developed basic principles of broad applicability to all fields of engineering. Prerequisite: EM 202 or 211.

EM H320—FLUID MECHANICS—3 cr. (3 and 0)
An honors section of EM 320; admission by invitation.

EM 322—FLUID MECHANICS LABORATORY—1 cr. (0 and 3)
The principles developed in EM 320 are verified and demonstrated. Familiarization with orderly techniques in organizing and reporting results of experimental investigations and with the use of instruments and equipment is afforded. Prerequisite: Must be accompanied or preceded by EM 320.

EM 421—HYDROLOGY AND HYDRAULICS—2 cr. (2 and 0)
Elements of surface water and ground water hydrology are introduced and applied to engineering problems. Special topics of open channel hydraulics and water distribution systems are developed from the fundamentals of fluid mechanics. Prerequisite: EM 320.

EM 425—ADVANCED MECHANICS OF MATERIALS—3 cr. (3 and 0)
A continuation of EM 304. This course includes traditional topics in strength of materials, such as shear center, unsymmetrical bending, torsion
of noncircular sections, curved members, and elastic stability. Additionally, there are introduced topics from theory of elasticity as related to simple bending and torsion problems. *Prerequisite:* EM 304.

EM 450—Mechanical Vibrations—3 cr. (3 and 0)
Mathematical analysis of physical problems in the vibration of mechanical systems. Topics include: linear free vibrations, forced vibrations and damping in single degree of freedom systems, transient response, multidegree of freedom systems with lumped parameters, Lagrange's equations. *Prerequisite:* EM 202, 304, Math 208.

EM 470—Experimental Stress Analysis I—3 cr. (2 and 3)
Experimental analysis of static and dynamic stress fields. Emphasis is on the techniques required to obtain data and the theoretical analysis required for proper interpretation. Methods and instrumentation associated with strain gages (including transducer applications), Moiré grids, brittle coatings, birefringent coatings, and photoelasticity are studied. *Prerequisite:* EM 304 and permission of instructor.

EM 621—Hydrology and Hydraulics—2 cr. (2 and 0)
EM 625—Advanced Mechanics of Materials—3 cr. (3 and 0)
EM 650—Mechanical Vibrations—3 cr. (3 and 0)
EM 670—Experimental Stress Analysis I—3 cr. (2 and 3)
EM 802—Experimental Stress Analysis II—3 cr. (2 and 3)
EM 821—Continuum Mechanics—3 cr. (3 and 0)
EM 823—Dimensional Analysis and Dynamic Similarity—3 cr. (3 and 0)

EM 827—Topics in Analytical Mechanics—3 cr. (3 and 0)
EM 829—Energy Methods and Variational Principles—3 cr. (3 and 0)
EM 831—Theory of Elasticity I—3 cr. (3 and 0)
EM 832—Theory of Elasticity II—3 cr. (3 and 0)
EM 834—Theory of Elastic Stability—3 cr. (3 and 0)
EM 845—Intermediate Dynamics—3 cr. (3 and 0)
EM 881—Special Problems—3 cr. (3 and 0)
EM 889—Seminar—0-1 cr. (1 and 0)
EM 890—Seminar—0-1 cr. (1 and 0)
EM 891—Research—Credit to be arranged.
EM 932—Theory of Plasticity—3 cr. (3 and 0)
EM 980—Special Topics in Mechanics—3 cr. (3 and 0)
EM 981—Special Topics in Mechanics—3 cr. (3 and 0)
EM 982—Special Topics in Mechanics—3 cr. (3 and 0)
EM 983—Special Topics in Mechanics—3 cr. (3 and 0)
EM 991—Doctoral Research—Credit to be arranged.
ENGLISH

Professors: R. J. Calhoun, H. M. Cox, C. B. Green, Harriet R. Holman, M. A. Owings, Head

ENGL 011—English—5 cr. (5 and 0)
Writing centered around sentence structure and the single paragraph. Prose readings to accompany classwork.

ENGL 013—English—5 cr. (5 and 0)
Extensive writing of compositions longer than a paragraph. Prose, nonfiction readings to accompany classwork.

ENGL 101—English Composition—3 cr. (3 and 0)
Training in correct and effective expression, in brief expository essays; review of the fundamentals of grammar and punctuation; instruction in common expository methods.

ENGL H101—English Composition—3 cr. (3 and 0)
Honors section of Engl 101; admission by invitation.

ENGL 102—English Composition—3 cr. (3 and 0)
Continued emphasis on correct and effective expression; an introduction to nonfiction prose, fiction, drama, and poetry; training in the organization and writing of the research report. Prerequisite: Engl 101.

ENGL H102—English Composition—3 cr. (3 and 0)
Honors section of Engl 102; admission by invitation.

ENGL 105—Fundamentals of Oral Communication—3 cr. (3 and 0)
Introduction to the problems of oral communication in the following areas: oral reading, listening, discussion, speaking, with emphasis on individual needs; oral exercises.

ENGL 111—English for Foreign Students—3 cr. (3 and 2)
A special course for students learning English as a second language. Intensive study and drill in American English pronunciation and listening comprehension. Required of all foreign students who do not make a satisfactory grade on screening examinations in oral English.

ENGL 203—A Survey of English Literature—3 cr. (3 and 0)
Chief British authors and works from Beowulf to the Romantic period; continued emphasis on composition. Prerequisite: Engl 102.

* On leave.
ENGL H203—Survey of English Literature—3 cr. (3 and 0)
Honors section of Engl 203; admission by invitation.

ENGL 204—A Survey of English Literature—3 cr. (3 and 0)
Chief British authors and works from Romantic period to the present.
Proficiency in composition must be demonstrated. Prerequisite: Sophomore
standing or permission of department.

ENGL H204—Survey of English Literature—3 cr. (3 and 0)
Honors section of Engl 204; admission by invitation.

ENGL 205—American Literature I—3 cr. (3 and 0)
A survey of American literature to the Civil War, with emphasis on major
writers. Proficiency in composition must be demonstrated. Prerequisite: Engl
101, 102.

ENGL 206—American Literature II—3 cr. (3 and 0)
A survey of American literature from the Civil War to the present, with
emphasis on major writers. Proficiency in composition must be demonstrated.
Prerequisite: Engl 101, 102.

ENGL 207—A Survey of World Literature I—3 cr. (3 and 0)
Translations from the Hellenic, Hebraic, and Oriental Worlds, with emphasis
on major authors. Proficiency in composition must be demonstrated. Prerequi-
site: Engl 101, 102.

ENGL 208—A Survey of World Literature II—3 cr. (3 and 0)
Translations from the Medieval, Renaissance, and Modern Worlds, with
emphasis on major writers. Proficiency in composition must be demonstrated.
Prerequisite: Engl 101, 102.

ENGL 215—Introduction to Drama—3 cr. (3 and 0)
Introduction to drama as a literary form through readings of representative
plays from Aeschylus to Ibsen. Prerequisite: Engl 101, 102.

ENGL 217—Vocabulary Building—3 cr. (3 and 0)
Development of a useful, discriminating vocabulary for writing, speaking,
and reading. Student notebooks and proficiency quizzes. Prerequisite: Engl
101, 102.

ENGL 221—The Classics in Translation—3 cr. (3 and 0)
An examination of the whole of the The Iliad, The Odyssey, Hesiod's
Theogony, The Aeneid, The Metamorphoses, Apuleius's The Golden Asse,
and selections from Herodotus and Tacitus. Prerequisite: Engl 101, 102.

ENGL 222—Mythology—3 cr. (3 and 0)
Great myths of the world, with applications to literature.

ENGL 223—Continental Fiction in Translation—3 cr. (3 and 0)
Selected fiction of the European masters, primarily Russian, French, German,
and Spanish. Prerequisite: Engl 101, 102.

ENGL 231—Introduction to Journalism—3 cr. (3 and 0)
Instruction and practice in writing for mass media; editorial responsibilities.
Prerequisite: Engl 102.

ENGL 232—Introduction to Broadcasting—3 cr. (3 and 0)
The history and scope of radio and television broadcasting in America.
ENGL 240—BLACK AMERICAN LITERATURE—3 cr. (3 and 0)
Black American literature from its beginning to the present. A critical examination of essays, short stories, novels, drama, and poetry produced by the Black American. **Prerequisite:** Engl 101, 102.

ENGL 300—JOURNALISM WORKSHOP—1 cr. (1 and 0)
Responsibilities and duties of students editing uncensored publications; criticism of student publications. Open only to members of publication staffs. **Prerequisite:** Engl 102.

ENGL 301—PUBLIC SPEAKING—3 cr. (3 and 0)
Practical training in public speaking; attention to diction, voice, and platform presence; an introduction to parliamentary procedure; practice in preparing and delivering short speeches. **Prerequisite:** Sophomore standing.

ENGL 302—PERSUASION—3 cr. (3 and 0)
The theories and art of ethical oral persuasion. The composition and delivery of speeches of a persuasive nature to convince, to stimulate, and to actuate. **Prerequisite:** Engl 105 or 301.

ENGL 303—VOICE AND DICTIO N—3 cr. (3 and 0)
Practical training in speech, with emphasis on clarity, vocal variety, and tone quality.

ENGL 304—ADVANCED COMPOSITION—3 cr. (3 and 0)
Supervised writing for students of advanced standing, each student undertaking projects according to his interest; some attention to reports, business letters, research methods and materials. Weekly papers and some larger exercises. Limited enrollment. **Prerequisite:** Sophomore English.

ENGL 305—ORAL INTERPRETATION OF LITERATURE—3 cr. (3 and 0)
Analysis and oral interpretation of selected poetry and prose; training in development of effective tone production. **Prerequisite:** Engl 101, 102.

ENGL 306—FORENSIC LABORATORY—1 cr. (0 and 3)
Organized preparation for participation in college speech activities. Intercollegiate, campus, and community programs.

ENGL 307—ARGUMENTATION AND DEBATE—3 cr. (3 and 0)
The basic principles of argumentation with emphasis on developing practical skills in argumentative speech. The role of the advocate in contemporary society and an analysis of selected significant debates in U.S. history. **Prerequisite:** Permission of instructor.

ENGL 308—PRINCIPLES OF ACTING—3 cr. (3 and 0)
Acting for the stage, basic techniques of characterization, audition procedures, exercises in emotional recall and pantomime, experience in supervised performance. **Prerequisite:** Engl 101, 102.

ENGL 309—STAGE DIRECTION—3 cr. (3 and 0)
A laboratory class designed to prepare students to direct plays and supervise other theatre activities for educational institutions or civic organizations. **Prerequisite:** Engl 308 or 310.

ENGL 310—INTRODUCTION TO THE THEATRE—3 cr. (3 and 0)
The history of play production from the Greeks to modern times. The role of lighting, costuming, set design and other elements in play production. **Prerequisite:** Junior standing.
ENGL 311—THEATRE LABORATORY—1 cr. (0 and 3)
Participation in theatre production including stage management, direction, costume, makeup, lighting, sound, scenery, and business management. No formal class meetings. One credit. May be repeated for a total of three credits.
Prerequisite: Sophomore standing and permission of instructor.

ENGL 331—CREATIVE WRITING—3 cr. (3 and 0)
The technique of non-expository writing—narration, description, dramatization. Prerequisite: Sophomore standing or higher and permission of instructor.

ENGL 332—CREATIVE WRITING—3 cr. (3 and 0)
A continuation of Engl 331. Prerequisite: Engl 331 or permission of instructor.

ENGL 333—THE STRUCTURE OF FICTION—3 cr. (3 and 0)
A study of the short story, the novella, and the novel from the writer’s point of view. Prerequisite: Permission of instructor.

ENGL 339—SCIENCE FICTION—3 cr. (3 and 0)
Readings in science fiction from the seventeenth century to the present, with special emphasis on writers since Verne and Wells. Prerequisite: Sophomore English.

ENGL 351—CHILDREN’S LITERATURE—3 cr. (3 and 0)
Wide reading in prose and verse suitable for children in elementary grades. Prerequisite: Sophomore English.

ENGL 352—adolescent LITERATURE—3 cr. (3 and 0)
Wide reading in prose and verse suitable for children in secondary schools. Prerequisite: Sophomore English.

ENGL 362—SPEECH IN THE ELEMENTARY CLASSROOM—3 cr. (3 and 0)
The development of oral communication skills in children and the use of speech improvement activities to motivate spontaneous, accurate self-expression. Prerequisite: Junior standing.

ENGL 363—SPEECH FOR TEACHERS—3 cr. (3 and 0)
A performance course in the communication needs of the professional educator: listening, group discussion, speech and drama activities, conferences, using the media, and micro-teaching. Prerequisite: Engl 301, 305, or 308.

ENGL 402—THE ENGLISH LANGUAGE—3 cr. (3 and 0)
Studies in English usage and the historical development of the language. Prerequisite: Junior standing.

ENGL 404—THE STRUCTURE OF MODERN ENGLISH—3 cr. (3 and 0)
Structural linguistic analysis; principles of phonology, morphology, and syntax as related to traditional, structural, and transformational grammars. Recommended for English teachers. Prerequisite: Junior standing.

ENGL 405—SHAKESPEARE—3 cr. (3 and 0)
An introduction to Shakespeare’s plays through a study of the tragedies Hamlet, Othello, King Lear, Macbeth, Anthony and Cleopatra, and of the two tragic plays Romeo and Juliet and Julius Caesar. Prerequisite: Junior standing.
ENGL 406—Shakespeare—3 cr. (3 and 0)
A selective study of Shakespeare's comedies and histories. Prerequisite: Junior standing.

ENGL 409—Chaucer—3 cr. (3 and 0)
Chaucer as an artist; the "Prologue" for historical and linguistic orientation; "The Canterbury Tales," "House of Fame," "Parliament of Fowls," and "Troilus and Criseyde" as art forms. Prerequisite: Junior standing.

ENGL 410—Middle English Literature—3 cr. (3 and 0)
Selected works written in English between 1100 and 1500, exclusive of Chaucer. Prerequisite: Junior standing.

ENGL 413—Classical Drama—3 cr. (3 and 0)
Selected readings in the dramatic literature of classical Greece and Rome. Prerequisite: Junior standing.

ENGL 416—Modern Drama—3 cr. (3 and 0)
Principles and progress of drama from Ibsen to the present; analysis of representative plays; critical reports; discussion of trends in contemporary drama. Prerequisite: Junior standing.

ENGL 422—A Survey of American Literature—3 cr. (3 and 0)
The Colonial Period to the Civil War, with emphasis on major authors. Prerequisite: Junior standing.

ENGL 423—A Survey of American Literature—3 cr. (3 and 0)
From the Civil War to the early twentieth century, with emphasis on major authors. Prerequisite: Junior standing.

ENGL 424—A Survey of American Literature—3 cr. (3 and 0)
Twentieth century, with emphasis on major authors. (Not open to those who have passed Engl 438.) Prerequisite: Junior standing.

ENGL 425—The Romantic Revival—3 cr. (3 and 0)
The eighteenth century forerunners of Romanticism; Wordsworth, Coleridge, Byron, Shelley, Keats. Prerequisite: Junior standing.

ENGL 427—Victorian Poetry—3 cr. (3 and 0)
Extensive readings from the poets of the Victorian Age. Prerequisite: Junior standing.

ENGL 429—Nineteenth Century Prose—3 cr. (3 and 0)
Readings in the fiction of the nineteenth century after Jane Austen and in the essays of the Romantic and Victorian periods. Prerequisite: Junior standing.

ENGL 431—The Restoration and Eighteenth Century—3 cr. (3 and 0)
Readings in Dryden, Swift, Pope, and Dr. Johnson. Prerequisite: Junior standing.

ENGL 435—Southern Literature—3 cr. (3 and 0)
The intellectual and literary achievement of the South from 1607 to the present, with emphasis upon the writers of the nineteenth century. Prerequisite: Junior standing.

ENGL 436—Milton and His Age—3 cr. (3 and 0)
The development of Milton's thought and art in relation to his times and to the writings of his contemporaries. Prerequisite: Junior standing.
ENGL 437—THE EIGHTEENTH CENTURY ENGLISH NOVEL—3 cr. (3 and 0)
A critical and historical study of the English novel from Defoe to Jane Austen. Prerequisite: Junior standing.

ENGL 438—TWENTIETH CENTURY POETRY—3 cr. (3 and 0)
The modern tradition in English and American poetry from Yeats to the present; relevant critical essays. (Not open to those who have completed Engl 424.) Prerequisite: Junior standing.

ENGL 439—TWENTIETH CENTURY FICTION—3 cr. (3 and 0)
American and British novelists and short story writers of the twentieth century. Prerequisite: Junior standing.

ENGL 440—APPLIED LITERARY CRITICISM—3 cr. (3 and 0)
Major critical approaches to literature, in theory and practice, from Aristotle to the present. Prerequisite: Junior standing.

ENGL 443—SEVENTEENTH CENTURY POETRY AND PROSE—3 cr. (3 and 0)
A survey of British authors of the seventeenth century other than Shakespeare and Milton. Prerequisite: Junior standing.

ENGL 445—RENAISSANCE NONDRAMATIC LITERATURE—3 cr. (3 and 0)
Tudor and Elizabethan poetry, prose fiction, translations, essays, and criticism. Prerequisite: Junior standing.

ENGL 446—TUDOR-STUART DRAMA—3 cr. (3 and 0)
Selected readings in non-Shakespearean dramatic literature of the sixteenth and seventeenth centuries. Prerequisite: Junior standing.

ENGL 447—THE AMERICAN NOVEL—3 cr. (3 and 0)
A survey of the most significant forms and themes of the American novel from its beginnings to 1900. Prerequisite: Junior standing.

ENGL 461—STUDIES IN ENGLISH LITERATURE TO 1700—3 cr. (3 and 0)
Selected readings in English literature from the beginnings to 1700, with emphasis on social and intellectual backgrounds. Prerequisite: Junior standing.

ENGL 462—STUDIES IN ENGLISH LITERATURE SINCE 1700—3 cr. (3 and 0)
Selected readings in English literature from 1700 to the present, with emphasis on social and intellectual backgrounds. Prerequisite: Junior standing.

ENGL H470—SENIOR DIVISION HONORS ENGLISH—3 cr. (3 and 0)
An intensive study of a period, topic, genre, or figure. Papers, reports, reading list, examination. Prerequisite: Engl 203, 204 or H203, H204 and approval of the Honors Council. May be repeated by arrangement with the department.

ENGL 481—DIRECTED READING—1-3 cr. (1-3 and 0)
Class and tutorial work for students with special interests in projects in American, British, or European literature outside the scope of existing courses. May be repeated by arrangement with the department. Prerequisite: Junior standing, or Engl H203, H204, and invitation of the department.

ENGL 602—THE ENGLISH LANGUAGE—3 cr. (3 and 0)
ENGL 604—THE STRUCTURE OF MODERN ENGLISH—3 cr. (3 and 0)
ENGL 605—SHAKESPEARE—3 cr. (3 and 0)
Description of Courses

ENGL 606—Shakespeare—3 cr. (3 and 0)
ENGL 609—Chaucer—3 cr. (3 and 0)
ENGL 610—Middle English Literature—3 cr. (3 and 0)
ENGL 613—Classical Drama—3 cr. (3 and 0)
ENGL 616—Modern Drama—3 cr. (3 and 0)
ENGL 622—A Survey of American Literature—3 cr. (3 and 0)
ENGL 623—A Survey of American Literature—3 cr. (3 and 0)
ENGL 624—A Survey of American Literature—3 cr. (3 and 0)
ENGL 625—The Romantic Revival—3 cr. (3 and 0)
ENGL 627—Victorian Poetry—3 cr. (3 and 0)
ENGL 629—Nineteenth Century Prose—3 cr. (3 and 0)
ENGL 631—The Restoration and Eighteenth Century—3 cr. (3 and 0)
ENGL 635—Southern Literature—3 cr. (3 and 0)
ENGL 636—Milton and His Age—3 cr. (3 and 0)
ENGL 637—The Eighteenth Century English Novel—3 cr. (3 and 0)
ENGL 638—Twentieth Century Poetry—3 cr. (3 and 0)
ENGL 639—Twentieth Century Fiction—3 cr. (3 and 0)
ENGL 640—Applied Literary Criticism—3 cr. (3 and 0)
ENGL 643—Seventeenth Century Poetry and Prose—3 cr. (3 and 0)
ENGL 645—Renaissance Nondramatic Literature—3 cr. (3 and 0)
ENGL 646—Tudor-Stuart Drama—3 cr. (3 and 0)
ENGL 647—The American Novel—3 cr. (3 and 0)
ENGL 661—Studies in English Literature to 1700—3 cr. (3 and 0)
ENGL 662—Studies in English Literature since 1700—3 cr. (3 and 0)
ENGL 740—Black American Literature for Teachers—3 cr. (3 and 0)
ENGL 751—Children’s Literature for Teachers—3 cr. (3 and 0)
ENGL 761—English Literature for Teachers I—3 cr. (3 and 0)
ENGL 762—English Literature for Teachers II—3 cr. (3 and 0)
ENGL 801—The Teaching of English—3 cr. (3 and 0)
ENGL 802—Studies in Middle English Literature—3 cr. (3 and 0)
ENGL 803—Studies in Renaissance English Literature—3 cr. (3 and 0)
ENGL 804—Studies in Neoclassic and Romantic Literature—3 cr. (3 and 0)
ENGL 805—Studies in Victorian and Modern English Literature—3 cr. (3 and 0)
ENGL 810—Studies in Colonial and Revolutionary American Literature—3 cr. (3 and 0)
Entomology 309

Engl 811—Studies in Romantic and Realistic American Literature—3 cr. (3 and 0)

Engl 812—Studies in Modern American Literature—3 cr. (3 and 0)

Engl 820—Studies in Theoretical and Applied Literary Criticism—3 cr. (3 and 0)

Engl 830—Studies in Linguistics—3 cr. (3 and 0)

Engl 840—Studies in World Literature—3 cr. (3 and 0)

Engl 881—Directed Reading—3 cr. (3 and 0)

Engl 890—Introduction to Research—1 cr. (1 and 0)

Engl 891—Research—Credit to be arranged.

Entomology

Professors: T. R. Adkins, Jr., R. C. Fox, E. W. King

Associate Professors: S. B. Hays, Head; T. E. Skelton

Assistant Professors: G. R. Carner, R. F. Nash, R. Noblet

ENT 200—Insects—2 cr. (2 and 0)

An introduction to insects; their various relationships with man, other animals and plants. The general nature of this course makes it beneficial to all students regardless of specialty.

ENT 301—General Entomology—3 cr. (2 and 3)

A general introduction to entomology with emphasis on anatomy, metamorphosis, and description of the most common insect species. Methods of control are introduced and current control practices are explained for some of the most important species.

ENT 307—Forest Entomology—3 cr. (2 and 3) F

Insects of economic importance to forests, forest products and shade trees, and their role in the practice of good forest management as well as their significance in the natural environment.

ENT 308—Apiculture—3 cr. (2 and 3)

A detailed study of the honey bee and its economic importance in pollination and honey production. Attention will be given to bee behavior, colony management, equipment, honey plant identification, and honey production and processing. *Prerequisite:* Zool 102, 104, and permission of instructor.

ENT 401—Field Crop and Stored Product Insects—3 cr. (2 and 3)

Common insect pests of the following are studied: cotton, corn, small grains, legume field crops, tobacco, stored grain and seed. Primary emphasis is placed on life histories, identification of destructive stages, recognition of damage, and current control measures.

ENT 402—Fruit, Nut, and Vegetable Insects—3 cr. (2 and 3)

Common insect pests of the following are studied: peaches, apples, grapes, pecans, sweet corn, cole crops, cucurbits, potatoes, sweet potatoes, peas and beans. Primary emphasis is placed on life histories, identification of destructive stages, recognition of damage, and current control measures.
Description of Courses

Ent 405—Insect Morphology—4 cr. (3 and 3) F
A study of insect structure in relation to function and of the variation of form in insects. Prerequisite: Ent 301.

Ent H405—Insect Morphology—4 cr. (3 and 3) F
Honors option for Ent 405; admission by special arrangement.

Ent 410—Insect Taxonomy—3 cr. (1 and 6)
The identification of the principal families of the major orders of adult insects. Laboratory work consists of intensive practice of such identification; lecture material deals with necessary theoretical discussion of taxonomic features observed in the laboratory. Prerequisite: Zool 102, 104, Ent 301, Ent 405 desirable.

Ent 455—Medical and Veterinary Entomology—3 cr. (2 and 3) S
Insects and their arthropod relatives which are of considerable economic importance in their effect on man and animals.

Ent 458—Pest Control—3 cr. (2 and 3)
A detailed study of insect pests of structures, the household, lawn and ornamental plants. Identification of the pest, its damage, control methods and safety in handling insecticides will be emphasized.

Ent 461—Seminar—1 cr. (1 and 0) F
Students review the principal journals pertaining to insects and related animals; also review the lives and activities of prominent pioneer entomologists. Prerequisite: Zool 102, 104, Ent 301.

Ent 462—Seminar—1 cr. (1 and 0) S
Continuation of Ent 461.

Ent 468—Introduction to Research—2 cr. (1 and 3) S
Principles, developments and changes in research methods related to certain fields of biological and agricultural research. The students obtain practice in experimental techniques, scientific writing and the use and maintenance of various research instruments and equipment.

Ent 480—Insect Pathology—3 cr. (2 and 3)
The study of insect diseases including those caused by viruses, rickettsiae, bacteria, fungi, protozoa, and nematodes will be covered in this course. The effects of diseases on insect populations and the use of pathogens in insect control will also be considered in detail.

Ent 601—Field Crop and Stored Product Insects—3 cr. (2 and 3)
Ent 602—Fruit, Nut, and Vegetable Insects—3 cr. (2 and 3)
Ent 605—Insect Morphology—4 cr. (3 and 3)
Ent 610—Insect Taxonomy—3 cr. (1 and 6)
Ent 655—Medical and Veterinary Entomology—3 cr. (2 and 3)
Ent 658—Pest Control—3 cr. (2 and 3)
Ent 668—Introduction to Research—2 cr. (1 and 3)
Ent 680—Insect Pathology—3 cr. (2 and 3)
Ent 808—Taxonomy of Immature Insects—3 cr. (1 and 6)
ENT 809—Recent Advances in Entomology I—1 cr. (1 and 0)
ENT 810—Recent Advances in Entomology II—1 cr. (1 and 0)
ENT 856—Medical Entomology—3 cr. (2 and 0)
ENT 860—Principles of Insect Control—3 cr. (3 and 0)
ENT 861—Insect Toxicology—3 cr. (2 and 0)
ENT 863—Special Problems in Entomology—3-6 cr.
ENT 870—Advanced Insect Physiology—3 cr. (2 and 0)
ENT 891—Research—Credit to be arranged.
ENT 991—Doctoral Research—Credit to be arranged.

ENVIRONMENTAL HEALTH

Associate Professor: R. F. Borgman, Program Director

EnH 471—Man and His Environment—2 cr. (2 and 0)
The interactions of man with his environment will be surveyed. Health factors such as urbanization, population growth, pathogens, insects and other vectors, ionizing radiation, and toxic chemical residues will be emphasized. The effects of air, water, food, and solid waste contacts will be considered.
Prerequisite: Permission of instructor.

EnH 472—Environmental Planning and Control—2 cr. (2 and 0)
Application of planning and design to effective environmental control. Topics such as land use, water supply and treatment, wastewater treatment and disposal, and solid waste disposal will be considered from the standpoint of control. Prerequisite: Permission of instructor.

EnH 671—Man and His Environment—2 cr. (2 and 0)
EnH 672—Environmental Planning and Control—2 cr. (2 and 0)
EnH 893—Environmental Health Seminar I—1 cr. (1 and 0)

ENVIRONMENTAL SYSTEMS ENGINEERING

Professors: J. F. Andrews, Head; J. H. Austin, L. G. Rich
Associate Professors: A. R. Abernathy, B. C. Dysart
Assistant Professors: G. E. James, T. M. Keinath
Lecturer: G. M. McCallum
Adjunct Professors: D. W. Duttweiler, W. M. Sanders

ESE 401—Environmental Engineering—3 cr. (3 and 0)
An introduction to the field of environmental engineering. Topics to be covered include public health aspects of the environment, water supply and treatment, water pollution control, air pollution control, solid wastes collection and disposal, noise abatement, and radiological health. Prerequisite: Junior standing in engineering or permission of instructor.

ESE 402—Water and Waste Treatment Systems—3 cr. (3 and 0)
A study of the fundamental principles, rational design considerations, and operational procedures of the unit operations and processes employed in
water and waste treatment. Both physiochemical and biological treatment techniques will be discussed. An introduction to the integration of unit operations and processes into water and waste treatment systems. Prerequisite: EM 320, E&CE 330, or permission of instructor.

ESE 403—Water and Waste Transport Systems—3 cr. (3 and 0)
Analysis, design, and operation of continuous, man-made transport systems for water and wastewater. Introduction to continuous, natural transport systems for water and air and discrete, man-made transport systems for solid wastes. Application of systems engineering techniques such as network theory, transient analysis, mathematical modeling, simulation, and optimization will be stressed. Prerequisite: EM 320, E&CE 330, or permission of instructor.

ESE 443—Environmental Engineering Chemistry I—2 cr. (2 and 0)
A study of those fundamental principles of physical and analytical chemistry that find application in the treatment of waters and wastewaters. Chemical thermodynamics, chemical kinetics, acid-base equilibria, solubility equilibria, complex equilibria, and electrochemistry, are several topics that are examined.

ESE 444—Environmental Engineering Chemistry Laboratory I—2 cr. (0 and 6)
Demonstration of the principles discussed in ESE 443 and laboratory exercises in those analytical methods used in water quality control. Typical wet-chemical analytical techniques demonstrated are residue analysis, turbidity, color, alkalinity, acidity, pH, hardness, iron, manganese, dissolved oxygen, and biochemical oxygen demand. Moreover, several modern instrumental and electroanalytical techniques that are commonly incorporated in environmental water quality monitors are discussed and demonstrated in detail.

ESE 601—Environmental Engineering—3 cr. (3 and 0)
ESE 602—Water and Waste Treatment Systems—3 cr. (3 and 0)
ESE 603—Water and Waste Transport Systems—3 cr. (3 and 0)
ESE 643—Environmental Engineering Chemistry I—2 cr. (2 and 0)
ESE 644—Environmental Engineering Chemistry Laboratory I—2 cr. (0 and 6)
ESE 832—Unit Processes Laboratory—1 cr. (0 and 3)
ESE 833—Unit Operations Laboratory—1 cr. (0 and 3)
ESE 842—Sanitary Engineering Processes—3 cr. (3 and 0)
ESE 843—Unit Operations of Sanitary Engineering—3 cr. (3 and 0)
ESE 846—Pollution of the Aquatic Environment—3 cr. (2 and 3)
ESE 848—Environmental Engineering Chemistry II—2 cr. (2 and 0)
ESE 849—Environmental Engineering Chemistry Laboratory II—2 cr. (1 and 3)
ESE 852—Water and Wastewater Treatment System—3 cr. (2 and 3)
ESE 861—Environmental Systems Engineering Seminar—0-1 cr. (1 and 0)
ESE 862—Environmental Quality Case Study—1 cr. (0 and 3)
ESE 881—Special Problems—1-4 cr.

ESE 883—Selected Topics in Environmental Engineering—3 cr.
(3 and 0)

ESE 884—Selected Topics in Environmental Engineering—3 cr.
(3 and 0)

ESE 891—Research—1-6 cr.

ESE 991—Doctoral Research—Credit to be arranged.

EXPERIMENTAL STATISTICS

Professor: W. P. Byrd, Chairman

Associate Professors: W. E. Johnston, J. S. Lytle

Assistant Professor: J. R. Holman

Ex St 301—Introductory Statistics—3 cr. (2 and 2) F, S, SS

Basic concepts and methods of statistical inference; organization and pre-
sentation of data, elementary probability, measures of central tendency and
variation, tests of significance, sampling, simple linear regression and corre-
lation. The role of statistics in interpreting research, and the general appli-
cation of the methods are stressed.

Ex St 462—Statistics Applied to Economics—3 cr. (3 and 0) S

A continuation of Ex St 301 with emphasis on statistical methods used in
the collection, analysis, presentation and interpretation of economic data.
Special attention is given to time series analysis, the construction of index
numbers and the designing of samples for surveys in the social science fields.
Prerequisite: Ex St 301.

Ex St 662—Statistics Applied to Economics—3 cr. (3 and 0)

Ex St 801—Statistical Methods—4 cr. (3 and 3)

Ex St 803—Regression and Least Squares Analysis—3 cr. (3 and 0)

Ex St 804—Sampling—3 cr. (3 and 0)

Ex St 805—Design and Analysis of Experiments—3 cr. (3 and 0)

FLUID MECHANICS

The courses listed are offered by the faculties of the Departments of
Chemical Engineering, Engineering Mechanics, and Mechanical Engineering
for students majoring in those departments who desire an area of concen-	ration in fluid mechanics. This integrated sequence provides the opportunity
for in-depth penetration of this study area as well as breadth of application
to such diverse fields of technology as: propulsion systems, water distribution
systems, chemical systems, biological systems, and air and water pollution.

The 800 series courses will be offered on fixed schedule, odd number
offered in fall and even number in spring. The 900 series are offered as
needed.

FM 801—Foundation of Fluid Mechanics—3 cr. (3 and 0)

FM 811—Experimental Fluid Mechanics—3 cr. (2 and 3)
Description of Courses

FM 812—Theory of Incompressible Ideal Flow—3 cr. (3 and 0)
FM 814—Turbulent Boundary Layer—3 cr. (3 and 0)
FM 815—Numerical Methods in Fluid Mechanics—3 cr. (3 and 0)
FM 816—Flow in Open Channels—3 cr. (3 and 0)
FM 817—Non-Newtonian Flow—3 cr. (3 and 0)
FM 841—Seminar—1 cr. (1 and 0)
FM 901—Applied Hydrodynamics—3 cr. (3 and 0)
FM 921—Two-Phase Flow—3 cr. (3 and 0)
FM 931—Free Surface Flow—3 cr. (3 and 0)
FM 951—Bio-Fluid Mechanics—3 cr. (3 and 0)

FOOD SCIENCE

Professors: J. H. Mitchell, Jr., W. P. Williams, Head
Assistant Professors: J. C. Acton, J. J. Jen, M. G. Johnson

Fd Sc 212—Man's Food Resources—2 cr. (2 and 0) S, '73 and alternate years.

Food material resources with reference to quality preservation, processing, and nutritional requirements. The role of science and technology in the modern food industry is emphasized. The need for food standards and grades is explained, and the functions of regulatory agencies are discussed. Prerequisite: Biol 101.

Fd Sc 305—Dairy and Food Engineering—3 cr. (2 and 3) F, '72

A study of the basic engineering principles and their application to the dairy and food processing operations. The relationship between engineering principles and fundamentals of food processing is emphasized for the dairy and food technologist. Topics include material and energy balance, electricity and power, steam generation, refrigeration, transfer of heat, flow and mechanics of fluids, evaporation and distillation, strength of materials and kinetics of biological reactions.

Fd Sc 311—Food Processing—3 cr. (3 and 0) F, '73 and alternate years.

Principles of food handling and processing by refrigerated storage, freezing, canning, fermentation, sugar concentration, and food additives. Prerequisite: Organic chemistry and physics.

Fd Sc 312—Food Processing—3 cr. (3 and 0) S, '74 and alternate years.

Principles of dehydration. Unit processes and manufacturing methods used in the processing of cereal grains, dairy products, meats and fish, vegetable oils, beverages, and confectioneries. Importance of water supply and waste disposal in food manufacture. Prerequisite: Organic chemistry and physics.

Fd Sc 313—Food Processing Laboratory—1 cr. (0 and 3) F, '73 and alternate years.

Laboratory exercises dealing with equipment and processes used in food manufacture. Prerequisite: Registration in Fd Sc 311.
Fd Sc 314—Food Processing Laboratory—1 cr. (0 and 3) S, '74 and alternate years.
A continuation of Fd Sc 313. Prerequisite: Registration in Fd Sc 312.

Fd Sc 412—Food Quality Control—2 cr. (2 and 0) S, '73
A comprehensive treatment of the philosophy and organization of and the responsibility for food quality control function. Major emphasis is placed on principles, quality attributes, government and trade standards of identity and their development, acceptance sampling (inspection), recording and reporting, and production and inventory control.

Fd Sc 413—Biochemistry of Foods—2 cr. (2 and 0) F, '73 and alternate years.
Biochemical and enzymatic phenomena in relation to the color, texture, flavor, and nutritive value of foods, changes in biochemical constituents as a result of food processing and storage. Prerequisite: Ch 310, Bioch 423, or permission of instructor.

Fd Sc 414—Food Quality Control Laboratory—2 cr. (1 and 3) S, '73
Fundamental aspects of sensory techniques employed in the quality evaluation of food products. A study of laboratory methods employed in product evaluation and grading of processed foods. A concept of quality is formed through examination of various grades of each food product. Actual practice in the selection and operation of taste panels illustrate their use in the industry.

Fd Sc 415—Human Nutrition—2 cr. (2 and 0) F, '73 and alternate years.
Characteristics and functions of basic food nutrients and how they are affected by food processing, preservation and storage methods. Pathways for the conversion of nutrients into living tissue will be examined. Prerequisite: Ch 310, Bioch 423, or permission of instructor.

Fd Sc 416—Food Analysis—2 cr. (1 and 3) S, '74 and alternate years.
Application of quantitative procedures to the analysis of food products. Procedures include solids, protein, carbohydrates, lipids, vitamins, fiber, pigments, and other components. Prerequisite: Quantitative analysis or permission of instructor.

Fd Sc 417—Seminar—1 cr. (1 and 0) F, '72
Literature research and oral presentation of current food science topics.

Fd Sc 418—Seminar—1 cr. (1 and 0) S, '73
Literature research and oral presentation of current food science topics.

Fd Sc 420—Special Topics in Food Science—1-3 cr. (1-3 and 0) S, '71
A comprehensive study of special topics in Food Science not covered in other courses. Special emphasis will be placed on independent investigations of contemporary developments.

Fd Sc 612—Food Quality Control—2 cr. (2 and 0)
Fd Sc 613—Biochemistry of Foods—2 cr. (2 and 0)
Fd Sc 614—Food Quality Control Laboratory—2 cr. (1 and 3)
Fd Sc 615—Human Nutrition—2 cr. (2 and 0)
Fd Sc 616—Food Analysis—2 cr. (1 and 3)
FORESTRY

Professors: R. M. Allen, Head; B. M. Cool, J. R. Warner
Associate Professors: N. B. Goebel, C. L. Lane, R. E. Schoenike, W. A. Shain, D. H. Van Lear
Assistant Professor: T. E. Wooten
Instructor: L. D. Reamer
Visiting Assistant Professor: J. R. Saucier

For 101—Introduction to Forestry—1 cr. (1 and 0) F
An informative sketch of forestry, forests, and forestry tasks of the nation; education in career opportunities of foresters.

For 102—Introduction to Forestry—1 cr. (1 and 0) S
A continuation of For 101.

For 205—Dendrology—4 cr. (3 and 3) F
Classification and identification of the principal forest trees of the United States, their geographical distribution, ecological requirements, and economic importance. Field identification of native trees, shrubs, woody vines, and of commonly planted exotics in the Piedmont and surrounding areas. Prerequisite: Bot 102.

For 206—Silvics—4 cr. (3 and 3) S
A study of the nature of forests and forest trees, how they grow, reproduce, and their relationships to the physical and biological environment. Prerequisite: Agron 202, Bot 102, For 205.

For 251—Forest Plants—2 cr. (Summer Camp)
Identification of principal native forestry understory plants by vegetative and floral characteristics; their site requirements and forest-type associations with emphasis on successional patterns; and their value for man and wildlife. The preparation of a field herbarium is required of all students. Prerequisite: Bot 102, For 205.

For 252—Forest Engineering—2 cr. (Summer Camp) SS
Field and drafting practice in mapping, traversing boundaries, and road location; use of surveying equipment and techniques. Prerequisite: EG 105, CE 201.

For 253—Forest Mensuration—4 cr. (Summer Camp)
Practical application of field techniques including timber cruising, measuring tree heights and volumes, constructing volume tables and boundary line surveys. Prerequisite: CE 201, EG 105, For 205.

For 254—Forest Products—1 cr. (Summer Camp)
A tour of the forest products industry of South Carolina with an emphasis on those products and processes of some distinction or special interest.

For 302—Forest Mensuration—3 cr. (2 and 3) S
A practical application of statistical and mensurational techniques in forest management. Prerequisite: Ex St 301 and Forestry Summer Camp.
For 304—Forest Economics—3 cr. (3 and 0) S
Economic problems and principles involved in the utilization of forest land and timber and in the distribution of forest products; cost analysis of integrated forest operations. Prerequisite: Econ 201.

For 305—Elements of Forestry—2 cr. (2 and 0) F, S
A compendium of forestry subjects providing a broad view of the forest environment as it relates to ecology, management and utilization of forests, especially those of South Carolina. Prerequisite: Bot 102 or permission of instructor. Not open to forestry majors.

For 306—Wood and Wood Fiber Identification—2 cr. (1 and 3) S
Macroscopic and microscopic identification, properties, and uses of selected economically significant timbers. Prerequisite: Bot 102, Ch 102, or permission of instructor.

For 307—Elements of Forestry Laboratory—1 cr. (0 and 3) F, S
Field and laboratory exercises in the fundamentals of forest land management considered in For 305. Prerequisite: Registration in For 305.

For 308—Aerial Photographs in Forestry—3 cr. (2 and 3) F
An introduction to photographic measurements, aerial photo-interpretations, mapping, and timber estimating. Prerequisite: CE 201, Forestry Summer Camp, or permission of instructor.

For 310—Silviculture—4 cr. (3 and 3) S
Theory and practice of establishing, maintaining, and harvesting forest stands in accordance with ecological and economic principles. Prerequisite: For 206 and Forestry Summer Camp.

For 401—Logging and Milling—3 cr. (2 and 3) S
Logging and milling methods and costs with major emphasis on survey of methods and equipment. Prerequisite: Senior standing or permission of instructor.

For 403—Forest Soils Seminar—1 cr. (1 and 0) F
A study of forest soil characteristics with respect to site evaluation, forest fertilization, planting problems, watershed management, tree-soil-microorganism interactions, and trafficability. Prerequisite: Junior standing or permission of instructor.

For 409—Multiple-Use Forestry—3 cr. (3 and 0) F
A study of the demands placed on forests for a variety of products and uses, and how these can and must be reconciled in planning the management of each forest. Prerequisite: Senior standing or permission of instructor.

For 411—Harvesting Forest Products—3 cr. (2 and 3) S
An application of engineering and cost analysis techniques to the evaluation of the forest transport system and various harvesting situations. Prerequisite: For 401 or permission of instructor.

For 412—Forest Protection—2 cr. (2 and 0) S
Prevention and suppression of forest fires; their effect upon the environment and people; factors affecting fire behavior; and use of fire in resource management. Prerequisite: Senior standing or permission of instructor.
FOR 414—MANAGEMENT PLANS—1 cr. (0 and 3) S
Analysis of factors entering into forest working plans of several forestry organizations; preparation of a preliminary management plan of a sample area. Prerequisite: For 417.

FOR 416—FOREST POLICY AND ADMINISTRATION—2 cr. (2 and 0) S
Development of public and private forest policy in the United States; administrative and executive tasks in forestry; principles of organization, personnel management, budgeting, and decision making. Prerequisite: For 304 or permission of instructor.

FOR 417—FOREST MANAGEMENT AND REGULATION—4 cr. (3 and 3) F
Correlation of production factors and yields of forests; regulation of cuts and growing stock in sustained yield management. Prerequisite: Forestry Summer Camp, For 304, 310.

FOR 418—FOREST VALUATION—3 cr. (3 and 0) S
Capital investments in forestry and the returns derivable from them; valuation of land, timber, and other resources associated with forestry; appraisal of damage and stumpage values. Prerequisite: For 304.

FOR 420—FOREST PRODUCTS—2 cr. (2 and 0) F
Primary forest products other than lumber; i.e., poles and piles, railroad ties, veneers and plywood, wood furniture, shingles, containers, secondary wood products; chemically derived products from wood including pulp and paper, distillation products, wood hydrolysis; miscellaneous and minor forest products. Prerequisite: For 205, Phys 207, Forestry Summer Camp; Senior standing or permission of instructor.

FOR 421—WOOD PROPERTIES I—3 cr. (2 and 3) F
The formation of wood in forest trees; gross and minute characteristics of wood; defects in wood; variability in wood. Prerequisite: Bot 102, For 306, or permission of instructor.

FOR 422—WOOD PROPERTIES II—3 cr. (2 and 3) S
Wood in relation to moisture, heat, sound, light, and electricity; mechanical properties of wood; standard testing procedures for wood. Prerequisite: For 306 or permission of instructor.

FOR 423—LECTURES IN FORESTRY—2-4 cr. (2-4 and 0-3)
Lectures in various fields of forestry delivered by the holders of the Belle W. Baruch Visiting Professorship in Forestry.

FOR 424—FOREST GENETICS AND TREE BREEDING—3 cr. (3 and 0) S
History of genetics and breeding in forestry and its relation to silviculture; natural variation, hybridization and inheritance in forest trees; tree breeding objectives and methods. Prerequisite: Gen 302 or equivalent, and permission of instructor.

FOR 426—A SURVEY OF FOREST POLICY—2 cr. (2 and 0) S
Development of public and private forest policy in the United States; administrative and executive tasks in forestry; principles of organization, personnel management, and budget. Prerequisite: Senior standing. Not open to Forestry majors.

FOR 601—LOGGING AND MILLING—3 cr. (2 and 3)
For 602—Forest Mensuration—3 cr. (2 and 3)
For 604—Forest Economics—3 cr. (3 and 0)
For 606—Wood and Wood Fiber Identification—2 cr. (1 and 3)
For 608—Aerial Photographs in Forestry—3 cr. (2 and 3)
For 609—Multiple-Use Forestry—3 cr. (3 and 0)
For 610—Silviculture—4 cr. (3 and 3)
For 611—Harvesting Forest Products—3 cr. (2 and 3)
For 612—Forest Protection—2 cr. (2 and 0)
For 614—Management Plans—1 cr. (0 and 3)
For 616—Forest Policy and Administration—2 cr. (2 and 0)
For 617—Forest Management and Regulation—4 cr. (3 and 3)
For 618—Forest Valuation—3 cr. (3 and 0)
For 620—Forest Products—2 cr. (2 and 0)
For 621—Wood Properties I—3 cr. (2 and 3)
For 622—Wood Properties II—3 cr. (2 and 3)
For 623—Lectures in Forestry—2-4 cr. (2-4 and 0-3)
For 624—Forest Genetics and Tree Breeding—3 cr. (3 and 0)
For 801—Data Processing in Forestry Problems—3 cr. (2 and 3)
For 802—Advanced Mensuration—3 cr. (2 and 3)
For 803—Photo-Interpretation—3 cr. (2 and 3)
For 804—Advanced Forest Economics—3 cr. (2 and 3)
For 805—Cost Studies in Harvesting and Processing—3 cr. (2 and 3)
For 807—Special Problems in Forestry—Credit to be arranged.
For 891—Research—Credit to be arranged.

FRENCH

Professor: H. E. Stewart
Associate Professor: J. A. Dean
Assistant Professors: D. Y. Brannock, R. R. McGregor, Jr., J. A. McNatt, J. B. Macy

Fr 101—Elementary French—4 cr. (3 and 1)
A course for beginners in which, through conversation, composition, and dictation, the fundamentals of the language are taught and a foundation is provided for further study and the eventual ability to read and speak the language. Three hours a week of classroom instruction and one hour a week in the language laboratory.
Description of Courses

Fr H101—Elementary French—4 cr. (3 and 1)
Honors section of Fr 101; admission by invitation.

Fr 102—Elementary French—4 cr. (3 and 1)
A continuation of Fr 101; three hours a week of classroom instruction and one hour a week in the language laboratory.

Fr H102—Elementary French—4 cr. (3 and 1)
Honors section of Fr 102; admission by invitation.

Fr 151—French for Graduate Students—3 cr. (3 and 0)
An intensive program for graduate students preparing to take the reading examination in French. Some previous study of the language is helpful but not essential.

Fr 152—French Readings for Graduate Students—3 cr. (3 and 0)
A continuation of Fr 151 with increasing emphasis upon reading comprehension and vocabulary development in the student's area of interest. Prerequisite: Fr 151, one year of college French, or departmental permission.

Fr 201—Intermediate French—3 cr. (3 and 0).
Attention to grammar, with conversation, composition and dictation continued from Fr 102, and the beginning of more serious reading of French prose in short stories or novels.

Fr H201—Intermediate French—3 cr. (3 and 0)
Honors section of Fr 201; admission by invitation.

Fr 202—Intermediate French—3 cr. (3 and 0)
While attention is paid to writing and speaking French, more stress is laid on the rapid reading of more difficult French prose than in the earlier courses. Prerequisite: Fr 201.

Fr H202—Intermediate French—3 cr. (3 and 0)
Honors section of Fr 202; admission by invitation.

Fr 303—Survey of French Literature I—3 cr. (3 and 0)
Literary movements and authors from the beginnings to the eighteenth century. Required of French majors. Prerequisite: Fr 201, 202.

Fr 304—Survey of French Literature II—3 cr. (3 and 0)
Literary movements and authors of the nineteenth and twentieth centuries. Required of French majors. Prerequisite: Fr 201, 202.

Fr 305—Conversational French—3 cr. (3 and 0)
Practice in the spoken language, with stress on vocabulary building, pronunciation, intonation, and comprehension; written work to increase accuracy. Assignments in the language laboratory. Required of French majors. Prerequisite: Fr 201.

Fr 306—Advanced Conversation with Composition—3 cr. (3 and 0)
A continuation of Fr 305, with additional emphasis on written composition. Prerequisite: Fr 305.

Fr 307—French Civilization—3 cr. (3 and 0)
A study of the significant aspects of the culture of France from its origins to the present. Prerequisite: Fr 202 or approval of department.
Fr 308—Contemporary French Culture—3 cr. (3 and 0)
A study of contemporary ideas, opinions and events through magazines, newspapers, scholarly journals of individual interest and essays of national and international import. Class discussions; oral and written reports. Prerequisite: Fr 202 or approval of department.

Fr 309—Introduction to French Phonetics—3 cr. (3 and 0)
A study of the fundamental principles of the pronunciation of French through the use of the International Phonetic Alphabet and recordings. Prerequisite: Fr 201 or equivalent.

Fr 403—Twentieth Century Prose—3 cr. (3 and 0)
The outstanding authors of the first half of the twentieth century: Proust, Gide, Mauriac, Saint-Exupéry, Sartre, Camus, and others. Reading of selected works, discussions, and reports. Prerequisite: Fr 303 or 304.

Fr 404—Twentieth Century Drama—3 cr. (3 and 0)
The French theater since 1900, with emphasis on the period after 1930. Readings, discussions, and reports. Prerequisite: Fr 303 or 304.

Fr 405—Nineteenth Century French Romanticism—3 cr. (3 and 0)
The Romantic movement as expressed in the works of Chateaubriand, Hugo, Merimée, Vigny, Stendhal, Sand, and others. Readings, discussions, and reports. Prerequisite: Fr 303 or 304.

Fr 406—Nineteenth Century French Realism—3 cr. (3 and 0)
Realism as expressed in the works of Balzac, Flaubert, Daudet, Maupassant, Zola, and others. Selected works, discussions, and reports. Prerequisite: Fr 303 or 304.

Fr 407—Eighteenth Century French Literature—3 cr. (3 and 0)
The principal literary figures of the eighteenth century, with particular emphasis on Voltaire and Rousseau. Selected works, discussions, and reports. Prerequisite: Fr 303 or 304.

Fr 408—Seventeenth Century French Drama—3 cr. (3 and 0)
The French classical drama, with emphasis on Corneille, Racine, and Molière. Selected works, discussions, and reports. Prerequisite: Fr 303 or 304.

Fr 409—Advanced Grammar and Composition—3 cr. (3 and 0)
An intensive study of syntax and stylistics through composition and translations. Prerequisite: Senior standing or permission.

Fr 498—Independent Study—1-3 cr. (1-3 and 0)
Independent in-depth study of selected topics in French literature. Prerequisite: Permission of the Head of the Department of Languages. This course is to be offered only when requests are received for worthy study projects that meet special student needs and interests.
GENETICS

Professor: C. M. Jones
Associate Professor: W. D. Graham
Assistant Professor: J. D. Maxwell

Gen 301—Genetics—3 cr. (3 and 0) F
An introduction to the basic principles of genetics and the relationship of these principles to man. To include deleterious genes, chromosome abnormalities, and mutations as these affect the human race; sex-linked, sex-influenced and sex-limited traits; and genetic predictions and population genetics in relation to society. Will not substitute for Gen 302.

Gen 302—Genetics—4 cr. (3 and 3) F, S, SS
A general coverage of the basic principles of genetics. Examples illustrating the fundamentals of heredity and variation are given for plants and animals, including man. Prerequisite: Biol 101, Bot 102, 104, and Zool 102, 104, or consent of instructor.

Gen 451—Genetics—3 cr. (3 and 0) S
Methods and concepts in classical and modern genetics. Topics will include advanced studies of linkage; variations in chromosome number and structure; natural and induced mutations; extranuclear inheritance; experimental evolution; population, biochemical and medical genetics. Principles will be illustrated by examples from plants, animals (including man), and microorganisms. Prerequisite: Gen 302.

Gen 602—Genetics—4 cr. (3 and 3)
Gen 651—Genetics—3 cr. (3 and 0)
Gen 801—Cytogenetics—3 cr. (2 and 3)

GEOGRAPHY

Geog 201—Introduction to Geography—3 cr. (3 and 0)
An introduction to the study of geography, including maps, the physical elements of the natural environment and their distribution, and world cultural patterns.

Geog 301—Economic Geography—3 cr. (3 and 0)
The geographic conditions fundamental to the world's resources—agricultural, mineral, commercial and industrial, and the conditions which affect the utilization, marketing, consumption and strategic significance of these resources.

Geog 302—Political Geography—3 cr. (3 and 0)
The geographic basis for and the geographic problems of the modern state; the relevance of geographical patterns to international affairs. Prerequisite: Junior standing or permission of instructor.
GEOLOGY

Associate Professors: P. K. Birkhead, V. S. Griffin, Jr., G. M. Haselton, R. D. Hatcher, Jr.

Assistant Professor: D. S. Snipes

Geol 201—Physical Geology—4 cr. (3 and 3)
A study of the minerals and rocks which compose the earth's crust, their origins and transformations. Emphasis is placed upon geological processes, both internal and external, by which changes are produced on or in the earth. Laboratory instruction is provided in the interpretation of geologic processes through study of topographic maps. Field trips provide direct observation of processes and results.

Geol 202—Historical Geology—4 cr. (3 and 3)
Evolution, both organic and inorganic, is traced from the beginning of the record up through time to the present. Laboratory instruction and field trips provide practice in the identification and study of plants and animals which have left their record as fossils in the rocks of the earth's crust. Emphasis is placed upon geologic structures and the interpretation of geologic maps. Prerequisite: Geol 201.

Geol 219—Geology for Foresters—3 cr. (3 and 0)
A study of materials of the earth's crust, processes of their origin and change; landforms, processes of their formation and destruction. Demonstration of materials is fully incorporated into lectures. Limited to students majoring in forestry or permission of instructor.

Geol 306—Mineralogy—3 cr. (2 and 3)
The student gains a working knowledge of crystallography and a comprehensive knowledge of determinative mineralogy. Identification of the minerals is based on their physical and chemical properties. Prerequisite: Geol 201 or 406.

Geol 309—Petrology—3 cr. (2 and 3)
The genesis, evolution, and classification of rocks through lectures, laboratory exercises, and field trips. The occurrences, chemical relationships, and distribution of rock types are emphasized. Prerequisite: Geol 306.

Geol 310—Optical Mineralogy—3 cr. (2 and 2)
The purpose of this course is to enable the student to identify minerals under the microscope on the basis of their optical properties. Prerequisite: Geol 306.

Geol 313—Stratigraphy and Sedimentation—3 cr. (3 and 0)
The process by which sediments are eroded, transported, and deposited (sedimentation), with major emphasis on relationships of the areal and time distribution of stratified rocks and their historical significances (stratigraphy). Prerequisite: Geol 201 or 406.

Geol 400—Environmental Geology—3 cr. (3 and 0)
A discussion-oriented introductory course requiring no previous geologic background involving the study of the relationships of man to his physical surroundings and the problems that result from upsetting the established equilibria of geologic systems. Introduction to geologic materials, systems and processes. Environmental impact of highways, cities, dams and other
earthworks; mining techniques and various types of waste products on streams, the oceans, groundwater and other geologic systems. Man's role as a geologic agent, environmental conservation and management. Use of geologic maps and other geologic tools in resource and land-use planning.

Geol 402—Structural Geology—3 cr. (2 and 2)

The diverse geological structures of the earth, their description, origin, and field recognition. Practical problems in interpreting geologic structures are utilized, in addition to theoretical considerations of the mechanics and causes of tectonism. **Prerequisite:** Geol 201 or 406.

Geol 403—Invertebrate Paleontology—3 cr. (2 and 3)

A study of life of past geologic ages, as shown by fossilized remains of ancient animals, with emphasis on the invertebrates. **Prerequisite:** Geol 201 or permission of instructor.

Geol 404—Economic Geology—3 cr. (3 and 0)

This course concerns the description and classification of ore deposits and commercial nonmetallic mineral deposits. The origin of mineral deposits and their occurrence is emphasized. Problem studies and field trips to nearby mines and quarries. **Prerequisite:** Geol 306.

Geol 405—Geomorphology—4 cr. (3 and 3)

A study of the surface features of the earth—their form, nature, origin, development, and the change they are undergoing. **Prerequisite:** Geol 201, 202, or 406, or permission of instructor.

Geol 406—Engineering Geology—3 cr. (2 and 3)

This course is similar to Geol 201 except that progress is faster and emphasis is on the relationship of geology to engineering.

Geol 407—Quaternary Geology—3 cr. (2 and 2)

Early concepts about glaciation. Types and distribution of glaciers today and during their maximum extent. Glacial erosion, transportation and ice-sculptured terrain features. Study of Quaternary Sediments and their chronology. Drainage changes, sea level fluctuations and crustal deformation. Detailed study of specific areas as time permits. Field trips.

Geol 408—Geohydrology—3 cr. (3 and 0)

Study of the hydrologic cycle, aquifer characteristics, theory of ground water movement, mechanics of well flow, experimental methods, and subsurface mapping. **Prerequisite:** Geol 201, 202, 406.

Geol 411—Research Problems—3 cr. (0 and 9)

A field, laboratory, or library study of an approved topic in geology. The topic would be one not normally covered in formal course offering, but may be an extension of a course. **Prerequisite:** Senior standing in geology or approval of the department head.

Geol 412—Research Problems—3 cr. (0 and 9)

A continuation of Geol 411.

Geol 600—Environmental Geology—3 cr. (3 and 0)

Geol 602—Structural Geology—3 cr. (2 and 2)

Geol 603—Invertebrate Paleontology—3 cr. (2 and 3)
German 325

GEOL 604—ECONOMIC GEOLOGY—3 cr. (3 and 0)
GEOL 605—GEOMORPHOLOGY—4 cr. (3 and 3)
GEOL 606—MINERALOGY—3 cr. (2 and 3)
GEOL 607—QUATERNARY GEOLOGY—3 cr. (2 and 2)
GEOL 608—GEOhYDROLOGY—3 cr. (3 and 0)
GEOL 609—PETROLOGY—3 cr. (2 and 3)
GEOL 610—OPTICAL MINERALOGY—3 cr. (2 and 2)
GEOL 611—RESEARCH PROBLEMS—1-3 cr. (0 and 3-9)
GEOL 613—STRATIGRAPHY AND SEDIMENTATION—3 cr. (3 and 0)
GEOL 700—EARTH SCIENCE I—3 cr. (2 and 3)
GEOL 750—EARTH SCIENCE II—3 cr. (2 and 3)

GERMAN

Associate Professor: PATRICIA W. WANNAMAKER
Instructors: E. P. ARNOLD, H. L. LAWS, JR.
Lecturer: GEORGIA A. WILLIAMS

GER 101—ELEMENTARY GERMAN—4 cr. (3 and 1)
A course for beginners in which, through conversation, composition and dictation, the fundamentals of the language are taught and a foundation is provided for further study and the eventual ability to read and speak the language. Three hours a week of classroom instruction and one hour a week in the language laboratory.

GER H101—ELEMENTARY GERMAN—4 cr. (3 and 1)
Honors section of Ger 101; admission by invitation.

GER 102—ELEMENTARY GERMAN—4 cr. (3 and 1)
A continuation of Ger 101; three hours a week of classroom instruction and one hour a week in the language laboratory.

GER H102—ELEMENTARY GERMAN—4 cr. (3 and 1)
Honors section of Ger 102; admission by invitation.

GER 151—GERMAN FOR GRADUATE STUDENTS—3 cr. (3 and 0)
An intensive program for graduate students preparing to take the reading examination in German.

GER 152—GERMAN READINGS FOR GRADUATE STUDENTS—3 cr. (3 and 0)
A continuation of Ger 151 with increasing emphasis upon reading comprehension and vocabulary development in the student's area of interest. Prerequisite: Ger 151, one year of college German, or departmental permission.

GER 201—INTERMEDIATE GERMAN—3 cr. (3 and 0)
A short review of grammar, with conversation, composition and dictation continued from Ger 102, and the beginning of more serious reading of German prose in short stories or novels.

GER H201—INTERMEDIATE GERMAN—3 cr. (3 and 0)
Honors section of Ger 201; admission by invitation.
GER 202—INTERMEDIATE GERMAN—3 cr. (3 and 0)
While attention is paid to writing and speaking German, more stress is laid
on the rapid reading of more difficult German prose than in the earlier courses.
Prerequisite: Ger 201.

GER H202—INTERMEDIATE GERMAN—3 cr. (3 and 0)
Honors section of Ger 202; admission by invitation.

GER 251—SCIENTIFIC GERMAN—3 cr. (3 and 0)
An alternate course to Ger 202; readings in general science and some review
of grammar and syntax. Prerequisite: Ger 201.

GER 303—SURVEY OF GERMAN LITERATURE I—3 cr. (3 and 0)
Chief authors and works from the Hildebrandslied through the Aufklärung.
Required of German majors. Prerequisite: Ger 201, 202.

GER 304—SURVEY OF GERMAN LITERATURE II—3 cr. (3 and 0)
Literary movements and works from Heine through Brecht. Required of
German majors. Prerequisite: Ger 201, 202.

GER 305—CONVERSATIONAL GERMAN—3 cr. (3 and 0)
Practice in the spoken language, with emphasis on vocabulary, pronunciation,
and comprehension; written exercises for accuracy; assignments in the language
laboratory. Required of German majors. Prerequisite: Ger 201.

GER 306—ADVANCED CONVERSATION WITH COMPOSITION—3 cr. (3 and 0)
Continuation of Ger 305 with additional emphasis on written composition.
Prerequisite: Ger 305.

GER 307—CONTEMPORARY GERMAN CULTURE I—3 cr. (3 and 0)
A study of significant aspects of the contemporary culture of Germany
through readings in current German periodicals on a wide variety of subjects:
art, music, literature, economics, travel and human interest topics. Prerequi-
site: Ger 202, or 251, or approval of department.

GER 308—CONTEMPORARY GERMAN CULTURE II—3 cr. (3 and 0)
A continuation of Ger 307. Prerequisite: Ger 202, or 251, or approval of
department.

GER 403—NINETEENTH CENTURY GERMAN LITERATURE—3 cr. (3 and 0)
Selected works of Heine, Hebbel, Grillparzer, Keller, Meyer, Hauptmann,
Schnitzler, and Hofmannsthal. Readings, discussions, and reports. Prerequisite:
Ger 303 or 304.

GER 404—TWENTIETH CENTURY GERMAN LITERATURE—3 cr. (3 and 0)
Selected works from authors of the twentieth century. Prerequisite: Ger
303 or 304.

GER 405—THE AGE OF GOETHE—3 cr. (3 and 0)
The development of German literature during Goethe's lifetime, 1749-1832;
Aufklärung, Sturm und Drang, Klassiq, Romantik. Prerequisite: Ger 303 or 304.

GER 406—FAUST—3 cr. (3 and 0)
An intensive reading of Goethe's masterpiece accompanied by extensive
critical research. Prerequisite: Ger 303 or 304.

GER 498—INDEPENDENT STUDY—1-3 cr. (1-3 and 0)
Independent in-depth study of selected topics in German literature. Pre-
requisite: Permission of Head of the Department of Languages.
HISTORY

Professors: C. W. Bolen, R. S. Lambert, E. M. Lander, Jr.

Hist 101—American History—3 cr. (3 and 0)
The political, economic and social development of the American people from the period of discovery to the end of Reconstruction.

Hist H101—American History—3 cr. (3 and 0)
Same as Hist 101 except that this honors section is open to students only by invitation.

Hist 102—American History—3 cr. (3 and 0)
The political, economic and social development of the American people from the end of Reconstruction to the present.

Hist H102—American History—3 cr. (3 and 0)
Continuation of Hist H101.

Hist 171—Western Civilization—3 cr. (3 and 0)
The political, economic, and social movements of Western Civilization from ancient times to A.D. 900.

Hist 172—Western Civilization—3 cr. (3 and 0)
The political, economic, and social movements of Western Civilization from A.D. 900 to 1715.

Hist H172—Western Civilization—3 cr. (3 and 0)
The political, economic, and social movements of Western Civilization from A.D. 900 to 1715.

Hist 173—Western Civilization—3 cr. (3 and 0)
The political, economic, and social movements of Western Civilization from 1715 to the present.

Hist H173—Western Civilization—3 cr. (3 and 0)
The political, economic, and social movements of Western Civilization from 1715 to the present.

Hist 306—American Economic Development—3 cr. (3 and 0)
The economic development of the United States from Colonial to recent times, emphasizing the institutional development of agriculture, banking, business and labor, and government regulation and policy. Prerequisite: Hist 101, 102.

Hist 307—Recent U.S. Diplomatic History—3 cr. (3 and 0)
The history of American foreign policy from the late nineteenth century to the present, showing the rise of America’s world interests and gradual involve-

* On leave.
ment in global affairs. Emphasis is placed on the role of public opinion in foreign policy. **Prerequisite:** Hist 101, 102.

Hist 313—History of South Carolina—3 cr. (8 and 0)
The political, economic and social development of South Carolina from 1670 up to the present. **Prerequisite:** Junior standing.

Hist 314—History of the South—3 cr. (3 and 0)
Origins and development of political, economic, and cultural institutions of the South from the Colonial period to the present; and the role of the South in the nation's development. (Formerly Hist 403.)

Hist 315—Black History in America—3 cr. (3 and 0)
This course is an effort to define and understand the relationship of Black Americans with White Americans within American society after 1619. **Prerequisite:** Permission of instructor.

Hist 331—Pre-Modern History of East Asia—3 cr. (3 and 0)
A survey of the history of China and Japan from earliest times to the arrival of Europeans in the sixteenth century.

Hist 332—Modernization of East Asia—3 cr. (3 and 0)
A survey of the history of China and Japan from the sixteenth century to the present, with emphasis on the impact of Western culture.

Hist 340—Indigenous and Colonial Latin America—3 cr. (3 and 0)
An introduction to the geography of the region; structure and accomplishments of pre-Columbian societies; Iberian background to overseas expansion; conquest and settlement of the New World; political, economic, and social patterns in the Colonial era leading to the Wars of Independence. **Prerequisite:** Junior standing or permission of instructor.

Hist 341—Mexico, Central America, and the Caribbean Since 1800—3 cr. (3 and 0)
An introduction to the geography of the region; origins and progress of the Independence movements; political, economic and social developments after 1825; current domestic and international problems. **Prerequisite:** 6 hours of history or permission of instructor.

Hist 342—South America Since 1800—3 cr. (3 and 0)
An introduction to the geography of the region; origins and progress of the Independence movements; political, economic and social developments after 1825; current domestic and international problems. **Prerequisite:** 6 hours of history or permission of instructor.

Hist 361—History of England to 1603—3 cr. (3 and 0)
The history of England to 1603. **Prerequisite:** Junior standing.

Hist 363—History of England Since 1603—3 cr. (3 and 0)
A continuation of History 361. **Prerequisite:** Junior standing.

Hist 371—Ancient Civilization—3 cr. (3 and 0)
A survey of the history of the Near East, Greece, and Rome to A.D. 476. **Prerequisite:** Hist 171, 172. (Formerly Hist 310.)
Hist 385—History of Russia to 1905—3 cr. (3 and 0)
A survey of Russian history from earliest times to 1905, emphasizing Kievian and Appanage Russia, the rise of the Moscow state, and Imperial Russia. Prerequisite: Junior standing.

Hist 386—History of Russia Since 1905—3 cr. (3 and 0)
Continuation of Hist 385. Prerequisite: Junior standing.

Hist 410—History of Colonial America—3 cr. (3 and 0)
The development of American institutions and customs in the period before 1776. Considerable emphasis is placed on the imperial relations between Great Britain and her colonies and upon the movement towards, and the philosophy of, the American revolution. Prerequisite: Hist 101, 102.

Hist 411—United States, 1783-1850—3 cr. (3 and 0)
The formation and growing pains of the new nation through the Federal and Middle periods of its history, with emphasis on economic and political development, the westward movement, and the conflicting forces of nationalism and sectionalism. Prerequisite: Hist 101, 102.

Hist 412—United States, 1850-1900—3 cr. (3 and 0)
A course dealing with the background causes of developments during, and broad problems after, the Civil War in American history. Prerequisite: Hist 101, 102.

Hist 413—United States History, 1890-1933—3 cr. (3 and 0)
Emphasis will be placed on the Populist and Progressive movements, the rise of imperialism, American participation in World War I, the Republican era of the 1920’s, and the coming of the Great Depression. Prerequisite: Hist 101, 102.

Hist 414—The United States Since 1933—3 cr. (3 and 0)
Particular emphasis will be given to the Great Depression, World War II, the Cold War, and domestic developments in the 1950’s and 1960’s. Prerequisite: Hist 101, 102.

Hist 441—Comparative History of the Americas—3 cr. (3 and 0)
An examination of the concept of a unique Western Hemisphere identity through a comparative analysis of common and divergent historical institutions and experiences. Selected topics to be considered will be drawn from the following: conquest and colonization, slavery and race relations, frontiers, land patterns, industrialization and urbanization, and twentieth century reform movements. Prerequisite: Hist 101, 102, and one of the following: Hist 340, 341, 342.

Hist 473—Medieval History—3 cr. (3 and 0)
A survey of the period from the eclipse of Rome to the advent of the Renaissance, emphasizing human migrations, feudalism, rise of towns, and cultural life. Prerequisite: Hist 172 or permission.

Hist 475—The Renaissance—3 cr. (3 and 0)
An examination of the transitional period of European civilization (ca. 1300-1500) with emphasis on institutional, cultural, and intellectual developments. Prerequisite: Hist 172 or permission.
Hist 476—Early Modern Europe—3 cr. (3 and 0)
The evolution of Modern Europe (ca. 1500-1660), as affected by the Reformation, wars of religion, and growth of nation-states. The study will include intellectual advances and the beginnings of European expansion overseas. Prerequisite: Hist 172 or permission.

Hist 477—Absolutism and the Age of Reason—3 cr. (3 and 0)
A study of the quest for order and the consolidation of the European state system between 1660 and 1789 with emphasis on the idea of absolutism, the question of French hegemony, and the synthesis of the eighteenth century Enlightenment. Prerequisite: Hist 172 or permission.

Hist 479—Europe, 1789-1850—3 cr. (3 and 0)
A history of Europe from the outbreak of the French Revolutions through the Revolutions of 1848, with emphasis on the conflict between the forces of change and those of conservatism within the states and in Europe in general. (Formerly Hist 356.) Prerequisite: Hist 173 or permission.

Hist 480—Europe, 1850-1914—3 cr. (3 and 0)
A history of Europe from the mid-nineteenth century to the outbreak of the First World War, with emphasis on the social, economic and political development of the European states and the forces of nationalism, imperialism, and liberalism. (Formerly Hist 357.) Prerequisite: Hist 173 or permission.

Hist 481—Nineteenth Century European Diplomacy, 1815-1914—3 cr. (3 and 0)
A study of nineteenth century European diplomacy from the Congress of Vienna to the outbreak of the First World War, with emphasis on the functioning of the Concert System, the effects of nationalism, industrialism, popular democracy and imperialism on the character of diplomacy and the relations of the Great Powers. Prerequisite: Hist 172, 173.

Hist 482—International Relations Since 1914—3 cr. (3 and 0)
The great powers and world politics since 1914. Prerequisite: Hist 173 or permission.

Hist 483—Europe in the Twentieth Century—3 cr. (3 and 0)
A study of the political, economic, and social institutions of the European peoples from 1914 to the present. Attention will be given to the world wars and to the collapse of the European state-system.

Hist 484—European Intellectual History Since 1789—3 cr. (3 and 0)
A survey, based upon representative works, of the major intellectual currents in Europe from the Enlightenment to the present. Prerequisite: Hist 173 or permission.

Hist 499—Studies in History—3 cr. (3 and 0)
An attempt to integrate the student's knowledge and understanding of the field of history by lectures, discussions, and readings on the broad themes of history and their relevance to particular periods and geographical areas. Required of all history majors. Prerequisite: Hist 101, 102, 172, 173, and permission of the history adviser.

Hist 610—History of Colonial America—3 cr. (3 and 0)
Hist 611—United States, 1783-1850—3 cr. (3 and 0)
Hist 612—United States, 1850-1900—3 cr. (3 and 0)
Hist 613—United States History, 1890-1933—3 cr. (3 and 0)
Hist 614—The United States Since 1933—3 cr. (3 and 0)
Hist 673—Medieval History—3 cr. (3 and 0)
 (Formerly Hist 702)
Hist 675—The Renaissance—3 cr. (3 and 0)
 (Formerly Hist 704)
Hist 676—Early Modern Europe—3 cr. (3 and 0)
Hist 679—Europe, 1789-1850—3 cr. (3 and 0)
 (Formerly Hist 356)
Hist 680—Europe, 1850-1914—3 cr. (3 and 0)
 (Formerly Hist 357)
Hist 682—International Relations Since 1914—3 cr. (3 and 0)
Hist 715—History of the Black American—3 cr. (3 and 0)
Hist 719—United States History Since 1900—3 cr. (3 and 0)
Hist 732—Modernization of East Asia—3 cr. (3 and 0)
Hist 741—Comparative History of the Americas—3 cr. (3 and 0)
Hist 807—United States Diplomatic History Since 1877—3 cr.
 (3 and 0)
Hist 811—Introduction to Historical Research—3 cr. (3 and 0)
Hist 812—United States Historiography—3 cr. (3 and 0)
Hist 813—Medieval Historiography—3 cr. (3 and 0)
Hist 814—Modern European Historiography—3 cr. (3 and 0)
Hist 824—Seminar in the American South—3 cr. (3 and 0)
Hist 825—Seminar in the Civil War and Reconstruction—3 cr.
 (3 and 0)
Hist 861—Seminar in Medieval England—3 cr. (3 and 0)
Hist 862—Seminar in Medieval England to 1485—3 cr. (3 and 0)
Hist 863—Seminar in Tudor England—3 cr. (3 and 0)
Hist 864—Seminar in Stuart England—3 cr. (3 and 0)
Hist 865—Seminar in Modern England Since 1715—3 cr. (3 and 0)
Hist 866—Seminar in Modern England Since 1715—3 cr. (3 and 0)
Hist 891—Research—Credit to be arranged.
HORTICULTURE

Professors: L. O. Van Blaricom, W. L. Ogle, T. L. Senn, Head
Assistant Professors: J. P. Fulmer, C. R. Johnson, W. S. Jordan, F. B. Leedeboer

HORT 201—GENERAL HORTICULTURE—3 cr. (2 and 2) F, S
A working knowledge of the fundamental plant processes is developed, showing the influence of light, temperature, water and nutrients upon vegetative growth and reproduction of horticultural plants. Production practices, harvesting, storage and marketing of the principal fruit, vegetable and ornamental crops are discussed with demonstrations and practice in greenhouse and orchard. Prerequisite: Bot 102, Ch 101.

HORT 302—PRINCIPLES OF VEGETABLE PRODUCTION—3 cr. (2 and 3) F
The general principles of vegetable growing and handling. Phases receiving special emphasis are economic importance, producing areas, management practices, plant forcing, cultural practices, irrigation, quality factors, harvesting, grading, packing, storage, market inspection, transportation, refrigeration, exhibition and seed production. Prerequisite: Hort 201.

HORT 303—PLANT MATERIALS I—3 cr. (2 and 3) F
Woody, ornamental plants and their aesthetic and functional uses in landscape developments. The study covers habit of growth, ultimate size, texture effect, period of bloom, color, and cultural requirements.

HORT 304—PLANT MATERIALS II—3 cr. (2 and 3) S
Herbaceous, ornamental plants which are commonly used as garden flowers. This study covers habit of growth, size, period of bloom, color and cultural requirements.

HORT 305—PLANT PROPAGATION—3 cr. (2 and 3) F
Methods of propagation; time, manner and material for making cuttings; temperature and media for rooting cuttings or ornamental trees, shrubs and flowering plants; propagating structures, soils and fertilizers. Practical instruction given in field and greenhouse. Prerequisite: Hort 201.

HORT 308—LANDSCAPE DESIGN—3 cr. (2 and 3) S
Landscape planning of residential and public properties in order to achieve best use and most enjoyment from a given piece of ground. Prerequisite: Hort 303.

HORT 310—FLORICULTURE—3 cr. (2 and 3) S
Greenhouse production of commercial flower crops; soils; fertilizers; greenhouse diseases and insects; flower crops to be grown on benches and as pot plants; marketing and costs of production. Prerequisite: Hort 201.

HORT 352—COMMERCIAL POMOLOGY—3 cr. (2 and 3) F
Fruit bud formation, rest period and water relations of fruit plants, soils, fruit setting; orchard soil management and responses of various fruits to fertilizers; principles of pruning, effect of climatic differences, freezing of tissues and means of avoiding injury; harvesting, transportation and storage. Prerequisite: Hort 201.
HORT 405—NUT TREE CULTURE—2 cr. (2 and 0) F, '72 and alternate years. The production, harvesting and marketing of the principal nut crops with emphasis on the pecan. **Prerequisite:** Hort 201.

HORT 406—NURSERY TECHNOLOGY—3 cr. (2 and 3) S
Principles and techniques in handling nursery crops. **Prerequisite:** Hort 303, 305.

HORT 407—LANDSCAPE DESIGN—3 cr. (2 and 3) F
The first half of this course is a study of trees, shrubs, vines and ground covers used in landscape planting. Attention is given to cultural requirements, growth habits, period of bloom, texture, and fall color. The second half of the course is devoted to landscape planning for small residential properties.

HORT 408—FLORAL DESIGN AND RETAIL MARKETING—2 cr. (1 and 3) F
Studies of the retail flower business with relation to financing, floor plan, equipment, personnel, supplies, salesmanship, advertising, and other important areas. Floral designing for the retail trade will include table arrangements, funeral and wedding designs, as well as corsage and wreath construction.

HORT 409—SEMINAR—1 cr. (1 and 0) F
Recent research work on various phases of horticulture, methods of conducting investigations, and preparation of report of investigations.

HORT 410—SEMINAR—1 cr. (1 and 0) S
A continuation of Hort 409.

HORT 412—TURF MANAGEMENT—3 cr. (2 and 3) F
Studies of warm and cool season turf grasses in relation to regional adaptation, soils, fertilization, general maintenance practices, diseases and insects. Identification of grass and weed species and specific management program for home lawns, golf courses, parks and roadsides. **Prerequisite:** Junior standing.

HORT 451—SMALL FRUIT CULTURE—3 cr. (2 and 3) S
Varieties, soils, sites, culture, fertilizers, harvesting and preparation for marketing of grapes, strawberries, dewberries, blackberries, raspberries, and other small fruits. **Prerequisite:** Hort 201.

HORT 456—VEGETABLE CROPS—3 cr. (3 and 0) S, '73 and alternate years. The principles and practices employed in the commercial growing and marketing of vegetable crops. Emphasis is placed on temperature requirements, plant characteristics, varieties, soils, fertilizers, weed control, harvesting and preparation for market.

HORT 460—PROBLEMS IN LANDSCAPE DESIGN—5 cr. (3 and 6) F
Landscape planning for larger residential properties, schools, industrial plants, real estate developments; detailed finished plans, costs; further study of materials used; original problems; field study. **Prerequisite:** Hort 308 or 407.

HORT 464—POST HARVEST HORTICULTURE—3 cr. (2 and 2) F
The handling of fruits, vegetables, and ornamental crops after harvesting. Subjects include spoilage problems, hydrocooling, common and cold storage of crops, packaging and processing procedures.

HORT 468—INTRODUCTION TO RESEARCH—2 cr. (1 and 3) S
Principles, developments and changes in research methods related to certain fields of agricultural research. The students obtain practice in experimental
techniques, scientific writing and the use and maintenance of various research instruments and equipment. *Prerequisite:* Senior standing.

Hort 605—Nut Tree Culture—2 cr. (2 and 0)
Hort 606—Nursery Technology—3 cr. (2 and 3)
Hort 607—Landscape Design—3 cr. (2 and 3)
Hort 608—Floral Design and Retail Marketing—2 cr. (1 and 3)
Hort 610—Floriculture—3 cr. (2 and 3)
Hort 612—Turf Management—3 cr. (2 and 3)
Hort 651—Small Fruit Culture—3 cr. (2 and 3)
Hort 652—Commercial Pomology—3 cr. (2 and 3)
Hort 656—Vegetable Crops—3 cr. (3 and 0)
Hort 660—Problems in Landscape Design—5 cr. (3 and 6)
Hort 664—Post Harvest Horticulture—3 cr. (2 and 3)
Hort 668—Introduction to Research—2 cr. (1 and 3)
Hort 801—Problems in Small Fruit Production—3 cr. (3 and 0)
Hort 802—Research Systems in Horticulture—3 cr. (2 and 3)
Hort 803—Experimental Olericulture—3 cr. (3 and 0)
Hort 804—Scientific Advances in Ornamental Horticulture—3 cr. (3 and 0)
Hort 805—Physicochemical Procedures for Determining Quality in Horticultural Crops—3 cr. (2 and 3)
Hort 806—Post-Harvest Physiology and Handling of Horticulture Crops—3 cr. (3 and 0)
Hort 807—Pomology—3 cr. (3 and 0)
Hort 808—Special Investigations in Horticulture—2 cr. (2 and 0)
Hort 809—Seminar I—1 cr. (1 and 0)
Hort 810—Seminar II—1 cr. (1 and 0)
Hort 811—Quantitative Exposition of Plant Development—2 cr. (1 and 3)
Hort 891—Research—Credit to be arranged.
Hort 991—Doctoral Research—Credit to be arranged.

HOSPITAL AND HEALTH SERVICES ADMINISTRATION

Professor: F. A. Burtner
Associate Professor: C. O. Shuler
Visiting Professor: R. E. Toomey

H Adm 308—Hospital and Health Services Administration—3 cr. (3 and 0)
An introduction to the organization and operation of modern American hospitals, separate clinics and public health services. Included will be legal
status, organizational peculiarities, and specific legislation affecting such agencies. **Prerequisite:** Junior standing.

H Adm 410—Hospital Internship—3 cr. (0 and 9)

The student will spend nine hours per week on a specified program of observing, practicing and experiencing the duties of hospital administrators in selected local hospitals. The course will be specifically outlined along with the amount of time the student will spend in each phase or department of the hospital. Student progress will be constantly monitored by University faculty and hospital staff. **Prerequisite:** H Adm 308.

H Adm 610—Hospital Internship—3 cr. (0 and 9)

H Adm 800—The Function and Organization of Hospitals and Health Services Administration—3 cr. (3 and 0)

HUMANITIES

Hum 201—Introduction to the Humanities—3 cr. (3 and 0)

A general introduction to humanistic studies, stressing the interrelatedness of various humanistic disciplines. Such fields as art, architecture, music, literature, philosophy, and drama will be considered as they interact with, support, and develop each other in various cultural settings.

Hum 202—Introduction to the Humanities—3 cr. (3 and 0)

A continuation of Hum 201. **Prerequisite:** Sophomore standing or permission of instructor.

Hum 203—Critical Judgment of the Cinema—3 cr. (3 and 0)

The historical development of the aims and techniques of the cinema; the theory of cinematography, its artistic values, and its critical standards. **Prerequisite:** Sophomore standing.

INDUSTRIAL EDUCATION

Professor: A. F. Newton, *Head*

Associate Professors: J. P. Crouch, D. E. Maurer, H. E. Morgan, Jr.

Assistant Professors: F. A. Bosdell, P. C. Caley, H. P. Pate, W. E. West

In Ed 101—Introduction to Industrial Education—1 cr. (1 and 0)

An introduction to the field of Industrial Education in terms of the underlying philosophies, the aims and goals, and the specific objectives of each of the Industrial Education options.

In Ed 102—Woodworking I—2 cr. (1 and 3)

A study of wood, its properties and the requisite skills necessary for understanding the use of wood in our technological way of life. **Prerequisite:** In Ed 101.

In Ed 202—Woodworking II—2 cr. (1 and 3)

A continuation of In Ed 102 in the study of wood, its properties, skills in machine and tool use with wood, project design, project costs and finishing processes necessary for teachers of industrial subjects. **Prerequisite:** In Ed 102.
Description of Courses

In Ed 203—Basic Metal Processes—3 cr. (1 and 6)
Material separating, forming and combining practices in the metals industries, through the study of basic casting, welding and sheet metal techniques. Prerequisite: In Ed 101.

In Ed 204—Graphic Arts—3 cr. (1 and 6)
Major emphasis is placed on the basic principles underlying the graphic arts. Major areas of study include general photography, graphic layout and design, process photography, offset lithography, screen processing printing, and bindery. Modern industrial applications are stressed throughout. Prerequisite: In Ed 101.

In Ed 205—Power Technology—3 cr. (2 and 2)
A study of power in terms of energy sources, and the generation, transmission and utilization of power. Emphasis is placed on the development of insights and understandings of the scientific and operational principles involved in the production, transmission, and utilization of power. Prerequisite: In Ed 101.

In Ed 220—Recreational and Avocational Crafts—3 cr. (2 and 3)
Provides exploratory experiences in the performance of a variety of arts and crafts activities, and encourages the development of an understanding of the purpose of arts and crafts in the comprehensive recreational program.

In Ed 302—Dwelling Materials and Construction Methods—2 cr. (1 and 2)
This course is designed as an introduction to the commonly used building materials and the methods of combining them in present day construction. Prerequisite: In Ed 102.

In Ed 303—Electricity—3 cr. (1 and 6)
A laboratory inquiry into the theory and application of components, circuits, and instrumentation associated within the realm of electricity. Prerequisite: In Ed 101.

In Ed 304—Photographic Techniques—3 cr. (1 and 6)
Emphasis is placed on applications of black and white and color photography as activities for vocation and avocation. Sufficient laboratory experiences are provided to assure confidence in the use of photographic techniques. The tools and materials of image preparation are also used in conjunction with several graphic reproduction processes to enrich the effectiveness of visual presentations. Problems encountered in action, portrait, still life, and character study photography are considered.

In Ed 305—Machining Practices—3 cr. (1 and 6)
Basic practical shop experiences on the lathe, drill press, milling machine and shaper. Benchwork, measuring tools, theory and demonstrations related to a survey of fundamental machining practices. Prerequisite: In Ed 101.

In Ed 310—Methods of Trade Teaching—3 cr. (3 and 0)
This course is designed to give basic instruction to beginning teachers in trade work. Psychological factors of learning; individual differences; methods of teaching subjects; the special methods used in teaching skills; grading of students and keeping of proper records and reports. (Offered in Summer Sessions only.)
In Ed 312—Metal Processes in the General Shop—3 cr. (3 and 0)
Major emphasis is placed on planning and development of projects in wrought iron, sheet metal, art metal, metal spinning, welding, heat treating and other aspects of metal work that fit into a general shop program. (Offered in Summer Sessions only.)

In Ed 313—Arts and Crafts—3 cr. (2 and 3)
Emphasis on knowledge and skills in the industrial crafts by lecture, discussion and laboratory experiences. Stress is placed on several crafts basic to industrial production and popularity. Laboratory experience is required in at least four craft areas with an additional experience in one minor craft.

In Ed 315—Construction Practices—3 cr. (3 and 0)
This course is a study of industrial practices commonly employed in the construction industry. Included will be the use of brick, tile, concrete, metal, wood, and other construction materials. (Offered in Summer Sessions only.)

In Ed 316—Plastics and Plastic Processes in the General Shop—3 cr. (3 and 0)
The industrial, commercial and personal uses of plastics are discussed and demonstrated. In addition, the kinds of plastics, their properties, and special uses are studied. (Offered in Summer Sessions only.)

In Ed 318—Industrial Technology Techniques—3 cr. (3 and 0)
Major emphasis is placed on casting, stamping and forming processes, forging and extrusion processes, machining processes, metal spraying or metallurgy, blast cutting, heating and case hardening, assembly processes, bending, finishing processes, inspection gaging. (Offered in Summer Sessions only.)

In Ed 320—Machine Woodworking—2 cr. (1 and 3)
Basic characteristics of woodcutting, shaping, and finishing operations by use of machinery and auxiliary tools. Includes project work. Prerequisite: Junior standing. (Not for Industrial Education students.)

In Ed 325—Industrial Organizations and People—3 cr. (3 and 0)
A study of the relationships of personnel to the kinds of tasks they are asked to perform in industrial situations and the ways such situations affect workers. Emphasis is placed an assessment of personnel, organization of industry, working conditions and safety.

In Ed 333—Design—3 cr. (2 and 2)
The study of the principles of form and design elements in two or three dimensions as related to products in the several industrial arts areas. Lectures and laboratory projects stress creativity in the use of materials in reaching design solutions and in developing a personal design philosophy. Limited market and engineering research is conducted along with the study of significant figures in the field. Prerequisite: Basic courses in laboratory methods.

In Ed 350—Industrial Cooperative Experience—6 cr.
A full-time work experience program in industry for industrial vocational-technical education degree candidates. The student, under the cooperative supervision of the University instructor and an industrial supervisor, is placed in industry to receive planned experiences in the technical specialty which he is preparing to teach. The University instructor will coordinate placement, supervision, and evaluation of the student. The course is offered during the
summer only and students are required to register with the instructor one semester prior to the summer in which he plans to enroll. **Prerequisite:** Junior standing in the industrial vocational-technical education program and approval of instructor.

In Ed 372—Arts and Crafts for the Elementary Child—3 cr.
(2 and 3)
Provides the elementary teacher with an opportunity to develop skills and knowledge in the use of a variety of media suitable for integrating the study of industry and industrial technology into the usual classroom procedures.

In Ed 402—Directed Teaching—6 cr. (0 and 18)
Supervised observation and teaching in cooperation with selected public schools in which opportunities are provided for securing experience in teaching industrial subjects. **Prerequisite:** In Ed 416, 425, and grade-point ratio required for graduation.

In Ed 405—Course Organization and Evaluation—3 cr. (3 and 0)
Problems, techniques and procedures in the preparation, selection and organization of subject matter for instructional purposes. Methods, techniques and preparation of materials used in the evaluation of student achievement in industrial education subjects.

In Ed 408—Training Programs in Industry—3 cr. (3 and 0)
Basic concepts of supervision, administration, and management of training programs. Emphasis on determining training requirements, planning, directing, and evaluating training programs.

In Ed 410—Special Institute Course: Topics in Industrial Education—3 cr. (3 and 0)
Subject areas organized according to Institute needs. Content of the course will be planned cooperatively by the University and the school system or agency requesting the course. **Prerequisite:** Teacher or Graduate standing.

In Ed 414—Electronics for Teachers—3 cr. (1 and 6)
Principles of electronics as applied in communications and automatic controls involving vacuum tubes, transistors, integrated circuits, and other electronic devices and materials for the preparation of teachers of industrial arts and vocational-technical electricity and electronics. **Prerequisite:** In Ed 303.

In Ed 416—Design and Operation of Industrial Education Laboratories—3 cr. (2 and 2)
This course deals with laboratory design requirements of unit laboratories as well as multi-activity laboratories. Selection and procurement of tools and equipment, budgeting management and the coordination of activities in the laboratory are considered. **Prerequisite:** In Ed 313.

In Ed 421—Vocational Cooperative Programs—2 cr. (2 and 0)
A study of the developments, objectives and principles of industrial cooperative training programs. Emphasis is on the organization, promotion, and management of programs in this area of vocational education.

In Ed 422—History and Philosophy of Industrial and Vocational Education—3 cr. (3 and 0)
A study of industrial and vocational education programs with the intent of developing a sound individual philosophy of industrial and vocational edu-
cation. General topics covered: history; local, state, and federal legislation; types of vocational-technical programs; professional organizations; manpower utilization, vocational guidance, and training; industry, labor, and school relationships.

In Ed 425—Teaching Industrial Subjects—3 cr. (3 and 0)

Effective methods and techniques of teaching industrial subjects. Emphasis is given to class organization, preparation of lesson outlines, and audio-visual aids. Prerequisite: Ed 335.

In Ed 432—Advanced Woodworking—2 cr. (1 and 3)

An advanced consideration of machine methods and developments, materials, quality factors, and evaluation of instructional materials and problems. Inspection trips and reports. Prerequisite: In Ed 102, 202.

In Ed 435—Advanced Welding—2 cr. (1 and 3)

An advanced consideration of studies originated in In Ed 203, new theories and developments in welding technology. Inspection trips, written and oral reports. Prerequisite: In Ed 203.

In Ed 436—Advanced Material Forming—2 cr. (1 and 3)

Advanced consideration of studies initiated in In Ed 203, development and evaluation of instructional materials and problems. Inspection trips and reports. Prerequisite: In Ed 203.

In Ed 438—Advanced Machining—2 cr. (0 and 6)

Advanced experiences in the set-up, operation and maintenance of machine tools and equipment. Project and product design. Study and reports of recent machining technological developments. Prerequisite: In Ed 305.

In Ed 440—Advanced Techniques of the Graphic Arts—3 cr. (1 and 6)

Students selecting to pursue the area of graphic arts will gain experience in the development of advanced techniques of layout and design; photographic copy preparation; cold type composition; line, halftone, duotone, and special effects photography, and advanced platemaking and pressmanship.

In Ed 441—Comprehensive General Shop Practices—2 cr. (2 and 0)

This course deals with the problems in the administration of the multiple activity programs in the comprehensive laboratory. Consideration and planning of multiactivity laboratory programs of instruction for the secondary schools is the major focus. Prerequisite: In Ed 313.

In Ed 442—Competency Testing in Vocational Subjects—3 cr. (3 and 0)

This course is especially designed for trade teachers who have assisted in making trade tests for S. C. Certification program. Teachers who expect to assist in making trade tests are also urged to enroll in this course. The course is devoted to revising present trade tests and developing tests in new fields. (Offered in Summer Sessions only.)

In Ed 444—Graphic Arts Production Control—3 cr. (2 and 3)

A study of commercial and industrial printing control. Emphasis is placed upon considerations for decision making in the areas of process and equipment selection, capital investment, and plant layout. Other topics include production flow, cost analysis, personnel supervision and training, and recent develop-
ments as they affect production. **Prerequisite:** In Ed 204, 440, and permission of instructor.

In Ed 450—Industrial Cooperative Experience—6 cr.
Continuation of In Ed 350. Summer only. **Prerequisite:** Senior standing, In Ed 350, and approval of instructor.

In Ed 451—Special Projects—3 cr. (3 and 0)
The student is assigned a project in accordance with his needs and capabilities. Projects are either experimental, theoretical or developmental and cover subjects not thoroughly covered in other courses.

In Ed 496—Public Relations—3 cr. (3 and 0)
This course emphasizes the techniques and methods of effective public and industrial relations which contribute to understanding and cooperation of labor, business, professional, educational, and industrial groups.

In Ed 605—Course Organization and Evaluation—3 cr. (3 and 0)
In Ed 608—Training Programs in Industry—3 cr. (3 and 0)
In Ed 610—Special Institute Course: Topics in Industrial Education—3 cr. (3 and 0)

In Ed 614—Electronics for Teachers—3 cr. (1 and 6)

In Ed 616—Design and Operation of Industrial Education Laboratories—3 cr. (2 and 2)

In Ed 622—History and Philosophy of Industrial and Vocational Education—3 cr. (3 and 0)

In Ed 625—Teaching Industrial Subjects—3 cr. (3 and 0)

In Ed 632—Advanced Woodworking—2 cr. (1 and 3)

In Ed 635—Advanced Welding—2 cr. (1 and 3)

In Ed 636—Advanced Material Forming—2 cr. (1 and 3)

In Ed 638—Advanced Machining—2 cr. (1 and 3)

In Ed 640—Advanced Techniques of the Graphic Arts—3 cr. (1 and 6)

In Ed 641—Comprehensive General Shop Practices—2 cr. (2 and 0)

In Ed 644—Graphic Arts Production Control—3 cr. (2 and 3)

In Ed 696—Public Relations—3 cr. (3 and 0)

In Ed 815—Seminar in Industrial Education—1 cr. (1 and 0)

In Ed 820—Recent Process Developments—3 cr. (3 and 0)

In Ed 840—School Shop Design—3 cr. (3 and 0)

In Ed 845—Curriculum Planning and Development in Industrial Education—3 cr. (3 and 0)

In Ed 860—Curriculum Materials Development in Industrial Education—3 cr. (3 and 0)

In Ed 861—Administration and Supervision of Vocational Education—3 cr. (3 and 0)

In Ed 865—American Industries—3 cr. (3 and 0)
IN Ed 891—Research in Industrial Education—Credit to be arranged.
IN Ed 895—Special Problems I—3 cr. (3 and 0)
IN Ed 896—Special Problems II—3 cr. (3 and 0)

INDUSTRIAL ENGINEERING

Professor: E. Laitala, Head
Associate Professor: J. H. Couch

IE 301—Process Planning I—3 cr. (2 and 3)
Study of methods of conversion of raw materials into finished products. Emphasis is from the viewpoint of management and control of manufacturing operations. Includes basic terminology, interpretation and use of engineering plans, impact of production volume. This course will examine various manufacturing processes including material removal, casting, joining and forming of materials, and associated measurement techniques. Prerequisite: EC 103 or 109, Phys 122.

IE 303—Job Evaluation and Wage Incentives—3 cr. (3 and 0)
Job description, specification, and classification. Systems employed for establishing relative ranks of jobs. Basic wage and salary determination. Wage incentive methods. Prerequisite: IE 307, 410, or consent of instructor.

IE 304—Methods and Standards—3 cr. (2 and 3)
Fundamentals relating to work methods design and analysis. Includes study of techniques necessary for determining efficient work methods. Work measurement as a basis for control of costs and scheduling. Prerequisite: Junior standing.

IE 306—Process Planning II—3 cr. (2 and 3)
Study of recent process developments and impact on planning and control of manufacturing operations. Numerical control of machines, computer-aided design, zero defects program, and others. Special laboratory investigations, and value engineering project. Prerequisite: IE 301.

IE 307—Survey of Engineering—3 cr. (3 and 0)
An examination of engineering in terms of fundamentals employed, criteria governing engineering decisions, basic functions, and plans created. The kinds of interactions and interdependencies between engineering and non-engineering functions are identified as a basis for optimum organization design. Open to students planning employment in industry including both engineering and non-engineering majors. Prerequisite: Phys 208, or 221, and Junior standing.

IE 403—Process Planning III—3 cr. (3 and 0)
Continuation of IE 306; study of latest process developments. Prerequisite: IE 306.

IE 405—Plant Layout and Material Handling—3 cr. (2 and 3)
Fundamentals underlying the planning of factory layout for new products and increases in production volume. Layout by product and process. Scale model, template, and other planning techniques. Materials handling analysis and equipment decisions. Prerequisite: IE 301, IM 408, or consent of instructor.
IE 407—**INDUSTRIAL APPLICATION OF STATISTICS**—3 cr. (2 and 3)

Application of statistical principles of analysis and control to production processes, studies of process capabilities, quality control, work sampling, reliability analysis, and machine interference. *Prerequisite:* Math 208, 301.

IE 408—**PLANT DESIGN**—2 cr. (1 and 3)

Integration of unit operations into a total production system. Study of analytical procedures for determining layout of production and other facilities, line balance, manner in which operations shall be linked or material moved between them. Creation and analysis of alternative designs. *Prerequisite:* IE 304 and Senior standing.

IE 410—**ENGINEERING AND ORGANIZATION**—3 cr. (3 and 0)

The nature of industrial enterprise in terms of purpose, organization structure, governing criteria, responsibilities and relationships of various functional groups. Project engineering and organization. Analysis and coordination of engineering functions as foundation for engineering management.

IE 412—**SEMINAR**—1 cr. (1 and 0)

Library research and oral reports covering recent technological developments in the field of industrial engineering. Consideration of professional responsibilities and post graduation plans. A major term paper is required. *Prerequisite:* Senior standing in Industrial Engineering.

IE 413—**SEMINAR**—1 cr. (1 and 0)

Continuation of IE 412. *Prerequisite:* IE 412.

INDUSTRIAL MANAGEMENT

Professors: C. C. Davis, B. J. Todd, C. H. Whitehurst, Jr., Head

Instructors: B. B. Johnson, Cheryl J. Skinner

Visiting Professors: R. L. Brown, R. E. Toomey

Part-time Visiting Lecturer: S. T. Peden

IM 100—INTRODUCTION TO INDUSTRIAL MANAGEMENT**—0 cr. (1 and 0)**

A series of lectures by University and industry speakers in which the role of the industrial manager in society is examined and explained. Particular emphasis is placed on orienting the student to understanding the manager's function in a market system economy.

IM 201—INTRODUCTION TO INDUSTRIAL MANAGEMENT**—3 cr. (3 and 0)**

An introductory survey of management's role as a fourth factor of economic production.

IM 299—COMPUTER PROGRAMMING I**—1 cr. (0 and 3)**

An elementary operating course primarily designed to familiarize the student with the various capabilities of electronic computers. A demonstrated

*On leave.
ability to write basic programs applicable to management areas is required.
Prerequisite: Permission of instructor.

IM 304—QUALITY CONTROL—3 cr. (3 and 0)
Basic control techniques in the field of industrial production, inspection and experimentation. Various sampling, control and inspection problems are studied with special reference to practical applications. Underlying theory, assumptions and limitations are presented. Prerequisite: Math 203 or 301.

IM 306—CORPORATION FINANCE—3 cr. (3 and 0)
The organization and operation of corporations with emphasis on the nature and influences of the various sources of funds. Prerequisite: Junior standing.

IM 307—PERSONNEL MANAGEMENT—3 cr. (3 and 0)
An introductory course dealing with the principles and policies governing present day employer-employee relationships. Attention directed to methods of electing, training, placing, and promoting of employees to develop sound personnel techniques. Prerequisite: Junior standing.

IM 308—MARKETING STRATEGY—3 cr. (3 and 0)
This course is designed to explore the development of current marketing concepts and their use in a strategic business situation. Emphasis is placed upon the qualitative aspects of promotional strategy, product design and development, concept testing, methods of distribution, and pricing. The student is introduced to the controllable and uncontrollable variables in marketing and begins to develop an understanding of how each may be used to best advantage in a competitive situation.

IM 312—COMMERCIAL LAW—3 cr. (3 and 0)
An introduction to business law with primary attention given to contracts, agency, negotiable instruments and sales. Prerequisite: Junior standing.

IM 313—COMMERCIAL LAW—3 cr. (3 and 0)
Continuation of IM 312 with emphasis on business organization, personal and real property, estates and bankruptcy and security services.

IM 322—LEGAL ENVIRONMENT OF BUSINESS—3 cr. (3 and 0)
A comprehensive study of the development of governmental regulation of business including both state and national regulations. Attention is given to the constitutional source and limitation of power in both governments; specific areas in which the governments have acted (production, labor, combinations, prices, etc.) and the regulations that have been imposed in these areas; and the scope of the administrative process.

IM 401—MARKETING ANALYSIS I—3 cr. (3 and 0)
An examination of the activities involved in the flow of goods and services from producer to consumer. Stressed will be the application of quantitative techniques for predicting sales and evaluating alternative promotional strategies. Prerequisite: Senior standing in Industrial Management or permission of instructor.

IM 402—OPERATIONS PLANNING AND CONTROL—3 cr. (3 and 0)
The application of modern statistical and mathematical techniques to the planning and control of industrial operations. Emphasis will be placed on applications in forecasting, inventory, production scheduling and control, equip-
ment selection and replacement, maintenance and materials handling. **Prerequisite:** IM 304 and Senior standing.

IM 403—Special Problems—2 cr. (2 and 0)
Each student will plan and develop a research project related to the field of management or defense studies. **Prerequisite:** Senior standing in Industrial Management.

IM 404—Managerial Economics—3 cr. (3 and 0)
The objective of this course is to bridge the gap between theory and managerial practices. Its stress is on the use of tools of economic analysis in classifying problems, in organizing and evaluating information, and in comparing alternative courses of action. **Prerequisite:** Mgt Sc 311, or permission of instructor.

IM 405—Economics of Transportation—3 cr. (3 and 0)
History and structure of transportation systems of the United States; the nature of transportation costs and rates. Transportation systems as factors in industrial location. Government policy towards transportation. **Prerequisite:** Senior standing and permission of instructor.

IM 406—Theory of Industrial Location—3 cr. (3 and 0)
A theoretical study of the general factors which determine plant location in a capitalist society. Particular attention is paid to surveying current literature. A comparison of location theory and actual location patterns is stressed. **Prerequisite:** Senior standing and permission of instructor.

IM 407—Directed Research—1 cr. (1 and 0)
Each student will plan and develop a research project related to the field of management. **Prerequisite:** Senior standing in Industrial Management.

IM 408—Work Simplification and Standardization—3 cr. (3 and 0)
Principles and practices of motion and time as it is applied to industry. Emphasis is given to its application and its influence on methods, material handling, plant layout, and time study procedures.

IM 409—Management Simulation—0-1 cr. (0 and 3)
Practice in managerial decision-making under simulated competitive industry conditions. Guidance is furnished by the staff member administering the requirement. The model is designed to derive maximum benefit from previous courses in economics, econometrics and statistics. **Prerequisite:** Senior standing and permission of instructor.

IM 410—Marketing Research I—1 cr. (1 and 0)
A directed research course oriented toward those students interested in a career in marketing.

IM 411—Marketing Research—2 cr. (2 and 0)
A directed research course oriented toward those students interested in a career in marketing.

IM 412—Marketing Analysis II—3 cr. (3 and 0)
A continuation of Marketing Analysis, IM 401. **Prerequisite:** IM 308 or permission of instructor.
IM 413—Marketing Communications—3 cr. (3 and 0)
The vital role of advertising and public relations in today's marketing strategy is examined. Promotional mixes will be designed so as to be a blend of the markets, media, and messages by which corporate communications are maintained with buyers. Communications theory is explored and then the communications process is analyzed with emphasis on its effect upon the flow of goods and services to the consuming public. Prerequisite: IM 308.

IM 415—Managerial Decision Making—3 cr. (3 and 0)
Management problems and methods involved in the operation of manufacturing institutions, including location, equipment investment, organization structure, and budgets. Attention is given primarily to the above areas by the use of the case method. Emphasis on oral and written communication. Prerequisite: Permission of instructor.

IM 416—Management of Human Resources—3 cr. (3 and 0)
A course designed to orient the student toward recent developments in enlightened uses of human resources with emphasis on procurement, training, development, rewarding and retention of such resources. Prerequisite: Permission of instructor.

IM 417—Manufacturing Logistics—3 cr. (3 and 0)
A study of more advanced manufacturing and production techniques including predetermined motion time data systems, micromotion study analysis, work sampling or ratio delay studies, zero defects, materials handling techniques, machine interference, time study formula construction, machinery and equipment replacement calculations, economic lot size determination, development and use of standard data, cost reduction programs, operator training methods, charting of time study data, problems of machinery and equipment layout, and developing of complex time standards. Prerequisite: IM 408 or permission of instructor.

IM 418—Management Information Systems—3 cr. (3 and 0)
A study of the design and use of communication processes in which data are recorded, transmitted and revised as an aid in management decision making in operations planning and controlling.

IM 420—Management of Defense Expenditures—3 cr. (3 and 0)
Examines the various components and budget classifications of the Department of Defense. Responsibility for the management of these expenditures and methods employed are treated extensively. Prerequisite: Econ 419, Economics of Defense, or permission of instructor.

IM 499—Computer Programming II—1 cr. (0 and 3)
Each student will complete a research project relating to the accomplishment of some management function in which a computer program is now— or is expected to be—of cardinal importance. Students selecting the Defense Studies area concentration may complete the course requirement in that field. Prerequisite: IM 299 or equivalent.

IM 601—Marketing Analysis I—3 cr. (3 and 0)
IM 602—Operations Planning and Control—3 cr. (3 and 0)
IM 604—Managerial Economics—3 cr. (3 and 0)
IM 605—Economics of Transportation—3 cr. (3 and 0)
IM 606—Theory of Industrial Location—3 cr. (3 and 0)
IM 608—Work Simplification and Standardization—3 cr. (2 and 3)
IM 612—Marketing Analysis II—3 cr. (3 and 0)
IM 615—Managerial Decision Making—3 cr. (3 and 0)
IM 617—Manufacturing Logistics—3 cr. (3 and 0)
IM 618—Management Information Systems—3 cr. (3 and 0)
IM 620—Management of Defense Expenditures—3 cr. (3 and 0)

MANAGEMENT

Mgt 800—Management Simulation—1 cr. (0 and 3)
Mgt 801—Quantitative Economic Analysis—3 cr. (3 and 0)
Mgt 802—Finance—3 cr. (3 and 0)
Mgt 803—Operations Management—3 cr. (3 and 0)
Mgt 804—Managerial Policy—3 cr. (3 and 0)
Mgt 805—Quality Control—3 cr. (3 and 0)
Mgt 810—Management and the Law—3 cr. (3 and 0)
Mgt 811—Advanced Marketing Analysis—3 cr. (3 and 0)
Mgt 816—Management of Human Resources—3 cr. (3 and 0)
Mgt 891—Thesis—3 cr.

MANAGEMENT SCIENCE

Associate Professors: E. A. LaRoche, G. D. Riggs
Assistant Professors: C. L. Dyer, T. H. Wilson, R. F. Zant

Mgt Sc 310—Introduction to Management Science—3 cr. (3 and 0)
An introduction to quantitative methods of the management scientist with applications to economic and industrial problems. The course is designed to introduce the student to the use of mathematics, statistics, and accounting as tools in managerial decision making. Prerequisite: Math 203, Econ 202.

Mgt Sc 311—Introduction to Econometrics—3 cr. (3 and 0)
An introduction to economic measurement. Emphasis is placed upon the mathematical formulation of economic theory, the application of calculus to economic theory, and the application of statistics with particular emphasis on the use of regression analysis in economics. Elementary econometric models are introduced. Prerequisite: Math 301, Econ 314.

Mgt Sc 413—Management Science I—3 cr. (3 and 0)
The role and uses of management science techniques in decision making in business and industry; the problems of internal operation of a business enter-

* On leave.
prise in static and dynamic settings under conditions of certainty, risk and uncertainty. Deterministic models will be emphasized, and topics include classical optimization, marginal analysis, programming, the transportation problem, allocation and assignment, the game theory. Attention will also be given to input-output, network analysis, and decision theory. Prerequisite: Consent of instructor.

MCT Sc 414—Statistical Analysis—3 cr. (3 and 0)
This course is designed to provide the student with sufficient understanding of modern statistical methods to make judicious application of statistics in management decision making. Emphasis is placed on the proper design, analysis and interpretation of planned experiences in internal operations. Topics include single factor through fractional factorial experiments, response surface methodology and evolutionary operations. Prerequisite: Math 301 or equivalent.

MCT Sc 611—Introduction to Econometrics—3 cr. (3 and 0)
MCT Sc 613—Management Science I—3 cr. (3 and 0)
MCT Sc 614—Statistical Analysis—3 cr. (3 and 0)
MCT Sc 806—Regional Science Methods—3 cr. (3 and 0)
MCT Sc 807—Econometric Methods I—3 cr. (3 and 0)
MCT Sc 808—Econometric Methods II—3 cr. (3 and 0)
MCT Sc 812—Management Science II—3 cr. (3 and 0)

MATERIALS ENGINEERING

Associate Professors: F. W. Cooke, M. J. Eitell, S. F. Hulbert, Program Coordinator; J. S. Wolf
Assistant Professors: J. J. Klawitter, D. D. Moyle

MatE 301—Introduction to Metallurgical Engineering—3 cr. (3 and 0)
An introduction to the structure and properties of engineering materials. Topics included are bonding in solids, mechanical behavior, equilibrium and non-equilibrium behavior of mixtures and alloys, material-environment interaction, selection of materials for engineering uses, and analysis of material failures. Emphasis is placed on metals and polymers. Prerequisite: Junior standing in engineering or the physical sciences, Ch 102, Phys 221.

MatE 302—Materials Engineering Laboratory—2 cr. (1 and 3)
Laboratory practice in the determination and analysis of the properties of engineering materials. Topics included are specimen selection and preparation, microscopy, photography, temperature measurement, thermal analysis, and mechanical testing. Prerequisite: MatE 301 or CrE 310.

MatE 307—Introduction to Polymer Engineering—3 cr. (3 and 0)
An introduction to the materials engineering of organic polymers. Principles and practice of synthesis of macromolecules; polymerization through addition and condensation; copolymerization; block and graft polymerization. Characterization of polymers in solution; molecular weight averages and polymericarity. Structure and properties of polymers in the condensed state; crystalline-amorphous system; theory of rubber elasticity, mechanical, thermal, optical, and electrical behavior. Prerequisite: Freshman chemistry.
MatE 312—Materials Engineering Thermodynamics—3 cr. (3 and 0)
An introduction to the thermodynamics of materials with special emphasis on metallic systems. Topics included are atomic and crystalline properties of metals, solid solutions and intermetallic compounds, the thermodynamic laws and their relation to solution theory and phase equilibria, and applications of the above to the phase equilibria in unary, binary, and ternary metallic systems with special regard to microstructural evolution. Prerequisite: MatE 301 or CrE 310.

MatE 405—Physical Metallurgy I—3 cr. (3 and 0)
A comprehensive treatment of electron theory, lattice defects, diffusion, solutions and phase equilibria, phase transformations, creep and fracture applied to metals and simple alloys, with emphasis on structure-property relationships. Prerequisite: MatE 301 or CrE 310.

MatE 406—Physical Metallurgy II—3 cr. (3 and 0)
A continuation of MatE 405. Prerequisite: MatE 405.

MatE 408—Principles of Polymer Science I—3 cr. (3 and 0)
An introduction to the materials science of organic polymers. The structures for many types of polymers are surveyed and correlated with macroscopically observable characteristics. The general properties of pure and coexisting polymer phases are defined, and thermally dependent phase transitions are discussed. Further considerations are devoted to swelling phenomena, degradation and stabilization mechanisms, surface modification methods, and to properties of composite structures. Prerequisite: MatE 307, or 301, CrE 310, or an equivalent course.

MatE 409—Principles of Polymer Science II—3 cr. (3 and 0)
A continuation of the introductory course in polymer science. Polymerization methods are surveyed, and the polymerization kinetics of one type of system is dealt with in detail. Quantitative treatments are presented for various experimental procedures that involve dilute polymer solutions. Further considerations are concerned with important testing techniques, and with the unique behavior of some polyelectrolyte systems. Prerequisite: MatE 408 or an equivalent course.

MatE, 411—Materials Engineering Kinetics—3 cr. (3 and 0)
An introduction to the important rate processes in solid materials. Topics included are homogeneous and heterogeneous phase transitions, solidification and other nucleation processes, recrystallization and grain growth, and sintering reactions. Emphasis is placed upon the effects of these phenomena on the properties of engineering materials. Prerequisite: A course in thermodynamics.

MatE 421—Mechanical Metallurgy—3 cr. (3 and 0)
A comprehensive treatment of the concepts of the atomic and microstructural processes which govern the mechanical behavior of metals, alloys, metal oxides, and composite structures. The theories of plastic deformation, creep, and fatigue are applied to metal working processes and the selection of materials for loadbearing applications. Prerequisite: MatE 301 or CrE 310.
Materials Engineering 349

MatE 450—SPECIAL TOPICS IN MATERIALS ENGINEERING—1-3 cr. (0-3 and 9-0)
A comprehensive study of a topic of current interest in the field of materials engineering. May be taken for credit more than one time. Prerequisite: Consent of instructor.

MatE 451—CORROSION OF MATERIALS—3 cr. (2 and 3)
An introduction to the aqueous and gaseous corrosion of metals and alloys. Topics included are ion migration in solid and liquid phases, Pourbaix diagrams, theory and application of corrosion rate measurements, and special corrosion process as they apply to metal degradation and failure. Prerequisite: A course in thermodynamics.

MatE 605—PHYSICAL METALLURGY I—3 cr. (3 and 0)
MatE 606—PHYSICAL METALLURGY II—3 cr. (3 and 0)
MatE 608—PRINCIPLES OF POLYMER SCIENCE I—3 cr. (3 and 0)
MatE 609—PRINCIPLES OF POLYMER SCIENCE II—3 cr. (3 and 0)
MatE 621—MECHANICAL METALLURGY—3 cr. (3 and 0)
MatE 650—SPECIAL TOPICS IN MATERIALS ENGINEERING—1-3 cr. (0-3 and 9-0)

MatE 651—CORROSION OF MATERIALS—3 cr. (2 and 3)
MatE 800—SEMINAR IN MATERIALS RESEARCH—1 cr. (1 and 0)
MatE 802—RESEARCH TECHNIQUES IN PHYSICAL METALLURGY—3 cr. (2 and 3)

MatE 805—PHYSICAL METALLURGY I—3 cr. (3 and 0)
MatE 806—PHYSICAL METALLURGY II—3 cr. (3 and 0)
MatE 807—PHYSICAL PROPERTIES OF POLYMERS—3 cr. (3 and 0)
MatE 808—MECHANICAL PROPERTIES OF POLYMERS—3 cr. (3 and 0)
MatE 810—DIFFUSION IN SOLIDS—3 cr. (3 and 0)
MatE 811—KINETICS OF HETEROGENEOUS REACTIONS—3 cr. (3 and 0)
MatE 812—METALLURGICAL THERMODYNAMICS—3 cr. (3 and 0)
MatE 814—SURFACE CHEMISTRY OF MATERIALS—3 cr. (3 and 0)
MatE 815—APPLICATION OF HETEROGENEOUS EQUILIBRIA—3 cr. (3 and 0)
MatE 820—DEFORMATION MECHANISMS IN SOLIDS—3 cr. (3 and 0)
MatE 821—STRENGTH MECHANISMS IN SOLIDS—3 cr. (3 and 0)
MatE 831—QUANTUM THEORY OF METALS I—3 cr. (3 and 0)
MatE 835—X-RAY METALLOGRAPHY—3 cr. (2 and 3)
MatE 841—SINTERING AND RELATED PHENOMENA—3 cr. (3 and 0)
MatE 850—SPECIAL TOPICS IN MATERIALS ENGINEERING—3 cr. (3 and 0)
MatE 851—OXIDATION OF METALS AND ALLOYS—3 cr. (3 and 0)
MatE 891—RESEARCH—Credit to be arranged.
MatE 991—DOCTORAL RESEARCH—Credit to be arranged.
MATHEMATICS

Professors: C. V. Aucoin, F. M. Cholewinski, R. E. Haymond, A. T. Hind, Jr., J. W. Kenelly, Head; A. Sobczyk

Instructors: Eugenie V. Bartmess, Louise C. Fulmer, Jeuel C. LaTorre

Math 011—Mathematics—5 cr. (5 and 2)

Basic algebraic methods. A general review and development of fundamental mathematical concepts. Basic numerical processes and techniques of algebra. Designed to prepare students for college courses.

Math 012—Mathematics—5 cr. (5 and 2)

Basic geometric concepts. A general review and development of elementary geometric and spacial concepts. Mensuration formulas and elementary properties of spacial figures. Designed to prepare students for college courses.

Math 100—College Algebra—2 cr. (5 and 0)

Required of all freshmen who fail to make a satisfactory grade on the Mathematics Test, Level I (Standard). An intensified review of high school algebra and the topics listed under Math 103. Students enrolled in Math 100 must receive a passing grade in this course before they are eligible to enroll in any other mathematics course. Math 100 may be substituted for Math 103.

Math 101—Mathematical Analysis I—3 cr. (3 and 0)

Topics include: probability spaces, conditional probabilities and discrete random variables. **Prerequisite:** A satisfactory score on the Mathematics Test, Level I (Standard), or consent of instructor.

Math 102—Mathematical Analysis II—3 cr. (3 and 0)

Topics include: intuitive calculus (differentiation and integration), continuous random variables, and probability densities. **Prerequisite:** Math 101 or consent of instructor. Not open to those receiving credit for Math 106.

Math 103—College Algebra—2 cr. (3 and 0)

Algebraic processes, functions, equations, inequalities, mathematical induction, theory of equations, determinants, and logarithms. **Prerequisite:** A satisfactory score on the Mathematics Test, Level I (Standard).

Math 104—Trigonometry—2 cr. (3 and 0)

Trigonometric functions, equations, identities, and solution of triangles. Logarithms and complex numbers. **Prerequisite:** A satisfactory score on the Mathematics Test, Level I (Standard).

* On leave.
MATH 106—CALCULUS OF ONE VARIABLE—4 cr. (5 and 0)
Topics include: analytic geometry, introduction to derivatives, computation and application of derivatives, integrals, techniques of integration, and approximations. Prerequisite: Math 103, 104, or a satisfactory score on the Mathematics Test Level I (Standard), or consent of instructor.

MATH H106—CALCULUS OF ONE VARIABLE—4 cr. (5 and 0)
Same as Math 106 except that this honors section is open to students only by invitation.

MATH 108—CALCULUS AND LINEAR ALGEBRA—4 cr. (5 and 0)
Topics include: matrices and vectors, transformation and matrices, representations of linear transformations and the topics in calculus are infinite series, limits, differentiation and integration. Prerequisite: Math 106.

MATH H108—CALCULUS AND LINEAR ALGEBRA—4 cr. (5 and 0)
Same as Math 108 except this honors section is open to students only by invitation.

MATH 115—CONTEMPORARY MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS I—3 cr. (3 and 0)
Logic, sets, and the properties of the counting numbers, numeration systems.

MATH 116—CONTEMPORARY MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS II—3 cr. (3 and 0)
A continuation of Math 115. Subtraction, properties of the integers, elementary number theory, rational number system, real number system. Prerequisite: Math 115; open only to elementary school majors or consent of instructor.

MATH 203—ELEMENTARY STATISTICAL INFERENCE—3 cr. (3 and 0)
A survey course in fundamental statistical principles with applications to social sciences and other fields. The development of the course will assume knowledge of finite probability. Major topics include: empirical frequency distributions, computation of descriptive statistics, basic statistical inference including estimation and testing of hypotheses, regression and correlation analysis, and contingency tables. Prerequisite: Math 102, or a 3-credit course in finite probability, or consent of instructor.

MATH 206—CALCULUS OF SEVERAL VARIABLES—4 cr. (5 and 0)
Topics include: real valued functions of several variables, multiple integration, differential calculus of functions of several variables, applications, vector field theory. Prerequisite: Math 108.

MATH H206—CALCULUS OF SEVERAL VARIABLES—4 cr. (5 and 0)
Same as Math 206 except this honors section is open to students only by invitation.

MATH 207—MULTIPLE DIMENSION CALCULUS—3 cr. (3 and 0)
Principal topics include differential and integral calculus for functions of several variables, extreme values of functions, Lagrangian multipliers, differential equations and difference equations. Examples from the managerial and social sciences. Prerequisite: Math 108.
MATHEMATICS 208—ENGINEERING MATHEMATICS I—4 cr. (5 and 0)
This course presents an introduction to the study of differential equations and their application to physical problems. The topics include exact solutions, series solutions, numerical solutions, solutions by means of Laplace transforms, and solutions of systems of differential equations. *Prerequisite:* Math 206.

MATHEMATICS H208—ENGINEERING MATHEMATICS I—4 cr. (5 and 0)
Same as Math 208 except that this honors section is open to students only by invitation.

MATHEMATICS 215—ALGEBRA FOR ELEMENTARY SCHOOL TEACHERS—3 cr. (3 and 0)
Linear equations and linear inequalities in one variable, functions and graphs, systems of linear equations and linear inequalities, quadratic equations, complex number system. Finite number systems, algebraic structures. *Prerequisite:* Math 116 or consent of instructor.

MATHEMATICS 216—GEOMETRY FOR ELEMENTARY SCHOOL TEACHERS—3 cr. (3 and 0)
An informal treatment of the basic concepts of geometry. *Prerequisite:* Math 116; open only to elementary school majors or consent of instructor.

MATHEMATICS 295—FOUNDATION OF ANALYSIS—3 cr. (3 and 0)
An introduction to the language and use of symbolic logic and the properties of the real number system with applications to the calculus. *Prerequisite:* Math 108.

MATHEMATICS 301—STATISTICAL THEORY AND METHODS I—3 cr. (3 and 0)
Principal topics include: elementary probability theory, discrete and continuous random variables, expected values, normal distribution, chi-square distribution, t-distribution, F-distribution, test of hypothesis, point and interval estimation, curve fitting. *Prerequisite:* Math 206.

MATHEMATICS H301—STATISTICAL THEORY AND METHODS I—3 cr. (3 and 0)
Same as Math 301 except that this honors section is open to students only by invitation.

MATHEMATICS 308—COLLEGE GEOMETRY—3 cr. (3 and 0)
Theorems and concepts more advanced than those of high school geometry. A treatment of the various properties of the triangle, including the notable points, lines, and circles associated with it. *Prerequisite:* Math 106.

MATHEMATICS 309—ENGINEERING MATHEMATICS II—3 cr. (3 and 0)

MATHEMATICS H309—ENGINEERING MATHEMATICS II—3 cr. (3 and 0)
Same as Math 309 except that this honors section is open to students only by invitation.

MATHEMATICS 402—THEORY OF PROBABILITY—3 cr. (3 and 0)
Principal topics include: combinatorial theory, probability axioms, random variables, expected values; special discrete and continuous distributions, jointly distributed random variables, correlation, conditional expectation, law of large numbers, central limit theorem. *Prerequisite:* Math 301 or consent of instructor.
MATH H402—THEORY OF PROBABILITY—3 cr. (3 and 0)
Same as Math 402 except that this honors section is open to students only by invitation.

MATH 403—STATISTICAL INFERENCE—3 cr. (3 and 0)
Principal topics include: sampling distributions, point and interval estimation, maximum likelihood estimators, method of moments, least squares estimators, tests of hypothesis, likelihood ration methods, regression and correlation analysis, introduction to analysis of variance. Prerequisite: Math 402.

MATH H403—STATISTICAL INFERENCE—3 cr. (3 and 0)
Same as Math 403 except that this honors section is open to students only by invitation.

MATH 404—INTRODUCTION TO STOCHASTIC PROCESSES—3 cr. (3 and 0)
Principal topics include—random variables, counting processes, stationary processes, ergodic processes, spectral distribution function, examples from scientific fields to indicate the use of stochastic processes in construction of models of physical and behavioral phenomena. Prerequisite: Math 402.

MATH 405—STATISTICAL THEORY AND METHODS II—3 cr. (3 and 0)
Principal topics include contingency tables, goodness of fit, rank-sum tests, Kolmogorov-Smirnov tests, analysis of variance, factorial experimentation, applications to reliability and life testing, applications to quality assurance. Prerequisite: Math 301.

MATH 407—PARTIAL DIFFERENTIAL EQUATIONS—3 cr. (3 and 0)
Partial differentiation and space geometry, origins of partial differential equations, linear and nonlinear equations of the first order, Fourier series, linear equations of the second and higher orders. Prerequisite: Math 208.

MATH 408—TOPICS IN GEOMETRY—3 cr. (3 and 0)
An introduction to topics in special geometries which include non-Euclidean space concepts, such as projective geometry, finite geometries, and intuitive elementary topology. A brief introduction to vector geometry. Prerequisite: Math 206.

MATH 409—STATISTICAL THEORY AND METHODS III—3 cr. (3 and 0)
A continuation of Math 405 with equal emphasis on both the mathematical foundations and practical applications of advanced statistical methods. Principal topics include: experimental designs, fractionally replicated experiments, multiple regression and response surface analysis, evolutionary operations, simultaneous inference, analysis of covariance, and time series analysis. Prerequisite: Math 405.

MATH 411—LINEAR ALGEBRA—3 cr. (3 and 0)
An introduction to the algebra of matrices, vector spaces, polynomials and linear transformations. Prerequisite: Math 206.

MATH 412—INTRODUCTION TO MODERN ALGEBRA—3 cr. (3 and 0)
An introduction to the concepts of algebra. Topics included are the number system; elementary theory of groups; rings, integral domains, and fields; matrices over a field; determinants and matrices; groups, rings, and ideals. Prerequisite: Math 206.
Math H412—Introduction to Modern Algebra—3 cr. (3 and 0)
Same as Math 412 except that this honors section is open to students only by invitation.

Math 413—Modern Algebra—3 cr. (3 and 0)
A continuation of Math 412.

Math H413—Modern Algebra—3 cr. (3 and 0)
Same as Math 413 except that this honors section is open to students only by invitation.

Math 415—Introduction to Topology—3 cr. (3 and 0)
An introduction to point set topology; Hausdorff, regular and normal spaces; metric connected and compact spaces; continuous mappings and homeomorphisms. Prerequisite: Math 295.

Math H415—Introduction to Topology—3 cr. (3 and 0)
Same as Math 415 except that this honors section is open to students only by invitation.

Math 417—Mathematics Programs—3 cr. (3 and 0)
Aspects of the new programs in mathematics. Open only to in-service teachers or students in the Mathematics Teacher Training Program. Prerequisite: Math 308; corequisite: Math 408.

Math 419—Applied Combinatorial Algebra I—3 cr. (3 and 0)
This course applies theoretical concepts of sets, functions, binary relations, graphs, Boolean algebras, propositional logic, semigroups, groups, hemomorphisms, and permutation groups to computer characterization and design, words over a finite alphabet and concatenation, binary group codes, and other communication or computer problems. Computer algorithms for listing permutations, combinations, compositions, and partitions and for representation and processing of digital information are considered. Prerequisite: Math 206.

Math 420—Applied Combinatorial Algebra II—3 cr. (3 and 0)
This course applies graph theory, ring and field theory, cardinality of sets, and difference equations to Nim games and other perfect information games, transport networks, shortest route problems, polynomial codes, Bose-Chandhuri-Hoquenghem codes, machine computability, mathematical linguistics, classification of programming languages, and different codes. Prerequisite: Math 412, or 419, or consent of instructor.

Math 422—Mathematical Logic—3 cr. (3 and 0)
A detailed and rigorous study of a logical system as a foundation for mathematics. An analysis of basic concepts occurring in the foundations of mathematics. Prerequisite: Sufficient mathematical background.

Math 424—Foundations of Mathematics—3 cr. (3 and 0)
Naive set theory, cardinal and ordinal numbers, and axiom of choice and equivalents. A study of the set theoretic fundamentals of abstract mathematics.

Math 425—Intermediate Differential Equations—3 cr. (3 and 0)
Second order linear differential equations, regular singular points, Bessel, Legendre and hypergeometric functions, general linear equations, existence and uniqueness theorems, plane autonomous systems and phase plane concepts, Sturm-Louiville systems. Corequisite: Advanced calculus.
MATH 428—NUMERICAL LINEAR ALGEBRA—3 cr. (3 and 0)
Numerical solution of linear algebraic systems, matrix inversion, computation of eigenvalues and eigenvectors. Prerequisite: Comp Sc 205, Math 411.

MATH 429—NUMERICAL ANALYSIS I—3 cr. (3 and 0)
Solution of nonlinear equations and systems, function approximation with polynomials, numerical differentiation and quadrature, numerical solution of ordinary differential equations. Prerequisite: Comp Sc 205, Math 453 or 463.

MATH 435—COMPLEX VARIABLES—3 cr. (3 and 0)

MATH H435—COMPLEX VARIABLES—3 cr. (3 and 0)
Same as Math 435 except that this honors section is open to students only by invitation.

MATH 452—LINEAR PROGRAMMING—3 cr. (3 and 0)
An introduction to linear programming, using elementary matrix algebra and the theory of convex polygons. Applications to managerial problems, operations research, economic behavior, the theory of games and military strategy are considered. Prerequisite: Math 206 or permission of instructor.

MATH 453—ADVANCED CALCULUS I—3 cr. (3 and 0)
Limits, continuity, and differentiation of functions of one and several variables, the Riemann integral, and vector analysis. Prerequisite: Math 208 and Junior standing.

MATH 454—ADVANCED CALCULUS II—3 cr. (3 and 0)
A continuation of Math 453. Transformations, multiple integrals, line and surface integrals, infinite sequences and series, and improper integrals.

MATH 457—APPLIED MATHEMATICS I—3 cr. (3 and 0)
Determinants and matrices, review of differential equations, finite differences, Fourier series and integrals, Laplace transformations, a large selection of applications. Prerequisite: Math 208.

MATH 458—APPLIED MATHEMATICS II—3 cr. (3 and 0)
A continuation of Math 457. Partial differential equations, Bessel functions and Legendre polynomials, analytic functions of complex variables, infinite series in a complex plane, the theory of residues, conformal mapping. Prerequisite: Math 457.

MATH 463—MATHEMATICAL ANALYSIS I—3 cr. (3 and 0)
Basic properties of the real number system, sequences and limits; continuous functions, uniform continuity and convergence. Integration, differentiation, functions of several real variables, implicit function theory. Prerequisite: Math 295.

MATH H463—MATHEMATICAL ANALYSIS I—3 cr. (3 and 0)
Same as Math 463 except that this honors section is open to students only by invitation.

MATH 464—MATHEMATICAL ANALYSIS II—3 cr. (3 and 0)
A continuation of Math 463.
Math H464—Mathematical Analysis II—3 cr. (3 and 0)
A continuation of Math H463. This honors section is open to students only by invitation.

Math 471—Applied Statistical Decision Theory—3 cr. (3 and 0)
An introduction to statistical decision theory emphasizing the Bayesian approach. Behavioral axioms, characterizing the “Rational decision maker,” lead to the laws of probability theory and utility theory. Topics include: axioms of subjective probability and utility, extensive and normal form analysis, likelihood principle, conjugate distributions. Prerequisite: Math 402.

Math 473—Introduction to Nonlinear Optimization—3 cr. (3 and 0)
An introduction to the application and theory of nonlinear optimization problems. The primary topics include: classical optimization based on the calculus, approximation techniques, separable programming, quadratic programming, gradient methods, and dynamic programming. Prerequisite: Math 452, 453.

Math H481—Honors Seminar in Mathematics—Credit to be arranged. (8 and 0)
At the discretion of the instructor, attention will be focused upon mathematical areas in which nonroutine problems can be posed with comparative ease. Emphasis will be upon independent study and student use of previously acquired mathematical skills and his own ingenuity in the examination, presentation or preparation of mathematical papers. These papers may be expository or creative in content and may deal with applications of the mathematics under investigation. This honors course is open to students only by invitation for not more than three hours credit.

Math H482—Honors Seminar in Mathematics—Credit to be arranged. (3 and 0)
A continuation of Math H481.

Math 601—Statistical Theory and Methods I—3 cr. (3 and 0)
Math 602—Theory of Probability—3 cr. (3 and 0)
Math 603—Statistical Inference—3 cr. (3 and 0)
Math 604—Introduction to Stochastic Processes—3 cr. (3 and 0)
Math 605—Statistical Theory and Methods II—3 cr. (3 and 0)
Math 607—Partial Differential Equations—3 cr. (3 and 0)
Math 608—Topics in Geometry—3 cr. (3 and 0)
Math 609—Statistical Theory and Methods III—3 cr. (3 and 0)
Math 611—Linear Algebra—3 cr. (3 and 0)
Math 612—Introduction to Modern Algebra—3 cr. (3 and 0)
Math 613—Modern Algebra—3 cr. (3 and 0)
Math 615—Introduction to Topology—3 cr. (3 and 0)
Math 617—Mathematics Programs—3 cr. (3 and 0)
Math 619—Applied Combinatorial Algebra I—3 cr. (3 and 0)
Math 620—Applied Combinatorial Algebra II—3 cr. (3 and 0)
Math 625—Intermediate Differential Equations—3 cr. (3 and 0)
Math 628—Numerical Linear Algebra—3 cr. (3 and 0)
Math 629—Numerical Analysis I—3 cr. (3 and 0)
Math 635—Complex Variables—3 cr. (3 and 0)
Math 652—Linear Programming—3 cr. (3 and 0)
Math 653—Advanced Calculus I—3 cr. (3 and 0)
Math 654—Advanced Calculus II—3 cr. (3 and 0)
Math 657—Applied Mathematics I—3 cr. (3 and 0)
Math 658—Applied Mathematics II—3 cr. (3 and 0)
Math 663—Mathematical Analysis I—3 cr. (3 and 0)
Math 664—Mathematical Analysis II—3 cr. (3 and 0)
Math 671—Applied Statistical Decision Theory—3 cr. (3 and 0)
Math 673—Introduction to Nonlinear Optimization—3 cr. (3 and 0)
Math 701—Number Systems—3 cr. (3 and 0)
Math 703—Geometric Concepts—3 cr. (3 and 0)
Math 705—Algebra, Probability and Statistics—3 cr. (3 and 0)
Math 711—Modern Algebraic Concepts I—3 cr. (3 and 0)
Math 712—Modern Algebraic Concepts II—3 cr. (3 and 0)
Math 721—Matrix Algebra I—3 cr. (3 and 0)
Math 722—Matrix Algebra II—3 cr. (3 and 0)
Math 731—Non-Euclidean Geometry—3 cr. (3 and 0)
Math 741—Introduction to Linear Programming with Applications—3 cr. (3 and 0)
Math 751—Fundamental Concepts of Calculus I—3 cr. (3 and 0)
Math 752—Fundamental Concepts of Calculus II—3 cr. (3 and 0)
Math 761—Probability and Statistics—3 cr. (3 and 0)
Math 801—General Linear Hypothesis I—3 cr. (3 and 0)
Math 802—General Linear Hypothesis II—3 cr. (3 and 0)
Math 803—Stochastic Processes I—3 cr. (3 and 0)
Math 804—Stochastic Processes II—3 cr. (3 and 0)
Math 807—Mathematical Statistics I—3 cr. (3 and 0)
Math 808—Mathematical Statistics II—3 cr. (3 and 0)
Math 811—Nonlinear Programming—3 cr. (3 and 0)
Math 812—Dynamic Programming—3 cr. (3 and 0)
Math 813—Advanced Linear Programming—3 cr. (3 and 0)
Math 821—Real Analysis I—3 cr. (3 and 0)
Math 822—Real Analysis II—3 cr. (3 and 0)
Math 823—Complex Analysis I—3 cr. (3 and 0)
Math 824—Complex Analysis II—3 cr. (3 and 0)
Math 825—Ordinary Differential Equations I—3 cr. (3 and 0)
Math 826—Ordinary Differential Equations II—3 cr. (3 and 0)
Math 831—Fourier Series—3 cr. (3 and 0)
Math 833—Operational Mathematics—3 cr. (3 and 0)
Math 837—Calculus of Variations—3 cr. (3 and 0)
Math 839—Integral Equations—3 cr. (3 and 0)
Math 841—Applied Mathematics I—3 cr. (3 and 0)
Math 842—Applied Mathematics II—3 cr. (3 and 0)
Math 851—Abstract Algebra I—3 cr. (3 and 0)
Math 852—Abstract Algebra II—3 cr. (3 and 0)
Math 853—Advanced Linear Algebra—3 cr. (3 and 0)
Math 854—Theory of Graphs I—3 cr. (3 and 0)
Math 855—Combinatorial Analysis—3 cr. (3 and 0)
Math 861—Advanced Numerical Analysis I—3 cr. (3 and 0)
Math 862—Advanced Numerical Analysis II—3 cr. (3 and 0)
Math 863—Digital Analysis I—3 cr. (3 and 0)
Math 864—Digital Analysis II—3 cr. (3 and 0)
Math 871—General Topology I—3 cr. (3 and 0)
Math 872—General Topology II—3 cr. (3 and 0)
Math 873—Algebraic Topology I—3 cr. (3 and 0)
Math 874—Algebraic Topology II—3 cr. (3 and 0)
Math 875—Convexity I—3 cr. (3 and 0)
Math 876—Convexity II—3 cr. (3 and 0)
Math 881—History of Mathematics—3 cr. (3 and 0)
Math 883—Theory of Numbers—3 cr. (3 and 0)
Math 885—Projective Geometry—3 cr. (3 and 0)
Math 891—Research—Credit to be arranged.
Math 901—Probability Theory I—3 cr. (3 and 0)
Math 902—Probability Theory II—3 cr. (3 and 0)
Math 903—Advanced Stochastic Processes—3 cr. (3 and 0)
Math 905—Decision Theory I—3 cr. (3 and 0)
Math 906—Decision Theory II—3 cr. (3 and 0)
Math 907—Multivariate Analysis—3 cr. (3 and 0)
Math 920—Introduction to Harmonic Analysis—3 cr. (3 and 0)
Math 921—Abstract Harmonic Analysis I—3 cr. (3 and 0)
Math 922—Abstract Harmonic Analysis II—3 cr. (3 and 0)
Math 923—Introduction to the Theory of Distribution I—3 cr. (3 and 0)
Math 924—Introduction to the Theory of Distribution II—3 cr. (3 and 0)
Math 925—Topics in Nonlinear Differential Equations—3 cr. (3 and 0)
Math 927—Functional Analysis I—3 cr. (3 and 0)
Math 928—Functional Analysis II—3 cr. (3 and 0)
Math 929—Functional Analysis III—3 cr. (3 and 0)
Math 930—Functional Analysis IV—3 cr. (3 and 0)
Math 945—Potential Theory I—3 cr. (3 and 0)
Math 946—Potential Theory II—3 cr. (3 and 0)
Math 951—Group Theory—3 cr. (3 and 0)
Math 952—Ring Theory I—3 cr. (3 and 0)
Math 953—Ring Theory II—3 cr. (3 and 0)
Math 954—Theory of Graphs II—3 cr. (3 and 0)
Math 955—Combinatorial Analysis II—3 cr. (3 and 0)
Math 956—Field Theory—3 cr. (3 and 0)
Math 957—Semigroup Theory I—3 cr. (3 and 0)
Math 958—Semigroup Theory II—3 cr. (3 and 0)
Math 980—Special Topics in Probability—1-3 cr. (1-3 and 0)
Math 981—Special Topics in Mathematical Statistics—1-3 cr. (1-3 and 0)
Math 982—Special Topics in Analysis—1-3 cr. (1-3 and 0)
Math 983—Special Topics in Functional Analysis—1-3 cr. (1-3 and 0)
Math 984—Special Topics in Applied Mathematics—1-3 cr. (1-3 and 0)
Math 985—Special Topics in Algebra—1-3 cr. (1-3 and 0)
Math 986—Special Topics in Convexity—1-3 cr. (1-3 and 0)
Math 987—Special Topics in Numerical Processes—1-3 cr. (1-3 and 0)
Math 991—Doctoral Research—Credit to be arranged.
MECHANICAL ENGINEERING

Professors: D. W. Bradbury, J. L. Edwards, T. C. Hardin, E. Harrison, A. D. Lewis, S. M. Watson, T. Yang

Associate Professors: C. A. Brandon, E. F. Coxe, A. C. Elrod, J. C. Hester, Head; W. G. Hudson, J. K. Johnson, Jr., D. W. Lyons, C. S. Rudisill

Assistant Professor: M. W. Dixon

Adjunct Professor: T. S. Hargest

ME 201—Innovative Design I—2 cr. (1 and 3)
An introduction to engineering design with emphasis on creativity, synthesis, participation in a realistic experience in design to satisfy human needs, experimentation and analysis commensurate with the student’s background in mathematics and science. Problems are authentic. The building of a prototype, at least of critical parts, is the consummation of the design. Nontechnical aspects of engineering such as cost, market, contracts, and ethics are stressed. Co-requisite: Phys 122 and Sophomore standing.

ME 202—Innovative Design II—2 cr. (1 and 3)
A continuation of ME 201 to involve the student in the implementation of design concepts. Graphical communication, engineering materials, methods of production and design trade-offs are presented. Prerequisite: ME 201 and consent of instructor.

ME 299—Digital Computation—1 cr. (0 and 3)
An introduction to digital computer programming for students majoring in mechanical engineering. Emphasis is placed on the computer languages in use at Clemson University, and their application to the solution of simple problems in mechanical engineering. Prerequisite: Sophomore standing.

ME 304—Heat Transfer I—3 cr. (3 and 0)
A comprehensive study of the principles of heat transmission with applications to engineering problems. Special emphasis is given to the following topics: heat conduction in the steady and unsteady states; dimensional analysis of convection; free and forced convection; the combined efforts of conduction, convection and radiation. Prerequisite: Junior standing, ME 311, or ChE 331, Math 208, and permission of instructor.

ME 311—Engineering Thermodynamics I—3 cr. (3 and 0)
A study of thermodynamics as an engineering science. Topics stressed are the first and second laws of thermodynamics, properties of the pure substance, ideal gases, and gaseous mixtures. Prerequisite: Math 208, Phys 222, and Junior standing.

ME 311H—Engineering Thermodynamics I—3 cr. (3 and 0)
Honors section of ME 311; admission by invitation.

ME 312—Engineering Thermodynamics II—3 cr. (3 and 0)
Chemical reactions and combustion, chemical equilibrium; analyses of processes and cycles; introduction to statistical thermodynamics, kinetic theory of gases, and irreversible thermodynamics. Prerequisite: ME 311.

ME 313—Instrumentation and Measurements—2 cr. (1 and 2)
Principles of measurements, accuracy of instruments, and data acquisition. Modern instruments for measuring and recording static and dynamic pressures,
temperatures, fluid flow, speed, power, and torque. Prerequisite: Enrollment in ME 311.

ME 314—ENGINEERING EXPERIMENTATION—2 cr. (1 and 2)
Theoretical, analytic and statistical aspects of basic engineering experimenta-
tion. Error analysis, dimensional analysis, experimental plans, and data analyses. Prerequisite: Math 301, ME 313, and permission of instructor.

ME 316—DYNAMIC SYSTEM ANALYSIS—4 cr. (3 and 3)
Principles of dynamic system response with emphasis on the determination
of mathematical models for mechanical, electrical, electromechanical, fluid and
thermal systems. Differential equations are developed from a consideration of
physical laws, system arrangement, and constraints. The Lagrangian state
function and Lagrange's equation are introduced. Transient and steady-state
analyses make use of Laplace transforms and frequency response techniques.
Computers are used extensively. Prerequisite: Math 208, Phys 221, EM 202.
Corequisite: E&CE 331.

ME 321—FLUID DYNAMICS—3 cr. (3 and 0)
A study of the theory of fluids in motion. Topics include: review of con-
cepts from thermodynamics as applied to the governing equations of fluids
in motion; wave propagation in a fluid; types of fluid flow; one dimensional
adiabatic flow with variable area; normal and oblique shocks and expansion
fans; attached and detached shocks; shock-boundary layer interaction; one
dimensional flow with friction and heat transfer; introduction to viscous flow
theory; introduction to potential flow theory; selected applications. Prerequi-
site: EM 320, ME 311, and permission of instructor.

ME 401—PRINCIPLES OF MECHANICAL ENGINEERING DESIGN—3 cr. (3 and 0)
Stress, strain and strength considerations in engineering design. Theories of
failure of yielding, brittle fracture and fatigue fracture are presented. Design
considerations for impact, creep, elastic deflection, stress concentration, contact
stresses and reliability are studied. Engineering problems are assigned to
implement applications of principles of design. Prerequisite: EM 304, ME 316,
and permission of instructor. Corequisite: CrE 310, Senior standing.

ME 402—INNOVATIVE DESIGN III—2 cr. (1 and 2)
The student is given the opportunity to apply creatively his general knowl-
edge and his knowledge of engineering in the analysis and design of one or
more engineering systems, machines, or devices. Problems may be selected
from two sources: A meritorious problem of the student's own choice or a
problem assigned by appropriate authority. Corequisite: ME 401, Senior stand-
ing, and permission of instructor.

ME 404—AUTOMATIC CONTROL—3 cr. (3 and 0)
Mathematical modeling of automatic control systems; concepts of state vari-
able observability and controllability. System analysis with emphasis on
classical frequency domain and root locus techniques. Introduction to design
with applications to mechanical, electromechanical, hydraulic, and pneumatic
systems. Prerequisite: ME 316, E&CE 308, and permission of instructor.

ME 406—PHYSICAL SYSTEMS ANALYSIS AND DESIGN—3 cr. (3 and 0)
A general approach to the analysis and synthesis of physical systems based
on state variable representation, Lagrange's equations, matrix solution to state
Description of Courses

equations, and the calculus of variations. Computer solutions are obtained for application to mechanical, electrical, fluid, and thermal systems. **Prerequisite:** ME 316, and permission of instructor.

ME 408—INTRODUCTION TO COMPUTER-AIDED DESIGN—3 cr. (3 and 0)
Introduction to computer-aided design, reliability, figures of merit, optimization techniques, search for extremes, and decision theory in design. Computer-aided optimum design of engineering systems and the writing and use of problem-oriented languages will be emphasized. **Prerequisite:** Senior standing.

ME 411—GAS POWER—3 cr. (3 and 0)
A study of the effects of variation in specific heat, some fundamentals of compressible flow, the combustion process, and chemical dissociation. The theoretical and actual processes associated with the gas turbine, the thermal jet, the thermal rocket, and the spark ignition and compression ignition reciprocating engines are analyzed. **Prerequisite:** ME 312 and Senior engineering.

ME 412—APPLIED THERMODYNAMICS—3 cr. (3 and 0)
Basic principles of first and second laws of thermodynamics applied to areas such as cryogenics, nonconventional energy conversion process, industrial process heat and electric power systems, etc. **Prerequisite:** ME 312, and permission of instructor.

ME 413—MECHANICAL ENGINEERING LABORATORY—1 cr. (0 and 2)
Experimental investigations in a wide variety of mechanical engineering areas, such as fluid dynamics, automatic control, heat and mass transfer, combustion, thermodynamics, and solid mechanics. **Prerequisite:** ME 313, 314, and permission of instructor.

ME 414—MECHANICAL ENGINEERING LABORATORY—1 cr. (0 and 2)
Continuation of ME 413.

ME 415—UNDERGRADUATE RESEARCH—1-3 cr.
Individual research projects to be conducted under the direct supervision and guidance of a faculty member. **Prerequisite:** Permission of instructor.

ME H415—UNDERGRADUATE RESEARCH—1-3 cr.
Honors section of ME 415; admission by invitation.

ME 416—UNDERGRADUATE RESEARCH—1-3 cr.
Individual research projects to be conducted under the direct supervision and guidance of a faculty member. **Prerequisite:** Consent of instructor.

ME 422—PRINCIPLES OF TURBOMACHINERY—3 cr. (3 and 0)
The guiding principles underlying all forms of turbomachinery. A unified treatment of turbomachinery to include pumps, fans, compressors and steam, gas and hydraulic turbines. Dimensional analysis as applied to turbomachinery, Euler's Equation, concepts of specific speed and thermodynamics of turbomachinery processes and allied topics are covered. **Prerequisite:** ME 312, EM 320, Senior standing, and permission of instructor.

ME 424—ENGINEERING ANALYSIS—3 cr. (2 and 3)
A senior-level course requiring the student to utilize his knowledge of mathematics, fluid and solid mechanics, thermodynamics, heat transfer, and other background work in solving engineering problems. Both analog and digital computers are utilized as tools contributing to these solutions. **Prerequisite:** ME 304, 312, EM 321, and permission of instructor.
ME 425—KINEMATICS I: KINEMATIC ANALYSIS OF MACHINES—3 cr.

Kinematic analysis of machines to include displacement, velocity and acceleration analyses. Kinematic design of gears, cams and linkages, trains of mechanisms. Space mechanisms. Linkage synthesis. Analog and digital computers are used. Prerequisite: EM 202, ME 316, and permission of instructor.

ME 429—AIR-CONDITIONING—3 cr. (0 and 3)

A study of the principles of heating and air conditioning, including calculation of heat loss and heat gains for buildings, heating and cooling systems, psychrometric principles, air distribution, refrigeration and automatic control apparatus. Prerequisite: ME 304, 312, Senior standing, and permission of instructor.

ME 430—AIR-CONDITIONING DESIGN—1 cr. (0 and 3)

An application of the theory covered in ME 429 to the design of air-conditioning systems. Prerequisite: Enrollment in ME 429.

ME 441—AEROELASTICITY—3 cr. (3 and 0)

Two- and three-dimensional theory of structural vibration and wing flutter. Lagrangian equations, energy methods, matrix methods and computer techniques for vibration analysis will be presented. Structural damping, aero-dynamic forces, and flutter stability will be studied. Vertical bending, torsional vibration and flutter of fuselages, ailerons and stabilizers will be analyzed.

ME 480—METHODS OF OPERATIONS RESEARCH I—3 cr. (3 and 0)

Applications and elementary theory of selected topics from Operations Research. Topics included are linear algebra, linear programming, transportation and assignment problems, network analysis, and game theory. Prerequisite: ME 299 or equivalent.

ME 481—METHODS OF OPERATIONS RESEARCH II—3 cr. (3 and 0)

A continuation of ME 480. Topics included are nonlinear programming, dynamic programming, queuing theory, and markov processes. Prerequisite: Math 301 or equivalent.

ME 484—ENGINEERING ECONOMIC ANALYSIS—3 cr. (3 and 0)

Basic principles and techniques of economic analysis of engineering projects. Consideration of time value of money, short- and long-term investments, replacement analysis, depreciation methods, cost allocation and measures of cost effectiveness. Prerequisite: Senior standing in Engineering or consent of instructor.

ME 485—INDUSTRIAL APPLICATION OF STATISTICS—3 cr. (3 and 0)

Application of statistical principles of analysis and control to production processes, studies of process capabilities, quality control, work sampling, reliability and analysis, and machine interference. Prerequisite: Math 301.

ME 486—WORK FLOW SYSTEMS AND CONTROL—3 cr. (3 and 0)

Fundamentals underlying the determination of production capacity requirements, economic lot sizes, and the regulating of flow and storage of materials to, within, and from the production system. Elements of forecasting, determination of materials requirements, scheduling, inventory control, etc. Consideration of data processing methods. Prerequisite: Math 301, consent of instructor.
ME 491—Selected Topics in Mechanical Engineering—3 cr. (3 and 0)
A comprehensive study of any topic in the field of Mechanical Engineering not covered in other courses.

ME 601—Principles of Mechanical Engineering Design—3 cr. (3 and 0)
ME 602—Innovative Design III—2 cr. (1 and 2)
ME 604—Automatic Control—3 cr. (3 and 0)
ME 606—Physical Systems Analysis and Design—3 cr. (3 and 0)
ME 608—Introduction to Computer-Aided Design—3 cr. (3 and 0)
ME 611—Gas Power—3 cr. (3 and 0)
ME 622—Principles of Turbomachinery—3 cr. (3 and 0)
ME 624—Engineering Analysis—3 cr. (3 and 0)
ME 625—Kinematics I: Kinematic Analysis of Machines—3 cr. (3 and 0)

ME 680—Methods of Operations Research I—3 cr. (3 and 0)
ME 681—Methods of Operations Research II—3 cr. (3 and 0)
ME 684—Engineering Economic Analysis—3 cr. (3 and 0)
ME 801—Thermal Environmental Engineering—3 cr. (3 and 0)
ME 810—Advanced Thermodynamics—3 cr. (3 and 0)
ME 811—Gas Dynamics—3 cr. (3 and 0)
ME 813—Advanced Gas Dynamics—3 cr. (3 and 0)
ME 815—Kinetic Theory of Gases—3 cr. (3 and 0)
ME 816—Energy Conversion—3 cr. (3 and 0)
ME 824—Propulsion Systems—3 cr. (3 and 0)
ME 830—Heat Transfer—3 cr. (3 and 0)
ME 831—Heat and Mass Transfer—3 cr. (3 and 0)
ME 840—Kinematics II—3 cr. (3 and 0)
ME 842—Advanced Mechanical Engineering Design I—3 cr. (3 and 0)
ME 843—Advanced Mechanical Engineering Design II—3 cr. (3 and 0)
ME 845—Acoustics—3 cr. (3 and 0)
ME 850—Advanced Dynamic Systems and Control—3 cr. (3 and 0)
ME 860—Dynamic Programming—3 cr. (3 and 0)
ME 861—Nonlinear Programming—3 cr. (3 and 0)
ME 862—Analytical Methods of Systems Analysis—3 cr. (3 and 0)
ME 863—Advanced Physical Systems Analysis I—3 cr. (3 and 0)
ME 864—Advanced Physical Systems Analysis II—3 cr. (3 and 0)
ME 865—Modern Control Theory I—3 cr. (3 and 0)
ME 866—Nonlinear Automatic Controls—3 cr. (3 and 0)
ME 867—Control System Components—3 cr. (3 and 0)
ME 868—Control of Aerospace Systems—3 cr. (3 and 0)
ME 880—Methods of Operations Research I—3 cr. (3 and 0)
ME 881—Advanced Methods of Operations Research II—3 cr. (3 and 0)
ME 882—Reliability Engineering—3 cr. (3 and 0)
ME 883—Operations System Simulation I—3 cr. (3 and 0)
ME 884—Operations System Simulation II—3 cr. (3 and 0)
ME 885—Design and Analysis of Simulation Models—3 cr. (3 and 0)
ME 886—Operations Research in Production Control I—3 cr.
(3 and 0)
ME 887—Operations Research in Production Control II—3 cr.
(3 and 0)
ME 888—Applied Queueing Theory and Markov Processes—3 cr.
(3 and 0)
ME 891—Research—Credit to be arranged.
ME 893—Selected Topics in Mechanical Engineering—1-6 cr. (1-6 and 0)
ME 894—Seminar—1 cr. (1 and 0)
ME 914—Magnetohydrodynamics—3 cr. (3 and 0)
ME 915—Energy Conversion—3 cr. (3 and 0)
ME 930—Conduction Heat Transfer—3 cr. (3 and 0)
ME 931—Convection Heat Transfer—3 cr. (3 and 0)
ME 932—Radiation Heat Transfer—3 cr. (3 and 0)
ME 940—Applied Plasticity—3 cr. (3 and 0)
ME 941—Theory of Lubrication and Wear—3 cr. (3 and 0)
ME 991—Doctoral Research—Credit to be arranged.

MEDICAL TECHNOLOGY
Anderson—Lecturers: J. W. Black, R. E. Jones, Jr., N. L. Long

Teaching Supervisor: Kay Little

Teaching Supervisor: Patricia Thompson

MED TECH 101—An Introduction to Medical Technology—1 cr.
(1 and 0)

An introduction to the operation and practices in a medical laboratory. This course is designed to integrate the academic year with the clinical year. Included will be lectures on current laboratory practices, a visit to a modern medical laboratory, current training of laboratory personnel and seminars on areas of specialization.
MED TECH 401—SEROLOGY AND IMMUNOLOGY—4 cr. (21,10,49)*

Presents the basic principles of serology and immunology and the tests utilizing these principles to detect abnormalities helpful in the diagnosis of disease.

MED TECH 402—MICROBIOLOGY—7 cr. (59,6,470)

The principles of microbiology-bacteriology, mycology, and parasitology. Emphasis is placed on human pathogenic organisms, using both fresh and prepared organisms.

MED TECH 403—HEMATOLOGY—5 cr. (12,32,276)

Information on blood as a tissue, the theory of hematological tests, factors that affect test reliability. Knowledge of test results and knowledge of blood dyscrasias. Skill in the performance of hematological tests is emphasized and the use of automation techniques is covered.

MED TECH 404—BLOOD BANK—3 cr. (8,20,132)

History and principles of blood group systems and methods of cross matching. Testing for, and quantitative determination of, Rh antibodies with all available techniques. Selection, pretesting and bleeding of donors and processing of blood for transfusions.

MED TECH 405—CYTOLOGY—1 cr. (2,12,26)

An introduction to cytology and cytologic techniques in the diagnosis of cancer. Definition and brief history, sources of material, collection and preservation of specimens, together with practice in interpretation.

MED TECH 406—HISTOLOGY—3 cr. (20,30,190)

Histologic preparation, including actual preparation of tissue specimens derived from surgical procedures and autopsies. Routine and special training, together with experience using the Cryostat.

MED TECH 407—URINALYSIS—2 cr. (10,8,102)

The study of renal function together with principles of urine analysis, pregnancy tests and anatomy of the urinary system. Emphasis is placed on laboratory procedures and their utilization to detect abnormalities helpful in the diagnosis of disease.

MED TECH 408—CHEMISTRY—10 cr. (40,50,470)

Introduction to the chemistry of carbohydrates, nitrogen, calcium, and phosphorus compounds, acid-base balance, etc., with emphasis on the chemistry of blood and urine using both qualitative and quantitative procedures in the laboratory.

MED TECH 409—RADIOISOTOPES—1 cr. (2,0,7)

Introduction to principles of diagnostic radioisotope procedures and the use of the scintillation detector, the well counter, and the scaler.

*First figure represents lecture hours, second figure represents seminar hours, and the third figure represents clinical practice hours.
MICROBIOLOGY
(See also Biology)

Professor: R. K. Guthrie
Associate Professors: Ann W. Baxter, J. H. Bond, M. J. B. Paynter, Head

Micro 305—General Microbiology—4 cr. (3 and 3) F, S, SS
Morphology, physiology, classification, distribution, and cultivation of microorganisms and health. Prerequisite: Bot 102, or Zool 102, 104, Ch 101, 102 or 112.

Micro 401—Advanced Bacteriology—4 cr. (2 and 6) F
Metabolism, nutrition, growth, and death of bacteria; microbiological assays and industrial fermentation; emphasis on laboratory procedures for the identification of the more common taxonomic groups. Prerequisite: Micro 305; Ch 201, or 223, and 227.

Micro H401—Advanced Bacteriology—4 cr. (2 and 6) F
Honors option for Micro 401; admission by special arrangement.

Micro 402—Dairy Microbiology—3 cr. (2 and 3) S, '70 and alternate years.
Morphology, physiology, and culturing of microorganisms of importance in dairy products; standard methods for the determination of numbers of bacteria, yeasts, and molds in various dairy products. Prerequisite: Micro 305.

Micro H402—Dairy Microbiology—3 cr. (2 and 3) S, '70 and alternate years.
Honors option for Micro 402; admission by special arrangement.

Micro 404—Food Microbiology—3 cr. (2 and 3) S, '71 and alternate years.
The microbiology of natural and processed foods. The nature of microorganisms involved in food processing, food spoilage, and food poisoning. Methods of isolating, enumerating and identifying these organisms are conducted in the laboratory. Prerequisite: Micro 305.

Micro H404—Food Microbiology—3 cr. (2 and 3) S, '71 and alternate years.
Honors option for Micro 404; admission by special arrangement.

Micro 410—Soil Microbiology—3 cr. (2 and 3) S, '70 and alternate years.
The role of microorganisms in the decomposition of organic substances; transformation of nitrogen and mineral substances in the soil; interrelationships between higher plants and microorganisms; importance of microorganisms in soil fertility. Prerequisite: Micro 305.

Micro H410—Soil Microbiology—3 cr. (2 and 3) S, '70 and alternate years.
Honors option for Micro 410; admission by special arrangement.

Micro 411—Pathogenic Bacteriology—3 cr. (2 and 3) S
A study of pathogenic bacteria, their morphology, cultural requirements and classification; diagnostic tests, methods of differentiation, and the diseases caused. Prerequisite: Micro 305.
Micro H411—Pathogenic Bacteriology—3 cr. (2 and 3) S
Honors option for Micro 411; admission by special arrangement.

Micro 412—Bacterial Physiology—4 cr. (3 and 3) S
A consideration of the cytology, physiology, metabolism, and genetics of bacteria. Included will be studies of growth and death, reproduction and mutation, nutrition and metabolic pathways, regulatory mechanisms, and effects of environment. Prerequisite: Micro 305 or Organic chemistry.

Micro H412—Bacterial Physiology—4 cr. (3 and 3) S
Honors option for Micro 412; admission by special arrangement.

Micro 413—Industrial Microbiology—3 cr. (2 and 3)
Microbial aspects of large-scale processes for the production of foods, antibiotics, enzymes, fine chemicals, and beverages. Topics include strain selection, culture maintenance, biosynthetic pathways, continuous cultivation and production of single cell protein. Prerequisite: Micro 305.

Micro H413—Industrial Microbiology—3 cr. (2 and 3)
Honors option for Micro 413; admission by special arrangement.

Micro 414—Basic Immunology—3 cr. (2 and 3)
A consideration of the nature, production, and function of basic immune responses in animals. Procedures and mechanisms of antigenantibody and other immune reactions. Prerequisite: Micro 305 or Organic chemistry.

Micro H414—Basic Immunology—3 cr. (2 and 3)
Honors option of Micro 414; admission by special arrangement.

Micro 415—Microbial Genetics—4 cr. (3 and 3)
The cytological basis of bacterial genetics; some molecular aspects; mutation and mutagenic agents; population changes; mechanisms of genetic transfers; bacterial viruses as genetic systems; episomes and plasmids. The genetics of certain fungi and of animal and plant viruses will also be considered. Prerequisite: Micro 305, Gen 302, Ch 224.

Micro H415—Microbial Genetics—4 cr. (3 and 3)
Honors option for Micro 415; admission by special arrangement.

Micro 416—Introductory Virology—3 cr. (3 and 0)
A general introduction to the field of virology, including animal, bacterial, and plant viruses. Topics will include nomenclature and classification, biochemical and biophysical characteristics, mechanisms of replication, chemotherapy, and techniques for isolation, assay and purification. Prerequisite: Micro 305.

Micro H416—Introductory Virology—3 cr. (3 and 0)
Honors option for Micro 416; admission by special arrangement.

Micro 491—Special Problems in Microbiology—2 cr. (0 and 6)
Research problems in the various areas of Microbiology designed to introduce undergraduate students to the planning and execution of research experimentation, and the presentation of research findings.

Micro 601—Advanced Bacteriology—4 cr. (2 and 6)
Micro 602—Dairy Microbiology—3 cr. (2 and 3)
Micro 604—Food Microbiology—3 cr. (2 and 3)
Micro 605—General Microbiology—4 cr. (3 and 3)
Micro 610—Soil Microbiology—3 cr. (2 and 3)
Micro 611—Pathogenic Bacteriology—3 cr. (2 and 3)
Micro 612—Bacterial Physiology—4 cr. (3 and 3)
Micro 613—Industrial Microbiology—3 cr. (2 and 3)
Micro 614—Basic Immunology—3 cr. (2 and 3)
Micro 615—Microbial Genetics—4 cr. (3 and 3)
Micro 616—Introductory Virology—3 cr. (3 and 0)
Micro 801—Bacterial Taxonomy—3 cr. (2 and 3)
Micro 802—Bacteriological Technic—4 cr. (2 and 6)
Micro 803—Special Problems in Microbiology—Credit to be arranged.
Micro 807—Seminar—1 cr. (1 and 0)
Micro 810—Soil Microbiology—3 cr. (2 and 3)
Micro 811—Bacterial Cytology and Physiology—4 cr. (4 and 0)
Micro 812—Bacterial Metabolism—3 cr. (3 and 0)
Micro 813—Bacterial Cytology and Physiology Laboratory—2 cr. (0 and 6)
Micro 814—Bacterial Metabolism Laboratory—2 cr. (0 and 6)
Micro 815—Advanced Microbial Genetics—3 cr. (3 and 0)
Micro 891—Research—Credit to be arranged.

MILITARY SCIENCE

Professor: Col. George K. Maertens

MS 101—Fundamentals (Basic)—1 cr. (2 and 1)
A study of the evolution, organization, and mission of the Reserve Officers' Training Corps, individual weapons and marksmanship and the evolution of weapons and warfare. An introduction to first aid, mass casualty treatment and discussion seminar on current events. Laboratory periods provide training in basic drill, discipline, and leadership.

MS 102—National Defense (Basic)—1 cr. (2 and 1)
A study of the organization of the Department of Defense and its role in national security. An introduction to the history, organization, equipment and mission of the United States Army, with detailed study of small units. A look at the principles and types of war and leadership traits. Current events seminar. Leadership laboratory.
MS 201—Introduction to Operations and Basic Tactics and Map and Aerial Photograph Reading (Basic)—1 cr. (2 and 1)

An introduction to the organization, principles, and fundamentals of small unit tactics, emphasizing the importance of fire and maneuver. Interpretation and use of maps and aerial photographs in study and evaluation of terrain.

MS 202—American Military History (Basic)—1 cr. (2 and 1)

A survey of American military history from the origins of the American Army to the present, with emphasis on the factors which led to the organizational, tactical, logistical, operational, strategic, social and similar patterns found in our present-day Army.

MS 300—Military Science (Advanced)—6 cr. (ROTC 3, Elective 3)

Study and practical application of Leadership; Military Teaching Principles; Branches of the Army; Small Unit Tactics and Communications. Further training for duty as officers by application of principles of leadership in actual command during drills, parades, reviews, inspections, and ceremonies. One three-hour elective or required normal academic curriculum subject, presented by appropriate department, approved by the PMS to be of value in furthering the professional qualifications of the student as a prospective commissioned officer in the United States Army. Students have the option of taking the elective course or Advanced ROTC during either semester but must participate in Leadership Laboratory Training throughout the school year.

Three class hours and two laboratory hours (presented by Military Science Department) each week in one semester, and three class hours (elective presented by appropriate department) and two laboratory hours (presented by Military Science Department) each week in the other semester.

MS 400—Military Science (Advanced)—6 cr. (ROTC 3, Elective 3)

A study of Military Operations; Logistics; Administrative Management; Military Law; Service Orientation; World Change and Military Implications; Internal Defense/Development; and Leadership Laboratory. One three-hour elective or required normal academic curriculum subject, presented by appropriate department, approved by the PMS to be of value in furthering the professional qualifications of the student as a prospective commissioned officer in the United States Army. Students have the option of taking the elective or Advanced ROTC during either semester but must participate in Leadership Laboratory Training throughout the school year.

Three class hours and two laboratory hours (presented by Military Science Department) each week in one semester, and three class hours (elective presented by appropriate department) and two laboratory hours (presented by Military Science Department) each week in the other semester.
MUSIC

Associate Professor: J. H. Butler, Head
Assistant Professors: B. F. Cook, E. A. Freeman
Instructors: Edith B. Card, J. K. Copenhaver, J. E. Jackson, E. W. Winston

Mus 151—Applied Music—1 cr. (1 and 0)
Individual study in performance medium (voice, piano, flute, oboe, clarinet, saxophone, bassoon, cornet, trumpet, French horn, trombone, baritone, tuba, percussion). One hour-long private lesson each week, for which a minimum of four hours’ practice is required. The student is guided in a continuing advance of his technical and artistic proficiency, and is required to perform an appropriate solo in a student recital each semester. May be repeated for credit with departmental approval to allow for the study of differing performance media. Prerequisite: Consent of instructor, based on a qualifying audition.

Mus 152—Applied Music—1 cr. (1 and 0)
A continuation of Mus 151. Prerequisite: Mus 151.

Mus 205—Music Theory—3 cr. (3 and 0)
The terminology and notation of traditional music are reviewed, and the techniques of sight-singing and sight-reading are practiced. Harmonic practices are studied, relating to the principal diatonic triads in all inversions. Prerequisite: Consent of instructor, based on musical literacy.

Mus 206—Music Theory—3 cr. (3 and 0)
Continuation of Mus 205 with emphasis on secondary chord structure, modulation, and non-diatonic harmony. Advanced sight-singing and melodic dictation are practiced. Prerequisite: Mus 205.

Mus 210—Music Appreciation: Music in the Western World—3 cr. (3 and 0)
Designed to deepen the student’s appreciation of his musical heritage through a study of the elements of the musical language and its development in western culture.

Mus 251—Applied Music—1 cr. (1 and 0)
A continuation of Mus 152. Prerequisite: Mus 152 and consent of instructor.

Mus 252—Applied Music—1 cr. (1 and 0)
A continuation of Mus 251. Prerequisite: Mus 251.

Mus 305—Music Theory: Advanced Harmony—3 cr. (3 and 0)
A study of harmonic usage involving chromaticism, free dissonance and atonality. Harmonic dictation is practiced. Prerequisite: Mus 206.

Mus 306—Music Theory: Form and Analysis—3 cr. (3 and 0)
Principles of formal construction in music of all periods are studied by the inductive analysis of representative works. Prerequisite: Mus 206.

Mus 311—Music Appreciation: American Music—3 cr. (3 and 0)
Music in America from 1620 to the present. Indigenous and borrowed influences will be examined.

* On leave.
Mus 315—Music History—3 cr. (3 and 0)
The development of Western music from antiquity to 1750, emphasizing representative literature from various styles and periods.

Mus 316—Music History—3 cr. (3 and 0)
Continuation of Mus 315. Music from 1750 to present. Prerequisite: Mus 315.

Mus 361—Marching Band—1 cr. (0 and 3)
Ensembles: Devoted to the musical training of ensemble members through reading and rehearsal of appropriate music; public performances given periodically in addition to the minimum rehearsal time; may be repeated for credit, with a maximum of four hours of ensemble credit allowable toward a degree. Fall semester only. Prerequisite: Consent of director.

Mus 362—Concert Band—1 cr. (0 and 3)
Ensembles: Devoted to the musical training of ensemble members through reading and rehearsal of appropriate music; public performances given periodically in addition to the minimum rehearsal time; may be repeated for credit, with a maximum of four hours of ensemble credit allowable toward a degree. Spring semester only. Prerequisite: Consent of director.

Mus 365—University Chorus—1 cr. (0 and 3)
Ensembles: Devoted to the musical training of ensemble members through reading and rehearsal of appropriate music; public performances given periodically in addition to the minimum rehearsal time; may be repeated for credit, with a maximum of four hours of ensemble credit allowable toward a degree. Prerequisite: Consent of director.

Mus 400—Music in the Elementary School Classroom—3 cr. (3 and 0)
Designed to give the teacher in the elementary school a familiarity with music suitable for use with children at the elementary level. Recordings of appropriate music, preband instruments, unison and part singing will be included. No previous training in music is required.

Mus 401—Methods and Materials in Elementary School Music—3 cr. (3 and 0)
Materials, methods, and techniques in elementary school. Prerequisite: Mus 400.

Mus 421—Vocal Arranging—3 cr. (3 and 0)
Techniques of arranging for voices and accompanying instruments are studied and appropriate arrangements prepared. Prerequisite: Mus 305.

Mus 422—Instrumental Arranging—3 cr. (3 and 0)
Transpositions, characteristics and range of the instruments of the band and orchestra are studied. Techniques of arranging for small instrumental ensembles are studied and appropriate arrangements prepared. Prerequisite: Mus 305.

Mus 423—Conducting—3 cr. (3 and 0)
Basic principles and techniques of conducting, interpretation and score reading are studied and applied with vocal or instrumental ensembles. Prerequisite: Mus 306 and 4 hours of ensemble credit.
NURSING
(Associate in Arts Degree Program)

Associate Professor: Leon Roswal, Director
Assistant Professors: Aileen S. Prevost, Harriett E. Whitley
Instructors: Julia Hill Higgins, Mary Ann Kelly, Sara Stokes, Mary Ann Teklits

Nurs 100—Orientation—1 cr. (1 and 0)
Series of lectures and discussions on nursing and careers in nursing; personal and professional guidance.

Nurs 101—Fundamentals of Nursing I—6 cr. (3 and 9)
This introductory course is oriented to the normal health needs of all people, sick and well. Study of the concepts and scientific principles of the biosocio-psychological sciences that are applicable in the nursing practices common to all patients. College and hospital laboratory learning experiences provide an opportunity to adapt these principles and develop beginning skill in selected technical and interpersonal aspects of nursing.

Nurs 102—Fundamentals of Nursing II—6 cr. (3 and 9)
In this course, sequential to Nurs 101, the skills, knowledge and principles are further developed. A patient-centered orientation to basic-nursing practices is continued in assisting the individual to attain and/or maintain homeostasis. Dietary, pharmacological, fluid and electrolyte balance and mental concepts are integrated and correlated. Prerequisite: Nurs 101 with grade of C or better.

Nurs 105—Integrated Science I—4 cr. (3 and 2)
A general course surveying chemistry, human anatomy, physiology, and microbiology, and emphasizing the physical and chemical bases for physiology.

Nurs 106—Integrated Science II—4 cr. (3 and 2)
Continuation of Nurs 105.

Nurs 200—Maternal and Child Health Nursing—5 cr. (3 and 6)
This course is built around the family unit and the role of the nurse and others in providing for the child-bearing health needs of families. The normal aspects and common health problems which occur during the maternity cycle are stressed. Includes concurrent guided learning experiences in the hospital and other health agencies. Prerequisite: Nurs 102 with a grade of C or better and satisfactory completion of Nurs 106. Concurrent enrollment or completion in Nurs 201, Psych 211, Soc 201.

Nurs 201—Major Health Problems I—5 cr. (3 and 6)
This course is the first of the three interrelated sequential courses designed to develop a knowledge of principles which can be applied when planning and giving care to various age groups with major health problems (acute and long term patients). Prerequisite: Nurs 102 with a grade of C or better and satisfactory completion of Nurs 106. Concurrent enrollment or completion in Nurs 200, Psych 211, Soc 201.

Nurs 202—Major Health Problems II—5 cr. (3 and 6)
Continuation of major health problems encountered by individuals throughout life cycle, with emphasis on prevention, treatment, promotion of health
and rehabilitation. Guided learning experiences in nursing care are concurrently provided in the hospital and other agencies. Prerequisite: Nurs 200, 201, with a grade of C or better.

Nurs 203—Major Health Problems III—5 cr. (3 and 6)
A continuation of Nurs 201 and concomitant with Nurs 202. It is directed toward the nursing care of the patient with intensive and long-term-illness as mobility disorders and mental illness. Further planned experiences designed to develop skill and knowledge in the selected nursing care of patients with a complexity of problems. Prerequisite: Nurs 200, 201, with a grade of C or better.

Nurs 204—Nursing Seminar—1 cr. (1 and 0)
A course planned to consider contemporary social, legal and ethical forces that affect the nurse, the field of nursing and society. Discussion will focus on socio-economic aspects, legislative and health care issues. Prerequisite: Nurs 200, 201, with a grade of C or better.

NURSING
(Baccalaureate Degree Program)

Professor: Geraldine Labecki, Director
Associate Professors: Arline M. Duvall, Rose A. Godbout, Elizabeth J. Hall
Assistant Professors: Melba Cather, Regina Thompson
Instructors: Claudia M. Blanford, Opal S. Hipps, Carolyn J. Kelley, Cynthia A. Leahy, Susan Rockwell
Lecturers: Marilyn B. Chassie, D. K. Freeman, Ann R. Lukawekci

Nurs 100—Orientation—1 cr. (1 and 0)

Nurs 207—Dynamics of Human Relations—3 cr. (2 and 3)
The nursing appraisal of theoretical and clinical approaches to the understanding of the dynamics of human behavior. The identification of behaviors through observing and participating in laboratory experiences in community agencies providing service to adults and children. Incorporates the beginning of a longitudinal study of a selected family.

Nurs 208—Problem Solving in Nursing—3 cr. (2 and 3)
Introduction to the concept of problem solving in nursing throughout health-illness cycle. Selected models are presented and analyzed. Relevant technical skills identified in the analysis are learned. Emphasis on creative approach to solving nursing problems and the utility of the technic to the solution. Laboratory experience in the classroom and with hospitalized patients.

Nurs 309—Human Values in Nursing—3 cr. (3 and 0)
The values guiding nursing theory and practice, including common human needs; the nature of man and his community.

Nurs 310—Perspectives in Nursing Intervention—3 cr. (3 and 0)
Analysis of processes used in making nursing judgments. Emphasis on planning, intervention, and evaluation.
Nursing 375

NURS 311—Nursing During Alterations in Life Patterns—4 cr. (1 and 9)
Study of the ways in which people perceive and cope with changes in their life patterns; emphasis on the synthesis of knowledge from the arts and sciences as a basis for deliberative nursing action. Laboratory experience in a variety of settings with all age groups.

NURS 312—Nursing of the Acutely and Chronically Distressed—4 cr. (1 and 9)
Nursing concepts based on a broad patho-psychophysiologic approach toward understanding changes in functions as a result of stress and/or disease. Laboratory experience in agencies providing care for the mentally and physically distressed.

NURS 313—The Promotion of Health—3 cr. (2 and 3)
Role of the nurse in the teaching of health in the home and in agencies concerned with the prevention of illness. Emphasis on nutrition as a positive approach to the improvement of health throughout the life cycle. Laboratory experience in clinics, homes, and selected community programs.

NURS 314—Nursing in the Home—3 cr. (2 and 3)
The dimensions of caring for the ill in the home; includes early detection, treatment, and the use of resources with emphasis on continuity of care. Laboratory experience with agencies providing home care.

NURS 415—Nursing as a Social Force—3 cr. (3 and 0)
Role of professional nursing in comprehensive health planning related to changing social forces.

NURS 417—Intensive Nursing—4 cr. (1 and 9)
Nursing in highly stressful situations. Assisting individuals and families in coping with life-threatening experiences. Laboratory experience in the home and acute care facilities.

NURS 419—The Multiproblem Family—3 cr. (2 and 3)
Focus on the family as a unit of care. Use of the epidemiologic approach as a tool in understanding conditions influencing the family. Laboratory experience through community care facilities.

NURS 421—History and Philosophy of Nursing—3 cr. (3 and 0)
Analysis of the development of modern nursing. Emphasis will be placed on how the nursing profession articulates with society and the role of nurses as change agents. Consideration will be given to the legal and ethical implications in nursing practice.

NURS 422—Current Research in Nursing—3 cr. (3 and 0)
A study of approaches to problematic situations in nursing, with emphasis on interpretation of findings.

NURS 425—Independent Study in Nursing—7 cr. (3 and 12)
Opportunity for in-depth study in an area of special interest in clinical nursing. Laboratory experience arranged.
NUTRITION

Assistant Professors: J. J. Jen, J. C. McConnell

(See courses listed under Animal Science, Biochemistry, Dairy Science, Food Science, and Poultry Science)

Nutr 201—Introduction to Nutrition—3 cr. (3 and 0) S
Principles of the nutrition of domestic animals and man includes: sources, digestion, absorption, utilization and functions of nutrients; effects of dietary deficiencies; and nutrients required for maintenance, growth, reproduction, lactation, work, and egg-shell quality.

Nutr 401—Fundamentals of Nutrition—3 cr. (3 and 0) F
Biochemical and physiological fundamentals of nutrition applicable to domestic animals and man. Considered are digestive processes, and absorption and metabolism of carbohydrates, lipids, proteins, water, minerals and vitamins. Energy metabolism and comparative anatomy and physiology of digestive systems are discussed.

Nutr 451—Human Nutrition—3 cr. (3 and 0)
Essentials of nutrition and principle nutritional deficiency conditions. Factors affecting adequacy of dietary intake, methods of determining nutritional status, the development of nutrition standards, and recent advances in human nutrition.

Nutr 601—Fundamentals of Nutrition—3 cr. (3 and 0)
Nutr 651—Human Nutrition—3 cr (3 and 0)
Nutr 801—Topical Problems in Nutrition—1-3 cr.
Nutr 808—Monogastric Nutrition—3 cr. (3 and 0)
Nutr 809—Polygastric Nutrition—3 cr. (3 and 0)
Nutr 812—Metabolism of Nutrients—3 cr. (3 and 0)
Nutr 813—Nutrition Techniques with Large Animals—2 cr. (1 and 3)
Nutr 814—Nutrition Techniques with Laboratory Animals—2 cr. (1 and 3)
Nutr 816—Amino Acids and Protein Nutrition—2 cr. (2 and 0)
Nutr 818—Vitamins and Minerals—4 cr. (3 and 3)
Nutr 851—Nutrition Seminar I—1 cr. (1 and 0)
Nutr 852—Nutrition Seminar II—1 cr. (1 and 0)
Nutr 891—Research—Credit to be arranged.
Nutr 991—Doctoral Research—Credit to be arranged.
PHILOSOPHY

Assistant Professors: J. L. McCollough, D. F. White, Jr.
Instructor: W. M. Pharr, Jr.

PHIL 201—INTRODUCTION TO PHILOSOPHY—3 cr. (3 and 0)
An introduction to the basic issues involved in philosophical thinking, with special emphasis upon these issues as they occur in Greek philosophy. The systems of Plato and Aristotle will be considered in some detail.

PHIL 211—PHILOSOPHY AND CURRENT ISSUES—3 cr. (3 and 0)
An exercise in developing the beginner’s philosophic skills and his ability to think critically and reflectively about the problems he encounters. Selections from contemporary writing will be compared with philosophic classics in order to analyze familiar moral and social problems of current importance as well as the intellectual issues underlying many prevailing conflicts of opinion.

PHIL 302—LOGIC—3 cr. (3 and 0)
Introduction to the theory and practice of evaluating arguments; reduction of ordinary language to logical form and the relation of statement and inference; use of the rules of natural deduction and proof of their consistency and completeness for the logic of propositions (truth-functions) and the logic of predicates (quantification).

PHIL 303—PHILOSOPHY OF RELIGION—3 cr. (3 and 0)
An analytical and critical consideration of the philosophical foundations of religion. Such topics as the existence of God, the problem of evil, theism and atheism, prayer, and immortality will be considered.

PHIL 304—INTRODUCTION TO ETHICAL THEORY—3 cr. (3 and 0)
An examination of moral judgment; its concepts, criteria and relations to factual judgment. Classical theories and current issues are searched for an ideal of the good man and the life we prize. Construction of a model theory of obligation, value, justice, and punishment is attempted.

PHIL 305—AESTHETICS—3 cr. (3 and 0)
A study of the function of art in human life along with a consideration of the various philosophical elements involved in art and art criticism. Various historical types of aesthetic theory will be considered. Prerequisite: Junior standing or permission of instructor.

PHIL 309—RELIGIONS OF THE FAR EAST—3 cr. (3 and 0)
A study of the origin, evolution, and contemporary status of Hinduism, Buddhism, Confucianism, and Taoism. Prerequisite: Junior standing.

PHIL 312—MODERN PHILOSOPHY—3 cr. (3 and 0)
The development of the modern mind as seen in the Renaissance and eighteenth century philosophers. The writings of Hobbes, Locke, Spinoza, Leibnitz, Hume, and Kant will be considered along with the development of rationalism and empiricism.

PHIL 318—CONTEMPORARY PHILOSOPHY—3 cr. (3 and 0)
A study of some of the recent schools and movements in philosophy. Pragmatism, existentialism, vitalism, recent realism, and some of the linguistic schools will be considered.
Phil 322—Symbolic Logic—3 cr. (3 and 0)

A consideration of the necessary logical structure of a very exact language in terms of modern relational logic. Quantification, Truth Functions, Propositional Functions, Properties of Relations, Arguments Involving Relations, and some nonformal logical systems will be considered. **Prerequisite:** Phil 302, or Math 108, or a computer programming course.

Phil 344—Current Ethical Theory—3 cr. (3 and 0)

An examination of present trends in ethical and meta-ethical theory for their bearing upon the criteria of our judgments of human conduct and character and upon current moral issues. Selected topics from the logic, epistemology, and psychology of ethical judgment will be considered, with review of relevant journal literature. **Prerequisite:** Phil 304 or permission of instructor.

Phil 422—Mathematical Logic—3 cr. (3 and 0)

A detailed and rigorous study of a logical system as a foundation for mathematics. An analysis of basic concepts occurring in the foundations of mathematics. **Prerequisite:** Phil 322 or sufficient mathematical background.

Phil 425—Philosophy of Science—3 cr. (3 and 0)

A study of the presuppositions, categories, and implications of the physical and social sciences with special reference to the concepts of Space and Time, Matter, Causation, and Relativity. The logic of “scientific method” and the unity of the sciences are considered. **Prerequisite:** Junior standing and permission of instructor.

Phil 825—Seminar in Philosophy of Science—3 cr. (3 and 0)

Physical Science

(Jointly administered by the Chemistry and Physics Departments)

Phy Sc 101—Physical Science I—4 cr. (3 and 2)

An introduction to the physical sciences. Selected topics will be discussed to illustrate the structure and meaning of the physical sciences. Course cannot be taken for credit by students who have completed one year of a course in the physical science area.

Phy Sc H101—Physical Science I—4 cr. (3 and 2)

Honors section of Phy Sc 101. Open by invitation only.

Phy Sc 102—Physical Science II—4 cr. (3 and 2)

A continuation of Phy Sc 101. Course cannot be taken for credit by students who have completed one year of a course in the physical science area.
PHYSICS

Professors: H. W. Graben, M. J. Skove, E. P. Stillwell, Head; H. E. Vogel
Assistant Professors: T. F. Collins, J. A. Gilreath, J. R. Manson, P. A. Steiner, R. C. Turner, C. W. Ulbrich

Phys 101—Current Topics in Modern Physics—1 cr. (0 and 2)
Demonstrations and lectures supplemented by slides and motion pictures on current topics in physics, such as superfluids, lasers, superconductors, elementary particles, etc., chosen from the fields of atomic, nuclear, solid state physics, and astrophysics. Several members of the staff will participate.

Phys 115—Classical Physics I—3 cr. (3 and 0)
A survey of classical physics in which emphasis is placed on those principles which are of greatest utility in modern applications. Some of the history and philosophy of physics is included. Topics discussed include mechanics, astronomy, fluid mechanics applied to the properties of air and water, and wave motion with emphasis on sound waves. Corequisite: A course that includes calculus or permission of instructor.

Phys 116—Classical Physics II—3 cr. (3 and 0)
A continuation of Phys 115. Topics covered include thermodynamics with emphases on the properties of air and water, electricity and magnetism with a brief introduction to electronics, optics, and an introduction to materials science. Prerequisite: Phys 115.

Phys 122—Mechanics and Wave Phenomena—3 cr. (3 and 0)
Vectors; laws of motion; rotation; vibratory and wave motion; mechanical properties of materials. Prerequisite: Registration in Math 108.

Phys H122—Mechanics and Wave Phenomena—3 cr. (3 and 0)
Honors section of Phys 122. Open by invitation only.

Phys 132—General Physics for Physics Majors I—3 cr. (3 and 0)
Introduction to physical quantities, linear and rotational motion, conservation laws, gravitational and electric fields, and kinetic theory. Prerequisite: Registration in Math 108.

Phys 207—General Physics—4 cr. (3 and 2)
An introductory course for students who are not majoring in a pure science or engineering. Includes mechanics, light, and astronomy. Corequisite: A course that includes trigonometry.

Phys 208—General Physics—4 cr. (3 and 2)
Continuation of Phys 207. Includes electricity, magnetism, thermal phenomena, and quantum theory. Prerequisite: Phys 207.

Phys 221—Thermal and Electrical Phenomena—3 cr. (3 and 0)
Thermal properties of matter; electric and magnetic fields; electric currents and circuits; motions of charged particles in fields. Prerequisite: Phys 122.

Phys H221—Thermal and Electrical Phenomena—3 cr. (3 and 0)
Honors section in Phys 221. Open by invitation only.
Phys 222—Optics and Modern Physics—3 cr. (3 and 0)
Theory of light waves and photons; optical instruments; relativity; atomic
particles; nuclear physics. Prerequisite: Phys 221.

Phys H222—Optics and Modern Physics—3 cr. (3 and 0)
Honors section in Phys 222. Open by invitation only.

Phys 223—Electron Physics Laboratory—1 cr. (0 and 3)
An introduction to physical experimentation employing the Berkeley A
laboratory course. Experiments are performed in acceleration and deflection
of electrons, measurement of electron charge to mass ratio by helical motion
and time of flight, oscillating systems involving capacitance, resistance and
inductance, resonance, modulation, negative resistance and relaxation oscil-
lations. Prerequisite: Registration in Phys 221 or 231.

Phys 224—Modern Physics Laboratory—1 cr. (0 and 3)
Continuation of Phys 223. Experiments in the areas of solid state, optical
and modern physics. Experiments are performed on electrical carrier mo-
bility in solids, minority carrier lifetime, transistor action, microwave optics,
interference and diffraction, light polarizaton, gas laser optics, optical spectra,
electron and X-ray diffraction, radioactive particle counting. Compton scat-
tering of X-rays, radioactivity decay and Mossbauer effect. Prerequisite: Regis-
tration in Phys 222 or 232.

Phys 231—General Physics for Physics Majors II—3 cr. (3 and 0)
A continuation of Phys 132. An introduction to the magnetic field, electric
circuits, wave motion, reflection, refraction, diffraction of waves, electromag-
netic waves. Prerequisite: Phys 132; registration in Phys 223.

Phys 232—General Physics for Physics Majors III—3 cr. (3 and 0)
A continuation of Phys 231. An introduction to thermodynamics, relativity,
particle and wave descriptions of matter and light. Includes a description of
experiments which were crucial to recent developments in physics. Prerequisite:
Phys 231; registration in Phys 224.

Phys 240—Physics of the Atmospheric Environment—3 cr. (3 and 0)
An introduction to meteorological processes with emphasis placed on qualita-
tive descriptions. Includes thermodynamics of the atmosphere, solar radia-
tion and the heat budget, circulation of the atmosphere, force laws governing
air mass motions, fronts, condensation processes, synoptic prediction. Special
topics would consider the effects of environmental pollution on weather and
the effects of weather on health.

Phys 321—Mechanics I—3 cr. (3 and 0)
Statics; motions of particles and rigid bodies; vibratory motion; gravitation;
properties of matter, flow of fluids. Prerequisite: Phys 221 or 231.

Phys 322—Mechanics II—3 cr. (3 and 0)
Dynamics of particles and of rigid bodies, Lagrangian and Hamiltonian
formulations, vibrations of strings, wave propagation. Prerequisite: Phys 321
or permission of instructor.

Phys 325—Experimental Physics I—4 cr. (2 and 6)
Introduction to laboratory techniques, measurement of fundamental constants,
and performance of some of the experiments (Stern-Gerlach, Zeeman, Photo-
electric, specific charge of electrons and protons, etc.) which are crucial to
the development of our present concepts of physics. Prerequisite: Phys 321
or equivalent, or enrollment in Phys 321, or by permission of instructor.

Phys 326—Experimental Physics II—4 cr. (2 and 6)
Continuation of Phys 325.

Phys 340—Electricity and Magnetism I—3 cr. (3 and 0)
Electric potential and electrostatic fields; solutions of Laplace's and Poisson's
equations; properties of dielectrics and of capacitors; electrostatic energy;
current and treatment of circuit problems. Vector analysis is used throughout
after introduction. Prerequisite: Phys 221 or 231.

Phys 401—Senior Thesis I—3 cr. (1 and 6)
The senior thesis is a semi-original piece of work performed under the di-
rection of a member of the physics staff. Theoretical fields available include
relativity, statistical mechanics, nuclear physics and astrophysics. Experimental
work may be done in the fields of X-ray diffraction elasticity, low-temperature
thermal conductivity, super-conductivity, radiation damage in metals, and elec-
tron paramagnetic resonance. Prerequisite: At least three physics courses be-
yond general physics.

Phys 402—Senior Thesis II—3 cr. (1 and 6)
A continuation of Phys 401.

Phys 406—Introduction to Biophysics—3 cr. (3 and 0)
An introduction to the application of the ideas and methods of physics to
biological problems. Topics will be selected from such areas as: size and
structure of biological macro-molecules, enzyme kinetics, population kinetics,
effects of ionizing radiation, nerve excitation, membrane transport, and appli-
cations of statistical physics to biological systems. Prerequisite: Phys 221, Math
206, or permission of instructor.

Phys 432—Physical Optics and Introduction to Spectroscopy—3 cr.
(3 and 0)
Theory and application of interference and diffraction phenomena, polarized
Prerequisite: Phys 222 or 232.

Phys 441—Electricity and Magnetism II—3 cr. (3 and 0)
A continuation of Phys 340. Magnetic fields and energy; magnetic prop-
erties of materials; electromagnetic induction; A.C. circuit problems with
vector methods and complex numbers; Maxwell's field equations with appli-
cations. Prerequisite: Phys 340 or equivalent.

Phys 446—Solid State Physics—3 cr. (3 and 0)
An introductory treatment of the crystal structure of solids and the prop-
erties of solids which depend on crystal structure; free electron model of
metals; band theory of solids; Brillouin zones, crystalline defects and diffusion.
Prerequisite: Phys 222, or 232, or permission of instructor.

Phys 452—Introductory Nuclear Physics—3 cr. (3 and 0)
Various phases of nuclear physics including natural and induced radio-
activity; properties of alpha, beta and gamma-rays; cosmic rays; nuclear energy
levels and decay schemes; particle accelerators, fission, fusion and nuclear reactors. Prerequisite: Phys 222 or 232.

Phys 454—Nuclear Physics Laboratory—1 cr. (0 and 3)
Techniques and instruments used in detection and measurement of nuclear radiation. Experiments include half-life determination, absorption measurements, neutron activation, coincidence measurements, decay schemes, and gamma ray spectroscopy. Prerequisite: Registration in Phys 452.

Phys 455—Quantum Physics I—3 cr. (3 and 0)
Discussion of solution of the Schroedinger equation for free particles, the hydrogen atom and the harmonic oscillator. Prerequisite: Phys 322, 340, or permission of instructor.

Phys 456—Quantum Physics II—3 cr. (3 and 0)
Continuation of Phys 455. Application of principles of quantum mechanics as developed in Phys 455 to atomic, molecular, solid state and nuclear systems. Prerequisite: Phys 455.

Phys 460—Modern Physics for High School Teachers—3 cr. (3 and 0)
A study of later developments including the measurements of atomic particles. The formulation of new laws and the modifications of old ideas needed to describe the interactions of these particles.

Phys 465—Thermodynamics and Statistical Mechanics—3 cr. (3 and 0)
A study of temperature, development of the laws of thermodynamics and their application to thermodynamic systems. An introduction to low temperature physics is given. Prerequisite: Six hours of physics beyond Phys 222 or permission.

Phys 471—Electron Microscopy—3 cr. (2 and 3)
The theory and operation of the electron microscope. Magnetic lens theory. The technique of specimen mounting and the interpretation of electron micrographs and diffraction patterns. Each student may choose specimens from his major field. Prerequisite: General physics, Math 206, and permission of instructor.

Phys 473—X-ray Crystallography—3 cr. (2 and 3)
A study of crystal symmetry, elementary space group theory, diffraction of X-rays by electronic charge distribution. Experimental methods of optical goniometry, powder diffraction and single crystal techniques are used to obtain diffraction intensities from a simple crystalline solid and electron charge distribution is determined. Applications of X-ray diffraction to chemical, physical and metallurgical investigations are discussed.

Phys 621—Mechanics I—3 cr. (3 and 0)
Phys 622—Mechanics II—3 cr. (3 and 0)
Phys 625—Experimental Physics I—4 cr. (2 and 6)
Phys 626—Experimental Physics II—4 cr. (2 and 6)
Phys 632—Physical Optics and Introduction to Spectroscopy—3 cr. (3 and 0)
Phys 640—Electricity and Magnetism I—3 cr. (3 and 0)
Phys 641—Electricity and Magnetism II—3 cr. (3 and 0)
Phys 646—Solid State Physics—3 cr. (3 and 0)
Phys 652—Introductory Nuclear Physics—3 cr. (3 and 0)
Phys 655—Quantum Physics I—3 cr. (3 and 0)
Phys 656—Quantum Physics II—3 cr. (3 and 0)
Phys 660—Modern Physics for High School Teachers—3 cr. (3 and 0)
Phys 665—Thermodynamics and Statistical Mechanics—3 cr. (3 and 0)
Phys 671—Electron Microscopy—3 cr. (2 and 3)
Phys 673—X-ray Crystallography—3 cr. (2 and 3)
Phys 701—Physics for High School Teachers I—4 cr. (3 and 3)
Phys 702—Physics for High School Teachers II—4 cr. (3 and 3)
Phys 703—Modern Physics for High School Teachers—3 cr. (3 and 0)
Phys 704—Astronomy for High School Teachers—3 cr. (3 and 0)
Phys 811—Methods of Theoretical Physics I—3 cr. (3 and 0)
Phys 812—Methods of Theoretical Physics II—3 cr. (3 and 0)
Phys 813—Advanced Thermodynamics and Statistical Mechanics I—3 cr. (3 and 0)
Phys 814—Advanced Thermodynamics and Statistical Mechanics II—3 cr. (3 and 0)
Phys 821—Classical Mechanics I—3 cr. (3 and 0)
Phys 822—Classical Mechanics II—3 cr. (3 and 0)
Phys 841—Electrodynamics I—3 cr. (3 and 0)
Phys 842—Electrodynamics II—3 cr. (3 and 0)
Phys 845—Solid State I—3 cr. (3 and 0)
Phys 846—Solid State II—3 cr. (3 and 0)
Phys 853—Nuclear Physics I—3 cr. (3 and 0)
Phys 854—Nuclear Physics II—3 cr. (3 and 0)
Phys 856—Crystallography—3 cr. (3 and 0)
Phys 875—Seminar in Contemporary Physics—1-3 cr. (1-3 and 0)
Phys 891—Research—Credit to be arranged.
Phys 922—Hydrodynamics—3 cr. (3 and 0)
Phys 951—Quantum Mechanics I—3 cr. (3 and 0)
Phys 952—Quantum Mechanics II—3 cr. (3 and 0)
Phys 955—Advanced Modern Physics I—3 cr. (3 and 0)
Phys 956—Advanced Modern Physics II—3 cr. (3 and 0)
Phys 966—Relativity—3 cr. (3 and 0)
Phys 991—Doctoral Research—Credit to be arranged.
PLANT PATHOLOGY

Professors: L. W. Baxter, W. M. Epps, Head; J. E. Halpin, W. Witcher
Associate Professor: G. C. Kingsland
Assistant Professors: O. W. Barnett, E. I. Zehr
Lecturer: W. M. Dowler

Pl Pa 401—Plant Pathology—3 cr. (2 and 3) F, S
The principles of the interrelationships between plant pathogens, their hosts, and the environment. Economically important plant diseases are used to illustrate these principles and the application of these principles to disease control. Prerequisite: Bot 102.

Pl Pa H401—Plant Pathology—3 cr. (2 and 3) F, S
Honors option for Pl Pa 401; admission by special arrangement.

Pl Pa 405—Forest Pathology—3 cr. (2 and 3) F
Principles of plant pathology as related to forest tree diseases; casual agents and their effects on the suspect; prevention and control and minimizing losses; relation of disease control to silviculture, management, and forest products utilization. Prerequisite: Bot 102, 352, or permission of instructor.

Pl Pa H405—Forestry Pathology—3 cr. (2 and 3) F
Honors option for Pl Pa 405; admission by special arrangement.

Pl Pa 451—Bacterial Plant Pathogens—3 cr. (2 and 3) S, '73 and alternate years.
The nature, development, and control of plant diseases caused by bacteria. Taxonomic considerations, host-parasite relations and techniques used in isolating, identifying, and preserving bacterial plant pathogens. Prerequisite: Pl Pa 401, or 405, Micro 305, or permission of instructor.

Pl Pa 456—Plant Virology—3 cr. (3 and 0), S, '74 and alternate years.
Plant viruses with emphasis on their morphology, biochemistry, purification and transmission; symptoms resulting from virus infection; virus-vector relationships; and serological procedures. The importance and control of plant virus diseases will be discussed. Prerequisite: Bot 102.

Pl Pa H456—Plant Virology—3 cr. (3 and 0), S, '74 and alternate years.
Honors option for Pl Pa 456; admission by special arrangement.

Pl Pa 458—Plant Parasitic Nematodes—3 cr. (2 and 3) F, '72 and alternate years.
Morphology and taxonomy of stylet bearing nematodes and their relationship with plant diseases Prerequisite: Bot 102, Zool 102.

Pl Pa H458—Plant Parasitic Nematodes—3 cr. (2 and 3) F, '72 and alternate years.
Honors option for Pl Pa 458; admission by special arrangement.

Pl Pa 601—Plant Pathology—3 cr. (2 and 3)
Pl Pa 605—Forest Pathology—3 cr. (2 and 3)
Pl Pa 651—Bacterial Plant Pathogens—3 cr. (2 and 3)
Pl Pa 656—Plant Virology—3 cr. (3 and 0)
Pl Pa 658—Plant Parasitic Nematodes—3 cr. (2 and 3)
POLITICAL SCIENCE

Associate Professors: W. H. Owens, Jr., J. E. Tuttle
Assistant Professors: H. E. Albert, E. M. Coulter, R. A. Rimkus, M. W. Slann
Instructor: H. W. Fleming

POL SC 101—INTRODUCTION TO POLITICAL SCIENCE I, AMERICAN GOVERNMENT—3 cr. (3 and 0)
A general introduction to public administration, political behavior, and public law, with a concentrated treatment of American institutions. (Formerly Pol Sc 202.)

POL SC 201—INTRODUCTION TO POLITICAL SCIENCE II—3 cr. (3 and 0)
A basic introduction to the study, analysis, scope, and sources of government. Emphasis is given to the comparative institutions of government, the international relations of government, the theoretical conceptions man has entertained about government, and analysis of the ways in which man has behaved in response to government. Prerequisite: Pol Sc 101 or 301, or permission of instructor.

POL SC 301—AMERICAN GOVERNMENT AND POLITICAL PARTIES—3 cr. (3 and 0)
The Constitution: powers and functions of the governmental activities; political parties and elections. Not open to those who have completed Pol Sc 101 or 202.

POL SC 302—STATE AND LOCAL GOVERNMENT—3 cr. (3 and 0)
The structural features, functions, and legislative, executive and judicial processes of American state and local government.

POL SC 321—GENERAL PUBLIC ADMINISTRATION—3 cr. (3 and 0)
An introduction to public administration including the elements of organization, personnel and financial management, and administrative law, and administrative responsibility. Prerequisite: Pol Sc 101 or 301, 201.
POL SC 331—Constitutional Development of the United States—3 cr. (3 and 0)
The origin and growth of the Constitution of the United States. Prerequisite: Pol Sc 101, or 201.

POL SC 341—Political Behavior—3 cr. (2 and 3)
An introduction to behavioral methods. Identification of regularities in the type, degree, and direction of political participation. Laboratory training and field work in interviewing. Prerequisite: Junior standing and permission of instructor.

POL SC 351—Classical Political Thought—3 cr. (3 and 0)
Political philosophy from the pre-Socratic period to Machiavelli. Prerequisite: Pol Sc 101 or 301, 201.

POL SC 352—Modern Political Thought—3 cr. (3 and 0)
The early theories of the nation state in the sixteenth century and the major political thinkers, problems, and movements through the twentieth century. Prerequisite: Pol Sc 101 or 301, 201.

POL SC 361—International Politics—3 cr. (3 and 0)
An introduction to foreign policy, international law, and international organizations. Prerequisite: Pol Sc 101 or 301, 201.

POL SC 371—Comparative European Governments I; Constitutional Systems—3 cr. (3 and 0)
Major emphasis on the United Kingdom, France, Germany, and the U.S.S.R., with brief attention given to Italy and Switzerland. Current methods of comparison will be studied and applied to the formal and informal functioning of these governments. Prerequisite: Pol Sc 101, 201.

POL SC 372—Comparative European Government II; Totalitarian Systems—3 cr. (3 and 0)
A continuation of Pol Sc 371. This course will deal specifically with the Soviet Union as an example of totalitarian political systems, with references made to Nazi Germany and the present Eastern European political systems. Prerequisite: Pol Sc 101 or 301, 201.

POL SC 403—Legislative Process—3 cr. (3 and 0)
Individual behavior and the decision-making process within legislatures; legislative functions; the relationship of legislatures to the executive and other entities in the political system. Prerequisite: Pol Sc 101, 201.

POL SC 409—Directed Study in American Institutions—3 cr. (3 and 0)
Supervised reading and/or research in selected areas of American government. Prerequisite: 18 semester hours in political science and permission of instructor.

POL SC 422—Problems of Public Administration—3 cr. (3 and 0)
Selected views of public administration and the problems involved. Prerequisite: Pol Sc 101 or permission of instructor.

POL SC 423—Municipal Administration—3 cr. (3 and 0)
Interaction of political, technical, and administrative processes in urban America. Prerequisite: Pol Sc 101 or permission of instructor.
POL Sc 426—GOVERNMENT ORGANIZATION THEORY—3 cr. (3 and 0)
A study of the political-economic approach to the analysis of organization, management, and policy administration. Emphasis will be placed on organizational design, structure, and operation; participation and leadership; and evaluation of organizational effectiveness. Prerequisite: Pol Sc 321.

POL Sc 428—NATIONAL DEFENSE POLICY ANALYSIS—3 cr. (3 and 0)
A study of the possibilities and problems in formulating policies of national defense. Examination of alternatives, consequences and effectiveness of current techniques in nuclear weaponry, guerilla and conventional warfare. Prerequisite: Pol Sc 101, 201, or permission of instructor.

POL Sc 432—AMERICAN CONSTITUTIONAL LAW I—3 cr. (3 and 0)
A brief introduction to the judicial process followed by a detailed examination of leading cases pertaining to the judiciary, the Congress, the presidency, and the federal system. Prerequisite: Pol Sc 101 or 301, 201, and preferably 331.

POL Sc 433—AMERICAN CONSTITUTIONAL LAW II—3 cr. (3 and 0)
An examination of the relationship of the individual to his government; focusing on the safeguards of liberty and property including freedoms of speech, press and religion, and criminal procedures. Prerequisite: Pol Sc 101 or 301, 201, and preferably 331.

POL Sc 434—THE JUDICIAL PROCESS AND JURISPRUDENCE—3 cr. (3 and 0)
Courts as political subsystems; judicial decision making; the development of public policy through the judicial process; theories of law and jurisprudence. Prerequisite: Pol Sc 101, 201.

POL Sc 442—POLITICAL PARTIES AND POLITICS—3 cr. (3 and 0)
A study of the historical development of political parties, and the role they play in the organization and functions of our national government, and the influence of politics in policy making. Prerequisite: Pol Sc 101 or 301, and 201.

POL Sc 443—PUBLIC OPINION AND PROPAGANDA—3 cr. (3 and 0)
This course examines the nature of public opinion, its social and political context, the social-psychological processes basic to it, the dynamics of its formation and change and its measurement. Prerequisite: Pol Sc 341, IM 410, or permission of instructor.

POL Sc 462—INTERNATIONAL ORGANIZATIONS—3 cr. (3 and 0)
Emphasis on international organizations. Analysis of current problems and proposed solutions. Prerequisite: Pol Sc 101 (or 202 or 301), 201.

POL Sc 463—UNITED STATES FOREIGN POLICY—3 cr. (3 and 0)
Focus on foreign policy in its historical perspective, examining the decision-making process in foreign policy; evaluates contemporary American capabilities, and analyzes specific issues. Prerequisite: Pol Sc 101 (or 202 or 301), 201.

POL Sc 464—INTERNATIONAL LAW—3 cr. (3 and 0)
An examination of cases and other legal materials on the nature of international law, recognition of states, succession, the territory of states, and nationality. Prerequisite: Pol Sc 101, 201.
POL Sc 465—Foreign Policies of the Major Powers—3 cr. (3 and 0)

A study in the foreign policies of the leading world powers with special reference to the geographic, economic, historical and political determinants of each. A general introduction to the field of foreign policy. United States foreign policy is not emphasized. Prerequisite: Pol Sc 361.

POL Sc 469—Proseminar in International Studies—3 cr. (3 and 0)

Assessment of various theories and methods employed in the systematic study of International Relations; class discussions, readings, and reports. Prerequisite: Pol Sc 101, 201, and permission of instructor.

POL Sc 473—Politics of the Developing Nations—3 cr. (3 and 0)

A comparative analysis of the political and social problems of the developing nations of Africa, the Near East, East Asia, and Latin America. Prerequisite: Pol Sc 101, 201, or permission of instructor.

POL Sc 479—Directed Study in Comparative Government—3 cr. (3 and 0)

A study of the several methodological approaches to the analysis of comparative politics, emphasizing individual research and readings. Prerequisite: Pol Sc 201, 371, or permission of instructor.

POL Sc 609—Directed Study in American Institutions—3 cr. (3 and 0)

POL Sc 632—American Constitutional Law I—3 cr. (3 and 0)

POL Sc 662—International Organizations—3 cr. (3 and 0)

POULTRY SCIENCE

Professors: B. D. Barnett, Head; B. W. Bierer, M. A. Boone

Associate Professors: J. B. Cooper, J. E. Jones, D. E. Turk

Assistant Professor: J. Solis

PS 201—Introduction to Poultry Science—3 cr. (2 and 3) S

The application of the physical and biological sciences to modern poultry production and utilization. A study of the anatomy and physiology of the fowl and the economic aspects of poultry enterprises.

PS 352—Breeder Flock and Hatchery Management—3 cr. (3 and 0)

F, '72 and alternate years.

Principles of genetics and physiology applicable to efficient multiplication of economically important avian species. The principles of embryology, incubation, hatchery organization and operation essential to production of healthy young birds.

PS 353—Breeder Flock and Hatchery Management Laboratory—1 cr. (0 and 3) F, '72 and alternate years.

Laboratory demonstrating material covered in PS 352.

PS 355—Poultry Products Grading and Technology—3 cr. (2 and 3)

F, '73 and alternate years.

Factors important in the quality of poultry products will be considered. The effects of production, handling, packaging and storage on consumer acceptability will be discussed. Quality evaluation will be considered from the standpoint of tenderness, flavor, microbiology, and USDA grades.
The application of technology to the production of commercial eggs, broilers and market turkeys. The application of labor and equipment to animal requirements in such a way as to result in efficient production of wholesome meat and eggs.

PS 401—ANIMAL ENVIRONMENTAL TECHNOLOGY—2 cr. (2 and 0) F, ’72 and alternate years.
Demonstration of measurement and control of certain environmental factors with emphasis on light, temperature, and ventilation. Demonstration of physiological response of animals to different environments. All domestic livestock will be considered.

PS 403—ANIMAL ENVIRONMENTAL TECHNOLOGY LABORATORY—1 cr. (0 and 3) F, ’72 and alternate years.
Demonstration of subjects covered in PS 401.

PS 451—POULTRY NUTRITION—2 cr. (2 and 0) S, ’72 and alternate years.
Nutrient requirements of the various classes of poultry and the use of feedstuffs in meeting these needs. Prerequisite: An Sc 301.

PS 458—AVIAN MICROBIOLOGY AND PARASITOLOGY—4 cr. (3 and 3) F, ’72 and alternate years.
Agents causing poultry diseases; the diagnosis, prevention, and treatment of specific diseases and their economic and public health significance.

PS 460—SEMINAR—2 cr. (2 and 0) S, ’73 and alternate years.
Current research reported in journals covering the various areas of poultry science. Students will practice scientific writing and interpretation of technical material for lay readers. Prerequisite: Permission of instructor.

PS 601—ANIMAL ENVIRONMENTAL TECHNOLOGY—2 cr. (2 and 0)
PS 603—ANIMAL ENVIRONMENTAL TECHNOLOGY LABORATORY—1 cr. (0 and 3)

PS 651—POULTRY NUTRITION—2 cr. (2 and 0)
PS 652—BREEDER FLOCK AND HATCHERY MANAGEMENT—3 cr. (3 and 0)
PS 653—BREEDER FLOCK AND HATCHERY MANAGEMENT LABORATORY—1 cr. (0 and 3)
PS 655—POULTRY PRODUCTS GRADING AND TECHNOLOGY—3 cr. (2 and 3)
PS 658—AVIAN MICROBIOLOGY AND PARASITOLOGY—4 cr. (3 and 3)
PS 659—MANAGEMENT OF EGG, BROILER, AND TURKEY ENTERPRISES—3 cr. (2 and 3)

PS 660—SEMINAR—2 cr. (2 and 0)
PS 804—POULTRY PATHOLOGY—3 cr. (1 and 6)
PS 805—SEMINAR—1 cr. (1 and 0)
PS 891—RESEARCH—Credit to be arranged.
PSYCHOLOGY

Associate Professors: C. B. Caffrey, S. N. Cole, J. D. Davenport
Assistant Professors: W. R. Fowler, Jr., J. D. Marx, T. G. Titus
Lecturer: D. K. Freeman, Jr.
Instructors: Marilyn A. Austin, Barbara Hinkle

Psych 201—General Psychology—3 cr. (3 and 0)
A survey of the field of psychology: development and adjustment, motivation, emotions, intelligence, personality, the sensory experiences, perception, learning, thinking, imagination, and mental hygiene.

Psych 202—Introductory Experimental Psychology—3 cr. (3 and 0)
A survey of the major areas of psychological research with emphasis on methods of experimentation and other forms of research. Required of all psychology majors and minors. Prerequisite: Psych 201.

Psych 211—Growth and Development—3 cr. (3 and 0)
The course will focus on changes in personal and social behavior throughout the human life span. Prerequisite: Psych 201.

Psych 302—Social Psychology—3 cr. (3 and 0)
The interaction between the individual and the forces of society: the classical theories, the psychobiological bases of human behavior, the sociocultural bases of behavior, types of human behavior, overt and covert experiences, symbolism, personality and social interaction. Prerequisite: Psych 201.

Psych 303—The Psychology of Adjustment—3 cr. (3 and 0)
A course in personal adjustment dealing with the appropriate and inappropriate reactions to frustration and stress, including ways of handling conflicts, anxiety, fears, and the promotion of personal emotional adjustment. Prerequisite: Psych 201, 202, or permission of instructor. Not open to psychology majors.

Psych 321—Developmental Psychology—3 cr. (3 and 0)
A survey of current theory and research concerned with the psychological aspects of human growth and development. Prerequisite: Psych 201, 202.

Psych 331—Theories of Learning—3 cr. (3 and 0)
A historical approach to the study of the major modern learning theories. Prerequisite: Psych 201, 202.

Psych 341—Physiological Psychology—3 cr. (3 and 0)
The study of human neuroanatomy, with an emphasis on the functions of the nervous system. Treats of the biological bases of behavior in both normal and abnormal dimensions. Prerequisite: Psych 201, 202.

Psych 351—History and Systems of Psychology—3 cr. (3 and 0)
A treatment of the science of psychology as understood in the light of the ideas of men who have been responsible for its development. Prerequisite: Psych 201, 202.

Psych 361—Motivation—3 cr. (3 and 0)
The various aspects of motivation are considered through a study of contributions of biologists, sociologists, anthropologists, and psychologists. The orientation is empirical rather than theoretical, with emphasis on pertinent
research and research methods, and on the measurement of motives. **Prerequisite:** Psych 201, 202.

PSYCH 363—EXPERIMENTAL PSYCHOLOGY II—4 cr. (3 and 3)
A continuation of Experimental Psychology I, with a stress on the carrying out of original research in the scientific study of human and animal behavior. Laboratory periods stress the refinement of techniques and the execution of research in a guided setting. **Prerequisite:** Psych 201, 202.

PSYCH 380—COGNITIVE PROCESSES—3 cr. (3 and 0)
The study of higher cognitive functioning which includes such areas as memory, concept acquisition, the acquisition and use of language, speech perception, pattern recognition, and problem solving. **Prerequisite:** Psych 201, 202.

PSYCH 401—APPLIED PSYCHOLOGY—3 cr. (3 and 0)
A study of the concepts of psychology as applied to individual, business, and professional behavior. **Prerequisite:** Psych 201.

PSYCH 402—ABNORMAL PSYCHOLOGY—3 cr. (3 and 0)
Mental and emotional disorders: theories of causation and problems of treatment; special phenomena of consciousness and unconsciousness, e.g., dreams, dissociation, hypnosis; analysis of pathological behavior: alcoholism, drug addiction, suicide, criminality, neurosis, and psychoneurosis. **Prerequisite:** Psych 201.

PSYCH 403—PERSONALITY—3 cr. (3 and 0)
An analysis of the theories of personality: Freud, Adler, Jung, Sullivan, Horney, Allport, *et al.* **Prerequisite:** Psych 201, 202, and permission of instructor.

PSYCH 422—CROSS CULTURAL STUDIES IN DEVELOPMENTAL PSYCHOLOGY—3 cr. (3 and 0)
A comparative study of the development of human behavior and personality emphasizing the contributions of learning theory, psychoanalysis, role theory, and cultural anthropology. **Prerequisite:** Psych 201, 202, 321, 331 or 361, 402, or 403, or permission of instructor.

PSYCH 432—CONDITIONING AND LEARNING—3 cr. (3 and 0)
A comprehensive study of the principles of learning. Includes classical, instrumental, and operant conditioning paradigms. A detailed study of reinforcement, acquisition, generalization, discrimination, and extinction of behavioral responses. **Prerequisite:** Psych 201, 202, 331, Math 203.

PSYCH 442—SENSATION AND PERCEPTION—3 cr. (3 and 0)
Current experimental findings in the field of perception and sensation, along with theories of vision, audition, kinesthesia, vestibular function, the skin and chemical senses and theories of perception. **Prerequisite:** Psych 201, 202, 341.

PSYCH 471—PSYCHOMETRICS—3 cr. (3 and 0)
An introduction to the theory of psychological testing. Emphasis is on essentials of testing with experience in administering, scoring, and interpreting test, including those of scholastic achievement, mental ability, scholastic aptitude, interests and personality. **Prerequisite:** Nine hours of psychology including 201, 202.
PSYCH 475—Group Dynamics—3 cr. (3 and 0)
A review of current research and theory on small-group processes with special emphasis on group structure, the dynamic forces within a group, social power, group problem solving, and leadership. Prerequisite: Psych 201, 202, 363, or permission of instructor.

PSYCH 490—Special Topics in Psychiatry and Neurology—3 cr. (3 and 0)
Selected aspects of medical sciences related to clinical psychology—psychiatric examination and nosology, central nervous system pathology, psychopharmacology, child psychiatry, etc.—designed to assist the psychologist in working effectively with representatives of these disciplines. Prerequisite: Psych 201, 202, 402, 403, and/or permission of instructor.

PSYCH 495—Directed Research in Behavior—2 cr. (2 and 0)
Consists of individual research projects carried out by students under the direct guidance of a particular faculty member. The research will be conducted in psychology or in a related field, provided that key variables are related to human or animal behavior. Prerequisite: Psych 363 completed; status as a senior.

PSYCH 498—Seminar in Current Research in Psychology—2 cr. (2 and 0)
Reading and discussion of research being published in current psychological and related journals. For advanced psychology students. Prerequisite: Psych 201, 202, 363, or permission of instructor.

PSYCH 499—Seminar in Current Research in Psychology II—3 cr. (3 and 0)
Reading and discussion of research being published in current psychological and related journals. For advanced psychology students. Prerequisite: Psych 201, 202, 363, or permission of instructor.

RECREATION AND PARK ADMINISTRATION

Professor: H. Brantley, Head
Associate Professors: G. E. Howard, J. L. Stevenson
Assistant Professors: R. M. Frye, L. W. Gahan, Sarah A. Walker, C. R. White
Instructor: R. E. Barker
Lecturers: C. E. Godfrey, Jr., J. R. Vaughn

RPA 101—Introduction to Community Recreation—3 cr. (3 and 0)
History and foundations of Community Recreation in public, private and commercial settings; job opportunities, specifications and demands.

RPA 102—History and Principles of Outdoor Recreation—3 cr. (3 and 0)
Includes the study of the history, present status and the principles of operation of parks and park systems in America; outdoor education programs; implications for continued growth of this leisure phenomenon.
RPA 203—Personal and Community Health—3 cr. (3 and 0)

The course deals with health problems, disease prevention and control, school health practices, public health administration, and other health information which may enable one to live intelligently in today's complex society.

RPA 204—Sports in Recreation—3 cr. (2 and 3)

Administrative and supervisory skills indigenous to public and/or private agency athletic programs are considered. Group instruction is given in individual and team sports and officiating techniques applicable to these sports are taught.

RPA 205—Program Planning for Recreation—3 cr. (2 and 3)

Course includes fields of activity available to participants; principles and methods of program development; utilization of time-blocks and facilities. (Formerly RPA 303.) Prerequisite: Junior standing.

RPA 302—Camp Organization and Administration—3 cr. (2 and 3)

Surveys the development and trends of camping in America. Considers programming for the operations of agency and private camps. Enables student to master the techniques of group living. Laboratory offers practical experience in camp craft including trips and outdoor cooking.

RPA 304—Recreation in Modern Society—3 cr. (3 and 0)

A historical study of the growth of leisure with special attention given to the utilization of community resources for recreation.

RPA 305—Physical Aspects of Sports in Recreation—3 cr. (2 and 3)

The course considers the physiology of exercise as it relates to safety in recreational sports programs, the practice of first aid, and the treatment of athletic injuries.

RPA 306—Principles of Outdoor Education—3 cr. (3 and 0)

A study of the development of outdoor education in public, private and professional agencies with special emphasis on schools and park and recreation departments. Attention will be focused on our National land problems and on land needs for tomorrow.

RPA 307—Park Maintenance and Operation—4 cr. (3 and 3)

Maintenance techniques and materials, interpretive programs, job planning and scheduling, problems of overuse and preventive maintenance are included. (Formerly RPA 401.)

RPA 308—Methods and Techniques of Recreation Leadership—3 cr. (3 and 0)

Considers characteristics of the several levels of recreation leadership with special emphasis on supervision. Examination is made of the Group Processes. Also includes a study of community resources for leadership in specialized program areas.

RPA 402—Recreation Administration—3 cr. (3 and 0)

An analysis of the internal organization of a recreation department dealing with finances and accounting; records and reports; publicity and public relations; state and federal legislation; staff organization; coordination of community resources. Prerequisite: Senior standing.
RPA 403—FACILITY AND SITE PLANNING—3 cr. (2 and 3)
Trends in recreation facility development, planning principles involved in
design of recreation buildings, and orientation of facilities to given area are
integrated into sound planning programs. Prerequisite: RPA 307 or permission
of instructor.

RPA 405—FIELD TRAINING IN RECREATION—8 cr.
The student, in a ten-week program, has the opportunity to observe recrea-
tion programs in operation. He will also have responsibilities of organizing
and conducting activities under supervision. Maintenance and operation of
facilities will be observed and practiced. Total of 360 hours required. Prere-
quisite: Senior standing.

RPA 406—RECREATION FOR THE ILL AND HANDICAPPED—3 cr. (3 and 0)
Surveys the recreational opportunities and benefits available to the ill and
handicapped citizens. Designed to provide the student with an awareness of
the role of the professional recreator in serving the needs of such special
groups as the mentally retarded, cerebral palsied, emotionally disturbed—institutionalized, hospitalized, etc. Particular emphasis will be given to program
development applicable to each specific situation.

RPA 408—THE APPLICATION OF RECREATION THERAPY—3 cr. (3 and 0)
The study of the responsibility and role of the recreator as a member of
the therapeutic team.

RPA 409—METHODS OF RECREATION RESEARCH I—3 cr. (3 and 0)
An analysis of the principle methods of recreation research, the application
of descriptive statistics to recreation research, and the development of a
research proposal. Prerequisite: Senior standing and permission of instructor.

RPA 410—METHODS OF RECREATION RESEARCH II—3 cr. (3 and 0)
A continuation of RPA 409 to include the supervised execution and reporting
of the results of the research proposal developed in RPA 409 and the applica-
tion of inferential statistics to recreation research. Prerequisite: RPA 409 or
permission of instructor.

RPA 602—RECREATION ADMINISTRATION—3 cr. (3 and 0)
RPA 606—RECREATION FOR THE ILL AND HANDICAPPED—3 cr. (3 and 0)
RPA 701—PHILOSOPHICAL FOUNDATIONS OF RECREATION AND PARK ADMIN-
ISTRATION—3 cr. (3 and 0)

RPA 702—GROUP PROCESSES IN LEISURE SERVICES—3 cr. (3 and 0)
RPA 703—SEMINAR IN RECREATION AND PARK ADMINISTRATION—3 cr.
(3 and 0)
RPA 704—COMPREHENSIVE RECREATION PLANNING—3 cr. (3 and 0)
RPA 705—RECREATIONAL ASPECTS OF WATER RESOURCES—3 cr. (3 and 0)
RPA 706—URBAN RECREATION ANALYSIS—3 cr. (3 and 0)
RPA 707—PRINCIPLES OF ENVIRONMENTAL INTERPRETATION—3 cr.
(3 and 0)
RPA 708—SELECTED TOPICS—3 cr. (3 and 0)
REXINON

Assistant Professor: D. F. White, Jr.

REL 301—The Old Testament—3 cr. (3 and 0)
A survey of books of the Old Testament with special consideration given to the development of the concepts, institutions, and theology of the ancient Hebrews.

REL 302—A Survey of New Testament Literature—3 cr. (3 and 0)
A study of the books of the New Testament from the standpoint of their occasion, content, literary form, and basic theology.

REL 306—Religions of the West—3 cr. (3 and 0)
A study of the origin, evolution, and contemporary status of Judaism, Christianity, and Islam. Prerequisite: Junior standing.

REL 309—Religions of the Far East—3 cr. (3 and 0)
A study of the origin, evolution, and contemporary status of Hinduism, Buddhism, Confucianism, and Taoism. Prerequisite: Junior standing.

RURAL SOCIOLOGY

Professor: W. J. Lanham, Head
Associate Professor: V. A. Boyd
Assistant Professor: E. L. McLean

RS 301—Rural Sociology—3 cr. (3 and 0) F, S
A study of human social relationships as influenced by life in the open country and in small towns and villages including considerations of the rural population, rural social institutions, processes of change in agricultural technology, and community area planning and development.

RS 359—The Community—3 cr. (3 and 0) F
An examination of the sociological aspects of contemporary communities and of their growth and development. The structural relations of social class, status and power and the relationships among social institutions within the community are examined. Emphasis is placed on the organization and development of communities in a constantly changing environment.

RS 401—Human Ecology—3 cr. (3 and 0)
Analysis of the interrelationships between man and his natural and man-made environments; study of settlement patterns, social organization, and institutions of human populations. Special emphasis will be given to interdependence of natural resources, human resources, and man-land relationships.

RS 461—Rural Leadership—3 cr. (3 and 0) S
A consideration of the social and psychological factors involved in leadership including an examination and analysis of characteristics of the successful leader. Particular attention is paid to the role of the leader in the process of economic and social development of rural communities and small towns.

RS 601—Human Ecology—3 cr. (3 and 0)
RS 659—The Community—3 cr. (3 and 0)
RS 661—Rural Leadership—3 cr. (3 and 0)
RS 801—Rural Social Systems—3 cr. (3 and 0)
RUSSIAN

Lecturer: Ludmila A. Savitsky

Russ 101—Elementary Russian—4 cr. (3 and 1)
Training in pronunciation, grammatical forms, and syntax with a view of giving the student the fundamentals necessary to read simple Russian texts. Three hours a week classroom instruction and one hour a week in the language laboratory.

Russ 102—Elementary Russian—4 cr. (3 and 1)
A continuation of Russ 101; three hours a week classroom instruction and one hour a week in the language laboratory.

Russ 201—Intermediate Russian—3 cr. (3 and 0)
The reading of simple Russian prose; a review of grammar and syntax. Drill on vocabulary and idiom. Prerequisite: Russ 101, 102.

Russ 202—Intermediate Russian—3 cr. (3 and 0)
A continuation of Russ 201.

Russ 303—Survey of Russian Literature I—3 cr. (3 and 0)
Literary movements and authors from the beginning to 1850. Prerequisite: Russ 201, 202.

Russ 304—Survey of Russian Literature II—3 cr. (3 and 0)
Literary movements and authors from 1850 to the present. Prerequisite: Russ 201, 202.

SOCIOLOGY

Professor: F. A. Burtner
Assistant Professors: W. C. Capel, Jr., R. J. Knapp, G. S. Rent

Soc 201—Introductory Sociology—3 cr. (3 and 0)
The basic principles of sociology: culture, biological factors, the influence of geographical environment, human nature, group life, social stratification, communities, social institutions, and social change. Prerequisite: Sophomore standing.

Soc 202—Social Problems—3 cr. (3 and 0)
A survey of the major social problems, including problems of industry, education, religion, disease and public health, poverty, dependency and factors affecting social adjustment. Prerequisite: Soc 201.

Soc 206—Introduction to Methods of Sociological Research—3 cr. (3 and 0)
An introduction to the use of scientific methods in sociology, their purpose, and limitations; the relationship between theory and research; research design, sampling, measurement and the social science techniques of reliability and validity. Required of all Sociology majors and minors. Prerequisite: Soc 201.

Soc 306—Contemporary Socio-environmental Problems—3 cr. (2 and 2)
A multidisciplinary study of national, social and environmental issues. Topics will include: regional population concerns, housing needs, regional
health problems, the environment—air, water, land—delivery of justice, automation and technological change. Prerequisite: Junior standing or consent of instructor.

Soc 311—The Family—3 cr. (3 and 0)
The family as one of the basic institutions of society. The history of the family, and a study of its functions in early and modern social structures. A comparative study of family life in other cultures is made. Prerequisite: Soc 201, 206.

Soc 321—Cultural Anthropology—3 cr. (3 and 0)
Recent and contemporary man, as a social and culture-bearing animal, with emphasis on the constants and variants in human behavior involved in technology, social relations, language, religion, art, and other aspects of cultures. Prerequisite: Soc 201, 206.

Soc 322—Cultural Anthropology—3 cr. (3 and 0)

Soc 324—Social and Cultural Change—3 cr. (3 and 0)
An examination of theory and research on the processes of change; factors inducing or inhibiting change; the character, mechanisms, rate, extent, direction, and relative stabilization of change at different levels of social phenomena. Prerequisite: Soc 201, 206.

Soc 331—Urban Sociology—3 cr. (3 and 0)
A survey of the history and development of modern urban organization; rise of the city; problems of modern urban life. Prerequisite: Soc 201, 206 (for Sociology majors and minors).

Soc 341—Population Analysis—3 cr. (3 and 0)
An analysis of population growth and distribution and their bearing on current economic, political, and social problems. Prerequisite: Soc 201, 206.

Soc 351—Industrial Sociology—3 cr. (3 and 0)
Industry as a social organization; the factory as a social system; personality in industrial relations; power groupings within industry; industry and the community. Prerequisite: Soc 201 and permission of instructor.

Soc 361—Collective Behavior—3 cr. (3 and 0)
Examination of the nature, development and consequences of human behavior in situations where usual social norms and behavior do not apply. Particular attention to such collective behavior phenomena as crowds, mobs, mass, cults, publics, and the initial states of social movements. Prerequisite: Soc 201, 206.

Soc 371—Research Methods—3 cr. (3 and 0)
Analysis of scientific methods in social research and consideration of various techniques, methodological approaches and research designs. Required of all sociology majors. Prerequisite: Soc 201, 206, Ex St 301.

Soc 381—Society and Socialization—3 cr. (3 and 0)
The relationship between social structure and personality. Prerequisite: Soc 201, 206.
Description of Courses

Soc 391—Sociology of Deviant Behavior—3 cr. (3 and 0)
Analysis of advanced theory and research on the social processes by which behavior becomes defined as deviant, the conditions promoting such behavior, and the career patterns of deviant persons. Prerequisite: Soc 201, 206.

Soc 393—Crime and Delinquency—3 cr. (3 and 0)
An overview of the area of crime and delinquency. The course will focus upon theories of criminology, the etiology of crime and delinquency, and the administration of criminal justice. Prerequisite: Soc 201, 206.

Soc 411—Classical Sociological Theory—3 cr. (3 and 0)
A survey of sociological theory from Comte to Durkheim. Required of all sociology majors. Prerequisite: 9 semester hours in sociology.

Soc 421—Contemporary Sociological Theory—3 cr. (3 and 0)
A survey of sociological theory from Durkheim to the present. Required of all sociology majors. Prerequisite: Soc 201, 206, 411.

Soc 431—Complex Organizations—3 cr. (3 and 0)
An examination and comparison of theories of formal organization; and analysis of the structure and function of specific organizations illustrating various theoretical approaches. Prerequisite: Soc 201, 206.

Soc 441—Social Stratification—3 cr. (3 and 0)
Analysis of social structure in terms of class, status, prestige, rank and function. Attention is given to the social role of the elite, bureaucracies, the professional, and middle classes. Prerequisite: Soc 201, 206.

Soc 451—Sociology of Medicine—3 cr. (3 and 0)
Consideration of the major contributions of sociology to medicine; an exploration of patterned social relationships in the field of health and medicine. Prerequisite: Soc 201, 206.

Soc 481—Race Relations—3 cr. (3 and 0)
The study of the problem of racial and ethnic groups in adjusting to American society. The nature and causes of prejudice and discrimination. Programs for the reduction of intergroup tensions and conflicts are evaluated in the light of observed facts and sociological principles. Prerequisites: Soc 201, 206, or permission of instructor.

Soc 499—Seminar in Selected Topics in Contemporary Sociology—3 cr. (3 and 0)
Required of all sociology majors. Prerequisite: Soc 201, 206, 411, 421, or permission of senior adviser.

Soc 611—Classical Sociological Theory—3 cr. (3 and 0)
Soc 621—Contemporary Sociological Theory—3 cr. (3 and 0)
Soc 631—Complex Organizations—3 cr. (3 and 0)
Soc 641—Social Stratification—3 cr. (3 and 0)
Soc 651—Sociology of Medicine—3 cr. (3 and 0)
Soc 781—Race Relations—3 cr. (3 and 0)
SPANISH

Associate Professor: G. J. Fernandez

Instructors: B. G. Durham, L. T. Perry

Lecturer: Elena G. Fernandez

Span 101—Elementary Spanish—4 cr. (3 and 1)
A course for beginners in which the essentials of grammar are taught and a foundation is provided for a conversational and reading knowledge of the language. Three hours a week of classroom instruction and one hour a week in the language laboratory.

Span H101—Elementary Spanish—4 cr. (3 and 1)
Honors section of Span 101; admission by invitation.

Span 102—Elementary Spanish—4 cr. (3 and 1)
A continuation of Span 101; three hours a week of classroom instruction and one hour a week in the language laboratory.

Span H102—Elementary Spanish—4 cr. (3 and 1)
Honors section of Span 102; admission by invitation.

Span 201—Intermediate Spanish—3 cr. (3 and 0)
Grammar, vocabulary, and idioms; conversation, composition, and translation. Prerequisite: Span 102.

Span H201—Intermediate Spanish—3 cr. (3 and 0)
Honors section of Span 201; admission by invitation.

Span 202—Intermediate Spanish—3 cr. (3 and 0)
Introduction to Spanish literature: representative short stories, essays, novels, poetry, and plays. Prerequisite: Span 201.

Span H202—Intermediate Spanish—3 cr. (3 and 0)
Honors section of Span 202; admission by invitation.

Span 303—Survey of Spanish Literature I—3 cr. (3 and 0)
Literary movements, influences, and authors from the beginnings to the end of the seventeenth century. Representative works, discussions. Required of Spanish majors. Prerequisite: Span 201, 202.

Span 304—Survey of Spanish Literature II—3 cr. (3 and 0)
Literary movements, influences, and authors from the eighteenth century to the present. Required of Spanish majors. Prerequisite: Span 201, 202.

Span 305—Conversational Spanish—3 cr. (3 and 0)
Practice in spoken Spanish with emphasis on vocabulary, pronunciation, intonation, and comprehension. Some written work to increase accuracy. Required of Spanish majors. Assignments in the language laboratory. Prerequisite: Span 201.

Span 306—Advanced Conversation with Composition—3 cr. (3 and 0)
A continuation of Span 305 with more emphasis on written Spanish. Prerequisite: Span 305.
Description of Courses

Span 307—Spanish Civilization—3 cr. (3 and 0)
A study of the significant aspects of the culture of Spain from its origins to the present. Prerequisite: Span 202 or permission.

Span 308—Spanish American Civilization—3 cr. (3 and 0)
A study of the significant aspects of the culture of Spanish American countries from the Colonial period to the present. Prerequisite: Span 202 or permission.

Span 309—Introduction to Spanish Phonetics—3 cr. (3 and 0)
A study of the fundamental principles of the pronunciation of Spanish. Prerequisite: Span 201 or equivalent.

Span 310—Survey of Spanish American Literature I—3 cr. (3 and 0)
A study of Spanish American literature from the Colonial period to Modernism. Prerequisite: Span 202 or permission of the Head of the Department of Languages.

Span 311—Survey of Spanish American Literature II—3 cr. (3 and 0)
Literary movements, influences, authors, and works from Modernism to the present. Prerequisite: Span 202 or permission of the Head of the Department of Languages.

Span 401—Contemporary Spanish Literature—3 cr. (3 and 0)
Literary trends and representative authors since 1898. Prerequisite: Span 303 or 304.

Span 402—Contemporary Spanish Drama—3 cr. (3 and 0)
The Spanish theater from Benavente to the present. Prerequisite: Span 303 or 304.

Span 405—Nineteenth Century Spanish Literature—3 cr. (3 and 0)
Representative authors and movements of the nineteenth century; Romanticism, costumbrismo, and the regional novel. Prerequisite: Span 303, 304.

Span 406—Cervantes and the Golden Age—3 cr. (3 and 0)
A study of Cervantes and the theater of the Golden Age of Spanish literature. Prerequisite: Span 303 or 304.

Span 409—Advanced Grammar and Composition—3 cr. (3 and 0)
An intensive study of syntax and stylistics through composition and translations. Prerequisite: Senior standing or permission of the Head of the Department of Languages.

Span 498—Independent Study—1-3 cr. (1-3 and 0)
Independent in-depth study of selected topics in Spanish literature. Prerequisite: Permission of the Head of the Department of Languages.
TECHNICAL OPERATIONS

Professor: E. Laitala, Program Director
Associate Professor: R. L. Perry

TO 301—MECHANICS I—3 cr. (2 and 3)
A study of statics including force systems and friction, dynamics of particles and rigid bodies; and, kinetics including forces, mass and acceleration, work and energy, impulse and momentum. Prerequisite: Phys 208, concurrent registration in Math 206.

TO 302—MECHANICS II—3 cr. (2 and 3)
Mechanical properties of solids and fluids. Stress analysis in solids; beams, columns and cylinders. Hydrostatic systems. Energy and flow characteristics of fluid dynamic systems. Prerequisite: TO 301.

TO 311—ELECTRICAL CIRCUITS I—3 cr. (3 and 0)
A study of direct and alternating current circuits. Circuit theorems are introduced in the direct current coverage and are reinforced during the study of alternating currents. Emphasis is placed on steady state conditions and power relationships in circuits with sinusoidal excitations. Prerequisite: Phys 208, concurrent registration in Math 206.

TO 312—ELECTRICAL CIRCUITS II—3 cr. (3 and 0)
Continuation of Electrical Circuits I. A thorough coverage of polyphase circuits is included. Prerequisite: TO 311.

TO 321—HEAT POWER I—3 cr. (3 and 0)
First and second laws of thermodynamics, thermodynamic properties, gas mixtures and thermodynamic processes. Prerequisite: Phys 208, concurrent registration in Math 206.

TO 322—HEAT POWER II—3 cr. (3 and 0)
Internal combustion engines, gas turbines, air compressors, flow in nozzles, refrigeration and steam power plant cycles, and heat transfer. Prerequisite: TO 321.

TO 331—HEAT POWER LABORATORY—1 cr. (0 and 3)
The course is intended to illustrate theory covered in heat power and in air-conditioning; to develop experimental technique; to interpret data and results; and to develop basic skills in technical report writing. Prerequisite: TO 321 and registration in 322.

TO 341—KINEMATICS OF MACHINES—2 cr. (1 and 3)
A study of displacements, velocities, and accelerations encountered in the design of machines using the graphical approach to the solution of problems. The use of these principles applied to the study of cams, gears, and miscellaneous mechanisms. Prerequisite: EC 110, TO 301.

TO 411—ELECTRICAL MACHINERY—3 cr. (3 and 0)
Coverage includes the theory of operation and application of D-C and A-C machines and transformers. External characteristics are depicted from the machine equivalent circuit. Prerequisite: TO 312.

TO 412—ELEMENTS OF ELECTRONICS—2 cr. (2 and 0)
Theory and operation of electronic circuits and control with emphasis on equipment for industrial application. Prerequisite: TO 311.
TO 421—HEATING AND AIR-CONDITIONING—2 cr. (2 and 0)
Psychrometric properties and processes; heating and cooling load calculations; selection and layout of major equipment for heating systems and air-conditioning systems, refrigeration and automatic controls. Prerequisite: TO 322.

TO 431—ELECTRICAL LABORATORY—1 cr. (0 and 3)
A laboratory course designed to complement instruction in TO 311, 312, 411. Prerequisite: TO 311, 312, and concurrent registration in 411.

TO 441—MACHINE AND COMPONENT DESIGN—3 cr. (2 and 3)
Basic instruction in the design and analysis of machine and machine components with emphasis on realistic and functional application. Kinematic and dynamic characteristics of the mechanical system together with wear, fatigue, structural soundness, safety, etc., will be a major consideration of the analysis. Prerequisite: TO 302, 341.

TEXTILE CHEMISTRY

Professors: T. D. Efland, J. C. Hubbard, F. T. Simon
Associate Professors: R. H. Barker, D. W. Lyons, E. S. Olson, J. J. Porter, C. W. Roberts

TC 303—TEXTILE CHEMISTRY—3 cr. (3 and 0)
A study of the properties and reactions of aliphatic and aromatic organic compounds. Emphasis will be placed on mechanistic interpretations and the development of synthetic schemes leading to polyfunctional compounds of the types encountered in the textile industry. Prerequisite: Ch 102, Math 206.

TC 304—TEXTILE CHEMISTRY—3 cr. (3 and 0)
Fundamental principles of physical and organic chemistry with emphasis on those areas most frequently encountered in the textile industry including thermodynamics, kinetics, and solution properties. These concepts will be applied to the study of aliphatic organic compounds and organic reaction mechanisms. The basic principles of stereochemistry and conformational analysis will be developed. Prerequisite: TC 303.

TC 305—TEXTILE CHEMISTRY LABORATORY—1 cr. (0 and 3)
An introduction to the techniques used in the synthesis and characterization of organic compounds. To be taken concurrently with TC 303.

TC 306—TEXTILE CHEMISTRY LABORATORY—1 cr. (0 and 3)
The techniques used in the synthesis of organic compounds and the measurement of their physio-chemical properties. To be taken concurrently with TC 304.

TC 315—INTRODUCTION TO POLYMER SCIENCE AND ENGINEERING—3 cr. (3 and 0)
The chemistry of monomers and polymers and the chemical and physical properties of polymers are discussed emphasizing fiber forming, synthetic polymers. Kinetics of polymerization, molecular characterization, structure, morphology, and mechanical properties of polymers are studied demonstrating design of polymer systems for end use in textiles.

TC 316—CHEMICAL PREPARATION OF TEXTILES—3 cr. (2 and 3)
The chemicals used in the preparation of fabric for dyeing and finishing. Oxidizing and reducing agents and their control and effect on various fibers.
Colloidal and surface active properties of various compounds and the fundamental factors influencing these properties. *Prerequisite: TC 315.*

TC 317—Polymer and Fiber Laboratory—1 cr. (0 and 3)
High polymers, prepared from monomers, are characterized and spun to make fibers. Chemical and physical properties of fiber forming polymers are measured as functions of parameters critical to properties of textiles.

TC 457—Dyeing and Finishing I—3 cr. (3 and 0)
A study of the different classes of dyestuffs and the chemistry of their applications to different fibers. The theories, principles and mechanisms for the dyeing of textile fibers and fabrics will be presented as well as the reaction mechanisms of various finishing agents applied to different substrates. *Prerequisite: TC 315.*

TC 458—Dyeing and Finishing II—3 cr. (3 and 0)
The kinetics and equilibria of dyeing processes. The use of conductivity, diffusion and other methods useful for measuring absorption isotherms and dyeing rates and the general thermodynamic relationships applicable to dyeing operations. Fiber properties such as zeta potential dye sites, relative amorphous area available will be included.

TC 459—Dyeing and Finishing Laboratory I—1 cr. (0 and 3)
To be scheduled concurrently with TC 457. The course will introduce the student to common dyeing and printing methods and to some of the machinery necessary to carry out dyeing operations.

TC 460—Dyeing and Finishing Laboratory II—1 cr. (0 and 3)
To be scheduled concurrently with TC 458. The course will cover finishing in addition to dyeing operations and their instrumental control.

TC 461—Seminar and Research—3 cr. (1 and 6)
An original investigation of a problem in textile or polymer chemistry under the direct supervision of a faculty member. After completing his experimental work, the student prepares a formal, written report which he defends before the textile faculty. *Prerequisite: Senior standing or permission of instructor.*

TC 466—Textile Unit Operations—3 cr. (3 and 0)
Designed to cover some of the principles behind textile equipment operation such as heat transfer in drying and dyeing processes and fluid flow in pressure and open dye operations and polymer production.

TC 475—Cellulose Chemistry—2 cr. (2 and 0)
The organic chemistry of cellulose and its derivatives is developed from the basic principles of carbohydrate chemistry. Emphasis is placed in the substitution and degradation reactions which are of particular importance in textile applications. Fiber morphology is treated in relation to its effect on textile chemical processing. *Prerequisite: TC 315 or permission of instructor.*

TC 615—Introduction to Polymer Science and Engineering—3 cr. (3 and 0)

TC 616—Chemical Preparation of Textiles—3 cr. (2 and 3)

TC 657—Dyeing and Finishing I—3 cr. (3 and 0)

TC 658—Dyeing and Finishing II—3 cr. (3 and 0)
TC 659—Dyeing and Finishing Laboratory I—1 cr. (0 and 3)
TC 666—Textile Unit Operations—3 cr. (3 and 0)
TC 675—Cellulose Chemistry—2 cr. (2 and 0)
TC 811—Polymer Science I—3 cr. (3 and 0)
TC 812—Polymer Science II—3 cr. (3 and 0)
TC 821—Chemistry of Natural Polymers—3 cr. (3 and 0)
TC 822—Chemistry of Natural Polymers II—3 cr. (3 and 0)
TC 831—The Physical Chemistry of Dyeing—3 cr. (3 and 0)
TC 891—Research—Credit to be arranged.

TEXTILE SCIENCE

Professors: T. D. Efland, J. C. Hubbard, Jr., F. T. Simon, J. V. Walters
Associate Professors: H. M. El-Beherly, D. W. Lyons, J. H. Marvin, Jr.,
E. S. Olson, J. J. Porter
Assistant Professor: E. A. Vaughn
Lecturer: W. C. Laffoday

Text 122—Introduction to Textiles—1 cr. (1 and 0)
An introduction to the broad fields of textile, fiber and polymer science and engineering with emphasis on the description and formation of polymers, fibers, yarns, and fabrics including nonwoven structures and the dyeing, finishing, and chemistry and physics of textiles, fibers and polymers.

Text 301—Fiber Processing I—3 cr. (2 and 3)
A study of fibrous materials and their relationship to the fiber processing systems. The objectives, theories, principles, and mechanisms of the machines used in the earlier stages of fiber processing. The course is directed primarily to the staple fiber processing systems. Mechanical and mathematical fundamentals are applied to the machines concerned.

Text 302—Fiber Processing II—3 cr. (2 and 3)
Continuation of Text 301 emphasizing the later stages of fiber processing for the ultimate yarn strand. Prerequisite: Text 301.

Text 305—Basic Fibers—3 cr. (3 and 0)
A thorough survey of the origin, characteristics and properties of various textile fibers, both natural and man-made. The classification, identification, and the principal fields of applications will be studied.

Text 306—Yarn Formation—3 cr. (3 and 0)
A fundamental study of the various systems of yarn formation from natural and man-made fibers and their blends. The course provides for the basic understanding of machines, theories and operations.

Text 311—Fabric Development I—3 cr. (2 and 3)
A study of the basic theory underlying the operation of the primary and secondary motions of the cam loom weaving machine. Students learn the principles of designs of the basic plain, twill, and sateen fabrics; and other weaves derived from these basic weaves. Special weaves such as the honey-
comb, the mock leno, and the huckaback weave. Weave analysis and preparation of necessary drafts are essential parts of the study of elementary textile design.

Text 312—Fabric Development II—3 cr. (2 and 3)

A study of the theory and operation of the dobby head, Knowles head, Staubli dobby, Jacquard head, and multicolor selection for the above looms. Weave design for compound fabrics using two or more systems of warp and filling threads for three dimensional weaves, weave analysis, and preparation drafts are covered. *Prerequisite:* Text 311.

Text 313—Fabric Formation—3 cr. (3 and 0)

An examination of the theories involved in the assembly of fibers and yarns into fabrics. The application of design, analysis and production of woven, knitted and nonwoven fabrics. A brief survey of the fabric producing machines.

Text 314—Dyeing and Finishing—3 cr. (3 and 0)

The concepts of current procedures and future trends in the textile finishing industry are examined. The preparation of fabrics, dye processes and the application of various materials used in the finishing process are presented.

Text 321—Fiber Science—3 cr. (2 and 3)

Fiber properties and the scientific evaluation of these properties. Dimensional, mechanical, optical, electrical, thermal, and moisture relationships are established and investigated.

Text 322—Properties of Textile Structures—3 cr. (2 and 3)

Yarn and fabric properties, their scientific significance and analysis. Dimensional, structural, and mechanical interrelationships are established and evaluated.

Text 324—Textile Statistics—3 cr. (3 and 0)

An introduction to statistics with particular application to the Textile Industry. Measures of central value and variation, probability, the normal curve, tests of hypotheses, elementary correlation and regression. *Prerequisite:* Junior standing.

Text 333—The Textile Arts—3 cr. (2 and 3)

A survey of the textile arts from prehistoric times to the present with emphasis on the correlation between man's accomplishments in these arts and his progress from the simple tools of ancient origin to the automated systems currently employed in industry.

Text 401—Polymer and Fiber Mechanics—3 cr. (3 and 0)

Study of elasticity theory and viscoelasticity applied to polymers and extended to nonlinear behavior of fibers and nonlinear rheological behavior of polymers with application to extrusion and fiber spinning.

Text 403—Fiber Processing III—3 cr. (2 and 3)

The concepts of current fiber processing machines, techniques, practices, and their validity are investigated. Student group and individual problems are assigned that require use of acquired knowledge, textile testing equipment, and processing machines. Study and examination of the cause and effect relations of fibrous material properties and processing dynamics on the fiber assemblies produced. *Prerequisite:* Text 301, 302.
TEXT 404—Fiber Processing IV—3 cr. (2 and 3)
Continuation of Text 403 with respect to the various fiber assemblies and yarn structures encountered in the fiber processing systems. Emphasis is placed on the machines and their fiber assemblies. Prerequisite: Text 301, 302, 403.

TEXT 411—Fabric Development III—3 cr. (2 and 3)
A study of specifications and loom details for the production of fabrics woven to the customer's order to include multicolor layouts. Warp and filling preparation are covered as well as size formulations and their methods of application. Warping and dressing plans are developed for warper and the slasher. Prerequisite: Text 312.

TEXT 412—Fabric Development IV—3 cr. (2 and 3)
A study of factors that a designer or fabric developer must consider in making of new fabrics or designs. Factors and how they control the construction of cloth, blending of natural and synthetic fibers and the functional use they impart to fabrics, Worth Street rules to govern the selling and buying of cloth, cloth order and loom assignment problems, and analysis of woven fabrics to obtain necessary construction details. Students produce a fancy fabric in the laboratory. Prerequisite: Text 411.

TEXT 413—Fabric Development V—3 cr. (2 and 3)
Designing and development of fabrics from the leno mechanism, the Jacquard head motion, and the plush loom including tufting and weaving techniques for carpets. Each student will develop an original Jacquard design, prepare and punch cards, and produce the fabric.

TEXT 414—Nonwoven and Knitted Structures—3 cr. (3 and 0)
A survey of nonwoven and knitted structures dealing with the principles and mechanisms involved. Various systems are covered with emphasis on yarn requirements and fabric properties.

TEXT 421—Textile Costing I—3 cr. (2 and 3)
Actual and standard cost principles as they apply to the manufacture of textiles. Allocating the cost of material, labor and overhead; determining the cost of individual yarns and fabrics; valuing the inventory; making of cost reports, payroll analysis and the use of data processing. Prerequisite: Acct 201, Senior standing, or permission of instructor.

TEXT 426—Instrumentation—3 cr. (3 and 0)
The principles of industrial and process instrumentation and process control. Static and dynamic characteristics of measurement devices. Transducer techniques for measurement of physical properties such as pressure, temperature, flow, weight, etc. Principles of process controllers.

TEXT 428—Textile Research—0-3 cr.
An original investigation of a problem in textile, fiber, or polymer science under the direct supervision of a faculty member. After completing his experimental work, the student prepares a formal, written report which he defends before the textile faculty. Prerequisite: Senior standing or permission of instructor.

TEXT 429—Textile Research—0-3 cr.
Same as Text 428.
Text 440—Color Science—3 cr. (2 and 3)
The application of the science of color to industrial practice in textiles, plastics, paints, lighting, and ceramics. The laboratory work will be performed on modern instruments and computers.

Text 460—Textile Processes—3 cr. (3 and 0)
Survey of machinery and processes of textile manufacturing from fiber formation through fabric finishing. (For students with a nontextile background.)

Text 475—Textile Marketing—3 cr. (3 and 0)
An examination of the activities involved in the distribution of textile products in today's market. Emphasis will be placed on the role of consumer research and the analysis of fashion in the design and promotion of textile products.

Text 601—Polymer and Fiber Mechanics—3 cr. (3 and 0)
Text 603—Fiber Processing III—3 cr. (2 and 3)
Text 604—Fiber Processing IV—3 cr. (2 and 3)
Text 611—Fabric Development III—3 cr. (2 and 3)
Text 612—Fabric Development IV—3 cr. (2 and 3)
Text 621—Fiber Science—3 cr. (2 and 3)
Text 622—Properties of Textile Structures—3 cr. (2 and 3)
Text 626—Instrumentation—3 cr. (3 and 0)
Text 640—Color Science—3 cr. (2 and 3)
Text 660—Textile Processes—3 cr. (3 and 0)
Text 821—Fiber Physics I—3 cr. (3 and 0)
Text 822—Fiber Physics II—3 cr. (3 and 0)
Text 830—Textile Physics—3 cr. (3 and 0)
Text 835—Textile Structures I—3 cr. (3 and 0)
Text 836—Textile Structures II—3 cr. (3 and 0)
Text 837—Composite Structures—3 cr. (3 and 0)
Text 840—Spectrophotometry—3 cr. (3 and 0)
Text 866—Fiber Formation—3 cr. (3 and 0)
Text 870—Advances in Textile Manufacturing—3 cr. (3 and 0)
Text 880—Selected Topics—3 cr. (3 and 0)
Text 891—Research—Credit to be arranged.
Description of Courses

VISUAL STUDIES

Professors: H. N. Cooledge, Jr., R. H. Hunter
Instructor: T. G. Turner

Vis 203—Visual Arts Studio—3 cr. (1 and 6)
Studio work in visual elements and their organization; form, line, texture, space, light and color. Principles of design and formal organization of visual arts. Prerequisite: Permission of instructor.

Vis 205—Beginning Drawing—3 cr. (1 and 6)
Studio work in drawing and related media. Prerequisite: Vis 203 or permission of instructor.

Vis 207—Beginning Painting—3 cr. (1 and 6)
Studio work in painting and related media. Prerequisite: Vis 203 or permission of instructor.

Vis 209—Beginning Sculpture—3 cr. (1 and 6)
Studio work in sculpture and related media. Prerequisite: Vis 203 or permission of instructor.

Vis 211—Beginning Printmaking—3 cr. (1 and 6)
Studio work in lithography, silk screen, wood cuts, and graphics and related media. Prerequisite: Vis 203 or permission of instructor.

Vis 213—Beginning Photography—3 cr. (1 and 6)
Studio work in photography and related media. Prerequisite: Vis 203 or permission of instructor.

Vis 215—Graphic Design I—3 cr. (1 and 6)
Study and studio work with historical, contemporary and experimental letter forms. Emphasis is placed on the application of letter design components to convey visual images and ideas beyond normal word and sentence formulation. Prerequisite: Vis 203 or permission of instructor.

Vis 217—Beginning Ceramics—3 cr. (1 and 6)
Applied studio work in ceramic hand building and pottery; creative experience in process of forming, decorating, glazing, and firing. Prerequisite: Vis 203 or permission of instructor.

Vis 305—Drawing—3 cr. (1 and 6)
Studio work in drawing and related material. Prerequisite: Vis 205.

Vis 306—Drawing—3 cr. (1 and 6)
Continuation of Vis 305. Prerequisite: Vis 305.

Vis 307—Painting—3 cr. (1 and 6)
Studio work in painting and related media. Prerequisite: Vis 207.

Vis 308—Painting—3 cr. (1 and 6)
Continuation of Vis 307. Prerequisite: Vis 307.

* On leave.
Vis 309—Sculpture—3 cr. (1 and 6)
Studio work in sculpture and related media. Prerequisite: Vis 209.

Vis 310—Sculpture—3 cr. (1 and 6)
Continuation of Vis 309. Prerequisite: Vis 309.

Vis 311—Printmaking—3 cr. (1 and 6)
Studio work in lithography, silk screen, etching, wood cuts and related media. Prerequisite: Vis 211.

Vis 312—Printmaking—3 cr. (1 and 6)
Continuation of Vis 311. Prerequisite: Vis 311.

Vis 313—Photography—3 cr. (1 and 6)
Studio work in still photography and related media. Prerequisite: Vis 213.

Vis 314—Photography—3 cr. (1 and 6)
Continuation of Vis 303. Prerequisite: Vis 313.

Vis 315—Graphic Design II—3 cr. (1 and 6)
Study and studio work in layout, composition, illustration, investigation of studio skills; terminology and theories of layout and composition; emphasis on the different graphic formats and their use in advertising art. Prerequisite: Vis 215 or permission of instructor.

Vis 316—Graphic Design III—3 cr. (1 and 6)
Study and studio experimentation of original design layout compositions, utilizing specific techniques and graphic process in offset, gravure, and letterpress printing. Prerequisite: Vis 315 or permission of instructor.

Vis 317—Ceramic Arts II—3 cr. (1 and 6)
Continuation of Vis 217.

Vis 318—Ceramic Art III—3 cr. (1 and 6)
Continuation of Vis 317.

Vis 405—Drawing—3 cr. (0 and 9)
Studio work in advanced drawing and related media. Prerequisite: Vis 306 or permission of instructor.

Vis 406—Drawing—3 cr. (0 and 9)
Continuation of Vis 405. Prerequisite: Vis 405.

Vis 407—Painting—3 cr. (0 and 9)
Studio work in advanced painting and related media. Prerequisite: Vis 308 or permission of instructor.

Vis 408—Painting—3 cr. (0 and 9)
Continuation of Vis 407. Prerequisite: Vis 407.

Vis 409—Sculpture—3 cr. (0 and 9)
Advanced studio work in sculpture and related media. Prerequisite: Vis 310.

Vis 410—Sculpture—3 cr. (0 and 9)
Continuation of Vis 409. Prerequisite: Vis 409.

Vis 411—Printmaking—3 cr. (0 and 9)
Advanced studio in Printmaking and related media. Prerequisite: Vis 312.
Vis 412—Printmaking—3 cr. (0 and 9)
Continuation of Vis 411. Prerequisite: Vis 411.

Vis 413—Photography—3 cr. (0 and 9)
Advanced studio work in photography. Prerequisite: Vis 314.

Vis 414—Photography—3 cr. (0 and 9)
Continuation of Vis 413. Prerequisite: Vis 413.

Vis 415—Graphic Design IV—3 cr. (0 and 9)
Utilization of graphic, scenic and other visual design requirements for motion picture and television. Emphasis on imagination and use of visual design in relation to media and function: entertainment, documentary, institutional or advertising. Prerequisite: Vis 316 or permission of instructor.

Vis 416—Graphic Design V—3 cr. (0 and 9)
Advanced study and studio investigation as it applies to specific areas of advertising art, book illustration, fashion, or institutional illustration. Prerequisite: Vis 415 or permission of instructor.

Vis 417—Advanced Ceramic Arts—3 cr. (0 and 9)
Advanced applied studio work in ceramic sculpture and pottery. Prerequisite: Vis 318.

Vis 418—Advanced Ceramic Arts—3 cr. (0 and 9)
Continuation of Vis 417. Prerequisite: Vis 417.

Vis 419—Graphic Design VI—3 cr. (0 and 9)
Study and studio usage of design forms (typography, photography, and illustration) in the development of corporate identification for total advertising programs. Prerequisite: Vis 416 or permission of instructor.

Vis 420—Graphic Design VII—3 cr. (0 and 9)
Study and development of original design and advanced study into the graphic aspects for packaging, containers, and related materials in industry. Emphasis on original ideas and unique approaches to specific problems in packaging and graphics. Prerequisite: Vis 419 or permission of instructor.

Vis 421—Graphic Design—Studio Seminar—3 cr. (0 and 9)
Experiences related to design studio, agency, or companies involving design responsibilities and procedures in an area related to the student's particular interests. Prerequisite: Permission of instructor.

Vis 605—Drawing—3 cr. (0 and 9)
Vis 606—Drawing—3 cr. (0 and 9)
Vis 607—Painting—3 cr. (0 and 9)
Vis 608—Painting—3 cr. (0 and 9)
Vis 609—Sculpture—3 cr. (0 and 9)
Vis 610—Sculpture—3 cr. (0 and 9)
Vis 611—Printmaking—3 cr. (0 and 9)
Vis 612—Printmaking—3 cr. (0 and 9)
Vis 613—Photography—3 cr. (0 and 9)
Vis 614—Photography—3 cr. (0 and 9)
Vis 615—Graphic Design IV—3 cr. (0 and 9)
Vis 616—Graphic Design V—3 cr. (0 and 9)
Vis 617—Advanced Ceramic Arts—3 cr. (0 and 9)
Vis 618—Advanced Ceramic Arts—3 cr. (0 and 9)
Vis 619—Graphic Design VI—3 cr. (0 and 9)
Vis 620—Graphic Design VII—3 cr. (0 and 9)
Vis 621—Graphic Design—Studio Seminar—3 cr. (0 and 9)

WATER RESOURCES ENGINEERING

Professor: L. G. Rich, Program Director

WRE 450—Water Resources Engineering—3 cr. (3 and 0)
This course covers currently important topics in the water resources engineering area. Included is a consideration of the objectives and uses of water resources and how these have evolved over time. Emphasized are the comprehensive and systems aspects of water resources development. An introduction to the use of mathematical modeling and optimization in water resources planning and management is provided. Prerequisite: EM 320, E&CE 330.

WRE 460—Physical Oceanography—3 cr. (3 and 0)
An integrated treatment of the fluid dynamic, ecologic, geologic, and resource aspects of physical oceanography. The basic principles of the physical aspects of the oceans are presented together with techniques for the application of these fundamentals. Primary emphasis is placed on relating the oceanographic phenomena to relevant problems in the marine environment. Prerequisite: Ch 102, Phys 222, and permission of instructor.

WRE 461—Oceanographical Engineering—3 cr. (3 and 0)
An integrated coverage of various facets of coastal and ocean engineering. Emphasis is placed on introducing the student to selected areas of oceanographical engineering and indicating the basic principles and current applications in these areas. Although the course is engineering oriented, the interaction of the engineer and the marine environment is included where applicable. Prerequisite: EM 320.

WRE 650—Water Resources Engineering—3 cr. (3 and 0)
WRE 660—Physical Oceanography—3 cr. (3 and 0)
WRE 661—Oceanographical Engineering—3 cr. (3 and 0)
WRE 811—Climatology—3 cr. (3 and 0)
WRE 812—Meteorology—3 cr. (3 and 0)
WRE 822—Water Movement in Soils—3 cr. (3 and 0)
WRE 865—Hydrology I—3 cr. (3 and 0)
WRE 866—Hydrology II—3 cr. (3 and 0)
WRE 870—Stream and Estuarine Analysis—3 cr. (3 and 0)
WRE 871—Coastal Hydrodynamics—3 cr. (3 and 0)
WRE 872—Marine Pollution Control—2 cr. (2 and 0)
WRE 875—River Basin Planning—2 cr. (2 and 0)
WRE 876—Water Resources Systems—2 cr. (2 and 0)
WRE 881—Special Problems in Water Resources Engineering—1-4 cr. (1-4 and 0)
WRE 883—Selected Topics in Water Resources Engineering—1-3 cr. (1-3 and 0)
WRE 891—Research—Credit to be arranged.
WRE 991—Doctoral Research—Credit to be arranged.

WILDLIFE BIOLOGY

Associate Professors: S. B. Hays, L. G. Webb
Assistant Professor: H. A. Loyacano, Jr.

WB 306—Wildlife Resources of the Southeastern United States—
2 cr. (2 and 0) F, S
A study of the wildlife resources of the Southeastern states, including population trends, life histories and economic importance. Conservation and proper utilization by man is emphasized.

WB 412—Wildlife Management—3 cr. (2 and 3) F, S
Basic principles and general practices of wildlife management and conservation will be covered. This course deals with the major problems concerning the management of wildlife resources, with emphasis on upland game species. The laboratory work includes practical work on the Clemson University woodlands and field trips to several areas where wildlife management is being practiced.

WB 612—Wildlife Management—3 cr. (2 and 3)
WB 809—Wildlife Biology Seminar I—1 cr. (1 and 0)
WB 810—Wildlife Biology Seminar II—1 cr. (1 and 0)
WB 815—Principles of Wildlife Biology—3 cr. (2 and 3)
WB 816—Applied Wildlife Biology—3 cr. (2 and 3)
WB 863—Special Problems—1-6 cr.
WB 891—Research—1-6 cr.
ZOLOPY
(See also Biology)

Professors: R. K. Guthrie, Acting Head; E. W. King
Associate Professors: G. W. Anderson, A. S. Tombes, W. K. Willard
Assistant Professors: W. E. Bachop, E. D. Brodie, S. A. Gauthreaux,
Ruth L. Hays, B. R. Ingram, R. F. Walker

Zool 100—The Biology of Human Survival—1 cr. (1 and 0)
A biological overview of those aspects of contemporary life which constitute
threats to the individual and the social welfare of man now and in the future:
rampant reproduction, venereal disease, illegitimacy, sterility, crowding, famine,
death control, genetic engineering, and hallucinogenic drugs.

Zool 102—Principles of Zoology—2 cr. (2 and 0) F, S, SS
The application of biological principles to animals as exemplified by the
structures and functions of invertebrates and vertebrates. Followed by a
survey of the animal kingdom.

Zool 104—Laboratory Exercises in Zoology—1 cr. (0 and 2) F, S, SS
Demonstrations and experiments to illustrate the structures and functions of
animals considered in Zool 102.

Zool 201—Invertebrate Zoology—4 cr. (3 and 3)
A survey of the phyla of invertebrate animals, including their taxonomy,
morphology, development, and evolution. Prerequisite: Biol 101.

Zool 202—Vertebrate Zoology—4 cr. (3 and 3)
A study of vertebrates with an emphasis on systematic relationships and
evolutionary advances. Laboratory will be concerned with basic morphological
traits of each group as well as the ecology, life history, and identification of
local forms. Prerequisite: Biol 101.

Zool 301—Comparative Vertebrate Anatomy—3 cr. (2 and 3) F, S
Advanced training in zoological principles, physiology, and comparative
vertebrate anatomy. Prerequisite: Zool 102, 104.

Zool 302—Vertebrate Embryology—3 cr. (2 and 3) F, S
Fundamentals of developmental anatomy of the organ systems as illustrated
by the chick and pig. Students prepare histological sections and mounts to
acquire practice in laboratory procedures and knowledge of vertebrate micro-
scopic anatomy. Identification of the various tissues is stressed. Prerequisite:
Zool 102, 104.

Zool H302—Vertebrate Embryology—3 cr. (2 and 3) F, S, SS
Honors option for Zool 302; admission by special arrangement.

Zool 307—Animal Anatomy and Physiology—3 cr. (2 and 3) F
Anatomy, and physiological processes of ingestion, secretion, excretion,
respiration, circulation, reproduction, and metabolism of warm-blooded animals.
This course is designed for students majoring in Pre-medicine, Pre-veterinary,
Prerequisite: Biol 101.
Zool 310—Evolution—2 cr. (2 and 0)
An introduction to the fundamentals of evolutionary concepts including historical and contemporary aspects. Prerequisite: Biol 101.

Zool 403—Protozoology—3 cr. (2 and 3)
Taxonomy of the subkingdom protozoa with special reference to the parasitic forms directly affecting man. Representative types of free-living forms are surveyed with emphasis on their morphology, physiology and distribution. Prerequisite: Zool 102, 104, or 201.

Zool H403—Protozoology—3 cr. (2 and 3)
Honors option for Zool 403; admission by special arrangement.

Zool 404—Animal Pathology—3 cr. (2 and 3) S
Designed to inform students in the causes, treatments, and prevention of animal diseases. Those transmissible to man are considered in detail. Emphasis is placed on hygiene and care of the sick.

Zool 405—Animal Histology—3 cr. (2 and 3) F
Microscopic structures of tissues and organs of the animal body. This course is for students in Pre-veterinary, Pre-medicine and the Animal Science courses. Prerequisite: Biol 101.

Zool 408—Physiology and Development of Invertebrates—3 cr. (2 and 3)
A study of the developmental and functional characteristics of invertebrates.

Zool 410—Limnology—3 cr. (2 and 3)
This course is designed to familiarize the student with interrelationships between fresh-water organisms and their abiotic environment. Prerequisite: Biol 101, Zool 411, General Chemistry.

Zool H410—Limnology—3 cr. (2 and 3)
Honors option for Zool 410; admission by special arrangement.

Zool 411—Animal Ecology—3 cr. (2 and 3)
A fundamental approach to basic ecological principles underlying the interrelationships of organisms with their abiotic environment. A variety of aquatic and terrestrial ecosystems will be studied both in the field and in the laboratory.

Zool H411—Animal Ecology—3 cr. (2 and 3)
Honors option for Zool 411; admission by special arrangement.

Zool 456—Parasitology—3 cr. (2 and 3)
An introduction to the phenomenon of parasitism in the animal kingdom with emphasis on basic principles. Classical and experimental approaches to the study of parasitism are examined in reference to the protozoa, helminths and arthropods.

Zool H456—Parasitology—3 cr. (2 and 3)
Honors option for Zool 456; admission by special arrangement.

Zool 458—Cell Physiology—3 cr. (2 and 3)
An introduction to the fundamental processes of physiology as exemplified by the cell. Dynamic cellular environment, organelles, respiration, metabolism, protein synthesis, and basic thermodynamics as it applies to the cell, will be
covered. Laboratory will include an introduction to techniques in study of cellular physiology. **Prerequisite:** Organic Chemistry, Biol 101.

Zool H458—Cell Physiology—3 cr. (2 and 3)
Honors option for Zool 458; admission by special arrangement.

Zool 460—General Physiology—3 cr. (2 and 3) S
Systematic study of the physiology of nervous activity, hormonal control, neuro-hormonal interrelations, circulation, respiration, digestion, renal control, muscular activity and reproduction. Effort in the laboratory will be concentrated toward acquainting the student with methods of obtaining information about these systems. **Prerequisite:** Biol 101, General Chemistry.

Zool 461—Anatomy—3 cr. (3 and 0) F
Those aspects of anatomy related to the skeletal, circulatory, muscular, nervous, endocrine, respiratory, digestive, and excretory systems will be covered. Emphasis will be placed on gross anatomy with some work in microanatomy. **Prerequisite:** Biol 101.

Zool 462—Herpetology—3 cr. (2 and 3)
Systematics, life history, distribution, ecology, and current literature of amphibians and reptiles. Laboratory study of morphology and identification of world families and U.S. genera, as well as all southeastern species. Field trips will be required. **Prerequisite:** Vertebrate Zoology or permission of instructor.

Zool 463—Ichthyology—3 cr. (2 and 3)
Systematics, life history, distribution, ecology, and current literature of fish. Laboratory study of morphology and identification of U.S. genera, as well as all southeastern species. Field trips will be required. **Prerequisite:** Vertebrate Zoology or permission of instructor.

Zool 464—Mammalogy—3 cr. (2 and 3)
Origin, evolution, distribution, structure, and function of mammals, with laboratory emphasis on the mammals of South Carolina. Field collection required. **Prerequisite:** Vertebrate zoology or permission of instructor.

Zool 465—Ornithology—3 cr. (2 and 3)
The identification, life history and ecology of birds. Field trips, work with bird specimens and correlated reading will give the student a working knowledge of at least 100 species of the common birds.

Zool 470—Animal Ethology—3 cr. (2 and 3)
Classical and current concepts and controversies regarding animal behavior; individual and social behavioral patterns. **Prerequisite:** Vertebrate Zoology or consent of instructor.

Zool 475—General Endocrinology—3 cr. (2 and 3)
This course is an introduction to the basic principles of chemical integration via hormones found throughout the animal kingdom. Morphology and function of various endocrine tissues, hormone chemistry and modes of action will receive major consideration.

Zool 491—Special Problems in Zoology—2 cr. (0 and 6)
Research problems in selected biological disciplines to provide initiation to research planning and techniques for biological science majors. **Prerequisite:** Senior standing and permission of the appropriate section chairman.
Zool 602—**Vertebrate Embryology**—3 cr. (2 and 3)
Zool 603—**Protozoology**—3 cr. (2 and 3)
Zool 604—**Animal Pathology**—3 cr. (2 and 3)
Zool 605—**Animal Histology**—3 cr. (2 and 3)
Zool 608—**Physiology and Development of Invertebrates**—3 cr. (2 and 3)
Zool 610—**Limnology**—3 cr. (2 and 3)
Zool 611—**Animal Ecology**—3 cr. (2 and 3)
Zool 656—**Parasitology**—3 cr. (2 and 3)
Zool 658—**Cell Physiology**—3 cr. (2 and 3)
Zool 660—**General Physiology**—3 cr. (2 and 3)
Zool 661—**Anatomy**—3 cr. (3 and 0)
Zool 662—**Herpetology**—3 cr. (2 and 3)
Zool 663—**Ichthyology**—3 cr. (2 and 3)
Zool 664—**Mammalogy**—3 cr. (2 and 3)
Zool 665—**Ornithology**—3 cr. (2 and 3)
Zool 670—**Animal Ethology**—3 cr. (2 and 3)
Zool 675—**General Endocrinology**—3 cr. (3 and 0)
Zool 801—**Animal Histology**—3 cr. (2 and 3)
Zool 802—**Histological Techniques**—3 cr. (1 and 6)
Zool 803—**Population Dynamics**—4 cr. (2 and 6)
Zool 804—**Ornithology**—3 cr. (2 and 3)
Zool 805—**Animal Pathology**—3 cr. (2 and 3)
Zool 806—**Comparative Animal Physiology**—3 cr. (3 and 0)
Zool 807—**Use of Radioisotopes in Biological Research**—3 cr. (2 and 3)
Zool 808—**Radiobiology**—3 cr. (2 and 3)
Zool 809—**Toxicology**—3 cr. (2 and 3)
Zool 810—**Mammalogy**—3 cr. (2 and 3)
Zool 812—**Seminar**—1 cr. (1 and 0)
Zool 813—**Evolution**—3 cr. (3 and 0)
Zool 830—**Histochemistry-Cytochemistry**—3 cr. (2 and 3)
Zool 852—**Principles and Methods of Systematic Zoology**—2 cr. (2 and 0)
Zool 856—**Economic Zoology**—3 cr. (2 and 3)
Zool 863—**Special Problems**—1-4 cr.
Zool 891—**Research**—Credit to be arranged.
Zool 991—**Doctoral Research**—Credit to be arranged.
PART VI

STUDENT REGISTER
GRADUATES OF 1971
ASSOCIATE AND BACHELORS’ DEGREES
CONFERRED MAY 7, 1971
COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES

BACHELOR OF SCIENCE

Agricultural Economics

Manuel Padgett Black, Jr. -------- Orangeburg
George Alfred Butler -------------- Aynor
Marvin Gaddy Carmichael ---------- Dillon
James Kelly Edwards -------- Galivants Ferry
Benjamin Howard Frye -------- Galivants Ferry
David Newball Hall -------- Mt. Ulla, N. C.

William Huff Hammond -------- Greenwood
*William Guy Hildebrand -------- Camden
Curtis Leslie Hobbs, Jr. -------- Lynchburg
Frankie Rogers Myers ------------ Seneca
Sidney Lawrence Smith --------- Swansea
Charles Klimer Snoddy ---------- Greenwood

Agronomy

William Leslie Abernathy III ---- Chester
*Eldon Elbert Allen, Jr. -------- Aynor
**Stanley Rhett Dobbins -------- Townville
Larry Earl Elmore --------------- Greer
Roachel Dent King III -------- Society Hill
William Maksymowicz ---------- Johnston, R. I.

Edward Charles Murdock -------- Monroeville, N. J.
James Wilson Polatty ------------ Ninety Six
Andrew Luther Richardson ------ Johnsonville
David Burton Sease ----------- Newberry
**John Richard Steer ----------- Ninety Six

Animal Science

John William Ducworth ---------- Summerton
Daniel Richard Ellison --------- Williamson
David Byrne Fleming ----------- Spartanburg
***Louisa Ready Fleming -------- Johnston
Anna Ruth Hudgens ------------- Mountville

Edward Michaels II -------- Buffalo, N. Y.
Michael O’Connell ------------- Greenville
*Mary Jacqueline Price -------- Sharon
Bernard Joseph Stanek, Jr. ---- Hopkins
Richard Edward Wooten ------- Pendleton

Biology

*Robert Steven Bisker --------- Salisbury, Md.
*Greer Miller Broadwater ------ Ridgeway
*William Thomas Broadwater ---- Woodboro, Md.
*Jane Day Chasteen ----------- Chappells
***Perry Buckner DeLoach ---- Walterboro
*John Patrick Dunbar ----------- Rock Hill
*William Herbert Fleming ------ Abbeville
Warren Richard Garrett, Jr. --- Greenville
Glen Irwin Garris -------------- Sumter
Robert Mario Giaimo -------- Washingtonville, N. Y.
Randall Parrish Griffin ------ Six Mile
Richard Bruce Grosvenor ------ Elnora, N. Y.

*Joe Selvin Harrell, Jr. -------- Columbia
Donald Christopher Hicks ------ Charleston Heights
**Deborah Davenport Hohla ---- Mentor, Ohio
Walter Monroe Hutchins -------- Spartanburg
George Tripp Jones ------------ Loris
Thomas William Long --------- Saluda
Henry Singleton Moore --------- Georgetown
Robert Andrew Moore ---------- Fairhaven, N. J.
George William Mozino III ------ Columbia
Thomas Franklin Scarry II ------- Columbia
Martha Froemming Sheppard --- Houston, Tex.
Jerry Wayne Spradley ---------- Aiken
Robert James Talbott ------- North Augusta
*Carl Anthony Zambon -------- Oxon Hill, Md.

Dairy Science

Michael Louis Catto -------------- Pauline
Howard Preston Lucas ----------- Clemson

Charles Gerald Moore -------- Moore

Food Science

***Robert Lome Shewfelt -------- Clemson

Horticulture

Henry Curtis Edens III -------- Dalsell
*Mary Lucinda Hockenberry ----- Slippery Rock, Pa.

*Richard Dean Wheeler -------- Clemson

Poultry Science

Jerel Dean Harmon ------------- Prosperity
Ira Hubert Kinard, Jr. -------- Prosperity

Benjamin Robert Lybrand ------- Swansea

[418]
COLLEGE OF ARCHITECTURE

BACHELOR OF ARTS

Pre-Architecture

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verne Cassaday</td>
<td>Greenwood</td>
</tr>
<tr>
<td>Ronald William Duren</td>
<td></td>
</tr>
<tr>
<td>William Francis Donaldson, Jr.</td>
<td></td>
</tr>
<tr>
<td>Lewis Mobley Ficken</td>
<td>North Augusta</td>
</tr>
<tr>
<td>Stanley Dean Gailey</td>
<td>Iva</td>
</tr>
<tr>
<td>William Henry Hayden III</td>
<td>Myrtle Beach</td>
</tr>
<tr>
<td>Rodger Ferguson Hinton</td>
<td>Pickens</td>
</tr>
<tr>
<td>Paul Hughes, Jr.</td>
<td>Cayce</td>
</tr>
<tr>
<td>Donald Raymond Lindsey</td>
<td>Bay Minette, Ala.</td>
</tr>
<tr>
<td>Robert Gene McCleskey</td>
<td>Greenville</td>
</tr>
<tr>
<td>Donald Masucci</td>
<td>Neptune, N. J.</td>
</tr>
<tr>
<td>Anthony Glenn Moore</td>
<td>Moncks Corner</td>
</tr>
<tr>
<td>Brooks Robinson</td>
<td></td>
</tr>
<tr>
<td>Paul Ervin Reavis</td>
<td></td>
</tr>
<tr>
<td>Stephen Andrew Russell</td>
<td></td>
</tr>
<tr>
<td>Steven Allan Sandberg</td>
<td>Jamestown, N. Y.</td>
</tr>
<tr>
<td>Frank Wilson Spencer III</td>
<td>Savannah, Ga.</td>
</tr>
<tr>
<td>Tad Allan Stanley</td>
<td>Montgomery, Ala.</td>
</tr>
<tr>
<td>John Thomas Suber, Jr.</td>
<td></td>
</tr>
</tbody>
</table>

BACHELOR OF SCIENCE

Building Construction

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Patrick Burnette</td>
<td>Heber Springs, Ark.</td>
</tr>
<tr>
<td>Stephen Chando, Jr.</td>
<td>Bethlehem, Pa.</td>
</tr>
<tr>
<td>Daniel Joseph Cosbey</td>
<td>Falls Church, Va.</td>
</tr>
<tr>
<td>Charles Hydrick Dewitt</td>
<td>St. Matthews</td>
</tr>
<tr>
<td>William John Frederick</td>
<td>St. James, N. Y.</td>
</tr>
</tbody>
</table>

COLLEGE OF ARCHITECTURE

BACHELOR OF ARCHITECTURE

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aubrey Dale Ayers</td>
<td>Pompano Beach, Fla.</td>
</tr>
<tr>
<td>William Stephen Carson</td>
<td>Columbia</td>
</tr>
<tr>
<td>Ben Giles Compton</td>
<td>Lexington</td>
</tr>
<tr>
<td>William Randolph Cunningham</td>
<td>Waynesville, N. C.</td>
</tr>
<tr>
<td>David Sullivan Glyph</td>
<td>Silver Spring, Md.</td>
</tr>
<tr>
<td>Robert Hudson Goodson, Jr.</td>
<td>Hartsville</td>
</tr>
<tr>
<td>Daniel Cassel Herr</td>
<td>Pittsburgh, Pa.</td>
</tr>
<tr>
<td>Raymond Thaddeus Huff</td>
<td>Charleston</td>
</tr>
<tr>
<td>Richard Henry Francis Kopp</td>
<td>Greenville</td>
</tr>
<tr>
<td>Edward Thomas Kinghorn</td>
<td>Greenville</td>
</tr>
<tr>
<td>Ralph Dixon Lamar, Jr.</td>
<td>Easley</td>
</tr>
<tr>
<td>Leslie Michael Lawlor</td>
<td>Newburgh, N. Y.</td>
</tr>
<tr>
<td>Michael Theodore McCoy</td>
<td>Myrtle Beach</td>
</tr>
<tr>
<td>Gary Vaughn Magarian</td>
<td>Orlando, Fla.</td>
</tr>
<tr>
<td>John Milton Miller</td>
<td>Greenville</td>
</tr>
<tr>
<td>John William Morgan III</td>
<td>Columbia</td>
</tr>
<tr>
<td>Anne Caroline Morris</td>
<td>Columbia</td>
</tr>
<tr>
<td>Matthew Michael Mossman</td>
<td></td>
</tr>
<tr>
<td>Richard Herman Schroeder</td>
<td>Hightstown, N. J.</td>
</tr>
<tr>
<td>William Daniel Shelley</td>
<td>Latta</td>
</tr>
<tr>
<td>Ronald Stephen Tillotson</td>
<td></td>
</tr>
<tr>
<td>Lonnie Durell Watt, Jr.</td>
<td>Anderson</td>
</tr>
<tr>
<td>Killough Henry White III</td>
<td>Chester</td>
</tr>
<tr>
<td>Craig Caldwell Wrigley</td>
<td></td>
</tr>
</tbody>
</table>

COLLEGE OF EDUCATION

BACHELOR OF ARTS

Elementary Education

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keri Ann Bolding</td>
<td>Lyman</td>
</tr>
<tr>
<td>Donna Marie Brooks</td>
<td>Loris</td>
</tr>
<tr>
<td>Rebecca Audrey Davis</td>
<td>Sumter</td>
</tr>
<tr>
<td>Patricia Shea Day</td>
<td>Greenville</td>
</tr>
<tr>
<td>Mary Morgan Greene</td>
<td>Anderson</td>
</tr>
<tr>
<td>Ruth Jane Greer</td>
<td>Westminster</td>
</tr>
<tr>
<td>Alecia Ann Haddon</td>
<td>Donalds</td>
</tr>
<tr>
<td>Alice Marie Haddon</td>
<td>Donalds</td>
</tr>
<tr>
<td>Pamela Jill Hyatt</td>
<td>Wayne, Pa.</td>
</tr>
<tr>
<td>Peggy Elaine Lee</td>
<td>Westminster</td>
</tr>
<tr>
<td>Kathryn Anne McCormick</td>
<td>Columbia</td>
</tr>
<tr>
<td>Nancy Jo Mobley</td>
<td>Orangeburg</td>
</tr>
<tr>
<td>Georgia Ann Pender</td>
<td>Arlington, Va.</td>
</tr>
<tr>
<td>Susan Callison Pinckney</td>
<td>Greenwood</td>
</tr>
<tr>
<td>Ernest Gary Rice</td>
<td>Ware Shoals</td>
</tr>
<tr>
<td>Nancy Jean Sliker</td>
<td>Wayne, N. J.</td>
</tr>
<tr>
<td>Mary Susan Stein</td>
<td>Anderson</td>
</tr>
<tr>
<td>Sherrill Louise Watson</td>
<td>Edgefield</td>
</tr>
</tbody>
</table>

Secondary Education

Harley Gervis Babb III Moore
Beverly Frances Baker Summerville
**Brenda Kaye Cash Pickens
**Daniel Earl Cobb Easley
David Luther Coleman Sumterton
*Sharon Proctor Crout Forest City, N. C.
James Elliott DeLoache Easley
George Marion Ducworth Anderson
Gwin Hunter Forrester Clemson
*Sandra Anne Gentry Anderson
Alexandra George Mt. Pleasant
David Fogg Hall, Jr. Pensville, N. J.
**Martha Frances Hall Fulton, Miss.
Ethel Joanne Hawkins Central
Gerald Edward Hiles Easley
*Sandra Alicia Holden Clemson
*Robert McCollum Johnson York
Martha Lillian Kahler Kershaw
Ian Bradley Kamen Baldwin, N. Y.
*Lynn Rogers King Piedmont
Margaret Norma Kirkland Bamberg
**Linda Ann Koczan Edison, N. J.
Michael Edward McNell Ware Shoals
*Elaine Owens Martin Easley
Mary Van Blaricom Means Clemson
David Hood Mitchell, Jr. Hickory Grove
Barbara Ann Mostertz Greenville
Robert Matthew Parker, Jr. South Belmar, N. J.
*Deborah Jo Patton Charleston
**David Leslie Pearce Anderson
*Mary Hill Peddicord Williamson
Raymond Shafter Pilgrim, Jr. ... Marietta, Ga.
***Nancy Rebecca Singleton Rochester

*Elizabeth Roper Laurens
Frederick Joseph Schilling III Seneca

Teresa Carlene Thompson Greenville
Mary Jane Trotter Columbia
Ronald Alan Wallfield Walterboro
William Guyton Wardlaw, Jr. .. Anderson
James Emmett Whiston Greenville

BACHELOR OF SCIENCE

Agricultural Education

(Agricultural Education is jointly administered by the College of Agriculture and Biological Sciences and the College of Education.)

William Royce Caines Loris
Tony Ray Dempsey Varnville
Eben Dudley Godbold Florence
*Gene Eldred Hardee Loris
Phillip Wayne Malphrus Ridgeland
Carlon Levon Martin Ay nor
Ronald Irby Ouzts Callison
Joseph Howard Porter Loris

*James Washington Preacher Ruffin
Jack Boling Reynolds, Jr. Columbia
Francis Marion Smith Estill
Roger Dennis Smith Jefferson
*Kenneth Gowan Southerlin Travelers Rest
*William Timmerman Wall Edgefield
John Fred Williams Cleveland, N. C.

Industrial Education

Ronald Wayne Newton Clemson
William Schlupp, Jr. Cinnaminson, N. J.
*James Broadus Taylor, Jr. Greenville
Louis Ervin Taylor Greet Falls
Peter Frederick Weddell Goshen, Ind.
Lynn Charles Welborn Pickens
John Henry Wessinger Columbia
Raymond Andrew Yauger Uniontown, Pa.

Science Teaching

Charles Dukes Scott Orangeburg
Martha Ann Seay Spartanburg

COLLEGE OF ENGINEERING

BACHELOR OF SCIENCE

(Agricultural Engineering is jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.)

James Warren Garthe Dover, N. J.
Joseph Alton Rinehart Batesburg
Lee Arlington Warner Pickens
Ceramic Engineering

*Walter Peter Belouin, Jr. Union
Collins Arthur Burbage Summerville
William Carlos Gruber Goose Creek
Donald Ray Handy Aiken

John Charles Lindsay, Jr. Bennettsville
William Weaver Presson, Jr. Monroe, N. C.
Lynn Brian Starling Lakeland, Fla.
Davis Camp Walker Decatur, Ga.

Chemical Engineering

Charles David Allen Bennettsville
Leslie Reade Baxley Columbia
David Eugene Bowden Iva
Robert Leslie Brace Darlington
Alan McKenzie Campbell Washington, D. C.
William Malcolm Carsten Jacksonville, Fla.
Francis Su Hung Chan Kowloon, Hong Kong
Douglas Farrell Clements Lamar
Thomas Glenn Doss Wapakoneta, Ohio
Charles Henry DuPre Spartanburg
John Michael Haas Charleston
Leon Carroll Harmon Lexington

Michael Lee Horton Kingstree
John Wilson Laney III Bennettsville
James David Liskey Harrisonburg, Va.
Jerry Lee Lollis Ware Shoals
Paul Wilson Mims, Jr. Columbia
Joseph Daniel Pool Easley
Bruce David Roberts Taylors
William Michael Shirley Home Path
James Wenford Taylor Greenville
Robert Lester Thomas St. George
Douglas Waters Vardell Summerton

Andreas Westergaard III Charleston

Civil Engineering

Timothy James Amick Columbia
Dennis Edward Arrington Charleston
Frank Stanford Bland Edgefield
Leslie Leslie Bopp, Jr. Roxboro, N. C.
Arnold Alvin Brannen Great Falls
Ronald Lee Bridwell Greenville
John Leslie Chambers Fort Mill
Don Michael Cribb Walterboro
Joseph Edward Crook Charleston Heights
Jerry Glenn DeLaughter Edgefield
John Porteous DeVeaux Sullivan's Island
William Acker Dunn, Jr. Donalds
Ronald Warren Eck Kenilworth, N. J.
Dan Lee Freeman Anderson
John David Griffith Barnwell
Alton Lester Harvey Deerfield Beach, Fla.
William Ronald Irick Orangeburg
Joe Kenneth Jones Jr. Greenville
Nicholas Kelaidis Athens, Greece

David Michael Koss Amawalk, N. Y.
James Austin Lee Pendleton
Thomas Joseph McArule, Jr. Greenville
James Earle McCoy Greenville
Howard Lee McCullough Clemson
John Michael McTamney III Trenton, N. J.
Marvin Eugene Netlles Ridgefield
John Daingerfield Roesele Wallingford, Pa.
Phillip James Rowell Columbia
Wayne Bryan Smith Greenwood
Henry Floyd Weathers, Jr. Fountain Inn
Richard Branley Werts Ninety Six
Forrest Monroe Whittington Loris
Grady Daniel Wicker Newberry
Terry Eugene Williams Greenville
Janice Elizabeth Wilson Four Oaks, N. C.

Electrical and Computer Engineering

John Rodgers Allen Kingstree
Thomas Marvin Bell Lodge
Lowell Evette Belue Union
Ronald Patrick Berry Belvedere
William Norris Breedlove Mt. Pleasant
Rodger Eugene Brown Jamaica, N. Y.
Duncan Kenyon Burns Charleston
Walter Timmons Cardwell Anderson
James Wayne Cox Abbeville
David Lee Garrison Rock Hill
Gary James Greer Taylors
August Erwin Heins, Jr. Charleston
John Wesley Hallister III Jacksonville, Fla.
Lonnie Richard Hyatt Pauline
Melvin Curtis Johnston Denmark

John Boyce Jones Charleston
David James Lank Salisbury, Md.
Barry Gray Mattox Columbia
Robert Thurlow Morris II Baltimore, Md.
Teddy Morris, Jr. Greenwood
Randolph Morgan Moyer Sumter
Larry Vincent Parker Wellford
William Sanders Parnell Calhoun Falls
Wendel Paul Potts Aynor
Mark Allen Reynolds Asheville, N. C.
James Lafayette Rimer III Spartanburg
John Drummond Snoddy Greenville
Michael Knudson Stenstrom Hendersonville, N. C.
Engineering Analysis

Richard Vance Landrum — North Charleston

Larry Vernon Wise —— Columbia

Mechanical Engineering

Jeffrey Edward Brooks —— Wilmington, Del.
Herbert Warren Brown, Jr. —— Easley
William Howard Coleman —— Townville
Jerry Lynn Cooper —— Rock Hill
Benjamin Lamont Dawkins —— Greer
Kenneth Walter Detwiler —— Columbia
*Lawrence William Dickenson —— Belvedere
John Reuben Floyd, Jr. —— Newberry
Steven James Harrower —— Asheville, N. C.
*Christopher Charles Hill —— Roebuck
Hollen Lewis Hoffman —— Greenville
Frank Darrell Howell —— Greer

**Harold Senn James —— Union
Dodge Putman Lewis —— Clemson
**William Robinson McClave, Jr. —— Rock Hill
George Kennedy Milam —— Sandy Springs
Dennis Paul Patrick —— Pacolet Mills
Thomas Bryant Pettit III —— Seneca
Marion Francis Sadler, Jr. —— Leesville
*Roger Bernard Smith —— N. C.
Michael William Taylor —— Aiken
Lawrence Edwin Weaver —— Shelby, N. C.
Richard David Youtz, Jr. —— Lebanon, Pa.

Metallurgical Engineering

COLLEGE OF FOREST AND RECREATION RESOURCES

BACHELOR OF SCIENCE

Forestry

<table>
<thead>
<tr>
<th>Student Name</th>
<th>City/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Henry Bass, Jr.</td>
<td>Camden</td>
</tr>
<tr>
<td>Edward Michael Belken</td>
<td>Fort Walton Beach</td>
</tr>
<tr>
<td>Charles Roger Birch</td>
<td>Spartanburg</td>
</tr>
<tr>
<td>*Richard Edward Bullock</td>
<td>Cream Ridge, N. J.</td>
</tr>
<tr>
<td>Robert Andrew Cloninger</td>
<td>Gastonia, N. C.</td>
</tr>
<tr>
<td>Thomas William Davis, Jr.</td>
<td>Columbia</td>
</tr>
<tr>
<td>Thomas Walter Haene</td>
<td>Charlotte, N. C.</td>
</tr>
<tr>
<td>Robert Arthur Harris</td>
<td>Fort Mill</td>
</tr>
<tr>
<td>Charles Blackwell McElveen</td>
<td>Florence</td>
</tr>
</tbody>
</table>

*Bernard Robert Ozbolt —— Walterboro
John Dennis Page III —— Hampton
Harry Stanton Schulze, Jr. —— Mechanicsburg, Pa.
Charles Acker Sibley —— Rock Hill
John Jay Stankiewicz —— Freehold, N. J.
Richard Henry Sutherland —— Abbeville
James David Walters, Jr. —— Greenville
David Mark Whittaker —— Rhinebeck, N. Y.
William Harvey Wiley II —— Moncks Corner

Recreation and Park Administration

<table>
<thead>
<tr>
<th>Student Name</th>
<th>City/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Ashley Black</td>
<td>Chester</td>
</tr>
<tr>
<td>Randy Lee Bray</td>
<td>Clemson</td>
</tr>
<tr>
<td>Daniel Franklin Card</td>
<td>Seneca</td>
</tr>
<tr>
<td>*Bradley Dean Cary</td>
<td>Leesville</td>
</tr>
<tr>
<td>*Mary Lil Coggin</td>
<td>Charleston</td>
</tr>
<tr>
<td>*Linda Lee Dasher</td>
<td>Greenwood</td>
</tr>
<tr>
<td>Ned Mabry Eddy</td>
<td>Lake City</td>
</tr>
<tr>
<td>*Donnie James Edgar</td>
<td>Seneca</td>
</tr>
<tr>
<td>*Nancy Kenyon Fairey</td>
<td>Latta</td>
</tr>
<tr>
<td>Charles Wilson Harrison</td>
<td>Roebuck</td>
</tr>
<tr>
<td>Richard McDuffie Hart, Jr.</td>
<td>Mauldin</td>
</tr>
<tr>
<td>John Lewis Irvin, Jr.</td>
<td>Fort Mill</td>
</tr>
<tr>
<td>Philip Wesley Jackson</td>
<td>Pendleton</td>
</tr>
<tr>
<td>Harold Mack Kennedy, Jr.</td>
<td>Columbia</td>
</tr>
<tr>
<td>Ann Elliott Kester</td>
<td>Columbia</td>
</tr>
<tr>
<td>Ronald Decker Kitchens</td>
<td>Chambless, Ga.</td>
</tr>
<tr>
<td>Robert Philip Lawton</td>
<td>York</td>
</tr>
<tr>
<td>Charles Homer Ledford</td>
<td>Townville</td>
</tr>
<tr>
<td>Patricia Anne McCuen</td>
<td>Taylors</td>
</tr>
<tr>
<td>John Patrick Mickanis</td>
<td>Hanover, Md.</td>
</tr>
<tr>
<td>Albert Carlisle Feden, Jr.</td>
<td>Simpsonville</td>
</tr>
<tr>
<td>Thomas Lee Pence</td>
<td>Sailsbury, N. C.</td>
</tr>
<tr>
<td>*Joseph Edgar Swofford</td>
<td>Laurens</td>
</tr>
<tr>
<td>Diane Elizabeth Tuttle</td>
<td>Clemson</td>
</tr>
<tr>
<td>Charles Tutan Waters</td>
<td>North Augusta</td>
</tr>
</tbody>
</table>
COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

BACHELOR OF ARTS

Arts and Sciences

William Gibson Agnew, Jr. ________________ Lookout Mountain, Tenn.
*George Edward Biediger ____________ Greenville
Joseph Bailey Bright ____________ Asheville, N. C.
Michael Edmund Butler ____________ Fairfax, Va.
**Lanny Adolph Byrd ____________ Branchville
Glen Scott Cannon ____________ Rock Hill
Robert Clement Carlton, Jr. ____________ Spartanburg
Christopher Cameron Clipperly ____________ Washington, D. C.
James Elliott Evans, Jr. ____________ Newberry
Johnny Sherwood Everette ___________ Piedmont
Bruce Hunter Gilbertson ____________ Plainfield, N. J.
***Michael Joseph Gombola ____________ Greenville
David LeRoy Green ____________ Lynchburg
Milton Steven Hester ____________ Greenville
Jerry Whitworth Hodge ____________ Greenville
Georgia Ellis Hunter ____________ Columbia
William Frank Kellam ____________ Anderson
David Ralph Landing ________________ Greenville
Kenneth Wayne Lanford ____________ Spartanburg
James Morgan Leaque, Jr. ____________ Greenville
Carol Lawton Maner ________________ Garnett
Allan Robert Meyerrickes ____________ Myrtle Beach
William Brooks Mills ____________ High Point, N. C.
Willie Harold Oglesby, Jr. ___________ North Charleston
**Samuel Fraser Reid, Jr. ____________ Fort Motte
Robert Francis Snyder, Jr. ___________ North Charleston
*Algeron Gibson Solomons, Jr. __________ Estill
David Elmer Taylor ____________ Asheville, N. C.
David Lincoln Thomas ____________ Warren, Ohio
*Howard Denton Williamson, Jr. __________ Cheraw
**Eros Wayne Wilson ____________ Abbeville
Robert Shaw Wilson ____________ Sumter

BACHELOR OF SCIENCE

Accounting

**Douglas William Braun ____________ Leesburg, Fla.

Industrial Management

Barnett Alexander Allgood III __ Toccoa, Ga.
Samuel Walter Austin ____________ Greenville
Richard Clifton Ballenger ____________ Anderson
*Edgar Lee Benjamin, Jr. ____________ Mountville
Christopher Deryl Binnicker ____________ Orangeburg
*Frank Martin Boggs ____________ Charleston Heights
Robert Allen Bowers, Jr. ____________ Greenville
Henry Clay Brooks ____________ College Park, Ga.
Lewis Carroll Cameron ____________ Ninety Six
Durward Cave Cromer, Jr. ____________ Blackville
Hubert Judson Dandridge III ____________ Cottageville
Mario Richard Danieli ____________ Lyndhurst, N. J.
Philip Gregory Degen ____________ Sumter
John Michael Demosthenes ____________ Sumter
Daniel Harris Dye ____________ Anderson
Sam Jule Enis, Jr. ____________ Charleston
Michael Eugene Evans ____________ Timmonsville
Tommy Joe Fleming ____________ Greenville
Lee Matthew Flowers, Jr. ____________ Hartsville
Marion Ralph Floyd ____________ Conway
*Patterson Wardlaw Foy, Jr. ____________ Springfield
Jesse Henry Gaskins ____________ Chesterfield
James Rembert Greer ____________ Spartanburg
William Preston Hall ____________ Shaw AFB
John Gaines Hammond, Jr. ____________ Greenwood
Richard Ellis Henkel ____________ Waynesboro, Va.
Carl Edwin Henson ____________ Seneca
Joel Marshall Hofer ____________ Columbia
David Michael Holmes ____________ Gaffney
Charles Ray Jackson ____________ Aiken
Milledge Anthony Johnson ____________ North Augusta
Larry Vernon Jordan ________________ Belton
John Wesley Josey ________________ Jacksonville, Fla.
Richard Edward Kilby ________________ Greenville
James Alton Knight, Jr. ____________ Gray Court
Gary James Laden ________________ Morristown, N. J.
William Reese McCravy ____________ Florence
Richard Francis McMillan, Jr. __________ Bamberg
Walter Elwood Matthews ____________ Driver, Va.
Charles Wilson Mellard, Jr. __________ Mt. Pleasant
*Thomas Arthur Messick __________ West Chester, Pa.
Michael Augustine Miller ____________ Union
David Lee Mullis ________________ Gastonia, N. C.
Fred McTeer Padgett ________________ Walterboro
Robert Lee Paine II ________________ Atlantic Highlands, N. J.
Larry Edward Porter ________________ LaFrance
Ted Nathan Ramsey ________________ Greenville
Howard Longaker Schulz, Jr. ____________ Vineland, N. J.
William Thomas Scott ________________ Dillon
Donald Terry Stegall ________________ Anderson
Stephen Hoy Taylor ________________ Myrtle Beach
Larry Stephen Thompson ____________ Roanoke, Va.
Joseph Jackson Turner, Jr. ____________ Williston
Richard White Turner ________________ Augusta, Ga.
Stephen Eason Tyson III ____________ Orangeburg
Michael Leon Whitfield ____________ Anderson
*Garland Keith Wilson ________________ Fort Mill

Textile Chemistry

Thomas David Taylor ____________ Honea Path
Nelson Taylor Weaver ____________ Greenville

Textiles

Robert Alan Austin ____________ Fairfax, Va.
*William Gaines Wilson ____________ Abbeville

Samuel DeRonda Love, Jr. ____________ Gastonia, N. C.
COLLEGE OF LIBERAL ARTS

BACHELOR OF ARTS

*Patricia Robertson Anderson Statham, Ga.
**Joanne Smith Azeiks Anderson
**Julia Marguerite Bailes Greenwood
*Lyla Boyd Baumann Pendleton
Joseph James Belknap Lynbrook, N. Y.
Harold Wayne Bishop Greenville
John McClellan Bond Clemson
Robert Walton Broome Charleston
Gregory Robert Brown Gasport, N. Y.
Harold Chandler III Sumter
*Susan Bailey Chandler Clemson
Rufus Bernard Chapman, Jr. Charleston
Ronald Edmond Cooper Columbia
*Robert Allen Cox Pamplico
Roger Dell Crandford Chester
Barbara Lynn Cromer Columbia
John Duffield Curtis II Smithtown, N. Y.
Thomas John Cusumano Sumter
David Franklin Dansby Ware Shoals
Sydney Ruth Doak Walterboro
Douglas Bruce Eason New Canaan, Conn.
Howard Brian Edgar Plainview, N. Y.
Allen Gibson Edwards Cheraw
Wilma Jean Edwards Wellford
Dale Francis Ellenburg Anderson
Elliott Benton Eskew Columbia
Richard Hugh Foster Fredericksburg, Va.
William Twyman Garrett, Jr. Pelzer
Warren Thomas Givens, Jr. Sumter
David Herbert Golly Jacksonville, Fla.
Donald McCrae Gore Hartsville
Michael Ransom Gough West Winfield, N. Y.
George Allen Graab, Jr. Columbia
Kenneth Dalton Grant Pickens
James Michael Griggs Hartsville
*John Francis Hanzel Greensboro, N. C.
Daniel Francis Harkins Claymont, Del.
Richard Ara Harpoolian Charlotte, N. C.
Mary Lenoir Hartzler Camden
*Linda Elaine Hayes Taylors
Landrum Hazel Henderson, Jr. Chester
*Susan Boulware Henderson Washington, D. C.
Edward Moreton Hughes Greenville
Morgan Randall Humphreys, Jr. Cheraw
Amos Hykes Green castle, Pa.
*Carolyn Elaine Jarrell
.............. Altamonte Springs, Fla.
*Linda Elkin Jennings Greenville
*Mic hael Lynn Johnson Aiken
Walter Jennings Johnson, Jr. Columbia
Janie Pearl Jones Columbia
Billie Ann Kelly Atlanta, Ga.
Thomas Larry Kemmerlin Columbia
Robert Patrick Lusk Pendleton
Virginia Rogers McMurray Clinton
Georgann Maertens Seneca
Nancy Ann Marcengill Williamston
**Guy Harold Marinello Jewett City, Conn.
Douglas Christopher Martin Marietta, Ga.
Frank Lemar Matthews Sumter
*Errol Glenn Mercer Georgetown
Robert William Michie Kensington, Md.
Robert Homer Mitchell Greenville
Charles Donald O'Briant McCormick
Robert Mark Ohanesian Huntington, N. Y.
**Guy Laurence Osborne Union
Claude Aubrey Parks III Charlotte, N. C.
Joel Dennis Parnell Anderson
LaBonney Louise Parnell Charleston
George Davis Philips Sumter
James Everette Pittman, Jr. Greenville
Carl Frank Pospisil Union, N. J.
James Randal Putnam Easley
Angie Witt Rainey Starr
*Rita Jo Rampey Greenville
Mary Virginia Ridgill Sumter
Earl Kenneth Rigler, Jr. Landenberg, Pa.
William Bruce Russell Bethesda, Md.
Patricia Ann Saggs Edgefield
***Ludmila Alexander Savitsky Clemson
*John Michael Sears Anderson
John Marshall Stith Sullivans Island
*Eugene Glenn Stirling Lyman
Watson Smith Strickland, Jr. Georgetown
Stephen Edward Taylor Greenwood
Alexander Ur III Greenville
Thomas Charles Valesky Penns Grove, N. J.
Robert Lee Wiggins Easley
***Georgia Angela Williams Clemson
Marina Elisabeth Winquist Dedham, Mass.

SCHOOL OF NURSING

ASSOCIATE IN ARTS

Nursing

Rebecca Elizabeth Atkinson Clemson
Teresa Anne Degen Sumter
*Shirley Chumney Fortson Anderson
Marguerita McLaughlin Gillespie Greenville
Lynda Ann Kay Pendleton
*Morgan Randall Humphreys, Jr. Cheraw
Amos Hykes Green castle, Pa.
*Carolyn Elaine Jarrell
.............. Altamonte Springs, Fla.
*Linda Elkin Jennings Greenville
*Mic hael Lynn Johnson Aiken
Walter Jennings Johnson, Jr. Columbia
Janie Pearl Jones Columbia
Billie Ann Kelly Atlanta, Ga.
Thomas Larry Kemmerlin Columbia
Robert Patrick Lusk Pendleton
Virginia Rogers McMurray Clinton
Georgann Maertens Seneca
Nancy Ann Marcengill Williamston
**Guy Harold Marinello Jewett City, Conn.
Douglas Christopher Martin Marietta, Ga.
Frank Lemar Matthews Sumter
*Errol Glenn Mercer Georgetown
Robert William Michie Kensington, Md.
Robert Homer Mitchell Greenville
Charles Donald O'Briant McCormick
Robert Mark Ohanesian Huntington, N. Y.
**Guy Laurence Osborne Union
Claude Aubrey Parks III Charlotte, N. C.
Joel Dennis Parnell Anderson
LaBonney Louise Parnell Charleston
George Davis Philips Sumter
James Everette Pittman, Jr. Greenville
Carl Frank Pospisil Union, N. J.
James Randal Putnam Easley
Angie Witt Rainey Starr
*Rita Jo Rampey Greenville
Mary Virginia Ridgill Sumter
Earl Kenneth Rigler, Jr. Landenberg, Pa.
William Bruce Russell Bethesda, Md.
Patricia Ann Saggs Edgefield
***Ludmila Alexander Savitsky Clemson
*John Michael Sears Anderson
John Marshall Stith Sullivans Island
*Eugene Glenn Stirling Lyman
Watson Smith Strickland, Jr. Georgetown
Stephen Edward Taylor Greenwood
Alexander Ur III Greenville
Thomas Charles Valesky Penns Grove, N. J.
Robert Lee Wiggins Easley
***Georgia Angela Williams Clemson
Marina Elisabeth Winquist Dedham, Mass.
COLLEGE OF PHYSICAL AND MATHEMATICAL SCIENCES

BACHELOR OF ARTS

Arts and Sciences

George Williams Gage III Fort Mill
Laurie Anne Holleman Summerville
Michael Henry McClure Sumter

*Donald Craig MacVittie Buffalo, N. Y.
*Margaret Anne Fay Schmidt Baltimore, Md.

BACHELOR OF SCIENCE

Chemistry

Herbert Branham, Jr. ... Charleston
Stanley Parks Cole, Jr. Langley
Joseph Edward Davis, Jr. Sumter
Claudene Diane Elrod Anderson
Phillip Ryan Hayes Mayo
Larry Mortimer Jackson Sumter

*James William Kronberg Wedgefield
Robert Charles Schmidt, Jr.
--- Old Tappan, N. J.
James Eric Whisenhunt III Hartselle
Larry James White Sumter

Geology

J. Patrick Bruening Charleston
Richard Carson Cunningham, Jr. ...
------------------------------- Melbourne Beach, Fla.

James Earl Wright, Jr. Anderson

Mathematics

Douglas Pounds Armistead Decatur, Ga.
Gregory Scott Baker Sumter
Michael Feador Carpenter
-------------------------------- North Charleston
Mary Elizabeth Craig Camden
Steven Emerson Davis Charlotte, N. C.
David Kendrick Duncan Sharon

*Thomas Barry Edwards Ninety Six
Richard Winston Gooding Ridgewood, N. J.
*Raia Toolikki Griffin Tampere, Finland
Charles J. McKenzie III Greenwood
*Leslie Edwin McKenzie, Jr. Dillon
Kenneth Allan Means Clemson
*Richard Carl Vaughan Greenville

Medical Technology

Nancy Lord Lowdermilk Greenville

James Shober Brawley, Jr. Salisbury, N. C.
*Michael Eric Buchanan Charleston
Billy Bert Homan Jacksonville, Fla.
*Calvin Tycho Howle Lancaster

Joseph Douglas James Aiken
William Dunlop Raffeld II Newberry
*Mark George Savitsky Clemson

Pre-Medicine

Arthur McFaddin Abbott Sumter
Calvert Clay Alpert Sumter
Kenneth Kay Ashley, Jr. Williamston
Durwood Earl Bach Bel Air, Md.
James Louis Bishop Taylors
Wade Brantley Blount Belvedere
Garden Stuart Clarkson, Jr. Columbia
John David Cox Belton
Glenn Fletcher Cuenan Honea Path
Joseph Euranus Fewell, Jr. York
James Cary Freeman Piedmont
Dan Henry Gambrell, Jr. Greenwood
David Gaines Gilstrap Brevard, N. C.
*James Ross Hanahan, Jr. Atlanta, Ga.
William Michael Heath Lancaster
James Andrew Henderson Greenville
Jeanne Rebecca Jenkins Columbia
*William Richard Karpik Anderson
Bradford Lewis Keeney Anderson
Francis Asbury Lawton III Gastonia, N. C.

*With honor
**With high honor
***With highest honor
†With departmental honors

*With honor
MASTERS' DEGREES CONFERRED MAY 7, 1971

COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES

MASTER OF SCIENCE

Agricultural Economics
William Anderson Thomas _____ Elberton, Ga.

Animal Science
Thomas Elliott Bonnette, Jr. _____ Orangeburg
Russell Gene Gaddy _____________ Atlanta, Ga.

Botany
William Barnes Pamplin __________ Columbia

Dairy Science
Allan Pond Curtiss, Jr. _______ Demarest, N. J.

Entomology
Paul Henry Carlson _____________ Chicago, Ill.
Thomas Marion Hill _______________ Union

Nutrition
Larry James Bearden _______ Cartersville, Ga.

Zoology
Stephen Howard Best _____ Fayetteville, N. C.
Ronnie Russell Howard __ Mountain City, Tenn.

COLLEGE OF EDUCATION

MASTER OF AGRICULTURAL EDUCATION

(Agricultural Education is jointly administered by the College of Agriculture and Biological Sciences and the College of Education.)

Joseph Craven Jones _____________ Florence
George Milton Reed, Jr. ___________ Anderson

Masters of Education

Carol Ann Childress Anderson _____ Greenville
Charles Julian Bethea, Jr. ___________ McColl
Selma Smith Bettis _________________ Saluda
Grady Spence Burgner _____ Chattanooga, Tenn.
David Arthur Clyburn, Jr. _______ Spartanburg
Sarah Jean Smith Cross ______________ Seneca
Al Lee Curtis _________________ Gaffney
Judy Meredith Faulkenberry _____ Townsville
Eileene Adams Futral _____________ Alamo, Ga.
Cynthia Abernethy Holt _______ Orlando, Fla.
Marjorie Littlejohn Knuckles _______ Anderson
George Hervy O'Neal III ____________ Chattanooga, Tenn.
Julia Claudette Osborne _______ Hartwell, Ga.
Joan Mineo Protomastro _____________ Sumter
Michael Thomas Voiselle __________ Ninety Six

MASTER OF INDUSTRIAL EDUCATION

Robert Jeffrey Lake _______ Hicksville, N. Y.
Walter Price Spires _____________ Anderson

COLLEGE OF ENGINEERING

MASTER OF SCIENCE

Agricultural Engineering

(Agricultural Engineering is jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.)

John Frederick Long ____________ Newberry

Bioengineering
Stephen Joseph Morrison _____ Thunderbolt, Ga.

Ceramic Engineering
Dennis Arthur Carlson __________ Marietta, Ga.
Chemical Engineering
James Edward Davis, Jr. Chester Michael Alan Lake Jamestown

Electrical and Computer Engineering
James McCordell Davis, Jr. Lancaster Anil Gupta Calcutta, India

Environmental Systems Engineering
Louis DesChamps Eckley Bishopville Don Richard McCombs Greenville

Materials Engineering
Donald Alan Kay Fair Lawn, N. J.

Mechanical Engineering
Sy-Li Victor Hsiang Taipei, Taiwan Charles Theodore Vollers III Jacksonville, Fla.

Water Resources Engineering

COLLEGE OF FOREST AND RECREATION RESOURCES
MASTER OF SCIENCE
Forestry
Robert Lewis Little Naples, Fla.

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE
MASTER OF SCIENCE
Management
James Plummer Chick, Jr. Rock Hill Pradeep Kumar Goorha Kanpur, India
Timothy Powell Finn Greenville Walter Eugene Riggs Madison, Ohio
Charles Donald Godsey Greenwood Charles Wallace Seigler Rock Hill

Textile Chemistry
Edward Aloysius Duffy Philadelphia, Pa. Masahiro Kanai Tomioka Okayama, Japan

Textile Science
Lawrence Oliver Goldstein Spartanburg Harry Small Philadelphia, Pa.

COLLEGE OF LIBERAL ARTS
MASTER OF ARTS
English
Dennis Warren James Seneca Ralph Kenneth Ostrom, Jr. Marion, N. C.

History
Peggy Diane Neal Kershaw

COLLEGE OF PHYSICAL AND MATHEMATICAL SCIENCES
MASTER OF SCIENCE
Chemistry
Aiko Seo Hiroshima-Shi, Japan Josh Jeter Starnes Greenwood

Mathematics
Julia Jackson Davis Orangeburg Marvin Kenneth Reed Zephyrhills, Fla.
Sharon Elizabeth Davis Orangeburg William Arthur Strack Arkadelphia, Ark.
William Warren Niemi Quincy, Mass

Physics
Shih-Lin Chang Taichung, Taiwan
DOCTORS' DEGREES CONFERRED MAY 7, 1971

COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES

DOCTOR OF PHILOSOPHY

Agricultural Economics

Gaines Howard Liner Efland, N. C.
B.S., N. C. State University; M.S. Clemson University
Dissertation: Economic Analysis of Water Supply Alternatives in a Multi-County Industrialized Area

Entomology

Frederick Lance Wallace Columbus Junction, Iowa
B.S., Iowa Wesleyan College; M.S., Oklahoma State University
Dissertation: A Comparative Morphological Study of the Wing Venation of the Order Coleoptera

COLLEGE OF ENGINEERING

DOCTOR OF PHILOSOPHY

Engineering

Jeffrey Scott Tennant North Augusta
B.S., M.S., Clemson University
Dissertation: The Theory of Moving Wall Boundary Layer Control and Experimental Application in Subsonic Diffusers (Field of Specialization: Mechanical Engineering)

William Kenneth Whitehead Comer, Ga.
B.S., University of Georgia; M.S., Clemson University
Dissertation: A Potential Theory Model for the Phytotoxicity of a Soil-Applied Herbicide (Field of Specialization: Agricultural Engineering)

John David Wrenn Greenwood
B.S., M.S., Clemson University
Dissertation: The Effect of Radiant Energy Transfer and Chlorophyll Concentration on the Growth Kinetics of Chlorella Pyrenoidosa TX 71105 in a Laminar Flow Photosynthetic Gas Exchange during Low Intensity Illumination (Field of Specialization: Chemical Engineering)

COLLEGE OF PHYSICAL AND MATHEMATICAL SCIENCES

DOCTOR OF PHILOSOPHY

Chemistry

Augustus Kennerley Bonnette, Jr. North Charleston
B.S., College of Charleston
Dissertation: Isotopic Labelling for Mossbauer Studies: An Application to the Iron Cyanides

James Francis Cope Greenville
B.S., Hampden-Sydney College; M.S., Clemson University
Dissertation: Methylferrocycne

Ian Russell Hardin Birmingham, Ala.
B.S., Auburn University; M.S., Institute of Textile Technology
Dissertation: Light Scattering from Glass Fibers at Normal Incidence

Julian Edward McGill Smyrna
B.A., Erskine College; M.S., Clemson University
Dissertation: An Investigation of the Analytical Applications of Aminotrimethanesulfonic Acid and the Determination of Cadmium

B.A., Berry College; M.S., Clemson University
Dissertation: Synthesis of Beta Eudesmol, A Bicyclic Sesquiterpene

William Alexander Tallon Greenville
B.S., M.S., Furman University
Dissertation: Solvent Effects on the NMR Spectra of Some Meta-Disubstituted Benzenes
Mathematics

Gerard Philip Protomastro ... Sumter
B.A., Montclair State College; M.A., University of Massachusetts
Dissertation: Separable Projection Property

Physics

James Cozby Byrd, Jr. ... Charleston
B.S., University of South Carolina; M.A., Emory University
Dissertation: Kinetics of Reorientation of Optically Oriented Vk Centers and Thermal Annihilation of NH₃Cl Centers in Irradiated Ammonium Chloride

William Voss McCanless .. Winston-Salem, N. C.
B.S., The Citadel
Dissertation: The Size and Temperature Dependence of the Electrical Resistivity of Indium and Zinc Whiskers

John Wendell Swardstrom ... Bridgewater, Mass.
B.S., Jamestown College; A.M., Temple University
Dissertation: The Crystal and Molecular Structure of Tris (4,4'—diaminodiphenylmethane) Sodium Chloride
BACHELORS' DEGREES CONFERRED
AUGUST 7, 1971

COLLEGE OF AGRICULTURAL SCIENCES

BACHELOR OF SCIENCE
Agricultural Economics

Thomas Roger Collins Livingston, N. J. Frank John Price, Jr. Roselle, N. J.

Agronomy
John Patrick Tomstrom Neshanic, N. J.

Animal Science
Wayne David Griffin Sumter
John Jacob Horres IV John's Island

Nathan LeRoy Rohde Kissimmee, Fla.
Robert Lawton Stewart Greenville

Dairy Science
**Emily Glenn Attaway Anderson
Terry Quain Sudduth Greer

Horticulture
John Douglass Bonnette Clemson

Poultry Science
David Frank Thompson Greenville

COLLEGE OF ARCHITECTURE

BACHELOR OF ARTS
Pre-Architecture

Glenn Luther Bellamy Myrtle Beach
Marsha Oates Ellis Spartanburg
Robert Earl Epps North Charleston
William Edmund Evans Sumter

Kenneth Marvin Ewan, Jr. Newark, Del.
Stephen Elliott Hendricks Columbia
Robert Bruce Leith Roseland, N. J.
Robert Stephen Wennersten Wykoff, N. J.

Building Construction

Joseph George Goeller Union City, N. J.

Dana Gerard Pelletier Rock Hill
Conrad Wayne Wisinger Saddle Brook, N. J.

BACHELOR OF ARCHITECTURE

*William Paul Gilbert Ellicott City, Md.
David Frederick Hunter Wheaton, Md.
Arthur C. Jenkins III Fayetteville, N. C.

Richard Wylly Molten, Jr. Columbia
Fred Morgan Robinette Pacolet
Henry Joe Smith Saluda

COLLEGE OF EDUCATION

BACHELOR OF ARTS
Elementary Education

Barbara Lou Beshears Jacksonville, Fla.
**Brenda Spearman Dawkins Greenville
*Diane Doolittle Greer
Mary Jane Terry Freeman Piedmont
Sherril Lynn Hamm Charleston

Sherry Lankford Powell Batesburg
*Catherine Kaufmann Ross Casselberry, Fla.
Martha Ann Smith Anderson
Mildred Allyn Wright Columbia
Secondary Education
**Cheryl Ann Gale Bassett, Va.
Claudia Ann Patience Belton

Nancy Snipes Woods Salters
Mary Theresa Wright Holly Hill

BACHELOR OF SCIENCE
Agricultural Education
(Agricultural Education is jointly administered by the College of Agricultural Sciences and the College of Education.)

Charles Ray Cooper Florence
Edward Benson Earle, Jr. McBee

Edgar Bolt Johnson, Jr. Easley
James Christopher Thigpen Florence

Industrial Education
George Bernarr Hendricks Bethune
James Francis James, Jr. Sumter

William Morris McClcilion North Charleston
David Alexander McLellan Dillon
Michael Lee Tillerson Atlanta, Ga.

Science Teaching
James Reece Bennett Taylors

James Jonathan Jennings Spartanburg

COLLEGE OF ENGINEERING
BACHELOR OF SCIENCE
Ceramic Engineering

Geela Bopeep Poteat Columbia

James William Wunch Greenville

Chemical Engineering
Robert William Brown Orangeburg

Charles Marion Culbertson II Ware Shoals

Civil Engineering
George Clarence Ballentine Peapack, N. J.
Gerald Marvin Glenn Greer
Charles Thomas Grimsley North Charleston
Charles Harvey Holladay, Jr. Sumter

Cole Livingston Page, Jr. Williston
William Irby Reardon, Jr. Sumter

Agostino Peter Tortora Yonkers, N. Y.
Joseph James Wiley III Summerville

Electrical Engineering
James Irvin Miller Anderson
Jeffrey Wayne Smith Concord, N. H.

Charles Victor Stoll, Jr. Kingstree

Mechanical Engineering
Dwayne Monroe Bell Honea Path
Alan Dorman Coker Lynchburg
Gregory L. Harding Hackettstown, N. J.
Henry Lee Hopper North Augusta
Morris Wayne McColley Greenville

Robert Harvie Payne Darlington
James Leonard Stokes Johnston
Donald Neal Waller Beaufort
Charles Burton Whittaker, Jr.

Margate City, N. J.

COLLEGE OF FOREST AND RECREATION RESOURCES
BACHELOR OF SCIENCE
Forestry

Al Heyward Sturgis III Rock Hill
Recreation and Park Administration

Ronald Craig Alexander Greenville
Dean Joseph Anderson Clemson
Robert Lawrence Bell Orangeburg
David Ambrose Brown Piedmont
Harold Andrew Carey, Jr. Seneca
Francis Neil Cassidy Irmo
Lewis Felton Cato, Jr. Clemson
Charles Edward Dilworth Walhalla
Chester Dwayne Emerson St. Paul, Minn.
Frank Henry Irelan II Clarksville, Ohio
Roy Algia Jones Albion, N. Y.
James Luther LaFoy Greenville
Adam Mangino West Orange, N. J.
Charles Eugene Mayson Greenville
Daniel O'Neal Miles Coward
Charles Arthur Nelson Anderson
Philip Wiggins Rogers, Jr. Clinton
Benjamin Robert Sullivan Clemson
William Alan Touchstone Commerce, Ga.
Lester Allen Van Blaricom Clemson
Wayne Carter Wells Greenwood

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

BACHELOR OF ARTS

Arts and Sciences

Henry Thurston Bagnal, Jr. Sumter
Samuel Roger Boykin St. Charles
Terrence John Clyne Rocky River, Ohio
Guy William Davis, Jr. Greenville
Charles Jeter Glenn, Jr. Union
John Thomas Hannon, Jr. Greenville
Edwin Sharp Presnell Asheboro, N. C.
Clyburn Scott Steele Lancaster
Daniel Leon Vehorn Anderson
Frank Howard Vogel Lakewood, N. J.
Charles Augustus Williams Greenville
David Milton Winkles, Jr. Oswego

BACHELOR OF SCIENCE

Accounting

William Ronald Coleman Clearwater
Stanley Leon Edge Moore
Thomas Alan Henrikson East Northport, N. Y.
Donald James Horres Charleston

Administrative Management

Stephen Carlton Moseley Tampa, Fla.

Industrial Management

John Douglas Bailey Gray Court
John McCarley Cauthen Rock Hill
Gary Lee Compton Baltimore, Md.
James Flinn Douglas Greenwood
*Henry Marvin Harrison Greenville
*Robert Benjamin Hemphill Greenville
Thomas Alan Henrikson East Northport, N. Y.
James Rochelle McGee Orangeburg
James Winton Martin, Jr. Winnsboro
Earl Lewis Miller, Jr. Spartanburg
John Edgar Patterson Anderson
James Michael Powers Charleston
David Harold Rowland Central
Michael Dale Sargent Liberty
William Mathews Self Greenwood
Wade Monroe Smith Woodside, Calif.

COLLEGE OF LIBERAL ARTS

BACHELOR OF ARTS

Robert Bentley Adams Kensington, Md.
William Manigault Barnwell Yorges Island
Edwin Moore Campbell, Jr. Hanover, Va.
John Nevins Carson Biloxi, Miss.
Frank Richard DeLuca Upper Saddle River, N. J.
Titus Duren Sumter
Cheryl Lynn Floyd Seneca
Edwin Francis Gillingham Clemson
Gregory Kurt Grosz Short Hills, N. J.
James Edwin Hall, Jr. Anderson
*James Michael Hamer Kingsport, Tenn.
Bruce Randall Harvey Greenwood
*Gail Heriot Cayce
*Elizabeth Hudson Jones Seneca
**Larry Franklin McIntyre Marion
Glenn McCall Manning Greenville
Robert Edward Miller Easley
Tony Joe Owens Easley
Connie Blake Pinson Bamberg
Thomas Bennett Ramsey Clover
Edgar Gene Shelton Orlando, Fla.
Allen Darby Smith Greenville
*Donna Jean Smith Wagener
Jack Spruill Vernon Chesterfield
Charles Goodwin Whitmire, Jr. Greenville
SCHOOL OF NURSING
ASSOCIATE IN ARTS
Nursing
Gayle Yvonne Ford _______ Honea Path

COLLEGE OF PHYSICAL, MATHEMATICAL, AND BIOLOGICAL SCIENCES
BACHELOR OF ARTS
Arts and Sciences
Susan Elaine Cheek _______ Greenville

BACHELOR OF SCIENCE

Biology
John Chapin Folsom, Jr. _____ Westport, Conn.
Newton Ralph Lester, Jr. _______ Pinewood
*Keith Sanders McCabe _______ Kingstree
John Joseph Oxford, Jr. _______ Woodmere, N. Y.
Robert Roy Sands _______ Cocoa Beach, Fla.
David Cannon Smith _______ Anderson
David Neil Smoak ___________ Rock Hill
Cheryl Eggert Turner ___________ Aiken
Foster Bradley Wardlaw, Jr. ____ St. Matthews

Chemistry
Grady Alexander Layton ______ Timmonsville
Leroy Francis Owens, Jr. ____ Silver Spring, Md.

Mathematics
David Edward Kaskin _______ Hampton
*Brian Lee Klapman ___________ Camden

Medical Technology
Donna Williams Durfos _______ Florence
*Meredith Ann Fleming Hammond _____ Buffalo
**Laura Gaye Edwards _____ Tacoma, Wash.
*Nancy Verlin McDonell _______ Leesburg, Fla.

Physics
Randall Austin Briggs _______ Ft. Myers, Fla.

Pre-Medicine
Paul Otis Batson III _______ Marion
***Charles Theodore Beemer ______ Greenville
Randolph Sanford Calvo, Jr. ______ Anderson
Michael Van Clark _______ Orangeburg
John Morrison Coakley _______ Clemson
Philip Anthony Ellis ___________ Greenville
Daniel Hare Jones _______ North Charleston
Robert Carey Wheatley _______ Spartanburg
Larry Allen Williams __________ Greer

* With honor
** With high honor
*** With highest honor
MASTERS' DEGREES CONFERRED AUGUST 7, 1971

COLLEGE OF AGRICULTURAL SCIENCES
Masters of Science
Horticulture
James Walker Painter Chesnee

COLLEGE OF EDUCATION
Masters of Agricultural Education
(Agricultural Education is jointly administered by the College of Agricultural Sciences and the College of Education.)

Thomas Boyd Huffman Cameron
Roy Todd Marion
Bruce Franklin Wyatt Seneca

MASTER OF EDUCATION

Hazel Brock Alewine Belton
Faye Shealy Amiss Newberry
Edna Dickerson Bagwell Pelzer
James Edward Barbary Simpsonville
Dorothy Hawkins Baumgardner Anderson
Linda Evans Billings Florence
Frances Marshall Bowman Anderson
Sidney Dale Brady Abbeville
Ferrell McDavid Bridwell, Jr. Moore
Gale Marie Brown Belton
Walter Thomas Burris Brooklyn, N. Y.
Suzette Lee Cagle Cayce
Barbara Ashley Campbell Honea Path
Gary Ronald Chambers Murphy, N. C.
Edith Mae Mahon Cook Laurens
Frank Elford Cook Duncan
Robert Milton Crain Greenville
Stanley Bruce Creel Williamston
Pattie Dean Curry Anderson
Donivan Paul Dempsey, Jr. Greenville
Eunice Mae Dickerson Easley
Sallie Shirley Dorroh Seneca
Taberta Faye DuBose Turbeville
John Louis Foster Madawaska, Me.
Barbara Wright Fox Clemson
Ann Walker Garrison Salisbury, N. C.
James Edward Gerrald Gaffney
Kate Snyder Gillson Richland
Jenny Porter Hallman Greenville
Velma Yarbrough Hallman Anderson
Grace Young Hamilton Easley
Martha Jean Smith Hampshire Newberry
Helen Smith Hearne Easley
Barbara Rawley Hinkle Central
Arramenta Murph Hite Seneca
Emily Corley Holleman Westminster
Dorothy Black Honea Westminster
James Alex Hooks St. Pauls, N. C.
Jean Burgess Howe Spartanburg
Russell Archie Hughes, Jr. Olanta
William Carson Isaaccs, Jr. Pickens
Eva Lynda Johnson Easley
Charmaine Voss Kenelly Covington, La.
Donnie Ray King Seneca
David Bennett Ledbetter Williamston
Helen Smith Lee Anderson
John Edward Liberty Clemson
Karen Sprinkle Lindsay Clemson
Eugene Lomax Spartanburg
Norma Humphries Love Walhalla
Patsy Black Lunsford Taylors
Norma Jean McDaniel Spartanburg
Jane Ann Shoun McGee Mountain City, Tenn.
John Thomas McGrath III McCormick
Sherry Lynn Marchbanks Clemson
Charlie Dale Martin Williamston
Richard Douglas Medlin Williamston
Wallace Gordon Merck Central
Vance Edward Merritt Brewer, Me.
Linda Curran Miller Greenville
Nancy Batson Mizelle Burgaw, N. C.
Otis D. Nelson Columbus, Miss.
Helen Giannopoulos Newton Tlssaloniki, Greece
Elma Allen Norris Anderson
Martha Yeagin Norris Anderson
Jackie Kay Oakley Anderson
Bernice Turner Padgett Starlex
Roger Williams Palmer Gainesville, Fla.
Mary Crosby Paul Anderson
Carol Chastain Peayler Shattuck, Okla.
Teresa Stroup Pettus Fort Mill
Nancy Bland Porcher Easley
Maryann Stackman Powell Columbia
William Joseph Pridemore Easley
James Doyl Puckett Columbia
Robert Calvin Quesenbury Clemson
Frances Hudgens Revis Greenville
David Wayne Rhodes Greenville
Claude Meredith Rickman Central
Betty Potter Rogers Anderson
Evelyn Thorne Rogers Chesnee
Lowell Randall Russell Dublin, Ga.
Gayle Buckheimer Sawyer Charleston
Patricia Ann Shanklin Anderson
James Garrison Smith, Jr. Columbia
Virginia Belcher Stanley Rock Hill
John Alexander Stevenson Seneca
Ruth Ann Strum Greenville
Donald Raymond Sturkie Pauline
Elmer Joe Tankersley Central
Hazel Shields Trent Clemson
Gale Garrett Werner Travelers Rest
John Wilbur Wheeler III Greenville
Shirley K. Whitfield Honea Path
Winnie Vaughan Williams Clemson
Elizabeth Carter Wilson Anderson
Betty Davenport Workman Taylors

Virginia Belcher Stanley Rock Hill
John Alexander Stevenson Seneca
Ruth Ann Strum Greenville
Donald Raymond Sturkie Pauline
Elmer Joe Tankersley Central
Hazel Shields Trent Clemson
Gale Garrett Werner Travelers Rest
John Wilbur Wheeler III Greenville
Shirley K. Whitfield Honea Path
Winnie Vaughan Williams Clemson
Elizabeth Carter Wilson Anderson
Betty Davenport Workman Taylors

CALCULATION OF ENGINEERING
MASTER OF SCIENCE

Bioengineering
Charles Camden McCarr Mercer, Pa.

George Gary Cox Sumter
Michael Glenn Crowe Marietta

Civil Engineering
Joseph Banks Graham Chester
George Fouad Kammoun Tripoli, Lebanon
Reuben Sims Thomas Carlisle

Electrical Engineering
Hamilton King Avery III Myrtle Beach

Samuel Williams Hammond Piedmont

Materials Engineering
Charles Norman Wilson Worthington, Ohio

Water Resources Engineering
Terry Arnold Kingsmore Columbia

Textile Chemistry
John Hao-Kiang Chan Naha, Okinawa
Rasjid Djufri Djokja, Indonesia

Textile Science
COLLEGE OF LIBERAL ARTS
MASTER OF ARTS

<table>
<thead>
<tr>
<th>Student Name</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Elizabeth Cooper</td>
<td>Pendleton</td>
</tr>
<tr>
<td>Janie Caves McCauley</td>
<td>Rossville, Ga.</td>
</tr>
<tr>
<td>William Patrick Riley</td>
<td>Lutherville, Md.</td>
</tr>
<tr>
<td>Anita Thurston Sullivan</td>
<td>Clemson</td>
</tr>
<tr>
<td>Jane Gill Tombes</td>
<td>Clemson</td>
</tr>
<tr>
<td>Richard Hill Woodward</td>
<td>Knoxville, Tenn.</td>
</tr>
</tbody>
</table>

COLLEGE OF PHYSICAL, MATHEMATICAL, AND BIOLOGICAL SCIENCES
MASTER OF SCIENCE

Chemistry
- Victor Alan Fishman - Miami, Fla.

Mathematics
- Jean Elliott Dunbar - Spartanburg
- Daniel Edgar Duncan - Pageland
- William George Frye - Perry, Fla.
- Albert Francis Jones - Dahlonega, Ga.
- Brian Gerard Von Gruben - Baton Rouge, La.

Physics
- Robert Wellington Blackwell - Tigerville

Wildlife Biology
- Dan Marvin Connelly - Hampton

Zoology
- Johnny Boyd Sandifer - Orangeburg
DOCTORS’ DEGREES CONFERRED AUGUST 7, 1971

COLLEGE OF AGRICULTURAL SCIENCES
DOCTOR OF PHILOSOPHY

Agricultural Economics

Dan Lucien McLemore .. Surrency, Ga.
B.S., Presbyterian College; M.S., Clemson University
Dissertation: Wholesale Demand Functions for Fresh Peaches in Twenty-three Markets

Entomology

William Bruce Ezell, Jr. .. Ninety-Six
B.S., Lander College; M.S., Clemson University
Dissertation: Biology and Control of Tabanidae at Charles Towne Landing Park, Charleston, South Carolina

John Wey Van Duyn .. Jacksonville, Fla.
B.S., M.S., University of Florida

COLLEGE OF ENGINEERING
DOCTOR OF PHILOSOPHY

Engineering

James William Epps .. Clemson
B.S., Clemson University
Dissertation: Economic Considerations for the Provision of Access to Rural Access-Controlled Highways (Field of Specialization: Civil Engineering)

Theodore Arden McCracken Branchville
B.S., M.S., Clemson University
Dissertation: A Systems Analysis for the Transport of Oxygen and the Simultaneous Transport of Oxygen, Carbon Dioxide, and Glucose in the Capillaries and Tissue of the Human Brain (Field of Specialization: Chemical Engineering)

Carl Donner Nelson, Jr. .. Charleston
B.S., Clemson University
Dissertation: An Analytical Design Method and Experimental Results for Axially Symmetrical Diffusers Having Incompressible, Unseparated Flow and Employing Slot Suction (Field of Specialization: Mechanical Engineering)

Thomas Benton Young III Columbia
B.S., M.S., Clemson University
Dissertation: A Dynamic Mathematical Model of the Chemostat (Field of Specialization: Bioengineering)

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE
DOCTOR OF PHILOSOPHY

Engineering Management

John Richard Fraker ... Clemson
B.S., M.S., University of Tennessee
Dissertation: Approximate Techniques for the Analysis of Tandem Queueing Systems
COLLEGE OF PHYSICAL, MATHEMATICAL, AND BIOLOGICAL SCIENCES
DOCTOR OF PHILOSOPHY

Chemistry

Alan Kendrick Torrence .. Asheville, N. C.
B. S., Davidson College; M. S., Clemson University
Dissertation: Synthetic Approaches to the Eremophilane Sesquiterpene Group

Mathematics

Robert Oscar Gamble .. Greensboro, N. C.
B. S., Duke University; M. S., Clemson College
Dissertation: On Prime-Order Matrices over Finite Local Rings

George William Marrah .. Lexington, Va.
B. S., Rhode Island University; M. S., Clemson University
Dissertation: Some Qualitative Theory for Stieltjes Integral Equations

David Albert Ott ... Ponchatoula, La.
B. S., Southeastern Louisiana University; M. S., Clemson University
Dissertation: Decision Theory for Averaged Risk

George Gerald Thompson ... Anderson
B. S., Clemson College; M. S., Clemson University
Dissertation: Some Generalized Radon and Helly Type Theorems in Combinatorial Geometry

Physics

Thomas Gordon Anderson, Jr. ... Charleston
B. S., Clemson University; M. S., University of South Carolina
Dissertation: Stage III Recovery of Electron Irradiated Aluminum

Lance Alden Duvall ... Highland Park, Mich.
B. S., Wayne State University
Dissertation: The Crystal and Molecule Structure of Univalent Ions with P-P'-Diamino-2,3-Diphenylbutane

James Edward Payne .. Chase City, Va.
B. S., Hampden-Sydney College; M. S., Clemson University
Dissertation: Nonlinear Flux Flow Resistivity in Superconducting Tin Films

Forrest James Woods .. Brookfield, Ill.
B. S., DePaul University; M. S., Clemson University
Dissertation: Integral Approximation Applied to the Dirac Equation
ASSOCIATE AND BACHELORS' DEGREES CONFERRED DECEMBER 16, 1971

COLLEGE OF AGRICULTURAL SCIENCES

BACHELOR OF SCIENCE

Agricultural Economics

William Keith Dozier Conway
Howard Randall Griggs Hartsville
Alvin Judson Hurt, Jr. Easley
William Duke Kimbrell Sumter
Harold William McClintock, Jr. Ora
Lawrence Calvin McMillan Denmark
John Hugh Wheeler Saluda

Animal Science

John Robert Harris Westminster
Evelyn Crowson Jackson Camden
John Arthur Lesslie Rock Hill
Marion Glenn McLeod Sumter
Michael Ernest McMakin Lyman

Food Science

Toney Clinton Boozer Inman
Robert Michael Culp Inman
**Emily Suzanne Pickens Spartanburg

Horticulture

Michael Edwin King Easley
Philip Lawrence McClain Williston

COLLEGE OF ARCHITECTURE

BACHELOR OF ARTS

Pre-Architecture

Robert Ervin Ellis, Jr. Greenville
Ralph Walter Hadley, Jr. Harriman, Tenn.
Mark Richards Hudson Randallstown, Md.
Leonardo Serrano Quito-Ecuador, S. A.

BACHELOR OF SCIENCE

Building Construction

Jeffrey Wayne Adamo Baltimore, Md.
Robert William Folkman, Jr. Medford, N. J.
William Jackson Free Greenwood
John Warren Geeslin Falls Church, Va.
Carl Mabeary Hair, Jr. Aiken
Charles Gary Pringle Sumter
Don Albert Rupert Decatur, Ga.
Lawrence Bern Visconti Stratford, Conn.

Bachelor of Architecture

Richard Lee Grimstead Virginia Beach, Va.

COLLEGE OF EDUCATION

BACHELOR OF ARTS

Elementary Education

*Carole Wilson Armfield Clemson
Linda Fay Brooks Anderson
Patricia Fant Chancellor Anderson
Kathy Shannon Cheatham Newberry
**Linda Diane Davis Charleston
Nellie LaDene Davis Spartanburg
Elizabeth Byrd Fant Anderson
Sheila Gwynn Halstead Charleston
***Jean Simons Hatcher Aiken
*Jennie Lee Hendrix Brownsboro, Ala.
Susan Gale Holcombe Largo, Fla.
Judy Gayle Jameson Easley
Bobbie Delony Lindstrom Ozark, Ala.
Carol Ann McLeSnan Seneca
**Emily Browne Moore Eastanollee, Ga.
Linda Kay Murray Gastonia, N. C.
*Betty Carolyn Pilgrim Anderson
Jon Harold Robinett Leesville
Helen Jeanette Ross Greenwood
*Linda Johnson Shirley Pendleton
Melinda Jean Sutton Laramie, Wyo.
Patricia Gail Tate Anderson
*Debbie Inman Townsend Bennettsville
**Mary Jean Washington Decatur, Ala.
Secondary Education

Evelyn Dianne Batson Travelers Rest
(Degree awarded posthumously)
Joan Everett Birdsall Atlanta, Ga.
**Eleanor Gayle Bolt Greenwood
Rufus Brown Florence
Victor Lee Cheek Anderson
*Rebecca Freeman Cole Pickens
Vivian Harleen Couick Lancaster
Willard Raymond Foster Ladson
**Karen Wilkes Gainey Florence
Darrell Henry Garber Scottsboro, Va.
*Susan Schumacher Garland Walhalla
Beth Roe Garrett Greer

***Chichi Ann Harris Herr Maryville, Tenn.
Kenneth Ray Hull Pickens
Philip James Legnetti Brooklyn, N. Y.
Sara Mikolajczyk McCullough Myrtle Beach
*Robby Edward Miller Greer
Donald Eugene Neal Walhalla
*Jeanette Owen Rogers Greenville
Donald Edward Russell Baltimore, Md.
Thomas Pickens Sheppard Liberty
Clinton Meade Tucker Greenville
Donald Arthur Wiggins Scottsboro, Ala.
James Dee Witter Chaffee, N. Y.

BACHELOR OF SCIENCE

Agricultural Education

(Teaching in this College is jointly administered by the College of Agricultural Sciences and the College of Education.)

Timmy O'Neal Barr Springfield
Marion Edgar Carter Elliott
Heath Colbert Copeland Clinton

Jason Mack Lynch, Jr. Lynchburg
Charles Michael Newman Sumter
*Freddie Clinton Waltz Ruffin

Industrial Education

Miles Morgan Adair Greenville
Randal Jackson Addison Anderson
William Calvin Beattie, Jr. Rumson, N. J.
**Joan Castelloe Bradshaw Clemson
Larry James Bramlett Greenville
Ronald Eric Byrd Lancaster
**David Wayne Dailey Spanish Fort, Ala.
Lloyd Linwood Elder, Jr. Silver Spring, Md.
William Franklin Ferguson Clover
Danny Earl Gregg Columbia
Charles Lamar Harrison Olar
Eugene Francis Higgins Amityville, N. Y.

Stephen Dale Johnson Pompano Beach, Fla.
Thomas Green Legare III Yanges Island
Perry Thomas Macomson, Jr. Shelby, N. C.
Oscar Frederick Molin, Jr. Sea Cliff, N. Y.
Kenneth William Smith, Jr. Allentown, Pa.
Van Norman Steadman Williston
James Carlisle Stevenson Richburg
Luther Langford Taylor, Jr. Columbia
David Albert Tucker Abbeville
Robert MacPherson Wood, Jr. Atlanta, Ga.
Robert Scott Wylie Blacksburg

Science Teaching

*Katherine Trevor Armstrong Rock Hill
Claude William Corbett III Pinewood
Joseph Trus Hayes III Dillon
Roy Ernest Horton Clinton

Robert Richard Knowles Charleston
Wade Hampton McManus, Jr. Richburg
*Jana Elledge Smith Ware Shoals

COLLEGE OF ENGINEERING

BACHELOR OF SCIENCE

Agricultural Engineering

(Teaching in this College is jointly administered by the College of Agricultural Sciences and the College of Engineering.)

Lynn Zaco Dantzler Santee
Jackie Thomas Rogers Woodruff

Ceramic Engineering

Don Ellinwood Denison Rocky River, Ohio
Gregory Alan Jones Anderson

Aaron William Rentz III Columbia

Chemical Engineering

William Curtis Bradley Mt. Pleasant
Thomas Robert Conklin Stanford, Conn.

Donald Hayne Fletcher Ridgeland
David Bowers Miley Charleston
Civil Engineering

Wilbert Beverly Bennettsville
Pembroke Waugh Davis, Jr. Augusta, Ga.
James Donovan Dukes Orangeburg
William Boyd Fant Anderson
Ronald Fred Fisher Decatur, Ga.
*Charles Robert Fronberger Gastonia, N. C.
Richard Warren Galway Greenville
Curtis Wilson Lybrand, Jr. Charleston Heights
Betty Jo-Ann Matthews Scranton

Dwight Junior Mehaffy Black River, N. Y.
Jesse Woodall Moffett III Poughkeepsie, N. Y.
Harry Mendel Reed, Jr. North Augusta
Ernest Leland Rinehart, Jr. Greenwood
Guy Schwarting Huntington, N. Y.
William Stephen Shannon Westbury, N. Y.
Virginia Anne Stover Blacksburg
Herman Wilson Tillotson, Jr. Spartanburg

Electrical Engineering

Thomas Alan Bean New Orleans, La.
Robert Henry Cauthen, Jr. Holly Hill
Jerry Odell Chapman Easley
*Marco Antonio Chen, Jr. Panama, Panama
Samuel Ray Harding Montvale, N. J.
Clarence Wayne Lay Seneca
*Joseph Lukowski, Jr. Sumter

James Hilton Parsons III Newberry
*James Vernon Piephoff, Jr. Greenville
**Furman Douglas Ramsey Greenville
Charles Walter Sharp, Jr. Sumter
Baron Karl Shuler Charleston
Hubert Thaddeus Shuler Jamestown
Dominic John Susini Camden, N. J.

Mechanical Engineering

Robert Joseph Beasley Charleston
John Ball Burroughs, Jr. Kinston, N. C.
Craig Douglas Ellerson Spartanburg
Christopher Warren Henderson New Canaan, Conn.
Marvin Forrest LaBeck Mauldin
Lester Robert Patrick, Jr. Orangeburg

Charles Ray Pearre, Jr. North Charleston
Clinton James Powell Charleston
Richard Dale Randolph Stanley, N. C.
Robert Joseph Tusso Westfield, N. J.
Joseph Edward Vignati, Jr. North Augusta
James Larry Wells Greenwood

Technical Operations

Marvin Ronnie Baker Midland, N. C.
John Gregory Denton North Augusta

Robert Nelson Kay Cayce

COLLEGE OF FOREST AND RECREATION RESOURCES

BACHELOR OF SCIENCE

Forestry

Floyd Samuel Douglass, Jr. Chesterfield
Forrest Alan Henriksen Palmyra, Pa.

*Greer Carson Hubbard Orange, Texas

Recreation and Park Administration

William Giles Alverson III Union
Joseph William Boykin Rock Hill
Keenan Gary Craigo Greenville
James Waymond Culp Inman
Charles Louis Cuzzell III Charleston
John Bradford Gilstrap Liberty
*John Warren Green Beaufort
Arthur Lee Haddock III Atlanta, Ga.
Phil Lamar Hendricks Greer

Alan Johnstone Orangeburg
Michael Weaver Keeter Aiken
Charles Reuben Major, Jr. Greenville
Michael Jerome Morgan Catlett, Va.
*Carey Lee Rawlinson, Jr. Manning
Jack Louie Ross III Anderson
*Bobby Ray Saylors Townville
William Randolph Taylor Waynesville, N. C.
COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

BACHELOR OF ARTS

Arts and Sciences

Manfred Dworschak Charleston
Marvin Snead Edwards, Jr. Lyman
James J. Ellis, Jr. Cincinnati, Ohio
Robert Daniel Garces Jacksonville, Fla.
Charles C. Heck Oak Park, Ill.

James David Hendrix Spartanburg
Boyce Lee Muller Columbia
Stephen Carlos Scott Liberty
Louis Albert Stender Charleston
James Francis Westbrook Augusta, Ga.

BACHELOR OF SCIENCE

Accounting

Stephen Brian Henrikson ... East Northport, N. Y.

Administrative Management

Allen Hardy Hodges Clemson
Bobby Dale Malphrus Ridgeland

Ronnie Keith Nettles Ridgeland
Kenneth John Skoczylas Melbourne, Fla.

Industrial Management

Stephen LeRan Altman Lake City
Michael Farris Broome Pageland
Harold Blakey Campbell Charleston
Richard Earl Eppes Greenville
Phillip Herbert Fleetwood Greenville
Charles Calhoun Glasgow Conway
Haskell Edgar Grant Pickens
Robert Tlatlow Hunt, Jr. Spartanburg
John Wolfs Irving Berkeley Heights, N. J.
Robert Walker Kirby Weston, Conn.

John Austin Macauley Princeton, N. J.
Raymond Herbert Pettit, Jr. Spartanburg
Thomas David Scott Charleston
Henry Glenn Simpson Lancaster
John Earl Skinner, Jr. Liberty
Richard David Teal Myrtle Beach
Walter Dixon Whetstone III St. Matthews
Robert Bruce White Greenville
Thomas C. Wiggins, Jr. Tucker, Ga.

Textile Science

David Scott Rutland Fairfax

COLLEGE OF LIBERAL ARTS

BACHELOR OF ARTS

***Gay Rita Adams Clemson
*Anita Louise Kirk Akkas Greenville
Cathy Dana Besser Sumter
Donna Smith Brazeal Easley
Iverson Oakley Brownell, Jr. Greenville
David George Bryant Salem, N. H.
*Jo Karen Busch Walhalla
Franklin Witt Cannon North
Everett Glen Craig Lancaster
*Edwin Leslie Davis II Annandale, Va.
Arthur Hugher Driggers III Atlanta, Ga.
John Wilson Floyd Conway
*Cynthia Liane Gillespie Spartanburg
Lewis Earl Gilstrap, Jr. Easley
Thomas Woolard Grey Greenville
Elizabeth Cannon Hancock Olney, Md.
Connie Clyde Harness III Orangeburg

Alford Haselden Charleston
Dan Michael Herlong Johnston
*Paul Michael Kelly Anderson
**Mary Diane Kerr Greenville
Dean Herbert Kress Richmond, Va.
Gloria Bracken Lufi Piedmont
*Arcada Fleming McCoy Summerville
Pamela Kay McCreery Ellicott City, Md.
Gordon Stephen Metsky Summit, N. J.
Harold Christopher Nettles Sumter
Nancy Claire Moore Price Roselle, N. J.
William Jesse Secy III Charlotte, N. C.
Deborah Wade Sherman Piedmont
Frederick Mayson Stewart Lake City
Russell Wayne Warren Anderson
Clyde Turner Watson Greenville
Barbara Rodgers Wilson Greenville

SCHOOL OF NURSING

ASSOCIATE IN ARTS

Nursing

Mary Fincher Crenshaw Sumter
COLLEGE OF PHYSICAL, MATHEMATICAL, AND BIOLOGICAL SCIENCES

BACHELOR OF ARTS

Arts and Sciences

Faye LaPonza Ruff Houston ——— Columbia
William John Morris ——— Laurel Springs, N. J.
Robert Grant Phillips, Jr. ——— Walhalla
Charles Albert Seijo ——— Silver Spring, Md.

BACHELOR OF SCIENCE

Biology

Brainard Lee Ackley, Jr. ——— Salisbury, Md.
Joseph Gary Bagwell ———— Greer
Ellen Hall Calhoun ———— Lexington, N. C.
James Keith Coleman ———— Inman
Harry Wilson Findley, Jr. ——— Anderson
Carole Rebecca Flitter ———— Columbia
Curtis Cecil Gentry ———— Spartanburg
Suzanne George ———— Elkton, Md.

Chemistry

Leslie Denise McNair ———— Jackson

Geology

Roderick McIver Watson II ——— Ridge Spring

Mathematics

Joyce Paschal Lofton ———— Clemson

Physics

Michael Faison Borke ———— Charleston

Pre-Medicine

Larry Allen Black ———— Greenville
Joseph LeGette Bostick, Jr. ——— Pamplico
Herbert Galen Grantham ——— North Charleston

Ronald Walden Milam ——— Statesville, N. C.

*Lawrence Edgar Stroud, Jr. ——— Great Falls

* With honor
** With high honor
*** With highest honor
MASTERS' DEGREES CONFERRED
DECEMBER 16, 1971

COLLEGE OF AGRICULTURAL SCIENCES
MASTER OF AGRICULTURE
Daniel Andrew Durfes ____ Fair Lawn, N. J.

MASTER OF SCIENCE

Agronomy
John Smith Boswell, Jr. _______ Manning Thomas Hampton Wright, Jr. _______ Dillon

Entomology
Heyward Belzer Douglass _______ Columbia

Nutrition
C. Murphy Hall, Jr. ___________ Mobile, Ala.

Poultry Science
Su-ming Hou ________________ Taipei, Taiwan

COLLEGE OF ARCHITECTURE
MASTER OF ARCHITECTURE
John Lester Thompson, Jr. ______ Greenville

COLLEGE OF EDUCATION
MASTER OF AGRICULTURAL EDUCATION
(Agricultural Education is jointly administered by the College of Agricultural Sciences and the College of Education.)

Allen Carol Bennett ___________ Duncan Con Allen Powell, Jr. ___________ Union
Fred Morgan _________________ Easley

MASTER OF EDUCATION

Ella Ruth Adams _______________ Anderson Jack Herbert King ___________ Wilmington, N. C.
Robert Shepherd Allen ________ Wadesboro, N. C. Vera Yates Koelsch _______ Willoughby, Ohio
Tommie Schade Barnes _____ Nashville, Tenn. Jenny Keels Loftis ________ Summerton
James Knox Carson _____________ Anderson James Hammond Moxley III _______ Seneca
George Robert Crain _____________ Greer Rosa Gressette Reid ________ Orangeburg
Charles William Davis ___________ Anderson Charles Raymond Shick ___ Lickingville, Pa.
Daniel Murdock Ferguson, Jr. ___ Spartanburg Wayne Marion Smith ___________ Walhalla
Robert Quillen Finley __________ Easley Christine Anne Mercier Snoddy ___ Clemson
Karen Wineoff Gilstrop ________ Charlotte, N. C. Glenn Dell Turner _________ Central
John Charles Hearn _____________ Easley Carolyn Sue Van Loh _________ Tyler, Minn.
Nancy Ann Hill _________________ Honea Path Robert Edmond West __________ Greenville
Dorothy Pilgrim Kellam __________ Anderson Martha Catherine Wilkinson _______ Taylors
Ray Conner Kimbrell _____________ Anderson Milton Earle Williamson _______ Donalds

COLLEGE OF ENGINEERING
MASTER OF ENGINEERING
John Godwin Federline __________ Greenville

MASTER OF SCIENCE

Bioengineering
Larry Stanley Bowman _______ Baltimore, Md. Hisin I. Huang ___________ Tainan, Taiwan

Ceramic Engineering

Chemical Engineering
Robert Miller Ward, Jr. __________ Rock Hill
Civil Engineering
David Ronald Brabham ________ St. Stephens
Charles Edward Davies ________ Honea Path
Richard Henry Francis Kapp _____ Greenville
James Jacob Steele ____________ Arlington, Va.

Electrical Engineering
Tze-Ying Chiang ___________ Taipei, Taiwan
James Arthur Miller _______ Melbourne Beach, Fla.
Mehmet Mustafa Ongay ______ Konya, Turkey
Robert Andrew Pace _________ Asheville, N. C.

Engineering Mechanics
Lien-Yan Chen ___________ Tainan, Taiwan
William Albert Venezia __ Ft. Lauderdale, Fla.

Environmental Systems Engineering
Thomas Osborn Barnwell, Jr. ___ Yonges Island
Shirley Sheau-mei Chao Chao ________ Taichung, Taiwan
Charles Roper Jeter __________ Carlisle
Wayne Michael Kachel _________ Amherst, Ohio
Robert Francis Martin _________ Greenville
Barry Wilson Peterman __________ Pascoag, R. I.

Mechanical Engineering
Chao-Tze Chang ________ Kaohsiung, Taiwan
William Russell Walden __________ Moore
John Anthony Pearce _______ North Augusta

Water Resources Engineering
James Rhett Hendricks, Jr. _______ Pelzer
George Purvis Nelson, Jr. _______ Charleston
Diego Suarez R. ____________ Riverside, Cal.
Joel Oscar Tyner III __________ Florence

COLLEGE OF FOREST AND RECREATION RESOURCES
MASTER OF SCIENCE
Forestry
Ryan Ralph Faulkenberry _______ Lancaster

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE
MASTER OF ARTS
Economics
Ralph Buck Black ___________ Prosperity

MASTER OF SCIENCE
Textile Science
John Frederick Alexander, Jr. _______ Clemson
John Edwin Pendergrass ______ Macon, Ga.

COLLEGE OF LIBERAL ARTS
MASTER OF ARTS
English
Susan Tankersley Findley ______ Greenville
Linda Lane Kay ___________ Fair Lawn, N. J.
Dwight Cletus Hartsell ______ Oakboro, N. C.
Nancy Ryerson Milliken ____ Lake Forest, Ill.

COLLEGE OF PHYSICAL, MATHEMATICAL, AND BIOLOGICAL SCIENCES
MASTER OF SCIENCE
Chemistry
Donna Eloise Hindman __________ Rock Hill

Mathematics
Colonel Jack Gaddy ________ Crescent Beach

Microbiology
Martha Lee Boswell __________ Florence

Physics
Wayne Thomas Davis _____ Hillsborough, N. C.
Charles Garrison Shirley, Jr. _______ Seneca

Zoology
John Frank Ellenberg, Jr. ______ Greenwood
DOCTORS’ DEGREES CONFERRED
DECEMBER 16, 1971

COLLEGE OF AGRICULTURAL SCIENCES
DOCTOR OF PHILOSOPHY
Agricultural Economics

John William McAlhany Reevesville
B.A., Furman University; M.S., Clemson University
Dissertation: An Economic Determination of the Optimum Size Cotton Gin for South Carolina

Marshall Burrell Richardson Charleston Heights
A.B., Newberry College; M.A., Clemson University
Dissertation: A Study of the Cost of Waste-Water Treatment to Wet Process Textile Plants in South Carolina

Entomology

John Carlton French Samson, Ala
B.S., M.S., Auburn University
Dissertation: The Damage and Control of the Lesser Cornstalk Borer, Elasmopaltus lignosellus (Zeller), on Peanuts and the Effect of Soil Moisture on Its Biology

Plant Pathology

James DeLos Arnett, Jr. North Augusta
B.S., M.S.; University of South Carolina
Dissertation: Studies on the Epidemiology, Etiology and Distribution of Fusarium Canker of Yellow Poplar in South Carolina

COLLEGE OF ENGINEERING
DOCTOR OF PHILOSOPHY
Engineering

Kumar Gobindram Bhatia Bombay, India
B.S., Ranchi University; M.M.E., University of Virginia
Dissertation: Optimization of Structures to Satisfy Aeroelastic Constraints (Field of Specialization: Mechanical Engineering)

Larry Gene Blackwell Philadelphia, Miss.
B.S., University of Mississippi; M.S., Georgia Institute of Technology
Dissertation: A Theoretical and Experimental Evaluation of the Transient Response of the Activated Sludge Process (Field of Specialization: Environmental Systems Engineering)

Daniel Harrington Hunt North Augusta
B.S., M.S., Clemson University
Dissertation: Oxygen Transport in the Brain, Microcirculation by a Hybrid Computer, Nonlinear Monte Carlo Method (Field of Specialization: Chemical Engineering)

Ramesh Chander Jain New Delhi, India
M.S., Clemson University
Dissertation: An Iterative Linear Programming Technique for Multi-Period, Multi-Plant and Multi-Product Scheduling with Discrete Cost Function (Field of Specialization: Electrical Engineering)
COLLEGE OF PHYSICAL, MATHEMATICAL, AND BIOLOGICAL SCIENCES

DOCTOR OF PHILOSOPHY

Chemistry

Alan Scott Day .. Marlboro, Mass.
B.S., Hampden-Sydney College; M.S., Clemson University
Dissertation: The Mechanism of Allylic Alcohol Isomerizations

Samuel Jones Price III ... Birmingham, Ala.
B.S., Emory University; M.S., Clemson University
Dissertation: Part I: A Total Synthesis of Piperovatine. Part II: Synthetic Approaches to the Acorone Sesquiterpenes

Mathematics

Francis Russell Richards ... Shreveport, La.
B.S., Louisiana Polytechnic Institute; M.S., Clemson University
Dissertation: Repairable Item Inventory Models

Physics

James Warren Cook, Jr. ... Mobile, Ala.
B.S., Auburn University; M.S., University of Alabama
Dissertation: Effect of Uniaxial Tension on the Superconducting Transition Temperature of Tin and Tin Alloy Whiskers

Leland Rose Kirkland, Jr. .. South Hill, Va.
B.S., Virginia Polytechnic Institute and State University; M.S., Emory University
Dissertation: Electron Irradiation Effects in Aluminum Single Crystals

Albert Bruce Pruitt ... Anderson
B.S., Presbyterian College; M.S., Clemson University
Dissertation: Radiation Damage in Polycrystal and Single Crystal Copper

Richard John Roedersheimer .. Covington, Ky.
A.B., Villa Madonna College; M.S., University of Dayton
Dissertation: On Two-and Three-Body Intermolecular Forces
DEGREES AWARDED IN 1970-71 BY MAJOR COURSES

ASSOCIATE DEGREES AWARDED IN 1970-71

<table>
<thead>
<tr>
<th>School of Nursing</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nursing</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Associate Degrees Awarded in 1970-71: 12

BACHELORS' DEGREES AWARDED IN 1970-71

<table>
<thead>
<tr>
<th>College of Agriculture and Biological Sciences *</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics</td>
<td>19</td>
</tr>
<tr>
<td>Agronomy</td>
<td>16</td>
</tr>
<tr>
<td>Animal Science</td>
<td>20</td>
</tr>
<tr>
<td>Biology</td>
<td>47</td>
</tr>
<tr>
<td>Dairy Science</td>
<td></td>
</tr>
<tr>
<td>Entomology</td>
<td>6</td>
</tr>
<tr>
<td>Food Science</td>
<td>0</td>
</tr>
<tr>
<td>Horticulture</td>
<td>12</td>
</tr>
<tr>
<td>Poultry Science</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Architecture</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>33</td>
</tr>
<tr>
<td>Building Construction</td>
<td>16</td>
</tr>
<tr>
<td>Pre-architecture</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Education</th>
<th>164</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Education</td>
<td>26</td>
</tr>
<tr>
<td>Elementary Education</td>
<td>39</td>
</tr>
<tr>
<td>Industrial Education</td>
<td>29</td>
</tr>
<tr>
<td>Science Teaching</td>
<td>14</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Engineering</th>
<th>212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Engineering</td>
<td>5</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>11</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>27</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>67</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>46</td>
</tr>
<tr>
<td>Engineering Analysis</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>51</td>
</tr>
<tr>
<td>Metallurgical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Forest and Recreation Resources</th>
<th>88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forestry</td>
<td>23</td>
</tr>
<tr>
<td>Recreation and Park Administration</td>
<td>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Industrial Management and Textile Science</th>
<th>184</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>5</td>
</tr>
<tr>
<td>Administrative Management</td>
<td>1</td>
</tr>
<tr>
<td>Arts and Sciences</td>
<td>69</td>
</tr>
<tr>
<td>Industrial Management</td>
<td>100</td>
</tr>
<tr>
<td>Textile Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>Textile Science</td>
<td>2</td>
</tr>
<tr>
<td>Textiles</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Liberal Arts</th>
<th>136</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Sciences</td>
<td>136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Physical and Mathematical Sciences †</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Sciences</td>
<td>9</td>
</tr>
<tr>
<td>Biology</td>
<td>9</td>
</tr>
<tr>
<td>Chemistry</td>
<td>15</td>
</tr>
<tr>
<td>Geology</td>
<td>5</td>
</tr>
</tbody>
</table>

* Changed to College of Agricultural Sciences July 1, 1971.
† Changed to College of Physical, Mathematical, and Biological Sciences July 1, 1971.
<table>
<thead>
<tr>
<th>Program</th>
<th>Degrees Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Bachelors' Degrees</td>
<td>1,110</td>
</tr>
<tr>
<td>Mathematics</td>
<td>17</td>
</tr>
<tr>
<td>Medical Technology</td>
<td>10</td>
</tr>
<tr>
<td>Physics</td>
<td>9</td>
</tr>
<tr>
<td>Pre-medicine</td>
<td>53</td>
</tr>
</tbody>
</table>

MASTERS' DEGREES AWARDED IN 1970-71

<table>
<thead>
<tr>
<th>College of Agricultural and Biological Sciences</th>
<th>Degrees Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics</td>
<td>1</td>
</tr>
<tr>
<td>Animal Science</td>
<td>3</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>1</td>
</tr>
<tr>
<td>Botany</td>
<td>2</td>
</tr>
<tr>
<td>Dairy Science</td>
<td>1</td>
</tr>
<tr>
<td>Entomology</td>
<td>2</td>
</tr>
<tr>
<td>Horticulture</td>
<td>3</td>
</tr>
<tr>
<td>Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>Nutrition</td>
<td>1</td>
</tr>
<tr>
<td>Poultry Science</td>
<td>1</td>
</tr>
<tr>
<td>Wildlife Biology</td>
<td>1</td>
</tr>
<tr>
<td>Zoology</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Education</th>
<th>Degrees Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Education</td>
<td>6</td>
</tr>
<tr>
<td>Education</td>
<td>130</td>
</tr>
<tr>
<td>Industrial Education</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Engineering</th>
<th>Degrees Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>8</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>8</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>1</td>
</tr>
<tr>
<td>Environmental Systems Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Materials Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Water Resources Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Forest and Recreation Resources</th>
<th>Degrees Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forestry</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Industrial Management and Textile Science</th>
<th>Degrees Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>1</td>
</tr>
<tr>
<td>Management</td>
<td>18</td>
</tr>
<tr>
<td>Textile Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>Textile Science</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Liberal Arts</th>
<th>Degrees Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>10</td>
</tr>
<tr>
<td>History</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Physical and Mathematical Sciences</th>
<th>Degrees Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics</td>
<td>12</td>
</tr>
<tr>
<td>Physics</td>
<td>4</td>
</tr>
<tr>
<td>Wildlife Biology</td>
<td>1</td>
</tr>
<tr>
<td>Zoology</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Masters' Degrees Awarded in 1970-71 282

* Changed to College of Agricultural Sciences July 1, 1971.
† Changed to College of Physical, Mathematical, and Biological Sciences July 1, 1971.
‡ Transferred to College of Physical, Mathematical, and Biological Sciences July 1, 1971.
DOCTORS' DEGREES AWARDED IN 1970-71

College of Agriculture and Biological Sciences
- Agricultural Economics: 3
- Agronomy: 1
- Animal Physiology: 2
- Entomology: 3
- Nutrition: 1

College of Engineering
- Agricultural Engineering: 1
- Bioengineering: 1
- Chemical Engineering: 4
- Civil Engineering: 1
- Electrical Engineering: 1
- Engineering Mechanics: 2
- Mechanical Engineering: 2

College of Industrial Management and Textile Science
- Engineering Management: 2

College of Physical and Mathematical Sciences
- Chemistry: 10
- Mathematics: 7
- Physics: 8

Total Doctors' Degrees Awarded in 1970-71: 49

Total Number Degrees Awarded in 1970-71: 1,453

TOTAL DEGREES AWARDED BY MAJOR COURSES, 1896-1971

Major Course

Associate Course
- Nursing: 98

Bachelors'
- Accounting: 5
- Administrative Management: 1
- Agricultural Chemistry: 102
- Agricultural Economics: 365
- Agricultural Education: 487
- Agricultural Engineering: 480
- Agriculture: 244
- Agriculture and Animal Industry: 80
- Agriculture and Chemistry: 69
- Agronomy: 795
- Animal Science: 819
- Applied Mathematics: 34
- Architectural Engineering: 118
- Architecture: 683
- Arts and Sciences: 1,839
- Bachelor of Science: 3
- Biology: 278
- Botany: 12
- Building Construction: 71
- Ceramic Engineering: 244
- Chemical Engineering: 469
- Chemistry: 413
- Chemistry and Geology: 11
- Chemistry-Engineering: 43
- Civil Engineering: 1,521

* Changed to College of Physical, Mathematical, and Biological Sciences July 1, 1971.
Major Course

Dairy Science ... 407
Education ... 242
Electrical Engineering 1,860
Elementary Education 99
Engineering Analysis 2
Engineering Industrial Education 70
Entomology ... 166
Food Science ... 15
Forestry ... 232
General Science 359
Geology ... 25
Horticulture ... 497
Industrial Education 439
Industrial Engineering 138
Industrial Management 1,261
Industrial Physics 56
Mathematics ... 136
Mechanical Engineering 1,613
Mechanical and Electrical Engineering 489
Medical Technology 25
Metallurgical Engineering 18
Physics ... 102
Poultry Science 53
Pre-architecture 40
Pre-medicine .. 577
Recreation and Park Administration 201
Science Teaching 58
Secondary Education 172
Soils .. 9
Textile Chemistry 331
Textile Engineering 1,060
Textile Industrial Education 85
Textile Management 306
Textile Manufacturing 1,045
Textile Science 42
Textiles .. 34
Veterinary Science 16
Vocational Agricultural Education 729
Weaving and Design 42

Double Majors

Agricultural Chemistry and Arts and Sciences 1
Agricultural Chemistry and General Science 1
Agricultural Economics and Animal Husbandry 1
Agricultural Economics and Vocational Agricultural Education 1
Agricultural Engineering and Civil Engineering 2
Agricultural Engineering and Electrical Engineering 1
Agricultural Engineering and Mechanical Engineering 1
Agronomy and Agricultural Education 4
Agronomy and Vocational Agricultural Education 1
Animal Husbandry and Industrial Management 1
Animal Husbandry and Vocational Agricultural Education 5
Animal Husbandry and Agricultural Education 3
Animal Husbandry and Ceramic Engineering 1
Animal Husbandry and Dairy 1
Architectural Engineering and Architecture, five-year 1
Architecture and Architectural Engineering 11
Architecture and Civil Engineering 1
Architecture, four-year, and Architecture, five-year 18
Architecture, four-year, and Mechanical Engineering 1
Major Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Sciences and Agricultural Economics</td>
<td>1</td>
</tr>
<tr>
<td>Chemical Engineering and Chemistry and Chemistry-Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Chemical Engineering and Chemistry-Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Chemical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Chemistry-Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and General Science</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Industrial Physics</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Agricultural Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering and Architecture</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering and Chemistry and Geology</td>
<td>2</td>
</tr>
<tr>
<td>Civil Engineering and Industrial Physics</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering and Electrical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering and Mechanical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Engineering and Applied Mathematics</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Engineering and Industrial Physics</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Engineering and Mechanical Engineering</td>
<td>17</td>
</tr>
<tr>
<td>Electrical Engineering and Textile Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Entomology and Architecture, five-year</td>
<td>1</td>
</tr>
<tr>
<td>Entomology and Pre-medicine</td>
<td>1</td>
</tr>
<tr>
<td>General Science and Ceramic Engineering</td>
<td>1</td>
</tr>
<tr>
<td>General Science and Education</td>
<td>1</td>
</tr>
<tr>
<td>General Science and Electrical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Horticulture and Agronomy</td>
<td>1</td>
</tr>
<tr>
<td>Horticulture and Architectural Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Horticulture and Civil Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Education and Architecture</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Education and Electrical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Education and Forestry</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Engineering and Mechanical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Mechanical Engineering and Textile Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Poultry and Vocational Agricultural Education</td>
<td>1</td>
</tr>
<tr>
<td>Pre-medicine and Arts and Sciences</td>
<td>1</td>
</tr>
<tr>
<td>Pre-medicine and Textile Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>Textile Chemistry and Civil Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Textile Chemistry and Textile Manufacturing</td>
<td>1</td>
</tr>
<tr>
<td>Textile Engineering and Civil Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Textile Engineering and Mechanical and Electrical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Textile Engineering and Textile Industrial Education</td>
<td>1</td>
</tr>
<tr>
<td>Textile Engineering and Textile Manufacturing</td>
<td>1</td>
</tr>
<tr>
<td>Textile Engineering and Weaving and Designing</td>
<td>1</td>
</tr>
<tr>
<td>Textile Manufacturing and Mechanical Engineering</td>
<td>1</td>
</tr>
</tbody>
</table>

Masters'

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics</td>
<td>82</td>
</tr>
<tr>
<td>Agricultural Education</td>
<td>89</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>40</td>
</tr>
<tr>
<td>Agronomy</td>
<td>29</td>
</tr>
<tr>
<td>Animal Science</td>
<td>29</td>
</tr>
<tr>
<td>Architecture</td>
<td>6</td>
</tr>
<tr>
<td>Bacteriology</td>
<td>6</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>1</td>
</tr>
<tr>
<td>Bioengineering</td>
<td>6</td>
</tr>
<tr>
<td>Botany</td>
<td>4</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>64</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>53</td>
</tr>
<tr>
<td>Chemistry</td>
<td>99</td>
</tr>
<tr>
<td>City and Regional Planning</td>
<td>2</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>53</td>
</tr>
<tr>
<td>Dairy Science</td>
<td>22</td>
</tr>
<tr>
<td>Economics</td>
<td>7</td>
</tr>
</tbody>
</table>
Major Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>378</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>48</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>9</td>
</tr>
<tr>
<td>English</td>
<td>29</td>
</tr>
<tr>
<td>Entomology</td>
<td>64</td>
</tr>
<tr>
<td>Environmental Systems Engineering</td>
<td>26</td>
</tr>
<tr>
<td>Forestry</td>
<td>10</td>
</tr>
<tr>
<td>History</td>
<td>8</td>
</tr>
<tr>
<td>Horticulture</td>
<td>67</td>
</tr>
<tr>
<td>Industrial Education</td>
<td>54</td>
</tr>
<tr>
<td>Industrial Management</td>
<td>36</td>
</tr>
<tr>
<td>Management</td>
<td>28</td>
</tr>
<tr>
<td>Materials Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>63</td>
</tr>
<tr>
<td>Microbiology</td>
<td>9</td>
</tr>
<tr>
<td>Nuclear Science</td>
<td>9</td>
</tr>
<tr>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>Physics</td>
<td>62</td>
</tr>
<tr>
<td>Plant Pathology</td>
<td>17</td>
</tr>
<tr>
<td>Plant Physiology</td>
<td>2</td>
</tr>
<tr>
<td>Poultry Science</td>
<td>16</td>
</tr>
<tr>
<td>Textile Chemistry</td>
<td>50</td>
</tr>
<tr>
<td>Textile Industrial Education</td>
<td>1</td>
</tr>
<tr>
<td>Textile Science</td>
<td>11</td>
</tr>
<tr>
<td>Textiles</td>
<td>1</td>
</tr>
<tr>
<td>Water Resources Engineering</td>
<td>26</td>
</tr>
<tr>
<td>Wildlife Biology</td>
<td>2</td>
</tr>
<tr>
<td>Zoology</td>
<td>62</td>
</tr>
</tbody>
</table>

Doctors’

<table>
<thead>
<tr>
<th>Course</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics</td>
<td>11</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Agronomy</td>
<td>13</td>
</tr>
<tr>
<td>Animal Physiology</td>
<td>5</td>
</tr>
<tr>
<td>Bioengineering</td>
<td>5</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>15</td>
</tr>
<tr>
<td>Chemical Physics</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry</td>
<td>55</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>5</td>
</tr>
<tr>
<td>Engineering Management</td>
<td>6</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>Entomology</td>
<td>24</td>
</tr>
<tr>
<td>Environmental Systems Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Materials Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>16</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>6</td>
</tr>
<tr>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>Physics</td>
<td>32</td>
</tr>
<tr>
<td>Plant Pathology</td>
<td>7</td>
</tr>
<tr>
<td>Zoology</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Degrees Awarded 1896-1971 24,454
<table>
<thead>
<tr>
<th>County</th>
<th>Total</th>
<th>State or Country</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbeville</td>
<td>65</td>
<td>Delaware</td>
<td>32</td>
</tr>
<tr>
<td>Aiken</td>
<td>147</td>
<td>District of Columbia</td>
<td>15</td>
</tr>
<tr>
<td>Allendale</td>
<td>17</td>
<td>Ecuador</td>
<td>1</td>
</tr>
<tr>
<td>Anderson</td>
<td>554</td>
<td>England</td>
<td>3</td>
</tr>
<tr>
<td>Bamberg</td>
<td>25</td>
<td>Ethiopia</td>
<td>1</td>
</tr>
<tr>
<td>Barnwell</td>
<td>31</td>
<td>Florida</td>
<td>159</td>
</tr>
<tr>
<td>Beaufort</td>
<td>34</td>
<td>France</td>
<td>1</td>
</tr>
<tr>
<td>Berkeley</td>
<td>51</td>
<td>Georgia</td>
<td>248</td>
</tr>
<tr>
<td>Calhoun</td>
<td>23</td>
<td>Germany</td>
<td>1</td>
</tr>
<tr>
<td>Charleston</td>
<td>337</td>
<td>Guatemala</td>
<td>1</td>
</tr>
<tr>
<td>Cherokee</td>
<td>62</td>
<td>Hawaii</td>
<td>3</td>
</tr>
<tr>
<td>Chester</td>
<td>58</td>
<td>Hong Kong</td>
<td>5</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>46</td>
<td>Illinois</td>
<td>12</td>
</tr>
<tr>
<td>Clarendon</td>
<td>41</td>
<td>India</td>
<td>18</td>
</tr>
<tr>
<td>Colleton</td>
<td>60</td>
<td>Indiana</td>
<td>8</td>
</tr>
<tr>
<td>Darlington</td>
<td>102</td>
<td>Iowa</td>
<td>5</td>
</tr>
<tr>
<td>Dillon</td>
<td>41</td>
<td>Israel</td>
<td>1</td>
</tr>
<tr>
<td>Dorchester</td>
<td>75</td>
<td>Japan</td>
<td>2</td>
</tr>
<tr>
<td>Edgefield</td>
<td>37</td>
<td>Kentucky</td>
<td>15</td>
</tr>
<tr>
<td>Fairfield</td>
<td>34</td>
<td>Lebanon</td>
<td>2</td>
</tr>
<tr>
<td>Florence</td>
<td>162</td>
<td>Libya</td>
<td>1</td>
</tr>
<tr>
<td>Georgetown</td>
<td>29</td>
<td>Louisiana</td>
<td>17</td>
</tr>
<tr>
<td>Greenville</td>
<td>993</td>
<td>Maine</td>
<td>1</td>
</tr>
<tr>
<td>Greenwood</td>
<td>212</td>
<td>Maryland</td>
<td>177</td>
</tr>
<tr>
<td>Hampton</td>
<td>36</td>
<td>Massachusetts</td>
<td>32</td>
</tr>
<tr>
<td>Horry</td>
<td>117</td>
<td>Michigan</td>
<td>7</td>
</tr>
<tr>
<td>Jasper</td>
<td>15</td>
<td>Minnesota</td>
<td>2</td>
</tr>
<tr>
<td>Kershaw</td>
<td>77</td>
<td>Mississippi</td>
<td>5</td>
</tr>
<tr>
<td>Lancaster</td>
<td>66</td>
<td>Missouri</td>
<td>4</td>
</tr>
<tr>
<td>Laurens</td>
<td>120</td>
<td>Nebraska</td>
<td>1</td>
</tr>
<tr>
<td>Lee</td>
<td>22</td>
<td>New Hampshire</td>
<td>2</td>
</tr>
<tr>
<td>Lexington</td>
<td>135</td>
<td>New Jersey</td>
<td>265</td>
</tr>
<tr>
<td>McCormick</td>
<td>11</td>
<td>New Mexico</td>
<td>2</td>
</tr>
<tr>
<td>Marion</td>
<td>39</td>
<td>New York</td>
<td>158</td>
</tr>
<tr>
<td>Marlboro</td>
<td>29</td>
<td>Nicaragua</td>
<td>1</td>
</tr>
<tr>
<td>Newberry</td>
<td>75</td>
<td>North Carolina</td>
<td>242</td>
</tr>
<tr>
<td>Oconee</td>
<td>246</td>
<td>North Dakota</td>
<td>2</td>
</tr>
<tr>
<td>Orangeburg</td>
<td>158</td>
<td>Ohio</td>
<td>40</td>
</tr>
<tr>
<td>Pickens</td>
<td>587</td>
<td>Oklahoma</td>
<td>3</td>
</tr>
<tr>
<td>Richland</td>
<td>277</td>
<td>Oregon</td>
<td>1</td>
</tr>
<tr>
<td>Saluda</td>
<td>41</td>
<td>Pakistan</td>
<td>4</td>
</tr>
<tr>
<td>Spartanburg</td>
<td>290</td>
<td>Panama</td>
<td>2</td>
</tr>
<tr>
<td>Sumter</td>
<td>169</td>
<td>Pennsylvania</td>
<td>137</td>
</tr>
<tr>
<td>Union</td>
<td>29</td>
<td>Peru</td>
<td>3</td>
</tr>
<tr>
<td>Williamsburg</td>
<td>33</td>
<td>Puerto Rico</td>
<td>5</td>
</tr>
<tr>
<td>York</td>
<td>160</td>
<td>Rhode Island</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South Carolina Total</td>
<td>5,968</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State or Country</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>36</td>
</tr>
<tr>
<td>Argentina</td>
<td>2</td>
</tr>
<tr>
<td>Arizona</td>
<td>1</td>
</tr>
<tr>
<td>Arkansas</td>
<td>5</td>
</tr>
<tr>
<td>California</td>
<td>11</td>
</tr>
<tr>
<td>Canada</td>
<td>2</td>
</tr>
<tr>
<td>Canal Zone</td>
<td>7</td>
</tr>
<tr>
<td>Chile</td>
<td>1</td>
</tr>
<tr>
<td>Colombia</td>
<td>1</td>
</tr>
<tr>
<td>Colorado</td>
<td>3</td>
</tr>
<tr>
<td>Connecticut</td>
<td>45</td>
</tr>
</tbody>
</table>

Grand Total 7,965
ENROLLMENT BY COUNTIES
FIRST SEMESTER, 1971-72 (Greenville and Sumter Campuses)

<table>
<thead>
<tr>
<th>County</th>
<th>Greenville</th>
<th>Sumter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aiken</td>
<td>14</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Anderson</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Barnwell</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Berkeley</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Charleston</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Clarendon</td>
<td>18</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td>Colleton</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Darlington</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Florence</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Greenville</td>
<td>208</td>
<td>209</td>
<td>417</td>
</tr>
<tr>
<td>Jasper</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Kershaw</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Laurens</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Lee</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Lexington</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Marion</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Newberry</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Orangeburg</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pickens</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Richland</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Spartanburg</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Sumter</td>
<td>182</td>
<td>182</td>
<td>364</td>
</tr>
<tr>
<td>Williamsburg</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>244</td>
<td>230</td>
<td>474</td>
</tr>
</tbody>
</table>

South Carolina Total 474
TOTAL ENROLLMENT BY COURSES AND ACADEMIC CLASSIFICATION, CLEMSON UNIVERSITY
FIRST SEMESTER, 1971-72

<table>
<thead>
<tr>
<th>Major Course</th>
<th>Freshman (Semester)</th>
<th>Sophomore (Semester)</th>
<th>Junior (Semester)</th>
<th>Senior (Semester)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
<td>2nd</td>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>14</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Agricultural Mechanization</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agriculture</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agronomy</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Animal Industries</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Animal Physiology</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Animal Science</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Dairy Science</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Entomology</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Food Science</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Horticulture</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Nutrition</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plant Pathology</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plant Physiology</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plant Sciences</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Poultry Science</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Pre-veterinary</td>
<td>51</td>
<td>10</td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>Wildlife Biology</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>118</td>
<td>26</td>
<td>62</td>
<td>13</td>
</tr>
<tr>
<td>Education (Non-Degree)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Admin, and Supervision</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agricultural Education</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Early Childhood Education</td>
<td>32</td>
<td>3</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Elementary Education</td>
<td>98</td>
<td>27</td>
<td>81</td>
<td>17</td>
</tr>
<tr>
<td>Industrial Education</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Personnel Services</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reading</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Science Teaching</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>65</td>
<td>23</td>
<td>70</td>
<td>15</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>107</td>
<td>28</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>Engineering</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bio-Engineering</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>55</td>
<td>6</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>65</td>
<td>28</td>
<td>46</td>
<td>9</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>96</td>
<td>18</td>
<td>47</td>
<td>10</td>
</tr>
<tr>
<td>Engineering Analysis</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Environmental Sys. Eng.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Materials Engineering</td>
<td>64</td>
<td>18</td>
<td>34</td>
<td>7</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metallurgical Engineering</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Technical Operations</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Water Resources Eng.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>316</td>
<td>77</td>
<td>181</td>
<td>44</td>
</tr>
<tr>
<td>Forestry</td>
<td>77</td>
<td>22</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>Recreation and Park Admin.</td>
<td>75</td>
<td>43</td>
<td>33</td>
<td>19</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>152</td>
<td>65</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>Major Course</td>
<td>Freshman (Semester)</td>
<td>Sophomore (Semester)</td>
<td>Junior (Semester)</td>
<td>Senior (Semester)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>1st 2nd</td>
<td>1st 2nd</td>
<td>1st 2nd</td>
<td>1st 2nd</td>
</tr>
<tr>
<td>Accounting</td>
<td>30 4</td>
<td>20 10</td>
<td>9 7</td>
<td>8 1</td>
</tr>
<tr>
<td>Administrative Management</td>
<td>105 52</td>
<td>71 19</td>
<td>71 14</td>
<td>18 7</td>
</tr>
<tr>
<td>Economics</td>
<td>13 8</td>
<td>14 8</td>
<td>19 15</td>
<td>54 20</td>
</tr>
<tr>
<td>Engineering Management</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Financial Management</td>
<td>49 12</td>
<td>29 15</td>
<td>13 7</td>
<td>2 2</td>
</tr>
<tr>
<td>Industrial Management</td>
<td>49 15</td>
<td>24 18</td>
<td>57 24</td>
<td>48 34</td>
</tr>
<tr>
<td>Management</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Textile and Polymer Sci.</td>
<td>4 1</td>
<td>4 1</td>
<td>3 0</td>
<td>6 1</td>
</tr>
<tr>
<td>Textile Chemistry</td>
<td>4 2</td>
<td>5 2</td>
<td>1 1</td>
<td>6 1</td>
</tr>
<tr>
<td>Textiles</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>254 94</td>
<td>167 73</td>
<td>173 68</td>
<td>142 66</td>
</tr>
<tr>
<td>Liberal Arts (Undeclared)</td>
<td>35 5</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>English</td>
<td>36 10</td>
<td>27 13</td>
<td>22 10</td>
<td>22 13</td>
</tr>
<tr>
<td>French</td>
<td>4 2</td>
<td>2 2</td>
<td>2 0</td>
<td>4 1</td>
</tr>
<tr>
<td>German</td>
<td>1 0</td>
<td>2 0</td>
<td>0 1</td>
<td>1 1</td>
</tr>
<tr>
<td>History</td>
<td>43 9</td>
<td>14 12</td>
<td>22 5</td>
<td>18 8</td>
</tr>
<tr>
<td>Political Science</td>
<td>52 20</td>
<td>39 12</td>
<td>24 14</td>
<td>38 8</td>
</tr>
<tr>
<td>Psychology</td>
<td>9 30</td>
<td>36 16</td>
<td>47 19</td>
<td>27 5</td>
</tr>
<tr>
<td>Sociology</td>
<td>38 6</td>
<td>15 5</td>
<td>19 6</td>
<td>8 7</td>
</tr>
<tr>
<td>Spanish</td>
<td>3 2</td>
<td>2 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>303 84</td>
<td>137 60</td>
<td>138 55</td>
<td>118 43</td>
</tr>
<tr>
<td>Nursing (A.A.)</td>
<td>33 6</td>
<td>16 2</td>
<td>4 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Nursing (B.S.)</td>
<td>76 8</td>
<td>31 4</td>
<td>18 4</td>
<td>3 0</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>109 14</td>
<td>47 6</td>
<td>22 4</td>
<td>3 0</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Biology</td>
<td>52 10</td>
<td>10 3</td>
<td>11 7</td>
<td>2 3</td>
</tr>
<tr>
<td>Botany</td>
<td>3 1</td>
<td>4 1</td>
<td>3 1</td>
<td>2 0</td>
</tr>
<tr>
<td>Chemical Physics</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Chemistry (B.A.)</td>
<td>4 0</td>
<td>2 0</td>
<td>2 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Chemistry (B.S.)</td>
<td>19 2</td>
<td>3 2</td>
<td>3 2</td>
<td>5 2</td>
</tr>
<tr>
<td>Geology (B.A.)</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Geology (B.S.)</td>
<td>4 0</td>
<td>3 1</td>
<td>3 0</td>
<td>3 0</td>
</tr>
<tr>
<td>Mathematics (B.A.)</td>
<td>25 0</td>
<td>6 1</td>
<td>5 3</td>
<td>3 2</td>
</tr>
<tr>
<td>Mathematics (B.S.)</td>
<td>59 10</td>
<td>43 6</td>
<td>17 6</td>
<td>19 2</td>
</tr>
<tr>
<td>Medical Technology</td>
<td>35 4</td>
<td>6 1</td>
<td>5 4</td>
<td>0 0</td>
</tr>
<tr>
<td>Microbiology</td>
<td>9 4</td>
<td>19 0</td>
<td>20 4</td>
<td>5 2</td>
</tr>
<tr>
<td>Physics (B.A.)</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Physics (B.S.)</td>
<td>12 3</td>
<td>9 2</td>
<td>3 5</td>
<td>1 0</td>
</tr>
<tr>
<td>Pre-dentistry</td>
<td>43 9</td>
<td>21 4</td>
<td>21 4</td>
<td>10 1</td>
</tr>
<tr>
<td>Pre-medicine</td>
<td>99 9</td>
<td>43 3</td>
<td>31 10</td>
<td>42 6</td>
</tr>
<tr>
<td>Pre-pharmacy</td>
<td>22 5</td>
<td>9 1</td>
<td>1 1</td>
<td>0 0</td>
</tr>
<tr>
<td>Zoology</td>
<td>23 14</td>
<td>29 9</td>
<td>31 11</td>
<td>33 22</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>409 71</td>
<td>213 35</td>
<td>167 56</td>
<td>137 50</td>
</tr>
<tr>
<td>Total</td>
<td>1,983 527 1,104 324</td>
<td>1,119 386 892 491</td>
<td>6,826</td>
<td>971</td>
</tr>
<tr>
<td>Graduate—Master’s Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate—Ph.D. Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postgraduate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Degree Students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenville Campus</td>
<td>244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumter Campus</td>
<td>323</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Campus Institutes</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBA Program at Greenville</td>
<td>925</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>925</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Includes two in first semester of the fifth year.
(b) Includes six in first semester of the fifth year.
(c) Includes five in the second semester of the fifth year.
(d) Includes two in the second semester of the fifth year.
INDEX

Academic Regulations, 100
Accounting, 114, 183, 230
Division, 50, 57
Accreditation, Clemson University, 56
Administration
Academic, 9
Business and Financial Affairs, 50
Development Activities, 51
Student Affairs, 52
Administrative Council, 50
Officers and Staff, 9
Organization, 56
Management, 114, 184
Admissions
Foreign Students, 61
Office, 52, 58, 61
Requirements, 58
Advanced Placement by Examination, 60
Aerospace Studies, 231
Agricultural
Economics, 114, 117, 233
Education, 114, 117, 155, 235
Engineering, 115, 120, 166, 236
Mechanization, 239
Sciences, College of, 9, 76, 114, 115
Agriculture, 239
Agronomy, 117, 128, 240
Air Force ROTC, 78
Alpha Epsilon Delta, 92
Alpha Phi Omega, 92
Alpha Zeta, 92
Alumni, 51
Relations, 51, 57, 84
Angel Flight, 92
Animal Industries, 114, 121
Psyclology, 243
Science, 115, 122, 243
Application for Admission, 59
Architecture
College of, 10, 76, 114, 135
Courses in, 248
Army ROTC, 79
Arnold Air Society, 92
Art and Architectural History, 245
Arts and Sciences, 115
Astronomy, 250
Athletic Activities, 96
Council, 53
Staff, 53
Auditing, 64, 106
Automobile Regulations, 97
Auxiliary Enterprises, 50, 57
Bands, University, 89
Bequest, Clemson, 83
Biochemistry, 251
Bioengineering, 252
Biological Sciences, 160
Biology, 115, 117, 126, 254
Block and Bridle Club, 92
Blue Key, 92
Board
And Room Rates, 64
Of Trustees, University, 8
Of Visitors, 8
Books and Supplies, Cost, 67
Bookstore, 53, 58, 88
Botany, 115, 211, 254
Building
Construction, 114, 138, 141
Science, 256
Buildings and Grounds, 75
Calendar, 4
Calhoun Mansion, 75
Canteens, University, 53, 58, 88
Central Dance Association, 91
Ceramic Arts, 257
Engineering, 168, 258
Chemical Engineering, 170, 261
Chemistry, 115, 161, 206, 212, 265
Chorus, University, 89
City and Regional Planning, 138, 270
Civil Engineering, 172, 271
Classification of Students, 105
Clemson House Hotel, 50, 57, 77
Players, 89
Thomas G., 75, 82
Clubs, Student, 91
College of Agricultural Sciences, 115
Architecture, 135
Education, 142
Engineering, 164
Forest and Recreation Resources, 180
Industrial Management and Textile Science, 183
Liberal Arts, 194
Nursing, 202
Physical, Mathematical and Biological Sciences, 204
Committees, University, 47
Communications Center, University, 51, 57
Community Services, 91
Computer Science, 275
Counseling, 52, 74
Course Descriptions, 230
Prerequisite, 106
Rescheduling of, 102
Credit
By Examination, 104
Load, 106
System, 100
Transfer of, 50, 105
Cultural Activities, 88
Curriculums, 114
Dairy Science, 115, 117, 123, 277
Deans, 9
Deferral, 61
Degrees, 112
Associate in Arts, 113
Bachelor of Arts, 112
Science, 112
Graduate, 113
Delta Sigma Rho, 92
Depository, Student, 67
Description of Courses, 230
Diploma, 108
Dormitories (See Residence Dropping Classwork), 102
Early Childhood Education, 143
Earth Science, 161
Economics, 114, 146, 186, 278
Agricultural, 114, 117, 233
Education Agricultural, 57, 114, 155
College of, 10, 76, 114, 142
Courses in, 283
Early Childhood, 114, 143
Elementary, 114, 144
Industrial, 114, 156
Secondary, 145
Educational Benefits to Veterans, War Orphans, 61
Council, 11
Electrical and Computer Engineering, 174, 288
Elementary Education, 144
Index

Engineering
 Agricultural, 114, 166, 236
 Analysis, 114, 165
 Basic Curriculum, 164
 Ceramic, 114, 168, 258
 Chemical, 114, 170, 261
 Civil, 114, 172, 271
 College of, 10, 76, 114, 164
 Courses in, 297
 Electrical and Computer, 114, 174, 288
 Environmental Systems, 311
 Graphics, 298
 Management, 299
 Mechanical, 177, 360
 Mechanics, 299
 English, 147, 197, 302
 Entomology, 114, 117, 126, 309
 Entrance
 Examination, 59
 Requirements, 58
 Environmental
 Health, 311
 Systems Engineering, 311
 Examinations, Credit by, 104
 Executive Officers, 9
 Expenses, 62
 Experimental Statistics, 313

Faculty, Listing of, 12

Fees
 Board and Room, 64
 Late Registration, 64
 Medical, 63
 Refund, 62, 69

Financial
 Aid, 73
 Management, 114, 188
 Fluid Mechanics, 313

Food
 Science, 114, 117, 127, 314
 Service, 70

Foreign Students
 Admission, 61
 Affairs, 91

Forest and Recreation Resource,
 College of, 10, 57, 76, 114, 180

Forestry, 114, 180, 316

Fort Hill Estate, 82

Foundations, 85, 136

Fraternities, 95

French, 59, 319

Freshman Orientation, 60

Genetics, 322

Geography, 322

Geology, 115, 206, 213, 323

German, 59, 150, 325

Grade Point Average, 103

Grading System, 100

Health
 Center, Redfern, 72
 Insurance, 73
 Service, 52, 72

History, 114, 148, 197, 327
 And Visual Studies, 139
 Of the University, 82
 Honor Graduates, 107

Honors
 And Awards, 74, 107
 Program, 107

Horticulture, 117, 130, 332

Hospital and Health Services
 Administration, 334

Housing
 Married Student, 70
 Undergraduate, 67

Humanities, 335

Incomplete Work, 101

Industrial
 Arts, 158
 Education, 156, 335
 Engineering, 341
 Management, 114, 190, 342
 And Textile Science, College of, 10, 57, 76, 114, 183

Infirmary, 72

Information, General, 56

Insurance, Accident and Health, 73

Iota Lambda Sigma, 92

Languages (See Modern Languages)
 Late Registration Fee, 64
 Laundry, 71
 Lecture Series, 89

Liberal Arts
 College of, 11, 57, 76, 114, 194
 Majors in, 197

Library, 11, 47, 76

Littlejohn Coliseum, 53, 58, 76, 96

Location of University, 84

Management, 346

Science, 346

Materials Engineering, 347

Mathematics, 115, 149, 162, 202, 215, 350

Matriculation, 61

Mechanical Engineering, 177, 360

Medical
 Examination, 71
 Fee, 63, 72
 Technology, 115, 217, 365

Medicine, 5-Year Integrated
 Curriculum, 225

Microbiology, 115, 219, 367

Military
 Science, 77, 369
 Training, 77

Modern Languages, 114, 150, 198

Curriculum, 150

French, 150, 319

German, 150, 325

Russian, 396

Spanish, 150, 399

Music, 371

Activities, 52, 88

Natural Sciences, 151

Nonresident Students, Charges, 63

Nursing, 373

College of, 11, 57, 76, 114, 202

Nutrition, 376

Officers and Staff, Administrative, 9

Organizations, Department and
 Professional, 93

Pass-Fail Option, 101

Pershing Rifles, 92

Personnel, 8, 50, 57

Phi Eta Sigma, 92

Phi Kappa Phi, 92

Philosophy, 377

Physical
 Mathematical and Biological Sciences,
 College of, 11, 57, 76, 115, 204
 Plant Division, 50, 57
 Science, 378
 Sciences, 163

Physics, 115, 208, 220, 379

Placement Services, 75

Plant
 Pathology, 384
 Sciences, 115, 117, 128, 131

Political Science, 152, 198, 385

Poultry Science, 115, 117, 124, 388

Pre-Professional Study
 Pre-architecture, 114, 139
 Pre-medicine and Pre-dentistry, 223
Index

Pre-pharmacy, 115, 228
Pre-veterinary Medicine, 114, 132
President, University, 9, 12, 50, 56
Psychology, 114, 153, 199, 390
Public Relations, 51, 57
Publications, Student, 88
Purchasing Division, 50, 57
Radio Station WSBF, 88, 92
Recreation and Park Administration, 114, 182, 392
Refund of Fees, 62, 69
Registration, 64
Religion, Courses in, 395
Religious Life, 90
Reports, Scholastic, 100
Requirements
 Admission, 58
 Continuing Enrollment, 104
 Graduation, 108
Research, University, 11
Residence
 Definition of, 65
 Halls, 64, 67, 76, 79
 Requirement for Graduation, 107
ROTC (See Air Force ROTC, Army ROTC)
Rural Sociology, 395
Russian, 59, 396
Scabbard and Blade, 92
Schedule of Charges, 63
Scholarships, 80
Scholastic Aptitude Test, 59
 Regulations, 100
Science Teaching, 114, 160
Secondary Education, 114, 145
Selective Service, 61
Sigma Xi, 92
Societies, National Recognition, 92
Sociology, 114, 154, 199, 396
Sororities, 95
Spanish, 59, 150, 399
Student Affairs, 52, 58
 Center, 88
 Counseling, 74
 Financial Aid, 73
 Government, 88
 Health Service, 52, 58, 72
 Housing, 67
 Organizations, 89
 Publications, 88
 Tau Beta Pi, 92
 Tau Sigma Delta, 92
Teaching Areas
 Science, 160
 Secondary, 146
Technical Operation, 165, 401
Test,
 Architectural Aptitude, 60, 137
 Scholastic Aptitude (SAT), 59
Textile
 Chemistry, 114, 191, 402
 Science, 114, 193, 404
Theatrical Activities, 88
Transcripts, 67
Tuition, 63
University
 Committees, 47
 Union, 53, 58, 90
Veterans, Educational Benefits, 61
Visitors, Board of, 8
Visual Studies, 139, 408
Vocational-Technical Education, 159
Water Resources Engineering, 411
Wildlife Biology, 412
Withdrawals
 From Course, 101
 From University, 103
Xi Sigma Pi, 92
YMCA, 90
Zoology, 115, 228, 413