This general university catalog contains information of particular interest to prospective students and to undergraduates. Students interested in graduate work should request the Graduate School Bulletin from the Dean of the Graduate School.

The information section on pages 50-102 contains information about admission requirements, expenses, buildings and grounds, housing facilities and ROTC. Educational benefits for veterans and current Selective Service regulations may be found on page 55.

The forty-seven curriculums of the University are listed on page 125 and the Colleges, Schools and their major courses are described in detail beginning of the following pages: Agriculture and Biological Sciences, page 126; Architecture, page 148; Education, page 153; Engineering, page 174; Industrial Management and Textile Science, page 186; Liberal Arts, page 195; Nursing, page 203; Physical and Mathematical Sciences, page 204.

The courses of the University are listed alphabetically in the Description of Courses section beginning on page 222.

For information on admissions, entrance and placement examinations, and transfer credits write the Office of Admissions and Registration. For information on family housing on the campus, write the Associate Director of Housing.

Clemson University offers equal educational opportunity to all persons without regard to race, creed, color or national origin.

This policy applies in all matters, including:

1. Admission and education of students.
2. Availability of student loans, grants, scholarships and job opportunities.
3. Employment and promotion of teaching and non-teaching personnel.
4. Student and faculty housing situated on premises owned or occupied by the University.
5. Off-campus housing not owned by the University but listed with the University for referral purposes.
6. Activities conducted on premises owned or occupied by the University.
CLEMSON UNIVERSITY

RECORD
SEVENTY-SEVENTH YEAR

CATALOG NUMBER
1969-70

PRELIMINARY ANNOUNCEMENTS, 1970-71

Published quarterly by Clemson University, Clemson, South Carolina
Second-class postage paid at Clemson, South Carolina
### 1969

#### Calendar

<table>
<thead>
<tr>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

#### September

<table>
<thead>
<tr>
<th>SEPTEMBER</th>
<th>OCTOBER</th>
<th>NOVEMBER</th>
<th>DECEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

#### January

<table>
<thead>
<tr>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

#### May

<table>
<thead>
<tr>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

#### September

<table>
<thead>
<tr>
<th>SEPTEMBER</th>
<th>OCTOBER</th>
<th>NOVEMBER</th>
<th>DECEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

#### January

<table>
<thead>
<tr>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

#### May

<table>
<thead>
<tr>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

#### September

<table>
<thead>
<tr>
<th>SEPTEMBER</th>
<th>OCTOBER</th>
<th>NOVEMBER</th>
<th>DECEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

#### January

<table>
<thead>
<tr>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

#### May

<table>
<thead>
<tr>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PART I—PERSONNEL</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board of Trustees, Board of Visitors</td>
<td>7</td>
</tr>
<tr>
<td>Executive and Administrative Officers and Staff</td>
<td>8</td>
</tr>
<tr>
<td>Teaching and Research Faculties</td>
<td>9</td>
</tr>
<tr>
<td>Emeritus Faculty</td>
<td>12</td>
</tr>
<tr>
<td>Library Staff</td>
<td>39</td>
</tr>
<tr>
<td>Standing Committees of the University</td>
<td>41</td>
</tr>
<tr>
<td>Administration of Business and Financial Affairs</td>
<td>41</td>
</tr>
<tr>
<td>Administration of Development Activities</td>
<td>44</td>
</tr>
<tr>
<td>Administration of Student Affairs</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART II—INFORMATION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Organization</td>
<td>49</td>
</tr>
<tr>
<td>Requirements for Admission</td>
<td>50</td>
</tr>
<tr>
<td>Educational Benefits for Veterans</td>
<td>52</td>
</tr>
<tr>
<td>Selective Service Regulations</td>
<td>55</td>
</tr>
<tr>
<td>Expenses</td>
<td>55</td>
</tr>
<tr>
<td>Student Housing</td>
<td>56</td>
</tr>
<tr>
<td>Student Food Service</td>
<td>62</td>
</tr>
<tr>
<td>Student Health Service</td>
<td>65</td>
</tr>
<tr>
<td>Student Financial Aid</td>
<td>67</td>
</tr>
<tr>
<td>Honors and Awards</td>
<td>68</td>
</tr>
<tr>
<td>Guidance Services</td>
<td>79</td>
</tr>
<tr>
<td>Counseling Services</td>
<td>90</td>
</tr>
<tr>
<td>Placement Services</td>
<td>91</td>
</tr>
<tr>
<td>Buildings and Grounds</td>
<td>91</td>
</tr>
<tr>
<td>Reserve Officers’ Training Corps</td>
<td>92</td>
</tr>
<tr>
<td>Historical Statement</td>
<td>93</td>
</tr>
<tr>
<td>Location</td>
<td>98</td>
</tr>
<tr>
<td>Alumni Relations</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART III—STUDENT LIFE AND ACTIVITIES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Body</td>
<td>103</td>
</tr>
<tr>
<td>Student Publications</td>
<td>104</td>
</tr>
<tr>
<td>Student Center</td>
<td>104</td>
</tr>
<tr>
<td>Cultural, Musical, Theatrical Activities</td>
<td>105</td>
</tr>
<tr>
<td>The Young Men’s Christian Association</td>
<td>106</td>
</tr>
<tr>
<td>Religious Life</td>
<td>107</td>
</tr>
<tr>
<td>Campus Leadership and Service</td>
<td>107</td>
</tr>
<tr>
<td>Social Fraternities and Sororities</td>
<td>111</td>
</tr>
<tr>
<td>Athletic Program</td>
<td>111</td>
</tr>
<tr>
<td>Automobile Privileges and Parking Regulations</td>
<td>112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART IV—SCHOLASTIC REGULATIONS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART V—DEGREES AND CURRICULUMS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Curriculums</td>
<td>123</td>
</tr>
<tr>
<td>Description of Courses</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART VI—PUBLIC SERVICE ACTIVITIES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>387</td>
</tr>
<tr>
<td>Activities</td>
<td>388</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART VII—STUDENT REGISTER</th>
<th>PAGE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>PAGE</th>
</tr>
</thead>
</table>

301903
UNIVERSITY CALENDAR

SUMMER SESSIONS 1969

First Session
(Classes meet Monday-Friday)
May 19 . . . . . . . . . . . . . . . . . . Matriculation and registration
May 20 . . . . . . . . . . . . . . . . . . Classes begin
June 25, 26 . . . . . . . . . . . . . . . . Examinations

Second Session
(Classes meet Monday-Friday except as indicated)
June 30 . . . . . . . . . . . . . . . . . . Matriculation, new students
July 1 . . . . . . . . . . . . . . . . . . . . . . Matriculation and registration
July 2 . . . . . . . . . . . . . . . . . . Classes begin
July 4 . . . . . . . . . . . . . . . . . . Independence Day holiday
July 19 . . . . . . . . . . . . . . . . . . Classes meet
August 2 . . . . . . . . . . . . . . . . . . . Classes meet
August 6, 7 . . . . . . . . . . . . . . . . Examinations
August 9 . . . . . . . . . . . . . . . . . . Graduation

SESSION 1969-70

First Semester
August 18, 19 . . . . . . . . . . . . . . . . Orientation, new students
August 20 . . . . . . . . . . . . . . . . . . Registration, all students
August 21 . . . . . . . . . . . . . . . . . . . . . Late registration
August 22 . . . . . . . . . . . . . . . . . . Late registration fee applies
August 22 . . . . . . . . . . . . . . . . . . Classes begin, regular schedule
August 28 . . . . . . . . . . . . . . . . . . Last day for registration
September 4 . . . . . . . . . . . . . . . . Last day to add a subject
September 18 . . . . . . . . . . . . . . Last day to drop a subject without record of drop
September 18 . . . . . . . . . . . . . . Last day to order diploma for mid-year graduation
October 13 . . . . . . . . . . . . . . . . Preliminary reports due
October 15 . . . . . . . . . . . . . . . . Homecoming—classes suspended
November 11 . . . . . . . . . . . . . . Last day to withdraw without having grades recorded
November 11 . . . . . . . . . . . . . . Last day to drop a subject
November 22 . . . . . . . . . . . . Clemson-Carolina game—classes suspended
November 27-29 . . . . . . Thanksgiving holidays*
December 8 . . . . . . . . . . . . . . . . Examinations begin
December 18 . . . . . . . . . . . . . . Mid-year graduation

Second Semester
January 5 . . . . . . . . . . . . . . . . Orientation, new students
January 6 . . . . . . . . . . . . . . . . Registration, all students
January 7 . . . . . . . . . . . . . . . . . . . . . Late registration
January 8 . . . . . . . . . . . . . . . . Late registration fee applies

* Follow Thursday, Friday, Saturday schedule on Monday, Tuesday, Wednesday, November 24, 25, 26.
January 8        Classes begin, regular schedule
January 14       Last day for registration
January 21       Last day to add a subject
February 4       Last day to drop a subject without record of drop
February 4       Last day to order diploma for May graduation
March 2          Preliminary reports due
March 14         Spring holidays begin at noon
March 23         Classes resume
April 4          Last day to withdraw without having grades recorded
April 4          Last day to drop a subject
April 8          Honors and Awards Day—classes suspended at 12 noon
April 27         Examinations begin
May 8            Commencement

SUMMER SESSIONS 1970

First Session
(Clases meet Monday-Friday)
May 18            Registration
May 19            Classes begin
June 24, 25       Examinations

Second Session
(Clases meet Monday-Friday except as indicated)
June 29           Orientation, new students
June 30           Registration
July 1             Classes begin
August 1           Classes meet
August 5, 6        Examinations
August 8           Graduation

SESSION 1970-71

First Semester
August 17, 18     Orientation, new students
August 19         Registration, all students
August 20         Late registration
August 21         Late registration fee applies
August 21         Classes begin, regular schedule
August 27         Last day for registration
September 3       Last day to add a subject
September 3—Last day to order diploma for mid-year graduation
September 17      Last day to drop a subject without record of drop
October 10        Homecoming
October 12        Preliminary reports due
November 11       Last day to withdraw without having grades recorded
November 11       Last day to drop a subject
November 21       Clemson-Carolina game
November 25       Thanksgiving holidays begin after last class
November 30       Classes resume

[5]
December 7 
Examinations begin
December 17 
Mid-year graduation

Second Semester

January 4 
Orientation, new students
January 5 
Registration, all students
January 6 
Late registration
January 7 
Late registration fee applies
January 7 
Classes begin, regular schedule
January 13 
Last day for registration
January 20 
Last day to add a subject
January 20 
Last day to order diploma for May graduation
February 3 
Last day to drop a subject without record of drop
March 1 
Preliminary reports due
March 12 
Spring holidays begin after last class
March 22 
Classes resume
April 2 
Last day to withdraw without having grades recorded
April 2 
Last day to drop a subject
April 7 
Honors and Awards Day—classes suspended at 12 noon
April 26 
Examinations begin
May 7 
Commencement

SUMMER SESSIONS 1971

First Session

(Classes meet Monday-Friday)

May 17 
Registration
May 18 
Classes begin
June 23, 24 
Examinations

Second Session

(Classes meet Monday-Friday except as indicated)

June 28 
Orientation, new students
June 29 
Registration
June 30 
Classes begin
July 31 
Classes meet
August 4, 5 
Examinations
August 7 
Graduation
PERSONNEL

PART I
PART I—Personnel

BOARD OF TRUSTEES

LIFE MEMBERS

EDGAR A. BROWN, President of the Board ............................................ Barnwell
JAMES F. BYRNES ................................................................. Columbia
WINCHESTER SMITH ......................................................... Williston
ROBERT R. COKER ............................................................. Hartsville
JAMES C. SELF ................................................................. Greenwood
FRANK J. JERVEY ............................................................... Clemson
PATRICK N. CALHOUN .......................................................... Charlotte, N. C.

TERM EXPIRES 1972

PAUL QUATTLEBAUM, JR ......................................................... Charleston
W. GORDON MCCABE, JR ....................................................... Greenville
T. KENNETH CRIBB ............................................................... Spartanburg

TERM EXPIRES 1974

A. M. QUATTLEBAUM .......................................................... Florence
L. D. HOLMES ................................................................. Johnston
E. OSWALD LIGHTSEY ........................................................ Hampton

A. W. RIGSBY, Secretary .......................................................... Clemson

BOARD OF VISITORS

1969

WINCHESTER C. SMITH, JR (Hold-Over Member) ................................... Ward
W. A. BARNETTE, JR .................................................................. Greenwood
WILLIAM B. DEPASS .............................................................. Rock Hill
THOMAS A. EVINS ................................................................. Spartanburg
HENRY F. FRIERSON .............................................................. Orangeburg
JAMES C. HAIR ........................................................................ Rock Hill
STILES HARPER ...................................................................... Estill
HENRY M. HERLONG .............................................................. Edgefield
NORMAN KIRKLAND ............................................................... Bamberg
H. J. KOSSLER ....................................................................... Charleston
GLENN J. LAWHON, JR ........................................................... Hartsville
EDWARD L. PROCTOR ................................................................ Conway
EXECUTIVE OFFICERS

Robert Cook Edwards, B.S., LL.D. ........................................ President
Victor Hurst, Ph.D. .................................................. Vice-President for Academic Affairs and Dean of the University
Melford A. Wilson, B.S. in Commerce .................................... Vice-President for Business and Finance and Comptroller
William Wright Bryan, B.S., Litt.D., LL.D. ......................... Vice-President for Development
Allen Wood Rigsby, M.A., LL.B. ........................................ Vice-President for Executive Affairs and University Counsel
Walter Thompson Cox, B.S. ............................................ Vice-President for Student Affairs and Dean of Students

ADMINISTRATIVE OFFICERS AND STAFF

PRESIDENT'S OFFICE

Robert Cook Edwards, B.S., LL.D. ........................................ President
Allen Wood Rigsby, M.A., LL.B. ........................................ Vice-President for Executive Affairs and University Counsel
Dorothy L. Abbott, A.B. .................................................. Secretary to the President

ACADEMIC AND RESEARCH ADMINISTRATION

Victor Hurst, Ph.D. .................................................. Vice-President for Academic Affairs and Dean of the University
Claud Bethune Green, Ph.D. ........................................... Assistant Dean of the University and Director of Summer Sessions and Extended Programs

COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES *

William Henry Wiley, Ph.D. ........................................... Dean, College of Agriculture and Biological Sciences
Olen Branford Garrison, Ph.D., Director of Agricultural Experiment Station, Director of Research in Agriculture
Rufus Kent Guthrie, Ph.D. ............................................ Director of Division of Biology
James Edwin Halpin, Ph.D. ............................................ Associate Director of Agricultural Experiment Station
Jess Willard Jones, Ph.D. .............................................. Director of Resident Instruction and Assistant to the Dean
William Joseph Lanham, Ph.D. ...................................... Head, Department of Agricultural Economics and Rural Sociology
Lowery Heywood Davis, Ph.D. Head, Department of Agricultural Engineering
Absalom West Snell, Ph.D. Head, Department of Agricultural Engineering
Ulysses Simpson Jones, Ph.D. Head, Department of Agronomy and Soils
Richard Ferman Wheeler, Ph.D. Head, Department of Animal Science
William Monroe Epps, Ph.D. ......................................... Head, Department of Plant Pathology and Physiology
Willis Alonzo King, Ph.D. ........................................... Head, Department of Dairy Science
Sidney Brooks Hays, Ph.D. ........................................... Head, Department of Entomology and Economic Zoology
Woodie Prentiss Williams, Ph.D. ..................................... Head, Department of Food Science and Biochemistry
Koloman Lehotsky, Ph.D. ................................................ Head, Department of Forestry
Taze Leonard Senn, Ph.D. ............................................ Head, Department of Horticulture
Bobby Dale Barnett, Ph.D. ............................................ Head, Department of Poultry Science

COLLEGE OF ARCHITECTURE

Harlan Ewart McClure, M.Arch., F.A.I.A. .................................. Dean, College of Architecture
Robert Howard Hunter, M.F.A. ....................................... Head, Department of Visual Studies

* See also College of Agriculture and Biological Sciences Staff, including Public Service Activities, on page 389.
† Agricultural Education curriculum is jointly administered by the College of Agriculture and Biological Sciences and the College of Education.
‡ Agricultural Engineering curriculum is jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.
COLLEGE OF EDUCATION

Harold Fochone Landrith, Ed.D. ....................... Dean, College of Education
Elmer Newton Tyndall, M.B.A., Colonel, United States Air Force—
    Head, Department of Aerospace Studies
Lowery Heywood Davis, Ph.D., Head, Department of Agricultural Education
Morris Audrey King, Ed.D. ....................... Head, Department of Elementary and Secondary Education
Alfred Franklin Newton, Ed.D., Head, Department of Industrial Education
George Kameil Maertens, B.S., Colonel, United States Army—
    Head, Department of Military Science
Herbert Brantley, Ph.D. ....................... Head, Department of Recreation and Park Administration
John Hasford Rodgers, Ph.D. ....................... Director, Research Coordinating Unit
Arthur Kenneth Jensen, Ph.D. ....................... Director, Vocational Education Media Center

COLLEGE OF ENGINEERING

Linvil Gene Rich, Ph.D. ....................... Dean, College of Engineering
Stanley Gosanko Nicholas, B.S. in M.E. ....................... Director of Engineering Research
James Leon Edwards, M.S. ....................... Assistant to the Dean, College of Engineering
Robert Allen Banister, M.S. ....................... Director of Continuing Education
Absalom West Snell, Ph.D., Head, Department of Agricultural Engineering
Gilbert Chase Robinson, B.Cert.E., Head, Department of Ceramic Engineering
Charles Edward Littlejohn, Ph.D. ....................... Head, Department of Chemical Engineering
Herbert William Busching, Ph.D. ....................... Head, Department of Civil Engineering
Lyle Chester Wilcox, Ph.D. ....................... Head, Department of Electrical Engineering
Robert Wardlaw Moorman, Ph.D. ....................... Head, Department of Engineering Mechanics
Everett Laitala, M.E. ....................... Head, Department of Engineering Services
John F. Andrews, Ph.D. ....................... Head, Department of Environmental Systems Engineering
Thurman Craig Hardin, Ph.D., Head, Department of Mechanical Engineering
Samuel F. Hulbert, Ph.D. ....................... Head, Division of Interdisciplinary Studies

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

Wallace Darney Trevillian, Ph.D. ....................... Dean, College of Industrial Management and Textile Science
Thomas Daniel Effland, M.S. ....................... Associate Dean, Director of Research
Harvey J. Wheeler, Ph.D. ....................... Head, Department of Economics
Clinton Howard Whitehurst, Jr., Ph.D. ....................... Head, Department of Industrial Management
Thomas Alexander Campbell, Jr., M.Ed. ....................... Head, Department of Textiles
William C. Laffody, M.S. ....................... Coordinator, Professional Development
Hahold Betts Wilson, B.S. ....................... Field Representative

COLLEGE OF LIBERAL ARTS

Headley Morris Cox, Ph.D. ....................... Dean, College of Liberal Arts
Marvin Alpheus Owings, Ph.D. ....................... Head, Department of English
John Harrison Butler, Ed.D. ....................... Head, Department of Music
Robert Stansbury Lambert, Ph.D. ....................... Head, Department of Social Sciences

SCHOOL OF NURSING

Geraldine Labecki, Ed.D. ....................... Dean, School of Nursing

1 Agricultural Education curriculum is jointly administered by the College of Agriculture and Biological Sciences and the College of Education.
2 Agricultural Engineering curriculum is jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.
COLLEGE OF PHYSICAL AND MATHEMATICAL SCIENCES
Clayton Verl Aucoin, Ph.D. ................. Dean, College of Physical and Mathematical Sciences
Harold Garth Spencer, Ph.D. Head, Department of Chemistry and Geology
John Willis Kenelly, Ph.D. .................... Head, Department of Mathematics
Henry Elliott Vogel, Ph.D. .................... Head, Department of Physics

GRADUATE SCHOOL AND UNIVERSITY RESEARCH
Arnold Edward Schwartz, Ph.D. .............. Dean of the Graduate School
and Director of University Research
Robert Walter Henningson, Ph.D., Assistant Director of University Research

DIRECTOR OF THE LIBRARY
John Wallace Gordon Gourlay, A.M.L.S. .... Director of the Library

EDUCATIONAL COUNCIL
TEACHING AND RESEARCH FACULTIES

ROBERT COOK EDWARDS
President
B.S., Clemson University; LL.D., The Citadel; LL.D., Wofford College

VICTOR HURST
Vice-President for Academic Affairs and Dean of the University
Professor of Dairy Science
B.S., 1938, M.S., 1940, Rutgers University; Ph.D., University of Missouri, 1948

MAIN CAMPUS

Abernathy, Ray, Atwell, Associate Professor of Environmental Systems Engineering.

Acorn, John Thomson, Associate Professor of Architecture.

Adams, Hewitt Dayne, Assistant Professor of History.
B.S., United States Naval Academy, 1937; M.A., Claremont Graduate School, 1964.

Adkins, Theodore Roosevelt, Jr., Professor of Entomology and Economic Zoology.

AiEM, Irène Armande, Visiting Instructor in French.

Alam, Kursheed, Associate Professor of Mathematics.

Allen, Joe Frank, Associate Professor of Chemistry.
A.B., Berry College, 1955; M.S., University of Mississippi, 1959; Ph.D., Georgia Institute of Technology, 1963.

Allen, Robert Max, Belle W. Baruch Professor of Forestry.
B.S., 1947, M.S., 1951, Iowa State University; Ph.D., Duke University, 1958.

Alley, Forrest Christopher, Professor of Chemical Engineering.
B.S., 1951, M.S., 1956, Auburn University; Ph.D., University of North Carolina, 1962; P.E.

Alphin, John Gilbert, Associate Professor of Agricultural Engineering.

Amoss, Donald Curtis, Assistant Professor of Electrical Engineering.

Anderson, Grant William, Associate Professor of Zoology.
B.S., D.V.M., Iowa State University, 1952; M.S., Virginia Polytechnic Institute, 1934.

Andrews, John F., Head of Department of Environmental Systems Engineering; Professor of Environmental Systems Engineering.
B.S.C.E., 1951, M.S., 1953, University of Arkansas; Ph.D., University of California, 1964, P.E.

Appell, Stephen Marc, Instructor in History.

Arbena, Joseph Luther, Assistant Professor of History.

Arnold, Edwin Prattte, Instructor in German.
A.B., University of South Carolina, 1958; M.A., Kent State University, 1968.

Arrington, Ottie Ward, Instructor in English.
B.A., Winthrop College, 1934; M.S., Clemson University, 1961.

Ashworth, Ralph Page, Professor of Botany.
B.S., Wake Forest University, 1939; M.A., 1945, Ph.D., 1960, University of North Carolina.

* On leave.
AUCOIN, CLAYTON VERL, Dean, College of Physical and Mathematical Sciences and Professor of Mathematics.
B.A., Louisiana College, 1951; M.S., 1953, Ph.D., 1956, Auburn University; Post Doctorate, Stanford University, 1960-61.

AUSTIN, JOHN HENRY, Professor of Environmental Systems Engineering.
B.C.E., Syracuse University, 1951; S.M., Massachusetts Institute of Technology, 1953; Ph.D., University of California, 1963; F. E.

BACHOP, WILLIAM EARL, Assistant Professor of Zoology.
A.B., Western Reserve University, 1950, M.S., 1958, Ph.D., 1963, Ohio State University; Post Doctorate, University of Washington, 1965-69.

BACON, JOHN ROGER, Assistant Professor of Chemistry.
B.S., Kansas State University, 1964; M.S., 1967, Ph.D., 1968, University of Iowa.

BAILEY, ROY HORTON, JR., Assistant Professor of Chemistry.
B.S., 1948, Ph.D., 1958, University of North Carolina.

BALL, WALTER LEE, Associate Professor of Electrical Engineering.
B.E.E., 1949, M.E.E., 1955, Clemson University; P. E.

BANISTER, ROBERT ALLEN, Associate Professor, Director of Continuing Education, College of Engineering.
B.S., Clemson University, 1939; M.S., Bradley University, 1949.

BARDISLEY, VIRGINIA OWEN,* Associate Professor of History.
B.A., Mississippi State College for Women, 1928; M.A., University of Mississippi, 1931; Ph.D., Mississippi State University, 1961.

BARFIELD, RAYFORD ELLIOTT, JR., Assistant Professor of English.
A.B., LaGrange College, 1961; M.A., University of Georgia, 1963; Ph.D., University of Tennessee, 1969.

BARKER, ROBERT H., Associate Professor of Textiles and Chemistry.
B.S., Clemson University, 1959; Ph.D., University of North Carolina, 1963.

BARLAGE, WILLIAM BERDELL, JR., Associate Professor of Chemical Engineering.
B.S., Lehigh University, 1954; M.Ch.E., University of Virginia, 1955; Ph.D., North Carolina State University, 1960.

BARNES, WILLIAM CARROLL, Superintendent and Professor of Horticulture, Truck Experiment Station.
B.S., Clemson University, 1931; Ph.D., Cornell University, 1935.

BARNETT, BOBBY DALE, Head of Poultry Science Department; Professor of Poultry Science.
B.S., 1950, M.S., 1954, University of Arkansas; Ph.D., University of Wisconsin, 1957.

BARNETT, ORTUS WEBB, Assistant Professor of Plant Pathology and Physiology.

BARNHILL, JAMES WALLACE, Assistant Professor of History.

BARRIER, JAMES MARTIN, Instructor in Zoology.
B.S., East Tennessee State University, 1965; M.S., North Carolina State University, 1967.

BARTMESS, EUGENIE VENTRE, Instructor in Mathematics.
B.S., 1945, M.S., 1949, Louisiana State University.

BAUNKNIGHT, LEHMAN M., JR., Associate Professor of Agricultural Economics and Rural Sociology.
B.S., 1935, M.S., 1949, Clemson University.

BAULD, NELSON ROBERT, JR., Professor of Engineering Mechanics.
B.S.M.E., 1958, M.S., 1960, West Virginia University; Ph.D., University of Illinois, 1963, F. E.

BAXTER, ANN WEBSTER, Assistant Professor of Microbiology.

BAXTER, LUTHER WILLIS, Associate Professor of Plant Pathology and Physiology.

BECKWITH, WILLIAM FREDERICK, Associate Professor of Chemical Engineering.

BEER, BETTINA KNUST, Instructor in History.
B.A., St. Lawrence University, 1963; M.A., Vanderbilt University, 1966.

* On leave.
BEER, JOACHIM RUDOLPH, Instructor in History.

BELL, MARSHALL CORNETT, Associate Professor of Mathematics.
A.B., 1933, M.A., 1936, University of North Carolina.

BENSON, GUYTON ALAN, Instructor in Music and Director of Choral Activities.
B.M.E., Florida State University, 1964; M.M., University of South Florida, 1969.

BENSON, ROBERT TIDD, Assistant Professor of Vocational Education.

BEYERLEIN, ADOLPH LOUIS, Assistant Professor of Chemistry.
B.S., Fort Hays Kansas State College, 1960; Ph.D., University of Kansas, 1966.

BIERER, BERT W., Laboratory Director and Professor of Poultry Science, Livestock-Poultry Laboratory, Columbia.
V.M.D., University of Pennsylvania, 1934.

BINSE, MARIE IRENE, Instructor in Speech.

BIRKHEAD, PAUL KENNETH, Associate Professor of Geology.

BITTMAN, KENNETH DAVID, Instructor in Sociology.

BISHOP, CARL BARNES, Associate Professor of Chemistry.
B.S., Clemson University, 1934; Ph.D., Michigan State University, 1959.

BISHOP, MURIEL BOYD, Assistant Professor of Chemistry.
B.A., Huntingdon College, 1952; M.S., Emory University, 1955; Ph.D., Michigan State University, 1961.

BLACK, JOSEPH WILLIAM, Lecturer in Medical Technology; Co-Director, School of Medical Technology, and Pathologist, Anderson Memorial Hospital.
B.S., University of Kentucky, 1955; M.D., Bowman Gray School of Medicine, 1959.

BLACKMON, CYRIL WELLS, Assistant Professor of Plant Pathology and Physiology, Edisto Experiment Station.
B.S., Virginia Polytechnic Institute, 1949; M.S., Trinity University, 1953; Ph.D., Texas A & M University, 1958; Post Doctorate, Yale University, 1958-59.

BLANCHE, JERRY DON, Instructor in Speech.

BOLEN, CLAUDE WALDRON, Professor of History.
A.B., Emory and Henry College, 1931; M.A., 1935, Ph.D., 1941, Duke University.

BOND, JOHN HOWARD, Associate Professor of Microbiology.
B.S., 1948, M.S., 1949, Louisiana State University.

BOONE, MERRITT ANDERSON, Professor of Poultry Science.
B.S., University of Nebraska, 1941; M.S., Michigan State University, 1947; Ph.D., University of Georgia, 1962.

BORGMAN, ROBERT FREDERIC, Associate Professor of Food Science and Biochemistry.
D.V.M., 1947, M.S., 1949, Michigan State University; Ph.D., Kansas State University, 1959.

BOSDELL, FRANCIS ALVIN, Assistant Professor of Industrial Education.

BOSE, ANIL KUMAR, Associate Professor of Mathematics.
B.S., 1948, M.S., 1956, Calcutta University; Ph.D., University of North Carolina, 1964.

BOST, WILLIAM VICK, Instructor in English.

BOWEN, WILLIAM CLAYTON, Associate Professor of Agricultural Education.
B.S., Clemson University, 1932; M.S., Colorado State University, 1940.

BOYD, VIRGINA ALEXANDER, Associate Professor of Agricultural Economics and Rural Sociology.
B.S.A., Berry College, 1941; M.S.A., University of Kentucky, 1948.

BRADBURY, DOUGLAS WILSON, Alumni Professor of Machine Design.
B.M.E., Clemson University, 1940; M.S.E., University of Michigan, 1959; P.E.

BRANDON, CHAIG ARNOLD, Associate Professor of Mechanical Engineering.
B.S.M.E., Duke University, 1959; M.S., Stanford University, 1960; Ph.D., University of Tennessee, 1968.

BRANDT, GRAYDON WILLIAM, Associate Professor of Dairy Science.
B.S., Ohio State University, 1936; M.S., University of Nebraska, 1938; Ph.D., Ohio State University, 1958.
Brannock, Durant York, Jr.,* Assistant Professor of French.

Brannon, Carroll Cleveland, Associate Professor of Dairy Science.
B.S., Clemson University, 1934.

Brantley, Philip John, Assistant Professor of Industrial Management.
B.S., University of Tennessee, 1962; M.S., Vanderbilt University, 1964; Ph.D., Purdue University, 1967.

Brantley, Susan Henrietta, Assistant Professor of Industrial Management.
A.B., 1967; J.D., 1969, University of Georgia.

Brantley, William John, Assistant Professor of Mathematics.
B.S., M.S., North Carolina State University, 1931; Ph.D., Duke University, 1948.

Brodie, Edmund D., Assistant Professor of Zoology.

Brown, Farrell Glenn, Associate Professor of Chemistry.
B.S., Lenoir-Rhyne College, 1957; M.S., 1960, Ph.D., 1962, University of Tennessee; Post Doctorate, Texas A&M University, 1962-63.

Brown, Jonas William, Associate Professor of Mathematics.
B.S., North Carolina State University, 1931; M.A., Duke University, 1948.

Brown, Lamar Hamilton, Associate Professor of Architecture.
B.Arch., Auburn University, 1948.

Brown, Robert L., Part-Time Visiting Lecturer in Industrial Management.
A.B., Samford University, 1947; M.A., University of Alabama, 1951; Ph.D., Purdue University, 1957.

Brown, Susan Henrietta, Assistant Professor of Industrial Management.
A.B., 1947, J.D., 1950, University of Georgia.

Bruley, Duane Frederick, Associate Professor of Chemical Engineering.
B.S., University of Wisconsin, 1956; M.S., Stanford University, 1959; Ph.D., University of Tennessee, 1963; P.E.

Bruner, Marlin Harner, Associate Professor of Forestry.
B.S., Pennsylvania State University, 1931; M.F., Yale University, 1932.

Bryant, Hallman Bell, Assistant Professor of English.
B.A., Emory University, 1959; M.A., University of North Carolina, 1962; Ph.D., Vanderbilt University, 1967.

Busch, Henry Robert, III, Professor of Bioengineering.
B.Ch.E., Cornell University, 1949; Ph.D., Syracuse University, 1954; P.E.

Burch, Elmer E., Instructor in Industrial Management.

Burden, Charles A., Assistant Professor of Industrial Management.
B.S., Clemson University, 1959; M.B.A., Georgia State College, 1965.

Burkett, Byron Verner, Jr., Assistant Professor of Vocational Education.

Burt, Philip Barnes, Associate Professor of Physics.
A.B., 1956, M.S., 1958, Ph.D., 1961, University of Tennessee.

Burtner, Frank Alan, Professor of Sociology.
B.A., M.A., University of Texas, 1938; Ph.D., University of North Carolina, 1958.

Busch, Frederick William, Head of Civil Engineering Department; Associate Professor of Civil Engineering.

Butler, John Harrison, Head of Music Department; Associate Professor of Music; Director of Bands.

Byrd, Laurie Lawson, Assistant Professor of Education.

Byrd, Wilbert Preston, Experiment Station Statistician; Professor of Experimental Statistics; Chairman, Experimental Statistics and Statistical Services.
B.S., 1949, M.S., 1952, North Carolina State University; Ph.D., Iowa State University, 1955.

Caffrey, Cletus Barnard, Assistant Professor of Psychology.

* On leave.
Caley, Paul Cochran, Assistant Professor of Industrial Education.

Cahoun, Richard James,* Alumni Professor of English.
  B.A., George Peabody College, 1948; M.A., Johns Hopkins University, 1950; Ph.D.,
  University of North Carolina, 1959; Post Doctorate, Duke University, 1964-65.

Campbell, Thomas Alexander, Jr., Head of Textile Department; Professor of Textiles.
  B.S., Clemson University, 1928; M.Ed., Pennsylvania State University, 1947.

Campbell, Nyal Dwight, Assistant Professor of Plant Pathology and Physiology.
  B.S., 1962, Ph.D., 1966; North Carolina State University.

Capel, William Clyde, Jr.*, Assistant Professor of Sociology.
  A.B., Washington and Lee University, 1935; M.A., Columbia University, 1933.

Card, Edith Bryson, Instructor in Music.
  A.B., Furman University, 1944; M.M.E., Florida State University, 1957.

Carpenter, Earl Thomas, Associate Professor of Agricultural Education.

Carpenter, Kenneth Edson, Assistant Professor of Architecture.
  B.Arch., University of Oklahoma, 1962; M.Arch., University of Minnesota, 1967; A.I.A.

Carroll, Adger Bowen, Assistant Professor of Agricultural Economics and Rural Sociology.
  B.S., 1958, M.S., 1961, Clemson University; Ph.D., North Carolina State University,
  1966.

Carter, Clifton Walker, Assistant Professor of Engineering Graphics.
  B.S., Clemson University, 1933.

Carter, Sydney, Lecturer in City Planning.
  B.Arch., Syracuse University, 1942; M.C.P., Harvard University, 1948; A.I.P.

Caskey, Claire Omar, Associate Professor of English.
  B.S., Appalachian State University, 1947; A.M., Duke University, 1948.

Castro, Walter Ernest, Associate Professor of Engineering Mechanics.
  B.S., Indiana Institute of Technology, 1959; M.S., Clemson University, 1962; Ph.D.,
  University of West Virginia, 1965; F.E.

Chaplin, Robert Lee, Jr., Associate Professor of Physics.
  B.S., Clemson University, 1948; M.S., 1953, Ph.D., 1962, North Carolina State
  University.

Charita, William Victor, Associate Professor of Dairy Science.
  B.S., 1958, M.S., 1959, Ph.D., 1962, Rutgers University.

Chasse, Marilyn Bache, Lecturer in Nursing, Baccalaureate Program.
  B.S.N., Vanderbilt University, 1966; M.S., Boston University, 1969.

Chen, Chi-Chang, Visiting Assistant Professor of Agronomy and Soils.
  B.S., Taiwan Normal University, 1958; M.S., National Taiwan University, 1961;
  Ph.D., McGill University, 1967.

Chisman, James Allen, Associate Professor of Operations Research.
  B.S., University of Akron, 1958; M.S., 1960, Ph.D., 1963, University of Iowa; P.E.

Cholewinski, Frank Michael, Associate Professor of Mathematics.

Clark, Howard G., III, Associate Professor of Textile Chemistry.
  A.B., Sanford University, 1947; M.S., University of Notre Dame, 1949; Ph.D.,
  University of Maryland, 1954.

Clement, Jerry McNeill, Assistant Professor of Architecture.

Close, Francis A., Assistant Professor of Economics.
  B.S., Florida State University, 1961; M.S., Georgia Institute of Technology, 1965;
  Ph.D., Florida State University, 1968.

Coffeen, William W., Associate Professor of Ceramic Engineering.
  B.S., 1935, M.S., 1937, University of Illinois; Ph.D., Rutgers University, 1969.

Cohon, Daniel Fred, Superintendent and Professor of Plant Pathology and Physiology, Edisto Experiment Station.
  B.S., University of Western Ontario, 1952; Ph.D., Rutgers University, 1956.

Coker, Edward Caleb, Jr., Associate Professor of Mathematics.
  B.S., University of South Carolina, 1928, M.A., University of North Carolina, 1930.

Cole, Spurgeon Nothen, Assistant Professor of Psychology.
COLEMAN, ROBERT ARLINGTON, Instructor in Civil Engineering.
B.S.C.E., Clemson University, 1962; M.S.C.E., Georgia Institute of Technology, 1963.

COLLINS, THOMAS FRANK, Assistant Professor of Physics.
A.B., Mercer University, 1956; M.S., Clemson University, 1958.

COOK, BRUCE FARRELL, Assistant Professor of Music; Assistant Director of Bands.

COOL, BINGHAM MERCUR, Professor of Forestry.
B.S., Louisiana State University, 1940; M.S., Iowa State University, 1941; Ph.D., Michigan State University, 1957.

COOLEGDE, HAROLD NORMAN, Jr., Alumni Professor of Architecture.

COOPER, JAMES BRONAUGH, Associate Professor of Poultry Science.
B.S., 1935, M.S., 1938, University of Kentucky.

COUCH, JAMES HOUSTON, Associate Professor of Industrial Engineering.
B.S., 1941, M.S., 1954, Clemson University.

COVER, ALAN SEYMOUR, Assistant Professor of Mathematics.

COX, EUGENE CARY, Lecturer in Medical Technology; Co-director, School of Medical Technology, Greenville General Hospital.
B.S., Furman University, 1954; M.D., Medical University of South Carolina, 1958.

COX, HEADLEY MORRIS, Dean, College of Liberal Arts; Professor of English.

COXE, EDWIN F., Associate Professor of Mechanical Engineering.
B.S.M.E., University of South Carolina, 1956; M.S.M.E., Drexel Institute of Technology, 1959; Ph.D., University of South Carolina, 1967.

CRADDOCK, GARNET ROY, Professor of Agronomy and Soils.
B.S., Virginia Polytechnic Institute, 1952; Ph.D., University of Wisconsin, 1955.

CRAIG, JAMES TELFORD, Assistant Professor of Agricultural Engineering.
B.S., Clemson University, 1951; M.S., University of Georgia, 1960.

CRAIG, KIRK ROBINS, Lecturer in Architecture.
B.S., Clemson University, 1951; B.Arch., Cornell University, 1954; M.Arch, Harvard University, 1957; A.I.A.

CRAWFORD, JAMES H., Assistant Professor of Horticulture.
B.S., 1949, M.S., 1961, Clemson University.

CROOK, LYNN, Assistant Professor of Food Science and Biochemistry.
B.S., Furman University, 1955; M.A., Johns Hopkins University, 1957; Ph.D., Emory University, 1966.

CROSS, JOAN TILTON, Instructor in English.

CROSS, ROBERT LYMAN, Assistant Professor of English.

CROUCH, JAMES PAGE, Assistant Professor of Industrial Education.

CURRIN, ROBERT EUGENE, III, Assistant Professor of Agronomy and Soils.
B.S., North Carolina State University, 1949; M.S., Clemson University, 1964.

DALTON, JAMES, Assistant Professor of Architecture.

DAVENPORT, DOROTHY HUDGENS, Assistant Professor of Nursing, Associate Degree Program.

DAVENPORT, JOHN DOUGLAS, Associate Professor of Psychology.
B.S., Clemson University, 1943; M.A., Furman University, 1958; Ph.D., University of Maryland, 1967.

DAVIS, CECIL COOK, Professor of Industrial Management.

DAVIS, LOWERY HEYWOOD, Head of Agricultural Education Department;
Professor of Agricultural Education.
B.S., 1948, M.S., 1952, Auburn University; Ph.D., Ohio State University, 1956.

DAVIS, RUBY SELLERS, Assistant Professor of History.
A.B., 1946, M.A., 1947, University of Georgia.*

* On leave.
Dean, Jordan Arthur, Associate Professor of Modern Languages.
A.B., Wofford College, 1933; M.A., Vanderbilt University, 1934.

DeGregory, Jerry Louis, Instructor in Sociology.

DeHaven, Ralph Kenneth, Assistant Professor of Agricultural Economics and Rural Sociology.
B.S., Southwest Missouri State College, 1964; M.S., 1966, Ph.D., 1969, University of Missouri.

Dickey, Joseph Freeman, Associate Professor of Dairy Science.

Dillman, Buddy L., Assistant Professor of Agricultural Economics and Rural Sociology.
B.S., 1959, M.S., 1961, University of Arkansas; Ph.D., North Carolina State University, 1967.

Doggette, John Richard, Instructor in Sociology.

Doruk, Teoman Kayas Visiting Professor of Architecture.
Dipl. of Arch., 1958, Ph.D., 1966, Technical University of Istanbul.

Douglas, Thomas Ernest, Assistant Professor of English.

Dowler, William Minor, Plant Pathologist (USDA); Lecturer in Plant Pathology and Physiology.
B.S., 1954, M.S., 1958, University of Missouri; Ph.D., University of Illinois, 1961.

Drake, Thomas Lynn, Associate Professor of Electrical Engineering.

Dreskin, Erving Arthur, Lecturer in Medical Technology; Co-director, School of Medical Technology, Greenville General Hospital.
B.S., 1940, M.D., 1943, Tulane University.

Dunkle, Bernard Edward, Associate Professor of Engineering Graphics.
B.S., United States Naval Academy, 1935; M.S., Texas A&M University, 1956.

Dunkle, Sue King, Assistant Professor of Mathematics.
B.A., University of Southwestern Louisiana, 1934; M.A., University of Texas, 1936.

Durant, John Alexander, III, Assistant Professor of Entomology and Economic Zoology, Bee Dee Experiment Station.
B.S., 1961, M.S., 1963, Clemson University; Ph.D., Auburn University, 1966.

Durham, Bill Gravely, Instructor in Spanish.

Dyer, Carl Leroy, Assistant Professor of Industrial Management.
B.S., University of Illinois, 1963; M.E.S., North Carolina State University, 1967.

Dysart, Benjamin Clay, III, Assistant Professor of Environmental Systems Engineering.
B.E., 1961, M.S., 1964, Vanderbilt University; Ph.D., Georgia Institute of Technology, 1969.

Edwards, James Leon, Assistant to the Dean, College of Engineering; Professor of Mechanical Engineering.
B.M.E., Clemson University, 1941; M.S., Pennsylvania State University, 1951; P.E.

Edwards, Robert Lee, Associate Professor of Animal Science.
B.S., Berea College, 1946; M.S., 1954, Ph.D., 1958, North Carolina State University.

Efland, Thomas Daniel, Associate Dean, School of Industrial Management and Textile Science, Director of Research, Professor of Textiles.
B.S., North Carolina State University, 1949; M.S., Georgia Institute of Technology, 1950.

Eisiminger, Sterling Kenwood, Instructor in English.

Eitel, Michael J., Associate Professor of Materials and Biomedical Engineering.
B.S., University of Tennessee, 1950; Ph.D., University of Illinois, 1954.

El-Behery, Hassan, Visiting Lecturer in Textile Science.
ELLING, Rudolf Ernest, Associate Professor of Civil Engineering and Engineering Mechanics.
B.S., Michigan State University, 1950; M.S., University of Illinois, 1952; Ph.D., Stanford University, 1967.

ELROD, Alvon Creighton, Associate Professor of Mechanical Engineering.
B.M.E., 1949, M.M.E., 1951, Clemson University; Ph.D., Purdue University, 1959; P. E.

ENGLAND, Robert, Associate Professor of Architecture.
B.A., University of Virginia, 1928; M.A., Oglesby University, 1934.

EPPS, William Monroe, Head of Plant Pathology and Physiology Department; Professor of Plant Pathology and Physiology; State Plant Pathologist.
B.S., Clemson University, 1937; Ph.D., Cornell University, 1942.

ESKEW, Elias Benton, Associate Professor of Agronomy and Soils.
B.S., Clemson University, 1943; M.S., Ohio State University, 1951.

ETHEREDGE, James Michael, Assistant Professor of Aerospace Studies.
Captain, United States Air Force; B.A., Florence State University, 1961.

FAIN, Charles Clifford, Associate Professor of Ceramic Engineering.
B.Cr.En., 1954, M.S., 1957, Clemson University; Ph.D., Ohio State University, 1967.

FAIRBROTHER, Elwood Lovell, Jr., Assistant Professor of Military Science.
Major, Armor, United States Army; B.S., Norwich University, 1960.

FAIREY, John Edward, III, Assistant Professor of Botany.
B.S., University of South Carolina, 1962; M.S., University of West Virginia, 1964.

FALK, Edward L., Professor of Architecture and City Planning.

FANNING, James Collier, Associate Professor of Chemistry.
B.S., The Citadel, 1953; M.S., 1956, Ph.D., 1960, Georgia Institute of Technology; Post Doctorate, Tulane University, 1960-61.

FAZIO, Mary Jean, Instructor in French.

FEAR, Arthur J., Associate Professor of Speech.
A.B., DePauw University, 1935; M.A., State University of Iowa, 1939; Ph.D., University of Southern California, 1966.

FELDER, Herman McDonald, Jr., Associate Professor of English.
A.B., Wofford College, 1930; M.A., Vanderbilt University, 1937.

FENNEll, Robert Emmett, Assistant Professor of Mathematics.
B.A., Bradley University, 1964; M.S., 1966, Ph.D., 1969, University of Iowa.

FERNANDEZ, Elena Gonzales, Lecturer in Spanish.
A.B., Instituto de la Habana, 1942.

FERNANDEZ, Gaston Juan, Assistant Professor of Spanish.
B.L.S., Instituto de Segunda Ensenanza de Remedios; LL.D., University of Havana, 1942; M.A., University of North Carolina, 1967.

FINDLEN, Dorothy Farris, Instructor in French.

FINDLEN, George Louis, Instructor in English.

FLATT, James Levern, Associate Professor of Mathematics.

FORD, John Martin, Associate Professor of Civil Engineering.
B.C.E., Clemson University, 1946; M.S., University of North Carolina, 1950; P. E.

FOX, Richard Charles, Professor of Entomology and Economic Zoology.

FRAKER, John Richard, Instructor in Operations Research.
B.S., 1956, M.S., 1965, University of Tennessee.

FREDLAND, Richard Alan, Instructor in Political Science.

FREEMAN, Edwin Armistead, Assistant Professor of Music.
B.S., Clemson University, 1949; B.Mus., Louisiana State University, 1954; M.A., Columbia University, 1968.

FREEMAN, Donald K., Jr., Lecturer in Psychology.

FREEMAN, Patricia Gail, Instructor in Education.
FRIEZE, CHESTER RICHARD, Associate Professor of Education.

FRIEZE, JAMES E., Visiting Instructor of Industrial Management.

FRYE, REVIS MILLER, Assistant Professor of Recreation and Park Administration.
B.S., Western Carolina University, 1942; M.A., Columbia University, 1947.

FULMER, JOHN PATRICK, Assistant Professor of Horticulture.
B.S., 1953, M.S., 1955, Clemson University.

FULMER, LOUISE GRAY, Instructor in Mathematics.
A.B., Winthrop College, 1937.

FULTON, JOHN DAVID, Assistant Professor of Mathematics.

GAHAN, LAWRENCE WILLARD, Assistant Professor of Recreation and Park Administration.
B.S., 1960, M.S., 1964, University of Illinois.

GALLOWAY, ELIZABETH BOYCE, Instructor in Education.

GAMBRELL, CARL E., Assistant Professor of Horticulture, Sand Hill Experiment Station.
B.S., 1948, M.S., 1960, Clemson University.

GANIM, VIRGINIA LYNN, Instructor in English.

GARNER, THOMAS HAROLD, Associate Professor of Agricultural Engineering.
B.S., 1932, M.S., 1936, Ph.D., 1964, North Carolina State University; F.E.

GARRISON, OLEN BRANFORD, Director of Agricultural Experiment Station; Director of Research in Agriculture; Professor of Horticulture.
B.S., Clemson University, 1933; M.S., Louisiana State University, 1934; Ph.D., Cornell University, 1939.

GELDARD, JOHN FRANCIS, Assistant Professor of Chemistry.

GETTYS, WILLIAM EDWARD, Associate Professor of Physics.
B.S., 1960, M.S., 1961, Clemson University; Ph.D., Ohio University, 1964.

GILCHREST, RALPH WAYNE, Professor of Electrical Engineering.
B.S., Tri-State College, 1947; M.S., University of Michigan, 1951; Ph.D., Michigan State University, 1960.

GILES, JERRY WAYNE, Assistant Professor of Aerospace Studies.
Captain, United States Air Force; B.S., Troy State University, 1961.

GILLILAND, BOBBI EUGENE, Associate Professor of Electrical Engineering.
B.S., Louisiana Polytechnic Institute, 1958; M.S., 1964, Ph.D., 1967, University of Arkansas; P.E.

GILREATH, JOHN ATKINS, Instructor in Physics.
B.S., 1958, M.S., 1960, Clemson University.

GING, JOHN LEONARD, Associate Professor of Physics.
B.A., Alfred University, 1953; M.S., Carnegie Institute of Technology, 1955; Ph.D., University of North Carolina, 1960.

GOODHOUT, ROSE A., Associate Professor of Nursing, Baccalaureate Program.
B.S., George Peabody College for Teachers, 1946; M.P.H., University of Minnesota, 1949.

GOODLEY, WILLIE CECIL, Professor of Animal Science.
B.S., Clemson University, 1943; M.S., 1949, Ph.D., 1955, North Carolina State University.

GOODIN, CURTIS PAUL, Associate Professor of Electrical Engineering.
B.S., University of Kentucky, 1948; M.S., Georgia Institute of Technology, 1957.

GOHRI, JAMES GLEASON, Associate Professor of Engineering Mechanics.

GOSSETT, BILLY JOE, Associate Professor of Agronomy and Soils.
B.S., University of Tennessee, 1957; M.S., 1959, Ph.D., 1962, University of Illinois.

GRAHAN, HENRY WILLINGHAM, Associate Professor of Physics.
B.S., Birmingham-Southern College, 1957; M.S., 1961, Ph.D., 1962, University of Tennessee.

GRAHAM, MARGARET SCHWEITZER, Instructor in German.
Graham, William Doyle, Jr., Assistant Professor of Agronomy and Soils.
B.S., Texas Technology College, 1962; M.S., 1965, Ph.D., 1967, Purdue University.

Gray, Furman R., Associate Professor of Industrial Management.
B.A., Furman University, 1951; CPA, S. C. Board of Examiners, 1956; M.S., University of Georgia, 1967.

Gray, Gordon Walter, Associate Professor of Education.

Green, Claud Bethune, Assistant Dean of the University; Professor of English.
B.A., 1935, M.A., 1938, University of Georgia; Ph.D., Duke University, 1953.

Giffin, Deuel Norton, Instructor in English.

Giffin, Villard Stuart, Jr., Associate Professor of Geology.
B.A., 1939, M.S., 1961, University of Virginia; Ph.D., Michigan State University, 1965.

Grubb, Charles Alan, Assistant Professor of History.

Guide, Vincent Daniel Richard, Assistant Professor of Military Science.
Lieutenant Colonel, Infantry, United States Army; B.A., University of Kentucky, 1960.

Gum, Coburn, Associate Professor of English.

Gunnin, Emery Aaron, Professor of Architecture.
B.S., Clemson University, 1950; A.I.A.; F.E.

Gunter, Edith Georgiana, Instructor in Nursing, Associate Degree Program.
B.S.N., Duke University, 1944.

Gunter, Thomas H., Jr., Assistant Professor of Industrial Management.

Guthrie, Rufus Kent, Director of Division of Biology; Professor of Microbiology.
B.A., University of Texas, 1948; M.A., University of Texas, 1950; Ph.D., Baylor University, 1954.

Hahn, Marshall Sterling, Assistant Professor of Industrial Education.
A.B., 1954, M.S., 1959, Nebraska State College; Ph.D., University of Minnesota, 1967.

Halpin, James Edwin, Associate Director of Agricultural Experiment Station; Professor of Plant Pathology and Physiology.
B.S., 1950, M.S., 1951, Ph.D., 1955, University of Wisconsin.

Hall, Elizabeth J., Associate Professor of Nursing, Baccalaureate Program.
B.S., Simmons College, 1934; Ed.M., Boston University, 1946.

Hall, James Wayne, Associate Professor of Chemical Engineering
B.S., Texas A & M University, 1950; M.S., 1961, Ph.D., 1963, University of Texas.

Hamilton, Max Greene, Associate Professor of Horticulture, Edisto Experiment Station.
B.S., North Carolina State University, 1949; Ph.D., Cornell University, 1953.

Hammond, Alexander Francis, Associate Professor of Engineering Graphics.

Handlin, Dale Lee, Assistant Professor of Animal Science.
B.S., Kansas State University, 1951; M.S., Texas A & M University, 1954.

Hannah, Howard Barry, Assistant Professor of English.

Harden, John Charles, Jr., Associate Professor of Mathematics.
B.S., Mississippi College, 1947; M.A., University of Tennessee, 1949.

Harbin, Thurman Craig, Head of Mechanical Engineering Department; Professor of Mechanical Engineering.
B.S.M.E., University of Tennessee, 1946; M.S.M.E., Virginia Polytechnic Institute, 1949; Ph.D., Georgia Institute of Technology, 1965.

Hare, John Franklin, Assistant Professor of Military Science.
Lieutenant Colonel, Infantry, United States Army; B.S., Clemson University, 1943.

Hare, William Ray, Jr., Associate Professor of Mathematics.
B.S., Henderson State Teachers College, 1937; M.S., 1959, Ph.D., 1961, University of Florida.

* On leave.
HARRIS, Jackie Ray, Assistant Professor of Education.
B.A., Baylor University, 1956; M.Ed., North Texas State University, 1960; Ed.D., University of Houston, 1968.

HARRIS, Ransom Baine, Assistant Professor of Philosophy and Religion

HARRISON, Eugene, Draper Professor of Mechanical Engineering.
B.S., 1951, M.S., 1952, Texas A&M University; Ph.D., Michigan State University, 1962.

HARRISHAN, Richard Calvert, Professor of Chemical Engineering.
B.A., Ohio Wesleyan University, 1947; M.S., 1949, Ph.D., 1951, Ohio State University.

HARVEY, Lawrence Harmon, Assistant Professor of Agronomy and Soils.
B.S., 1952, M.S., 1959, Ph.D., 1969, University of Georgia.

HASELTON, George Montgomery, Assistant Professor of Geology.
B.A., Colby College, 1951; M.A., Boston University, 1958; Ph.D., Ohio State University, 1967.

HASH, John Alex, Assistant Professor of Agricultural Education.

HATCHER, Robert Dean, Jr., Assistant Professor of Geology.

HAUN, Joseph Rhodes, Associate Professor of Horticulture.
A.B., Berea College, 1946; M.S., 1950, Ph.D., 1951, University of Maryland.

HAY, Elizabeth Merritt, Lecturer in History.

HAY, Larry Stoddard, Instructor in Mathematics.
B.S., University of Southwestern Louisiana, 1952; M.Ed., Louisiana State University, 1957; M.S., University of Southwestern Louisiana, 1965.

HAYMOND, Robert Edward, Associate Professor of Mathematics.
B.S., University of South Carolina, 1954; M.S., California Institute of Technology, 1956; Ph.D., University of Oregon, 1969.

HAYS, Ruth Lanier, Assistant Professor of Zoology.

HAYS, Sidney Brooks, Head, Department of Entomology and Economic Zoology; Associate Professor of Entomology and Economic Zoology.
B.S., 1953, M.S., 1958, Auburn University; Ph.D., Clemson University, 1962.

HEATON, Ralph Beacham, Jr., Instructor in English.
B.A., Furman University, 1964; M.A., University of Virginia, 1965.

HILGER, Hermann Josef, Assistant Professor of Electrical Engineering.

HENNINGSON, Robert Walter, Professor of Dairy Science, Assistant Director of University Research.

HENHICKS, Donald Maurice, Assistant Professor of Food Science and Biochemistry.
B.S., University of Missouri, 1957; M.S., Purdue University, 1961; Ph.D., University of Missouri, 1965.

HENRY, Louis Lee, Assistant Professor of English.
B.S., Clemson University, 1953; M.A., 1958, Ph.D., 1965, Florida State University.

HILL, James Riley, Jr., Associate Professor of Animal Science.
B.S., 1956, M.S., 1958, Clemson University; Ph.D., North Carolina State University, 1965.

HILL, Patricia Kneas, Assistant Professor of History.

HIND, Alfred Thomas, Jr., Professor of Mathematics.
A.B., 1934, M.A., 1936, Emory University; Ph.D., University of Georgia, 1952.

HIPPS, Opal Shepard, Instructor in Nursing, Baccalaureate Program.
HITk, JAME. S CLEVELAND, * Assistant Professor of Agricultural Economics and Rural Sociology.
B.S., Clemson University, 1963; M.A., Emory University, 1964; Ph.D., Clemson University, 1966.

HOBurn, JAMES HARVEY, Alumni Professor of Chemistry.
B.S., University of South Carolina, 1939; M.A., 1947, Ph.D., 1953, Emory University.

HODGES, VERNON SEYMOUR, Associate Professor of Architecture.
S.B., Harvard College, 1934; M.Arch., Harvard University, 1939.

HOLMAN, HARRET R., Associate Professor of English.
A.B., Winthrop College, 1934; A.M., University of Michigan, 1939; Ph.D., Duke University, 1948.

HOLT, ALBERT HAMILTON, Associate Professor of English.
A.B., 1939, M.A., 1947, University of North Carolina; Ph.D., Vanderbilt University, 1958.

HOOD, CLARENCE ELAM, JR., Associate Professor of Agricultural Engineering.
B.S., 1959, M.S., 1961, Ph.D., 1964, North Carolina State University; P.E.

HOOK, NORRIS KEENAN, JR., Assistant Professor of Military Science.
Captain, Corps of Engineers, United States Army; B.S., Wofford College, 1965.

Horton, John Banner, Assistant Professor of Military Science.
Major, Signal Corps, United States Army; B.A., Wake Forest University, 1960.

Horton, William Butler, Assistant Professor of Sociology.

Howard, Gordon Edward, Assistant Professor of Recreation and Park Administration.

Hubbard, Julius Clifford, Jr., Associate Professor of Textiles.
B.S., Clemson University, 1942; M.S., Georgia Institute of Technology, 1950.

HUBBARD, JOHN WILLIAM, Associate Professor of Agricultural Economics and Rural Sociology.
B.S., Berea College, 1944; M.S., 1958, Ph.D., 1962, University of Kentucky.

Hudson, William Garraux, Associate Professor of Mechanical Engineering.
B.M.E., 1946, M.S., 1957, Clemson University; M.S., University of Michigan, 1965; P.E.

Huey, Cecil O., Jr., Instructor in Engineering Graphics.

Huff, Lorenz Ditmar, Professor of Physics.
A.B., 1927, M.S., 1928, Oklahoma University; Ph.D., California Institute of Technology, 1931.

HUFFMAN, JOHN WILLIAM, Professor of Chemistry.

Hughes, Morris Burdette, Professor of Horticulture, Edisto Experiment Station.
B.S., Michigan State University, 1935; Ph.D., University of California, 1943.

HUlBERT, samuel F., Associate Professor of Materials Engineering and Head, Division of Interdisciplinary Studies.

Hunter, Robert Howard, Head, Visual Studies Department; Professor of Architecture.

Idol, John Lane, Jr., Associate Professor of English.
B.S., Appalachian State University, 1958; M.A., 1961, Ph.D., 1965, University of Arkansas.

Irvin, Robert Ryland, Jr., Assistant Professor of Military Science.
Captain, Infantry, United States Army; B.A., Clemson University, 1966.

Israil, charles mont, Assistant Professor of English.


Jackson, Joseph Porter, Assistant Professor of Military Science.
Captain, Infantry, United States Army; B.S., United States Military Academy, 1967.

* On leave.
JACOBUS, OTHA JOHN, Assistant Professor of Chemistry. 
B.S., Southwestern at Memphis, 1962; Ph.D., University of Tennessee, 1965; Post Doctorate, Princeton University, 1966-68.

JAMESON, LAKE HUGH, Associate Professor of Engineering Graphics. 
B.S., Clemson University, 1942; M.S., North Carolina State University, 1952.

JANZEN, JACOB JOHN, Professor of Dairy Science. 
B.S.A., University of Manitoba, 1944; M.S., 1947, Ph.D., 1952, University of Wisconsin; Post Doctorate, University of Wisconsin, 1952-53.

JEN, JOSEPH J-WU-SHAN, Assistant Professor of Food Science and Biochemistry. 
B.S., National Taiwan University, 1960; M.S., Washington State University, 1964; Ph.D., University of California, Berkeley, 1969.

JENSEN, ARTHUR KENNETH, Director of Vocational Education Media Center; Associate Professor of Education. 
B.S., 1951, M.S., 1956, Ph.D., 1961, University of Wisconsin.

JOHNSON, CHARLES ROBERT, Assistant Professor of Horticulture. 
B.S., Colorado State University, 1964; Ph.D., Oregon State University, 1969.

JOHNSON, JAMES KARL, JR., Assistant Professor of Mechanical Engineering. 
B.M.E., 1950, M.S., 1958, Clemson University; M.S., Georgia Institute of Technology, 1966; P. E.

JOHNSTON, WALTER EDWARD, Assistant Professor of Experimental Statistics. 
B.S., 1960; M.S., 1965, Texas A&M University.

JONES, CHAMP McMILLIAN, Professor of Agronomy and Soils. 
B.S., Clemson University, 1939; M.S., Cornell University, 1940; Ph.D., Michigan State University, 1952.

JONES, JACK EDENFIELD, Assistant Professor of Poultry Science. 

JONES, JESS WILLARD, Director of Resident Instruction; Professor of Agronomy. 
B.S., Clemson University, 1937; M.S., 1938, Ph.D., 1953, Cornell University.

JONES, ROBERT E., JR., Lecturer in Medical Technology; Co-Director, School of Medical Technology, and Pathologist, Anderson Memorial Hospital. 
B.A., Duke University, 1956; M.D., Bowman Gray School of Medicine, 1960.

JONES, ULYSSES SIMPSON, Head of Agronomy and Soils Department; Professor of Agronomy and Soils. 
B.S., Virginia Polytechnic Institute, 1939; M.S., Purdue University, 1942; Ph.D., University of Wisconsin, 1947.

JOHAN, WIGHT SINEQUEFIELD, Assistant Professor of Horticulture. 
B.S.A., 1959, M.S., 1961, University of Georgia; Ph.D., Pennsylvania State University, 1965.

JUTRAS, MICHEL WILFRED, Assistant Professor of Agronomy and Soils. 
B.S., University of Massachusetts, 1958; M.S., University of Connecticut, 1961; Ph.D., Iowa State University, 1964.

KAUFMANN, ANDERS J., Associate Professor of Architecture. 
B.Arch., Cornell University, 1956; M.Arch., University of Pennsylvania, 1962; A.I.A.

KINZING, PATRICK HAASE, Assistant Professor of Military Science. 
Captain, Infantry, United States Army; B.S., Dickinson College, 1966.

KEINATH, THOMAS M., Assistant Professor of Environmental Systems Engineering. 

KEITH, MARVIN OWEN, Assistant Professor of Recreation and Park Administration. 
B.S., North Carolina State University, 1958; M.S., University of North Carolina, 1961.

KELLER, FREDERICK JACOB, Assistant Professor of Physics. 

KELLY, JAMES WELHORN, Assistant Professor of Dairy Science. 
B.S., 1939, M.S., 1962, Clemson University.

KENELLY, JOHN WILLIS, Head of Mathematics Department; Professor of Mathematics. 
B.S., Southeastern Louisiana College, 1957; M.S., University of Mississippi, 1957; Ph.D., University of Florida, 1961.

KINSEY, ROBERT NOEL, JR., Associate Professor of Electrical Engineering. 
B.S. in E.E., Georgia Institute of Technology, 1942; M.S., Clemson University, 1959.

KILGORE, DONALD GIBSON, JR., Lecturer in Medical Technology; Co-Director, School of Medical Technology, and Pathologist, Greenville General Hospital. 
M.D., Southwestern Medical College of the University of Texas, 1949.
King, Edwin Wallace, Professor of Entomology and Economic Zoology.
B.S., University of Massachusetts, 1941; M.S., Virginia Polytechnic Institute, 1947;
Ph.D., University of Illinois, 1951; Post Doctorate, North Carolina State University,
1967-68.

King, Morris Audrey, Head of Elementary and Secondary Education
Department; Professor of Education.

King, Thomas Ray, Assistant Professor of Military Science.
Major, Infantry, United States Army; B.S., University of Wisconsin, 1960.

King, Willis Alonzo, Head of Department of Dairy Science; Professor of
Dairy Science.
B.S., Clemson University, 1936; M.S., 1938, Ph.D., 1940, University of Wisconsin.

Kingsland, Graydon Chapman, Associate Professor of Plant Pathology and
Physiology.
B.S., University of Vermont, 1952; M.S., University of New Hampshire, 1955; Ph.D.,
Pennsylvania State University, 1958.

Kirkley, Francis Edward, Associate Professor of Agricultural Education.
B.S., Clemson University, 1929; M.S., University of Kentucky, 1951.

Kirkwood, Charles Edward, Jr., Associate Professor of Mathematics; Analyst,
Computer Center.
A.B., Lynchburg College, 1935; M.S., University of Georgia, 1937.

Knapp, Ronald James, Assistant Professor of Sociology.

Knowland, Ralph Edward, Associate Professor of Architecture.
B.Arch., University of Manitoba, 1944; M.B.A., University of Western Ontario, 1966;
R.A.I.C.

Koldyke, Martin R., Jr., Assistant Professor of Aerospace Studies.
Major, United States Air Force; B.S., Ball State University, 1952.

Labecki, Geraldine, Dean, School of Nursing; Director, Baccalaureate Degree
Program in Nursing; Professor of Nursing.
B.S., 1944, M.A., 1948, Teachers College, Columbia University; Ed.D., George Pea-
body College for Teachers, 1967.

Laffoday, William C., Visiting Lecturer in Industrial Management and
Coordinator for Professional Development.
B.S., Clemson University, 1951; M.A., University of Virginia, 1952.

Lafitte, Germaine Marie, Visiting Instructor in French.

LaFleur, Kermit Stillman, Associate Professor of Agronomy and Soils.

LaGrone, John Wallace, Associate Professor of Mathematics.
B.S., Clemson University, 1932; M.A., Vanderbilt University, 1934.

Laitala, Everett, Head of Engineering Services Department; Professor of
Industrial Engineering.
B.S.M.E., 1934, M.S., 1937, M.E., 1945, University of Minnesota; P.E.

Lambert, Jerry Roy, Associate Professor of Agricultural Engineering.
B.A.E., 1958, M.S.E., 1962, University of Florida; Ph.D., North Carolina State Uni-
versity, 1964; P. E.

Lambert, Robert Stansbury, Head of Social Sciences Department; Professor of
History.

Lamond, Donald Ross, Visiting Professor of Animal Science.
of New Zealand, Ph.D., 1960, D.V.Sc., 1966, University of Sydney.

Land, Ernest McPherson, Jr., Alumni Professor of History.

Landers, Knox Schaffer, Assistant Professor of Chemistry.
B.S., 1951, M.S., 1955, University of Alabama.

Landrith, Harold Fochone, Dean, College of Education; Professor of
Education.
B.S., Clemson University, 1948; M.A., Vanderbilt University, 1949; Ed.D., University
of Houston, 1960.

Laner, Carl Leaton, Assistant Professor of Forestry.
B.S., 1952, M.S., 1961, North Carolina State University; Ph.D., Purdue University,
1968.
Laniham, William Joseph, Head of Agricultural Economics and Rural Sociology Department; Professor of Agricultural Economics and Rural Sociology. B.S., 1943, M.S., 1959, Clemson University; Ph.D., North Carolina State University, 1963.

Laroche, Evans Allen, Associate Professor of Textiles. B.S., Clemson University, 1942; M.S., Georgia Institute of Technology, 1951.

Laskar, Amulya Lal, Associate Professor of Physics. B.S., S. N. College, 1950; M.S., Calcutta University, 1952; Ph.D., University of Illinois, 1960.

Laskar, Renu Chakravarti, Associate Professor of Mathematics. B.A., Patna University, 1950; M.A., Bilal University, 1955; Ph.D., University of Wisconsin, 1962.

Lathrop, Jay Wallace, Professor of Electrical Engineering. B.S., 1948, M.S., 1949, Ph.D., 1952, Massachusetts Institute of Technology.

LaTorre, Donald Rutledge, Assistant Professor of Mathematics. B.A., Wofford College, 1960; M.A., 1962, Ph.D., 1964, University of Tennessee.


Lazah, James Tarlton, Jr., Professor of Dairy Science. B.S., Clemson University, 1943; M.S., Cornell University, 1949; Ph.D., North Carolina State University, 1955.

Leedeboer, Frederick Bernhard, Assistant Professor of Horticulture. B.S., Oregon State University, 1960; M.S., 1966, Ph.D., 1969, University of Rhode Island.

Lee, Peter, Associate Professor of Architecture. B.Arch., University of Minnesota, 1958; M.Arch., Massachusetts Institute of Technology, 1967; A.L.A.

Leemiuuts, Roger Phillip, Assistant Professor of History. A.B., Villanova University, 1959; M.A., University of Massachusetts, 1961.

Lefort, Henry Gerard, Associate Professor of Ceramic Engineering. B.Cr.E., Clemson University, 1952; M.S.Cr.E., 1957, Ph.D., 1960, University of Illinois.

Lehotsky, Koloman, Head of Forestry Department; Professor of Forestry. Ing., Bohemian Technical University, Prague, Czechoslovakia, 1928; Ph.D., University of Michigan, 1934.

Lewis, Alexander Dodge, Professor of Mechanical Engineering. B.S. in M.E., University of Tennessee, 1939; M.M.E., Yale University, 1946; P. E.

Lewis, Hodges Alvin, Instructor in French. B.A., University of Georgia, 1963.

Ligon, James Teddie, Associate Professor of Agricultural Engineering. B.S., Clemson University, 1957; M.S., 1959, Ph.D., 1961, Iowa State University; P. E.

Lindstrom, Frederick John, Professor of Chemistry. B.S., 1951, M.S., 1953, University of Wisconsin; Ph.D., Iowa State University, 1959.

Little, Kay, Teaching Supervisor, School of Medical Technology, Anderson Memorial Hospital. B.S., Clemson University, 1967; Medical Technology (ASCP), 1967.

Littlejohn, Charles Edward, Head of Chemical Engineering Department; Professor of Chemical Engineering. B.S., Clemson University, 1940; M.Ch.E., North Carolina State University, 1941; Ph.D., Virginia Polytechnic Institute, 1952; P. E.

Loadholt, Claude Boyd, Assistant Professor of Experimental Statistics. B.S., 1962, M.S., 1963, Clemson University; Ph.D., Virginia Polytechnic Institute, 1969.

Long, Jim Thomas, Professor of Electrical Engineering. B.E.E., Clemson University, 1943; M.S. in E.E., 1949, Ph.D., 1963, Georgia Institute of Technology.

Long, Needham L., Lecturer in Medical Technology; Co-Director, School of Medical Technology and Pathologist, Anderson Memorial Hospital. B.S., University of Alabama, 1952; M.D., Medical College of Alabama, 1956.
LUDEMAN, John Keith, Assistant Professor of Mathematics.

LUKAVEcki, Ann Russell, Assistant Professor of Nursing.
A.B., Shorter College, 1949; B.S., Emory University, 1952; M.A., University of Chicago, 1959.

LUKAVEcki, Stanley Michael, Associate Professor of Mathematics.
B.S., Southeastern Louisiana College, 1953; M.S., 1957, Ph.D., 1961, Auburn University.

Lundberg, John L., Associate Professor of Textile Chemistry.
B.Ch.E., University of Minnesota, 1948; Ph.D., University of California, 1952.

Lyons, Donald W., Associate Professor of Textile Science and Mechanical Engineering.
B.M.E., 1961, Ph.D., 1966, Georgia Institute of Technology; P.E.

Lytle, John Stevens, Assistant Professor of Agricultural Economics and Rural Sociology.

Macaulay, Hugh Holleman, Jr., Alumni Professor of Economics.
B.S., 1947, M.S., 1948, University of Alabama; Ph.D., Columbia University, 1957.

McCarteR, Jackson Howard, Lecturer in Medical Technology; Co-director, School of Medical Technology, Greenville General Hospital.
M.D., University of Pittsburgh, 1963.

McClain, Eugene Frederick,* Assistant Professor of Agronomy and Soils.
B.S., University of Idaho, 1954; M.S., University of California, 1956.

McClare, Alan David, Instructor in History.

McClure, Harlan Ewart, Dean, College of Architecture; Professor of Architecture.

McCollough, Joe Lawrence, Assistant Professor of Philosophy.
B.A., Wake Forest University, 1957; M.A., Emory University, 1961.

McCormac, Jack Clark, Associate Professor of Civil Engineering.
B.S., The Citadel, 1948; M.S., Massachusetts Institute of Technology, 1949; P.E.

McCormack, Jay Allen, Assistant Professor of Military Science.
Captain, Quartermaster, United States Army; B.S., Murray State College, 1964.

McCUTCheN, Alan Johnstone, Associate Professor of Civil Engineering.
B.S., United States Military Academy, 1928; C.E., University of California, 1932.

McEntire, Russell Hicks, Lecturer in French.
B.S., Appalachian State University, 1961.

McGee, Charles McKay, Jr., Associate Professor of English.
A.B., Furman University, 1934; A.M., Duke University, 1941.

McGregor, Rob Roy, Jr., Assistant Professor of French.
B.A., Erskine College, 1952; B.D., Columbia Theological Seminary, 1957; M.A., University of South Carolina, 1965; Ph.D., University of Georgia, 1968.

McGregor, William Henry Davis, Professor of Forestry.
B.S., Clemson University, 1951; B.S.F. and M.F., University of Michigan, 1953; Ph.D., Duke University, 1958.

McHugh, Carl Manning, Coordinator of Engineering Graphics; Associate Professor of Engineering Graphics.
B.S., Clemson University, 1936; P.E.

McLaughlin, John Joseph, Associate Professor of English.

McMains, Howard Franklin, Assistant Professor of History.

McNatt, Jo Ann, Instructor in French and Spanish.
B.A., Furman University, 1956; M.A., Emory University, 1959.

Macy, Jacques Berb, Assistant Professor of French.

Maertens, George Kameil, Head of Military Science Department, Professor of Military Science.
Colonel, Infantry, United States Army; B.S., United States Military Academy, 1943.

* On leave.
MALPHRUS, LEWIS DANIEL, Associate Professor of Agricultural Economics and Rural Sociology.
B.S., Clemson University, 1938; M.S., University of Tennessee, 1940; Ph.D., Purdue University, 1954.

MANSON, JOSEPH RICHARD, Assistant Professor of Physics.
B.S., University of Richmond, 1965; Ph.D., University of Virginia, 1969.

MANWILLER, ALFRED, Associate Professor of Agronomy and Soils.
B.S., 1938, M.S., 1939, Iowa State University; Ph.D., Pennsylvania State University, 1944.

MARON, ELKE MARIA, Instructor in French.
B.A., University of South Carolina, 1963.

MARTIN, JOHN ALLEN, JR., Associate Professor of Horticulture.
B.S., Clemson University, 1936.

MARTIN, JOHN CAMPBELL, Professor of Electrical Engineering.
B.E.E., Clemson University, 1948; M.S., Massachusetts Institute of Technology, 1953; Ph.D., North Carolina State University, 1962.

MARRULLO, NICASIO PHILIP, Associate Professor of Chemistry.
B.S., Queens College, 1952; Ph.D., Polytechnic Institute of Brooklyn, 1961; Post Doctorate, California Institute of Technology, 1960-61.

MARVIN, JOHN HENRY, JR., Associate Professor of Textiles.
B.S., Clemson University, 1941; M.S., Georgia Institute of Technology, 1960.

MATHES, ANDREW CLARK, Professor of Botany.
A.B., 1928, M.A., 1931, Ph.D., 1939, University of North Carolina.

MATHES, ROBERT S., Associate Professor of Biomedical Engineering.
B.A., University of North Carolina, 1959; M.D., Duke University Medical Center, 1964.

MAurer, DONALD EDWIN, Associate Professor of Industrial Education.

MATTOS, RONALD DARIUS, Lecturer in Vocational Education.
B.S., Georgia Southern College, 1968.

MAXWELL, JAMES DONALD, Assistant Professor of Agronomy and Soils.
B.S., Mississippi State University, 1962; M.S., Cornell University, 1965; Ph.D., North Carolina State University, 1968.

MEANS, GEORGE CALVIN, JR., Professor of Architecture.
B. of Arch., Western Reserve University, 1947; M.Arch., Georgia Institute of Technology, 1955; A.I.A.

MEeks, CHARLES DAVENPORT, Assistant Professor of Engineering Graphics.
B.M.E., Clemson University, 1942.

MELARAGNO, MICHELE G., Associate Professor of Architecture.
Diploma, College Nazareno, 1948; Ph.D., University of Bari, 1959.

MELSTEINER, STEPHEN SAMUEL, Assistant Professor of Chemical Engineering.
B.S., Le; Ph.D., Tulane University, 1969.

MEYER, STEPHEN PAUL, Assistant Professor of Military Science.
Captain, Corps of Engineers, United States Army; B.S., Drexel Institute of Technology, 1965.

MILES, JAMES FRANKLIN, Associate Professor of Agricultural Economics and Rural Sociology.
A.B., 1938, M.A., 1939, University of South Carolina; Ph.D., Cornell University, 1951.

MILLER, DONALD PIGUET, Associate Professor of Physics.
B.S., Texas A&M University, 1948; M.S., Tulane University, 1952; Ph.D., Polytechnic Institute of Brooklyn, 1962.

MILLER, MAX GARDNER, Associate Professor of Physics.
B.S., 1953, Ph.D., 1961, University of North Carolina.

MITCHELL, CHARLIE R., Assistant Professor of Engineering Mechanics.
B.S., Virginia Polytechnic Institute, 1956; M.S.C.E., West Virginia University, 1961; P.E.

MITCHELL, JACK HARRIS, JR., Professor of Food Science and Biochemistry.
B.S., Clemson University, 1933; Ph.D., Purdue University, 1941.

MIXON, ROBERT FLOYD, Assistant Professor of Modern Languages.

MOORMAN, ROBERT WARDELL, Head of Engineering Mechanics Department; Professor of Engineering Mechanics.
B.C.E., Clemson University, 1940, M.S., 1947, Ph.D., 1955, University of Iowa; P.E.

* On leave.
MORGAN, BARBARA WALKER, Assistant Professor of Education.

MORGAN, HARVEY EUGENE, JR., * Assistant Professor of Industrial Education.
B.S., 1951, M.S., 1956, Clemson University.

MORRIS, FRANK P., Lecturer in Architecture.
Washington and Lee University, 1916-18; A.G.C.

MOZLEY, JAMES HAMMOND III, Assistant Professor of Military Science.
Lieutenant Colonel, Infantry, United States Army; B.S., Troy State University, 1949.

MULLINS, JOSEPH CHESTER, Associate Professor of Chemical Engineering.
B.S., 1953, M.S., 1960, Ph.D., 1965, Georgia Institute of Technology.

MURRAY, BOBBY KEITH, Assistant Professor of Aerospace Studies.
Major, United States Air Force; B.S., University of Georgia, 1954.

MUSEN, HAROLD LOUIS, Associate Professor of Agronomy and Soils, Edisto Experiment Station.
B.S., Tennessee Polytechnic Institute, 1949; M.S., Auburn University, 1951; Ph.D., Rutgers University, 1953.

NASH, RICHARD FULLER, Jr., Assistant Professor of Entomology and Economic Zoology.
B.S., 1956; M.S., 1965, Auburn University; Ph.D., Clemson University, 1968.

NEWTON, ALFRED FRANKLIN, Head of Industrial Education Department; Professor of Industrial Education.

NICHOLAS, STANLEY GOSANKO, Director of Engineering Research.
B.S. in M.E., Northwestern University, 1950.

NICHOLSON, JAMES HARVEY, Assistant Professor of Mathematics.
B.A., Southern Methodist University, 1950; M.A., University of Texas, 1957.

NORDQUIST, LOWELL EUGENE, Instructor in Economics.
B.S., North Dakota State University, 1968; M.A., Western Michigan University, 1969.

NOWACK, ROBERT FRANCIS, Associate Professor of Engineering Mechanics.
B.S., Carnegie-Mellon University, 1948; M.S., University of Pittsburgh, 1952.

O'DELL, GLEN DEWITT, Assistant Professor of Dairy Science.
B.S., 1953, M.S., 1955, Clemson University.

OGLE, WAYNE LEROY, Professor of Horticulture.
B.S., University of Tennessee, 1948; M.S., University of Delaware, 1950; Ph.D., University of Maryland, 1952.

OLSEN, NORMAN LACOUR, Jr., Associate Professor of English.

OLSON, EDWARD STURE, Associate Professor of Textile Chemistry.
B.S., 1938, M.S., 1960, Clemson University.

OWENS, RAMETH RICHARD, Assistant Professor of History.

OWENS, WALTON HARRISON, Jr., Assistant Professor of Political Science.
A.B., Emory University, 1958; M.A., 1961, Ph.D., 1967, Florida State University.

OWINGS, MARVIN ALPHEUS, Head of English Department; Professor of English.
A.B., Wofford College, 1931; M.A., 1932, Ph.D., 1941, Vanderbilt University.

PACKER, MYRTON ALFRED, Associate Professor of Education.

PAGE, EDNA EARLE, Assistant Professor of Vocational Education.

PAGE, NORWOOD RUFUS, Head of Agricultural Chemical Services Department; Professor of Agronomy and Soils.
B.S., Clemson University, 1939; M.S., North Carolina State University, 1941; Ph.D., University of Georgia, 1959.

PALMER, MERRILL CRAIG, Director of Computer Center; Associate Professor of Mathematics.
B.S., University of Chattanooga, 1947; M.A., Vanderbilt University, 1948.

PARK, EUGENE, Associate Professor of Mathematics.
A.B., University of Georgia, 1939; M.A., Lehigh University, 1941.

* On leave.
PARK, SANG OH, Associate Professor of Industrial Management.

PARKER, CHARLES DAVID, Assistant Professor of Aerospace Studies.
Major, United States Air Force; B.S., Clemson University, 1954.

PARRADO, PEDRO FRANCISCO, Instructor in Spanish.
LL.D., University of Havana, 1941.

PARRY, THOMAS HERBERT, Assistant Professor of Education.

PATTON, MICHAEL FRANKLIN, Lecturer in Medical Technology; Director of Medical Technology, Spartanburg General Hospital.
M.D., Medical University of South Carolina, 1949.

PAYNTER, MALCOLM JAMES BENJAMIN, Assistant Professor of Microbiology.

PEAVLER, ROBERT NEAL, Assistant Professor of Aerospace Studies.
Captain, United States Air Force; B.B.A., Oklahoma University, 1961.

PEELE, THOMAS CHRISTOPHER, Professor of Agronomy and Soils.
B.S., North Carolina State University, 1929; Ph.D., Cornell University, 1933.

PENNSCOTT, WILLIAM WALTER, Associate Professor of Education.

PEIDY, LEONARD THOMAS, Instructor in Spanish.

PERRY, ROBERT LINDSAY, Associate Professor of Engineering Graphics.

PINCKNEY, JOHN EDWARD, Associate Professor of Architecture.

PINDEE, ALBERT REGINALD, Fred Harvey Hall Calhoun Professor of Chemistry.

PITNER, JOHN BRUCE, Superintendent and Professor of Agronomy and Soils, Pee Dee Experiment Station.
B.S., 1938, M.S., 1939, Mississippi State University; Ph.D., University of Wisconsin, 1944.

POE, HERBERT VERNON, Associate Professor of Electrical Engineering.
B.S., North Carolina State University, 1944; M.S., Texas A&M University, 1950; P.E.

POLK, HENRY TASKER, Professor of Chemistry.
B.S., 1931, M.S., 1933, University of Kentucky; Ph.D., Cornell University, 1938.

POPE, ROBERT MARTIN, JR., Instructor in Economics.
B.S., College of Charleston, 1965; M.A., Tulane University, 1966.

PORTER, JOHN J., Associate Professor of Textile Chemistry.
B.S. in Ch.E., 1956, Ph.D., 1960, Georgia Institute of Technology.

POWELL, GARY LEE, Assistant Professor of Chemistry.
B.S., University of California at Los Angeles, 1962; Ph.D., Purdue University, 1967; Post Doctorate, Washington University, 1967-69.

PREVOST, AILEEN SAIN, Assistant Professor of Nursing, Associate Degree Program.
B.S.N., Queen's College, 1947; M.N., Emory University, 1957.

PRIVETTE, ESTHER BUCKNIGHT, Instructor in Nursing, Associate Degree Program.
B.S.N., University of South Carolina, 1969.

PROCHASKA, BORIS JOSEPH, Assistant Professor of Mathematics.
B.S., University of Southwestern Louisiana, 1963; M.S., Colorado State University, 1964; Ph.D., Clemson University, 1967.

PROCTOR, THOMAS GILMER, Assistant Professor of Mathematics.

RAHON, JIM DAVID, Assistant Professor of Military Science.
Major, Artillery, United States Army; B.S., Clemson University, 1959.

RAY JOHN ROBERT, Assistant Professor of Physics.
B.S., Rose Polytechnic Institute, 1961; Ph.D., Ohio University, 1964.

RECELLEY, ALFRED LUNSFORD, III, Assistant Professor of English.

REED, JOHN KENNETH, Professor of Entomology and Economic Zoology.
B.S., Ohio University, 1942, M.S., 1947, Ph.D., 1954, Iowa State University.

* On leave.
Reel, Jerome Vincent, Jr., Assistant Professor of History.
B.S., 1960, M.A., 1961, University of Southern Mississippi; Ph.D., Emory University, 1967.

Rechner, Ireland G., Associate Professor of Architecture.

Reeneke, James Allen, Assistant Professor of Mathematics.

Rich, Linvil Gene, Dean, College of Engineering; Professor of Civil Engineering.
B.S., 1947, M.S., 1948, Ph.D., 1951, Virginia Polytechnic Institute; P.E.

Richardson, Joel Landrum, Associate Professor of Textiles.
B.S., Clemson University, 1942; M.S., North Carolina State University, 1960; P.E.

Richardson, Melvin Kendrick, Associate Professor of Engineering Mechanics.

Rieck, Charles Edward, Assistant Professor of Agronomy and Soils.
B.S., 1964, M.S., 1966, Oklahoma State University; Ph.D., University of Nebraska, 1969.

Rife, Lawrence Albert, Associate Professor of Mathematics.
B.Sc., North Dakota State University, 1940; M.A., University of Nebraska, 1947.

Riggs, Gayle D., Assistant Professor of Industrial Management.

Risko, Michele Helyne, Instructor in Spanish.

Ritchie, Robert Russell, Professor of Animal Science.
B.S., 1926, M.S., 1938, Iowa State University.

Roberts, Freddy Lee, Assistant Professor of Civil Engineering.

Robertson, Robert Glenn, Assistant Professor of French.

Robinson, Gilbert Chase, Head of Ceramic Engineering Department; Professor of Ceramic Engineering.
B.Cer.E., North Carolina State University, 1940; P.E.

Rogers, John Hasford, Director of Research Coordinating Unit and Visiting Professor of Vocational Education.
B.S., 1952, M.S., 1953, Clemson University; Ph.D., Ohio State University, 1961.

Rogers, Ernest Brasington, Jr., Associate Professor of Agricultural Engineering.
B.S., Clemson University, 1948; M.S., Texas A & M University, 1952; P.E.

Rogers, Rodney Outhwaite, Assistant Professor of English.
B.S., Massachusetts Institute of Technology, 1958; M.A., University of Virginia, 1966.

Rohrbach, James Jerome, Instructor of Industrial Education.

Rostron, Joseph Prugh, Associate Professor of Civil Engineering.
B.S. in C.E., Southern Methodist University, 1941; M.C.E., Clemson University, 1956; P.E.

Rowe, Geoffrey A., Visiting Professor of Architecture.

Ruckle, William Henry, Associate Professor of Mathematics.

Rudisill, Carl Sidney, Associate Professor of Mechanical Engineering.

Ruple, Charles William, Assistant Professor of Military Science.
Captain, Armor, United States Army; B.S., Auburn University, 1962.

Russell, Ann Ratliff, Instructor in History.

Russell, Charles Bradley, Assistant Professor of Mathematics.

Russo, Kenneth, Assistant Professor of Architecture.
B.Arch., Oklahoma State University, 1957; M.Arch., Clemson University, 1965; A.I.A.

Rutledge, Ray Watson, Professor of Botany.
B.S., Union University, 1923; M.A., George Peabody College, 1924; Ph.D., University of Chicago, 1930.
32 Teaching and Research Faculties

Salley, James Raworth, Jr., Associate Professor of Chemistry. B.S., College of Charleston, 1937; M.S., Clemson University, 1953.

Salley, Mary Katherine, Lecturer in Vocational Education. B.A., University of South Carolina, 1968.

Sanders, Walter M., III, Adjunct Professor of Environmental Systems Engineering. B.S.C.E., Virginia Military Institute, 1953; M.S., 1956, Ph.D., 1963, Johns Hopkins University.


Savitsky, George Boris, Associate Professor of Chemistry. B.S., Aurora University, 1947; Ph.D., University of Florida, 1959; Post Doctorate, Princeton University, 1959-61.


Sawyer, Corinne Holt, Assistant Professor of English. B.A., 1945, M.A., 1948, University of Minnesota; Ph.D., University of Birmingham, 1954.

Sawyer, Roy Thomas, Assistant Professor of Zoology. B.S., Wofford College, 1964; M.S., University of Michigan, 1967; Ph.D., University of Wales (Swansea), 1969.

Schoenike, Roland Ernst, Associate Professor of Forestry. B.S., 1951, M.S., 1953, Ph.D., 1962, University of Minnesota.

Schwartz, Arnold Edward, Dean of the Graduate School and Director of University Research; Associate Professor of Civil Engineering. B.S.C.E., 1958, M.S.C.E., 1960, University of Notre Dame; Ph.D., Georgia Institute of Technology, 1963.


Sefick, Harold John, Associate Professor of Horticulture. B.S., 1935, M.S., 1937, Rutgers University.


Sen, Taze Leonard, Head of Horticulture Department; Professor of Horticulture. B.S., Clemson University, 1939; M.S., 1950, Ph.D., 1958, University of Maryland.

Seo, Kenzo, Associate Professor of Mathematics. B.S., Tokyo University of Education, 1953; M.S., 1958, Ph.D., 1962, Purdue University.

Shain, William Arthur, Associate Professor of Forestry. B.S.F., 1953, M.F., 1957, University of Georgia; Ph.D., Michigan State University, 1963.


Shepherd, William Mason, Assistant Professor of Military Science. Captain, Corps of Engineers, United States Army; B.S., Virginia Polytechnic Institute, 1961.

Siferd, Max Douglas, Associate Professor of Physics. B.S., 1952, Ph.D., 1961, University of North Carolina.


Shuler, Cyril O., Associate Professor of Industrial Management. B.S., Clemson University, 1934; M.Litt., University of Pittsburgh, 1951; Ph.D., American University, 1966.

Simon, Frederick T., J. E. Sirrine Professor of Textile Science. B.S., Morris Harvey College, 1955; M.S., Marshall University, 1958.

Simms, Ernest Theodore, Jr., Associate Professor of Horticulture. B.S.A., University of Georgia, 1954; M.Sc., 1959, Ph.D., 1962, Ohio State University.

Simms, John Barred, Assistant Professor of English. B.S., Spring Hill College, 1950; M.A., University of Kentucky, 1961.

Sitterly, Wayne Robert, Professor of Plant Pathology and Physiology, Truck Experiment Station. B.S., Iowa State University, 1953; M.S., 1955, Ph.D., 1957, Purdue University.

Skardon, Beverly Norton, Assistant Professor of English. B.S., Clemson University, 1938; M.A., University of Georgia, 1964.
SKELLEY, GEORGE CALVIN, JR., Associate Professor of Animal Science.

SKELTON, BILLY RAY, Associate Professor of Economics.
B.S., 1956, M.S., 1958, Clemson University; Ph.D., Duke University, 1964.

SKELTON, BOBBY JOE, Associate Professor of Horticulture.
B.S., 1957, M.S., 1960, Clemson University; Ph.D., Virginia Polytechnic Institute, 1966.

SKELTON, THOMAS EUGENE, Assistant Professor of Entomology and Economic Zoology.
B.S., Clemson University, 1953; M.S., 1956, Ph.D., 1969, University of Georgia.

SKOVE, MALCOLM JOHN, Professor of Physics.
B.S., Clemson University, 1956; Ph.D., University of Virginia, 1960.

SLANN, MARTIN WAYNE, Instructor in Political Science.

SMITH, CAROLYN DUNLAP, Lecturer in Vocational Education.

SNELL, ABSALOM WEST, Head of Agricultural Engineering Department; Professor of Agricultural Engineering.
B.S., Clemson University, 1949; M.S., Iowa State University, 1952; Ph.D., North Carolina State University, 1964; P.E.

SNELSBIE, ROBERT WILLIAM, Associate Professor of Electrical Engineering.

SNIPES, DAVID STRANGE, Assistant Professor of Geology.
B.S., Wake Forest University, 1950; Ph.D., University of North Carolina, 1965.

SODCZYK, ANDREW FLORIAN, Samuel Maner Martin Professor of Mathematics.
B.A., 1933, M.A., 1936, University of Minnesota; Ph.D., Princeton University, 1939.

SOLIS, JUAN DE LA CRUZ, Assistant Professor of Poultry Science.
B.S., New Mexico State University, 1962; M.S., University of New Hampshire, 1964; Ph.D., Auburn University, 1968.

SORRELLS, ROBERT TALIAFERRO, Assistant Professor of English.

SPENCER, HAROLD GARTH, Head of Chemistry and Geology Department; Professor of Chemistry.
B.S.E., 1952, M.S., 1958, Ph.D., 1959, University of Florida.

SPURLOCK, HOOPER CLYDE, Associate Professor of Agricultural Economics and Rural Sociology.
B.S., University of Tennessee, 1935; M.S., 1951, Ph.D., 1956, University of Florida.

STAFFORD, DONALD BENNETT, Assistant Professor of Civil Engineering.

STANLEY, EDWARD LEMUEL, Associate Professor of Mathematics.
B.S., East Tennessee State University, 1930; M.S., University of Tennessee, 1935.

STEADMAN, MARK SIDNEY, JR., Associate Professor of English.
A.B., Emory University, 1951; M.A., 1956, Ph.D., 1963, Florida State University.

STEINER, PINCKNEY ALSTON, Assistant Professor of Physics.
B.S., University of Georgia, 1959; Ph.D., Duke University, 1965; Post Doctorate, University of Copenhagen, 1964-66.

STEINER, WILLIAM FRANK, JR., Assistant Professor of History.

STELLING, FRANK H., Adjunct Professor of Biomedical Engineering.
B.S., Augusta College, 1934; M.D., Medical College of Georgia, 1938.

STEMBRIDGE, GEORGE EUGENE, Associate Professor of Horticulture.
B.S., Clemson University, 1958; M.S., 1959, Ph.D., 1961, University of Maryland.

STEPPE, JAMES MARVIN, Alumni Professor of Agricultural Economics and Rural Sociology.
A.B., Berea College, 1937; M.A., 1938, Ph.D., 1940, University of Virginia.

STEVENSON, JOHN LOVETT, Associate Professor of Recreation and Park Administration.

STILLWELL, EPRAHM POSEY, JR., Professor of Physics.
B.S., Wake Forest University, 1956; M.S., 1958, Ph.D., 1960, University of Virginia.
STINAFF, RUSSELL DALTON, Assistant Professor of Electrical Engineering.
B.S., University of Akron, 1962; M.S., Purdue University, 1963; Ph.D., University of Illinois, 1969.

STOWE, RUSSELL JOSEPH, Assistant Professor of Military Science.
Captain, Infantry, United States Army; B.S., University of Missouri, 1965.

SULEMAN, DAVID PATRICK, Assistant Professor of History.
B.A., Oglethorpe University, 1957; M.A., Appalachian State University, 1963; Ph.D., Universidad Internacional (Barcelona), 1968.

SULLIVAN, JOHN RUSSELL, Associate Professor of Mathematics.
A.B., 1939, M.A., 1949, Georgetown University.

SUMAN, REYNOLD FOY, Associate Professor of Agronomy and Soils, Edisto Experiment Station.

THODE, FREDERICK WILBUR, Associate Professor of Botany.
B.S., Clemson University, 1940; M.S., Cornell University, 1951.

THOMPSON, NEINA WANSLEY, Instructor in Botany.
B.S., The Woman's College of Georgia, 1966; M.S., Clemson University, 1967.

THOMPSON, PATRICIA, Teaching Supervisor, School of Medical Technology, Greenville General Hospital.
B.S. Furman University, 1951; Medical Technology (ASCP), 1952.

THOMPSON, REGINA, Assistant Professor of Nursing, Baccalaureate Program.
B.S., Bluefield State College, 1951; M.A., Teachers College, Columbia University, 1958.

THOMSON, DANIEL PARK, JR., Associate Professor of Textiles.

THRAISNER, CARL DELANEY, Assistant Professor of Military Science.
Major, Artillery, United States Army; B.S., Tennessee Technical University, 1961.

THURSTON, JAMES NORTON, Alumni Professor of Electrical Engineering.
B.E.E., Ohio State University, 1936; S.M., 1943, Sc.D., 1950, Massachusetts Institute of Technology; P. E.

TISDALE, CHARLES FRANKLIN, Assistant Professor of Military Science.
Lieutenant Colonel, Infantry, United States Army; B.S., 1941, B.S., 1947, Clemson University.

TODD, BOYD JOSEPH, Professor of Industrial Management and Mathematics.
B.S., 1946, M.S., 1948, Clemson University; Ph.D., North Carolina State University, 1969.

TOLINS, IRWIN SOLOMON, Associate Professor of Operations Research.

TOMDES, AVERYETT SNEAD, Associate Professor of Zoology.
B.S., University of Richmond, 1954; M.S., Virginia Polytechnic Institute, 1956; Ph.D., Rutgers University, 1961; Post Doctorate, University of Virginia, 1965-66.

TOOMEY, ROBERT EDWARD, Visiting Lecturer in Industrial Management.
B.S., Harvard University, 1940; M.Ed., Boston University, 1941; M.S., Columbia University, 1951; LL.D., Clemson University, 1968.

TREVILLIAN, WALLACE DABNEY, Dean, College of Industrial Management and Textile Science; Professor of Economics.
B.S., 1940, M.A., 1947, Ph.D., 1954, University of Virginia.

TRIVELY, ILO ALLEY, Professor of Civil Engineering.
B.S. in C.E., 1928; M.S. in C.E., 1941, University of Nebraska; P. E.

TURK, DONALD EARLE, Associate Professor of Poultry Science.
B.S., 1953, M.N.S., 1957, Cornell University; Ph.D., University of Wisconsin, 1966

TURNEK, BARBARA DOW, Part-Time Instructor in Psychology.

TURNEK, JAMES A., JR., Assistant Professor of Industrial Management.

TURNEK, RAYMOND CLYDE, Assistant Professor of Physics.
B.S., Carnegie Institute of Technology, 1960; Ph.D., University of Pittsburgh, 1966.

TURPIN, SAMUEL GUY, Associate Professor of Entomology and Economic Zoology, Edisto Experiment Station.
B.A., University of North Carolina, 1956; M.S., Clemson University, 1958; Ph.D., North Carolina State University, 1961.

TURBIN, WILLIAM BRADLEY, Assistant Professor of Psychology.
Tuttle, Jack Edwin, Associate Professor of History and Political Science.

Tyndall, Elmer Newton, Head of Aerospace Studies Department; Professor of Aerospace Studies.

Ulbrich, Carlton Wilbur, Assistant Professor of Physics.

Ulbrich, Holley H., Part-Time Assistant Professor of Economics.

Usrey, Malcolm Ortwell, Assistant Professor of English.

Van Blaricom, Lester Oscar, Professor of Horticulture.
B.S., 1938, M.S., 1940, Ch.E., 1954, Oregon State University.

Vaughn, Edward A., Assistant Professor of Textiles.

Venkatou, Doulatabad A., Assistant Professor of Materials Engineering.
B.S., University of Mysore, India, 1955; DIISC, Indian Institute of Science, 1958; M.S., 1961, Ph.D., 1964, University of Notre Dame.

Vereen, Larry Edwin, Assistant Professor of Food Science and Biochemistry.
B.S., 1963, M.S., 1964, Clemson University; Ph.D., Colorado State University, 1968.

Viglione, August, Instructor in History.

Vogel, Henry Elliott, Head of Physics Department, Professor of Physics.
B.S., Furman University, 1948; M.S., 1950, Ph.D., 1962, University of North Carolina.

von Rosenberg, Joseph Leslie, Jr., Professor of Chemistry.

von Tunzeln, George Robert, Associate Professor of Agricultural Economics and Rural Sociology.
B.S., 1951, M.S., 1956, Southern Illinois University.

Waddell, Donald, Assistant Professor of Architecture.

Waite, Edwin Emerson, Jr., Associate Professor of Sociology and Psychology.
B.S., Middlebury College, 1929; M.A., Duke University, 1940.

Walker, Sarah Ann, Assistant Professor of Recreation and Park Administration.
B.S., University of Wisconsin, 1964; M.S., Indiana University, 1966.

Wallenius, Kenneth Ted, Associate Professor of Mathematics.

Walters, John Vernon, Professor of Textiles.
B.S., 1933, M.S., 1952, Clemson University.

Wang, Samuel, Assistant Professor of Architecture.

Wannamaker, John Murray, Associate Professor of Industrial Management.
B.S., 1950, M.S., 1960, University of South Carolina; Ph.D., Louisiana State University, 1966.

Wannamaker, Patricia Walker, Assistant Professor of German.
A.B., 1950, M.A., 1958, University of South Carolina; Ph.D., Louisiana State University, 1964.

Ware, Robert Edward, Associate Professor of Zoology.
B.S., Iowa Wesleyan College, 1929.

Warner, John Robinson, Professor of Forestry.

Washburn, James Russell, Assistant Professor of Architecture.
B.Arch., North Carolina State University, 1957; M.Arch., Harvard University, 1959.

Waters, Washington Marian, Lecturer in Medical Technology; Co-director, School of Medical Technology, Greenville General Hospital.
B.S., Furman University, 1948; M.D., Medical University of South Carolina, 1952.

Watkins, Betty Palmer, Assistant Professor of Vocational Education.
B.S., Winthrop College, 1951; M.S., University of Tennessee, 1962.

Watson, Charles Hugh, Associate Professor of English.
WATSON, SAMUEL McIVER, JR., Professor of Mechanical Engineering.
A.B., Elon College, 1936; B.S., 1937, M.S., 1942, North Carolina State University; P. E.

WEBB, BYRON KENNETH, Associate Professor of Agricultural Engineering.
B.S., 1955, M.S., 1962, Clemson University; Ph.D., North Carolina State University, 1966; P. E.

WEBB, LLOYD GEORGE, Associate Professor of Entomology and Economic Zoology.
B.S., University of Georgia, 1938; M.S., Auburn University, 1941; Ph.D., Ohio State University, 1949.

WELLS, JOSEPH WILLARD, Associate Professor of Architecture.
B.Arch., Cornell University, 1931; Fontainbleau School of Fine Arts, California, 1933.

WELSH, WILLIAM AUSTIN, JR., Assistant Professor of Civil Engineering.

WEST, WILLIAM ELMER, Assistant Professor of Industrial Education.

WEYMOUTH, ANTHONY GEORGE, Visiting Instructor in French.
B.A., University of Lancaster, 1969.

WHEELER, HARVEY J., Head of Department of Economics; Associate Professor of Economics.
A.B., University of Maine, 1957; Ph.D., University of Virginia, 1966.

WHEELER, RICHARD FERMAN, Head of Department of Animal Science; Professor of Animal Science.
B.S., 1941, B.S., 1947, Clemson University; M.S., Mississippi State University, 1949; Ph.D., University of Illinois, 1954.

WHITE, DAVID FRANKLIN, JR., Assistant Professor of Philosophy.

WHITE, ROBERT HENRY, Assistant Director of Research Coordinating Unit and Visiting Associate Professor of Vocational Education.
B.S., 1954, M.A., 1966, New Mexico State University; Ph.D., Ohio State University, 1967.

WHITEHEAD, MARVIN E., Instructor in Economics.

WHITEHURST, CLINTON HOWARD, JR., Head of Industrial Management Department; Professor of Industrial Management.
B.S., 1957, M.A., 1958, Florida State University; Ph.D., University of Virginia, 1962.

WHITLEY, HARRIETT ELLIOTT, Instructor in Nursing, Associate Degree Program.
B.S., Queens College, 1962; M.N., Emory University, 1969.

WHITMIRE, JERRY MORRIS, Assistant Professor of Spanish.

WHITNEY, JOHN BARRY, JR., Professor of Botany.
B.S., University of Georgia, 1935; M.S., North Carolina State University, 1938; Ph.D., Ohio State University, 1941.

WHITTEN, WILLIAM CLYDE, JR., Professor of Economics.
B.S., Clemson University, 1947; M.S., Georgia Institute of Technology, 1950; Ph.D., University of Alabama, 1964.

WILCOX, LYLE CIESTER, Head of Electrical Engineering Department; Professor of Electrical Engineering.

WILEY, WILLIAM HENRY, Dean, College of Agriculture and Biological Sciences; Professor of Poultry Science.
B.S., 1936, M.S., 1937, Ph.D., 1949, Texas A&M University.

WILLARD, WILLIAM KENNETH, Assistant Professor of Zoology.
B.S.F., 1957, M.S., 1960, University of Georgia; Ph.D., University of Tennessee, 1965.

WILLEY, EDWARD PARKER, Assistant Professor of English.

WILLIAMS, WOODIE PHRENTISS, Head of Department of Food Science and Biochemistry; Professor of Food Science and Biochemistry.
B.S., 1953, M.S., 1957, Mississippi State University; Ph.D., Texas A&M University, 1960.

WILLIAMSON, HORACE HAMPTON, Associate Professor of Architecture.
B.S., 1951, B.Arch., 1952, Georgia Institute of Technology; M.Arch., M.S., Rensselaer Polytechnic Institute, 1969.
WILSON, HUGH HAYNES, Professor of Ceramic Engineering.
B.S., 1948, M.S., 1949, North Carolina State University; Ph.D., Ohio State University, 1954.

WILSON, THOMAS VIRGIL, Professor of Agricultural Engineering.
B.S., Clemson University, 1942; M.S., Purdue University, 1949; Ph.D. University of Illinois, 1954.

WILSON, WILLIAM LESSENE, Assistant Professor of Aerospace Studies.
Captain, United States Air Force; B.S., University of South Carolina, 1959.

WINTER, JAMES PAUL, Associate Professor of English.
A.B., Marshall University, 1930; M.A., Columbia University, 1932.

WISE, ALBERT GOLDNER, Instructor in Economics.

WRIGHT, JAMES WESLEY, Associate Professor of Plant Pathology and Physiology.
B.S., 1949, M.S., 1958, Virginia Polytechnic Institute; Ph.D., North Carolina State University, 1960.

WITT, JAMES WILLIAM, Assistant Professor of Political Science.
B.A., Loyola University (Los Angeles), 1961; M.A., University of Southern California, 1966.

WOLF, JAMES S., Associate Professor of Materials Engineering.

WOLLMANN, MARC LEROY, Associate Professor of Electrical Engineering.
B.S., North Dakota State University, 1950; Ph.D., Michigan State University, 1966.

WOOD, KENNETH LEE, Associate Professor of Physics.
B.S., Carson Newman College, 1932; M.S., University of Tennessee, 1934.

WOOD, WILLIAM BRITTINGHAM, JR., Instructor in English.

WOODELL, CHARLES HAROLD, Instructor in English.

WOODRUFF, JAMES RAYMOND, Assistant Professor of Agronomy and Soils.
B.S., 1958; M.S., 1964, North Carolina State University; Ph.D., Clemson University, 1967.

WOODS, JUANITA FAYE, Lecturer in Nursing, Baccalaureate Program.

WOODS, SAM GRAY, Assistant Professor of Animal Science, Edisto Experiment Station.
B.S., Clemson University, 1952.

WOOTEN, THOMAS ERNEST, Assistant Professor of Forestry.

WRAY, CHARLES VICTOR, Associate Professor of Textiles.
B.S., Clemson University, 1940; M.S., Georgia Institute of Technology, 1954.

WRIGHT, BENJAMIN CURTIS, Assistant Professor of Military Science.
Lieutenant Colonel, Infantry, United States Army; B.S., Clemson University, 1952.

YANDLE, THOMAS BRUCE, JR., Assistant Professor of Economics.

YANG, TA-TIEH, Professor of Mechanical Engineering.
B.S., Shanghai Institute of Technology, 1948; M.S., Oklahoma State University, 1957; Ph.D., Cornell University, 1961.

YOUNG, FRANKLIN ALDEN, JR., Assistant Professor of Materials Engineering.

YOUNG, JOSEPH LAURIE, Professor of Architecture.
B.Arch., University of Texas, 1950; M.Arch., Georgia Institute of Technology, 1955; A.I.A.

ZEINA, PETER WILLIAM, Visiting Professor of Mathematics.

ZEH, ELDON IRVIN, Assistant Professor of Plant Pathology and Physiology.

ZIEGLER, JOSEPH ANTHONY, Assistant Professor of Economics.
B.A., St. Mary's College, 1967.

ZIELINSKI, PAUL BERNARD, Associate Professor of Engineering Mechanics.
B.S.C.E., Marquette University, 1956; M.S., 1961, Ph.D., 1965, University of Wisconsin; P.E.

ZINK, WILLIAM TALBOTT, Associate Professor of Electrical Engineering.
B.S., United States Naval Academy, 1932; M.S. (E.E.), Drexel Institute, 1955; P.E.
CLEMSON UNIVERSITY AT GREENVILLE

DAY, FRANK LOUIS, Director and Assistant Professor of English.
B.S., Gorham State College, 1954; M.A., University of Tennessee, 1959.

DICKENS, LARRY LUTHER, Instructor in Chemistry.
B.S., David Lipscomb College, 1966.

EDWARDS, MARY LANG OLSEN, Instructor in Biology.
B.A., Agnes Scott College, 1966; M.S., Clemson University, 1969.

IBRAHIM, IRA B. BRANN, Instructor in Mathematics.
B.S., Southeastern Louisiana College, 1964; M.S., Clemson University, 1966.

JACOBS, GLENN KEITH, Instructor in Mathematics.
B.A., University of Southern Mississippi, 1964; M.S., Clemson University, 1968.

MELTON, MAURICE KAY, Instructor in History.

RICE, MARGARET KOONTZ, Instructor in French.
A.B., Greensboro College, 1941; M.A., Columbia University, 1944.

ROMPALA, JOHN THADDEUS, Assistant Professor of Physics.
B.S., DePaul University, 1964; Ph.D., Clemson University, 1969.

STRICKLER, JOHN ROBERT, Instructor in English.
A.B., Bridgewater College, 1966; Appalachian State University, 1968.

THAKER, HARSHDRAJ HARIKAL, Instructor in Economics.

VAN HOY, MILTON SPANGLER, Instructor in English and French.

WATSON, KATHERINE RAMSEY, Instructor in Mathematics.
B.A., College of William and Mary, 1938; M.M., University of South Carolina, 1965.

WOMBLE, ANN EDWARDS, Instructor in Chemistry.
B.S., Woman's College of Georgia, 1966; M.S., Clemson University, 1969.

CLEMSON UNIVERSITY AT SUMTER

WILLIS, SAMUEL MARSH, Director; Professor of Industrial Management.
B.S., Clemson University, 1950; M.S., Georgia Institute of Technology, 1955; Ph.D., University of Alabama, 1962.

ADAMS, PORTER HUGUENIN, JR., Instructor in Economics.
B.A., Clemson University, 1964; M.A., University of South Carolina, 1966.

ALDERMAN, HERMAN D., Instructor in Engineering.
B.S., University of South Carolina, 1965; M.S., Vanderbilt University, 1967.

ANDERSON, JACOB CLARENCE, JR., Assistant Professor of Mathematics.
B.S., University of Southwestern Louisiana, 1964; M.S., Clemson University, 1965.

CAMERON, JOSEPH PRICE, Assistant Professor of Mathematics.
B.S., The Citadel, 1943; M.S., University of Georgia, 1950.

COLLINS, SAMUEL ROBERT, Assistant Professor of Chemistry.
B.S., Harding College, 1946; M.S., Louisiana State University, 1953.

DARMODY, GORDON RICHARD, Assistant Professor of Physics.
B.A., Union College, 1953; M.Ed., Sam Houston State Teachers College, 1957.

DOYLE, JOHN JOSEPH, III, Instructor in English.

HOUSER, RAYMOND DALE, Instructor in Chemistry.

LOGUE, JOHN FRANK, Instructor in Biology.
B.S., 1964, M.S., 1965, University of South Carolina.

MULLEN, JOHN, JR., Instructor in Mathematics.
B.S., United States Naval Academy, 1944; M.A.T., Duke University, 1965.

RUTLEDGE, ROGER K., Part-Time Instructor in Sociology.
B.A., University of South Carolina, 1966; M.A., University of Chicago, 1968.

SMALL, SANDRA EILEEN, Instructor in History.

WALKER, WILLIAM THOMAS, III, Instructor in History.

WENCER, DON BENTON, * Instructor in Chemistry.
B.S., Bethany College, 1964; M.S., West Virginia University, 1966.

* On leave.
WILDER, JOSEPHINE WILLIAMS, Instructor in French.
  A.B., Winthrop College, 1941; M.A., University of South Carolina, 1965.
WILLSON, FREDERICK A., Part-Time Visiting Instructor in Industrial
  Management.
  B.S., University of South Carolina, 1953; C.P.A.
YATES, O. IRENE, Assistant Professor of English.
  B.A., Winthrop College, 1930; M.A., University of Virginia, 1939.
YATES, OLIVER LAWRENCE, Part-Time Instructor in Psychology.
  B.S., 1937, M.A., 1951, University of South Carolina.
FERGUSON, JANE JARVIS, Librarian.

EMERITUS FACULTY

ALBERT, WILLARD BENJAMIN, B.S., M.S., Ph.D., Associate Professor Emeritus of Botany and Bacteriology.
ARMSTRONG, GEORGE MILLER, B.S., M.A., Ph.D., Head Emeritus of Botany and Bacteriology Department; Professor Emeritus of Botany and Bacteriology; Plant Pathologist Emeritus.
ARNDT, CHARLES HOMER, A.B., M.S., Ph.D., Plant Pathologist Emeritus.
AULL, GEORGE HUBERT, B.S., M.S., Ph.D., Head Emeritus of Agricultural Economics and Rural Sociology Department; Professor Emeritus of Agricultural Economics and Rural Sociology; Agricultural Economist Emeritus.
BROCK, DEWEY CLIFTON, B.S., M.A., Associate Professor Emeritus of Industrial Education.
BROWN, HUGH MONROE, B.A., M.A., Ph.D., Dean Emeritus, School of Textiles.
CARTEE, EUGENE FRANKLIN, B.S., M.S., Professor Emeritus of Textiles.
CLARKE, ELWYN LORENZO, B.S. in C.E., C.E., Head Emeritus of Civil Engineering Department; Professor Emeritus of Civil Engineering.
COOPER, HERBERT PRESS, B.S., M.S., Ph.D., Dean Emeritus, School of Agriculture; Director Emeritus of South Carolina Agricultural Experiment Station; Professor Emeritus of Agronomy; Agronomist Emeritus.
EARLE, SAMUEL BROADUS, A.B., A.M., M.E., LL.D., Dean Emeritus, School of Engineering; Professor Emeritus of Mechanical Engineering; Director Emeritus, Engineering Experiment Station.
EPING, CARL LAFAYETTE, A.B., A.M., Head Emeritus of Social Sciences Department; Professor Emeritus of History and Government.
FARRAR, MILTON DYER, B.S., M.S., Ph.D., Dean Emeritus, School of Agriculture; Senior Scientist Emeritus in Agriculture and Biological Sciences; Professor Emeritus of Entomology and Zoology.
FOSTER, HAROLD HOMER, A.B., M.A., Ph.D., Associate Professor Emeritus of Botany and Bacteriology.
GAGE, GASTON, B.S., M.Ed., Dean Emeritus of the School of Industrial Management and Textile Science; Head Emeritus of Yarn Manufacturing Department; Professor Emeritus of Carding and Spinning.
GOODALE, BEN EDMUND, B.S., M.S., Head Emeritus of Dairy Science Department; Professor Emeritus of Dairy Science; Dairy Scientist Emeritus.
GREEN, JOSEPH COLEMAN, B.A., M.A., Ph.D., Professor Emeritus of English.
HALL, EVEY EUGENE, B.S., M.S., Superintendent Emeritus of Pee Dee Experiment Station.
HODGES, BAXTER HOWARD, B.S., Assistant Professor Emeritus of Chemistry.
HUNTER, HOWARD LOUIS, B.Chem., Ph.D., Dean Emeritus, College of Arts and Sciences; Professor Emeritus of Chemistry.
KYZER, EDWARD DEANE, B.S., Superintendent Emeritus of Coast Experiment Station.
LAMASTER, JOSEPH PAUL, B.S., M.S., Head Emeritus of Dairy Department; Professor Emeritus of Dairying; Dairy Husbandman Emeritus.
Lindsay, Joseph, Jr., A.B., M.S., Head Emeritus of Textile Chemistry and Dyeing Department; Professor Emeritus of Textile Chemistry and Dyeing.

Lindsey, Tate Jefferson, B.A., Ph.D., Professor Emeritus of Physics.

McCarthy, Hugh Harris, B.F.A., M.F.A., Ph.D., Professor Emeritus of Music Education.

McKenna, Arthur Ernest, B.S., M.S., Senior Professor Emeritus of Textiles.

Marshall, John Logan, B.S., Head Emeritus of Industrial Arts Department; Professor Emeritus of Industrial Arts.

Mitchell, Jack Harris, B.S., M.S., Professor Emeritus of Chemistry.

Monroe, James Beasley, B.S., M.S., Head Emeritus of Agricultural Education Department; Professor Emeritus of Agricultural Education.

Musser, Albert Myers, B.S., Head Emeritus of Horticulture Department; Professor Emeritus of Horticulture; Horticulturist Emeritus.

Paden, William Reynolds, B.S., M.S., Ph.D., Agronomist Emeritus.

Rausch, Karl William, B.S., M.E., Professor Emeritus of Mechanical Engineering.

Reed, Albert Raymond, A.B., M.S., Associate Professor Emeritus of Physics.

Reed, Charles Albert, A.B., M.S., Ph.D., Professor Emeritus of Physics.

Rhyne, Orestes Pearl, A.B., A.M., Ph.D., Head Emeritus of Modern Language Department; Professor Emeritus of Modern Languages.

Riley, James Alvin, B.S., M.S., Superintendent Emeritus of Sandhill Experiment Station; Agronomist Emeritus of Sandhill Experiment Station.

Roderick, Donald Barclay, B.A., Chemistry Assistant Emeritus.

Roger, William Bryan, B.S., Superintendent Emeritus of Edisto Experiment Station.

Rosenkranz, Duane Benjamin, A.B., M.A., Professor Emeritus of Botany.

Rush, John Millard, A.B., M.S., Ph.D., Professor Emeritus of Botany and Bacteriology.

St. Hubert, Robert LaMontagne, P.A.G.F., Visiting Professor Emeritus of Architecture.

Shackelford, MacFarland, B.S., Assistant Professor Emeritus of Physics.

Sheeldon, Dawson Clement, B.S., M.A., Ph.D., Head Emeritus of Mathematics Department; Professor Emeritus of Mathematics.

Simpson, Francis Marion, B.S., Visiting Professor Emeritus of Agricultural Economics.


Stuart, Charles Morgan, A.B., M.A., Associate Professor Emeritus of Mathematics.

Stribling, Bruce Hodgson, B.S., M.S., Associate Professor Emeritus of Agricultural Education.

Tabrunt, William Edward, Sr., B.S., M.Ed., Associate Professor Emeritus of Textiles.

Washington, William Harold, B.S., M.S., Dean Emeritus, School of Education; Professor Emeritus of Vocational Education.

White, Thomas Arlington, B.S., M.S., Ph.D., Professor Emeritus of Agricultural Education.

Williams, William Bratton, B.S., M.S., Associate Professor Emeritus of Textiles.

Wilson, Milner Bradley, Jr., A.B., A.M., Associate Professor Emeritus of English.
LIBRARY STAFF

JOHN WALLACE GORDON GOURLAY, A.M.L.S. .................. Director of the Library
MYRA ANN ARMISTEAD, M.L.I. .......................... Documents Librarian
LOIS JONES GOODMAN, B.S. .......................... Cataloger
PEGGY JO HOPKINS, M.A. ...... Head, Science, Technology and Agriculture Division
CARSE OREN MCDANIEL, M.S. in L.S. .......... Head, Social Sciences and Humanities Division

AGNES ADGER MANSFIELD, M.L.S. ............ Assistant Reference Librarian
SUE H. MOSS, B.S. in L.S. ............... Cataloger
MARGY H. NOWACK, A.B. ................. Acquisitions Librarian
GENEVIEVE L. REIDY, M.S.L.S. ........... Reference Librarian
MURIEL GIPSON RUTLEDGE, B.S. ........ Serials Librarian

MARTHA SIMPSON STEPHENSON, M.L. ........... Cataloger
SOPHIA E. SULLIVAN, M.S. .............. Head, Catalog Department
PRISCILLA H. SUTCLIFFE, M.S.L.S. ....... Special Collection Librarian
MARIAN HULL WITHINGTON, M.S. .......... Reference Librarian
LAWRENCE R. WOOD, M.S.L.S. ............. Cataloger

STANDING COMMITTEES OF THE UNIVERSITY, 1969-70

ADMISSIONS:
K. N. Vickery, ex officio, Chairman; N. R. Bauld, H. Brantley, S. H. Brown, C. C. Fain, V. S. Hodges, E. Park, B. N. Skardon, B. J. Skelton, S. M. Watson, R. J. Berry, ex officio.

ARCHIVES:

CURRICULUM:
V. Huist, ex officio, Chairman; H. Brantley, H. W. Busching, C. C. Davis, S. M. Lukawecki, R. Thompson, C. V. Aucoin, ex officio; H. M. Cox, ex officio; G. Labecki, ex officio; H. F. Landrith, ex officio; H. E. McClure, ex officio; J. F. Pearce, ex officio; L. G. Rich, ex officio; W. D. Trevillian, ex officio; K. N. Vickery, ex officio; W. H. Wiley, ex officio.

ETHICS AND RELIGION:
C. E. Raynal, Chairman; C. A. Arrington, E. Copenhaver, W. T. Cox, V. Hurst, P. H. Lewis, R. Reynolds, B. E. Trent.

FACULTY BASIC RESEARCH:

FINE ARTS SERIES:

GRADUATE COUNCIL:
Honors and Awards:


Honors Program Council:


Improvement of Undergraduate Teaching:


Library:


Patent Committee:

M. A. Wilson, Chairman; E. Harrison, K. R. Helton, G. C. Kingsland, C. M. McHugh, M. J. Skove, W. W. Bryan, ex officio; T. D. Efland, ex officio; O. B. Garrison, ex officio; S. G. Nicholas, ex officio.

Safety and Fire Prevention:

C. E. Littlejohn, Chairman; J. P. Burns, R. C. Fox, K. S. Landers, E. H. McCarter, D. P. Miller, W. A. Moore, W. E. Berry, ex officio; J. E. Hair, ex officio; N. R. Page, ex officio; J. W. Weeden, ex officio; B. H. Wilhelm, ex officio.

Schedule Committee:


Social:


Special Advisory Committee for Disposal of Poisonous Chemicals:

N. R. Page, Chairman; H. T. Polk, J. J. Porter, R. S. Collins.

Special Advisory Committee on Use of Radioactive Materials:

Teaching and Research Faculties 43

FACULTY SENATE

RESEARCH FACULTY COUNCIL
Melford A. Wilson, B.S. in Commerce ........................................... Vice-President for Business and Finance and Comptroller
Kenney Rixie Helton ................................................................. Budget Director
Elmer H. McCarter, M.B.A ......................................................... Financial Analyst
Clyde E. Woodall, M.S ............................................................... Administrative Specialist

ACCOUNTING DIVISION
Trescott Newton Hinton, B.A ..................................................... Director of Accounting
Melvin Eugene Barnette, M.S ...................................................... Supervisor of Contract Accounts
Vivian Raymond Harrell .......................................................... Data Processing Supervisor
Ronald Timothy Herrin ............................................................ Junior Accountant
Alden Lee McCracken, B.S ......................................................... Senior Accountant
James Thomas Roberts, B.S ...................................................... Accountant
William Allen Thompson, B.S ................................................... Senior Accountant
Joseph Shelor Walker, B.S ......................................................... Bursar

PERSONNEL DIVISION
John B. Gentry, Ed.M ............................................................... Director of Personnel
Ray L. Thompson, B.S ............................................................... Associate Personnel Director
Walter E. Berry, B.S ................................................................. Safety Coordinator
William J. Stamey ........................................................................ Insurance Assistant

PHYSICAL PLANT DIVISION
Ralph Simpson Collins, B.E.E., P.E ............................................ Director of Physical Plant Division
James Cleveland Carey, B.S ....................................................... Superintendent of Grounds and Special Services
George Carlisle Jones, B.S. in E.E ............................................... Superintendent of Buildings
Walter Aubrey Moore, B.S. in M.E ............................................. Assistant Plant Engineer
Julian L. Murch, B.S. in C.E., P.E ................................................ Assistant Superintendent of Planning and Engineering
Roy Marcus Rochester, B.E.E .................................................... Plant Engineer
James Allen Stanley, Jr., B.S. in M.E .......................................... Supervisor of Work Order Planning
Jack William Weeden .............................................................. Chief of Security

PURCHASING DIVISION
Earl Spencer Liberty, B.A .......................................................... Director of Purchasing
Daniel Wheeler Bickley, M.S ..................................................... Assistant Director of Purchasing
Jack Norman Wilson, B.A ........................................................ Senior Accountant, Property Control

AUXILIARY ENTERPRISES
Henry Hughes Hill, Jr., B.S ....................................................... Director of Auxiliary Enterprises
William Drye Cromer ............................................................... Supervisor, Central Office Services
Charles Dimmock ................................................................. Associate Director of Auxiliary Enterprises
Luther J. Fields, B.S ................................................................. Manager, Student Food Services
Thomas Roy Rhymes ............................................................ Manager, Laundry
Leroy Edward Rutland, B.S .................................................... Manager, Residence Halls
Ernest Ciscolm Watson, B.S ..................................................... Associate Director of Housing

THE CLEMSON HOUSE HOTEL
Frederick Leonard Zink, Jr ....................................................... Manager
Verner Eugene Cathcart .......................................................... Resident Manager

ADMINISTRATIVE COUNCIL
ADMINISTRATION OF DEVELOPMENT ACTIVITIES

WILLIAM WRIGHT BRYAN, B.S., Litt.D., LL.D., Vice-President for Development

ALUMNI RELATIONS

JOSEPH E. SHERMAN, B.S. .................. Director of Alumni Relations
GEORGE M. MOORE, B.S. .................. Associate Director of Alumni Relations
GEORGE U. BENNETT, B.S. ............. Alumni Field Representative
JOHN C. MANN, B.A. .................. Alumni Editor

PLANNING AND CORPORATE SUPPORT

MILLARD BAKER FARRAR, B.S. ........ Director

PUBLIC RELATIONS

MELVIN C. LONG, B.S. .................. Director of Public Relations
JOHN L. ALLEN, B.A. .................. Editor, University News Bureau
J. ROSS CORNWELL, M.A. .................. Associate Editor, News Bureau
ALLEN M. SALE, JR., B.A. ........ Publications Editor

UNIVERSITY COMMUNICATIONS CENTER

WILLIAM HARRY DURHAM, M.A. ........ Director, University Communications Center
JAMES PEARSON BURNS .................. Manager, Technical Services
EARL THURMAN COSENS .................. Chief Engineer
THOMAS NEWCOME GREER, B.A. ........ Producer-Director
CHARLES WILLIAM HARALSON .................. Supervisor, Central Photography

CLEMSON ALUMNI ASSOCIATION

1970

Officers

President .................. GEORGE H. AULL, JR., '44 Columbia, S. C.
Secretary .................. JOE SHERMAN, '34 Clemson, S. C.
Treasurer .................. TRESPcott HINTON Clemson, S. C.

National Council

District
1  Daniel S. Lesesne, '38 Charleston, S. C.
2  Sam E. McGregor, '49 Hopkins, S. C.
3  Ernest Rogers, '48 Clemson, S. C.
4  John B. Cornwell, '43 Spartanburg, S. C.
5  John K. Benfield, '41 York, S. C.
6  Billy G. Rogers, '49 Dillon, S. C.
S. C. At-Large  William G. DesChamps, '38 Bishopville, S. C.
Georgia  Lawrence Starkey, '56 Atlanta, Ga.
N. Carolina  Billy D. Bailey, '49 Charlotte, N. C.
At-Large  Thomas C. Breazeale, '42 Knoxville, Tenn.
At-Large  Davis T. Moorhead, '54 Annandale, Va.
Faculty Delegate  Hugh H. Macaulay Clemson, S. C.
Student Delegate  Daniel E. Hunt, '70 Greenville, S. C.
Ex officio  Robert C. Edwards, '33 Clemson, S. C.
Ex officio  W. Wright Bryan, '26 Clemson, S. C.
ADMINISTRATION OF STUDENT AFFAIRS

WALTER THOMPSON COX, B.S. .............. Vice-President for Student Affairs and Dean of Students

OFFICE OF THE DEAN OF MEN

GEORGE EDWARD COAKLEY, B.S. .............. Dean of Men
JOSEPH G. GUGGINO, M.S. .................. Assistant Dean of Men
MANNING N. LOMAX, B.S. .................. Assistant Dean of Men
RICHARD C. ROBBINS, B.B.A. .............. Staff Assistant
THOMAS J. TISDALE, B.S. .................. Head Resident

OFFICE OF THE DEAN OF WOMEN

SUSAN GOODWIN DELONY, M.S. .................. Dean of Women
PATRICIA D. BREWER ...................... Head Resident
LUCILLE K. CORLEY ...................... Head Resident
MARY B. HOOD ...................... Head Resident
MARGARET B. POOLE ...................... Adviser
MARY E. RICHARDSON .............. Head Resident

OFFICE OF ADMISSIONS, REGISTRATION, AND FINANCIAL AID

KENNETH NOTLEY VICKERY, B.S. .............. Dean of Admissions and Registration
GERTRUDE RAMSAY BAILEY .................. Recorder
EUGENIE VENTRE BARTMESS, M.S. ............. Schedule Coordinator
REGINALD JUSTIN BERRY, B.S. .............. Registrar
ARNOLD MANDIGO BLOSS, B.S. .............. Director of Financial Aid
ALBERT B. MARX, M.S. ..................... Associate Director, Admissions and Registration
WILLIAM RICHARD MATTIX, M.S. ............. Assistant Director of Admissions
STANLEY B. SMITH, JR., M.A. .................. Admissions Officer

PLACEMENT OFFICE

DAVIS GREGORY HUGHES, M.Ed. .............. Director of Placement

COUNSELING CENTER

VIRGINIA SMITH HARDIE, Ed.D. ............. Counseling Psychologist
JOHN RANDOLPH ANDERSON, M.S. ............ Counselor
MARY B. ENGLISH, M.R.E. .............. Psychometrist

STUDENT HEALTH SERVICE

JUDSON ELAM HAIL, M.D. .............. Director of Student Health Service
JAMES BOWERS, M.D. .................. Physician
DONALD K. FREEMAN, M.D. .............. Psychiatrist
JOHN RICHARD VAUGHN, M.D. .............. Physician
RUTH DURHAM, R.N. .................. Director of Nurses
EVELYN LITTLETON, R.L.T. .............. X-ray and Laboratory Technician

DIRECTOR OF STUDENT ACTIVITIES

F. JAMES HOFFMANN, M.A. .............. Director of Student Activities

BANDS AND CHORAL MUSIC

JOHN HARRISON BUTLER, Ed.D. .............. Director of Concert Band
GREYTON ALAN BENSON, M.M. .............. Director of Choral Music
BRUCE F. COOK, M.A. .................. Director of Tiger Band
Y. M. C. A. AND UNIVERSITY RELIGIOUS AFFAIRS

Buford E. Trent, M.E. ........................................... Director, Y. M. C. A. and Coordinator of Religious Affairs
Nash Newton Gray, B.S. ......................................... Associate Director
Otis Duell Nelson, M.R.E. ....................................... Associate Director
William Carlisle Wooten, B.C.E. ............................... Youth Director

Y. M. C. A. ADVISORY BOARD

R. W. Moorman, Chairman; R. H. Burley, Vice-Chairman; B. E. Trent, Secretary; J. F. Allen, W. W. Bryan, H. N. Coolege, O. B. Garrison, L. L. Henry, W. A. King, E. O. Lightsey, J. Lindsay, T. C. Lynch, Jr., H. H. Macaulay, B. N. Skardon, M. A. Wilson, P. B. Holtzendorff, Jr., Honorary Life Member; W. T. Cox, ex officio; R. C. Edwards, ex officio; N. N. Gray, ex officio; O. D. Nelson, ex officio; William Wooten, ex officio; Martenza Jones, President, Y. M. C. A.

ATHLETIC STAFF

Frank James Howard, B.S. ....................................... Director of Athletics
Henslee Clifford McLeLLan, M.S. ......................... Associate Director of Athletics
Eugene P. Willimon, B.S. ....................................... Assistant Director of Athletics
Duane Frederick Bruley, Ph.D. .......................... Head Coach, Tennis
H. C. Greenfield, M.S. ........................................ Head Coach, Track and Cross Country
Ibrahim M. Ibrahim, Ph.D. .................................... Head Coach, Soccer
Cecil Wayne Ingram, M.S. ................................... Head Coach, Football
Robert Morgan Jones, B.S. .................................. Head Coach, Golf
Taylor Osborne Locke, B.A. ................................. Head Coach, Basketball
James Banks McFadden, B.S. ......................... Director of Intramural Athletics
Carl Manning McHugh, B.S. .................................. Head Coach, Swimming
Robert William Smith, B.S. ................................. Superintendent, Athletic Physical Plant
Billy Hugh Wilhelm, A.B. ..................................... Head Coach, Baseball

ATHLETIC COUNCIL

R. R. Ritchie, Chairman; J. V. Brawley, Jr., T. D. Efland, W. J. Lanham, R. W. Moorman, J. L. Young, J. F. Pearce, President, Faculty Senate, ex officio; K. N. Vickery, Dean of Admissions and Registration, ex officio; T. C. Breazeale, Alumni Member; P. H. Prince, Alumni Member.
INFORMATION

PART II
PART II—Information

GENERAL INFORMATION

Clemson is a land-grant, state-supported university. Clemson is fully accredited by the Southern Association of Colleges and Schools. Curriculums are accredited by the American Chemical Society, Engineers' Council for Professional Development, National Architectural Accrediting Board, and Society of American Foresters.

The forty-seven undergraduate and forty-four graduate curriculums under the Colleges of Agriculture and Biological Sciences, Architecture, Education, Engineering, Industrial Management and Textile Science, Liberal Arts, and Physical and Mathematical Sciences, the School of Nursing, and the Graduate School form a background of training for the hundreds of occupations and professions in which Clemson graduates engage. The University is organized on a basis whereby it retains a clear entity through the interrelationships of colleges, school, and departments providing a well-balanced fundamental and general educational program.

The enrollment of Clemson has grown from 446 students at the opening of the University in 1893 to 7,021 for the first semester, 1969-70, including 278 at the Greenville and Sumter campuses. Since the opening of the University, through the first semester 1969-70, 58,306 students have attended Clemson, and of this number, 20,474 have been awarded the bachelor’s degree. During this same period, 69 associate degrees, 1,357 masters’ degrees, and 151 Doctor of Philosophy degrees have been awarded.

ADMINISTRATIVE ORGANIZATION

The government of the University is vested in a Board of 13 members, including 6 elected by the Legislature and 7 life and self-perpetuating members, in accord with the Clemson will. The President of the University is the chief executive and administrative officer appointed by the Board of Trustees; and under the President there are four areas of administration, each headed by a chief administrative officer responsible to the President. The organizational units under each of these officers are outlined below:

I. Vice-President for Academic Affairs and Dean of the University
   A. College of Agriculture and Biological Sciences
B. College of Architecture  
C. College of Education  
D. College of Engineering  
E. College of Industrial Management and Textile Science  
F. College of Liberal Arts  
G. School of Nursing  
H. College of Physical and Mathematical Sciences  
I. The Graduate School  
J. Extended Programs  
K. The University Library  
L. The Summer Sessions  
M. The Computer Center  
N. ROTC  
O. The Belle W. Baruch Institute in Forestry, Wildlife Science, and Marine Biology  
P. Water Resources Research Institute  
Q. Clemson University at Greenville  
R. Clemson University at Sumter  

II. Vice-President for Business and Finance and Comptroller  
A. Accounting Division  
B. Personnel Division  
C. Physical Plant Division  
D. Purchasing Division  
E. Auxiliary Enterprises  
F. The Clemson House Hotel  

III. Vice-President for Development  
A. Alumni Relations  
B. Public Relations  
C. Communications Center  
D. Planning and Corporate Support  

IV. Vice-President for Student Affairs and Dean of Students  
A. Office of the Dean of Men  
B. Office of the Dean of Women  
C. Office of Admissions, Registration, and Financial Aid  
D. Y.M.C.A. and University Religious Affairs
Information

E. Placement Office
F. Counseling Center
G. Athletic Department
H. Student Health Service
I. Director of Student Activities
J. Department of Bands

REQUIREMENTS FOR ADMISSION

To receive consideration for admission to Clemson, the applicant must, as a rule, present a transcript of his high school record giving evidence of graduation, and submit an official copy of his scores for the College Board tests used as an entrance examination. In reaching an admissions decision, the examination scores along with the student's academic preparation, rank in class, and the recommendation of the high school principal will be weighed carefully.

In addition, students may qualify for entrance by:

(1) Achieving satisfactory scores on the College Board examinations and presenting a South Carolina High School Certificate (awarded by certificate examination). This provision applies only to adult candidates 21 or more years of age or to those who have served at least two years of active duty in the Armed Forces.

(2) Achieving satisfactory scores on the College Board examinations and completing a minimum of 12 high school units. Students in this category must achieve above average scores on the entrance examination, and have superior high school records.

(3) Achieving satisfactory scores on the College Board examinations and meeting the additional requirements for entrance with advanced standing. As minimum additional criteria, the transfer applicant must present a statement of honorable dismissal from the institution last attended, an original transcript of his record from each college or university attended, and an official statement that he is eligible to return to the institution last attended. Candidates meeting these requirements will then be considered carefully in the light of the quality of their previous record, and work completed in other colleges with a grade at least one letter grade higher than the lowest passing mark will be evaluated in terms of equivalent courses in the curriculum at Clemson selected by the student.

Finally, various nonintellectual factors will be considered in a few cases where it is impossible to make a positive decision on the strength of aptitude and previous academic performance alone.
Requirements for Admission

There is no application fee, but an admissions deposit is required following the issuance of a provisional acceptance. Instructions concerning this deposit will be included in the acceptance letter.

Application Forms. Forms to be used in applying for admission to the University may be obtained by writing the Office of Admissions and Registration, Clemson University, Clemson, S. C. 29631.

Entrance Examinations. With the single exception of those who already hold a bachelor’s or higher level degree from an accredited college or university, all candidates for admission to Clemson on the undergraduate level must complete the College Entrance Examination Board Scholastic Aptitude Test. In addition, all candidates, with the exception of these transferring acceptable college credit in mathematics, should take one of the mathematics achievement tests. Although the score earned on either of the mathematics tests will be considered, it is suggested that candidates take the Level I examination. Applicants who have completed the required tests previously are advised that for a fee of $2 and upon request, the College Entrance Examination Board will furnish Clemson an official transcript of scores. Unofficial score reports from other sources are not acceptable.

Applicants who will have completed two or more years of high school French, German, Russian, or Spanish and who will enroll in a curriculum which includes a modern foreign language should take the appropriate language achievement test. These candidates may qualify for advanced placement with credit in language on the basis of a satisfactory score on this test.

Applicants may secure a BULLETIN OF INFORMATION and an application for the tests from their local high school principal or guidance counselor. Should this literature not be available at the high school, the applicant may write to College Entrance Examination Board, P. O. Box 592, Princeton, New Jersey 08540 (Box 1025, Berkeley, California 94701, for Western residents), requesting a BULLETIN OF INFORMATION, COLLEGE BOARD ADMISSIONS TESTS and a test registration form.

All candidates are reminded to forward applications for the entrance examinations as indicated in the Bulletin of Information, and not to Clemson University.

Applicants for enrollment in Architecture must also take the ARCHITECTURAL SCHOOL APTITUDE TEST which is given at most schools of architecture in November, January, and March. Applications for this test may be obtained from a school of archi-
Three other very important points are:

1. Be sure to list Clemson on the application for the College Board examinations as one of the schools to receive your scores.
2. Consideration will be given to your examination results only in the event that an official application for entrance to the University is on file in the Admissions Office.
3. Up to five weeks is required for College Board to furnish scores, and you must schedule your tests at a date sufficiently early to allow time for them to be received prior to your anticipated entrance date.

Advanced Placement by Examination. In addition to earning credit by the usual method involving classroom attendance, students may receive credit toward their degree by completing a course successfully by examination only. Freshmen interested in exempting some of the elementary courses in this manner should participate in the College Board Advanced Placement Examination program, and have the results of these tests sent to Clemson.

Matriculation. Upon arrival for the opening of the session, new students report to the Office of Admissions and Registration to complete enrollment. A student's matriculation is equivalent to his pledge to conform to the rules of the institution. Any admission gained or matriculation made irregularly is subject to cancellation.

Students from Other Countries. A limited number of well qualified students from other countries are accepted. The application for admission must be in English on the official application form furnished by the Office of Admissions and Registration. Official transcripts of all high school and college level work which the applicant has undertaken should accompany the application. They must also complete the entrance examination requirements discussed previously, although in a few unusual cases a substitute examination is authorized.

In addition to academic and personal qualifications equivalent to those required of United States citizens, the applicant from another country is required to submit evidence of his possessing dollar resources adequate without assistance from the University for at least the first year of his course of study, including round trip travel expenses. The University is unable to grant scholarship or loan assistance to students from abroad, and there is little likelihood that any type of employment may be secured.
If accepted, students from other countries should have a minimum of $1,200 in their possession upon reporting to the University. This amount is sufficient to make the entrance payment which includes tuition, fees, and living expenses for a semester, and for books and supplies. Foreign students will also be required to purchase student accident and health insurance.

EDUCATIONAL BENEFITS FOR VETERANS AND WAR ORPHANS

The Veterans Administration provides educational assistance for veterans and children of deceased or totally disabled veterans who meet requirements of applicable laws and regulations. Any veteran or child of a deceased or totally disabled veteran should communicate with the nearest Veterans Administration office to determine whether or not he is entitled to any educational benefits.

SELECTIVE SERVICE REGULATIONS

Registration. For the benefit of students who become 18 years of age during the school year, provision has been made for such students to register for Selective Service in the Office of Admissions and registration on the campus. The registration is then sent through channels to the registrant's local board.

Deferment. The following Selective Service Regulations published in the summer of 1967 are quoted for the guidance of undergraduates:

"In Class II-S shall be placed any registrant who has requested such deferment and who is satisfactorily pursuing a full-time course of instruction at a college, university, or similar institution of learning, such deferment to continue until such registrant completes the requirement for his baccalaureate degree, fails to pursue satisfactorily a full-time course of instruction, or attains the twenty-fourth anniversary of the date of his birth, whichever occurs first.

"In determining eligibility for deferment in Class II-S, a student's academic year shall include the 12-month period following the beginning of his course of study.

"A student shall be deemed to be satisfactorily pursuing a full-time course of instruction when, during his academic year, he has earned, as a minimum, credits towards his degree which, when added to any credits earned during prior academic years, represent a proportion of the total number required to earn his degree at least equal to the proportion which the number of academic years completed bears to the normal number of years established by the school to obtain such degree. For example, a student pursuing a
four-year course should have earned 25% of the credits required for his baccalaureate degree at the end of his first academic year, 50% at the end of his second academic year, and 75% at the end of his third academic year.

“It shall be the registrant’s duty to provide the local board each year with evidence that he is satisfactorily pursuing a full-time course of instruction at a college, university, or similar institution of learning.”

EXPENSES

Settlement of University Fees. The schedule of semester charges for all undergraduate students—full-time, part-time, and auditing—is shown on the pages which follow. The entire semester’s expenses are due and payable at the beginning of each semester, and no student is officially enrolled until all semester expenses have been satisfied. In special cases the University will accept at the beginning of a semester a non-interest bearing promissory note for a portion of the semester residence-hall rent and semester-plan board fee. Amounts up to $65 for room rent and $115 for board fee may be included in the note. In such cases, a note for the first semester charges will be due October 10, and a note for the second semester charges will be due March 1. A $60 advance payment of room rent is required for a room reservation for the fall semester. This payment must be made by cash, check or money order and should be sent to the Residence Halls Manager’s Office with the completed “Student Application for Room Reservation” card not later than July 1. The $60 advance payment of room rent will be deducted from the amount otherwise due for the first semester’s expenses. All other transactions relating to payments should be conducted with the Accounting Division. All checks and money orders should be made payable to Clemson University. A personal check given in payment of University expenses which is returned by the bank unpaid, immediately creates an indebtedness to the University.

The University reserves the right to adjust charges to current costs.

Past Due Student Accounts. Any indebtedness to the University which becomes past due immediately jeopardizes the student’s enrollment, and no such student will be permitted to graduate or register for a subsequent semester or summer school term. Further, any student who fails to pay all indebtedness to the University may not be issued an honorable discharge, transcript, or diploma.
Expenses 57

Refund of Academic Fees for Students Enrolled for Less than a Full Semester. No adjustments in charges will be made on a semester’s tuition and fees after five weeks from the date classes begin for the semester. Charges for periods of attendance of five weeks or less during a semester shall be made on the following basis:

Two weeks or less ........................................ 20%
More than 2 but not more than 3 weeks ........ 40%
More than 3 but not more than 4 weeks ......... 60%
More than 4 but not more than 5 weeks ....... 80%
More than 5 weeks ........................................ 100%

Special provision has been made for a student who is required to discontinue his enrollment to report for active duty in the Armed Forces of the United States. Such students shall be charged for tuition, maintenance and activity fee, and medical fee on a daily pro rata basis, holidays excepted, instead of the percentage basis stated above, provided that such discontinuance of enrollment is the result of circumstances, conditions, or actions over which the student has no control.

Refund of Dining Hall and Residence Hall Fees. Specific information relating to living-expense refunds is given in the sections on dormitories and dining hall.

Schedule of Charges. The schedule of semester charges for the 1970-71 sessions is as follows:

**SCHEDULE OF SEMESTER CHARGES 1970-71 SESSION**

*Resident of South Carolina (Full-time student)*

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$75.00</td>
<td>$75.00</td>
</tr>
<tr>
<td>Matriculation Fee</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>University Fee</td>
<td>198.00</td>
<td>198.00</td>
</tr>
<tr>
<td>Medical Fee</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td><strong>Semester Total Excluding Room and Board</strong></td>
<td><strong>$303.00</strong></td>
<td><strong>$303.00</strong></td>
</tr>
</tbody>
</table>
Non-Resident of South Carolina (Full-time student)

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$200.00</td>
<td>$200.00</td>
</tr>
<tr>
<td>Matriculation Fee</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>University Fee</td>
<td>423.00</td>
<td>423.00</td>
</tr>
<tr>
<td>Medical Fee</td>
<td>25.00</td>
<td>25.00</td>
</tr>
</tbody>
</table>

Semester Total Excluding Room and Board... $653.00 $653.00

Room:

West Campus (Air-Conditioned With Telephones)

- Johnston Hall:
  - New Section A-F: $195.00
  - Old Section F: 165.00
- Donaldson Hall: 210.00
- Bowen Hall: 210.00
- Wannamaker Hall: 210.00
- Bradley Hall: 210.00
- Norris Hall: 210.00

East Campus (Air-Conditioned With Telephones)

- Mauldin Hall: 210.00
- Barnett Hall: 210.00
- Manning Hall: 210.00
- Lever Hall: 210.00
- High Rise 3: 210.00

West Campus (Air-Conditioned Without Telephones)

- Johnstone Hall:
  - Section D, E: 150.00
- Benet Hall: 180.00
- Young Hall: 180.00
- Cope Hall: 180.00
- Geer Hall: 180.00
- Sanders Hall: 180.00

West Campus (Without Air-Conditioning or Telephones)

- Johnstone Hall:
  - Old Sections A, B, and C: 135.00
- Board (5-day plan, Monday through Friday): $220.00 $220.00
- Board (7-day plan): $275.00 $275.00

Part-time Student. Undergraduate students taking less than 12 semester credit hours will be charged each semester according to the following schedule. These fees do not provide for admission to athletic events, concert series, etc.
Definition of Residence

Matriculation Fee (non-refundable)  
S.C. Resident: $5.00  
Non-Resident Student: $5.00
Tuition (per semester hour)  
S.C. Resident: 6.00  
Non-Resident Student: 16.00
University Fee (per semester hour)  
S.C. Resident: 13.00  
Non-Resident Student: 28.00

Auditing. Charges for auditing are made each semester according to the following schedule:

Tuition (per semester hour)  
S.C. Resident: $3.00  
Non-Resident Student: $8.00
University Fee (per semester hour)  
S.C. Resident: 7.00  
Non-Resident Student: 14.00

Graduate Students. For further information concerning advanced degrees see The Graduate Bulletin, which may be obtained from the Office of the Dean of the Graduate School.

Late Registration Fee. To prevent or reduce the problems incident to late registration, registration schedules are set for specific days, and certain definite procedures are outlined. A student has not completed registration until all of the required steps are taken, the final one being the return of the properly signed Class Registration Card to the Office of Admissions and Registration. Any student who fails to register for classes on the prescribed class registration days will be charged a late registration fee of $10. This late registration fee applies to full-time and part-time students.

Late Payment Fee. Any student who registers for classes on or before a designated date each semester has three additional working days to make satisfactory settlement of all expenses without being charged a Late Payment Fee. Once begun, a Late Payment Fee of $5 per day will be charged until satisfactory settlement of all fees is made.

Definition of Residence for the Purpose of Determining Status for Enrollment in Clemson University

1. A resident student is one who was continuously domiciled in South Carolina for twelve months immediately preceding his initial enrollment in the University. The term "domiciled in South Carolina" excludes those students in the State primarily to attend the institution and whose abode in South Carolina has been established as a technical bar to the higher tuition and fee charges.

2. Attendance at an educational institution is usually interpreted as temporary residence. Accordingly, a student neither gains nor loses residence solely by such attendance. Registration for voting, the act of voting, purchase of property, payment of taxes and employment in South Carolina are not necessarily by themselves proof of residence in the State for the purpose of enrolling in the University; nor does birth in South Carolina or direct descent from
South Carolina forebears necessarily prove domicile in South Carolina.

3. The residence of a married woman is that of her husband, if living together; however, a wife not living with her husband may establish separate domicile. A non-resident woman who marries a resident of South Carolina shall be accepted as a resident student at the beginning of the next semester following such marriage; and a resident woman who marries a non-resident shall keep her residence status so long as she maintains continuous enrollment in the University. A non-resident man who marries a resident woman does not thereby gain resident status.

4. The residence of a minor child (under 21 years of age) is that of the father; or of the mother if the father be not living or if the parents are separated and the child habitually resides with the mother; or, if both parents are dead, with his legally appointed guardian, or anyone else with whom he habitually resides in the absence of formal legal designation.

5. A minor may become emancipated (freed from parental domicile) through marriage, formal court action, abandonment by parents, or positive action on his own part evidential of his alienation or parental domicile. To qualify under the latter category, a minor must have completely separated himself from the parental domicile and have proved that such separation is complete and permanent. Mere absence from the parental domicile is not proof of its complete abandonment. If an applicant can provide adequate and satisfactory proof of complete emancipation and of his having come to South Carolina with the intention of establishing domicile, he may be granted resident classification at the next enrollment occurring after the expiration of twelve months following establishment of domicile, excluding time spent as a student at the University. The burden of proof of domicile and emancipation shall be upon the applicant.

6. If it is established to the satisfaction of the University that parents have moved to South Carolina with every intention of remaining permanently and establishing themselves as citizens of the State, the dependent children of such parents may be classified as resident students at the first enrollment after the parents move into the State. If the parents of a resident student move to another state with the intention of establishing domicile there, the student shall at the first enrollment after twelve months from the date of establishment of said home by his parents be classified as a non-resident student; however, the student may continue in resident
status if he reaches 21 years of age within the twelve-month period, or if he establishes evidence of emancipation.

7. A person enjoying majority privileges (over 21 years old or an emancipated minor) who has resided in South Carolina continuously for twelve months immediately preceding his initial enrollment in the University shall be classified as a resident. If, after enrollment, such person can provide adequate and satisfactory proof of his establishing domicile in South Carolina and his intention to remain permanently as a resident of the State, he may be granted resident classification at the next enrollment occurring after expiration of twelve months following establishment of domicile exclusive of time spent as a student at the University.

8. Dependents of members of the Armed Services and Federal employees stationed in South Carolina are permitted to attend the University, if accepted, by paying resident fees without regard to resident status, provided that if such military personnel or employees are ordered away from the State, their dependents may continue to have this privilege while they attend the University.

9. Children and dependents of regularly employed Clemson University personnel are permitted to attend the University, if accepted, by paying resident fees without regard to residence status, provided that if such person terminates University employment and departs the State, the child or dependent may retain this privilege so long as continuous enrollment is maintained in the University.

Any student or prospective student in doubt concerning his residence status must bear the responsibility for securing a ruling by stating his case in writing to the Dean of Admissions and Registration.

Books and Supplies. The cost of books is not included in the Schedule of Semester Charges. The cost of books and supplies at the beginning of the semester will be approximately $50, except for students enrolling in Architecture the cost will be approximately $75.

Student Depository. For the convenience of students, the University operates a depository in the Bursar’s Office where money can be deposited and withdrawn as the occasion may demand. This service is purely local. Students are urged to deposit their money and not to keep it in their rooms.

Optional Expenses. It is not possible to give an estimate of a student’s expenditures for such amusements as dancing, motion pictures, etc. This depends largely upon the disposition of the student. The University endeavors to reduce to a minimum the tempta-
tion to spend money needlessly, but the authorities cannot be responsible for a student’s private expenditures. This must be a matter between the student and his parents.

Transcripts. Official transcripts of scholastic records are issued on request. One transcript is furnished free; additional copies are issued for $1 each. Remittances for transcripts should be made payable to Clemson University, but should accompany transcript requests and should be mailed to the Office of Admissions and Registration.

**STUDENT HOUSING**

The University residence halls will accommodate 5,190, two students being assigned to a room. The University also has 289 individual units for its married students. All unmarried first-year students entering the University for the first time, not residing with parents, guardians or close relatives, are required to live in University owned residence halls. After the freshman year, students under twenty-one years of age may secure permission to live off campus by having parental permission on file in the Residence Office and approval of the Office of Student Affairs. Students who are assigned a room in University residence halls will be required to sign a Clemson University Residence Hall Contract relating to terms and conditions of occupancy for the full academic year.

Application for Residence Hall and Advance Payment. An application for residence hall accommodations will be forwarded to those students who are accepted by the University for the fall semester. These applications are to be completed and returned with a $60 advance room payment to the Residence Hall Manager’s Office at the earliest practicable date.

Students who have made an advance payment and later decide not to enroll or to live in the residence hall may obtain a refund of the advance payment provided notification of intent and request for refund is received at the Residence Hall Manager’s Office prior to July 1. When such notification and refund request is not received by the deadline date, no refund of advance payment will be made.

Refund of the advance payment will not be made to students who apply for assignments after July 1.

Normally, residence hall accommodations are available to those students who enter the University at the beginning of the second semester, therefore, the advance payment is not now required of students entering at this time.

Assignment Preference. Students should indicate on their application their preference of room(s) and roommate. Priority of room
assignments is given to continuing students who file application and make advance room payments during the priority periods established by the Residence Halls Office. Preferences will be honored provided space is available in the desired residence hall and the request does not require exceptions to existing assignment procedures.

Notification of Assignments. As soon as room assignments are made, students are advised of the assignment and furnished information regarding occupancy.

Assignment Changes. Students who desire to move from the assigned room may apply at the Student Residence Office to change rooms. A service charge of $4 is charged for moving, also charges will be made for students moving from a lower- to a higher-rated room. Rental refunds are made to students moving from a higher- to a lower-rated room on a prorated basis.

Opening and Closing of Residence Halls. The University residence halls officially open for undergraduate students at 8 p.m. the day prior to matriculation date for new students and close at 8 p.m. the day scheduled for graduation exercises of the term or semester. Residence hall fees cover only the time between the day before matriculation and the scheduled date of graduation exercises or end of term when no graduation exercises are scheduled.

For official holidays which occur during the course of a semester, the University reserves the right to close certain halls and to require students remaining on the campus to move to another hall for the duration of the holiday period.

Student Responsibility for Damages. The University holds resident students responsible for any damages other than normal wear that occur to their rooms and furnishings. Damages will be assessed by the University and the student will be billed for repairs or replacements. Students should inform University officials immediately upon occupancy of any conditions reflecting prior damages which have not been corrected.

Responsibility for Student Possessions. Although every precaution is taken to maintain adequate security, the University cannot assume the responsibility for the loss of or damage to student possessions resulting from any cause.

Refund of Residence Hall Fee. Except for the stated regulations governing the $60 advance payment to reserve a room for the first semester, refunds, when authorized, will be made on a daily pro rata basis.
Extra Residence Hall Charges. Extra charges are made to students who occupy residence halls before or after the dates established for a semester or term.

Students who are required by the University to be on campus prior to and after the scheduled term or semester may upon the approval of the Vice-President for Student Affairs be exempted from paying the extra residence hall charges.

Reservation of Right to Change Fees and Regulations. The University reserves the right to make changes in its fees, charges, rules, and regulations.

RESIDENCE HALLS

West Campus. The University has available 3,606 spaces in eleven residence halls. Ten of these halls are air-conditioned. Only the newer "A" and "F" annexes are air-conditioned in Johnstone Hall. Each room in Benet, Young, Cope, Geer, and Sanders Halls is air-conditioned and has walk-in type clothes lockers, individual study desks, single beds, and chairs. A lavatory is also installed in each room. Rooms in new annexes "A" and "F" of Johnstone Hall are equipped similarly to those in the halls above. Donaldson, Bowen, Wannamaker, Bradley, and Norris Halls are air-conditioned, carpeted, and furnished with clothes lockers, individual study desks, single beds, and chairs. Rooms in Johnstone Hall other than new "A" and "F" annexes are not air-conditioned and are furnished with individual clothes lockers, bunk-type beds, a study table and chairs. A lavatory is installed in each room.

All residence halls on the West Campus are men's residence halls. See Schedule of Semester Charges for rates.

East Campus. The University has available 1,584 spaces in five residence halls. Two of these halls, Mauldin and Barnett, are modern four-story structures with wall-to-wall carpeting, air-conditioning, and a rooftop deck. Each will house 144 students in 72 rooms. Rooms are arranged in suites of six, accommodating 12 students. Each suite provides a study, bath, washing and drying facilities. Each room contains two closets, two chests of drawers with wall-hung mirrors, single beds, individual study desks, lamps, and chairs. The other three, Manning Hall, Lever Hall, and Hi-Rise No. 3, are eleven-story structures, fully carpeted and air-conditioned. Each will accommodate 432 students. Rooms are arranged in suites of six accommodating 12 students. Each room contains two closets, two chests of drawers with wall-hung mirrors, single beds, individual study lamps, desks, and chairs. Draperies are to be provided by occupants. Studies and laundry room are available on each
floor. The first floor is designed for group living. It includes lounges, a kitchenette, T.V., and recreational rooms. The basement floor includes club rooms, storage areas, and a large room equipped with coin-operated washers and dryers.

Both men residence halls and women residence halls are located on the East Campus. See Schedule of Semester Charges for rates.

**MARRIED STUDENT HOUSING**

Clemson provides comfortable and economical housing for its married students. There are three housing areas consisting of 139 single Prefab units, 100 East Campus apartments contained in 50 duplex buildings, and 50 Littlejohn apartments in 11 buildings.

All married student housing units have two bedrooms, living room, kitchen and bath. East Campus apartments are the newest and are equipped with stove and refrigerator. The Littlejohn apartments and Prefabs are not equipped with stoves and refrigerators.

Booklets describing these facilities are available and will be furnished upon request to the Housing Office of the University. Monthly rental fees are: Prefabs, $36; Littlejohns, $51 for interior and $54 for end units; East Campus, $69.

**STUDENT FOOD SERVICE**

The University Dining Halls provide several food service plans for the students:

(1) A 5-Day Board Plan (15 meals) Monday through Friday—holidays excluded. The fee for this plan is $440 per year and may be paid in two installments—one-half at the beginning of the first semester and the remainder at the beginning of the second semester.

(2) A 7-Day Board Plan (21 meals) Monday through Sunday—holidays excluded. The fee for this plan is $550 per year and may be paid in two installments—one-half at the beginning of the first semester and the remainder at the beginning of the second semester.

Both the 5-Day and 7-Day Board Plans will begin the first day of classes and end on the day which is scheduled for graduation. (These dates are listed in the University Calendar appearing in this catalog.) Individual meals may be obtained in the student dining halls prior to the day classes begin.

(3) Students who are not on a board plan may purchase tickets for individual meals at prevailing prices. Except on special occasions, a-la-carte service will not be offered in the Student Dining Halls.

All students who enter the University for the first time from high school or preparatory school and who live in University residence
halls are required to subscribe to either the 5-Day or the 7-Day Board Plan. Either the 5-Day or the 7-Day Board Plan is also recommended to upperclassmen who reside in University residence halls.

Upperclassmen and graduate students have the option at the time of their enrollment of electing either the 5-Day or the 7-Day Board Plan provided they agree to pay the board-plan fee for the period of their enrollment during the academic year.

A student having selected the 5-Day or the 7-Day Board Plan for the academic year may not withdraw as long as he remains enrolled, except in the case of marriage or circumstances which are determined by the University to be beyond his control.

**LAUNDRY–DRY CLEANING**

A plant with modern equipment is conveniently located on campus to service the laundry and dry-cleaning requirements of the student. Reasonable prices are charged for individual items on a cash-and-carry basis.

The University will not be liable for lost or damaged items unless reported within two days after the delivery date, and then for not more than the actual depreciated value of such articles as have been lost or damaged.

Coin-operated washing machines and dryers are available in the laundry building and several of the dormitories.

A commercially operated student linen-rental service is also available. Information regarding this service will be forwarded to all students who are accepted for enrollment in the University.

**MEDICAL EXAMINATIONS**

Completion of a medical history and physical examination record is required of all new students entering Clemson University for the first time. This examination must be completed by the student and the student's own physician or the health service of the school from which he graduates or transfers. This examination must be reported on a special form provided for this purpose by the University and mailed directly to the Director of Student Health Service. This should be received at least four weeks prior to matriculation to give time for processing; otherwise registration may be delayed. Incomplete forms will be returned.

The University requires that all new students have a current tetanus toxoid series or booster (within five years), a smallpox vaccination (within four years) and also immunization against polio-
myelitis. The oral (Sabin) type vaccine is preferred. All new students are also required to have a skin test for tuberculosis within one year prior to admission. If this test is positive, a chest X ray is also required. All positive reactors will then be required to have an annual chest X ray. These follow-up X rays after admission will be done at the Student Health Service.

**STUDENT HEALTH SERVICE**

*Student Health Service: Cost per Semester $25.* Payment of the Student Health Service fee is required of all students living in University residence halls and all full-time students even though they do not reside in University housing. The Student Health Service maintains a new building with a complete outpatient department and a 34-bed hospital. The staff consists of three full-time physicians, including the director, a psychiatrist, ten full-time registered nurses and a full-time registered laboratory technician and a full-time registered X-ray technician. In addition, a sufficient number of nurses' aides, secretarial workers, orderlies and maids for 24-hour-a-day operations are employed. The best of modern equipment is available for student use.

The Student Health Service at Clemson University has several important functions. All of these are aimed at keeping the student in good health so that he may effectively pursue his school work. There is, of course, the basic function of medical care for the ill and injured. This is a vital part of its work. In addition to this, the Student Health Service attempts to put strong emphasis on health rather than illness. This begins with the entrance medical form. In laying out this form an attempt is made to get information, examinations and preventive medical procedures carried out to better equip the staff in protecting the student from illness and to serve as a guide for the care of pre-existing medical problems.

As the student progresses through his academic experiences, other procedures may be required or highly recommended. These are primarily an effort to teach the individual self-responsibility for maintenance of his own health and locate possible hidden diseases. The Health Service also has the position as the source of medical information as well as responsibility for indicated medical action: diagnostic, therapeutic and preventive.

The medical fee paid by each student covers the services of the University physicians and health service staff for most illnesses and injuries occurring on the campus. There are certain things, however, that it does not include, such as fees for routine physical
examinations for employment or transfer to another school and fees for outside physicians when called in for consultation, medical or surgical services performed away from the University or for accidents occurring off the campus. The fee also covers medication for acute illness but not for chronic illness lasting over two weeks or for pre-existing illness. Although ambulance transportation to a general hospital for serious illness or injury occurring on campus will, of course, be arranged, the expense for this service is the responsibility of the student. Transportation for less urgent ailments and routine visits can be arranged through the Health Service at the expense of the student.

The right of the Director of the Student Health Service, with the approval of the proper University authority, to obtain any of these extra services in behalf of any student under his care is hereby expressly reserved.

The Student Government, with full approval of the administration, offers a plan of accident and sickness insurance to full-time students. Each year, prior to the beginning of the fall semester, complete information on this insurance plan will be sent to students. This insurance is inexpensive and is designed to cover major medical expense not covered by the Health Service. It is highly recommended.

UNDERGRADUATE FINANCIAL AID

General. The Office of Student Financial Aid, operating in conjunction with the University Honors and Awards Committee, is responsible for coordinating all types of financial assistance administered by the University except those honors and awards which are presented for special achievement and extracurricular grants-in-aid. Currently available financial aids consist of scholarships, student loans, and part-time employment. It must be realized that any program of financial assistance can only be supplementary and that the basic financial responsibility remains that of the applicant and his parents.

Application Procedure. Beginning in January of each year all eligible students may apply to the Student Financial Aid Office for any type of financial assistance desired for the coming school year. Prompt consideration may be afforded only those applications submitted directly to that office rather than to the individual colleges, schools, and departments. All requests—except for part-time employment—must be supported by a Parents’ Confidential Statement filed directly and renewed annually with the College Scholar-
Scholarships for Freshmen

These awards will be based upon high school records, entrance examination scores, and other qualifications established by the selection committees. Completed entrance and scholarship applications, together with a transcript of high school work through the first semester of the senior year, must be submitted by March 1 in order to be considered. For purposes of scholarship application, the College Entrance Examination Board tests should be taken in time to allow our receipt of scores not later than March 1.

Marshall Williams and Grace Cornett Bell Memorial Scholarships. Income from a fund donated by Mrs. Bell and family provides one or more annual awards for students (freshmen or upperclassmen) enrolled in the College of Liberal Arts or the College of Physical and Mathematical Sciences with preference afforded those concentrating in mathematics or English curriculums. Selection is based upon academic progress, moral character, and financial need.

E. V. Correll Scholarship. A $500 award is made available annually by the Palmetto Section of the American Association of Textile Chemists and Colorists to a student (freshman or upperclassman) majoring in Textile Chemistry. Selection is based upon need and scholarship.

Dow Chemical Co. Scholarships. Two $500 awards are available annually to students (freshmen and upperclassmen) majoring in Chemical Engineering.

Educational Opportunity Grants. Non-reimbursable Federal grants, renewable if satisfactory academic progress is maintained,
are available from the University for those entering freshmen of exceptional financial requirements. Grants must be matched by scholarships, loans, or other aid. Selection is based upon financial need and academic promise.

**Edgar and Emily Hesslein Scholarships.** Income from a fund donated by Neuss, Hesslein, and Company provides two $600 scholarships annually. Preference is afforded residents of Marlboro County, South Carolina. Selection is based upon scholastic excellence and financial need. Renewal subject to academic achievement.

**Federal Nursing Scholarships.** Federal grants, renewable if satisfactory progress is maintained, are available from the University for those entering freshmen of exceptional financial need enrolled in the baccalaureate Nursing program. Selection is based upon academic achievement and potential and financial need.

**Ira S. Hurd Scholarship.** A $500 award is made available annually by the Palmetto Section of the American Association of Textile Chemists and Colorists to a student (freshman or upper-classman) majoring in Textile Chemistry. Selection is based upon need and scholarship.

**Sherwood E. Liles (’00) Engineering Scholarship.** Income from a fund donated by his four sons provides an annual $500 scholarship to a student in the College of Engineering. Normally renewable provided satisfactory academic progress is achieved. Selection is based upon academic ability, financial need, extracurricular activities, and South Carolina residence.

**Jonathan Logan Scholarships.** Two $2,000 awards, to be paid in equal installments during four years of satisfactory undergraduate study, are provided annually by the David Schwartz Foundation to be available to freshmen who enroll in the College of Industrial Management and Textile Science.

**William J. Neely Scholarships.** Funds donated by friends and associates of the late William J. Neely provide annual $500 scholarships for entering freshmen. May be renewed if academic achievement indicates such renewal to be appropriate.

**R. F. Poole Alumni Scholarships.** To recognize outstanding academic achievement and potential, renewable $1,000 scholarships are awarded annually to incoming freshmen.

**George E. and Leila Giles Singleton Scholarships.** Income from a fund donated by Mr. G. H. Singleton (’19) provides an annual $300 award for a farm boy or girl who enrolls in the College of
Agriculture and Biological Sciences. The award is for an entering freshman and may be renewed for an additional year.

**South Carolina Electric and Gas Company Scholarship.** A $500 scholarship is available each year to a student whose parents or guardians are customers of the South Carolina Electric and Gas Company or customers of the Department of Public Utilities of Orangeburg, Winnsboro, or McCormick. Recipient must be in upper one-third of class scholastically, have demonstrated outstanding leadership qualities, and require financial assistance. Renewal subject to academic achievement.

**South Carolina Fresh Fruit and Vegetable Association Scholarship.** A $1,200 award, to be paid during four years of satisfactory undergraduate study, is available annually to a male South Carolinian who enrolls in the Horticulture (Fruit and Vegetable major) curriculum.

**South Carolina Pest Control Association Scholarship.** A $200 award is available annually for an Entomology major (entering freshman or upperclassman). Selection is based upon scholarship, leadership, character, and financial need.

**South Carolina Poultry Improvement Association Scholarships.** A $300 award is available annually to a freshman majoring in Poultry Science. An additional $300 award is available each year for a sophomore, junior, or senior.

**Southern Railway Scholarships.** Two renewable annual awards of $1,000 plus tuition and fees are available to entering freshmen. Priority is afforded sons and daughters of Southern Railway System employees residing in South Carolina. Selection is based upon scholastic excellence and financial need.

**J. P. Stevens & Co. Scholarship.** A $2,000 award, to be paid in equal installments during four years of satisfactory undergraduate study, is available annually to a freshman who enrolls in a Textile curriculum.

**Strom Thurmond Scholarships.** Income from a fund donated by Senator Strom Thurmond provides two or more annual grants for worthy and needy entering freshmen from the State of South Carolina. Award of these grants will be in conjunction with participation in one of the established loan programs with which the University is affiliated.

**Western Electric Fund Scholarships.** Two awards are available annually for freshmen who enroll in Electrical, or Mechanical
Engineering, and associated fields. May be renewed if satisfactory progress is made.

**SCHOLARSHIPS FOR UPPERCLASSMEN**

Recipients of the following awards are normally selected by the scholarship committees in early spring for the following school year. Completed applications must be submitted not later than March 1, to insure consideration. (Also note that some few freshman scholarships are equally available for upperclassmen.)

*Jerry B. Addy Memorial Scholarship.* Income from a fund donated by his relatives and friends provides a renewable annual award to a rising junior majoring in Mathematics, Physics, or Chemistry. Priority is given to residents of South Carolina. Selection is based upon academic proficiency and financial need.

*Allied Chemical Foundation Scholarships.* Two $750 awards are given annually to upperclassmen majoring in a Textile curriculum.

*Alumni Debate Scholarship.* A grant from the Alumni Loyalty Fund makes possible a scholarship of $200 for a rising sophomore member of the Calhoun Forensic Society who has demonstrated excellence in debating as a freshman and whose general scholarship is superior.

*G. Dewey Arndt Scholarship.* Income from a fund established by FCX, Inc., and Carolina Cotton Growers Association, Inc., provides $500 for one or more awards to outstanding students in the College of Agriculture and Biological Sciences, with preference given to students with an indicated interest in marketing and economics.

*Barney Lee Bickley Memorial Scholarship.* Income from a fund donated by his relatives provides an annual award for a sophomore student. Priority is given to residents of South Carolina.

*Borden Agricultural Scholarship.* A $300 award is made annually to the rising senior in the College of Agriculture and Biological Sciences who has achieved the highest scholastic average on all college work prior to the senior year.

*Burlington Industries Foundation Scholarship.* A $1,000 award, to be paid in equal installments during the last two years of satisfactory undergraduate study, is available annually to a rising junior. Selection is based upon leadership, scholarship, and financial need. Preference will be given to students majoring in Textile or Industrial Management.
The Carolina Yarn Association Scholarship. A $500 scholarship is awarded annually to an upperclassman majoring in Textiles.

The A. B. Carter, Incorporated, Scholarship. A $500 scholarship is awarded annually to an upperclassman majoring in Textiles.

Chemstrand Scholarship. A $500 award is available annually to a rising junior majoring in Textiles or Textile Chemistry and planning a career in industry. Selection is based upon scholarship, financial need, and extracurricular activity.

Langdon Cheves Scholarship. Income from a fund donated by his family provides an annual $400 award for a male undergraduate whose permanent place of residence is within the Southeastern United States. Selection is based upon academic progress, financial need, and participation in extracurricular activities.

Coburg Dairy Scholarship. A $1,000 award, to be paid in equal installments during the last two years of satisfactory undergraduate study, is available annually to a junior majoring in Dairy Science. Selection is based upon scholarship, leadership, character, and financial need.

Gilbert H. Collins Memorial Scholarship. A $600 award, given by the South Carolina Plant Food Educational Society, to be paid in equal installments during the last two years of satisfactory undergraduate study is available each year to a rising junior majoring in the Department of Agronomy and Soils. Selection is based upon scholarship, leadership, character, and financial need.

Cotton Producers Association Scholarship. A $900 award, to be paid in three equal installments during the sophomore, junior, and senior years, is available annually to a rising sophomore majoring in Agricultural Economics, Agricultural Education, Agricultural Engineering, Agronomy—Crops and Soils, Animal Science, Dairy Science, Entomology, Food Science, Horticulture (Fruit and Vegetable), or Poultry Science. Selection is based upon scholarship, leadership, character, and financial need.

Ethyl Corporation Scholarship. A $500 award is available annually for a student majoring in Chemical Engineering. Selection is based upon scholastic ability and financial need.

Farm Credit Banks of Columbia Scholarships. Two $500 awards are available for juniors or seniors enrolled in the Agricultural Economics major or minor, the Business minor in any other agricultural major, or any equivalent undergraduate program in agriculture. Renewal subject to academic achievement. Selection based upon scholarship, leadership, character, and financial need.
Fieldcrest Scholarships. Fieldcrest Mills makes available annual scholarships (and, if desired, summer employment) to upperclassmen enrolled in specific curriculums pertinent to employment in the textile industry. Selection is based upon academic excellence, extracurricular activities, financial need, and willingness to consider a textile career.

W. T. Fort, Sr., Scholarship. A $500 award is available to rising seniors in Architecture or Building Construction. Selection is based primarily upon financial need.

Foundry Educational Foundation Scholarships. Funds made available by grants from the Foundation provide one or more annual awards to students taking organized programs applicable to the casting of metals and foundry technology.

Ben H. Gardner Fund. Income from a fund donated to the University is awarded annually to a worthy student in the College of Engineering.

Ben and Kitty Gossett Scholarship. Income from their contribution provides one or more annual awards for Textile students whose families are employed by the textile industry in South Carolina.

J. H. Griffin Memorial Scholarship. Income from the J. H. Griffin Memorial Scholarship fund provides an annual award for a rising male senior (legal resident of South Carolina) majoring in Animal Science. Selection is based upon scholarship, leadership, character, and financial need.

Pauline Hanckel Dairy Scholarship. A $1,000 award, to be paid in equal installments during the last two years of satisfactory undergraduate study, is provided annually by the Ladies Auxiliary of the South Carolina Dairy Association to be available to a junior majoring in Dairy Science. Selection is based upon scholarship, leadership, character, and financial need.

Higgins Undergraduate Scholarships. Income from a fund donated by Mr. Higgins provides several annual awards for undergraduate students enrolled in the College of Engineering. Selection is based upon scholarship and need.

Richard O. Hull Scholarships. Two $500 awards are available annually for students majoring in Chemistry and Chemical Engineering who have achieved superior scholastic averages on all their college work. Selection is based primarily upon academic ability although financial need will also be taken into cognizance.
John D. Lane Scholarship. A $200 award is available each year to a rising junior. Selection is based upon financial need and scholastic ability, with emphasis upon achievement in the field of English.

Minnesota Mining & Manufacturing Company Scholarships. Two $500 scholarships are awarded annually to students majoring in Chemical Engineering. Selection is based upon academic standing, character, and demonstrated leadership abilities.

Monsanto Scholarship. A $500 award is available annually for a student majoring in Chemical Engineering.

Owens-Corning Fiberglas Scholarships. Two $500 awards (one in Ceramics) are available annually to rising juniors or seniors. Selection is based upon academic ability, leadership qualities, and financial need.

Peace Fund Scholarship. A $500 award is available annually to a rising junior or senior. Selection is based upon journalistic ability, scholastic achievement, and evidence of good character.

Pennsylvania Glass Sand Scholarship. A tuition award is given annually to an outstanding rising senior majoring in Ceramic Engineering. Selection is based upon scholastic achievement.

Ralston Purina Scholarship. A $500 award is given annually to a rising senior enrolled in the College of Agriculture and Biological Sciences. Selection is based upon scholarship, leadership, character, extracurricular activities, sincerity of purpose in agriculture, and financial need.

Rayonier Scholarship. A $500 award is available annually for a rising senior majoring in Engineering. Selection is based upon academic standing and leadership ability.

J. C. Rich (13) Agriculture Scholarship. Income from a fund donated by his sister provides an annual award for a deserving male undergraduate enrolled in the College of Agriculture and Biological Sciences. Preference is given relatives.

Seydel-Woolley & Company Scholarship. A $500 award is available annually to a rising junior or senior male student majoring in Textiles. Selection is based upon scholastic ability, evidence of leadership, potential to the Southern textile industry, and financial need.

The J. E. Sirrine Company Scholarship. A $500 scholarship is awarded to an outstanding undergraduate student in Civil Engineering, Chemical Engineering, Electrical Engineering, or Mechani-
Information

cal Engineering. This award is based upon a consideration of character, scholarship, and interest in a particular professional field. Preference is given to rising sophomores. Financial need is not a specific requirement.

Sonoco Products Scholarships. Two $500 awards are available annually for deserving undergraduates majoring in Textiles.

South Carolina Dairy Association Scholarships. A $1,000 award, to be paid in equal installments during the last two years of satisfactory undergraduate study, is available annually to a junior from South Carolina majoring in Dairy Science. Selection is based upon scholarship, leadership, character, and financial need.

Charles H. Stone Scholarship. A $1,000 award is available annually to a rising sophomore. Selection is based primarily upon exceptional academic achievement plus financial need.

Uni-Royal Foundation Scholarship. A $700 award, to be paid in equal installments during the last two years of satisfactory undergraduate study, is available annually to a rising junior planning a career in industry. Selection is based upon proven scholastic ability and financial need.

J. P. Williamson Memorial Grants. Income from a fund donated by his relatives and the Winn-Dixie Stores Foundation is available annually for renewable grants to academically qualified and needy upperclassmen. Grants must be matched by loans from one of the established programs with which the University is affiliated. Priority is given to residents of Anderson County.

LOAN FUNDS

General prerequisites for the following aid are enrollment, or acceptance for enrollment, as a full-time student, substantiated need, and adequate academic capability or potential to maintain at least average college-level grades. Applicants for other types of financial assistance may also be considered for loans after contacting the Financial Aid Office. Availability is dependent upon adequacy of funds at hand. Normal cutoff date for loan applications is June 1.

Georgianna Camp Foundation Fund. A fund, donated in memory of Georgianna Camp by her husband and sons, is available to assist worthy students who are seeking a college education and need assistance to supplement their individual efforts and available sources of income.
Clemson Architectural Foundation. Needy Architecture students in the upper years of their curriculum who show professional promise will be considered for loans from the General Fund of the Foundation.

Clemson Student Loans. A number of interested faculty and staff members, alumni, students, families, and friends have made memorial donations to assist worthy students.

Clemson University Foundation. A limited sum is available for emergency student loans. Included are donations from family and friends made in memory of J. C. Littlejohn ('08), J. H. Woodward, Jr. ('35), and his father, Uncle Jake ('02).

Daniel Memorial Fund. Income from a sum donated by officers of the Daniel Corporation in memory of James Fleming Daniel and Fred Adams Daniel is loaned to deserving students.

Federal Nursing Loan Program. Funds are available to provide loan assistance to Nursing students (either baccalaureate or associate degree programs). Prerequisites are verified need and the demonstrated ability or potential to maintain normal and satisfactory academic progress.

National Defense Student Loan Program. State and Federal monies are available to provide assistance to graduate and undergraduate students. Prerequisites are verified need and the demonstrated ability or potential to maintain normal and satisfactory academic progress.

Reid-Baskin Fund. Income from a fund donated in memory of Cecil L. Reid ('02) and John Baskin will be used to aid deserving students. Preference is given Newberry and York County residents.

Tile Council of America Fund. The Tile Council has made a grant to be used for interest-free loans to outstanding and needy students in the lower years of the Architecture curriculum.

United Student Aid Funds Loan Program. Clemson University is one of a large number of universities participating in this national nonprofit loan program for needy and deserving students. Full-time students may borrow up to $1,500 per year. Payment of interest and principal normally begins the tenth month after graduation and may be anticipated. The financial aid officer recommends the loan, after consultation with the student, and the loan is negotiated at the student’s home town bank on the student’s own signature. This is the designated lending agency of the State of South Carolina. Under the provisions of the Higher Education Act
of 1965, and depending upon family income, the U. S. Commissioner of Education may pay the interest on eligible loans while the student is in school.

STUDENT PART-TIME EMPLOYMENT

Clemson University employs students in those positions where part-time services may be utilized to mutual employment advantage. Students in actual need of financial aid are usually given preference in filling positions, all other qualifications being equal. Part-time employment of first-year students is not encouraged as the University has found through long experience that the period of academic adjustment during the freshman year allows little time for such extracurricular activity. The Student Financial Aid Office maintains application files of students desiring part-time employment for the information of requesting academic departments and off-campus agencies and industries interested in securing such help. Applications must be filed after registration for each semester during which part-time work is desired. Clemson does not participate in the Federal College Work Study Program.

OTHER SOURCES OF FINANCIAL AID

The following types of assistance are not administered by Clemson University. Recipients will be required to furnish the supporting agencies with a schedule of payments due the Bursar if payment is desired to be made through the University. Such funds must be received by him on or before the due dates. Any other arrangements require approval of the Bursar.

National and State Agencies. Students should investigate such sources of financial aid as the following: Veterans Education, War Orphans Education, advanced ROTC programs, National Guard and Reserve training programs, National Merit Scholarships, American Legion free tuition for deceased or totally disabled veterans' children, and grants made to the handicapped through the State Department of Vocational Rehabilitation.

Other Agencies. Help is often received from grants or loans through Beta, FFA, and 4-H Club membership; local organizations of the Daughters of the American Revolution, United Daughters of the Confederacy, Civitan, Elks, Masonic, Rotary and similar groups; James F. Byrnes Foundation, Pickett and Hatcher Educational Fund, Methodist Student Loan Foundation, Knights Templar Educational Foundation, The Agricultural Society of South Carolina, The Gar-
Honors Club of South Carolina, South Carolina Agricultural Teachers Association, Institute of Food Technologists, South Carolina Nurserymen’s Association; Wallace Hatchery, Inc., and various other religious, civic, welfare, and educational agencies.

Industry and Related Foundation Support. Students are often able to finance part of their education by summer employment or by alternating semesters between the University and jobs with establishments near their homes. Some students are eligible for loans or grants which are administered by those corporate and local industries which employ their parents. The finest source of information regarding this type of support has been found to be high school counselors.

Miscellaneous. There are available a number of “deferred tuition” lending plans. Examples of these are Education Funds, Inc., Tuition Plan and College Aid Plan.

It should be realized that the University has no affiliation or contractual agreement with any of the agencies sponsoring such plans and can accept no responsibility for the outcome of any individual arrangements entered into with those agencies.

The Army Student Nurse Program may provide financial assistance from the U. S. Army for the last 24 months of the baccalaureate program. The allotment provides for basic pay, lodging, food allowance, tuition, books, and incidental fees, free medical and dental care and other privileges. Applicants must be in good standing. Apply through the Dean of the School of Nursing.

HONORS AND AWARDS

Recipients for the following awards are chosen for their special achievements by selection committees, and are announced at an annual Honors and Awards Day program in the spring or at other appropriate ceremonies during the year.

Air Force Association Award. The Air Force Association of Washington, D. C., awards this medal annually to the outstanding Aerospace Studies 400 cadet who has shown outstanding aptitude for both academic and military pursuits.

Air Force Times Award. Presented annually to one graduating cadet at each detachment who has distinguished himself in bringing constructive attention to the Air Force ROTC.

Daughters of the American Revolution Award. Presented annually to an outstanding Aerospace Studies 400 cadet.
The Alpha Rho Chi Medal. The Alpha Rho Chi fraternity annually awards a gold medal to the graduate of the professional curriculum in Architecture who has shown the greatest leadership, service to his school, and who gives promise of professional merit.

Alpna Tau Alpha Scholarship Medal. An annual award is given to the senior in Agricultural Education having the highest scholastic record.

Alpha Zeta Award. An annual award is given to a major in the College of Agriculture and Biological Sciences having a high scholastic record and possessing qualities of character and leadership.

Ambrosia Chocolate Award. An engraved watch is given annually by the Ambrosia Chocolate Company to the senior in Dairy Science having the highest grade in Dy Sc 304.

American Agricultural Economics Association Award. This award is presented each year by the Clemson Student Chapter of the American Agricultural Economics Association to the outstanding student in Agricultural Economics, based on academic attainment and leadership in the club and other extracurricular activities.

American Association of Textile Chemists and Colorists Award. An annual award is given for the best work done in Textile Chemistry and Dyeing by a member of the graduating class.

American Association of Textile Technologists Award. An annual award is given to the graduate having a high scholastic record and all-round qualification for success in the textile industry.

American Association of University Women Award. The Clemson branch awards an engraved silver bowl annually to the girl graduating with the highest cumulative grade-point ratio.

American Chemical Society Award. An annual award is given to the outstanding senior in Chemistry who is a member of the student affiliate chapter of the American Chemical Society.

South Carolina Chapter, American Institute of Architects Award. The South Carolina Chapter of the American Institute of Architects each year awards a Certificate of Merit to the outstanding fourth-year student of Architecture in the Design Option and the Structural Option.

American Institute of Architects Medal. The National Organization of The American Institute of Architects awards each year a silver medal and a book to the outstanding graduate in the professional curriculum in Architecture at Clemson. An award is also presented to the runner-up.
American Institute of Chemical Engineers Award. The American Institute of Chemical Engineers sponsors an annual award to the junior majoring in Chemical Engineering who has attained the highest scholastic standing through the sophomore year.

Institute of Electrical and Electronics Engineers Scholastic Award. An annual award is given for outstanding participation in the Student Branch activities of IEEE to a second-semester junior or the first-semester senior having high scholastic standing.

American Legion ROTC General Military Excellence Award. The American Legion annually awards a medal to an outstanding junior and senior Air Force ROTC cadet who has demonstrated outstanding qualities in military leadership, discipline, character and citizenship.

American Legion ROTC General Military Excellence Award. The American Legion annually awards a medal to an outstanding junior and senior Army ROTC cadet who has demonstrated outstanding qualities in military leadership, discipline, character and citizenship.

American Legion Scholastic Excellence Award. The American Legion annually awards a medal to an outstanding junior and senior Air Force ROTC cadet based on scholastic achievement.

American Legion Scholastic Excellence Award. The American Legion annually awards a medal to an outstanding junior and senior Army ROTC cadet based on scholastic achievement, participation in student activities and demonstrated leadership.

American Society of Agronomy Award. The American Society of Agronomy sponsors an annual award to an outstanding senior in the Department of Agronomy and Soils.

American Society of Civil Engineers Membership Award. The South Carolina Section of the American Society of Civil Engineers sponsors an annual award to the outstanding graduating senior in Civil Engineering.

The American Society of Mechanical Engineers Award. An annual award is given to a senior in Mechanical Engineering for his outstanding service in the College of Engineering.

Society of American Military Engineers Award. The Society of American Military Engineers awards annually a gold medal with key replica to the twenty outstanding AFROTC cadet juniors and to the twenty outstanding AFROTC cadet seniors enrolled in Aero-
space Studies in colleges and universities throughout the nation who are majoring in Engineering.

Society of American Military Engineers Award. The Society of American Military Engineers awards annually a gold medal with key replica to the twenty outstanding Army ROTC cadet juniors and to the twenty outstanding Army ROTC cadet seniors enrolled in the Army General Military Science ROTC Units in colleges and universities throughout the nation who are majoring in Engineering.

Major Rudolf Anderson, Jr., Trophy. The trophy is presented annually to the Aerospace Studies cadet who has distinguished himself by his performance and dedication to the precepts of the AFROTC Cadet Wing at Clemson University, such actions having been acknowledged to constitute the most outstanding contribution to the promotion and enhancement of the traditions, ideals, and aspirations of the Air Force Reserve Officer's Training Corps.

Architectural Faculty Award. The faculty of the College of Architecture has established this award for recognition of academic excellence of a first-year pre-architecture student.

Armed Forces Communication and Electronics Association Gold Medal. The Armed Forces Communications and Electronics Association of Washington, D.C., sponsors an annual award to the outstanding senior Army ROTC cadet majoring in Electrical Engineering.

The Armed Forces Communication and Electronics Association Award. An annual award is given to the outstanding AFROTC senior majoring in Electrical Engineering who has demonstrated outstanding qualities of military leadership, character, and definite aptitude for military service.

South Carolina Chapter, Armed Forces Communications and Electronics Association Leadership Award. A $25 Savings Bond is awarded annually to an outstanding ROTC junior majoring in Electrical, Electronics, or Communications Engineering.

Associated Schools of Construction Award. A book is given in the name of the Associated Schools of Construction to a student in Building Construction for scholarship and for his having demonstrated promise of future achievement in his chosen field.

Association of the United States Army Award for Excellence in Military History. The Association of the United States Army annually sponsors an award to the second-year Army ROTC cadet achieving the highest average in Military History.
Association of the United States Army ROTC Award. The Association of the United States Army annually awards a medal to each of four junior ROTC cadets who are in the top 10 per cent in ROTC grades and in the top 25 per cent in general academic grades and who have contributed most, through leadership, to advancing the standing of the Army ROTC unit and the Military Science Department at Clemson University.

G. H. Aull Essay Award. A $25 award is given annually to the senior student presenting the best essay in the field of Agricultural Economics.

Block and Bridle Club Scholarship. A $100 award to be paid at the beginning of each regular semester is available to a junior in the Block and Bridle Club. Selection is based on scholastic ability, financial need and leadership in the club and other activities.

Chemistry Faculty Award. An annual award is given to the sophomore majoring in Chemistry who maintained the highest scholastic record in Chemistry during his first two semesters of work.

Class of 1902 Awards. The members of the Class of 1902 have deposited with the Clemson University Foundation three funds of $2,000 each, in recognition of the distinguished teaching services of three professors who were on the faculty at that time, and in memory of those of the class who have passed on. The income from these funds is to be awarded annually as follows: The Williston Wightman Klugh Award, to a worthy, earnest undergraduate student of good moral code and personality who intends to make teaching his life work; The Rudolph Edward Lee Award, to a worthy undergraduate student in Architecture, upon the recommendation of the faculty of that College after consideration of the student's grades, extracurricular activities, and those qualities that go toward making a successful professional architect; and The Samuel Maner Martin Award, to a worthy undergraduate student taking mathematics as a major subject.

Commander's Saber. Presented annually by the Professor of Military Science to the Army ROTC cadet officer considered to have contributed most to the advancement of the cadet brigade through leadership and devotion to duty.

Howard Carlisle Copeland Memorial Award. The family of Howard Carlisle Copeland, who gave his life during World War II, has set up a permanent memorial fund in his memory. Each year the interest from the fund shall be given to the boy who has made the greatest endeavor financially to stay in college.
The H. William Close Achievement Award of the Textile Veterans Association. A medallion and a $100 U. S. Savings Bond is awarded annually to the most outstanding senior in either the Textile Chemistry or Textile curriculum in honor of Mr. H. William Close, President of Springs Mills, Incorporated.

The Marvin R. Cross Honor Award of the Textile Veterans Association. A $50 U. S. Savings Bond and a medallion is awarded annually to an outstanding senior in the Textile Department of the College of Industrial Management and Textile Science.

Danforth Fellowships. The Danforth Foundation of St. Louis awards two fellowships each year to agricultural students. One of these is given to an outstanding member of the junior class majoring in either Agricultural Economics, Agricultural Education, Animal Science, Dairy Science or Poultry Science, and provides for a 2-week summer short course with Ralston Purina Company, and a 2-week stay at the American Youth Foundation Leadership Training Camp at Shelby, Michigan. The second award provides for a 2-week stay at the Leadership Camp at Shelby, Michigan, and is awarded to an outstanding freshman in the College of Agriculture and Biological Sciences.

Distinguished Military Student Badge. An annual award is given by the Department of the Army to those individuals, designated by the Professor of Military Science, who possess outstanding qualities of leadership, high moral character, and definite aptitude for Army service. They must have attained an academic standing in the upper half of their class and demonstrated leadership ability through their achievements while participating in recognized campus activities. Such recognition carries with it the opportunity for commissioning in the Regular Army.

Samuel B. Earle Award. An award established by Clemson Alumni in honor of Dean Samuel B. Earle, who ended 48 years of service to Clemson University in July, 1950, is given annually to an outstanding senior in the College of Engineering.

Lena Brayton Eaton—Carrie Hutchins Freeman Award. An annual award made by the Department of Music to an undergraduate of Clemson University who is the winner of a competition consisting of the performance on the piano of a composition of serious music. The award honors two persons who contributed greatly to a deeper appreciation of music in the Clemson community and in the University where their husbands were members of the faculty.
Dr. R. C. Edwards Award. Awarded annually to the outstanding Clemson University Army ROTC cadet who attained the highest degree of proficiency during the preceding ROTC summer camp.

English Honor Key. This key is awarded annually to a student in the graduating class who has an outstanding record in English as an undergraduate at the University.

South Carolina Entomological Society Award. An annual award is given to an undergraduate student majoring in Entomology. Selection will be made on the basis of scholarship and character.

The Faculty Award of the College of Industrial Management and Textile Science. A gold medallion and a U. S. Savings Bond is awarded annually to the most outstanding graduating senior in the College.

Faculty Scholarship Award. An annual award is given to the member of the graduating class with the highest academic achievement by the academic faculty. The winner receives a certificate and a gold medal and has his name inscribed upon a plaque which is placed in the main entrance of Tillman Hall. This plaque carries the names of all previous winners of the award.

Forbes Chocolate Award. A $100 award is available annually to a sophomore majoring in Dairy Science. Selection is based upon scholarship, leadership, character, and financial need.

Forestry Award. The income from a fund donated to the University is presented annually to the senior in Forestry with the highest academic record.

Forestry Junior Scholar Award. An award of $50 is presented to the junior in Forestry having the highest academic record. The award is made possible by contributions from certain wood-using industries and from the South Carolina Society of Consulting Foresters.

Gamma Sigma Delta Awards. Awarded annually to the student in the sophomore class and in the senior class majoring in Agriculture and having the highest scholastic attainment.

Ben H. Gardener Award. The income from a fund donated to the University by the father and son is given annually to some worthy and needy student in the College of Engineering.

General Dynamics Award. An annual award is given to the most outstanding sophomore student of the basic AFROTC course who is qualified and motivated for an Air Force career.
J. H. Griffin Memorial Scholarship. Income from the J. H. Griffin Memorial Scholarship Fund provides for an annual award to a rising male senior (legal resident of South Carolina) majoring in Animal Science. Selection is based upon scholarship, leadership, character, and financial need.

Industrial Management Merit Award. An award is provided by the Neely and Gibson Coal Sales Company (William J. Neely, '32, and Harry H. Gibson, '32) for an Industrial Management major who has demonstrated through outstanding academic performance and excellent personal characteristics sufficient potential to enable him to assume significant managerial responsibilities in modern industry.

Harrison Freeman Lathrop Award for Scholarship. An award in honor of Mr. Harrison Freeman Lathrop, an outstanding forester of South Carolina, provided by the South Carolina Tree Farm Committee and by Mr. Oswald Lightsey, of Hampton. The award, consisting of $100 and an engraved plaque, is given to a Forestry senior selected by the faculty of the Department of Forestry on the basis of scholarship, leadership, and personality.

Rudolph E. Lee Award. In recognition of the distinguished teaching service of Rudolph Edward Lee and in memory of those of the class who have passed on, the members of the Class of 1902 present each year the Rudolph Edward Lee Award of $100 to a worthy undergraduate student in Architecture, after consideration of his grades, extracurricular activities, and those qualities that go toward making a successful professional architect.

James Lynah Merit Awards. Income for several awards is derived from a fund established by Mr. James Lynah, in memory of distinguished professors who were teaching at Clemson when the Class of 1902 were undergraduates, as follows: The Charles Manning Furman Prize in English, The Mark Bernard Hardin Prize in Chemistry, The William Shannon Morrison Prize in History, The Charles Carter Neuman Prize in Horticulture, The Walter Merritt Riggs Prize in Electrical Engineering and The Augustus G. Shanklin Prizes in ROTC, Air and Military Science and Tactics. These awards are made to students having a high scholastic rating and possessing outstanding qualities of character and leadership.

Clark Lindsay McCaslan Award. A sum of money has been deposited with the University to establish a fund in memory of Clark Lindsay McCaslan, Class of 1908, and a pioneer in Agricultural Engineering. The income from the fund shall be given annually to the student in the Department of Agricultural Engineering who
in the opinion of the faculty shall be deemed to be the most deserving.

**Colonel S. T. McDowell Award.** Awarded annually to the outstanding Army ROTC cadet senior scheduled to be commissioned in a Combat Arm of the United States Army.

**Henry T. Malone Gamma Alpha Mu Award.** Henry T. Malone, Class of 1937, will present a $50 award to the undergraduate student who writes the best feature on campus, community, or state history to appear in The Tiger.

**Marksmanship Awards.** Medals are annually presented to those members of the Army ROTC Rifle Team achieving highest position average scores.

**Dr. Ralph Mershon Memorial Award.** The Secretary of the Army will present annually a $250 prize to the outstanding Distinguished Military Graduate of a senior division Army ROTC university or college who is commissioned in the Regular Army.

**National Defense Transportation Association Award.** This award may be presented annually to an outstanding Aerospace Studies 400 cadet majoring in Industrial Management.

**Northern Textile Association Honor Award.** A medallion is awarded annually to the graduating senior in the Textile curriculum with the highest scholastic average in the Textile curriculum.

**National Defense Transportation Association Award.** The National Defense Transportation Association will award annually the NDTA Medal to the twenty outstanding senior students enrolled in General Military Science Army ROTC units throughout the nation.

**Thomas Newcomen Award in Material History.** The Newcomen Society in North America gives an annual award for the best research paper presented in the field of Material History.

**Norris Medal.** The following is from the will of the Hon. D. K. Norris, a life trustee of Clemson, who died in 1905:

"I give $500.00 face value, Norris Cotton Mill stock . . . on condition the dividend thereon shall be applied annually to the purchase of a gold medal, to be known as the 'Norris Medal,’ to be awarded to the student of Clemson meriting the same at graduation, under such rules and conditions as may be prescribed by the said Board of Trustees, and which medal shall have engraved on it ‘Honor habet onus’ (Honor brings responsibility).”

The winner of the Norris Medal has his name inscribed upon a plaque which is placed in the main entrance of Tillman Hall. This
plaque carries the names of all previous winners of the Norris Medal since it was first awarded in 1908.

**American Ordnance Association Gold Scholarship Key.** The American Ordnance Association, Washington, D. C., sponsors annually an award to the senior Army ROTC cadet with the most ability in the ordnance field to be commissioned to the Ordnance Corps.

**Outstanding Cadet Non-Commissioned Officer Award.** An annual award of the Department of Military Science presented to the Outstanding Army ROTC Cadet NCO based on exhibited improvement in all aspects of military performance.

**Willie N. and Joe Wise Padget Scholarship.** The income from a fund donated to the University by members of their family is used annually to aid a deserving student from Saluda County.

**Phi Eta Sigma Mathematics Award.** An annual award is given to a freshman scoring highest on a competitive examination in mathematics.

**Phi Eta Sigma Scholarship Medal.** An annual award is given to the senior having the highest scholastic record.

**Phi Kappa Phi Award.** An annual award is given to the junior having the highest scholastic record.

**Phi Psi Award.** This award is made annually by the National Honor Council of the Phi Psi Textile Fraternity to an outstanding graduating senior in either the Textile Chemistry or Textile curriculum, considering scholastic record, leadership ability, and other qualities.

**Physics Faculty Awards.** An annual award of $50 is given to the outstanding sophomore majoring in Physics, and an annual award of $100 is given to the outstanding junior majoring in Physics.

**Piedmont Engineers and Architects Award.** An annual cash award to the sophomore majoring in Civil Engineering who has the highest scholastic record during his first three semesters of work.

**Pomona Pipe Products Award.** A cash award is made to the member of the junior class in Civil Engineering with the most outstanding academic record.

**Quartermaster Association Awards.** The Quartermaster Association annually awards a medal to the ten outstanding junior students and a scholastic key to the ten outstanding senior students enrolled in the Army General Military Science ROTC program in colleges
and universities throughout the nation. Students must be enrolled in courses including as a major item of curriculum at least one educational area of particular interest to the Quartermaster Corps.

**Reserve Officers Association Award.** Awarded annually to an AFROTC sophomore, junior, and senior cadet, based on scholastic and Aerospace Studies grades, and leadership qualities.

**Reserve Officers Association Medal.** The South Carolina Department of the Reserve Officers Association sponsors an annual award to the outstanding Army ROTC Cadet in each of the four academic years.

**The Harry Riemer Honor Award of the Textile Veterans Association.** A medallion and a $25 U. S. Savings Bond is awarded to a member of the graduating class who has the potential to make an outstanding contribution to the textile industry in future years.

**Sigma Pi Sigma Award.** An annual award is given to the outstanding senior in the Physics Department.

**Sigma Tau Epsilon Award.** An annual award is given to the senior majoring in the College of Liberal Arts or the College of Physical and Mathematical Sciences and having the highest scholastic record.

**R. W. Simpson Medal.** A medal designated as the “R. W. Simpson Medal” is awarded annually to the best drilled Army ROTC cadet in each of the freshman, sophomore, or junior classes.

**The Solite Award.** The Southern Lightweight Aggregate Company annually makes a grant of $1,000 to the Clemson Architectural Foundation, a portion of which is used for prizes for those fifth-year professional theses adjudged to be outstanding.

**Sons of the American Revolution Medal.** An annual award is given to a freshman AFROTC cadet who is outstanding in academic courses, Aerospace Studies, and leadership characteristics.

**The South Carolina Masonry Association Award.** The South Carolina Masonry Association annually makes a grant of $600 to the Clemson Architectural Foundation, a portion of which is used for awards in an intermediate-level architectural design problem.

**South Carolina Society of Sons of American Revolution Medal.** An annual award is given to an Army ROTC cadet who exhibits a high degree of merit with respect to leadership, soldierly bearing and excellence in theoretical courses of study.

**The Southern Brick and Tile Award.** The Southern Brick and Tile Association annually makes a grant of $100 for prizes awarded in an advanced-level architectural design problem.
**Algernon Sydney Sullivan Medallion.** A valuable and artistic memorial, established by the Southern Society of New York in honor of its first president, is awarded each year by the University to a member of the graduating class and to one other person who has some interest in, association with, or relation to the institution, official or otherwise, of a nature as to make this form of recognition appropriate. The recipients of this award shall be chosen in recognition of their influence for good, their excellence in maintaining high ideals of living, their spiritual qualities, and their generous and disinterested service to others.

**Superior Cadet Ribbon Awards.** The Department of the Army awards annually Superior Cadet Ribbons to those Army ROTC students in each academic year (class) adjudged the most outstanding in their class.

**Third Army Certificate of Meritorious Leadership Achievement.** An award is given annually by the Commanding General of Third Army to the outstanding cadet on the basis of leadership development throughout the ROTC career.

**Tau Beta Pi Scholastic Award.** An annual award is given to the sophomore in Engineering having the highest scholastic record.

**Trustees' Medal.** The Board of Trustees has provided for a gold medal to be awarded annually to the best speaker in the student body.

**Virginia Dare Award.** An award of $25 is given annually by the Virginia Dare Extract Company, Incorporated, to the senior majoring in Dairy Science and having the highest grade in Dy Sc 402, Dairy Manufactures.

**Wall Street Journal Student Achievement Awards.** These annual awards are given to the most outstanding senior with a concentration in Agricultural Economics, College of Agriculture and Biological Sciences, and Economics, in the College of Industrial Management and Textile Science.

**Wyandotte Award.** The Wyandotte Chemicals Corporation Trophy is awarded to the senior in Dairy Science having the highest grades in Dy Sc 409 and 410.

**GUIDANCE SERVICES**

Guidance has an important role at all levels of education and particularly so during times of transition and articulation. To
assist students in this period of emotional and academic adjustment, an orientation and counseling program has been established.

At the beginning of his university career, each student is assigned to a faculty adviser selected from his academic school. The faculty advisers provide information on courses of study, approve class schedules, interpret academic regulations, and suggest adjustments in making satisfactory progress toward graduation.

The residence hall program is organized to cope with personal problems and questions regarding procedures and policies of college life. Residence hall counselors and supervisors are primarily concerned with maintaining an environment compatible to serious study and with the educational potential of group living.

COUNSELING SERVICES

Counseling Services are located in Tillman Hall. These services are available free of charge to all registered students and spouses of registered students. These services are oriented to early identification of and assistance with academic, vocational, personal, and psychological problems. Testing facilities of a vocational and psychological nature are available. Students are encouraged to take advantage of the individual services of a Counseling Psychologist, a Counselor, and of the Psychometric Services.

The service is dedicated to helping students in self-understanding, self-improvement, and in the attaining of academic and vocational goals. The aims of the service and preventive rather than curative.

PLACEMENT SERVICES

The University is glad to assist all who ask for help in securing summer or permanent employment; it does not assure positions for those who complete any of the courses of study.

The Placement Office coordinates and plans campus interview visits requested by representatives seeking graduates for positions with business, industry, and public service. It maintains current files of reported job opportunities and of alumni who wish to learn of available openings.

A Placement Bulletin is prepared periodically for distribution on the campus and for mailing to alumni upon request. It announces scheduled campus interviews and lists specific openings which may be of interest to students and alumni.
BUILDINGS AND GROUNDS

Today, as throughout Clemson’s history, the focal point of this picturesque campus is the Tillman Hall clock tower, the symbol of scientific education, research, and public service in South Carolina. Honoring the memory of colorful Governor “Pitchfork Ben” Tillman, this building houses administrative offices on the two lower levels and classrooms upstairs.

The Clemson campus consists of 600 acres and represents an investment of approximately $60 million in academic buildings, student housing, service facilities, and equipment. Basically, this is the plantation that Thomas Green Clemson willed to South Carolina for the establishment of the University. Fort Hill, the former home of both Mr. Clemson and his father-in-law, John C. Calhoun, is preserved in the center of the campus as a national shrine.

Beyond the main campus, stretching into Oconee, Pickens, and Anderson Counties, are another 23,000 acres of farm and agricultural and engineering research lands. Located throughout the State are 6,800 more acres devoted to Agricultural Experiment Station research and 4-H Club work.

The university’s $60 million building program to meet the projected needs of a 10,000 student body by 1975 is over 25 per cent complete, with $16 million in new construction enhancing the campus skyline.

The central feature of campus development, the Robert Muldrow Cooper Library, was completed in 1966. This beautiful structure houses approximately 400,000 volumes, and is the permanent home of papers and souvenirs belonging to the Honorable James F. Byrnes.

Other new facilities completed under the current building program are two high-rise residence halls which currently house 864 students, a 34-bed hospital and out-patient clinic, an additional cafeteria, an arts and sciences classroom building and 10-story faculty office tower, a graduate engineering research building, and the J. C. Littlejohn Coliseum which seats 10,500 people for basketball games and 12,000 people for speaking engagements, concerts, and other functions.

Teaching and laboratory facilities of the College of Agriculture and Biological Sciences are housed in the several buildings of the R. F. Poole Agricultural Center. Another grouping serves the College of Engineering. Among these are Olin Hall for Ceramic Engineering and Earle Hall for Chemical Engineering. These two build-
ings and the excellent equipment they house represent gifts from the Olin Foundation totaling nearly two million dollars.

Sirrine Hall is the home of the College of Industrial Management and Textile Science and within it are located government and industrial cotton fiber testing laboratories. The College of Architecture is located in a modern, well-equipped building and other groupings of classrooms and laboratories serve the College of Education, the College of Liberal Arts, the College of Physical and Mathematical Sciences, and the School of Nursing.

The 15 residence halls for men and women accommodate nearly 5,000 students. Individual units or apartments provide living accommodations for another 289 married students.

The university-owned Clemson House Hotel and 112 faculty and staff housing units provide excellent community hotel facilities and permanent housing.

RESERVE OFFICERS’ TRAINING CORPS (ROTC)

The Department of the Army and the Department of the Air Force both maintain ROTC units at Clemson University. The mission of the Reserve Officers’ Training Corps is to produce officers having qualities of leadership and attributes essential to their progress and continued development as commissioned officers in either the Army or the Air Force of the United States. A four-year program, consisting of the basic course for freshmen and sophomores and the advanced courses for juniors and seniors, is offered by both services.

To enroll in basic ROTC, students must be at least 14 years of age and citizens of the United States at the time of entrance. They must be of good moral character and must sign a loyalty certificate. They must not be physically disqualified to the extent that drill would further aggravate the physical defect. Air Force candidates will be administered a written Air Force Officer Qualification Test and a physical examination during their freshman or sophomore year to determine eligibility for the advanced AFROTC course, and interested Army candidates will be administered a written Army Officer Qualification Test and a physical examination during their sophomore year to determine eligibility for advanced Army ROTC. Foreign students may enroll in the ROTC program provided they sign a statement of intention to become American citizens or receive the approval of their government.
A maximum enrollment restriction is placed on entrance into the advanced ROTC program. Students enrolled in the advanced course are paid $50 per month, including one summer vacation. Pay while attending summer camp is computed differently and is considerably higher. Members of the advanced course are required to attend one summer camp before commissioning.

Students who have six months or more active military service and students who have successfully completed two or more years of ROTC training at the high school level may substitute such service and preparatory schooling for all or part of the Clemson basic ROTC course. Students in either of these categories should consult with the Head of the Military Science or Aerospace Studies Department concerning accreditation.

Students who complete the prescribed ROTC courses and receive a bachelor's degree may be awarded commissions in either Regular or Reserve components of the Army or Air Force. Students who complete the basic course may receive 4 semester credit hours of elective credit; those selected for Advanced ROTC may substitute Aerospace Studies or Military Science courses for an additional 6 semester hours' credit.

Uniforms are provided to ROTC students. The University requires a deposit of $25 from each basic student. This is refundable when the uniform is turned in, provided there is no damage to the uniform other than normal wear. Each advanced ROTC student is credited with a uniform allowance, paid by the Government to the University, which is used by the University to purchase officer-type uniforms for use during the junior and senior years. The uniform becomes the property of the student when he is commissioned.

**AIR FORCE ROTC**

The Air Force ROTC program provides for selected students an education vital to the career of a professional Air Force officer. Commissions in the United States Air Force are awarded to male students who qualify for enrollment and successfully complete the program.

The four-year program consists of the General Military Course (GMC) or basic course and the Professional Officer Course (POC) or advanced course. Both are general courses covering the organization and mission of the Air Force. A leadership development laboratory, known as Corps Training, is a part of both courses. The GMC consists of 2 years with 30 hours of classroom instruc-
tion and 30 hours of Corps Training each year. During the second year of the GMC, a cadet may apply for admission into the POC. This consists of 90 classroom hours and 30 hours of Corps Training each year.

Cadets enrolled in the POC under the four-year program attend a four-week training period at an Air Force base between their junior and senior years. This provides exposure to an Air Force environment which is beneficial in preparing cadets for future management positions.

The two-year program consists of a six-week preparatory training period, at an Air Force base during the summer between the student’s sophomore and junior years, and the POC. The six-week preparatory period eliminates the requirement for completion of the GMC and training at an Air Force base while enrolled in the POC. Applicants for the two-year program must meet all eligibility requirements for POC enrollment. Entry into this program is highly competitive.

If accepted into the POC the cadet is placed under contract and, after satisfactory course completion and graduation, may be commissioned as a Second Lieutenant in either the Regular or Reserve components of the United States Air Force. To be eligible for enrollment in the POC a cadet must: (1) Make application. (2) Pass the Air Force Officer’s Qualification Test. (3) Pass the Air Force physical examination. (4) Meet citizenship, age, and loyalty requirements. (5) Possess leadership ability and good moral character. (6) Successfully complete two academic years of the GMC or have received credit for its equivalent. (7) Enlist in the Air Force Reserve (Obligated Reserve Section) AFROTC. (8) Have two academic years remaining (including graduate study) at Clemson University at the time of entrance. (9) Be enrolled as a full-time student. (10) Have attained the academic standards required by the University and the Air Force. (11) Be selected by a board of Air Force officers.

POC cadets who intend to become Air Force pilots participate in the Flight Instruction Program (FIP) during their senior year. They receive, at Government expense, pilot training conducted by a civilian contract flying school. Students who are not qualified or do not desire pilot training may be considered for entry into the POC as candidates for navigator training or officer duty in non-flying categories.
AFROTC students who have demonstrated outstanding leadership and academic qualities may be designated distinguished cadets at the beginning of their senior year. Clemson's distinguished cadets are eligible to compete with distinguished cadets from other institutions for regular Air Force commissions which are awarded upon graduation from the University.

AFROTC provides scholarships to highly qualified AFROTC cadets each year. Each scholarship pays tuition, fees, and $75 per academic year for books, in addition to $50 per month to the recipient.

The Air Force offers outstanding opportunities for an AFROTC graduate to pursue studies leading to an advanced degree. The educational delay program allows an AFROTC graduate to have his call to active duty delayed until he receives his advanced degree.

The Air Force Institute of Technology (AFIT) offers graduate programs in scientific, technical, and other professional fields. These programs are conducted at the AFIT resident school, Wright Patterson AFB, Ohio, at selected civilian institutions, and through training-with-industries programs. AFROTC graduates are eligible to apply for AFIT schooling after they are called to active duty. Air Force officers receive full pay and allowances while attending school under the AFIT program.

**ARMY ROTC**

The Army ROTC instruction stresses an academic college-level program in content, scope, and intensity. Emphasis is placed on the development of the student's leadership, bearing, discipline, judgment and sportsmanship which will be a distinct asset in any profession that he may choose, military or civilian.

The General Military Science Program is conducted at Clemson (see Part V of this catalog for a description of courses). The program consists of a Basic Course for freshmen and sophomores and the Advanced Program for juniors and seniors. A student who has successfully completed the basic course, who meets the physical requirements, who has earned sufficient academic credits to be designated as an academic junior, and who is recommended by his instructors, may enter the Advanced Course offered during the junior and senior years. Successful completion of the Advanced Program qualifies the student for a regular or reserve commission in any of the arms or services of the United States Army.
**Scholarship Program.** Scholarships are available to selected ROTC students who are strongly motivated toward a career in the Army. Each scholarship pays for tuition, books and laboratory expenses, and, in addition, pays $50 a month for the duration of the award, except during the Advanced Course summer training camp at the end of the junior year when the pay is at the rate of $151.95 per month. Only students who participate in the four-year camp at the end of the junior year when the pay is one-half the rate of a Second Lieutenant's base pay with two or less years' service. Only students who participate in the four-year program are eligible. For further information concerning the scholarship program, contact the Office of the Professor of Military Science.

The requirements for formal enrollment in the Advanced ROTC Program are as follows:

**Junior Year.** Must have successfully completed all previous Military Science courses, have acquired a passing grade on a general intelligence test which is administered during the sophomore year, be physically qualified, and must have acquired the credits, a grade-point ratio of 2.0 and be designated an academic junior. The number of credits required for participation in the Advanced Course complements the academic requirements of the University and insures that the cadet receives his commission and his diploma simultaneously.

**Senior Year.** Must have successfully completed all previous Military Science courses and have attended summer camp, must be an academic senior, and have the cumulative grade-point ratio required for graduation.

Exceptions, where warranted, to the above general rules may be made by the Head of the Military Science Department.

During the four years of general military instruction, students will have the opportunity to indicate their preference for assignment to a particular branch. Final assignment authority remains with the Department of the Army and will be dependent upon such factors as the student's major academic course, class standing, qualities of leadership, the requirements and existing vacancies in the various branches of the Army, in addition to the student's choice.

Outstanding Army ROTC cadets who attain grades in the upper half of the class in academic subjects and the upper third in Military Science subjects during their junior year and who possess outstanding qualities of leadership, character and aptitude for military service may, with the approval of the University President, be desig-
nated as Distinguished Military Students by the Head of the Military Science Department. Those who maintain this outstanding record during their senior year may be designated Distinguished Military Graduates. A Distinguished Military Student may apply for appointment as a Second Lieutenant in the Regular Army.

**Flight Training Program.** An Army ROTC student in his fourth year of Military Science, or having completed his fourth year of Military Science, but not completed his academic requirements for graduation, may enroll in the Army ROTC Flight Training Program. If accepted, the student will receive 35 hours of ground school and 36½ hours of flight training at Government expense, after which the student may qualify for his FAA license and be recommended for further flight training upon entry on active duty. To be accepted in the Flight Training Program the candidate must agree that if commissioned at time of graduation, he will volunteer for Army Aviation Flight Training and assignment, and to serve on active duty as a commissioned officer for not less than three consecutive years from the date of completion of the Army Aviation Flight Training Course, in addition to meeting other physical and mental requirements.

ROTC students receiving commissions in the Regular Army or Army Reserve have the opportunity to apply for graduate school. If accepted by the Army, applicant may be allowed to delay entry upon active duty to complete graduate study.

The student who receives his commission through Army ROTC is appointed in the Army Reserve as a Second Lieutenant and called to active duty for 2 years. Graduates of the program who enter active duty for 2 years will acquire a 6-year military obligation, only 3 of which would be in the Ready Reserve.

A recapitulation of Army service obligation is listed below:

<table>
<thead>
<tr>
<th>Service</th>
<th>Reserve Officers</th>
<th>Regular Army</th>
<th>Reserve Flight Training Officers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Duty</td>
<td>2 years</td>
<td>3 years</td>
<td>4 years (Approx.)</td>
</tr>
<tr>
<td>Ready Reserve</td>
<td>3 years</td>
<td>2 years</td>
<td>1 year</td>
</tr>
<tr>
<td>Standby Reserve</td>
<td>1 year</td>
<td>1 year</td>
<td>1 year</td>
</tr>
</tbody>
</table>

**ROTC Requirement.** For those students who matriculate initially at Clemson after the spring semester 1970, ROTC will no longer be a requirement for graduation. In order to resolve the requirements and status of students matriculating prior to the end of the spring semester 1970, the following requirements apply:
To be eligible for graduation all male students not otherwise exempted whose initial matriculation in Clemson University was:

(1) On or before August 29, 1968, must complete four semesters of ROTC courses.
(2) After August 29, 1968, but prior to January 17, 1969, must complete three semesters of ROTC courses.
(3) After January 16, 1969, but prior to January 5, 1970, must complete two semesters of ROTC courses.
(4) After January 4, 1970, but prior to May 9, 1970, must complete one semester of an ROTC course.
(5) After May 9, 1970, ROTC courses are not a requirement for graduation.

**HISTORICAL STATEMENT**

In 1889 the General Assembly of South Carolina accepted the bequest of Thomas G. Clemson, which set aside the bulk of the Clemson estate for the founding of a scientific and technical college. The institution was also established under the Morrill Land-Grant Act passed by the National Congress in 1862. Clemson University, therefore, is a member of the national system of Land-Grant Colleges and Universities.

In 1964, in recognition of the expanded offerings of the institution not only in the areas of agricultural and mechanical arts but also in the sciences and arts, the name of the institution was changed to Clemson University. This change by the Legislature, effective July 1, 1964, followed an earlier recommendation to that body by the Board of Trustees.

The nature of the institution is outlined in Mr. Clemson’s will and its acceptance by the legislature.

The will in part reads:

Feeling a great sympathy for the farmers of this State, and the difficulties with which they have to contend in their efforts to establish the business of agriculture upon a proper basis, and believing that there can be no permanent improvement in agriculture without a knowledge of those sciences which pertain particularly thereto, I have determined to devote the bulk of my property to the establishment of an Agricultural College upon the Fort Hill Place. My purpose is to establish an Agricultural College which will afford useful information to the farmers and mechanics; therefore it should afford thorough instruction in agriculture and the natural sciences connected therewith; it should combine, if practicable, physical with intellectual education; and should be a high seminary of learning in which the graduate of the common schools can commence, pursue and finish a course of studies terminating in thorough theoretic and practical instruction in those sciences and arts which bear directly
upon agriculture . . . but to always bear in mind that the benefits herein sought to be bestowed are intended to benefit agriculture and mechanical industries. . . . I trust I do not exaggerate the importance of such an institution for developing the material resources of the State, by affording its youth the advantages of scientific culture.

The desire to establish such a school or college, as I have provided for in my said last will and testament, has existed with me for many years past, and many years ago I determined to devote the bulk of my property to the establishment of an Agricultural School or College. To accomplish this purpose is now the one great desire of my life.

This will gave all that part of the Fort Hill Estate inherited by Mrs. Clemson from her mother and the bulk of Mr. Clemson’s other real and personal property. The latter amounted to a sum, which, considering the purchasing power at the time, probably has been only a few times exceeded in a public benefaction in South Carolina.

A Board of Trustees of seven members was provided for: R. W. Simpson, D. K. Norris, M. L. Donaldson, R. E. Bowen, B. R. Tillman, J. E. Wannamaker, and J. E. Bradley, who with those chosen by the General Assembly, should constitute a governing board in the event the State accepted the bequest; but, who, in the event the State declined the bequest, should alone constitute a governing board for a private institution.

These seven trustees, along with other friends of the movement and the agricultural groups in the State, developed and organized a public opinion favorable to the plan.

In November, 1889, the General Assembly of South Carolina accepted the terms of the will and, following the decision of the United States Supreme Court to uphold the will, the State of South Carolina and the full Board of Trustees proceeded to convert the dream of Thomas G. Clemson into the reality of Clemson College.

The College was formally opened in July, 1893, with an enrollment of 446 students. The first graduating exercises were held in December, 1896, with a graduating class numbering 37—15 in the agricultural courses and 22 in the engineering courses.

LOCATION

The University is located on the Fort Hill homestead of John C. Calhoun, in the foothills of the Blue Ridge Mountains. It has an elevation of 800 feet above sea level and commands an excellent view of the mountains to the north and west, some of which attain an altitude of over 5,000 feet.
The University is located at Clemson, S. C., on the main line of the Southern Railway, U. S. Highways numbers 76 and 123 pass through Clemson, and daily bus service at regular intervals is available.

**ALUMNI RELATIONS**

The office of alumni relations coordinates all functions and services of the alumni office. The director of alumni relations is secretary of the Clemson Alumni Association and the Clemson Foundation through election by the governing boards of these two organizations.

Accurate records of addresses and information concerning alumni are being compiled by this office which also publishes a magazine and newsletter for distribution to the alumni.

The purpose of the Alumni Association is to serve the University and its alumni in every possible way. The Association holds its regular annual meeting at the University each June. Active membership is made up of former Clemson students who participate in the Clemson Alumni Loyalty Fund for the purpose of providing supplementary financial aid to the educational programs of the University.

The Clemson University Foundation was founded by interested members of the Alumni Association to raise an endowment to be used for the benefit of the University, its students, faculty and alumni. Trustees of the Foundation are elected by the Association.

**THE J. E. SIRRINE TEXTILE FOUNDATION**

Funds in this foundation were contributed by the members of the textile industry in South Carolina and amount to about one million dollars. Income from this fund is administered by the trustees of the J. E. Sirrine Textile Foundation. They have used the income to benefit textile teaching and research at Clemson University. Under the present system it is used to (1) supplement university travel funds for faculty members, (2) sponsor the school library by paying the salary of the librarian and paying for periodicals and books, (3) provide supplement to the salaries for two major professors, (4) provide four graduate fellowships annually, one of which may be held by a faculty member, (5) sponsor at Clemson annual seminar for South Carolina high school counselors, (6) and support special research projects.
PART III—Student Life and Activities

STUDENT BODY

The students of Clemson University believe that student government is necessary and beneficial and that every student should be represented in this government. All registered undergraduate and graduate students are upon payment of the Student Activities Fee members of the Student Body of Clemson University which in turn is represented by the student government.

Student government is actively sponsored and highly effective at Clemson. The three branches of government are patterned after our federal system; however, there are no political parties within the framework of this student organization. March and April are election months for student-body and class officers except for the freshman class which holds class-officer and Student Senate elections in September. Students interested in self-government are encouraged to participate in this active student organization.

WOMEN'S STUDENT ASSOCIATION

The purpose of the Women's Student Association is to plan and to coordinate activities for women students at Clemson University. W.S.A. also coordinates the activities of the various women's dormitories.

STUDENT PUBLICATIONS

The Chronicle is a student variety magazine published four times a year.

The Taps is the yearbook published by the students of the University.

The Tiger is a weekly paper published by the students of the University.

THE STUDENT CENTER

The student center, located in Johnstone Hall, has a student lounge with space for reading and games and two television sets. On the third floor there are meeting rooms and the student chapel. Also in this area are the offices of student publications, such as The Tiger, student newspaper; the Taps, annual publication; and Radio Station WSBF. The visitors' lounge and the information center are on the first floor off the loggia. The bookstore, post office, and canteen are located on the levels below the loggia.
CULTURAL, MUSICAL, THEATRICAL ACTIVITIES

University Concert Series

Each year since 1940 Clemson University has sponsored a concert series. All Clemson students paying full-time student activities fees are admitted to these concerts without charge. Others, including faculty members, may purchase tickets at a moderate cost.

The Program of Concerts for 1970-71 is:

Melbourne Symphony Orchestra—Willem van Otterloo conducting
Coldstream Guards and Black Watch—a British Military Spectacular
Ciro and his Ballet Flamenco
Leonard Pennario, pianist
The Johann Strauss Ensemble of the Vienna Symphony Orchestra
The Dorian Woodwind Quintet and Morton Subotnick's "Misfortunes of the Immortals"

Architectural Foundation Lectures and Exhibits

The College of Architecture at Clemson is able to present annually an outstanding series of lectures, which are open to all Clemson students, through financial grants from the Clemson Architectural Foundation. The Foundation also presents an annual schedule of at least 12 art exhibits in the Architectural College gallery, which is open to the public weekdays between 9 a.m. and 4:30 p.m.

University Bands

Tiger Band. The Tiger Band and Color Guard, composed of approximately 100 members, participate in football games, pep rallies, functions, and parades throughout the South. This band has appeared in major stadiums in many states, including the Gator, Orange, Sugar, and Bluebonnet Bowls and has performed on national television. The Tiger Band makes several out-of-town trips during the fall season. A smaller "pep band" from its ranks performs at all home basketball games.

Concert Band. The Clemson Concert Band is composed of the better musicians on campus. It is formed at the end of the football season, and gives concerts both on and off the campus, including a tour in the spring. This organization plays music of the great composers in addition to lighter fare.
Army and Air Force ROTC Bands. These bands participate in all major military functions, including ceremonial parades and reviews. (Admission is open to all qualified ROTC personnel.)

Glee Clubs. There are two choral organizations active on the campus for students interested in formal singing activities. The Clemson Glee Club consists of fifty members and is open to male students. For female students, there is a Women's Glee Club. Throughout the school year, these groups perform for many campus events, including full-length concerts. In the spring, a tour of South Carolina and nearby states is made. Audition is required for membership.

Clemson Players. This is the dramatic club of the University and is open to all students interested in dramatics. Four productions are presented annually.

THE YOUNG MEN'S CHRISTIAN ASSOCIATION

The Young Men's Christian Association at Clemson was organized in 1894, one year after the college was established, and has since then served both the University and the community to promote growth in Christian character through a well-balanced program of religious, social, recreational, and counseling activities. Because the YMCA is not specifically concerned with any particular denominational group, its program cuts across denominational lines and is interested in students of the University regardless of denominational affiliation or if they have no denominational affiliation.

Some of the activities which are promoted by the YMCA are the meditations in the student chapel, meditations on the halls where students live, residence hall forums, participation in religious emphasis programs throughout the year, and deputations to other colleges, universities, and high schools. The YMCA also coordinates the overall religious program of the local church groups.

The YMCA offers space and facilities for such activities as drop-ins, dances, television programs, music concerts, as well as physical activities, such as basketball, swimming, table tennis, billiards, and the social and recreational activities involved in the YMCA's program. A new feature of the YMCA’s program is the development of a recreational area across the lake from the campus, comprising twenty-five acres with a nice beach, bathhouse, and a headquarters building for recreation.

The Young Men's Christian Association at the University is under the direction of an Advisory Board composed of members of the
faculty, administration, alumni, and members at large. There is a full-time staff of four men and one woman whose efforts are to give direction to the social, recreational, and religious life of students.

The student policy group is the YMCA Cabinet, which meets weekly to evaluate and promote the activities which appeal to students.

**RELIGIOUS LIFE**

Religious life at Clemson University is coordinated by the University YMCA with the Director of the YMCA serving as coordinator.

The YMCA building provides a meeting place for denominational groups not having a church at Clemson as well as for many interdenominational groups. The Student Center, which is located in the dormitory, has a chapel which is used by all of the religious groups as scheduled.

The student religious organizations at Clemson offer the student the opportunity to grow spiritually and socially. These organizations are:

- Baptist Student Union
- Clemson Canterbury Association (Episcopal)
- Christian Science Organization
- Hillel-Brandeis (Jewish)
- Lutheran Student Association
- Newman Student Association (Catholic)
- Westminster Fellowship (Presbyterian)
- Clemson Wesley Foundation (Methodist)

**CAMPUS LEADERSHIP AND SERVICE**

*Block “C” Club*—The Block “C” Club includes varsity lettermen in baseball, basketball, football, track, cheerleading, swimming, and soccer.

*Tiger Brotherhood*—A local honorary service fraternity composed of men students from the upper three classes who have demonstrated ability, character and loyalty to Clemson University.

*Circle“K” International*—International Service Club for college men sponsored by Kiwanis International.

*Central Dance Association*—The C.D.A. staff is responsible for planning and coordinating major dance weekends at which time name entertainment is brought to the campus.
WSBF—WSBF is an educational radio station managed, maintained and operated by a student staff for the enjoyment of the Clemson student body and the surrounding academic community. The station broadcasts 24 hours a day on both open circuit FM and closed circuit AM from a modern studio in the University Student Center.

Order of Athena—A local honorary society for senior women who have maintained a high standard of scholarship, demonstrated leadership, and shown a spirit of service to the University.

NATIONAL HONOR SOCIETIES

Clemson University has chapters of the following members of the Association of College Honor Societies:

Delta Sigma Rho–Tau Kappa Alpha (Forensics)
Phi Eta Sigma (Scholarship—Freshman Men)
Phi Kappa Phi (Scholarship—Senior Men and Women)
Tau Beta Pi (Engineering—Men and Women)
Tau Sigma Delta (Architecture and Allied Arts—Men and Women)

Other Honor Societies:

Sigma Xi (Scientific Research—Men and Women)
Xi Sigma Pi (Forestry—Men)

NATIONAL RECOGNITION SOCIETIES

The following national recognition societies have chapters established at Clemson:

Alpha Phi Omega (Campus Service—Men)
Alpha Zeta (Agriculture)
Angel Flight (Air Force—Women)
Arnold Air Society (Air Force—Men)
Block and Bridle Club (Animal Science)
Blue Key (Scholarship, Leadership, Service—Men)
Iota Lambda Sigma (Industrial Education)
Pershing Rifles—Company C-4 (Military)
Pershing Rifles—4th Regimental Headquarters
Scabbard and Blade—Company K-7 (Military)
DEPARTMENT AND PROFESSIONAL ORGANIZATIONS

Agricultural and Biological Sciences Council
Alpha Tau Alpha (Agricultural Education)
American Agricultural Economics Association
American Association of Textile Chemists and Colorists
American Association of Textile Technology
American Ceramic Society
American Chemical Society
American Dairy Science Association
American Institute of Architects
American Institute of Chemical Engineers
American Society of Agricultural Engineers
American Society of Civil Engineers
American Society of Mechanical Engineers
American Society for Metals
Associated General Contractors of America, Inc.
Calhoun Forensic Society
Calhoun Literary Workshop
Capers (Co-ed Pershing Rifles)
Counter Guerrilla Platoon
Delta Sigma Nu (Pre-med)
Economics Club
Food Science Club
Forestry Club
Gamma Alpha Mu (English)
Geology Club
Graphic Arts Society
Horticulture Club
Institute of Electronic and Electrical Engineers
Iota Mu Sigma (Industrial Management)
Kappa Alpha Sigma (Agronomy—Crops and Soils)
Keramos (Ceramics)
Light Brigade (Army—Women)
McConnell Society (German)
Mu Beta Psi (Music)
Newtonian Society (Mathematics)
Outing Club
Phi Psi (Textile Arts)
Poultry Science Club
Pre-law Society
Pre-veterinary Club
Recreation and Parks Administration Club
Sigma Pi Sigma (Physics)
Sigma Tau Epsilon (Arts and Sciences)
Society for the Advancement of Agricultural Education
Society for Advancement of Management
Society for American Military Engineers
Society of Physics Students
Young Philosophers’ Club

GENERAL ORGANIZATIONS

Aero Club
Amateur Radio Club
Bowling Team
Campus Crusade for Christ
Chess Club
Dixie Skydivers Sport Parachute Club, Inc.
Fellowship of Christian Athletes
Fencing Club
Fine Arts Film Club
Four-H Club
Gamma Beta Phi (Beta Club Members)
Gamma Omega Phi (Political)
The Oxfords
Rifle Club
Sailing Club
Skin and Scuba Diving Club
Sentimental Jazzmen (Music)
Sigma Psi Nu (Swimming)
Southern Students Organizing Committee
Sports Car Club
Student League for Black Identity
Students for Educational Aid
Tae Kwon Do Club (Karate)
University Political Caucus
Weightlifting Club
Young Democrats Club
YMCA Cabinet
Young Republicans Club
SOCIAL FRATERNITIES AND SORORITIES

The Board of Trustees, together with the President and Vice-President for Student Affairs, of Clemson University have given formal approval to opening the Clemson campus to national fraternities and sororities. The local fraternities and sororities expect to affiliate with national groups during the 1969-70 academic year. At the present time, there are eleven local fraternities and three local sororities on the campus.

Fraternities

Alpha Gamma  
Beta Sigma Chi  
(Associate) 
Chi Lambda  
Delta Kappa Alpha  
Delta Phi Kappa  
Kappa Delta Chi  
Kappa Sigma Nu  
Numeral Society  
Phi Kappa Delta  
Sigma Alpha Zeta  
Sigma Kappa Epsilon

The Interfraternity Council serves as the coordinating and governing body of the social fraternities.

Sororities

Delta Theta Chi  
Omicron Zeta Tau  
Sigma Beta Chi

The Intersorority Council coordinates the activities of the social sororities.

REGIONAL CLUBS

The regional clubs of Clemson University are composed of international clubs, out-of-state clubs and clubs representing the various counties in the state. The regional clubs are made up of students who wish to unite with other students from their own home areas. These clubs include:

International Student Association  
Kappa Delta Kappa (Dillon County)  
Colleton County Club  
Pi Kappa Rho (Pickens County)

ATHLETIC PROGRAM

The University encourages students' interests in sports through a program of intercollegiate athletics and intramural sports.

It is a member of the Atlantic Coast Conference and its athletic teams, The Tigers, regularly play teams of that conference and other colleges. Membership of the Atlantic Coast Conference includes—
in addition to Clemson University—Duke University, North Carolina State University, University of Maryland, University of North Carolina, University of South Carolina, University of Virginia, and Wake Forest University.

The intercollegiate athletic program includes football, basketball, baseball, track, tennis, golf, swimming, cross-country, and soccer. Each year over 200 teams are formed in softball, football, volleyball and basketball in the intramural program, with champions determined in each sport through a tournament.

Among the facilities for intramural and intercollegiate athletics at the University are tennis courts, baseball and track facilities, an indoor swimming pool, and a football stadium which will accommodate almost 50,000 people. The Littlejohn Coliseum, with a seating capacity of approximately 10,000 for basketball and up to 12,000 for other events, was completed in 1968. The Fike Fieldhouse is being renovated to accommodate intramural activities.

AUTOMOBILE PRIVILEGES AND PARKING REGULATIONS

All motor vehicles owned and operated on the campus by students, faculty, and staff members must be registered with the designated authorities. On registering, each student, faculty, or staff member will be offered a copy of the parking and traffic regulations and will be issued a decal which will indicate the areas in which the car may be parked.

Students are urged to familiarize themselves with all provisions of the Traffic Ordinance contained in The Traffic Code of Clemson University.
SCHOLASTIC REGULATIONS

PART IV
PART IV—Scholastic Regulations

SCHOLASTIC REGULATIONS

Academic Standards. Proper discharge of all duties is required at Clemson University, and a student’s first duty is his scholastic work. All students should be thoroughly acquainted with and cognizant of these basic requirements.

The Credit System. The semester hour is the basis of all credits. Generally, one recitation hour or 3 laboratory or shop hours a week for a semester constitute a semester hour. Thus, in Engl 101, English Composition, 3 cr. (3,0), as you will find this subject listed in the Degrees and Curriculums, the student takes 3 semester hours. When he completes this course satisfactorily, he is granted 3 semester credit hours on his record. The notation “3 cr. (3,0)” means that the course carries 3 credits, has 3 clock hours of theory or recitation per week, and no laboratory hours. Ch 101, General Chemistry, 4 cr. (3,3), carries 4 semester hours, has 3 hours of theory, and a 3-hour laboratory period.

The amount of work required for each credit will vary with the student’s capabilities. In general, it is anticipated that each semester hour credit will require 3 hours work per week for average students. Thus, a 1(1,0) course would have 1 hour of lecture per week and require 2 hours of outside preparation. A 1(0,3) course would require 3 hours of laboratory work and no time for outside preparation.

Semester Grades. The standing of a student in his work at the end of a semester is based upon daily class work, tests or other work, and the final examinations. Faculty members may excuse from the final examinations all students having the grade of A on the work of the course prior to the final examination, but for all other students written examinations are required in all subjects at the end of each semester, except in certain laboratory or practical courses in which final examinations are not deemed necessary by the department faculty.

Scholastic reports are mailed to parents four times each year, including a preliminary statement of progress near the middle of each semester, and a final report at the end of each semester.

The Grading System. The grading system is as follows:

A—Excellent. Indicates that the student is doing work of a very high character. The highest grade given.
B—Good. Indicates work that is definitely above average, though not of the highest quality.
C—Fair. Indicates work of average or medium character.
D—Pass. Indicates work below average and unsatisfactory. The lowest passing grade.
F—Failed. Indicates that a student knows so little of the subject that it must be repeated in order that credit may be received.
I—Incomplete Work. Indicates that a relatively small part of the semester's work remains undone. Grade I is not given a student who has made a grade F on his daily work. Students are allowed 30 days after the beginning of the next semester in which the student is enrolled to remove the incomplete grade unless (1) an extension of time is approved by the instructor concerned, or (2) within one year of residence after receiving such a grade, a student repeats the conditioned course satisfactorily at Clemson, in which case no credit hours taken shall be recorded for the grade of I. A student who elects to repeat an incomplete course is responsible for notifying the Office of Admissions and Registration of his election during the semester in which the course is taken. This regulation applies only to the first time that a course is repeated.

In order to make up incomplete work, the student must first obtain a permit card from the Office of Admissions and Registration. This card serves as the authority for the removal of the I and also as a form for reporting the final grade.

WP—Withdrawn Passing. This grade indicates that the student withdrew from the course while doing satisfactory work. No credit hours taken are recorded for the grade of WP provided that the course is dropped prior to the last three weeks of classes in the semester. Only semester grades shall be given and recorded for courses dropped during the last three weeks.

WF—Withdrawn Failing. Indicates that the student withdrew from the course while doing unsatisfactory work. The credit hours of a subject on which the grade of WF is received are counted as credits taken in computing the student's grade-point ratio.

Dropping Class Work. A subject dropped after the first four weeks of class work is recorded as "Withdrawn Passing" or "Withdrawn Failing" depending upon the student's grade in the course at the time the subject was dropped.

Upon the recommendation of the instructor and the dean concerned, a student's standing will be investigated and he may be
required to drop a subject because of neglect, or lack of application or preparation. No student will be dropped under this rule without approval of the President.

Removal of Failures. A student who has failed (made a grade F) in a subject cannot receive credit for that subject until it has been satisfactorily repeated hour for hour in class, except that in the case of correlated laboratory work, the number of hours to be taken shall be determined by the instructor. Where separate grades for class and laboratory work are given, that part of the subject shall be repeated in which the failure occurs.

Rescheduling Courses Failed. A student who wishes to reschedule a course he has failed must do so within his next year of residence, or, if the course is not offered during this year of residence, he must reschedule the course the first time it is offered thereafter during his attendance at Clemson.

Rescheduling Courses Passed. A student may repeat a course he has passed with a grade lower than B provided he does so within three semesters of residence after the completion of his original enrollment in the course.

Scheduling Remedial Mathematics. Any student who has passed a course in freshman mathematics is ineligible to enroll in Remedial Mathematics.

Withdrawal from the University. A student may withdraw from the University any time before the last three weeks of classes in the semester without having grades recorded. A student enrolled the last three weeks of classes shall have final semester grades recorded.

A student withdrawing from college after preliminary reports are due must be passing a minimum of 12 semester credit hours at the time of withdrawal to qualify for re-enrollment the following semester.

After the first withdrawal from college the student is eligible to continue his enrollment the following semester, provided he meets other applicable regulations. For each succeeding withdrawal, however, the student shall be ineligible to continue his enrollment the following semester unless there are extenuating circumstances approved by the Committee on Admissions.

Grade Points. Four grade points are assigned for each credit hour on which the student receives the grade of A, 3 grade points for each credit hour of grade B, 2 grade points for each credit hour of grade C, and 1 grade point for each credit hour of grade D. No grade points are assigned for grades F, I, WP, or WF.
Grade-Point Ratio. In calculating a student's grade-point ratio, the total number of grade points accumulated by the student is divided by the total number of credit hours taken by the student at Clemson during the semester, session, or other period for which the ratio is calculated.

Minimum Requirements for Continuing Enrollment. At the end of the academic year in May, all student records are inspected for quality. At that time in order to be able to continue his enrollment, a student who has taken a total of:

(a) 24 to 59 credit hours at Clemson must have a cumulative grade-point ratio of 1.30 or above.
(b) 60 to 89 credit hours at Clemson must have a cumulative grade-point ratio of 1.50 or above.
(c) 90 or more credit hours at Clemson must have a cumulative grade-point ratio of 1.70 or above.

A student completing a regular session has the privilege of continuing his enrollment through the immediately following summer session at Clemson or in Clemson parallel programs in an effort to meet the above requirements.

A student who has taken fewer than 90 credit hours at Clemson and who fails to meet the required grade-point ratio, as indicated in the table above, may apply for readmission after a minimum of one semester has elapsed. A student who has taken 90 or more credit hours and fails to meet the required grade-point ratio is permanently ineligible for readmission. Any exceptions to these minimum requirements for continuing enrollment and readmission must be approved by the Admissions Committee of the University.

Advanced Placement by Examination. In addition to earning credit by the usual method involving classroom attendance, students may receive credit toward their degree by completing a course successfully by examination only. Freshmen interested in exempting some of the elementary courses in this manner should participate in the College Board Advanced Placement Examination program, and have the results of these tests sent to Clemson.

Credit by Examination. Credit may be earned by means of a special examination without the necessity of class attendance subject to the following requirements:

(1) The applicant must present evidence which would indicate that he has received training or taken work which is approximately equivalent to that given in the course at Clemson for which an examination is requested and that an examination is warranted.
(2) The applicant must not have previously failed or audited the course at Clemson.

(3) The applicant must apply in writing for the examination and the request must be approved by the Instructor, Head of the Department in which the course is taught, Dean of the College or School in which the course is taught, and the Dean of Admissions and Registration.

(4) A grade of not less than C on the examination is necessary in order for the examinee to receive credit on the course. An examinee receiving credit under this provision receives credit for “hours taken,” “hours earned,” and grade points as well as the course grade.

(5) The time of the examination will be arranged by the student with the instructor concerned, but must be taken within one month after the date of final approval or it will be necessary for the student to initiate another request.

**Work Taken at Another Institution.** Clemson students may receive credit for work taken at another institution; however, approval of the work should be obtained by the student prior to scheduling the work. Information and forms relative to this approval may be obtained in the Office of Admissions and Registration. By obtaining advance approval the student is assured of receiving proper credit at Clemson provided he passes the work with a grade one letter grade higher than the lowest passing grade.

**Classification.** All new students are classified as freshmen unless they have attended another college prior to entrance. For those students who have completed college work elsewhere, classification will be based on semester hours accepted at Clemson rather than the amount of work presented.

To be classified as a sophomore, a student must have completed at least 30 semester hours.

To be classified as a junior, a student must have completed at least 60 semester hours.

To be classified as a senior, a student must have completed at least 95 semester hours.

**Regular Advancement in Classification.** All students are urged to meet the requirements for sophomore classification by the beginning of the second year, for junior classification by the beginning of the third year, and for senior classification by the beginning of the fourth year. Failure to meet these requirements can jeopardize a student’s academic standing with the University as well as...
jeopardize his deferment under the Selective Service even though he may be otherwise eligible for the deferment.

Course Prerequisites. Prerequisites for individual courses are enumerated under the course listings in the Description of Courses. In addition to these requirements, colleges, schools, and departments may also establish other standards as conditions for enrollment. In the College of Engineering a grade-point ratio of 1.80 or higher is required for registration in all Engineering courses numbered 300 or higher.

Credit Load. Except for an entering freshman, who is restricted to the curriculum requirements of his major course, the credit load for an undergraduate must be approved by his class adviser. The class adviser will approve a credit load deemed in the best interest of the student based on such factors as course requirements, grade-point ratio, participation in other activities, and expected date of graduation.

Since grades are an important factor in determining credit loads, the student should be guided by the following table in presenting his schedule to his class adviser for approval:

<table>
<thead>
<tr>
<th>Grade-Point Ratio (Semester or Cumulative, Whichever Is Higher)</th>
<th>Recommended Maximum Number of Semester Hours to Be Scheduled</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 to 0.99</td>
<td>14 to 16</td>
</tr>
<tr>
<td>1.00 to 1.99</td>
<td>16 to 18</td>
</tr>
<tr>
<td>2.00 to 2.99</td>
<td>18 to 20</td>
</tr>
<tr>
<td>3.00 to 4.00</td>
<td>20 to 22</td>
</tr>
</tbody>
</table>

When any full-time student reduces his credit load below 12 hours, but is still carrying 9 or more, he may be suspended for at least the remainder of the semester upon recommendation of the Vice-President for Student Affairs and approval of the President. When a student reduces his credit load below 9 hours he shall be suspended for at least the remainder of the semester.

Auditing Policies. Qualified students may audit courses upon the written approval of the professor, head of the department and the dean of the college or school concerned, and registration with the Dean of Admissions and Registration. Auditors are under no obligation of regular attendance, preparation, recitation, or examination and receive no credit. Participation in classroom discussion and laboratory exercises by auditors is at the discretion of the instructor. A student who has previously audited a course is ineligible for credit by examination.
A full-time undergraduate student with approval may audit courses at no additional charge as long as the student's credit load, including the course audited, is approved by his class adviser.

A graduate student regularly enrolled for a minimum of six semester hours may with approval audit one additional course without charge.

Members of the University teaching staff and the professional staff in research and agricultural extension may with approval audit courses without charge. Other full-time University employees may audit without charge with the additional approval of the employee's immediate supervisor and the Comptroller.

Residence Requirement for Graduation. In order to qualify for an undergraduate degree, a student must spend at least the last year of residence at Clemson and complete at Clemson a minimum of 30 of the last 36 credits presented for the degree.

Honors Program. The Honors Program at Clemson University provides for the fuller development of our most able students. They meet in small classes with outstanding professors and explore the subject matter of a course in greater depth than other students are able to do. The identification and selection of Honor Students begins with their freshman year, and Honors courses are provided at all four levels of undergraduate instruction. To remain in the Honors Program a student must maintain a cumulative grade-point ratio of 3.00.

An Honors Council composed of faculty members from each College and School is responsible for planning and supervising the Honors Program. The Honors Program: A Student Handbook is available for those who are interested.

Honors and Awards Day. Each spring an Honors and Awards Day is held for students who qualify for the honor list and for special awards. A cumulative grade-point ratio of 3.00 to 3.49 is required for listing with honor, 3.50 to 3.79 for high honor, and 3.80 or above for inclusion with highest honor.

Honor Graduates. Students who graduate in the Honors Program will have this fact indicated on their diplomas. Other graduates who meet the required qualifications are designated as having graduated with honor. A grade-point ratio of 3.00 to 3.49 is required for graduation with honor, 3.50 to 3.79 for high honor, and 3.80 or above for graduation with highest honor.

Examination on F Received in Last Semester. A candidate for a degree who in the semester immediately prior to graduation fails
to graduate because of an F on one course taken in that semester may stand a special examination on the course provided:

(1) That the candidate can furnish evidence of having done satisfactory study for the examination.
(2) That the examination is not given until after the regular degree date.
(3) That the candidate has fulfilled, prior to the due date for candidates' grades, all other requirements for his degree except those which can be fulfilled by passing the examination.
(4) That the candidate by removing the F by examination will finish all requirements for his degree which will be awarded on the next regular date for award of degrees.

Make-ups of I's Received in Last Semester. A candidate for a degree who in the semester immediately prior to graduation receives one or more grades of I shall have an opportunity of removing the unsatisfactory grades provided the final grades are received in the Office of Admissions and Registration by the time grades for candidates for graduation are due.

A candidate who qualifies for graduation under this regulation will be awarded his degree on the regular date for the award of degrees.

Special Graduation Requirements. A cumulative grade-point ratio of 2.00 is required for graduation. Candidates for degrees are required to apply for their diplomas within two weeks following the opening of the final semester or the opening of the summer session prior to the date the degrees are to be awarded. These applications should be filled out in the Office of Admissions and Registration on the regular blanks provided.

All work for a degree must be completed, all financial settlements made, and all government property and library books returned by 5 p.m. on the Tuesday preceding graduation.

A student in line for graduation at the end of this semester who fails to graduate because of an F on one course taken this semester may stand a special examination under certain conditions on the course after the regular degree date. A senior who qualifies for graduation under this provision will be awarded his degree on the next regular date for the award of degrees. For further information see paragraph Examination on F Received in Last Semester.

A student in line for graduation at the end of a semester or summer term who meets all requirements for graduation except for a deficiency in his grade-point ratio resulting from a deficiency of
not more than six grade points shall have the privilege of making up his deficiency by standing special re-examinations under certain conditions.

The examinations shall be taken after the regular degree date and in courses totaling not more than 6 semester credit hours which were passed during the last year of residence, and only one such examination may be taken on an individual course. When such examinations are taken under the above provision, the credit hours of the course or courses will not be counted as additional credit hours taken. Only the grade points over and above the grade points previously earned in the course may count toward raising the grade-point ratio.

A student who qualifies for graduation under this provision will be awarded his degree on the next regular date for the award of degrees.

If all work toward a degree is not completed within five years after entrance, the student may be required to take additional courses.
PART V—Degrees and Curriculums

BACHELORS’ DEGREES

The degree of Bachelor of Science is awarded to those students who satisfactorily complete one of the four-year curriculums offered under the College of Agriculture and Biological Sciences or the College of Engineering. In the College of Education, the Bachelor of Science degree is awarded to those completing the requirements in Agricultural Education, Industrial Education, Recreation and Park Administration, and Science Teaching. The Bachelor of Arts degree is granted to those completing the curriculum in Elementary Education or the Secondary Education curriculum with a teaching major in Economics, English, History, Modern Languages, Mathematics, Natural Sciences, Political Science, Psychology, or Sociology. In the College of Industrial Management and Textile Science, the Bachelor of Arts degree is awarded to those completing the curriculum in Economics; and the Bachelor of Science degree is awarded to those completing the requirements in Accounting, Administrative Management, Financial Management, Industrial Management, Textile Chemistry, or Textile Science. In the College of Liberal Arts, the Bachelor of Arts degree is awarded to those students who satisfactorily complete the curriculum with major concentrations in English, History, Modern Languages, Political Science, Psychology, or Sociology. In the School of Nursing, the Bachelor of Science degree is awarded to those students completing requirements in the four-year Nursing curriculum. In the College of Physical and Mathematical Sciences, the Bachelor of Science degree is awarded to those students completing the requirements in Chemistry, Geology, Mathematics, Medical Technology, Physics, or Pre-medicine, and the Bachelor of Arts degree is awarded to those completing the Arts and Sciences curriculum.

The College of Architecture offers a six-year professional program embracing two degrees and leading to the professional degree, Master of Architecture. After the first degree, students may opt to seek the Master of City and Regional Planning degree offered by the College. The degree of Bachelor of Arts in Pre-architecture requiring 137 credit hours is awarded at the end of four years and the first professional degree, Master of Architecture, includes 68 additional semester hours for a total of 204.
The Bachelor of Science degree in Building Construction is a four-year program requiring 141 credit hours.

ASSOCIATE DEGREE

The School of Nursing offers, in addition to the baccalaureate program in nursing, an Associate in Arts degree program in nursing. This program normally requires four semesters and one summer term, a minimum of 71 semester credit hours.

GRADUATE DEGREES

The degrees of Doctor of Philosophy, Master of Arts, Master of Science, Master of Agricultural Education, Master of Architecture, Master of City and Regional Planning, Master of Education, and Master of Industrial Education are awarded to those students who satisfactorily complete prescribed graduate programs.

For further information concerning advanced degrees see The Graduate Bulletin, which may be obtained from the Office of the Dean of the Graduate School.

UNDERGRADUATE CURRICULUMS

Forty-seven undergraduate curriculums are offered under the Colleges of Agriculture and Biological Sciences, Architecture, Education, Engineering, Industrial Management and Textile Science, Liberal Arts, and Physical and Mathematical Sciences, and the School of Nursing. The curriculums under each college and school are listed below:

College of Agriculture and Biological Sciences
- Agricultural Economics
- Agricultural Education
- Agricultural Engineering
- Animal Industries
- Biology
- Food Science
- Forestry
- Plant Sciences
- Pre-veterinary

College of Architecture
- Building Construction
- Pre-architecture

College of Education
- Agricultural Education
- Early Childhood Education
- Elementary Education
- Industrial Education
- Recreation and Park Administration
- Science Teaching
- Secondary Education

† Jointly administered by the College of Education and the College of Agriculture and Biological Sciences.

* Jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.
College of Engineering

- Agricultural Engineering
- Ceramic Engineering
- Chemical Engineering
- Civil Engineering
- Electrical Engineering
- Engineering Analysis
- Mechanical Engineering
- Technical Operations

College of Industrial Management and Textile Science

- Accounting
- Administrative Management
- Economics
- Financial Management
- Industrial Management
- Textile Chemistry
- Textile Science

College of Liberal Arts

- English

In the curriculums which follow are given the official title and number of the course, the descriptive title, the number of semester hours credit, and in parentheses the number of hours per week in class and laboratory, respectively.

College of Agriculture and Biological Sciences

The undergraduate curriculums offered by this College are presented under two classifications—Agriculture and Biological Sciences.

Agriculture

Modern agriculture is the science, business, and art of producing, processing, and distributing plant and animal products, including those aspects of economics and human relations connected with these activities. Agriculture is a unique area in education because it applies the basic sciences to biological material for economic implications.

Today's agriculture includes much more than farm production. About 6 million people provide supplies and services for farmers.

*Jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.*
and 10 million process and distribute farm products. These two segments together with farm production, which employs 5 million workers, provide jobs somewhere in agriculture for 21 million Americans—approximately one-third of all jobs.

Thousands of agricultural graduates are needed each year in this basic industry. Our land-grant colleges and universities are now graduating considerably less than the total number needed to fill the jobs available each year—jobs important to every person, jobs with futures, jobs with challenge, jobs with personal and financial rewards.

The total program in Agriculture at this institution includes Resident Instruction, Research (Agricultural Experiment Station), and Extension (Agricultural Extension Service). Organized under Resident Instruction are curriculums in Agricultural Economics, Agricultural Education, Agricultural Engineering, Animal Industries (majors in Animal Science, Dairy Science, and Poultry Science), Biology (major in Entomology), Food Science, Forestry, Plant Sciences (majors in Agronomy—Crops and Soils, Horticulture—Fruit and Vegetable, and Horticulture—Ornamental), and Pre-veterinary Medicine.

The curriculums in Agriculture are continuously revised to meet the changing needs of this dynamic industry. In this connection, students in many of the curriculums now have the opportunity to specialize by choosing a minor in Science, Business, Production, International Agriculture, or a Second Department.

Science Minor—This minor emphasizes the basic sciences that prepare students to contribute to the advancement of knowledge in their respective fields. It is designed for students whose anticipated work requires considerable scientific training, usually including graduate studies. Employment opportunities include research with State Agricultural Experiment Stations, the United States Department of Agriculture, and industrial and commercial organizations; and teaching in colleges of agriculture, and other educational work with Federal, State and industrial organizations.

Business Minor—This minor emphasizes principles and practices of business management as applied to businesses and industries associated with agriculture. It is designed for students who plan to work with one of the many businesses and industries that provide

---

* Jointly administered by the College of Education and the College of Agriculture and Biological Sciences.
† Jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.
supplies and services for the farmer, and process and distribute farm products. Employment opportunities include work related to meat and poultry processing, sales and service of farm machinery, manufacturing and sales of fertilizers and pesticides, dairy and food processing, grain and seed processing, feed manufacturing, banking and credit, insurance, farm management, land appraising, and the marketing of agricultural commodities.

Production Minor—This minor emphasizes the application of scientific principles to agricultural production. It is designed for students whose anticipated work requires broad general training in scientific and practical agriculture. Employment opportunities include general and specialized farming; agricultural extension services; teaching vocational agriculture; conservation of natural resources; agricultural communication; and agricultural services of the United States Department of Agriculture, State Departments of Agriculture and private enterprises.

International Agriculture Minor—This minor emphasizes the international aspects of agriculture and applies basic scientific principles and agricultural practices to worldwide agriculture. It is designed for students who contemplate work in international agricultural positions either in the United States or abroad. Employment opportunities include positions with the Foreign Agricultural Service of the United States Department of Agriculture, with foundations such as the Ford Foundation, with the Agency for International Development, with industries such as United Fruit Company, and with other domestic and foreign interests.

Second Department Minor—This minor emphasizes special training in an area of study other than the major. A Second Department minor may be selected either within or outside of the College of Agriculture and Biological Sciences. It is designed for students who wish additional specialized training outside their major area of study. Additional information relative to employment opportunities open to students with a minor in a Second Department is given elsewhere in this catalog under the various curriculum listings.

To illustrate further the types of work in which graduates engage, a few of the many occupations of agricultural graduates are listed under each curriculum.
FRESHMAN YEAR CURRICULUMS

[For students in Agricultural Economics, Agricultural Education, Animal Industries (majors in Animal Science, Dairy Science, and Poultry Science), and Plant Sciences (majors in Agronomy—Crops and Soils, Horticulture—Fruit and Vegetable, and Horticulture—Ornamental.*]}

**First Semester**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag 101 Introd. to Agric.</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Bot 101 Gen. Botany</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>or Zool 101 Gen. Zoology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>and Zool 103 Gen. Zoology Lab.</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Ch 101 Gen. Chemistry</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td>2 (3.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total Credits</strong></td>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>

**Second Semester**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 102 Gen. Chemistry</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 104 Trigonometry</td>
<td>2 (3.0)</td>
</tr>
<tr>
<td>Zool 101 Gen. Zoology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>and Zool 103 Gen. Zoology Lab.</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>or Bot 101 Gen. Botany</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Social Science Elective*</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total Credits</strong></td>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>

* Horticulture—Ornamental students take EG 101, Freehand Sketching—1 cr. (0.3), in addition to other courses in the first semester.
† To be selected from the following: Hist 102, Phil 201, Psych 201, Soc 201.

[For students in Biology (major in Entomology),* Food Science, Forestry,† and Pre-veterinary Medicine.]

**First Semester**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 101 Gen. Botany</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>or Zool 101 Gen. Zoology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>and Zool 103 Gen. Zoology Lab.</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Ch 101 Gen. Chemistry</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td>2 (3.0)</td>
</tr>
<tr>
<td>Math 104 Trigonometry</td>
<td>2 (3.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total Credits</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

**Second Semester**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag 101 Introd. to Agric.</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Ch 102 Gen. Chemistry</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Zool 101 Gen. Zoology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>and Zool 103 Gen. Zoology Lab.</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>or Bot 101 Gen. Botany</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total Credits</strong></td>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>

* Biology students majoring in Entomology take EG 101, Freehand Sketching—1 cr. (0.3), in addition to other courses in the first semester.
† Forestry students take For 101, Introduction to Forestry—1 cr. (1.0), in addition to other courses in the first semester.
Forestry students take EG 105. Engineering Graphics—2 cr. (0.6), in addition to other courses in the second semester.

AGRICULTURAL ECONOMICS AND RURAL SOCIOLOGY

The curriculum in Agricultural Economics places emphasis on a strong background in economic theory with applications to agricultural and agriculturally related businesses. Also included are courses in basic agricultural and biological sciences, liberal arts, and business. Students with a major in agricultural economics now have the opportunity to further specialize by selecting a minor in Science, Business, International Agriculture, or a Second Department.

Employment opportunities open to graduates with degrees in Agricultural Economics are many. They include research and teaching in institutions of higher learning; sales and promotional work for a variety of businesses; management positions in the farm loan departments of private banks or with cooperative farm credit agencies; public relations activities for various firms; market man-
agers and directors; county agents; representatives of government agencies serving agriculture; and operators of numerous enterprises.

AGRICULTURAL ECONOMICS CURRICULUM

AGRICULTURAL ECONOMICS MAJOR

(See page 129 for Freshman Year)

**Sophomore Year**

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag 201 Introd. to Animal Industries</td>
<td>Ag Ec 202 Agric. Economics</td>
</tr>
<tr>
<td>Agron 202 Soils</td>
<td>Ag Ec 305 Agric. Bus. Anal.</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>or Acct 201 Prin. of Accounting</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>Ag 202 Introd. to Plant Sciences</td>
</tr>
<tr>
<td>or Engl 203 Survey of Engl. Lit.</td>
<td>Engl 204 Survey of Engl. and</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>Amer. Lit.*</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>or Hist 204 Hist. of Civilization</td>
</tr>
<tr>
<td></td>
<td>or Hist 104 Western Civilization</td>
</tr>
<tr>
<td></td>
<td>Phys 201 Gen. Physics</td>
</tr>
<tr>
<td></td>
<td>Phys 203 Gen. Physics Lab.</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

**Junior Year**

| Ag Ec 309 Econ. of Agric. Marketing | Ag Ec 302 Agric. Firm Mgt. | 3 (2,3) |
| Ag Ec 357 Natural Resource Econ. | Ag Ec 352 Public Finance | 3 (3,0) |
| Econ 314 Intermed. Econ. Theory | Engl 301 Public Speaking | 3 (3,0) |
| Ex St 301 Introd. Statistics | or Engl 304 Advanced Comp. | 3 (3,0) |
| Minor† | Ex St 462 Stat. Applied to Econ. | 3 (3,0) |
| | Minor† | 6 |
| | 18 | 18 |

**Senior Year**

| Ag Ec 405 Seminar | Ag Ec 402 Econ. of Agric. Prod. | 3 (3,0) |
| Ag Ec 452 Agricultural Policy | Ag Ec 406 Seminar | 1 (1,0) |
| Gen 302 Genetics | Ag Ec 436 Prices | 3 (3,0) |
| Minor† | RS 301 Rural Sociology | 3 (3,0) |
| Approved Electives | Approved Electives | 6 |
| | 16 | 16 |

134 Total Semester Hours

* At least one literature course is required.
† See class adviser for available minors and course requirements.

AGRICULTURAL EDUCATION‡

The Agricultural Education curriculum is designed for students who wish to prepare for positions in vocational agriculture, agricultural occupations and other teaching positions in the secondary schools; engage in other forms of educational work such as agricultural missionary, public relations and agricultural extension; farming, soil conservation and other governmental work; business and industry.

The curriculum provides for a broad education in general and professional education including student teaching. In addition to required courses giving a thorough background in the agricultural

‡ Jointly administered by the College of Education and the College of Agriculture and Biological Sciences.
and biological sciences, a student may minor in Business, International Agriculture, or in a Second Department. Students in other departments may minor in Agricultural Education and be certified to teach.

AGRICULTURAL EDUCATION CURRICULUM

AGRICULTURAL EDUCATION MAJOR
(See page 129 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ed 201 Introd. to Agric. Ed...</td>
<td>AgE 203 Farm Shop...</td>
</tr>
<tr>
<td>3 (2,2)</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Ag 202 Introd. to Plant Sciences</td>
<td>AgE 206 Agric. Mechanization</td>
</tr>
<tr>
<td>3 (2,3)</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>Ag 201 Introd. to Animal Industries</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>Agron 202 Soils</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (2,2)</td>
</tr>
<tr>
<td>or Engl 203 Survey of Engl. Lit.*</td>
<td>Engl 204 Survey of Engl. and</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>Amer. Lit.*</td>
</tr>
<tr>
<td>Phys 201 Gen. Physics</td>
<td>or Hist 104 Hist. of Civilization</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 203 Gen. Physics Lab.</td>
<td>or Hist 104 Western Civilization</td>
</tr>
<tr>
<td>1 (0,2)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>AS or MS or Elective...</td>
<td>AS or MS or Elective...</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AgE 301 Soil and Water Conserva.</td>
<td>Ag Ec 302 Agric. Firm Mgt.</td>
</tr>
<tr>
<td>3 (2,3)</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Agron 301 Fertilizers</td>
<td>An Sc 301 Feeds and Feeding</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Engl 301 Public Speaking</td>
<td>For 307 Elem. of Forestry</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Approved Horticulture Elective...</td>
<td>Minor†</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Minor†</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Approved Electives...</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 452 Agric. Policy</td>
<td>Ag Ed 401 Methods in</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>Agric. Educ.</td>
</tr>
<tr>
<td>Ent 301 Elem. and Econ. Ent.</td>
<td>3 (2,2)</td>
</tr>
<tr>
<td>3 (2,3)</td>
<td></td>
</tr>
<tr>
<td>Hort 407 Landscape Design</td>
<td>Ag Ed 406 Directed Teaching</td>
</tr>
<tr>
<td>3 (2,3)</td>
<td>6 (0,18)</td>
</tr>
<tr>
<td>Pl Pa 401 Plant Pathology</td>
<td>Ag Ed 422 Introd. to Adult Educ.</td>
</tr>
<tr>
<td>3 (2,3)</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Minorf</td>
<td>Ed 302 Educ. Psychology</td>
</tr>
<tr>
<td>3</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Approved Electives...</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>134 Total Semester Hours</td>
</tr>
</tbody>
</table>

* At least one literature course is required.
† See class adviser for available minors and course requirements.

AGRICULTURAL ENGINEERING*

The graduate in Agricultural Engineering, with broad training in mathematics, physics, chemistry, and the biological sciences as well as comprehensive coverage of the engineering sciences, is well equipped to apply engineering to many functions affecting the well-being of mankind. The Agricultural Engineer is sought by industry and public service organizations primarily for his ability to apply engineering know-how to agricultural production and processing, and to the conservation of land and water resources. Specific areas of interest include power and machinery, soil and

* The Agricultural Engineering curriculum is jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.
water resources engineering, electric power and processing, structures and environment, and food engineering.

The undergraduate Agricultural Engineering curriculum leads to the Bachelor of Science degree. Based upon fundamental training in the basic sciences, the curriculum includes such engineering sciences as mechanics, fluids, thermodynamics, electrical theory, computing devices and systems analyses. The basic agricultural sciences of soils, plants and animals are included so as to provide a foundation for Agricultural Engineering analysis and design. Recognition is also given to the necessity for being able to synthesize information from any of the applicable subject matter areas, including studies of energy conversion, engineering analysis and the engineering properties of biological materials, and with emphasis upon economy and integrity of design. Research is included in order to introduce the student to the scientific method. Courses in the humanities are required to provide the graduate engineer with a well-rounded educational experience.

The undergraduate curriculum is designed for both the student who wishes to terminate his formal academic training at the bachelor's level, and also to provide the necessary prerequisites for those who wish to continue in graduate study. Graduate programs in Agricultural Engineering which lead to both the Master of Science and the Doctor of Philosophy degrees are offered.

Since an Agricultural Engineering graduate has a broad training in engineering, in the sciences, in humanities, and in life sciences, he has the pick of opportunities in many areas. Opportunities in Agricultural Engineering include employment with industry as design engineers, research engineers, production engineers, and in sales and service; with state and federal agencies as teachers, research engineers, and extension engineers; as field engineers with the Soil Conservation Service, Bureau of Reclamation, and similar organizations; and with agricultural enterprises as managers, contractors, equipment retailers and as consulting engineers.

The Agricultural Engineering curriculum is accredited by the Engineers' Council for Professional Development.
### AGRICULTURAL ENGINEERING CURRICULUM

#### AGRICULTURAL ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ag 101 Introd. to Agric.</td>
</tr>
<tr>
<td>Engr 101 Engineering Systems</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>EC 109 Engr. Graph. Comm. or Humanistic—Social Elective</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Humanistic—Social Elective</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>or EC 109 Engr. Graph. Comm.</td>
</tr>
<tr>
<td>Humanistic—Social Elective</td>
<td>Math 205 Cal. and Linear Alg.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Phys 122 Mech. and Wave Phen.</td>
</tr>
</tbody>
</table>

#### FRESHMAN YEAR

| 17 or 18 |

#### SOPHOMORE YEAR

| 19 or 18 |

#### JUNIOR YEAR

| 17 |

#### SENIOR YEAR

| 16 |

#### 138 Total Semester Hours

### ANIMAL INDUSTRIES


### ANIMAL SCIENCE

The Animal Science Department emphasizes subject matter dealing with the application of scientific principles to livestock production and processing.

Students will minor in Science, Business, Production, International Agriculture, or a Second Department.

Occupations for Animal Science graduates include livestock farming; cattle, swine and sheep breeding; extension livestock...
specialists; feed specialists; county agents; teaching and research in animal industry; positions with meat packing companies; feed dealers; freezer locker operators; livestock dealers; and livestock commission brokers.

ANIMAL INDUSTRIES CURRICULUM

ANIMAL SCIENCE MAJOR

(See page 129 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 223 Org. Chem.*</td>
<td>Ag 202 Intro. to Plant Sciences 3 (2.3)</td>
</tr>
<tr>
<td>Ch 227 Org. Chem. Lab.*</td>
<td>An Sc 201 Intro. to Animal Sc. 2 (2.0)</td>
</tr>
<tr>
<td>or Ch 220 Elem. Org. Chem.</td>
<td>An Sc 203 Intro. to An. Sc. Lab. 1 (0.3)</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>Engl 204 Survey of Engl. and Amer. Lit.† 3 (3.0)</td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>or Hist 204 Hist. of Civilization 3 (3.0)</td>
</tr>
<tr>
<td>or Hist 203 Hist. of Civilization</td>
<td>or Hist 104 Western Civilization 3 (3.0)</td>
</tr>
<tr>
<td>Minor † 3</td>
<td>Phys 203 Gen. Phys. Lab. 1 (0.3)</td>
</tr>
<tr>
<td>AS or MS or Elective 1</td>
<td>Minor † 3</td>
</tr>
</tbody>
</table>

17

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Sc 301 Feeds and Feeding 3 (3.0)</td>
<td>An Sc 401 Beef Production 3 (3.0)</td>
</tr>
<tr>
<td>An Sc 353 Meats 2 (2.0)</td>
<td>An Sc 403 Beef Prod. Lab. 1 (0.3)</td>
</tr>
<tr>
<td>An Sc 355 Meats Lab. 1 (0.3)</td>
<td>Dy Sc 453 Animal Reprod. 3 (3.0)</td>
</tr>
<tr>
<td>Gen 302 Genetics 3 (2.3)</td>
<td>Nutr 401 Fundamentals of Nut. 3 (3.0)</td>
</tr>
<tr>
<td>Micro 301 Gen. Microbiology 4 (3.3)</td>
<td>Minor † 3</td>
</tr>
<tr>
<td>Approved Elective 3</td>
<td>Approved Electives 4</td>
</tr>
</tbody>
</table>

16

17

134 Total Semester Hours

* Required for Science Minor.
† At least one literature course is required.
‡ See class adviser for available minors and course requirements.
§ To be selected from the following, Hist 102 or 301, Phil 201, Pol Sc 301, Psych 201, RS 301, Soc 201.

DAIRY SCIENCE

The major in Dairy Science is designed to provide the student with an understanding of scientific principles and the application of these principles in the scientific, technical and business phases of the dairy industry. Completion of required studies in the sciences and humanities and selected courses by the student in areas of personal interest prepares the graduate for a successful chosen profession. A career in the dairy industry is a rewarding one, not only monetarily, but in rendering a service in providing a wholesome nutritious food for mankind.
Opportunities for dairy science graduates are many. They include the management of production and processing facilities, quality control work for processing units and production organizations, industrial promotion and public relations work in both production and processing fields, dairy and food products engineering, special services, public health service, teaching and research. Special service opportunities are available in state and national breed association work, breeding organizations, industrial supplies, production and processing equipment and supplies. Opportunities in educational activities include positions with industrial associations, state and federal services and federal programs with foreign assignments.

Students majoring in Dairy Science may choose a minor in Science, Business, Production, International Agriculture, or a Second Department.

**ANIMAL INDUSTRIES CURRICULUM**

**DAIRY SCIENCE MAJOR**

(See page 129 for Freshman Year)

**Sophomore Year**

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag 202 Intro. to Plant Sciences</td>
<td>Agron 202 Soils</td>
</tr>
<tr>
<td>Ch 220 Elem. Org. Chem.</td>
<td>Engl 204 Survey of Engl. and</td>
</tr>
<tr>
<td>or Ch 223 Org. Chem.</td>
<td>Amer. Lit.*</td>
</tr>
<tr>
<td>and Ch 227 Or. Chem.</td>
<td>or Hist 204 Hist. of Civilization</td>
</tr>
<tr>
<td>Dy Sc 201 Intro. to Dairy Science</td>
<td>or Hist 104 Western Civilization</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>Phys 201 Gen. Physics</td>
</tr>
<tr>
<td>or Hist 203 Hist. of Civilization</td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Minor†</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy Sc 307 Market Milk</td>
<td>An Sc 301 Feeds and Feeding</td>
</tr>
<tr>
<td>Fd Sc 305 Dairy and Food Engr.</td>
<td>Dy Sc 306 Ch. &amp; Phys. Nat. of Milk</td>
</tr>
<tr>
<td>Fd Sc 414 Fd. Qual. Control Lab.</td>
<td>Gen 302 Genetics</td>
</tr>
<tr>
<td>or Dy Sc 310 Dy. Cattle Select.</td>
<td>Minor†</td>
</tr>
<tr>
<td>Micro 301 Gen. Microbiology</td>
<td>Approved Electives</td>
</tr>
<tr>
<td>Minor†</td>
<td>16 or 17</td>
</tr>
<tr>
<td></td>
<td>18 or 17</td>
</tr>
<tr>
<td></td>
<td>18 or 17</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy Sc 409 Dairy Seminar</td>
<td>An Sc 452 Animal Breeding</td>
</tr>
<tr>
<td>Dy Sc 453 Animal Reproduction</td>
<td>or Dy Sc 404 Dairy Plant Mgt.</td>
</tr>
<tr>
<td>and Dy Sc 455 Animal Reproduction Lab.</td>
<td>Dy Sc 410 Dairy Seminar</td>
</tr>
<tr>
<td>or Dy Sc 402 Dairy Manufac.</td>
<td>Dy Sc 452 Dairy Cattle Feeding</td>
</tr>
<tr>
<td>Nutr 401 Fundamentals of Nut.</td>
<td>and Management</td>
</tr>
<tr>
<td>Minor†</td>
<td>Micro 402 Dairy Microbiology</td>
</tr>
<tr>
<td>Approved Elective</td>
<td>Approved Elective</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>134 Total Semester Hours</td>
</tr>
</tbody>
</table>

* At least one literature course is required.
† To be selected from the following: Hist 102 or 301, Pol Sc 301, Psych 201, Soc 201, Phil 201, RS 301.
‡ See class adviser for available minors and course requirements.
POULTRY SCIENCE

The Poultry Science major is expected to gain knowledge in the basic disciplines within which the poultry industry operates and specialized knowledge on the biology of the avian species. Technical poultry courses emphasize the nutrition, physiology, genetics and pathology of domesticated birds and the environmental requirements for incubation of eggs, production of meat and eggs and handling of products.

Minors in Science, Business, Production, International Agriculture, or a Second Department provide for the specialized interest of the student within the broad area encompassed by Poultry Science.

Job opportunities for Poultry Science majors who minor in Science include teaching, extension and research positions in colleges, government laboratories or in industry. This usually involves graduate work. Business minors are especially equipped to move into management positions in the small to large corporations in feed manufacturing, production, processing, and marketing of poultry products. Production minors are trained for operation of poultry farms, general farms, or as extension agents working with farmers. International Agriculture minors are expected to export the technical information and techniques so successful in the American poultry industry to a protein-short world. Many American poultry firms are operating on a worldwide basis and our own government and foreign nations are interested in assistance in transferring poultry knowledge to underdeveloped areas.

Students who hope to work in broad agricultural areas that include poultry and other agricultural segments may find a minor in a Second Department helpful. This includes such opportunities as agricultural chemicals, pharmaceuticals, biologicals, feed manufacturers, breeding organizations, marketing organizations, publishers, advertisers, and poultry farmers involved in another enterprise.
ANIMAL INDUSTRIES CURRICULUM

POULTRY SCIENCE MAJOR
(See page 129 for Freshman Year)

**Sophomore Year**

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ag 202 Intro. to Plant Sciences</strong></td>
<td>Econ 201 Principles of Econ. 3 (3,0)</td>
</tr>
<tr>
<td><strong>Ch 220 Elem. Org. Chem.</strong></td>
<td>Eng 204 Survey of Engl. and Amer. Lit. 3 (3,0)</td>
</tr>
<tr>
<td><strong>Eng 203 Survey of Engl. Lit.</strong></td>
<td>or Hist 204 Hist. of Civilization 3 (3,0)</td>
</tr>
<tr>
<td>or Hist 203 Hist. of Civilization</td>
<td>or Hist 104 Western Civilization 3 (3,0)</td>
</tr>
<tr>
<td><strong>Gen 302 Genetics</strong></td>
<td>Micro 301 Gen. Microbiology 4 (3,3)</td>
</tr>
<tr>
<td><strong>PS 201 Intro. to Poultry Science</strong></td>
<td>Phys 201 Gen. Physics 3 (3,0)</td>
</tr>
<tr>
<td><strong>AS or MS or Elective</strong></td>
<td><strong>Phys 203 Gen. Physics Lab.</strong> 1 (0.3)</td>
</tr>
<tr>
<td><strong>17</strong></td>
<td><strong>PS 356 Incub. and Brooding Lab.</strong> 1 (0.3)</td>
</tr>
<tr>
<td><strong>18</strong></td>
<td><strong>AS or MS or Elective</strong> 1</td>
</tr>
<tr>
<td><strong>JUNIOR YEAR</strong></td>
<td><strong>17</strong></td>
</tr>
<tr>
<td><strong>An Sc 301 Feeds and Feeding</strong></td>
<td><strong>PS 354 Poultry Breeding</strong> 3 (2,3)</td>
</tr>
<tr>
<td><strong>Engl 301 Public Speaking</strong></td>
<td><strong>PS 451 Poultry Nutrition</strong> 2 (2,0)</td>
</tr>
<tr>
<td><strong>PS 355 Poult. Prod. Grad. &amp; Tech.</strong></td>
<td><strong>Dept. Major Requirement</strong> 3</td>
</tr>
<tr>
<td><strong>Zool 307 Animal Anat. &amp; Physiol.</strong></td>
<td><strong>Minor</strong> 6</td>
</tr>
<tr>
<td><strong>Social Science Elective</strong></td>
<td><strong>Approved Elective</strong> 3</td>
</tr>
<tr>
<td><strong>Minor</strong></td>
<td><strong>18</strong></td>
</tr>
<tr>
<td><strong>17</strong></td>
<td><strong>SENIOR YEAR</strong></td>
</tr>
<tr>
<td><strong>PS 401 Animal Environ. Tech.</strong></td>
<td><strong>PS 458 Avian Microbiology</strong> 4 (3,3)</td>
</tr>
<tr>
<td><strong>PS 403 Ani. Environ. Tech. Lab.</strong></td>
<td><strong>and Parasit.</strong> 4 (3,3)</td>
</tr>
<tr>
<td><strong>PS 460 Seminar</strong></td>
<td><strong>Dept. Major Requirement</strong> 3 or 2</td>
</tr>
<tr>
<td><strong>Dept. Major Requirement</strong></td>
<td><strong>Minor</strong> 3</td>
</tr>
<tr>
<td><strong>Minor</strong></td>
<td><strong>Approved Electives</strong> 5 or 6</td>
</tr>
<tr>
<td><strong>17</strong></td>
<td><strong>15</strong></td>
</tr>
<tr>
<td><strong>134 Total Semester Hours</strong></td>
<td></td>
</tr>
</tbody>
</table>

* Science minors should substitute Ch 223, 227 for Ch 220. Business minors may substitute Acct 201.
† At least one literature course is required.
‡ To be selected from the following: Hist 301 or 102, Phil 201, Pol Sc 301, Psych 201, RS 301, Soc 201.
§ See class adviser for available minors and course requirements.
¶ See class adviser for department major requirements.

**BIOLOGY (Entomology Major)**

The Entomology major in the Biology curriculum is described below. See pages 144-148 for other majors in the Biology curriculum.

**ENTOMOLOGY**

Entomology is that branch of science that deals with the study of insects. In many ways insects are the most important group of animals that affect man. At the present time insects are costing the American public approximately four billion dollars annually. There will always be a need for qualified entomologists and the financial rewards to members of this profession are comparable to those enjoyed by most other scientists.

Depending on training, ability, and interest, entomologists find employment in such areas as the following: (1) research entomolo-
gist with several federal agencies, the state experiment stations, or private research foundations; (2) teaching entomology and/or zoology at the college or university level; (3) industrial research and the development of more efficient insecticides; (4) quarantine and regulatory work at both state and federal levels; (5) sales and management for agricultural chemical or the pest control industries; (6) the federal and state extension services; (7) many other specialized areas where a knowledge of insects is essential, such as beekeeping or disease transmission.

BIOLOGY CURRICULUM

ENTOMOLOGY MAJOR

(See page 129 for Freshman Year and page 145 for Sophomore Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ent 401 Field Cr., St. Prdo. Insects 3 (2,3)</td>
<td>Ent 402 Fruit, Nut, Veg. Insects 3 (2,3)</td>
</tr>
<tr>
<td>Phys 201 Gen. Physics 3 (3,0)</td>
<td>Micro 301 Gen. Microbiology 4 (3,3)</td>
</tr>
<tr>
<td>Phys 203 Gen. Physics Lab. 1 (0,3)</td>
<td>Phys 202 Gen. Physics 3 (3,0)</td>
</tr>
<tr>
<td>Social Science Elective* 3 (3,0)</td>
<td>Phys 204 Gen. Phys. Lab. 1 (0,3)</td>
</tr>
<tr>
<td>Approved Electives† 6</td>
<td>Approved Electives† 6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 301 Public Speaking 3 (3,3)</td>
<td>Ent 410 Insect Taxonomy 3 (1,6)</td>
</tr>
<tr>
<td>Ent 405 Insect Morphology 4 (3,3)</td>
<td>Ent 462 Seminar 1 (1,0)</td>
</tr>
<tr>
<td>Ent 461 Seminar 1 (1,0)</td>
<td>Gen 302 Genetics 3 (2,3)</td>
</tr>
<tr>
<td>Pl Pa 401 Plant Pathology 3 (2,3)</td>
<td>Zool 460 Gen. Physiology 3 (2,3)</td>
</tr>
<tr>
<td>Zool 304 Animal Ecology 3 (2,3)</td>
<td>Social Science Elective* 3</td>
</tr>
<tr>
<td>Approved Electives† 4</td>
<td>Approved Elective† 5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>135 Total Semester Hours 18</td>
</tr>
</tbody>
</table>

* To be selected from the following: Ag Ec 202, Econ 202, Geog 301, 302, Hist 102 or 301, Hist 104, 203, 204, Phil 201, 302, Pol Sc 201, 202, 301, 302, Psych 201, Rel 301, 302, RS 301, Soc 201.
† Agron 202 must be included.

FOOD SCIENCE

The Food Science curriculum is designed to prepare students for the many career opportunities in technical and management areas of the food industry. The food industry, being the nation’s largest industry, is becoming increasingly technical and requires large numbers of professional food scientists. World food supplies, particularly those rich in protein, are becoming increasingly critical in many parts of the globe. This situation is expected to accelerate the demand for food scientists.

Opportunities for graduates in Food Science include research positions in government organizations and state experiment stations, supervisory, administrative, research, and quality control positions in food processing industries, inspection and grading work with
state and federal agencies, consulting, and teaching and extension activities with universities and colleges. Students graduating in Food Science are well-prepared to pursue postgraduate training in areas such as microbiology, biochemistry, nutrition, as well as in Food Science.

The student majoring in Food Science will select a minor in Science, Business, International Agriculture, or a Second Department which will emphasize training in an area other than Food Science and which is designed to supplement the major course of study.

**FOOD SCIENCE CURRICULUM**

**FOOD SCIENCE MAJOR**

(See page 129 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Sophomore Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>Econ 202 Principles of Econ.</td>
<td>Econ 203 Principles of Econ.</td>
</tr>
<tr>
<td>or Hist 203 Hist. of Civilization</td>
<td>or Hist 204 Hist. of Civilization</td>
<td>or Hist 205 Hist. of Civilization</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Social Science Elective†</td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fd Sc 311 Food Processing</td>
<td>Fd Sc 310 Public Speaking</td>
<td>Fd Sc 414 Food Qual. Con. Lab.</td>
</tr>
<tr>
<td>Fd Sc 313 Food Processing Lab.</td>
<td>Fd Sc 312 Food Processing</td>
<td>Fd Sc 416 Food Analysis</td>
</tr>
<tr>
<td>Minor†</td>
<td>Minor†</td>
<td>Minor†</td>
</tr>
<tr>
<td>Approved Elective</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex St 301 Introd. Statistics</td>
<td>Fd Sc 412 Food Quality Control.</td>
<td>Fd Sc 412 Food Quality Control.</td>
</tr>
<tr>
<td>Fd Sc 415 Human Nutrition</td>
<td>Fd Sc 416 Food Analysis</td>
<td>Fd Sc 416 Food Analysis</td>
</tr>
<tr>
<td>Minort</td>
<td>Minort</td>
<td>Minort</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

134 Total Semester Hours

† At least one literature course is required.
‡ To be selected from the following: Hist 102 or 301, Soc 201, Phil 201, Pol Sc 301, Psych 201, RS 301.
§ See class adviser for available minors and course requirements.
FORESTRY

The Clemson Forestry curriculum includes the fundamental and applied sciences needed in the scientific management of multiple-use forests. Foresters of professional standing are employed in various capacities by private concerns and by federal, state, and other public agencies. They may be engaged as managers and administrators of forest lands, technical specialists in extension, fire protection, recreation, or in other activities presupposing professional forestry knowledge. Foresters earning advanced degrees find employment in academic work and in research conducted both by public and private agencies.

FORESTRY CURRICULUM

FORESTRY MAJOR
(See page 129 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agron 202 Soils</td>
<td>Bot 356 Taxonomy</td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>CE 201 Surveying</td>
</tr>
<tr>
<td>For 205 Dendrology</td>
<td>Engl 204 Survey of Engl. and</td>
</tr>
<tr>
<td>Math 205 Cal and Linear Alg.</td>
<td>Amer. Lit.</td>
</tr>
<tr>
<td>Phys 201 Gen. Physics</td>
<td>For 206 Silvics</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Phys 202 Gen. Physics</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

19

FORESTRY SUMMER CAMP *

| For 251S Silvics | 2 cr. |
| For 252S Forest Engineering | 2 cr. |
| For 253S Dendrometry | 4 cr. |
| For 254S Forest Products | 1 cr. |

19

JUNIOR YEAR

| For 302 Dendrometry | 3 (2,3) |
| For 304 Forest Economics | 3 (3,0) |
| For 306 Ident. of Wood and | Wood Fibers |
| Ex St 301 Introd Statistics | 1 (0,3) |
| WB 412 Wildlife Management | 3 (2,3) |
| Approved Electives† | 3 (3,3) |
| | 19 |

17

SENIOR YEAR

| For 401 Logging and Milling | 4 (2,6) |
| For 407 Forest Regulation | 4 (3,3) |
| Pl Pa 405 Forest Pathology | 3 (2,3) |
| Pol Sc 301 Am. Gov. and Pol. Par. | 3 (3,0) |
| Approved Electives† | 3 (3,0) |
| | 17 |

17

153 Total Semester Hours

* Students planning to eat in the University Dining Halls are advised to purchase individual meals rather than board plans during summer camp, because several days of travel away from campus can be anticipated during which students will be responsible for their own meals and lodging.
† At least three credits must be selected from the following courses: Hist 102, or 301, Phil 201, Psych 201, RS 301, Soc 201.
PLANT SCIENCES

The Plant Sciences curriculum includes three majors—Agronomy—Crops and Soils, Horticulture (Fruit and Vegetable), and Horticulture (Ornamental).

AGRONOMY—CROPS AND SOILS

Agronomy encompasses the natural and physical sciences involved in the production of crops that are used to feed and clothe the world’s population. Agronomy students may specialize in the sciences relating to field crops and soils. Trained agronomists may choose an occupation that ranges from the applied (farming) to the abstract (basic research). Agronomists may be employed by the Agricultural Extension Service, the Soil Conservation Service, and the Agricultural Research Service. In addition, agronomists may find employment in college and high school teaching in foreign service work, and in the many allied industries in agriculture.

Students majoring in Agronomy—Crops and Soils will declare a minor in Science, Business, Production, International Agriculture, or a Second Department.

PLANT SCIENCES CURRICULUM

AGRONOMY—CROPS AND SOILS MAJOR

(See page 129 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Sophomore Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Agron 301 Fertilizers</strong></td>
<td>3 (3.0)</td>
<td><strong>Agron 301 Introd. to Animal Industries</strong></td>
</tr>
<tr>
<td>Agron 410 Cotton and Other</td>
<td></td>
<td>Agron 202 Soils</td>
</tr>
<tr>
<td>Fiber Crops</td>
<td>2 (2.0)</td>
<td>Eng. 204 Survey of Eng. and</td>
</tr>
<tr>
<td>or Agron 411 Grain Crops</td>
<td>2 (2.0)</td>
<td>Amer. Lit.</td>
</tr>
<tr>
<td>or Agron 412 Tobacco and Spec. Use Crops</td>
<td>2 (2.0)</td>
<td>or Hist 204 Hist. of Civilization</td>
</tr>
<tr>
<td>Bot 352 Plant Physiology</td>
<td>4 (3.3)</td>
<td>or Hist 104 Western Civilization</td>
</tr>
<tr>
<td>Gen 302 Genetics</td>
<td>3 (2.3)</td>
<td>Minor†</td>
</tr>
<tr>
<td>Micro 301 Gen. Microbiology</td>
<td>4 (3.3)</td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

18

**JUNIOR YEAR**

| Agron 308 Soil and Plant Anal. | 3 (1.6) |
| Agron 310 Forage & Pas. Crops† | 3 (3.0) |
| Agron 312 Forage Crops Lab.† | 1 (0.2) |
| Agron 410 Cotton and Other | | Fiber Crops | 2 (2.0) |
| or Agron 411 Grain Crops | 2 (2.0) | or Agron 412 Tobacco and Spec. Use Crops | 2 (2.0) |
| Bot 352 Plant Physiology | 4 (3.3) | Social Science Elective§ | 3 |
| Gen 302 Genetics | 3 (2.3) | Minor† | 6 |
| Micro 301 Gen. Microbiology | 4 (3.3) | | |

16

18

* At least one literature course is required.
† See class adviser for available minors and course requirements.
‡ Required for all students except science minors. Science minors select 13 credits from three courses.
§ To be selected from the following: Hist 102 or 301, Phil 201, Pol Sc 301, Psych 201, RS 301, Soc 201.
HORTICULTURE (Fruit and Vegetable)

This major provides the student with a basic education in science and the humanities, and the application of both in the scientific, technical, and business phases of the fruit and vegetable industry.

Opportunities in this field of study include vegetable and fruit farm management; inspection of fresh fruit, vegetable and other food products as well as nursery stock. There are many other opportunities as in plant breeding, agricultural extension service work, horticultural research, horticultural teaching and writing, and fruit and vegetable processing. Other occupations include sales and field work with seedsmen and nurserymen, and manufacturers of food, fertilizer, and pesticide products.

Students majoring in the fruit and vegetable phase of Horticulture may choose a minor in Science, Business, Production, International Agriculture, or a Second Department.

PLANT SCIENCES CURRICULUM

HORTICULTURE (FRUIT AND VEGETABLE) MAJOR
(See page 129 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agron 403 Soil Genesis and Classification</td>
<td>Agron 405 Plant Breeding†</td>
</tr>
<tr>
<td>Agron 407 Prin. of Weed Control†</td>
<td>Agron 452 Soil Fert. and Mgt.†</td>
</tr>
<tr>
<td>Agron 455 Seminar</td>
<td>Agron 456 Seminar</td>
</tr>
<tr>
<td>Minor‡</td>
<td>Approved Electives‡</td>
</tr>
<tr>
<td>2 (1,3)</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>3 (2,2)</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>1 (1,0)</td>
<td>1 (1,0)</td>
</tr>
<tr>
<td>3 - 7</td>
<td>12 — 8</td>
</tr>
<tr>
<td>7</td>
<td>18 — 14</td>
</tr>
<tr>
<td>16 — 20</td>
<td>134 Total Semester Hours</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

† Required for all students except science minors. Science minors select 13 credits from three courses.
‡ Credit requirements depend upon minor.

* At least one literature course is required.
† To be selected from the following, Hist 102 or 301, Phil 201, Pol Sc 301, Psych 201, RS 301, Soc 201.
‡ See class adviser for available minors and course requirements.
**Horticulture (Ornamental)**

This major is designed to give students a scientific background and technical facilities in the field of Ornamental Horticulture. Subject matter covers plant materials culture, uses, and planning of ground spaces.

Graduates find careers in nursery work, floriculture, landscape designing, landscape contracting, turf management, and park supervision. Other occupations are as research personnel, teachers, extension workers, and as representatives of fertilizer, machinery, and chemical companies.

Students desiring to major in Ornamental Horticulture may choose a minor in Science, Business, Production, International Agriculture, or a Second Department.

**PLANT SCIENCES CURRICULUM**

**HORTICULTURE (ORNAMENTAL) MAJOR**

(See page 129 for Freshman Year)

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agron 202 Soils</td>
<td>Engl 204 Survey of Engl. and</td>
</tr>
<tr>
<td>Ch 220 Elem. Org. Chem.</td>
<td>Amer. Lit.*</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>or Hist 204 Hist. of Civilization</td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.*</td>
<td>or Hist 104 Western Civilization</td>
</tr>
<tr>
<td>or Hist 203 Hist. of Civilization</td>
<td>Ent 301 Elem. and Econ. Ent.</td>
</tr>
<tr>
<td>Hort 201 Gen. Horticulture</td>
<td>Phys 201 Gen. Physics</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Phys 203 Gen. Physics Lab.</td>
</tr>
<tr>
<td></td>
<td>Approved Electives</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Junior Year**

| Hort 304 Plant Materials II | 3 | (2,3) |
| Hort 308 Landscape Design | 3 | (2,3) |
| Hort 310 Floriculture | 3 | (2,2) |
| Minor | 6 | |
| Approved Electives | 3 | |
|                  | 18 | |

* At least one literature course is required.
† To be selected from the following: Hist 102 or 301, Phil 201, Pol Sc 301, Psych 201, RS 301, Soc 201.
† See class adviser for available minors and course requirements.


<table>
<thead>
<tr>
<th>First Semester</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hort 408</td>
<td>3 (2,2)</td>
<td></td>
</tr>
<tr>
<td>Retail Marketing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hort 409 Seminar</td>
<td>1 (1,0)</td>
<td></td>
</tr>
<tr>
<td>Hort 412 Turf Management</td>
<td>3 (2,3)</td>
<td></td>
</tr>
<tr>
<td>Hort 460 Prob. in Landscape Des.</td>
<td>5 (3,6)</td>
<td></td>
</tr>
<tr>
<td>Minor I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved Electives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hort 406 Nursery Technology</td>
<td>3 (2,3)</td>
<td></td>
</tr>
<tr>
<td>Hort 410 Seminar</td>
<td></td>
<td>1 (1,0)</td>
</tr>
<tr>
<td>Pl Pa 401 Plant Pathology</td>
<td>3 (2,3)</td>
<td></td>
</tr>
<tr>
<td>Minor I</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

134 Total Semester Hours

1 See class adviser for available minors and course requirements.

PRE-VETERINARY MEDICINE

The curriculum in Pre-veterinary Medicine is designed to meet the general requirements for admission to certain schools of veterinary medicine. Since the requirements for entrance to these schools are not uniform, the student in planning his program should consider the specific requirements of the school he expects to attend. Under the Southern Regional Educational Plan, ten qualified students from South Carolina may enter the School of Veterinary Medicine at the University of Georgia each year. The courses listed below are minimum requirements for all students applying under the Regional Education Board Contract. Only the exceptional student can expect to complete the minimum requirements in four semesters. Students in the entering classes in Schools of Veterinary Medicine now average in excess of three years of Pre-veterinary training.

PRE-VETERINARY MEDICINE CURRICULUM

(See page 129 for Freshman Year)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>An Sc 201 Intro. to Animal Sc.</td>
<td>2 (2,0)</td>
<td></td>
</tr>
<tr>
<td>An Sc 203 Intro. to A. Sci. Lab.</td>
<td>1 (0,3)</td>
<td></td>
</tr>
<tr>
<td>An Sc 301 Feeds and Feeding</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Ch 223 Org. Chemistry</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Ch 224 Org. Chemistry</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Ch 227 Org Chemical Lab.</td>
<td>1 (0,3)</td>
<td></td>
</tr>
<tr>
<td>Ch 228 Org. Chemistry Lab.</td>
<td>1 (0,3)</td>
<td></td>
</tr>
<tr>
<td>Dy Sc 201 Intro. to Dairy Science</td>
<td>3 (2,3)</td>
<td></td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Engl 203 Surv. of Engl. Lit.</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Gen 302 Genetics</td>
<td>3 (2,3)</td>
<td></td>
</tr>
<tr>
<td>Phys 201 Gen. Physics</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Phys 202 Gen. Physics</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Phys 203 Gen. Physics Lab.</td>
<td>1 (0,3)</td>
<td></td>
</tr>
<tr>
<td>Phys 204 Gen. Physics Lab.</td>
<td>1 (0,3)</td>
<td></td>
</tr>
<tr>
<td>Pol Sc 301 American Gov. and Pol. Par.</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>PS 201 Intro. to Poultry Science</td>
<td>3 (2,3)</td>
<td></td>
</tr>
<tr>
<td>Zool 301 Comp. Vet. Anat.</td>
<td>3 (2,3)</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

78 Total Semester Hours 45

DIVISION OF BIOLOGY

The biological sciences are concerned with understanding the phenomenon of life, its origin and development, its morphology and classification, its mechanisms and regulations and its procreation and demise. Biology, without question, is relevant to the student in the 1970's, for it assists him in understanding not only himself but all forms of life that are around him.
Academic sections within the Division of Biology offer courses stressing the fundamental structure and unity of life as well as the interrelationships between all components of nature.

Thus, with the fundamentals well established, the developing biologist may choose to complete his undergraduate training in the majors of Botany, Entomology, Microbiology, and Zoology. The curriculum in any one of the four areas will introduce to the student the classical biology or morphology and classification as well as modern biology which seeks to understand the physiochemical bases of the phenomenon of life. Overspecialization will be avoided and instead the choice of subjects will attempt to provide the basic knowledge needed by each student in his chosen career.

Upon the completion of his undergraduate program, the student may choose to become employed in his area of interest or continue his education. If the latter is chosen he should be equipped to enter a professional school, such as a medical college, continue in a graduate biology curriculum; or a graduate program in one of the associated areas, such as bioengineering, biochemistry, biophysics, biostatistics, or one of the areas of agriculture, such as plant or animal breeding, plant pathology, entomology and plant or animal physiology.

†† See page 138 for Entomology Major.

### FRESHMAN AND SOPHOMORE YEAR CURRICULUM

#### FRESHMAN YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>or Zool 101 Gen. Zoology</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td></td>
</tr>
<tr>
<td>Math 104 Trigonometry</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
</tr>
</tbody>
</table>

17

#### SOPHOMORE YEAR

| Ecn 201 Principles of Econ.         | Bot 202 Surv. of Pl. Kingdom* |
| Zool 201 Invertebrate Zool.*        | Chemistry Elective†          |
| Chemistry Elective†                 | Social Science Elective§     |
| AS or MS or Elective                | Approved Electives§          |
|                                   | AS or MS or Elective         |

19

* Entomology majors substitute Ag 201 for Zool 201 and Ag 202 for Bot 202.
† Ch 220 or Ch 223 and 227. Botany majors substitute Phys 201 and 203 for Chemistry Elective.
‡ Ch 224 and 228, Ch 310, or Ch 313 and 317. Botany majors substitute Phys 202 and 204 for Chemistry Elective.
§ To be selected from the following: Ag Ec 202, Econ 202, Geog 301, 302, Hist 102 of 301, Hist 104, 203, 204, Phil 201, 302, Pol Sc 201, 202, 301, 302, Psych 201, Rel 301, 302, RS 301, Soc 301.
¶ Students enrolled in the Entomology major must select Ent 301 and students enrolled in the Microbiology major must select Micro 301.
BOTANY

Botany is that portion of Biology dealing with plants, their structure, classification, growth, and development. The Botany major is designed to prepare students for employment as biologists in sales, service, or research in industry or government service. It also provides the background in the fundamental physical and biological sciences necessary for graduate study in the basic and many of the applied plant sciences. Adequate electives are provided so that a student may take additional courses in the area or areas of his special interest.

BIOLOGY CURRICULUM

BOTANY MAJOR

(See page 145 for Freshman and Sophomore Years)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>JUNIOR YEAR</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 352 Plant Pathology</td>
<td>4 (3,3)</td>
<td>Bot 356 Plant Taxonomy</td>
</tr>
<tr>
<td>Micro 301 Gen. Microbiology</td>
<td>4 (3,3)</td>
<td>Chemistry Elective†</td>
</tr>
<tr>
<td>Chemistry Elective§</td>
<td>4</td>
<td>Approved Electives§</td>
</tr>
<tr>
<td>Approved Elective§</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

| SENIOR YEAR                   |             | 134 Total Semester Hours |
| Bot 406 Plant Anatomy         | 3 (2,3)     | Bot 452 Plant Ecology   | 3 (3,0) |
| Gen 302 Genetics              | 3 (2,3)     | Social Science Elective† | 3 (3,0) |
| Social Science Elective†      | 3 (3,0)     | Approved Electives§      | 10      |
| Approved Elective§            | 8           | 17                   |

† To be selected from the following: Ag Ec 202, Econ 202, Geog 301, 302, Hist 102 or 301, Hist 104, 203, 204, Phil 201, 302, Pol Sc 201, 202, 301, 302, Psych 201, Heli 301, RS 301, Soc 201.
§ Select 9 credits from the following: Agron 405, Bot 404, 457, Gen 451, Micro 401, Pl Pa 401, 405, 456, 458, Zool 458.

MICROBIOLOGY

Microbiology is that discipline of biology concerned with the study of microscopic and sub-microscopic forms of life, which include the bacteria, viruses, yeasts, fungi, protozoa and unicellular algae. The microbiologist seeks to describe these minute life forms in terms of their structures, functions, and processes of reproduction, growth and death at both the cellular and molecular levels. He is also concerned with their interactions and interrelationships with both their animate and inanimate environments, and also with their economic importance to man. To accomplish these goals the microbiologist must be trained in the areas of mathematics, physics, chemistry, and biochemistry in addition to those of microbiology.
The microbiology major offers courses to cover all the areas mentioned above, so that a student graduating from this program is prepared either for entrance to graduate school in the fields of microbiology, biochemistry or bioengineering, or to pursue a career in one of the many industries or public service departments dependent upon microbiology, e.g., the fermentation and drug industries, agriculture, various food industries, medical and public health microbiology.

**BIOLOGY CURRICULUM**

**MICROBIOLOGY MAJOR**

(See page 145 for Freshman and Sophomore Years)

### Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 301 Public Speaking</td>
<td>Gen 302 Genetics</td>
</tr>
<tr>
<td>Approved Electives*</td>
<td>Approved Electives*</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td><strong>17</strong></td>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>

### Senior Year

<table>
<thead>
<tr>
<th>Social Science Elective†</th>
<th>Micro 411 Pathogenic Bact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved Elective*</td>
<td>Approved Electives*</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td><strong>17</strong></td>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>

134 Total Semester Hours

* Select 12 credits from the following: Bot 451, Micro 402, 404, 410, Pl Pa 456, PS 458, Zool 456.
† To be selected from the following: Ag Ec 202, Econ 202, Geog 301, 302, Hist 102 or 301, Hist 104, 203, 204, Phil 201, 302, Pol Sc 201, 202, 301, 302, Psych 201, Rel 301, 302, RS 301, Soc 201.

**ZOLOGY**

Zoology is that aspect of biology which attempts to describe, classify and explore all facets of animal life. The examination of this life would extend from the broad view of the ecologists to the ultra-structural view of the electron microscopists. Of equal importance will be the discussion of historical concepts which have shaped the study of zoology in the past and those of recent origin which characterize modern biology.

The major in Zoology therefore will provide thorough coverage of the fundamentals of zoology, drawing when necessary on the chemical, physical and mathematical as well as philosophical disciplines. The zoology program combines laboratory as well as field exercises in the treatment of vertebrate and invertebrate animals with elective hours available for developing further specific interest areas. On the completion of this major the student should be prepared to continue in graduate studies in several zoological disci-
plines, enter a medical or dental college, enter the business community in sales or service or serve with a federal or state agency.

**BIOLOGY CURRICULUM**

**ZOOL OGY MAJOR**

*(See page 145 for Freshman and Sophomore Years)*

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ent 301 Elem. and Econ. Ent.</td>
<td>Micro 301 Gen. Microbiology</td>
</tr>
<tr>
<td>Social Science Elective*</td>
<td>Social Science Elective*</td>
</tr>
<tr>
<td>Approved Electives†</td>
<td>Approved Elective†</td>
</tr>
<tr>
<td>3 (2,3)</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>1 (0,3)</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>3 (2,3)</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

**Junior Year**

<table>
<thead>
<tr>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 301 Public Speaking</td>
</tr>
<tr>
<td>Zool 304 Ecology</td>
</tr>
<tr>
<td>Approved Electives†</td>
</tr>
<tr>
<td>3 (3,0)</td>
</tr>
<tr>
<td>3 (2,3)</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>134 Total Semester Hours</td>
</tr>
</tbody>
</table>

* To be selected from the following: Ag Ec 202, Econ 202, Geog 301, 302, Hist 102 or 301, Hist 104, 203, 204, Phil 201, 302, Pol Sc 201, 202, 301, 302, Psych 201, Rel 301, 302, RS 301, Soc 201.

† Select 6 credits from the following: Bot 404, Ent 405, 408, 455, 461, 462, 468, WB 412, Zool 403, 404, 405, 410, 456, 458, 461.

**COLLEGE OF ARCHITECTURE**

The Clemson University College of Architecture provides coordinated pre-professional and professional degree programs at undergraduate and graduate levels in preparation for careers in: Architecture, City and Regional Planning and Building Construction. These curriculums are not offered elsewhere in the state. The pre-professional offerings of the College also provide an excellent basis for subsequent graduate studies in Landscape Architecture, Art and Architectural History, Painting and Sculpture.

In addition to the courses and curriculums structured for the professional students of the College, cultural offerings in both lecture and studio courses are available to the general student population and required in certain other schools and colleges.

A rich annual series of exhibitions in the Rudolph Lee Gallery of the College and lectures by figures of international importance in the environmental arts and sciences are presented by the Clemson Architectural Foundation and open to the public. An unusual bond has existed between the architects of the state and region and the College since the first offering of architectural courses to a few students in 1914. The South Carolina Chapter of the American Institute of Architects in 1955 asked that a strong school be established
and pledged its continuing unified support of school programs as the prime project of the organization. Sweeping administrative and curricular changes brought a five-year curriculum and full accreditation that year. Following three years of rapid development the College was made an autonomous professional school by action of the Board of Trustees in 1958.

During the decade just ending, the College has sought to select its students with increasing care and to broaden and strengthen its offerings and its faculty. As might be expected, the curriculums and objectives are under continuing study.

To better prepare professional students a two-degree six-year program is required for those majoring in architecture beginning with the entering class of the academic year 1967-68.

The College enjoys contracts for creative research in several areas, and receives an annual support budget from the Clemson Architectural Foundation to enrich its program. It is a member of the Association of Collegiate Schools of Architecture, the Associated Schools of Construction, collaborates with the South Carolina Chapter of the American Institute of Planners, and is accredited by the National Architectural Accrediting Board.

The Architectural Foundation is a nonprofit corporation established in January 1956 under the Laws of the State of South Carolina and under the sponsorship of the South Carolina Chapter of the American Institute of Architects. It was established to facilitate the continuous improvement of architectural education and of the art and technology of building in South Carolina by providing financial and other assistance to the College of Architecture at Clemson University. By this means students in the College of Architecture at Clemson have been able to enjoy instruction, facilities, and conditions equal to those normally found at the nation's best universities.

The advantages to the student evolving from the Clemson Architectural Foundation are many. Among them are the programs of celebrated guest critics and lecturers, excellent exhibits of many types—paintings, sculpture, architecture, construction, furniture, ceramics, textiles and other allied arts and crafts—traveling expenses for student field trips and professional activities, and student loans and grants. Visual-aid facilities and gifts to the library are examples of permanent assets provided through Foundation support.
Intangible but important is the sense of unity and of high purpose resulting from the activities of the Clemson Architectural Foundation which now permeates the entire architectural scene in South Carolina: the architects, their friends in the building industry and the faculty of the College.

The College of Architecture is housed in a modern building constructed for its program in 1958. Space nevertheless is limited and enrollment restricted to students with capacity and motivation. A major addition to the building is projected for early construction. At present the requisite functions are provided on two levels arranged around a central landscaped court. Design studios and the library occupy the entire second level. The first level accommodates the auditorium, classrooms, graduate studios, two art studios, the Exhibition Gallery, and administrative and faculty offices. A ground floor houses shops, photo laboratory, and sculpture studio, jury room and gallery preparations and storage. All areas are air-conditioned.

**ENTRANCE REQUIREMENTS**

In the interest of both students and the conservation of University resources and to maintain a program on the highest level, admission to the College of Architecture must necessarily be on a selective basis. Annual enrollment quotas are established consistent with space available. Selection considerations include secondary school record and performances in the College Board examination (SAT Test). A personal interview with the Dean should be arranged by the applicant as early as possible in the year before admission.

Applicants are required to take the Architectural Aptitude Examination as administered by the Educational Testing Service of Princeton, and although these are not used as criterion for admission, the results are helpful to both the applicant and the admission committee.

Applications for the Aptitude Examination may be obtained from the Educational Testing Service, Princeton, New Jersey 20933. This test is administered at Clemson and other regional testing centers in October, January, and March.

Students wishing admission are advised to make application to the University early in the fall or winter of their senior year in high school and to make arrangements for a personal interview with the Dean of the College as soon as possible. The admissions council of the College will further interview all entering students during freshman matriculation week of each academic year.
THE PROGRAMS OF STUDY

ARCHITECTURE

The architect as a practicing professional has the creative responsibility of designing the buildings which shape our physical environment. To understand the humanistic, economic and technological nature of environmental problems, he must have a sound general education. This professional education must prepare him for a life of continuing change, in which problems to be solved will be large and small, for every sort of function, in every type of climate and for every condition of budget.

The curriculum in architecture is six years in length embracing a four-year Bachelor of Arts in Pre-architecture sequence with a balance of general education and professional study followed by two intensive years of graduate work leading to the first professional degree, Master of Architecture.

BUILDING CONSTRUCTION

The nation's leading industry in terms of annual dollar volume is Building Construction. Building contracting is a dynamic field and although organizations vary considerably in type, size and complexity, those in leadership positions must invariably have capability (education) in management, construction science, relevant technical disciplines, and the humanities. The curriculum in Building Construction has been structured to provide young people with the unique balance of studies needed to equip them for key roles in the industry. There is a tremendous demand for graduates of the curriculum. The course is four years in length and leads to the Bachelor of Science degree in Building Construction.

CITY AND REGIONAL PLANNING

The City Planner is a member of an essential and complex profession concerned with the programming and guiding of urban and regional development. Our expanding society presents unusual opportunities for Planning graduates in private firms and on public agency staffs. When asked what made a good planner, a leading British professional replied, "A sensitive, creative leader who has lived a bit." He must be able to integrate recommendations of a wide range of specialists. The sociologist, economist, traffic engineer and ecologist, plays significant roles in urban growth and change, but the city planner and urban designer must bring the city to physical form with balance and imagination.
Students admitted as candidates for the Master of City and Regional Planning degree must have the following qualifications:

(a) Meet the admissions requirements for the University Graduate School.

(b) Have a baccalaureate degree approved by the school in such fields as: architecture, civil engineering, economics, landscape architecture, law, political science, or sociology.

Candidates entering the curriculum from a non-design discipline will be required to take a special parallel course designed for their needs, and accordingly may be excused from courses in which they have achieved proficiency.

ARCHITECTURE CURRICULUM

BACHELOR OF ARTS IN PRE-ARCHITECTURE

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>First Year</strong></td>
<td><strong>Second Year</strong></td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>Hist 204 History of Civilization</td>
</tr>
<tr>
<td>Modern Language (Elementary)</td>
<td>Modern Language (Elementary)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>3 (1,6)</td>
<td>3 (1,6)</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>3 (3,0)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>4 (5,0)</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>3 (3,1)</td>
<td>3 (3,1)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

| **Second Year** | **Third Year** |
| Arch 253 Basic Design I | Arch 315 Arch. Hist. I |
| Math 208 Cal. of Sci. Var. | EM 304 Mech. of Materials |
| Modern Language (Intermediate) | Engl 301 Public Speaking |
| Visual Studies I* | Phil 425 Phil. of Sci. |
| AS or MS or Elective | 3 (3,0) |
| 4 (1,9) | 3 (3,0) |
| 3 (3,0) | 5 (1,12) |
| 4 (5,0) | 3 (3,0) |
| 3 (3,1) | 3 (3,0) |
| 2 (0,8) | 3 (3,0) |
| 17 | 17 |

| **Third Year** | **Fourth Year** |
| Arch 316 Arch. Hist. I | Arch 331 Arch. Appl. of Comp. Sci. |
| Arch 415 Arch. Hist. III | Arch 416 Arch. Hist. IV |
| Arch 453 Arch. Design V | Arch 454 Arch. Design VI |
| CE 302 Structural Design I | CE 402 Structural Design II |
| Elective Group II | Elective Group II |
| Visual Studies II* | Visual Studies II* |
| 3 | 3 |
| 3 | 3 |
| 3 | 3 |
| 3 | 3 |
| 2 (0,6) | 2 (0,6) |
| 17 | 17 |

| **Fourth Year** | **Total Semester Hours** |
| Arch 332 Arch. Appl. of Comp. Sci. | 137 Total Semester Hours |
| Arch 415 Arch. Hist. III | 18 |
| Arch 453 Arch. Design V | 18 |
| CE 302 Structural Design I | 18 |
| Elective Group II | 18 |
| Visual Studies II* | 18 |

* Visual Studies I—Two courses of the following are required: Vis 205, 207, 209, 211, 213, 215.

* Visual Studies II—Two courses of the following are required: Vis 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316.

Elective Group I—At least six credits must be selected from the following courses: Econ 201, Econ 202, Econ 301, Econ 302.

Elective Group II—At least six credits must be selected from the following courses: Phil 201, 302, 303, Pol Sc 201, 202, 301, Soc 201, 202, 331.
### BUILDING CONSTRUCTION CURRICULUM

#### First Semester
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch Const 141 Elem. and Bldg. I</td>
<td>4</td>
</tr>
<tr>
<td>Arch 101 Introd. to Art and Arch.</td>
<td>3</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>

#### Second Semester
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch Const 142 Elem. of Bldg. II</td>
<td>4</td>
</tr>
<tr>
<td>Arch 102 Introd. to Art &amp; Arch.</td>
<td>3</td>
</tr>
<tr>
<td>Econ 201 Prin. of Economics</td>
<td>3</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Math 205 Cal. and Lin. Alg.</td>
<td>4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

#### First Year
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch Const 241 Elem. of Bldg. III</td>
<td>4</td>
</tr>
<tr>
<td>CE 201 Surveying</td>
<td>3</td>
</tr>
<tr>
<td>Econ 202 Prin. of Economics</td>
<td>3</td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

#### Second Year
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch Const 242 Elem. of Bldg. IV</td>
<td>4</td>
</tr>
<tr>
<td>EM 201 Statics</td>
<td>3</td>
</tr>
<tr>
<td>Engl 204 Surv. of Engl. &amp; Am. Lit.</td>
<td>3</td>
</tr>
<tr>
<td>IM 209 Computer Programming I</td>
<td>3</td>
</tr>
<tr>
<td>Phil 425 Philos. of Sci.</td>
<td>3</td>
</tr>
<tr>
<td>Soc 201 Introd. to Soc.</td>
<td>3</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

#### Third Year
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct 201 Prin. of Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Arch Const 341 Bldg. Const. I</td>
<td>4</td>
</tr>
<tr>
<td>Arch 315 Arch. History I</td>
<td>3</td>
</tr>
<tr>
<td>EM 304 Mech. of Materials</td>
<td>3</td>
</tr>
<tr>
<td>IM 312 Commercial Law</td>
<td>3</td>
</tr>
<tr>
<td>Soc 351 Industrial Sociology</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>19</strong></td>
</tr>
</tbody>
</table>

#### Fourth Year
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch Const 441 Bldg. Const. III</td>
<td>4</td>
</tr>
<tr>
<td>Arch 415 Arch. History III</td>
<td>3</td>
</tr>
<tr>
<td>Arch 575 Mechanical Plant</td>
<td>2</td>
</tr>
<tr>
<td>CE 302 Structural Design I</td>
<td>3</td>
</tr>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Total Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td>153</td>
</tr>
</tbody>
</table>

### COLLEGE OF EDUCATION

The College of Education provides professional programs designed to prepare undergraduate and graduate students for careers in the field of Education. These curriculums are organized to give students the opportunities to (1) acquire a broad general education through liberal arts and science courses; (2) develop depth of knowledge in the teaching area; (3) gain an understanding of the historical, philosophical and psychological backgrounds of American Education; and (4) acquire knowledge of and skill and experience in using effective teaching techniques.

Curriculums for those preparing to teach have been especially designed by a committee from each department offering a teaching major and the College of Education. The Clemson University Teacher Education Committee, composed of four representatives from the teaching-major departments and four public-school administrators, serves in a curriculum advisory capacity to the Dean of the College of Education.
The College of Education offers courses in Agricultural Education, Early Childhood Education, Elementary Education, Industrial Education, Recreation and Park Administration, and Secondary Education.

Programs leading to the Bachelor of Science degree are available in Agricultural Education, Industrial Education, Recreation and Park Administration, and Science Teaching (Biological Science, Chemistry, Physics, or Mathematics). Students preparing to teach in these fields should register as freshmen in the appropriate curriculum in the College of Education.

Students preparing to teach Economics, English, History, Mathematics, French, German, Spanish, Natural Sciences, Psychology, or Sociology should register in the Bachelor of Arts program in Secondary Education. Those preparing for the elementary level should register for the Bachelor of Arts program in Elementary Education or in Early Childhood Education.

Any student who has been admitted to the University and who is eligible for continuing enrollment may be admitted to the College of Education. However, admission to specific curriculum is selective and requires meeting established criteria. Students who transfer to the College of Education as upperclassmen will be required to meet all the basic requirements for admission to that Education curriculum.

Application to a specific curriculum should be made to the office of the Dean or to the department concerned during the semester preceding that in which the student wishes to obtain admission. Completion of Sc Ed Form 01 and a personal interview are required as part of the application to a specific teacher education curriculum. Sc Ed Form 02, Application for Directed Teaching, must be filed with the faculty adviser no later than the fifth week of the semester preceding the one in which student teaching is to be scheduled. Sc Ed Form 03, Observation and Participation Data, must be completed prior to registration for Directed Teaching.

**BACHELOR OF ARTS CURRICULUMS**

**EARLY CHILDHOOD EDUCATION**

The curriculum in Early Childhood Education leads to a Bachelor of Arts degree in Early Childhood Education. It prepares students for teaching positions in kindergarten or grades 1-3. A minimum of 134 semester hours is required for graduation.
Application to Directed Teaching (Ed 484) should be made in writing no later than the fifth week of the semester prior to the one in which student teaching is to be scheduled. A student whose cumulative grade-point ratio is lower than the requirement for graduation will not be permitted to register for this course.

**EARLY CHILDHOOD EDUCATION CURRICULUM**

<table>
<thead>
<tr>
<th><strong>First Semester</strong></th>
<th><strong>FRESHMAN YEAR</strong></th>
<th><strong>Second Semester</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1,0)</td>
<td>Eng 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Hist 102 American History</td>
</tr>
<tr>
<td>Hist 101 American History</td>
<td>3 (3,0)</td>
<td>Math 116 Contemporary Math for Elementary Teachers I</td>
</tr>
<tr>
<td>Math 115 Contemporary Math for Elementary Teachers I</td>
<td>3 (3,0)</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
<td>Science*</td>
</tr>
<tr>
<td>Science*</td>
<td>4</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>18</strong></td>
<td><strong>Total</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Sophomore Year</strong></th>
<th><strong>17</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 215 Algebra for Elem. Teach.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
</tr>
<tr>
<td>Science*</td>
<td>4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Junior Year</strong></th>
<th><strong>17</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of American Ed.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Engl 351 Children’s Literature</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>In Ed 372 Arts and Crafts</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Mus 400 Music in Elementary</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Ed 302 Educational Psychology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Senior Year</strong></th>
<th><strong>15</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 303 Evol. of Visual Arts</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 336 Behavior Preschool Child.</td>
<td>3 (2,2)</td>
</tr>
<tr>
<td>Ed 461 Teaching Read. in Elem.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 466 Curr. for Early Child.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

**TOTAL SEMESTER HOURS**: **134**

* Must include Bot 101, Zool 101, 103 and a two-semester sequence in Chemistry, Geology, Physics or Physical Science.

† Economics, Political Science, Sociology, Philosophy, Religion, Geography.

**ELEMENTARY EDUCATION**

The curriculum in Elementary Education leads to a Bachelor of Arts degree in Elementary Education. It prepares students for teaching positions on the elementary level. Provisions are made for more detailed study in an instructional interest area. A minimum of 134 semester hours is required for graduation.

Application to Directed Teaching (Ed 481) should be made in writing no later than the fifth week of the semester prior to the one in which student teaching is to be scheduled. A student whose
cumulative grade-point ratio is lower than the requirement for graduation will not be permitted to register for this course.

**ELEMENTARY EDUCATION CURRICULUM**

<table>
<thead>
<tr>
<th>First Semester</th>
<th>FRESHMAN YEAR</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1,0)</td>
<td>Engl 102 English Composition 3 (3,0)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Hist 102 American History 3 (3,0)</td>
</tr>
<tr>
<td>Hist 101 American History</td>
<td>3 (3,0)</td>
<td>Math 116 Contemporary Math for Elementary Teachers I 3 (3,0)</td>
</tr>
<tr>
<td>Math 115 Contemporary Math for Elementary Teachers I</td>
<td>3 (3,0)</td>
<td>Modern Language 3 (3,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
<td>Science* 4</td>
</tr>
<tr>
<td>Science*</td>
<td>4</td>
<td>AS or MS or Elective 1</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

**Sophomore Year**

| Ed 203 Survey of Engl. Lit.   | 3 (3,0) | Engl 204 Surv. of Engl. & Amer. Lit. 3 (3,0) |
|Hist 203 History of Civilization | 3 (3,0) | Hist 204 History of Civilization 3 (3,0) |
|Math 215 Algebra for Elem. Teach. | 3 (3,0) | Math 216 Geom. for Elem. Teach. 3 (3,0) |
|Modern Language               | 3 (3,1) | Modern Language 3 (3,0) |
|Science*                      | 4         | Science* 4        |
|AS or MS or Elective          | 1         | AS or MS or Elective 1 |
|                            | 17        | 17               |

**Junior Year**

| Ed 301 History of American Ed. | 3 (3,0) | Ed 302 Educational Psychology 3 (3,0) |
|Engl 351 Children's Literature | 3 (3,0) | Hist 313 S. C. History 3 (3,0) |
|In Ed 372 Arts and Crafts      | 3 (2,3) | Social Science Elective† 3 |
|Mus 400 Music in Elementary    | 3 (3,0) | Interest Area† 3 |
|Social Science Elective†        | 3         | Electives 5 |
|Interest Area†                 | 3         | 17               |
|                            | 18        |                  |

**Senior Year**

| Arch 303 Evol. of Visual Arts | 3 (3,0) | Ed 458 Health Education 3 (3,0) |
|Ed 334 Child Growth & Develop. | 3 (3,0) | Ed 480 Methods & Mater. in Elem. 3 (3,0) |
|Ed 461 Teaching Read. in Elem. | 3 (3,0) | Ed 481 Directed Teaching 6(1,15) |
|Interest Area†                 | 6         | Mus 310 Music Appreciation 3 (3,0) |
|                            | 15        | 15               |

134 Total Semester Hours

---

*Must include Bot 101, Zool 101, 103 and a two-semester sequence in Chemistry, Geology, Physics or Physical Science.
†Economics, Geography, Political Science, Sociology, Philosophy, Religion.
††Interest Area: 12 semester hours in one of these areas: English, Fine Arts, Mathematics, Modern Languages, Natural Sciences, Social Sciences, Special Education.

**SECONDARY EDUCATION**

Programs leading to a Bachelor of Arts degree in Secondary Education are available to students preparing to teach Economics, English, History, Mathematics, French, German, Spanish, Natural Sciences, Political Science, Psychology, or Sociology on the high school level. The teaching field should be selected as early as possible in order that appropriate freshman and sophomore courses may be taken.

Each curriculum requires a major concentration in the teaching field. Specific courses and sequences have been designated by teacher education committees to meet requirements for those planning to teach. Students who have elective courses in the teaching
area should consult the departmental adviser prior to scheduling these courses.

The Professional Education courses must be completed in sequence prior to registering for the block schedule. Application to Directed Teaching (Ed 412) should be made in writing no later than the fifth week of the semester preceding the one in which student teaching is to be scheduled. A student whose cumulative grade-point ratio is lower than the requirement for graduation will not be permitted to register for Directed Teaching.

Education 412 is conducted on a full-day basis for one-half semester. Students taking Ed 412 will register for Ed 424, 458 and Mus 310, these three courses being taught on a six-day basis during the first half of the semester.

SECONDARY EDUCATION CURRICULUMS

TEACHING AREA: ECONOMICS

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Hist 204 History of Civilization</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
<td>Math 102 Math. Anal. II</td>
</tr>
<tr>
<td>Math 101 Math. Anal. I</td>
<td>3 (3,0)</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
<td>Science*</td>
</tr>
<tr>
<td>Science*</td>
<td>4</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 203 Elem. Stat. Infer.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
</tr>
<tr>
<td>Science*</td>
<td>4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of American Ed.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>9</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 303 Evol. of Visual Arts</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth &amp; Dev.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 498 Sec. Sch. Reading</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

128 Total Semester Hours

* Bot 101, Zool 101, 103; and a two-semester sequence in Chemistry, Physics, Geology, or Physical Science.

† This semester is a block schedule and must be taken as listed.

The teaching major requires twenty-four semester hours of junior and senior courses consisting of Econ 314, 407; nine semester hours from Econ 302, 403, 404, 410, 412, 420; distributed as follows:

Group A: Econ 314, 407.

Group B: Three courses from these: Econ 302, 403, 404, 410, 412, 420.

Group C: The remaining hours selected from Econ 301, 302, 305, 306, 308, 309, 403, 404, 410, 412, 416, 420, 422, Ex St 462, IM 404, 405, 406, Ag Ec 458, Mgt Sc 311.
### TEACHING AREA: ENGLISH

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Freshman Year</strong></td>
<td><strong>Second Semester</strong></td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Hist 204 History of Civilization</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>Math 102 Math. Anal. II</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Science*</td>
</tr>
<tr>
<td>Science*</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Sophomore Year</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>Science*</td>
</tr>
<tr>
<td>Social Science Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td><strong>Total</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Junior Year</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of American Ed.</td>
</tr>
<tr>
<td>Hist 361 History of England</td>
</tr>
<tr>
<td>Teaching Major</td>
</tr>
<tr>
<td>Elective</td>
</tr>
<tr>
<td><strong>Total</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Senior Year</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 303 Evol. of Visual Arts</td>
</tr>
<tr>
<td>Ed 498 Sec. Sch. Reading</td>
</tr>
<tr>
<td>Teaching Major</td>
</tr>
<tr>
<td><strong>Total</strong></td>
</tr>
</tbody>
</table>

* Bot 101, Zool 101, 103 and a two-semester sequence in Chemistry, Geology, Physics, or Physical Science.
† Economics, Geography, Political Science, Sociology, Philosophy, Religion.
‡ This semester is a block schedule and must be taken as listed.
The teaching major requires twenty-four semester hours of junior and senior English courses distributed as follows:
Group A: Engl 402 or 404, 405, 423 or 424.
Group B: Three courses are required: Engl 461 or 462 and two courses from 409, 416, 425, 427, 431, 436, 443, 445, 446.
Group C: Two courses on the 400 level, or one course on the 400 level and Engl 305. Engl 304 or departmental certification of proficiency in composition is required.

### TEACHING AREA: HISTORY

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Freshman Year</strong></td>
<td><strong>Second Semester</strong></td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Hist 204 History of Civilization</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>Math 102 Math. Anal. II</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Science*</td>
</tr>
<tr>
<td>Science*</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Sophomore Year</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist 101 American History</td>
</tr>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>Science*</td>
</tr>
<tr>
<td>Social Science Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td><strong>Total</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Junior Year</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Total</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Senior Year</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Total</strong></td>
</tr>
</tbody>
</table>

* These courses are distributed as follows:
Group A: Engl 402 or 404, 405, 423 or 424.
Group B: Three courses are required: Engl 461 or 462 and two courses from 409, 416, 425, 427, 431, 436, 443, 445, 446.
Group C: Two courses on the 400 level, or one course on the 400 level and Engl 305. Engl 304 or departmental certification of proficiency in composition is required.
SECONDARY EDUCATION 159

### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of American Ed.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>9</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>15</td>
</tr>
</tbody>
</table>

### Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 302 Educational Psychology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>9</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>14</td>
</tr>
</tbody>
</table>

### Junior Year

#### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 303 Evol. of Visual Arts</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth &amp; Dev.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 498 Sec. Sch. Reading</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>6</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>15</td>
</tr>
</tbody>
</table>

#### Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
</tr>
<tr>
<td>Science*</td>
<td>4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>19</td>
</tr>
</tbody>
</table>

#### Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Hist 204 History of Civilization</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 205 Cal. and Lin. Alg.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
</tr>
<tr>
<td>Science*</td>
<td>4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>18</td>
</tr>
</tbody>
</table>

#### Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 204 Surv. of Engl. &amp; Amer. Lit.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 205 Found. of Analysis</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Science*</td>
<td>4</td>
</tr>
<tr>
<td>Social Science Elective</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>17</td>
</tr>
</tbody>
</table>

#### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of American Ed.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 308 College Geometry</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 313 Stat. Methods</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Social Science Elective</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>15</td>
</tr>
</tbody>
</table>

#### Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 303 Eval. of Visual Arts</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 302 Educational Psychology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 408 Topics in Geom.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 411 Linear Alg.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>14</td>
</tr>
</tbody>
</table>

#### Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 335 Adol. Growth &amp; Dev.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ed 498 Sec. Sch. Reading</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 412 Intro. to Mod. Alg.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math Electives</td>
<td>6</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>15</td>
</tr>
</tbody>
</table>

#### Total Semester Hours

* Bot 101, Zool 101, 103 and a two-semester sequence in Chemistry, Geology, Physics, or Physical Science.

† Economics, Geography, Political Science, Sociology, Philosophy, Religion.

‡ This semester is a block schedule and must be taken as listed.


### TEACHING AREA: MATHEMATICS

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
</tr>
<tr>
<td>Science*</td>
<td>4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>19</td>
</tr>
</tbody>
</table>

---

* Bot 101, Zool 101, 103 and a two-semester sequence in Chemistry, Geology, Physics, or Physical Science.

† Economics, Geography, Political Science, Sociology, Philosophy, Religion.

‡ This semester is a block schedule and must be taken as listed.

### TEACHING AREA: MODERN LANGUAGES
(FRENCH, GERMAN, OR SPANISH)

#### Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>Eng 102 English Composition</td>
</tr>
<tr>
<td>Eng 101 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>Hist 204 History of Civilization</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Science*</td>
<td>Science*</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

#### Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Language</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Science*</td>
<td>Science*</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

#### Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of American Ed.</td>
<td>Ed 302 Educational Psychology</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>Teaching Major</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

#### Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 303 Evol. of Visual Arts</td>
<td>Ed 412 Directed Teaching†</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth and Dev.</td>
<td>Ed 424 Meth. &amp; Mat. in Sec. Sch.</td>
</tr>
<tr>
<td>Ed 498 Sec. Sch. Reading</td>
<td>Ed 458 Health Education</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>Mus 310 Music Appreciation</td>
</tr>
</tbody>
</table>

#### 128 Total Semester Hours

*Bot 101, Zool 101, 103 and a two-semester sequence in Chemistry, Geology, Physics, or Physical Science.

†Economics, Geography, Political Science, Sociology, Philosophy, Religion.

‡This semester is a block schedule and must be taken as listed.

The French teaching major consists of twenty-four semester hours including Fr 303, 304, 305, 306. Electives from Fr 403, 404, 405, 406, 407, 408.

The German teaching major consists of twenty-four semester hours including Ger 303, 304, 305, 306. Electives to complete the requirement.

The Spanish teaching major consists of twenty-four semester hours including Span 303, 304, 305, 306. Electives from Span 401, 402, 405, 406.

A student desiring to become certified to teach a second Modern Language must complete the third year of the second language.

### TEACHING AREA: NATURAL SCIENCES

#### Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>Eng 102 English Composition</td>
</tr>
<tr>
<td>Eng 101 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>Hist 204 History of Civilization</td>
</tr>
<tr>
<td>Language</td>
<td>Language</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

#### Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 101 General Botany</td>
<td>Engl 204 Surv. of Eng. &amp; Amer. Lit.</td>
</tr>
<tr>
<td>Language</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Social Science Elective*</td>
<td>Modern Language</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

#### 14 Total Semester Hours
### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of Amer. Ed.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Geol 201 Phys. Geol.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Geol 206 Phys. Geol. Lab.</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Phys 201 Gen. Physics</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Phys 203 Gen. Physics Lab.</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Science Elective</td>
<td></td>
</tr>
</tbody>
</table>

**Total:** 17

### Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Hist 204 History of Civilization</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Math 102 Math. Anal. I</td>
<td></td>
</tr>
<tr>
<td>Modern Language</td>
<td></td>
</tr>
<tr>
<td>Science*</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

**Total:** 18

### Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 402 Educ. Psych.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>9</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

**Total:** 15

### Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 412 Directed Teaching</td>
<td>6 (1.15)</td>
</tr>
<tr>
<td>Ed 424 Meth. &amp; Mat. in Sec. Schs.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Mus 310 Music Appreciation</td>
<td>3 (3.0)</td>
</tr>
</tbody>
</table>

**Total:** 16

### Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td></td>
</tr>
<tr>
<td>Science*</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

**Total:** 17

### Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 204 Surv. of Engl. &amp; Amer. Lit.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Hist 102 American History</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td></td>
</tr>
<tr>
<td>Pol Sc 201 Introd. to Pol. Sc. I</td>
<td></td>
</tr>
<tr>
<td>Science*</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

**Total:** 17

### Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of Amer. Ed.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>9</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

**Total:** 15

### Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 412 Directed Teaching</td>
<td>6 (1.15)</td>
</tr>
<tr>
<td>Ed 424 Meth. &amp; Mat. in Sec. Schs.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Mus 310 Music Appreciation</td>
<td>3 (3.0)</td>
</tr>
</tbody>
</table>

**Total:** 15

---

*Bot 101, Zoöl 101, 103. Two-semester sequence in Chemistry, Physics, Geology, or
Phy Sc 101, 102.

† This semester is a block schedule and must be taken as listed.

The teaching major requires twenty-four semester hours of junior and senior Political Science courses.

Pol Sc 101, 201, and 302, plus 21 semester hours in courses drawn from four of the following fields, including one course in comparative government:

2. Public Administration—Pol Sc 351
3. Constitutional Law—Pol Sc 331, 432, 433, 434
4. Political Behavior—Pol Sc 341, 442, 443
5. Political Thought—Pol Sc 351, 352
7. Comparative Governments—Pol Sc 371, 372, 373 (Recommended)
### Teaching Area: Psychology

#### First Semester
- Ed 100 Orientation: 1 (1.0)
- Engl 101 English Composition: 3 (3.0)
- Hist 203 History of Civilization: 3 (3.0)
- Math 101 Math. Anal. I: 3 (3.0)
- Modern Language: 3 (3.1)
- Science*: 4
- AS or MS or Elective: 1

#### Freshman Year
- Ed 102 Engl. Composition: 3 (3.0)
- Hist 204 History of Civilization: 3 (3.0)
- Math 102 Math. Anal. II: 3 (3.0)
- Modern Language: 3 (3.1)
- Science*: 4
- AS or MS or Elective: 1

#### Sophomore Year
- Engl 203 Survey of Engl. Lit.: 3 (3.0)
- Math 203 Elem. Stat. Infer.: 3 (3.0)
- Modern Language: 3 (3.1)
- Psych 201 General Psychology: 3 (3.0)
- Science*: 4
- AS or MS or Elective: 1

#### Junior Year
- Ed 301 History of Amer. Ed.: 3 (3.0)
- Teaching Major: 9
- Elective: 3

#### Senior Year
- Arch 303 Evol. of Visual Arts: 3 (3.0)
- Ed 335 Adol. Growth & Develop.: 3 (3.0)
- Ed 498 Sec. School Reading: 3 (3.0)
- Teaching Major: 6

#### Total Semester Hours
- 128

*Bot 101, Zool 101, 103 and a two-semester sequence in Chemistry, Geology, Physics, or Physical Science.

† Economics, Geography, Philosophy, Political Science, Religion, Sociology.

This semester is a block schedule and must be taken as listed.

The teaching major requires 24 semester hours of junior and senior courses selected from Psych 302, 321, 331, 341, 351, 361, 363, 401, 402, 403, 422, 442, 471, 490, 498, Ed 302, 355.

Ed 302 is counted in the teaching area.

### Teaching Area: Sociology

#### First Semester
- Ed 100 Orientation: 1 (1.0)
- Engl 101 English Composition: 3 (3.0)
- Hist 203 History of Civilization: 3 (3.0)
- Math 101 Math. Anal. I: 3 (3.0)
- Modern Language: 3 (3.1)
- Science*: 4 (3.3)
- AS or MS or Elective: 1

#### Freshman Year
- Ed 102 English Composition: 3 (3.0)
- Hist 204 History of Civilization: 3 (3.0)
- Math 102 Math. Anal. II: 3 (3.0)
- Modern Language: 3 (3.1)
- Science*: 4 (3.3)
- AS or MS or Elective: 1

#### Sophomore Year
- Engl 203 Survey of Engl. Lit.: 3 (3.0)
- Math 203 Elem. Stat. Infer.: 3 (3.0)
- Modern Language: 3 (3.1)
- Soc 201 Introductory Soc.: 3 (3.0)
- Science*: 4 (3.3)
- Elective*: 1
- AS or MS or Elective: 1

#### Total Semester Hours
- 17

*Bot 101, Zool 101, 103 and a two-semester sequence in Chemistry, Geology, Physics, or Physical Science.

† Economics, Geography, Philosophy, Political Science, Religion, Sociology.

This semester is a block schedule and must be taken as listed.

The teaching major requires 24 semester hours of junior and senior courses selected from Psych 302, 321, 331, 341, 351, 361, 363, 401, 402, 403, 422, 442, 471, 490, 498, Ed 302, 355.

Ed 302 is counted in the teaching area.
# Bachelor of Science Curriculums

## Agricultural Education

The Agricultural Education curriculum is designed for students who wish to prepare for positions in vocational agriculture, agricultural occupations, and other teaching positions in the secondary schools; engage in other forms of educational work such as agricultural missionary, public relations and agricultural extension; farming, soil conservation and other governmental work; business and industry.

The curriculum provides for a broad education in general and professional education including student teaching. In addition to required courses giving a thorough background in the agricultural and biological sciences, a student may minor in business or international agriculture or in one of six subject-matter fields. Students in other departments may minor in Agricultural Education and be certified to teach.

## AGRICULTURAL EDUCATION CURRICULUM

### Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag 101 Introd. to Agric.</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Bot 101 Gen. Botany</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>or Zool 101 Gen. Zoology</td>
<td>Math 104 Trigonometry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>or Bot 101 Gen. Botany</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

15

### Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Major</td>
<td>Teaching Major</td>
</tr>
<tr>
<td>Elective†</td>
<td>Elective†</td>
</tr>
</tbody>
</table>

18

### Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 303 Evol. of Visual Arts</td>
<td>Ed 412 Direct Teaching†</td>
</tr>
<tr>
<td>Ed 498 Sec. School Reading</td>
<td>Ed 458 Health Education</td>
</tr>
<tr>
<td>Teaching Major</td>
<td>Mus 310 Music Appreciation</td>
</tr>
</tbody>
</table>

18

134 Total Semester Hours

---

* Bot 101, Zool 101, 103 and a two-semester sequence in Chemistry, Physics, Geology, or Physical Science.
† This semester is a block schedule and must be taken as listed.
‡ Electives must include Econ 201, 202, Phil 201, 302, Pol Sc 301.

### Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag 205 Farm Shop</td>
<td>3</td>
</tr>
<tr>
<td>Ag 206 Agric. Mechanization</td>
<td>3</td>
</tr>
<tr>
<td>Ag 201 Intro. to Animal Industries</td>
<td>3</td>
</tr>
<tr>
<td>Agron 202 Soils</td>
<td>3</td>
</tr>
<tr>
<td>Engl 204 Surv. of Engl. Lit.</td>
<td>3</td>
</tr>
<tr>
<td>or Hist 204 Hist. of Civilization</td>
<td>3</td>
</tr>
<tr>
<td>or Hist 104 Western Civilization</td>
<td>3</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

16 Total Semester Hours

### Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag 202 Intro. to Plant Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Ag Ed 201 Intro. to Agric. Ed.</td>
<td>3</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3</td>
</tr>
<tr>
<td>or Engl 203 Surv. of Engl. Lit.</td>
<td>3</td>
</tr>
<tr>
<td>Phys 201 Gen. Physics</td>
<td>3</td>
</tr>
<tr>
<td>Phys 203 Gen. Physics Lab.</td>
<td>1</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

17 Total Semester Hours

### Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgE 301 Soil and Water Conserva.</td>
<td>3</td>
</tr>
<tr>
<td>Agron 301 Fertilizers</td>
<td>3</td>
</tr>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>Approved Horticulture Elective</td>
<td>3</td>
</tr>
<tr>
<td>Minor†</td>
<td>3</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

18 Total Semester Hours

### Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 452 Agric. Policy</td>
<td>3</td>
</tr>
<tr>
<td>Ent 301 Elem. and Econ. Ent.</td>
<td>3</td>
</tr>
<tr>
<td>Hort 407 Landscape Design</td>
<td>3</td>
</tr>
<tr>
<td>Pl Pa 401 Plant Pathology</td>
<td>3</td>
</tr>
<tr>
<td>Minor†</td>
<td>3</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

15 Total Semester Hours

18 134 Total Semester Hours

---

* At least one literature course is required.
† See class adviser for available minors and course requirements.

**INDUSTRIAL EDUCATION**

The curriculum in Industrial Education is designed to prepare students for careers in the teaching of industrial subjects and in training programs in industry. To accomplish these purposes the curriculum is divided into three areas of specialization leading to the degree of Bachelor of Science in Industrial Education. At the end of his freshman year, each student will select one of three options: Industrial Arts Education, Vocational-Technical Education, or Education for Industry. Each option requires 135 semester hours of course work.

The Industrial Arts Education option is for those students who desire to teach industrial arts in the secondary schools. Industrial arts is the subject area in the public school system which attempts to provide youth with an interpretation of American industry. It is a general education subject designed to give students exploratory experience in the classroom and laboratory. Majors in this option are qualified for full certification as secondary school teachers of industrial arts.

The Vocational-Technical Education option is designed to prepare teachers of vocational and technical subjects in the Senior High Schools, Area Vocational Schools, and Technical Education
Centers. All elective courses in this option will be in an area of specialization or related fields. Teachers graduating from this option will possess the skills and knowledge required to teach the occupation or family of occupation in their area of specialization.

The Education for Industry option is designed to prepare students to enter industry as training specialists. Due to the expansion of technology and industrial development, there is a rapidly increasing demand for training specialists and training directors in industry.

**EDUCATION FOR INDUSTRY OPTION**

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>In Ed 101 Introd. to In. Ed.</td>
<td>1 (1.0)</td>
<td>In Ed 102 Woodworking I</td>
</tr>
<tr>
<td>Math 101 Math Analysis</td>
<td>3 (3.0)</td>
<td>Math 102 Math. Analysis</td>
</tr>
<tr>
<td>Science Elective*</td>
<td>4 (3.3)</td>
<td>Science Elective*</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>3 (3.0)</td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td><strong>15</strong></td>
<td><strong>16</strong></td>
<td></td>
</tr>
</tbody>
</table>

**Sophomore Year**

| **17** | **16** | |
| --- | --- | |
| EG 201 Engr. Graph. for In. Ed. | 3 (1.6) | Econ 201 Principles of Econ. | 3 (3.0) |
| Engl 203 Survey of Eng. Lit. | 3 (3.0) | Engl 204 Surv. of Eng. & Amer. Lit. | 3 (3.0) |
| In Ed 203 Basic Metal Processes | 3 (1.6) | In Ed 204 Graphic Arts | 3 (1.6) |
| Soc 201 Introd. to Soc. | 3 (3.0) | Psych 201 Gen. Psychology | 3 (3.0) |
| Science Elective* | 4 (3.3) | AS or MS or Elective | 1 |
| AS or MS or Elective | 1 | Elective | 3 |

**Junior Year**

| **17** | **16** | |
| --- | --- | |
| Econ 301 Labor Problems | 3 (3.0) | IE 303 Job Evaluation | 3 (3.0) |
| Ed 302 Ed. Psychology | 3 (3.0) | IM 415 Managerial Dec. Making | 3 (3.0) |
| IM 307 Personnel Management | 3 (3.0) | In Ed 305 Machining Practices | 3 (1.6) |
| In Ed 302 Dwelling, Mat. & Constr. | 2 (1.2) | In Ed 325 Ind. Org. & People | 3 (3.0) |
| In Ed 303 Electricity | 3 (1.6) | In Ed 422 Hist. & Phil. of Ind. & Voc. Ed. | 3 (3.0) |
| Approved Elective† | 3 (3.0) | Approved Elective† | 3 (3.0) |

**Senior Year**

<table>
<thead>
<tr>
<th><strong>18</strong></th>
<th><strong>18</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>IM 408 Work Simp. &amp; Std.</td>
<td>2 (3.3)</td>
</tr>
<tr>
<td>In Ed 405 Course Org. &amp; Eval.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Text 460 Textile Processes</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Approved Elective†</td>
<td>6 (6.0)</td>
</tr>
</tbody>
</table>

**135 Total Semester Hours**

* Science electives to be selected from Chemistry, Physics, Geology, Physical Science, Botany, or Zoology. At least two fields must be represented.

†See class adviser for list of elective courses.

Note: One summer (400 clock hours) of field experience is required of each student following the completion of his sophomore year.
INDUSTRIAL ARTS EDUCATION OPTION

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>In Ed 101 Intro. to In. Ed.</td>
<td>1 (1,0)</td>
<td>In Ed 102 Woodworking I</td>
</tr>
<tr>
<td>Math 101 Math. Analysis</td>
<td>3 (3,0)</td>
<td>Math 102 Math. Analysis</td>
</tr>
<tr>
<td>Science Elective*</td>
<td>4 (3,3)</td>
<td>Science Elective*</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>3 (3,0)</td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td><strong>15</strong></td>
<td><strong>16</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EG 201 Engr. Graph. for In. Ed.</td>
<td>3 (1,6)</td>
<td>EG 202 Graphic Tech. or In. Ed.</td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3 (3,0)</td>
<td>Engl 204 Surv. of Engl. &amp; Amer. Lit.</td>
</tr>
<tr>
<td>In Ed 202 Woodworking II</td>
<td>2 (1,3)</td>
<td>In Ed 204 Graphic Arts</td>
</tr>
<tr>
<td>In Ed 203 Basic Metal Processes</td>
<td>3 (1,6)</td>
<td>In Ed 205 Power Technology</td>
</tr>
<tr>
<td>Science Elective*</td>
<td>4 (3,3)</td>
<td>In Ed 313 Arts &amp; Crafts</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>Social Science Elective†</td>
</tr>
<tr>
<td><strong>16</strong></td>
<td><strong>19</strong></td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 302 Ed. Psychology</td>
<td>3 (3,0)</td>
<td>Ed 335 Adol. Growth &amp; Develop.</td>
</tr>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3 (3,0)</td>
<td>In Ed 305 Machining Practices</td>
</tr>
<tr>
<td>In Ed 302 Dwell. Mat. &amp; Constr.</td>
<td>2 (1,2)</td>
<td>In Ed 314 Basic Electronics</td>
</tr>
<tr>
<td>In Ed 303 Electricity</td>
<td>3 (1,6)</td>
<td>In Ed 333 Design</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>3 (3,0)</td>
<td>In Ed 422 Hist. &amp; Phil. of Ind. &amp; Voc. Ed.</td>
</tr>
<tr>
<td>Text 460 Textile Processes</td>
<td>3 (3,0)</td>
<td>In Ed 441 Com. Shop Practices</td>
</tr>
<tr>
<td>Approved Elective†</td>
<td>2 (2,0)</td>
<td><strong>19</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 303 Evol. of Visual Arts</td>
<td>3 (3,0)</td>
<td>Ed 458 Health Education</td>
</tr>
<tr>
<td>Ed 406 Hist. &amp; Phil. of Ed.</td>
<td>3 (3,0)</td>
<td>In Ed 402 Directed Teaching</td>
</tr>
<tr>
<td>In Ed 405 Course Org. &amp; Eval.</td>
<td>3 (3,0)</td>
<td>In Ed 425 Teaching Ind. Subj.</td>
</tr>
<tr>
<td>In Ed 416 Des. &amp; Op.</td>
<td></td>
<td>Mus 310 Music Appreciation</td>
</tr>
<tr>
<td>In. Ed. Lab.</td>
<td>3 (2,2)</td>
<td><strong>15</strong></td>
</tr>
<tr>
<td>Approved Elective†</td>
<td>6 (6,0)</td>
<td><strong>135</strong> Total Semester Hours</td>
</tr>
</tbody>
</table>

* Science electives to be selected from Chemistry, Physics, Geology, Botany, Zoology, or Physical Science. At least two fields must be represented, one of which must be in the biological sciences.

† Social Science electives to be selected from History, Sociology, Economics, Political Science, Religion, or Philosophy. At least two fields must be represented, with six, but not more than six hours, in one field.

See class adviser for list of approved electives.
## Vocational-Technical Education Option

### Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>In Ed 101 Intro. to In. Ed.</td>
<td>1 (1.3)</td>
</tr>
<tr>
<td>Math 101 Math. Analysis</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Science Elective*</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>In Ed 102 Woodworking I</td>
<td>1 (1.3)</td>
</tr>
<tr>
<td>Math 102 Math. Analysis</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Science Elective*</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Social Science Elective†</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Sophomore Year

| EG 201 Engr. Graph. for In. Ed. | 3 (1.6) |
| English 203 Survey of Engl. Lit. | 3 (3.0) |
| In Ed 202 Woodworking II | 2 (1.3) |
| In Ed 202 Basic Metal Processes | 3 (1.6) |
| Science Elective* | 4 (3,3) |
| AS or MS or Elective | 1 |

<table>
<thead>
<tr>
<th>Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Summer

- In Ed 350 Ind. Cooperative Experience: 6 cr.

### Junior Year

| Ed 302 Ed. Psychology | 3 (3.0) |
| Eng. 301 Public Speaking | 3 (3.0) |
| In Ed 301 Dwellt. M In. & Constr. | 3 (1.6) |
| In Ed 303 Electricity | 3 (1.6) |
| Approved Elective (in field of specialization)† | 4 (4.0) |

<table>
<thead>
<tr>
<th>Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Summer

- In Ed 350 Ind. Cooperative Experience: 6 cr.

### Senior Year

| Arch 303 Evol. of Visual Arts | 3 (3.0) |
| Ed 406 Hist. & Phil. of Ed. | 3 (3.0) |
| In Ed 405 Course Org. & Eval. | 3 (3.0) |
| In Ed 416 Des. & Op. | 3 (2,2) |
| Approved Elective (in field of specialization)† | 3 (3.0) |

<table>
<thead>
<tr>
<th>Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

135 Total Semester Hours

* Science electives to be selected from Chemistry, Physics, Geology, Physical Science, Botany or Zoology. At least two fields must be represented, one of which must be in the biological sciences.

† Social Science electives to be selected from History, Sociology, Economics, Political Science, Religion, or Philosophy. At least two fields must be represented, with six, but not more than six hours, in one field.

† See class adviser for list of approved electives.
RECREATION AND PARK ADMINISTRATION

The curriculum in Recreation and Park Administration provides training for students who desire to become recreation supervisors and directors and park administrators. Graduates plan and supervise recreation programs in industry, institutions, municipalities and rural communities. The program which leads to a Bachelor of Science degree is designed to provide competencies in recreation administration, management, development, planning, and research. It requires 135 semester hours, including field training during one summer, for completion.

RECREATION AND PARK ADMINISTRATION CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 101 General Botany</td>
<td>4 (3,0)</td>
<td>Econ 201 Principles of Econ.</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 102 American History</td>
<td>3 (3,0)</td>
<td>RPA 102 Hist. and Prin. of Outdoor Rec.</td>
</tr>
<tr>
<td>Math 101 Math. Anal. I</td>
<td>3 (3,0)</td>
<td>RPA 203 Per. and Com. Health</td>
</tr>
<tr>
<td>RPA 101 Intro. to Com. Rec.</td>
<td>3 (3,0)</td>
<td>Zool 101, 103 Gen. Zool.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3 (3,0)</td>
<td>Acct 201 Principles of Acct.</td>
</tr>
<tr>
<td>Physical Science</td>
<td>4</td>
<td>Ed 335 Adol. Growth &amp; Develop.</td>
</tr>
<tr>
<td>Psych 201 General Psych.</td>
<td>3 (3,0)</td>
<td>Engl 204 Surv. of Engl. &amp; Amer. Lit</td>
</tr>
<tr>
<td>RPA 204 Sports in Rec.</td>
<td>3 (3,3)</td>
<td>Physical Science</td>
</tr>
<tr>
<td>Soc 201 Intro. to Soc.</td>
<td>3 (3,0)</td>
<td>RPA 205 Prog. Plan. for Rec.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3 (3,0)</td>
<td>Hort 308 Landscape Design</td>
</tr>
<tr>
<td>Hort 303 Plant Materials I</td>
<td>3 (2,2)</td>
<td>IM 307 Personnel Mgt.</td>
</tr>
<tr>
<td>RPA 302 Camp Org. and Adm.</td>
<td>3 (2,3)</td>
<td>RPA 307 Pk. Main. and Oper.</td>
</tr>
<tr>
<td>RPA 306 Prin. of Outdoor Educ.</td>
<td>3 (3,0)</td>
<td>RPA 308 Meth. and Tech. of Rec. Leadership</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>SUMMER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPA 405 Field Training in Rec.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag Ec 352 Public Finance</td>
<td>3 (3,0)</td>
<td>For 406 For. Pol. and Adm.</td>
</tr>
<tr>
<td>Ed 491 Descript. Stat.</td>
<td>3 (3,0)</td>
<td>RPA 402 Rec. and Park Adm.</td>
</tr>
<tr>
<td>RPA 403 Facility &amp; Site Plan.</td>
<td>3 (2,3)</td>
<td>RPA 404 Meth. of Rec. Res.</td>
</tr>
<tr>
<td>Pol Sc 302 St. &amp; Local Gov't.</td>
<td>3 (3,0)</td>
<td>Soc 331 Urban Sociology</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>Electives</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

* Two-semester sequence in Chemistry, Geology, Physics, or Physical Science I, II.
SCIENCE TEACHING

The program leading to a Bachelor of Science degree in Science Teaching is designed for students planning to teach Mathematics, Biology, Chemistry or Physics and General Science on the secondary school level.

It requires a major concentration in Mathematics, Biological Sciences, Chemistry or Physics. The required science electives are included to give some degree of competency in a field other than the major area.

A student must have a minimum of 130 semester hours of credit for graduation.

TEACHING AREA: BIOLOGICAL SCIENCES

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Hist 204 History of Civilization</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
<td>Math 106 Cal. of One Var.</td>
</tr>
<tr>
<td>Math 103 College Algebra</td>
<td>2 (3,0)</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Math 104 Trigonometry</td>
<td>2 (3,0)</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 101 General Botany</td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
</tr>
<tr>
<td>Chemistry Elective</td>
</tr>
<tr>
<td>Phys 201 Gen. Physics</td>
</tr>
<tr>
<td>Phys 203 Gen. Physics Lab.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 202 Surv. of Plant Kingdom</td>
</tr>
<tr>
<td>Ed 301 History of Amer. Ed.</td>
</tr>
<tr>
<td>Zool 301 Vertebrate Anatomy</td>
</tr>
<tr>
<td>Science Elective</td>
</tr>
<tr>
<td>Social Science Elective</td>
</tr>
<tr>
<td>Elective</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 303 Evol. of Visual Arts</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth &amp; Develop.</td>
</tr>
<tr>
<td>Ed 498 Sec. School Reading</td>
</tr>
<tr>
<td>Major Electives</td>
</tr>
<tr>
<td>Elective</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

131 Total Semester Hours

* Economics, Geography, Philosophy, Political Science, Religion, Sociology.
† Botany, Genetics, Microbiology, Zoology.
* Block schedule must be taken as shown.
**TEACHING AREA: CHEMISTRY**

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Hist 204 History of Civilization</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
<td>Math 205 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

**Sophomore Year**

| Bot 101 General Botany | 4 (3,3)      | Engl 204 Surv. of Engl. & Amer. Lit. | 3 (3,0) |
| Engl 203 Survey of Engl. Lit. | 3 (3,0) | Phys 202 Gen. Physics | 3 (3,0) |
| Math 206 Cal. of Sev. Var. | 4 (5,0)      | Phys 204 Gen. Physics Lab. | 1 (0,3) |
| Phys 201 Gen. Physics | 3 (3,0)       | Zool 101 Gen. Zoology | 3 (3,0) |
| Phys 203 Gen. Physics Lab. | 1 (0,3) | Zool 103 Gen. Zoology Lab. | 1 (0,2) |
| AS or MS or Elective  | 1             | Social Science Elective | 3 |
|                      | 16            | Elective | 3 |
|                      |               | AS or MS or Elective | 1 |

**Junior Year**

| Ed 301 History of Amer. Ed. | 3 (3,0) | Ed 302 Educational Psych. | 3 (3,0) |
| Ch 223 Organic Chemistry | 3 (3,0)          | Ch 224 Organic Chemistry | 3 (3,0) |
| Ch 227 Organic Chem. Lab. | 1 (0,3) | Ch 331 Physical Chem. | 3 (3,0) |
| Ch 313 Quantitative Analysis | 3 (3,0) | Ch 339 Physical Chem. Lab. | 1 (0,3) |
| Social Science Elective* | 3 | Elective | 6 |
| Elective                | 5             |                 | 16 |

**Senior Year**

| Arch 303 Evol. of Visual Arts | 3 (3,0) | Ed 412 Directed Teaching† | 6 (1,15) |
| Ch 332 Physical Chem. | 3 (3,0) | Ed 424 Meth. & Mat. in Sec. Sch. | 3 (3,0) |
| Ch 334 Physical Chem. Lab. | 2 (0,6) | Ed 458 Health Education | 3 (3,0) |
| Ch 402 Inorganic Chemistry | 3 (3,0) | Mus 310 Music Appreciation | 3 (3,0) |
| Ed 335 Adol. Growth & Develop. | 3 (3,0) |                 | 15 |
| Ed 498 Sec. School Reading | 3 (3,0) |                 | 17 |

131 Total Semester Hours

* Economics, Geography, Philosophy, Political Science, Religion, Sociology.
† Block schedule must be taken as shown.

**TEACHING AREA: MATHEMATICS**

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>1 (1,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Hist 204 History of Civilization</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
<td>Math 205 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

**Sophomore Year**

| Bot 101 General Botany | 4 (3,3)      | Engl 204 Surv. of Engl. & Amer. Lit. | 3 (3,0) |
| Engl 203 Survey of Engl. Lit. | 3 (3,0) | Math 295 Found. of Anal. | 3 (3,0) |
| Math 206 Cal. of Sev. Var. | 4 (5,0)      | Phys 202 Gen. Physics | 3 (3,0) |
| Phys 201 Gen. Physics | 3 (3,0)          | Phys 204 Gen. Physics Lab. | 1 (0,3) |
| Phys 203 Gen. Physics Lab. | 1 (0,3) | Zool 101 Gen. Zoology | 3 (3,0) |
| AS or MS or Elective  | 1             | Zool 103 Gen. Zoology Lab. | 1 (0,2) |
|                      | 16            | AS or MS or Elective | 1 |

15
### Science Teaching 171

#### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of Amer. Ed.</td>
<td>3</td>
</tr>
<tr>
<td>Math 308 College Geometry</td>
<td>3</td>
</tr>
<tr>
<td>Math 313 Stat. Th. &amp; Meth. I</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>16</td>
</tr>
</tbody>
</table>

#### Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 302 Educational Psych.</td>
<td>3</td>
</tr>
<tr>
<td>Math 410 Topics in Geom.</td>
<td>3</td>
</tr>
<tr>
<td>Math 411 Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>17</td>
</tr>
</tbody>
</table>

#### Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 303 Evol. of Visual Arts</td>
<td>3</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth &amp; Develop.</td>
<td>3</td>
</tr>
<tr>
<td>Ed 498 Sec. School Reading</td>
<td>3</td>
</tr>
<tr>
<td>Math 412 Intro. to Mod. Alg.</td>
<td>3</td>
</tr>
<tr>
<td>Math Elective†</td>
<td>6</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>18</td>
</tr>
</tbody>
</table>

#### Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 412 Directed Teaching†</td>
<td>6</td>
</tr>
<tr>
<td>Ed 424 Meth. &amp; Mat. in Sec. Sch.</td>
<td>3</td>
</tr>
<tr>
<td>Ed 458 Health Education</td>
<td>3</td>
</tr>
<tr>
<td>Mus 310 Music Appreciation</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>15</td>
</tr>
</tbody>
</table>

**130 Total Semester Hours**

* Economics, Geography, Philosophy, Political Science, Religion, Sociology.
† Block schedule must be taken as shown.

---

### TEACHING AREA: PHYSICS

#### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Ed 100 Orientation</td>
<td>1</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>16</td>
</tr>
</tbody>
</table>

#### Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 102 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Hist 204 History of Civilization</td>
<td>3</td>
</tr>
<tr>
<td>Math 205 Cal. and Lin. Alg.</td>
<td>4</td>
</tr>
<tr>
<td>Phys 122 Mech. and Wave Phen.</td>
<td>3</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>18</td>
</tr>
</tbody>
</table>

#### Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 101 General Botany</td>
<td>4</td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>4</td>
</tr>
<tr>
<td>Phys 221 Therm. and Elect. Phen.</td>
<td>3</td>
</tr>
<tr>
<td>Phys 223 Electron Phys. Lab.</td>
<td>1</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>16</td>
</tr>
</tbody>
</table>

#### Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 301 History of Amer. Ed.</td>
<td>3</td>
</tr>
<tr>
<td>Phys 304 Descriptive Astronomy</td>
<td>3</td>
</tr>
<tr>
<td>Phys 321 Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>Phys 325 Experimental Phys. I</td>
<td>4</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Elective*</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>19</td>
</tr>
</tbody>
</table>

#### Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 303 Evol. of Visual Arts</td>
<td>3</td>
</tr>
<tr>
<td>Ed 335 Adol. Growth &amp; Develop.</td>
<td>3</td>
</tr>
<tr>
<td>Ed 498 Sec. School Reading</td>
<td>3</td>
</tr>
<tr>
<td>Phys 455 Quantum Phys. I</td>
<td>3</td>
</tr>
<tr>
<td>or Phys 460 Modern Phys.</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>6</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>18</td>
</tr>
</tbody>
</table>

**134 Total Semester Hours**

* Economics, Geography, Philosophy, Political Science, Religion, Sociology.
† Block schedule must be taken as shown.
COLLEGE OF ENGINEERING

The College of Engineering offers professional curricular programs and programs in both Engineering Analysis and Technical Operations. Each of the programs offered leads to a wide range of career opportunities and serves as preparation for further study at the graduate level.

Professional Curriculums: Six four-year, professional oriented curriculums are offered by the College of Engineering, namely, Agricultural Engineering, Ceramic Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering, and Mechanical Engineering. Each of these curriculums is accredited by the Engineers’ Council for Professional Development, the recognized national accrediting agency for professional curriculums in engineering. The curriculum in Agricultural Engineering is jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.

Although the College of Engineering does not offer specific options or majors in each of these professional curriculums, the instruction includes many phases of each respective field. Thus, a Civil Engineering student is graduated in Civil Engineering rather than Structural Engineering, Highway Engineering, Sanitary Engineering, or other such options. However, a student who wishes to study within the areas encompassed by these options will find adequate courses within the Civil Engineering curriculum to prepare himself for work in any of these areas. In the same way the other engineering curriculums include thorough education in various phases of the field of specialization without over-emphasizing one phase to the neglect of others. The professional curriculums lead to a Bachelor of Science degree in the specific professional area.

The courses required in all professional curriculums for the freshman year are as follows:

<table>
<thead>
<tr>
<th>First Semester</th>
<th></th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engr 101 Engineering Systems</td>
<td>0 (1,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>EG 109 Engr. Graph. Com. or Humanistic—Social Elective</td>
<td>2 (0,6)</td>
<td>Humanistic—Social Elective</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>or EG 109 Engr. Graph. Com.</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (3,0)</td>
<td>Math 205 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Humanistic Social Elective</td>
<td>3 (3,0)</td>
<td>Phys 122 Mech. and Wave Phen.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td>17 or 18</td>
<td>18 or 17</td>
</tr>
</tbody>
</table>

* Agricultural Engineering students take Ag 101, Introduction to Agriculture, in addition to other courses in the second semester.
Engineering Analysis Curriculum: This curriculum is a four-year, engineering science-oriented course of study. Its objectives are two-fold. These are (1) to prepare a student for employment in areas of engineering activity requiring a high level of analytical competency, and (2) to provide a flexible undergraduate preparation for the study of engineering at the graduate level.

The curriculum leads to the Bachelor of Science degree in Engineering Analysis. Requirements for this degree are stated in terms of subject matter area rather than in terms of specific courses. This latitude of course selection permits maximum accommodation of the individual student’s interests and career objectives. Degree requirements are as follows:

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics (including 12 credits of post-calculus mathematics)</td>
</tr>
<tr>
<td>Basic Science (including 8 credits of physics)</td>
</tr>
<tr>
<td>Engineering Science (distributed in at least six engineering science areas)</td>
</tr>
<tr>
<td>Humanistic-Social Studies</td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td><strong>138</strong></td>
</tr>
</tbody>
</table>

The educational objectives of the program will be met by the selection of an area of concentration which will be chosen from several specialty areas offered within the other professional engineering curriculums. The selection of specific courses, particularly in the junior and senior years, will then depend primarily on the choice of the area of concentration.

Maximum flexibility within this program is achieved by permitting a student to defer his choice of specialization until the junior year or later. Such deferral will then allow students from junior and senior colleges not offering engineering to transfer into the program with little or no loss in academic credit.

Technical Operations Curriculum: This curriculum is a four-year, student-interest oriented course of study designed to prepare technical graduates for such industrial functions as production supervision and management, operation and maintenance of plant environmental and energy systems, and technical sales and purchasing.

† Additional information on both the Engineering Analysis and the Technical Operations programs is available from the Office of the Dean of Engineering.
The curriculum leads to the Bachelor of Science degree in Technical Operations. Requirements for the degree are as follows:

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
</tr>
<tr>
<td>Basic Science (including 8 credits of physics)</td>
</tr>
<tr>
<td>Humanistic-Social</td>
</tr>
<tr>
<td>Technical Operations</td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td><strong>Total</strong></td>
</tr>
</tbody>
</table>

The technical operations courses are only offered during the junior and senior years of the program. Hence, a student from a junior college may transfer into the program at the junior level with little or no loss of academic credit.

**AGRICULTURAL ENGINEERING**

The graduate in Agricultural Engineering, with broad training in mathematics, physics, chemistry, and the biological sciences as well as comprehensive coverage of the engineering sciences, is well equipped to apply engineering to many functions affecting the well-being of mankind. The Agricultural Engineer is sought by industry and public service organizations primarily for his ability to apply engineering know-how to agricultural production and processing, and to the conservation of land and water resources. Specific areas of interest include power and machinery, soil and water resources engineering, electric power and processing, structures and environment, and food engineering.

The undergraduate Agricultural Engineering curriculum leads to the Bachelor of Science degree. Based upon fundamental training in the basic sciences, the curriculum includes such engineering sciences as mechanics, fluids, thermodynamics, electrical theory, computing devices and systems analyses. The basic agricultural sciences of soils, plants and animals are included so as to provide a foundation for Agricultural Engineering analysis and design. Recognition is also given to the necessity for being able to synthesize information from any of the applicable subject matter areas, including studies of energy conversion, engineering analysis and the engineering properties of biological materials, and with emphasis upon economy and integrity of design. Research is included in order to

*The Agricultural Engineering curriculum is jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.*
introduce the student to the scientific method. Courses in the humanities are required to provide the graduate engineer with a well-rounded educational experience.

The undergraduate curriculum is designed for both the student who wishes to terminate his formal academic training at the bachelor’s level, and also to provide the necessary prerequisites for those who wish to continue in graduate study. Graduate programs in Agricultural Engineering which lead to both the Master of Science and the Doctor of Philosophy degrees are offered.

Since an Agricultural Engineering graduate has a broad training in engineering, in the sciences, in humanities, and in life sciences, he has the pick of opportunities in many areas. Opportunities in Agricultural Engineering include employment with industry as design engineers, research engineers, production engineers, and in sales and service; with state and federal agencies as teachers, research engineers, an extension engineers; as field engineers with the Soil Conservation Service, Bureau of Reclamation, and similar organizations; and with agricultural enterprises as managers, contractors, equipment retailers and as consulting engineers.

The Agricultural Engineering curriculum is accredited by the Engineers’ Council for Professional Development.

**AGRICULTURAL ENGINEERING CURRICULUM**
*(See page 172 for Freshman Year)*

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgE 221 Soil and Water</td>
<td>AgE 212 Fund. of Mechanization 3 (2,3)</td>
</tr>
<tr>
<td>Res. Engr. I</td>
<td>Bot 101 General Botany 4 (3,3)</td>
</tr>
<tr>
<td>EM 201 Engr. Mech. (Statics)</td>
<td>EM 202 Engr. Mech. (Dynamics) 3 (3,0)</td>
</tr>
<tr>
<td>Engl 203 Survey of Engr. Lit.</td>
<td>Engl 204 Surv. of Engr. &amp; Amer. Lit. 3 (3,0)</td>
</tr>
<tr>
<td>Phys 221 Ther. and Elec. Phen.</td>
<td>AS or MS or Elective 1</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>17</strong></td>
<td><strong>18</strong></td>
</tr>
<tr>
<td>AgE 353 Computational Systems</td>
<td>AgE 362 Energy Conv. in Ag. Sys. 3 (2,3)</td>
</tr>
<tr>
<td>AgE 353 Engr. Anal. and Creat.</td>
<td>AgE 465 Engr. Prop. of Biol. Mat. 3 (2,3)</td>
</tr>
<tr>
<td>EE 307 Basic Elec. Engr.</td>
<td>Agron 202 Soils 3 (2,2)</td>
</tr>
<tr>
<td>EM 304 Mechanics of Materials</td>
<td>EE 308 Basic Elec. Engr. 3 (3,0)</td>
</tr>
<tr>
<td>ME 311 Engr. Thermo. I</td>
<td>Phys 222 Opt. and Mod. Phys. 3 (3,0)</td>
</tr>
<tr>
<td>Zool 101 Gen. Zoology</td>
<td>Phys 224 Modern Phys. Lab. 1 (0,3)</td>
</tr>
<tr>
<td>Zool 103 Gen. Zoology Lab.</td>
<td>1</td>
</tr>
<tr>
<td><strong>17</strong></td>
<td><strong>16</strong></td>
</tr>
<tr>
<td>AgE 431 Agric. Struct. Design</td>
<td>AgE 416 Agric. Machinery Design 3 (2,3)</td>
</tr>
<tr>
<td>AgE 471 Undergraduate Research</td>
<td>AgE 422 Soil &amp; Water Res. Engr. II 3 (2,3)</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>AgE 442 Agric. Proc. Engr. 3 (2,3)</td>
</tr>
<tr>
<td>EM 320 Fluid Mechanics</td>
<td>Bot 352 Plant Physiology 4 (3,3)</td>
</tr>
<tr>
<td>Math 313 Stat. Theory and Meth. I</td>
<td>or Zool 307 Animal Anatomy 3 (2,3)</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>or Micro 301 Gen. Microbiology 4 (3,3)</td>
</tr>
<tr>
<td><strong>Approved Electives</strong></td>
<td><strong>Approved Electives</strong> 2 or 3</td>
</tr>
<tr>
<td><strong>16</strong></td>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

138 Total Semester Hours
CERAMIC ENGINEERING

Ceramic Engineering offers rewarding careers for persons interested in making useful products. The ceramic products range from items important to everyday life, such as brick, cement, and glass to more exotic products, such as ceramic fuel elements for nuclear reactors, ceramic parts for electronic equipment and ceramic nose cones, ceramic heart valves, and other prosthetic parts for medical research. A variety of occupations are available to the ceramic engineering graduate thus making it possible to select a type of work that is compatible with individual preferences. Some graduates work as researchers, developing new ceramic knowledge; others are design engineers, creating new processes or new products; still others are engaged in technical sales, supervision of plant operations or in management.

South Carolina possesses a wide variety of ceramic minerals which rank with forests as the richest natural resources in the State and make it possible for South Carolina to contribute raw materials to every major classification of the ceramic industry. South Carolina has a diversified ceramic industry with plants manufacturing portland cement, glass containers, glass fibers, sewer pipes, brick, refractories, special raw materials, and electronic ceramics.

The curriculum of Ceramic Engineering leads to the degree of Bachelor of Science in Ceramic Engineering, and graduate courses are offered leading to advanced degrees. The course is based on a study of the fundamental courses in chemistry, physics, mathematics, and geology, and advanced courses are designed to apply these fundamental sciences to Ceramic Engineering. Courses in the humanities and social sciences together with courses in engineering sciences form major parts of the curriculum. A large number of elective courses permits the individual student to plan a program that is compatible with his particular interests, talents, and educational goals.

The Ceramic Engineering building and equipment are recognized as outstanding throughout the nation. These facilities were provided by a grant from the Olin Foundation.
CERAMIC ENGINEERING CURRICULUM
(See page 172 for Freshman Year)

### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrE 201 Intro. to Cer.</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>CrE 204 Lab. Procedures</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Phys 221 Ther. &amp; Elec. Phen.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Planned Elective</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

### Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrE 202 Materials</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>EE 208 Dig. Comp.</td>
<td>1 (1,0)</td>
</tr>
<tr>
<td>Engl 204 Surv. of Engl. &amp; Amer. Lit.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 208 Engnr. Math. I</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Phys 222 Opt. and Mod. Phys.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Planned Elective</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

### Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrE 304 Exp. Design</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>CrE 307 Thermal Process</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ch 331 Physical Chem.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>EM 301 Statics</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 313 Statistics</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Planned Elective</td>
<td>3 (3,0)</td>
</tr>
</tbody>
</table>

### Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrE 302 Thermo. Chem. Cer.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>CrE 309 Research Meth.</td>
<td>2 (0,6)</td>
</tr>
<tr>
<td>Ch 332 Physical Chem.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>EE 330 Systems I</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>EE 331 Workshop I</td>
<td>2 (0,4)</td>
</tr>
<tr>
<td>Planned Elective</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

### Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrE 402 Solid St. Cer.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>EE 320 Electronics I</td>
<td>2 (2,0)</td>
</tr>
<tr>
<td>EM 304 Mech. of Maths.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Planned Electives</td>
<td>7</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrE 403 Glasses</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>ME 304 Heat Transfer</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Planned Electives</td>
<td>10</td>
</tr>
</tbody>
</table>

138 Total Semester Hours

Note: 9 credits of Planned Electives must be taken in humanistic-social science courses. 19 credits of Planned Electives should be technical courses selected with the help of class adviser.

### CHEMICAL ENGINEERING

The graduate of the science-oriented, research-minded Chemical Engineering Department is finding intellectually stimulating and financially rewarding positions in all phases of modern industry. Because of the fundamental nature of the Chemical Engineering curriculum, the graduate is avidly sought by the newer nuclear and space-oriented industries, as well as by the equally important chemical-process industries. Indeed, the chemical engineer is in great demand in areas of technology, such as textiles, metals, aircraft, power, instrumentation, computers, foods, pulp and paper, and petroleum.

The curriculum is built upon a base of three sciences (chemistry, physics, and mathematics) with supporting courses in mechanics, electrical engineering, and materials engineering and culminates in a solid core of courses in chemical engineering. In all such courses the emphasis is upon why things happen as they do and not how; thus, the student is taught principles that will endure and not the methods of the present or past. He is taught to realize that all material things are chemical in nature; hence, the chemical engineer in the practice of his profession may be called upon to work
with anything on the face of the earth. The scope of chemical engineering is broad.

In spite of the strong scientific flavor of the Chemical Engineering curriculum, the faculty is constantly striving to impress upon the student that he is studying engineering and not pure science. The ultimate purpose of engineering is to make some practical use of scientific and engineering theories; hence, economics must always be kept in mind during the design of engineering processes or products. In brief, the chemical engineer in industry, as contrasted to the pure research scientist, is concerned that his company makes a profit.

In industry the chemical engineer may pursue one of two parallel lines of advancement. One path leads to management, and it should be noted that the top management of most chemical companies consists of former technical men. The second and equally rewarding path is in engineering research and development. In this latter category are found the men who have developed the processes and products which shape the modern world in which we live.

The Chemical Engineering Department at Clemson is housed in Earle Hall which is one of the newest and best equipped buildings for chemical engineering education in the Southeast. All members of the Chemical Engineering faculty have been educated at the doctoral level and the department offers work leading to the Master of Science and Doctor of Philosophy degrees as well as the Bachelor of Science degree.

### CHEMICAL ENGINEERING CURRICULUM

(See page 172 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Sophomore Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChE 204 Intro. to ChE I</td>
<td>ChE 205 Intro. to ChE II</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Ch 223 Organic Chem.</td>
<td>Ch 224 Organic Chemistry</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>EM 201 Statics</td>
<td>Ch 225 Organic Chem. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Engl 203 English Lit.</td>
<td>Comp Sc 210 Algorith. Process.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 206 Calc. of Sev. Var.</td>
<td>for Engrs.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 221 Ther. &amp; Elec. Phen.</td>
<td>Engl 204 Surv. of Engl. &amp; Amer. Lit.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>Math 208 Engr. Math. I</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
<td>1 (2,1)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>19</strong></td>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ChE 301 Unit Op. Theory I</td>
<td>ChE 302 Unit. Op. Theory II</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>ChE 307 Analog. Comp.</td>
<td>ChE 306 Unit Op. Lab. I</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Ch 331 Physical Chem.</td>
<td>ChE 331 ChE Thermo. I</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ch 339 Physical Chem. Lab.</td>
<td>Ch 332 Physical Chemistry</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>EE 307 Basic EE</td>
<td>Ch 340 Phys. Chem. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>EM 304 Mech. of Mat.</td>
<td>Phys 222 Opt. and Mod. Phys.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 309 Engr. Math II</td>
<td>Humanistic–Social Elective</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>

| **Total** | **20** | **17** |
### Civil Engineering

Civil Engineering is the broadest in scope of the engineering professions, being the parent stem from which most of the other branches of engineering have developed. All branches of Civil Engineering rest on a comparatively compact body of principles, in which the students are thoroughly trained in the classroom, the drafting room, the laboratory, and the field. Particular effort is made to develop those qualities essential to success in any field of endeavor and to fit the graduate to become a useful citizen—a good business man as well as a successful engineer.

The practice of civil engineering involves the planning, design, construction, maintenance, and use of large structures and systems to control and improve the environment for modern civilization. The structures may serve many purposes, such as buildings for commerce and industry, bridges for transportation, vehicles for space exploration, or dams for the control and storage of water or for generation of power. The systems provide essential services: water supply; waste water treatment; rail, air, and water transportation; and systems of highways. Projects such as these require that the civil engineer be trained in the social and economic issues as well as in basic science, engineering science, and technology. Though he may specialize in a particular branch of civil engineering, such as structural or transportation, he will need some acquaintance with all subdivisions of civil engineering as well as of other branches of engineering.

The course in Civil Engineering at Clemson University leads to the degree of Bachelor of Science and is planned to equip the graduate with a working knowledge of the above subjects. The student receives early drill in the basic sciences of mathematics, chemistry, and physics, and is introduced gradually to the engineering sciences and the technical courses in civil engineering. By the end of the junior year the student will have had courses in structural design,
construction materials, transportation engineering, and soil mechanics. These will enable him to choose technical electives in his senior year in the subdivision of his choice. The non-technical electives are sufficient in number to provide breadth in the arts and humanities, and assure that the graduate has a well-rounded education.

The civil engineering graduate is prepared to work immediately upon graduation in practically any of the areas of the profession. He may find himself in responsible charge at an early date, so every effort is made to train him at Clemson in the ethical standards demanded by the profession. All courses are directed toward the development of initiative, self-reliance, and integrity in the student.

The department is located in Lowry Hall, a modern air-conditioned structure erected in 1958. The laboratories are well equipped, and the classrooms are light and conducive to study. The building has an internal television system and the 220-seat auditorium is one of the most attractive ones on the campus.

CIVIL ENGINEERING CURRICULUM
(See page 172 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Sophomore Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 205 Civil Engr. Meth.</td>
<td>2 (1,3)</td>
<td>CE 206 Geometrics</td>
</tr>
<tr>
<td>EM 201 Statics</td>
<td>3 (3,0)</td>
<td>EM 304 Mech. of Mater.</td>
</tr>
<tr>
<td>Engl 203 Survey of Eng. Lit.</td>
<td>3 (3,0)</td>
<td>EM 305 Mech. of Mater. Lab.</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>4 (5,0)</td>
<td>Engl 204 Surv. of Eng. &amp; Amer. Lit.</td>
</tr>
<tr>
<td>Phys 221 Ther. &amp; Elec. Phen.</td>
<td>3 (3,0)</td>
<td>Math 208 Engr. Math. I</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>Phys 222 Opt. and Med. Phys.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phys 224 Modern Phys. Lab.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshman Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 301 Intro. to Struc. Sc.</td>
<td>3 (2,2)</td>
<td>CE 302 Struc. Desn. I</td>
</tr>
<tr>
<td>CE 320 Conc. &amp; Bit. Mats.</td>
<td>2 (1,3)</td>
<td>CE 310 Trans. Engr.</td>
</tr>
<tr>
<td>CE 331 Soil Mechanics</td>
<td>2 (2,2)</td>
<td>Econ 201 Principles of Econ.</td>
</tr>
<tr>
<td>CE 341 Environ. Engr.</td>
<td>3 (3,0)</td>
<td>EE 330 Systems I</td>
</tr>
<tr>
<td>EM 202 Dynamics</td>
<td>3 (3,0)</td>
<td>EE 331 Elect. Cir. Wksp.</td>
</tr>
<tr>
<td>Math Elective</td>
<td>3</td>
<td>Free Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE 310 Intro. to Mat. Sc.</td>
<td>3 (3,0)</td>
<td>CE 402 Struc. Desn. II</td>
</tr>
<tr>
<td>GE 424 Constr. Meth.</td>
<td>2 (2,0)</td>
<td>CE 425 Engr. Relations</td>
</tr>
<tr>
<td>EM 320 Fluid Mech.</td>
<td>3 (3,0)</td>
<td>EM 421 Hydrol. &amp; Hyd.</td>
</tr>
<tr>
<td>EM 322 Fluid Mech. Lab.</td>
<td>1 (0,3)</td>
<td>ME 311 Thermodynamics</td>
</tr>
<tr>
<td>Earth or Life Sc. Elective</td>
<td>3</td>
<td>Free Elective</td>
</tr>
<tr>
<td>Humanistic—Social Elective</td>
<td>3</td>
<td>Tech. Elective</td>
</tr>
<tr>
<td>Tech. Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each class adviser has a list of approved electives from which student must make selections. Any exception to this list must have the written approval of the department head.
ELECTRICAL ENGINEERING

Electrical engineering is the largest and most diversified of the engineering disciplines. Its technical society membership is more than double that of any other and the responsibilities of the profession range from highly analytical problem solving to detailed design of electronics, communications and computing systems. Electrical engineers have traditionally occupied key positions in a wide variety of engineering programs and their educational program must be structured to allow for this diversity of career objectives. The Electrical Engineering Department allows this flexibility of course selection in its curriculum. A liberal number of humanistic-social electives provide the graduate with the ability to address himself to both the “how” and the “why” of engineering.

The flexibility of the curriculum allows either a sampling from the many aspects of Electrical Engineering or a concentration in a specific area. The student’s interests and career objectives are carefully considered by the Electrical Engineering advising staff in structuring a program of study.

Electrical Engineering can be subdivided into the rather broad areas of networks and systems analysis, communications, electronics, computer science, and power. A brief discussion of each of these follows.

Systems and electric network analysis provides the fundamental core materials in the curriculum. These 18 credits of required work constitute the fundamental studies in analysis and experimentation which receive subsequent further development in elective courses. Computer simulation, mathematical modeling, experimental design and scientific reasoning are representative of the topics covered.

Computers, both analog and digital, are studied extensively in the Electrical Engineering program. Few areas in engineering present the promise of continued growth that is offered by the computing industry. In preparing the student to meet this challenge, the department offers courses in real time computing, computer language structures, the theory and design of digital computers, computation and simulation of physical systems, information processing and data handling. The department operates its own digital and analog computing laboratories and has remote terminal equipment to the University Computer Center.

The study of electronics continues to be one of the most active professional areas in Electrical Engineering. Changes in this field have occurred so rapidly that equipment designed five years ago
is obsolete by present design criteria. The vacuum tube gave way to the transistor 15 years ago and just recently the integrated circuit has replaced the discrete solid state device. The Electrical Engineering curriculum includes basic work in the theory of operation of solid state devices, the design of solid state circuits and the study of integrated circuit technology. Electronic laboratories within the department contain the most modern equipment available for the study of these devices, including special microscopic and micro-manipulation equipment needed in the study of minute integrated circuits.

The study of power systems analysis and energy conversion is carried out in a recently renovated power laboratory. This new facility contains the machinery and instrumentation necessary to explore solid-state-static motor control, dynamic speed and torque measurement techniques and power system stability.

Communication theory may be the most comprehensive field of specialization found in Electrical Engineering. It includes course work in information theory, electromagnetic theory, switching circuits and electronics. Engineers working in communication find themselves studying switching equipment in tele-communications, working on the plasma blackout problem in missile re-entry, studying the design implications of complex missile detection and defense systems or they may be designing antennas and transmitting equipment for space satellites. Some will be trying to comprehend the nature of bioelectricity by studying the human brain.

The Honors Program in the Department of Electrical Engineering has for the past four years accounted for a large percentage of the honors students in the University. All qualified Electrical Engineering students are strongly urged to take advantage of this program since it will provide them with an opportunity to participate in some uncommonly rewarding educational experiences during their final two years of study. Honors students receive individualized professional guidance and special laboratory privileges in many of their courses. Honors students in the past have designed electronic devices, have written complex computer programs and have studied technical material which ordinarily would be reserved for students at the graduate level. Students are asked to contact their Electrical Engineering adviser for more information.
### ELECTRICAL ENGINEERING CURRICULUM

(See page 172 for Freshman Year)

#### SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 223 Electron Phys. Lab.</td>
<td>Technical/Humanistic—</td>
</tr>
<tr>
<td>Humanistic—Social Elective*</td>
<td>Social Elective*†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>as or MS or Elective</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

#### JUNIOR YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 320 Electronics I</td>
<td>EE 321 Electronics II</td>
</tr>
<tr>
<td>EE 325 Electronics and Electromagnetics Lab. I</td>
<td>EE 326 Electronics and Electromagnetics Lab. II</td>
</tr>
<tr>
<td>EE 329 Logic &amp; Comput. Devices</td>
<td>EE 332 Systems II</td>
</tr>
<tr>
<td>EE 330 Systems I</td>
<td>EE 333 Elect. Circuits Workshop II</td>
</tr>
<tr>
<td>EE 331 Elect. Circuits Workshop I</td>
<td>EE 341 Elect. &amp; Magnetic Fields II</td>
</tr>
<tr>
<td>EE 340 Elec. and Mag. Fields I</td>
<td>Humanistic—Social Elective*</td>
</tr>
<tr>
<td>Math 309 Engineering Math II</td>
<td>Technical Elective†</td>
</tr>
<tr>
<td>Technical Elective†</td>
<td>Free Elective</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

#### SENIOR YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 410 Systems III</td>
<td>EE 450 Systems IV</td>
</tr>
<tr>
<td>EE 422 Electronics III</td>
<td>Humanistic—Social Elective*</td>
</tr>
<tr>
<td>Technical Elective†</td>
<td>Technical Elective†</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

#### INDUSTRIAL ENGINEERING*

### INDUSTRIAL ENGINEERING CURRICULUM*

#### JUNIOR YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 301 Process Planning I</td>
<td>EM 202 Dynamics</td>
</tr>
<tr>
<td>IE 304 Methods &amp; Standards</td>
<td>IE 306 Process Planning II</td>
</tr>
<tr>
<td>ME 311 Thermodynamics</td>
<td>ME 304 Heat Transfer</td>
</tr>
<tr>
<td>MetE 302 Gen. Metallurgy</td>
<td>Humanistic—Social Elective</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

#### SENIOR YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 310 Elec. Engr. Lab.</td>
<td>IE 408 Plant Design</td>
</tr>
<tr>
<td>IE 412 Seminar</td>
<td>IE 413 Seminar</td>
</tr>
<tr>
<td>ME 315 Kinematics of Mech.</td>
<td>ME 481 Methods of O.R. II</td>
</tr>
<tr>
<td>ME 480 Methods of O.R. I</td>
<td>Approved Elective</td>
</tr>
<tr>
<td>Humanistic—Social Elective</td>
<td>Humanistic—Social Elective</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

* This program to be discontinued. No new students admitted after January 1966.

Each class adviser has an up-to-date list of approved electives. Students must select their electives from this list. Any exceptions to list must be approved in writing by the department head.
MECHANICAL ENGINEERING

Mechanical engineers are involved in a variety of industries: aerospace, machinery, textile, chemical, automotive, appliance, and many others. Therefore, their education must be rather broad and not overly specialized. It begins with a thorough preparation in the basic sciences: mathematics, chemistry and physics. This is followed by rigorous study of the engineering sciences: electrical sciences, thermal sciences, mechanical sciences, computers, and systems engineering which is a generalized treatment of automatic control systems.

The program is designed to develop technical competence in the three broad technical areas of Thermal Science, Mechanical Design and Systems Engineering.

The thermal sciences are concerned with energy conversion and heat transfer. The chemical energy of fuels may be converted to other more useful forms to propel high-speed jet aircraft, to provide the thrust for space vehicles, or to operate refrigeration or air conditioning systems. The thermal sciences also involve fluid flow phenomena: supersonic flow, aerodynamics, and flow through turbo-machinery.

Mechanical design requires a knowledge of the strength of materials; mechanisms for converting motion; stress, strain, and deflection analyses; automatic control; lubrication theory; and other engineering sciences. It involves the application of the basic and engineering sciences to the creative design of a wide variety of new devices and systems from prosthetic devices for the handicapped to completely automated machines for manufacturing plants.

Systems engineering is an outgrowth of automatic control theory. It involves instrumentation, and both analog and digital computers for the mathematical and experimental analyses of complex physical systems. These systems may be made up of various mechanical, electrical, and hydraulic components. It is the engineering science upon which the field of automation is based.

All of the mechanical engineering laboratories and mechanical design rooms at Clemson are modern and well equipped. A new Analog Computer Laboratory has recently been developed as well as a new Instrumentation Laboratory. All research activities in the department are housed in a new, modern, air-conditioned laboratory building.

In order that mechanical engineering students may obtain a well-rounded education, approximately one-fifth of the program is de-
voted to subjects in the arts and humanities. Thus, with a broad education in the basic sciences, engineering sciences, and in the humanities, mechanical engineering graduates are prepared for careers in industry, research, development, mechanical design, management or further graduate study.

The Mechanical Engineering Department offers work leading to the Master of Science and the Doctor of Philosophy degrees as well as to the Bachelor of Science degree.

MECHANICAL ENGINEERING CURRICULUM
(See page 172 for Freshman Year)

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Sophomore Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>First Semester</strong></td>
<td><strong>Second Semester</strong></td>
<td><strong>Second Semester</strong></td>
</tr>
<tr>
<td>EM 201 Statics</td>
<td>EM 202 Dynamics</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>Engl 203 Survey of Eng. Lit.</td>
<td>Engl 204 Surv. of Eng. &amp; Amer. Lit.</td>
<td>1</td>
</tr>
<tr>
<td>Math 206 Cal. of Seq. Var.</td>
<td>Math 208 Engr. Math I</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>ME 201 Engr. Design</td>
<td>Math 313 Statistics</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>or Math 313 Statistics</td>
<td>or ME 201 Engr. Design</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>ME 290 Digital Comp.</td>
<td>Phys 222 Opt. and Mod. Phys.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 221 Thermal &amp; Elec. Phen.</td>
<td>Phys 224 Engr. Phys. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Free Elective</strong></td>
<td><strong>Free Elective</strong></td>
<td><strong>Free Elective</strong></td>
</tr>
<tr>
<td><strong>Junior Year</strong></td>
<td><strong>Senior Year</strong></td>
<td><strong>Junior Year</strong></td>
</tr>
<tr>
<td>EE 330 Systems I</td>
<td>ME 304 Heat Transfer</td>
<td>ME 402 Engr. Design</td>
</tr>
<tr>
<td>EE 331 EE Workshop</td>
<td>ME 312 Engr. Thermo. II</td>
<td>ME 414 ME Lab.</td>
</tr>
<tr>
<td>EM 404 Mech. of Maters.</td>
<td>ME 314 Engr. Exp.</td>
<td>Electives</td>
</tr>
<tr>
<td>EM 320 Fluid Mech.</td>
<td>ME 316 Dynamic Sys. Anal.</td>
<td>9</td>
</tr>
<tr>
<td>ME 311 Engr. Thermo. I</td>
<td>ME 321 Fluid Dynamics</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>ME 313 Inst. &amp; Meas.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td><strong>Free Elective</strong></td>
<td><strong>Free Elective</strong></td>
<td><strong>Free Elective</strong></td>
</tr>
<tr>
<td><strong>Senior Year</strong></td>
<td><strong>Senior Year</strong></td>
<td><strong>Senior Year</strong></td>
</tr>
<tr>
<td>ME 401 Prog. of Engr. Des.</td>
<td>ME 414 ME Lab.</td>
<td>Electives</td>
</tr>
<tr>
<td>ME 404 Automatic Control</td>
<td>Electives</td>
<td>9</td>
</tr>
<tr>
<td>ME 413 ME Lab.</td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td><strong>Free Elective</strong></td>
<td><strong>Free Elective</strong></td>
</tr>
<tr>
<td><strong>Total Semester Hours</strong></td>
<td><strong>138 Total Semester Hours</strong></td>
<td><strong>20</strong></td>
</tr>
</tbody>
</table>

**Elective Policy**

12 hours must be Humanistic-Social Electives.
9 hours must be Technical Electives.
Each class advisor has a list of approved electives.

METALLURGICAL ENGINEERING CURRICULUM†

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>First Semester</strong></td>
<td><strong>Second Semester</strong></td>
</tr>
<tr>
<td>Ch 317 Quan. Anal. Lab.</td>
<td>Ch 332 Phys. Chemistry</td>
</tr>
<tr>
<td>MetE 301 Phys. Metallurgy</td>
<td>MetE 304 Physical Metallurgy</td>
</tr>
<tr>
<td>Non-Technical Elective</td>
<td>MetE 320 Mech. Metallurgy</td>
</tr>
<tr>
<td><strong>19</strong></td>
<td><strong>2 (2,0)</strong></td>
</tr>
</tbody>
</table>

† This program to be discontinued. No new students admitted after January 1968.
186 Degrees and Curriculums

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Senior Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrE 410 Analytical Processes</td>
<td>3 (2,3)</td>
<td>CrE 419 Science of Engr. Mats.</td>
</tr>
<tr>
<td>CrE 419 Science of Engr. Mats.</td>
<td>3 (3,0)</td>
<td>MetE 408 Heat Treating</td>
</tr>
<tr>
<td>ChE 430 Chem. Engr. Thermo.</td>
<td>3 (3,0)</td>
<td>MetE 425 Senior Thesis</td>
</tr>
<tr>
<td>MetE 402 Metallurgical Lit.</td>
<td>1 (0,3)</td>
<td>MetE 450 Metallic Corrosion</td>
</tr>
<tr>
<td>MetE 430 Powder Metallurgy</td>
<td>3 (2,3)</td>
<td>Technical Elective*</td>
</tr>
<tr>
<td>Non-Technical Electives*</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

* Class advisers have an up-to-date list of approved electives and will suggest course sequences. A minimum of nine credits in the humanities or social sciences must be elected. Any exception to the courses on the list must be approved by the department head.

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

The programs of the College of Industrial Management and Textile Science embrace three major areas, teaching, research, and public service. The College is responsible for six graduate programs (two in cooperation with other administrative units), seven undergraduate programs, and a “non credit” series of professional development courses for business and industry. The undergraduate curriculums are in the areas of Accounting, Administrative Management, Economics, Financial Management, Industrial Management, Textiles, and Textile Chemistry. These curriculums are designed to prepare the students for a variety of careers, as well as to furnish an education on which to build for a lifetime. The curriculums recognize the need for an understanding of the basic principles of science and appreciation for the nature of human beings, and the comprehension of the economic, political, and social environment. Flexibility in course selection and choice of areas for emphasis is made possible by secondary concentrations and minors as indicated.

ACCOUNTING

This curriculum leads to the Bachelor of Science degree in Accounting. The program of courses is designed to prepare students for professional careers in accounting and management. The major study of accounting is well supported by sequential courses in English, mathematics, management, economics, and sociology.

The graduate in Accounting is well prepared for entrance in law school, graduate school, or the practice of accountancy, either public, private, or governmental. The study of Accounting in preparation for a career in other areas of Management will provide mastery over an essential tool which reinforces experience and judgment in the decision-making process.
ACCOUNTING CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Engl 201 Principles of Accct.</td>
</tr>
<tr>
<td>Hist 104 Western Civilization</td>
<td>3 (3,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Math 108 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>Math 205 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Science Elective*</td>
<td>4 (3,3)</td>
<td>Science Elective*</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td><strong>15</strong></td>
<td><strong>15</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acct 202 Principles of Accct.</td>
<td>3 (3,0)</td>
<td>Acct 301 Intermediate Accct.</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3,0)</td>
<td>Comp Sc 205 Comp. Prog.</td>
</tr>
<tr>
<td>Engl 203 Survey of Eng. Lit.</td>
<td>3 (3,0)</td>
<td>Econ 202 Principles of Econ.</td>
</tr>
<tr>
<td>Math 207 Multidim Cal.</td>
<td>3 (3,0)</td>
<td>Engl 204 Surv. of Engl. &amp; Amer. Lit.</td>
</tr>
<tr>
<td>Soc 201 Introd. to Soc.</td>
<td>3 (3,0)</td>
<td>IM 201 Introd. to IM</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>Math 313 Stat. Methods I</td>
</tr>
<tr>
<td></td>
<td><strong>16</strong></td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acct 302 Intermediate Accct.</td>
<td>3 (3,0)</td>
<td>Acct 305 Income Taxation</td>
</tr>
<tr>
<td>Acct 303 Cost Accct.</td>
<td>3 (3,0)</td>
<td>Engl 304 Advanced Comp.</td>
</tr>
<tr>
<td>Econ 314 Inter. Econ. Theory</td>
<td>3 (3,0)</td>
<td>IM 313 Commercial Law</td>
</tr>
<tr>
<td>IM 305 Corporation Finan.</td>
<td>3 (3,0)</td>
<td>Mgt Sc 311 Econometrics</td>
</tr>
<tr>
<td>IM 312 Commercial Law</td>
<td>3 (3,0)</td>
<td>Soc 351 Industrial Soc.</td>
</tr>
<tr>
<td>Approved Elective</td>
<td>3</td>
<td>Approved Elective</td>
</tr>
<tr>
<td></td>
<td><strong>18</strong></td>
<td><strong>18</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acct 405 Adv. Fed. Tax.</td>
<td>3 (3,0)</td>
<td>Acct 407 Accet. Research</td>
</tr>
<tr>
<td>Acct 410 Bud. and Exec. Cont.</td>
<td>3 (3,0)</td>
<td>Acct 415 Auditing</td>
</tr>
<tr>
<td>Acct 411 Advanced Accct.</td>
<td>3 (3,0)</td>
<td>Engl 301 Public Speaking</td>
</tr>
<tr>
<td>Mgt Sc 414 Stat. Analysis</td>
<td>3 (3,0)</td>
<td>IM 404 Managerial Econ.</td>
</tr>
<tr>
<td>Approved Elective</td>
<td>3</td>
<td>IM 415 Mgt. Dec. Making</td>
</tr>
<tr>
<td></td>
<td><strong>15</strong></td>
<td><strong>16</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>132 Total Semester Hours</strong></td>
<td></td>
</tr>
</tbody>
</table>

* Science elective includes any natural or physical science.

**ADMINISTRATIVE MANAGEMENT**

The Bachelor of Science degree in Administrative Management is designed for those students interested in careers as professional managers in the less technical areas of management. Such areas include marketing, personnel administration, purchasing, public administration at the local, state and national levels, and other administrative activities. In addition, the qualified graduate of this curriculum will have a background suitable for pursuing graduate study in such areas as marketing, transportation, finance, and economics, as well as the behavioral sciences.

The programs of study included in Administrative Management curriculum is designed to provide the student with (1) an appreciation of the social, political and economic environments in which business firms must operate, (2) knowledge of the functional areas of business, their interrelationship and use of analytical methods in solving problems and (3) some facility in the use of mathe-
matics, statistics, and the behavioral sciences in managing administra-
tive activities.

### ADMINISTRATIVE MANAGEMENT CURRICULUM

#### Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chem. ⁹</td>
<td>Ch 102 General Chem. ⁹</td>
</tr>
<tr>
<td>or Acct 201 Prin. of Acct.</td>
<td>or Acct 202 Prin. of Acct.</td>
</tr>
<tr>
<td>Engl 101 English Comp.</td>
<td>Engl 102 English Comp.</td>
</tr>
<tr>
<td>Hist 104 Western Civilization</td>
<td>Math 103 Math Analysis II</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>14 or 13</td>
<td>14 or 13</td>
</tr>
</tbody>
</table>

#### Sophomore Year

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 201 Prin. of Econ.</td>
<td>or Phys 202 Gen. Physics⁸</td>
</tr>
<tr>
<td>or Engl 204 Surv. of Engl. and Amer. Lit.</td>
<td>IM 201 Introf. to Mgt.</td>
</tr>
<tr>
<td>or Phys 201 Gen. Physics⁹</td>
<td>Psych 201 Introf. to Psych.</td>
</tr>
<tr>
<td>Soc 201 Introf. Soc.</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>17 or 18</td>
</tr>
<tr>
<td>16 or 17</td>
<td></td>
</tr>
</tbody>
</table>

#### Junior Year

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct 303 Cost Accounting</td>
<td>Econ 302 Money and Banking</td>
</tr>
<tr>
<td>Econ 301 Econ. of Labor</td>
<td>Engl 304 Adv. Composition</td>
</tr>
<tr>
<td>IM 304 Quality Control</td>
<td>IM 307 Personnel Mgt.</td>
</tr>
<tr>
<td>IM 306 Corporate Fin.</td>
<td>IM 313 Coml. Law</td>
</tr>
<tr>
<td>Pol Sc 201 Introf. to Pol. Sc. II</td>
<td>Elective†</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

#### Senior Year

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IM 401 Marketing Anal.</td>
<td>IM 409 Mgt. Simulation</td>
</tr>
<tr>
<td>IM 405 Econ. of Trans.</td>
<td>IM 411 Marketing Research</td>
</tr>
<tr>
<td>Soc 331 Urban Sociology</td>
<td>or IM 407 Dir. Research</td>
</tr>
<tr>
<td>Elective†</td>
<td>IM 412 Marketing Anal. II</td>
</tr>
<tr>
<td>18</td>
<td>Elective†</td>
</tr>
<tr>
<td></td>
<td>17 or 6</td>
</tr>
</tbody>
</table>

132 Total Semester Hours

* A student may elect either Chemistry or Physics to meet the degree’s physical science requirement. If he elects Chemistry he will take Acct 201 and 202 in the sophomore year. If he elects Physics he will take Acct 201 and 202 in the freshman year and Phys 201, 202, 203 and 204 in his sophomore year.

† If a student does not elect to take Basic ROTC, he may complete the 4 hours of elective credit at any time during his freshman or sophomore year.

### ECONOMICS

The curriculum leading to the Bachelor of Arts degree in Economics is designed to combine a broad general education with a thorough understanding of economics.

The economics curriculum is administered in the College of Industrial Management and Textile Science. Although separate and distinct from the Bachelor of Arts program in the College of Liberal Arts, it shares several ingredients with that program. The
two programs share an identical freshman year sequence, identical minor concentrations in most cases, and many of the same approved electives.

The degree requirements, effective for freshmen entering 1967-1968 and thereafter, are given below. The Bachelor of Arts degree in Economics requires 128 semester hours for graduation; and whenever scheduling permits, the student will be required to take the courses in the sequence given. The curriculum shown, however, can be considered adequate preparation for graduate study in economics only if it is taken with the mathematics minor.

**ECONOMICS CURRICULUM**

### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 101 English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3</td>
</tr>
<tr>
<td>Math 101 Math. Anal.</td>
<td>3</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
</tr>
<tr>
<td>Natural Science</td>
<td>3</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

**Freshman Year**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 102 English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Hist 204 History of Civilization</td>
<td>3</td>
</tr>
<tr>
<td>Math 102 Math. Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
</tr>
<tr>
<td>Natural Science</td>
<td>4</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

**Second Semester**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 202 Principles of Econ.</td>
<td>3</td>
</tr>
<tr>
<td>Engl 204 Surv. of Engl. &amp; Amer. Lit.</td>
<td>3</td>
</tr>
<tr>
<td>Hist 102 American History</td>
<td>3</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

**Sophomore Year**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct 201 Prin. of Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Econ 314 Intermed. Econ. Theory</td>
<td>3</td>
</tr>
<tr>
<td>Humanities†</td>
<td>3</td>
</tr>
<tr>
<td>Major</td>
<td>3</td>
</tr>
<tr>
<td>Minor§</td>
<td>3</td>
</tr>
<tr>
<td>Empl. Anal.</td>
<td>3</td>
</tr>
<tr>
<td>Humanities†</td>
<td>3</td>
</tr>
<tr>
<td>Major</td>
<td>3</td>
</tr>
<tr>
<td>Minor§</td>
<td>6</td>
</tr>
</tbody>
</table>

**Junior Year**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>6</td>
</tr>
<tr>
<td>Minor</td>
<td>6</td>
</tr>
<tr>
<td>Approved Electives‡</td>
<td>10</td>
</tr>
</tbody>
</table>

**Senior Year**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>6</td>
</tr>
<tr>
<td>Approved Electives‡</td>
<td>10</td>
</tr>
</tbody>
</table>

| Total Semester Hours          | 128     |

*The sequence of Math 101, 102, 203, and 106 may be replaced by Math 106, 205, and 313 or by Math 106, 205, and Ex St 301.
† Election of a two-semester sequence of the same science is required.
‡ Courses for the Humanities requirement may not be selected from the minor field.
§ Humanities include Art, English, Foreign Language, Music, Philosophy and Religion.
†§ Where the student selects a minor which carries prerequisites, the prerequisite courses will be counted as approved electives.
‡§ Those seeking teacher certification will be required to complete more than 128 semester hours.

Twenty-four semester hours above the sophomore level are required including Econ 314 and Econ 407. Courses must also include 9 semester hours selected from Econ 302, 403, 404, 410, 412 and
420. The remaining hours may be selected from Econ 301, 302, 305, 306, 308, 309, 403, 404, 410, 412, 416, 420, 421, 422, 424, Ex St 462, Mgt Sci 311, IM 404, 405, 406, and Ag Ec 456. (Econ 314 should be scheduled to follow immediately after Econ 202.)

**MINOR CONCENTRATION**

A major in economics must select a secondary (minor) concentration from the following:

- Accounting (to include Acct 202, 301, 302, 303, 410)
- Biology
- Chemistry
- English
- Geology
- History

Mathematics
Modern Languages
Philosophy
Physics
Political Science
Psychology
Sociology

Students who consider the Bachelor of Arts curriculum in Economics and desire to go into secondary school teaching may elect to take the degree in Education with a teaching area in Economics. The courses will be those required for teaching certificates as specified by the South Carolina Department of Education as well as those economics courses required for an Economics major.

Specific requirements for most minors may be found under the section on the College of Liberal Arts and the College of Physical and Mathematical Sciences, Bachelor of Arts curriculum. Requirements for a major in Education with a teaching area in Economics are shown under the College of Education.

A minor in Economics is provided for other degree programs consisting of 15 hours above the sophomore level which must include Econ 314 and 407.

**APPROVED ELECTIVES**

A list of approved electives for both degree and quality requirements may be obtained from the departmental secretary or from an adviser.

**FINANCIAL MANAGEMENT**

The curriculum for the Bachelor of Science degree in Financial Management provides the student with a course of study in preparation for a career in such areas as banking, insurance, brokerage and related activities. The student should be well prepared to serve on the financial staff of practically any business firm for the purpose of planning, providing, and controlling the capital of the firm. This curriculum should also prepare the student for service
in government and agencies and programs of government. The graduate with this degree should be adequately prepared for entrance in law or graduate school.

The course work consists largely of courses in English, Mathematics, Accounting, Economics, Management, and the Social Sciences. The special interests of the individual student may be pursued through elective credit.

**FINANCIAL MANAGEMENT CURRICULUM**

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act 201 Prin. of Acct.</td>
<td>3 (3,0)</td>
<td>Act 202 Prin. of Acct.</td>
</tr>
<tr>
<td>Engl 101 English Comp.</td>
<td>3 (3,0)</td>
<td>Engl 102 English Comp.</td>
</tr>
<tr>
<td>Hist 104 Western Civilization</td>
<td>3 (3,0)</td>
<td>Math 102 Math Analysis II</td>
</tr>
<tr>
<td>IM 201 Intro. to IM</td>
<td>3 (3,0)</td>
<td>Phil 202 Logic</td>
</tr>
<tr>
<td>Math 101 Math Analysis I</td>
<td>3 (3,0)</td>
<td>Pol Sc 101 Intro. to Pol. Sci.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td><strong>16</strong></td>
<td><strong>16</strong></td>
</tr>
<tr>
<td></td>
<td><strong>16</strong></td>
<td><strong>14</strong></td>
</tr>
<tr>
<td>Act 301 Intermediate Acct.</td>
<td>3 (3,0)</td>
<td>Act 302 Intermediate Acct.</td>
</tr>
<tr>
<td>Econ 201 Prin. of Econ.</td>
<td>3 (3,0)</td>
<td>Econ 202 Prin. of Econ.</td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3 (3,0)</td>
<td>Engl 204 Surv. of Engl. &amp; Am. Lit.</td>
</tr>
<tr>
<td>Math 203 Elem. Stat. Infer.</td>
<td>3 (3,0)</td>
<td>IM 299 Computer Prog. I</td>
</tr>
<tr>
<td>Soc 201 Intro. Soc.</td>
<td>3 (3,0)</td>
<td>Psych 201 General Psych.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td><strong>16</strong></td>
<td><strong>18</strong></td>
</tr>
<tr>
<td></td>
<td><strong>18</strong></td>
<td><strong>18</strong></td>
</tr>
<tr>
<td>Act 303 Cost Acct.</td>
<td>3 (3,0)</td>
<td>Act 305 Income Taxation</td>
</tr>
<tr>
<td>Econ 306 Risk &amp; Insurance</td>
<td>3 (3,0)</td>
<td>Econ 302 Money and Banking</td>
</tr>
<tr>
<td>Econ 314 Inter. Econ. Theory</td>
<td>3 (3,0)</td>
<td>IM 306 Corp. Finance</td>
</tr>
<tr>
<td>Engl 304 Adv. Composition</td>
<td>3 (3,0)</td>
<td>IM 307 Personnel Mgt.</td>
</tr>
<tr>
<td>IM 312 Coml. Law</td>
<td>3 (3,0)</td>
<td>IM 313 Coml. Law</td>
</tr>
<tr>
<td>Soc 351 Indus. Law</td>
<td>3 (3,0)</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td><strong>18</strong></td>
<td><strong>18</strong></td>
</tr>
<tr>
<td></td>
<td><strong>18</strong></td>
<td><strong>16</strong></td>
</tr>
<tr>
<td>Act 410 Bud. &amp; Exec. Cont.</td>
<td>3 (3,0)</td>
<td>Act 415 Auditing</td>
</tr>
<tr>
<td>Econ 422 Monetary Theory</td>
<td>3 (3,0)</td>
<td>Econ 412 Interna. Trade</td>
</tr>
<tr>
<td>IM 401 Marketing Anal.</td>
<td>3 (3,0)</td>
<td>Engl 301 Public Speaking</td>
</tr>
<tr>
<td>IM 415 Managli. Dec. Making</td>
<td>3 (3,0)</td>
<td>IM 409 Mgt. Simulation</td>
</tr>
<tr>
<td>Elective</td>
<td>6 (6,0)</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td><strong>18</strong></td>
<td>132 Total Semester Hours</td>
</tr>
</tbody>
</table>

**INDUSTRIAL MANAGEMENT**

This curriculum is designed to adequately prepare students for positions of major responsibility in industry, business, government or further academic study. During the first year education in the mathematical and physical sciences is emphasized. In the second, third, and senior years the student’s work expands into the areas of industrial engineering, finance, management and the social sciences. As preparation for careers in professional management, the Industrial Management curriculum is predicated on the philosophy that the individual must manage first himself, coupling this objec-
tive with the acquisition of a general education and then acquiring a mastery of the "tools" of management.

INDUSTRIAL MANAGEMENT CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 Gen. Chemistry</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>EG 103 Engr. Com.</td>
<td>3 (1,6)</td>
</tr>
<tr>
<td>or Hist 104 Western Civilization</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>IM 100 Introd. to IM</td>
<td>0 (1,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>15</strong></td>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act 201 Prin. of Accounting</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
</tr>
<tr>
<td>Math 207 Multi. Dim. Cal.</td>
</tr>
<tr>
<td>Phys 221 Thermal &amp; Elec. Phen.</td>
</tr>
<tr>
<td>Phys 223 Electron Phys. Lab.</td>
</tr>
<tr>
<td>Soc 201 Introd. to Soc.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act 303 Cost Accounting</td>
</tr>
<tr>
<td>Econ 314 Inter. Econ. Theory</td>
</tr>
<tr>
<td>IE 307 Survey of Engr.</td>
</tr>
<tr>
<td>IM 322 Legal Env. of Bus.</td>
</tr>
<tr>
<td>Area Concentration</td>
</tr>
<tr>
<td>American Studies Elective†</td>
</tr>
<tr>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act 410 Bud. and Exec. Cont.</td>
</tr>
<tr>
<td>IM 401 Marketing Analysis</td>
</tr>
<tr>
<td>IM 408 Work Simp. &amp; Stand.</td>
</tr>
<tr>
<td>Mgt Sc 414 Stat. Analysis</td>
</tr>
<tr>
<td>Area Concentration</td>
</tr>
<tr>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>

132 Total Semester Hours

* Industrial Management majors are expected to begin their area concentrations in the junior year.
† American Studies Elective. A student selects one 3 credit course from Hist 101, 102, 301, 313, 314, or Pol Sc 202, 301, 302, or he may elect to take an additional 3 hours in his area concentration with approval of his class adviser.
‡ Humanities Elective. A student selects one 3 credit course from any English, Architecture, Music, Humanities, Psychology, or Philosophy course for which he is eligible or he may elect to take an additional 3 hours in his area concentration with approval of his class adviser.
§ Students electing Accounting as their area concentration may substitute Actc 403 for IM 499 and IM 407. Students electing the Marketing concentration may substitute IM 410 for IM 407.
Area Concentrations

During the junior and senior years the student is required to select courses from one of the following areas for the purpose of emphasizing a particular area of the curriculum. Area concentrations constitute 12 credits and may be extended to 18 credits with the approval of the student's major adviser.

A. Ceramics  G. Marketing Analysis
B. Economics  H. Mathematics
C. Health and Hospital I. Personnel Management
    Administration  J. Regional Science
D. Industrial Engineering  K. Textile Chemistry
E. Industrial Statistics  L. Textile Science
F. Management Science

Textile Chemistry

The Textile Chemistry curriculum is designed to prepare students for a variety of positions in the textile fiber, finishing, and related industries. This program also constitutes an excellent foundation for graduate study. During the first two years, the student acquires a firm knowledge of chemistry, physics, and mathematics. In the third and fourth years, this basic knowledge is applied to areas of more specific interest to the textile industry. These include fabric and fiber formulation, dyeing and finishing, color science, textile unit operations, and textile instrumentation. Supporting courses in the humanities, English, statistics, quality control, and fiber science are also included.

In addition to the prescribed course work, senior students are encouraged to participate in original research and seminar programs. These programs carry academic credit and serve to introduce the students to the methodology of textile research and development.

The Textile Department also offers the degree of Master of Science in Textile Chemistry and, in conjunction with the Chemistry Department, the Doctor of Philosophy in Chemistry with a major in Textile Chemistry.
TEXTILE CHEMISTRY CURRICULUM

<table>
<thead>
<tr>
<th></th>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ch 101 General Chemistry</td>
<td>4 (3.3)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td></td>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td></td>
<td>Hist 104 Hist. of West. Civilization</td>
<td>3 (3.0)</td>
<td>IM 299 Comp. Program I</td>
</tr>
<tr>
<td></td>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5.0)</td>
<td>Math 205 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td></td>
<td>Text 132 Intro. Textiles</td>
<td>1 (1.0)</td>
<td>Phys 122 Mech. &amp; Wave Phen.</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td></td>
<td><strong>16</strong></td>
<td><strong>16</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sophomore Year</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ch 223 Organic Chemistry</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td>Ch 225 Org. Chem. Lab.</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td></td>
<td>Engl 203 Survey of Eng. Lit.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td>Phys 221 Thermal &amp; Elect. Phen.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td>Phys 223 Electr Phys. Lab.</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td><strong>17</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Junior Year</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ch 331 Physical Chemistry</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td>Math 313 Stat. Theory &amp; Methods</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td>TC 315 Introd. Poly. Sci. &amp; Engr.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td>TC 317 Pol. &amp; Fib. Lab.</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td>Text 305 Yarn Structure I</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td></td>
<td><strong>16</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Senior Year</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engl 304 Adv. Composition</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td>TC 457 Dyeing &amp; Fin. I</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td>TC 459 Dyeing and Fin. Lab.</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td>TC 466 Text. Unit Operations</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td></td>
<td>Text 321 Fiber Science</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>16</strong></td>
<td><strong>17</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>132 Total Semester Hours</td>
</tr>
</tbody>
</table>

TEXTILE SCIENCE

The Textile Science curriculum prepares the bachelor’s degree candidate in basic science and textile technology. The first two years are devoted primarily to the study of chemistry, physics, mathematics and English. In his third and fourth years, the student is introduced to the basic and applied science and technology necessary for development and production of fibers, woven textiles, non-woven textile systems, and synthetic polymers.

The curriculum prepares the candidate for research and development work as well as for positions in production, standards, and management in the polymer and textile or related industries and for graduate study in Textile Science, engineering, polymer science, and other related branches of science and engineering.

The Textile Department also offers graduate programs in polymer and textile science and engineering.
### TEXTILE SCIENCE CURRICULUM

#### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Hist 104 Hist. of West. Civilization</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.*</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Text 122 Intro. Textiles</td>
<td>1 (1,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 102 General Chemistry</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>IM 209 Comp. Program.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Math 205 Cal. and Lin. Alg.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Phys 122 Mech. &amp; Wave Phen.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

### Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 203 Survey of Eng. Lit.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Phys 221 Thermal &amp; Elect. Phen.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 223 Electron Phys. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>TC 303 Text. Chemistry</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>TC 305 Text. Chem. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Text 201 Fiber Processing I</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

### Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 313 Stat. Theory &amp; Methods</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Text 303 Fiber Processing III</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Text 311 Fabric Development I</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Text 321 Fiber Science</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

### Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 304 Adv. Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>TC 315 Introd. Poly. Sci. &amp; Engr.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>TC 317 Poly. &amp; Fib. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Text 411 Fabric Development III</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Text 414 Nonwoven &amp; Knit Struct.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Text 421 Text. Costing</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>TC 458 Dyeing and Fin. II</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Text 460 Dyeing and Fin. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Text 412 Fabric Dev. IV</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Text 436 Instrumentation</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Text 440 Color Science</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>


### COLLEGE OF LIBERAL ARTS

The College of Liberal Arts, in addition to its six major curriculums leading to the degree of Bachelor of Arts, furnishes indispensable services to all other divisions of the University, including nearly all the instruction in the humanities and the social sciences. Major concentrations may be elected in English, History, Modern Languages, Political Science, Psychology, and Sociology; minor concentrations are offered in these disciplines and in Philosophy. In cooperation with other Colleges of the University, minor concentrations are also available in Biology, Chemistry, Economics, Fine Arts, Geology, Mathematics, and Physics. Supporting work is offered in Music and in interdisciplinary humanistic studies.

The College of Liberal Arts offers programs leading to graduate degrees in English and in History.
BACHELOR OF ARTS CURRICULUM

GENERAL INFORMATION

The curriculum leading to the degree of Bachelor of Arts is designed to meet the needs of students who desire a broad general education, with emphasis upon the humanities and the social sciences, as a preparation for intelligent citizenship, for general commercial and industrial life, for government service, and for teaching. This curriculum also provides excellent background for the study of law or journalism.

As soon as feasible in his college career, and not later than the end of his sophomore year, the student seeking the Bachelor of Arts degree will select a major and a minor field of concentration from the following areas:

<table>
<thead>
<tr>
<th>Major</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Biology</td>
</tr>
<tr>
<td>History</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Modern Languages</td>
<td>Economics</td>
</tr>
<tr>
<td>Political Science</td>
<td>English</td>
</tr>
<tr>
<td>Psychology</td>
<td>Fine Arts</td>
</tr>
<tr>
<td>Sociology</td>
<td>Geology</td>
</tr>
<tr>
<td></td>
<td>History</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td>Modern Languages</td>
</tr>
<tr>
<td></td>
<td>Political Science</td>
</tr>
<tr>
<td></td>
<td>Philosophy</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td>Psychology</td>
</tr>
<tr>
<td></td>
<td>Sociology</td>
</tr>
</tbody>
</table>

To fulfill requirements for a major concentration, a student takes 24 semester hours credit from courses above the sophomore level, including certain courses specified by the major department; the minor concentration requires 15 credits from courses above the sophomore level, including certain specified courses.

The total number of semester credits required for the degree is 128; of these, at least 12 should be earned in humanities courses numbered 300 or higher, and at least 12 in Social Sciences courses numbered 300 or higher. The humanities are for this purpose considered to include Art, English, Languages, Music, Philosophy, and Religion as well as courses entitled Humanities; the Social Sciences...
Bachelor of Arts Degree 197

are here considered to include Economics, Geography, History, Political Science, Psychology, and Sociology.

Students in the Bachelor of Arts program who expect to teach in the public schools may elect Education courses required for teaching certificates by the South Carolina State Department of Education, such courses to be approved by their own departmental advisers.

**BACHELOR OF ARTS DEGREE**

**BASIC CURRICULUM**

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3.0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3.0)</td>
<td>Hist 204 History of Civilization</td>
</tr>
<tr>
<td>Math 101 Math Analysis</td>
<td>3 (3.0)</td>
<td>Math 102 Math Analysis</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3.1)</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Natural Science*</td>
<td>4 (3.3)</td>
<td>Natural Science*</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td><strong>17</strong></td>
<td><strong>17</strong></td>
<td></td>
</tr>
</tbody>
</table>

**Sophomore Year**

| Engl 203 English Literature | 3 (3,0) | Engl 204 Surv. of Engl. & Amer. Lit. | 3 (3,0) |
| Modern Language | 3 (3,1) | Modern Language | 3 (3,0) |
| AS or MS or Elective | 1 | AS or MS or Elective | 1 |
| Approved Electives | 9 | Approved Electives | 9 |
| **16** | **16** | | |

**Junior Year**

| Major and Minor Areas | 9 | Major and Minor Areas | 12 |
| Humanities or Social Sciences | 3 | Humanities or Social Sciences | 3 |
| Approved Electives | 3 or 6 | Approved Electives | 3 |
| **15 or 18** | **18** | | |

**Senior Year**

| Major and Minor Areas | 9 | Major and Minor Areas | 9 |
| Humanities or Social Sciences | 3 | Humanities or Social Sciences | 3 |
| Approved Electives | 3 or 2 | Approved Electives | 2 or 3 |
| **15 or 14** | **128 Total Semester Hours** | | |

* A two-semester sequence of the same science (Chemistry, Physics, Geology, or Physical Science) or Botany 101 and Zoology 101, 103.

**MAJOR CURRICULUMS IN THE COLLEGE OF LIBERAL ARTS**

**ENGLISH**

For a major concentration in English, the recommended program of study consists of the courses stipulated in the basic curriculum and 24 semester hours of English, arranged as follows:

Group I—Engl 402 or 404, 405, 423 or 424.

Group II—Nine semester credits according to one of the following plans:

(A) Engl 461; 425 or 427; and 416 or 438 or 439.
Degrees and Curriculums

(B) Engl 462; 409 or 431 or 443; 445 or 446.

(C) Engl 461, 462, and one of these courses: 409, 416, 425, 427, 431, 438, 439, 443, 445.

Group III—Six additional semester credits from courses numbered above 400.

Engl 304, Advanced Composition, or departmental certification of proficiency in composition is required. English majors are expected to complete Hist 361, 363, and to complete the third year of a foreign language or the second year of two foreign languages. Additional approved electives are added as needed to meet the minimum of 128 semester hours required for graduation.

HISTORY

The recommended program of study consists of the required courses in the Bachelor of Arts curriculum plus Hist 101, 102, Econ 201, Phil 201 or 312, the completion of the third year of a modern foreign language, Hist 499, and 21 additional semester credits in History, arranged as follows:

Group I—At least six credits from these courses: Hist 306, 307, 313, 314, 315, 410, 411, 412, 413.

Group II—At least six credits from these courses: Hist 361, 363, 371, 386, 473, 475, 476, 477, 479, 480, 482, 483, 484.

Group III—At least six credits from these courses: Hist 331, 332, 340, 341, 342.

History majors become eligible to take Hist 499 when they have completed 96 semester hours and at least 5 courses in history at the 300-400 level (excluding Hist 301).

Additional approved electives are added as needed to meet the minimum of 128 semester hours required for graduation.

MODERN LANGUAGES

The recommended program for a major concentration in Modern Languages consists of the required courses of the basic Bachelor of Arts curriculum and 24 semester credits in one language or 18 credits in one language and 12 credits in a second language. Only courses numbered higher than 300 may be used to fulfill these requirements.

French majors must take Fr 303, 304, 305, 306; Spanish majors must take Span 303, 304, 305, 306; German majors must take Ger 303, 304, 305, 306.

*English 332 may be included in this group by special arrangement with the Head of the Department of English.
Additional approved electives are added as needed to meet the minimum of 128 semester hours required for graduation.

**POLITICAL SCIENCE**

For a major concentration in Political Science, the recommended program of study consists of the required courses in the Bachelor of Arts curriculum, Pol Sc 201 and either 101 (formerly 202) or 301, and 24 semester hours of Political Science drawn from at least four of these fields:

1. American Government—Pol Sc 302, 403, 409
2. Public Administration—Pol Sc 321
3. Constitutional Law—Pol Sc 331, 432, 433, 434
4. Political Behavior—Pol Sc 341, 442, 443
5. Political Thought—Pol Sc 351, 352
6. International Relations—Pol Sc 361, 462, 463, 464, 469, 473
7. Comparative Governments—Pol Sc 371, 372, 373

Additional approved electives are added as needed to meet the minimum of 128 semester hours required for graduation.

**PSYCHOLOGY**

The recommended program of study for a major concentration in Psychology consists of the required courses in the Bachelor of Arts curriculum, Psych 201 and 202, Math 203, Psych 363, and 21 additional hours of Psychology drawn from the following courses:


Additional approved electives are added as needed to meet the minimum of 128 semester hours required for graduation.

**SOCIOLOGY**

The recommended program of study for a major concentration in Sociology consists of the required courses in the Bachelor of Arts curriculum, Soc 201, 202, Econ 201, 202, Phil 201, 202, Pol Sc 301, Ex St 301, Soc 411, 421, and 18 additional hours drawn from these courses: Pol Sc 341, RS 359, Soc 311, 321, 322, 324, 331, 341, 351, 361, 371, 381, 391, 411, 421, 431, 451, 451, 491, 499. Additional approved electives will be added to meet the minimum of 128 semester hours required for graduation.

**MINOR CONCENTRATIONS**

Students seeking the Bachelor of Arts degree may choose one of several minor concentrations available. The requirements for each area are detailed below.
Biology. A minor concentration in Biology requires 15 semester credits in the biological sciences in addition to Bot 101 and Zool 101, 103.

Chemistry. A minor concentration in Chemistry requires Ch 101, 102, and 15 additional credits in chemistry, the courses to be selected in consultation with the Department of Chemistry.


English. A minor concentration in English requires 15 semester credits in English above the sophomore level, arranged as follows:

Group I—Engl 405 and either 423 or 424.

Group II—One of these courses: Engl 402, 404, 425, 427, 431, 443, 461, 462.

Group III—Six additional credits from English courses numbered higher than 400.

Engl 304, Advanced Composition, or departmental certification of proficiency in composition is required.

Fine Arts. The minor concentration in Fine Arts consists of Hum 201-202 or Arch 101-102 and 15 semester credits from the following courses, of which at least 9 must be earned in courses numbered 300 or higher, and no fewer than 6 in any discipline selected:

Arch 315, 316, 402, 415, 416, 511, 512;
Engl 305, 311, 331, 332, 333;
Mus 151, 152, 310, 315, 316, 362, 365, 405, 406, 411;
Phil 305;
Visual Studies (all courses).

Geology. A minor concentration in Geology requires 15 semester credits from the following courses: Geol 201, 203, 204, 205, 306, 307, 309, 311, 402, 403, 404, 411, 412.

History. A minor concentration in History requires Hist 101, 102, and 15 additional credits in History, including at least one course from each of these groups:


Group II—Hist 361, 363, 371, 386, 473, 475, 476, 477, 479, 480, 482, 483, 484.

Group III—Hist 331, 332, 340, 341, 342.

Mathematics. A minor concentration in Mathematics requires Math 106, 205, 206, and 9 additional credits in mathematics, including at least two of these courses: Math 208, 295, 313, Comp Sc
205, 311, and any 400-level course in Mathematics or Computer Science.

**Modern Languages.** A minor concentration in Modern Languages requires 15 semester credits in one modern language from courses numbered higher than 300.

**Philosophy.** A minor concentration in Philosophy requires Phil 201, 202, and 15 semester credits from the following courses: Phil 303, 304, 305, 312, 318, 322, 344, 422, 425, Rel 309.

**Physics.** A minor concentration in Physics requires Phys 122 and 15 additional semester credits in Physics, including Phys 221, 222.

**Political Science.** A minor concentration in Political Science requires Pol Sc 101 (formerly 202) or 301; 201, and 15 additional semester credits selected from at least three of the fields of Political Science listed above under the major curriculum for Political Science.

**Psychology.** A minor concentration in Psychology requires Psych 201, 202, and 15 semester credits from the following courses; Psych 302, 303, 321, 331, 341, 351, 361, 363, 401, 402, 403, 422, 442, 471, 498; Ed 302 and 335 (if taken prior to fall 1968); Comp Sc 310.

**Sociology.** A minor concentration in Sociology requires Soc 201, 202, and 15 semester credits from the following courses: Soc 311, 321, 322, 324, 331, 341, 351, 361, 371, 381, 391, 411, 421, 431, 451, 481, 499, Pol Sc 341, RS 359.

The “Cluster Minor.” This minor concentration is designed to allow students a somewhat wider choice of course materials than is possible with the conventional subject-matter minor. The general requirement for the “Cluster Minor” is 15 semester credits in courses numbered higher than 300 (except where noted differently), chosen according to one of the plans listed below. Courses within the student’s major area may not be included in the Cluster Minor.

**Group I—Social Sciences**
- Economics
- History
- Political Science
- Psychology
- Sociology

**Group II—Philosophy and Religion**
Group III—Administration
   Economics
   Accounting
   Industrial Management

Group IV—Life Sciences
   Bacteriology
   Botany
   Genetics
   Zoology

Group V—Physical Sciences
   Chemistry
   Geology
   Physics

* At least two courses must be taken in each subject chosen.
† No course in the 100 series is acceptable toward the cluster minor and not more than two courses in the 200 series. At least two courses must be taken in each subject chosen.

APPROVED ELECTIVES FOR STUDENTS IN THE COLLEGE OF LIBERAL ARTS

Class advisers in the College of Liberal Arts will normally approve the following courses as electives, but the Dean of Liberal Arts retains the prerogative of limiting the total number of credits that may be approved in a discipline or area:

All courses offered in the College of Liberal Arts and the College of Physical and Mathematical Sciences except: Ch 450; Engl 111; Geol 406; Phys 460; Psych 211; Math 100, 115, 116, 215, 216;
All courses in Economics;
All courses in Accounting;
Architecture 253, 303, 304, 315, 316, 415, 416, 517-530, to a limit of 12 credits;
Bot 101, 202 (other courses by special arrangement);
Comp Sc 205, 311;
Education courses required for certification in South Carolina (other courses by special arrangement);
Ex St 301, 462;
In Ed 204, 440;
IM 201, 299, 307, 312, 313, 322, 405;
Mgt Sc 311, 413, 414;
RPA 304;
RS 301;
Courses in Visual Studies to a limit of 9 credits;
Zool 101, 103, 301, 302, 304, 460.
SCHOOL OF NURSING

The School of Nursing provides two programs designed to prepare the undergraduate student for a career in nursing. The program leading to the Bachelor of Science in Nursing degree is designed to prepare nurses for the practice of professional nursing in a variety of settings—hospitals, industry, clinics, and public health agencies. The program offers the foundation for graduate study in nursing, and an unlimited opportunity for men and women for sound career development in professional nursing. The baccalaureate program is four academic years and one six-week summer term in length. The student is enrolled in liberal arts and basic science courses during the first two years. These courses are arranged sequentially in order to provide the foundation for professional courses which are planned for the junior and senior years. In addition advanced liberal arts courses are taken during the junior and senior years. Clinical nursing experiences under the guidance of the School of Nursing faculty will take place with patients in the Greenville Hospital Systems and with local public health agencies.

The program leading to the Associate in Arts degree is designed to prepare technically competent nurses who will practice in hospitals and similar agencies. The clinical nursing experiences, under the guidance of the School of Nursing faculty, take place with patients in the Anderson Memorial Hospital. The program covers two years and one summer session. This is a terminal program.

Students enrolled in the School of Nursing must meet the course requirements as described for each program in order to qualify for the degree and for licensure to practice Nursing.

BACHELOR OF SCIENCE IN NURSING CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 101 General Botany</td>
<td>4 (3,3)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Math 102 Math. Analysis</td>
</tr>
<tr>
<td>Math 101 Math. Analysis</td>
<td>3 (3,0)</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
<td>Zool 101, 103 Gen. Zoology</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 204 Survey of Engl. and American Lit.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ch 220 El. Org. Chem.</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>History (Elective)</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Psych 201 Gen. Psych.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Zool 461 Anatomy</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 310 Elem. Bio-Chem.</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Micro 301 Gen. Microbiology</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Nurs 207 Dynamics of</td>
<td></td>
</tr>
<tr>
<td>Human Relations</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Psych 211 Growth &amp; Develop.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Soc 201 Introd. to Soc.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>
### Degrees and Curriculums

#### SUMMER (First Session)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurs 208 Problem Solving in Nursing</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Zool 460 Gen. Physiology</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>6</strong></td>
</tr>
</tbody>
</table>

#### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 203 Elem. Stat. Inter.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Nurs 309 Human Values in Nurs.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Nurs 311 Nurs. During Alterations in Life Patterns</td>
<td>4 (1,9)</td>
</tr>
<tr>
<td>Nurs 313 The Prom. of Health</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Soc 202 Social Problems</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

#### Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurs 310 Perspectives in Nursing</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Nurs 312 Nurs. of Acute and Chronically Distressed</td>
<td>4 (1,9)</td>
</tr>
<tr>
<td>Nurs 314 Nursing in the Home</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Soc 311 The Family</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Elective*</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

#### Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurs 415 Nurs. as a Social Force</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Nurs 417 Intensive Nursing</td>
<td>4 (1,9)</td>
</tr>
<tr>
<td>Nurs 419 The Multiprob. Family</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Nurs 421 Hist. &amp; Philo. of Nurs.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>RS 301 Rural Community</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurs 422 Cur. Research in Nurs.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Nurs 425 Independent Study in Nursing</td>
<td>7 (3,12)</td>
</tr>
<tr>
<td>Psych 302 Social Psychology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Elective*</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

**Note:** Nurs 207 and Nurs 208 open to students enrolled in baccalaureate degree program only. 1.80 grade-point ratio required for registration in courses 300 and above.

### ASSOCIATE IN ARTS IN NURSING

#### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Nurs 101 Intro. to Nursing</td>
<td>6 (3,9)</td>
</tr>
<tr>
<td>Nurs 105 Integrated Science I</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Nutr 103 Prin. of Nutrition</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>

#### Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Nurs 102 Acute Illnesses</td>
<td>6 (2,12)</td>
</tr>
<tr>
<td>Nurs 105 Integrated Science II</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Psych 201 Gen. Psychology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

#### SUMMER SESSION (6 Weeks)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurs 104 Medical-Surgical Nursing I</td>
<td>5 (3,6)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>5</strong></td>
</tr>
</tbody>
</table>

#### Third Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurs 202 Pediatric Nursing</td>
<td>5 (3,6)</td>
</tr>
<tr>
<td>Nurs 206 Medical-Surg. Nurs. II</td>
<td>6 (3,9)</td>
</tr>
<tr>
<td>Psych 211 Growth and Develop.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Soc 201 Intro. to Soc.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>

#### Fourth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurs 201 Psychodynamic Nursing</td>
<td>5 (3,6)</td>
</tr>
<tr>
<td>Nurs 204 Mat. and Newborn Care</td>
<td>5 (3,6)</td>
</tr>
<tr>
<td>Psych 402 Abnormal Psychology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Soc 311 The Family</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

**Note:** Electives from the following: Humanities, Literature, Philosophy, Music.

### COLLEGE OF PHYSICAL AND MATHEMATICAL SCIENCES

The College of Physical and Mathematical Sciences, attuned to the times and its needs, offers six major curriculums leading to the degree of Bachelor of Science. These are Chemistry, Geology, Mathematics, Medical Technology, Physics, and Pre-medicine (Pre-dentistry).

In addition, a curriculum in Arts and Sciences, with a major emphasis in either Chemistry, Geology, Mathematics, or Physics can be pursued. The fulfillment of the requirements of this curriculum results in a Bachelor of Arts degree.

Not only are the departments in the College of Physical and Mathematical Sciences concerned with their own programs but they work closely with the other academic departments in the University.
This interweaving of the physical and mathematical sciences with other disciplines, such as biology, economics, engineering, management, and others, allows a student greater flexibility and responsibility in designing his own program.

**BACHELOR OF ARTS CURRICULUM**

The curriculum leading to the Bachelor of Arts degree is designed to meet the needs of those students who desire a broad general education. The first two years are spent in introductory work in various areas in order to give the student breadth of view. This type of background enables the student to take a more intelligent part in the selection of his primary and secondary (major and minor) fields of concentration. The major areas in the College of Physical and Mathematical Sciences are Chemistry, Geology, Mathematics, and Physics.

There are a great number of choices in the minor area from the different academic departments in the University. Thus, a student has a larger degree of flexibility and responsibility in designing his curriculum in the Bachelor of Arts program. The secondary (minor) fields are:

- Biology
- Chemistry
- Economics
- English
- Fine Arts
- Geology
- History
- Mathematics
- Modern Languages
- Political Science
- Philosophy
- Physics
- Psychology
- Sociology

Furthermore, a cluster minor may be taken in place of a secondary field. The cluster minor concentration should consist of 15 semester credits in courses numbered higher than 300 (with some exceptions). The subject area of the major should be excluded from the grouping in the minor. The groups available in the cluster minor are:

- Group I—Social Sciences
- Group II—Philosophy and Religion
- Group III—Fine Arts
- Group IV—Administration
- Group V—Life Sciences

The major concentration requires 24 semester hours and the secondary (minor) 15 semester hours above the sophomore level unless otherwise indicated. These fit in the basic curriculum for
the three upperclass years with minor variations depending on the specific major or minor selected. Consequently, a student not positive of his major or minor field has the advantage of making his decision while in the curriculum with a minimum loss of credit.

MAJOR FIELD OF CONCENTRATION

CHEMISTRY

For a major concentration a recommended program of study is shown below, with 130 semester hours required for graduation.

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
<th>Sophomore Year</th>
<th>Junior Year</th>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 102 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 223 Organic Chemistry</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
<td>Ch 227 Organic Chem. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>Math 205 Cal. and Lin. Alg.</td>
<td>4 (5,0)</td>
<td>Math 206 Cal. of Sev. Var.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
<td>Modern Language</td>
<td>3 (3,1)</td>
<td>Phys 122 Mech. &amp; Wave Phen.</td>
<td>3 (5,0)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
<td>1</td>
<td>Modern Language</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td></td>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Sophomore Year</th>
<th>Junior Year</th>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 224 Organic Chemistry</td>
<td>3 (3,0)</td>
<td>Chemistry Major</td>
<td>4</td>
</tr>
<tr>
<td>Ch 228 Organic Chem. Lab.</td>
<td>1 (0,3)</td>
<td>Minor</td>
<td>6</td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3 (3,0)</td>
<td>Elective</td>
<td>8</td>
</tr>
<tr>
<td>Math 204 Surv. of Engl. &amp; Amer. Lit.</td>
<td>3 (3,0)</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
<td>Chemistry Major</td>
<td>4</td>
</tr>
<tr>
<td>Hist 204 History of Civilization</td>
<td>3 (3,0)</td>
<td>Minor</td>
<td>3</td>
</tr>
<tr>
<td>Hist 205 Cal. and Lin. Alg.</td>
<td>4 (5,0)</td>
<td>Elective</td>
<td>8</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
<td>15</td>
<td>130 Total Semester Hours</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

* The organic chemistry will count toward the 24 hours of the chemistry major.

GEOLOGY

For a major concentration a recommended program of study is shown below, with 128 semester hours required for graduation.

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 102 General Chemistry</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
<td>Hist 204 History of Civilization</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>Math 205 Cal. and Lin. Alg.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
<td>Modern Language</td>
<td>3 (3,1)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
**First Semester**  
Engl 203 Survey of Engl. Lit. .... 3 (3.0)  
Geol 201 Physical Geology .... 3 (3.0)  
Geol 203 Phys. Geol. Lab. .... 1 (0.3)  
Math 206 Cal. of Sev. Var. .... 4 (5.0)  
Modern Language .......... 3 (3.1)  
Approved Elective .... 1  

15

**Second Semester**  
Engl 204 Survey of Engl. and American Lit. .... 3 (3.0)  
Geol 204 Historical Geology .... 3 (3.0)  
Geol 205 Hist. Geol. Lab. .... 1 (0.3)  
Modern Language .......... 3 (3.0)  
Approved Electives .... 6  
AS or MS or Elective. .... 1  

17

**Sophomore Year**

| Humanities | 3  
| Geol 306 Mineralogy | 3 (2,3)  
| Major | 3  
| Minor | 3  

15

**Junior Year**

| Geol 402 Structural Geology | 3 (2,2)  
| Major | 3  
| Minor | 6  
| Social Sciences | 3  

15

**Senior Year**

| Geol 309 Petrology | 3 (2,3)  
| Humanities | 3  
| Major | 3  
| Minor | 3  

15

125 Total Semester Hours

**MATHEMATICS**

For a major concentration a recommended program of study is shown below, with 127 semester hours required for graduation.

| First Semester |  
| Engl 101 English Composition | 3 (3.0)  
| Hist 203 History of Civilization | 3 (3.0)  
| Math 206 Cal. of One Var. | 4 (5.0)  
| Modern Language | 3 (3.1)  
| Natural Science | 4  
| AS or MS or Elective* | 1  

18

| Second Semester |  
| Engl 102 English Composition | 3 (3.0)  
| Hist 204 History of Civilization | 3 (3.0)  
| Math 205 Cal. and Lin. Alg. | 4 (5.0)  
| Modern Language | 3 (3.1)  
| Natural Science | 4  
| AS or MS or Elective* | 1  

18

**Sophomore Year**

| Math 203 Survey of Engl. Lit. | 3 (3.0)  
| Math 205 Cal. of Sev. Var. | 4 (5.0)  
| Math 295 Foundations of Analysis | 3 (3.0)  
| Modern Language | 3 (3.1)  
| Elective | 3  
| AS or MS or Elective* | 1  

17

**Junior Year**

| Math 313 Stat. Theory & Meth. I | 3 (3.0)  
| Math 411 Linear Algebra | 3 (3.0)  
| Humanities | 3  
| Minor | 3  
| Elective | 3  

15

**Senior Year**

| Math 463 Math. Anal. I | 3 (3.0)  
| Math Elective | 3  
| Minor | 6  
| Social Sciences | 3  

15

127 Total Semester Hours

* Those electing not to take ROTC should take a four-hour elective during the second semester sophomore year.
PHYSICS

For a major concentration a recommended program of study is shown below, with 128 semester hours required for graduation.

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Modern Language</td>
<td>Modern Language</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freshman Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist 203 History of Civilization</td>
</tr>
<tr>
<td>Modern Language</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

For a minor concentration in Physics, 15 semester hours are required including Phys 221 and 222.

SECONDARY FIELDS OF CONCENTRATION

Biology. The recommended programs of study consists of 15 semester hours from the field of biological sciences in addition to Bot 101 and Zool 101, 103.

Economics. The recommended program of study consists of Econ 201, 202 and 15 semester hours selected from the following (including 314 and 407): Econ 301, 302, 305, 306, 308, 309, 314, 403, 404, 407, 410, 412, 416, 420, 422, Ex St 462, IM 311, 404, 406, Ag Ec 456.

English. The recommended program of study includes the required courses of the Bachelor of Arts curriculum and 15 semester hours of English, arranged as follows:

Group I—Six semester credits from these courses: Engl 405 and either 423 or 424.
Group II—Three semester credits from these courses: Engl 402, 404, 425, 427, 431, 443, 461, 462.

Group III—Six additional semester credits from English courses numbered higher than 400.

Engl 304, Advanced Composition, or departmental certification of proficiency in composition is required.

Fine Arts. The recommended program of study consists of Hum 201, 202 or Arch 101, 102 and 15 semester hours from the following courses: Arch 303, 315, 316, 415, 416, 511, 512; Engl 305, 311, 331, 332, 333; Hum 203; Mus 151, 152, 310, 315, 316, 362, 363, 364, 365, 405, 406, 411; Phil 305; Vis 203, 205, 207, 209, 211, 213, 215, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416. Departmental prerequisites for advanced courses must be met or permission of the instructor.

History. The recommended program of study consists of 15 semester hours with a minimum of three hours from each of the following groups:


Group II—Hist 361, 363, 371, 386, 473, 476, 477, 479, 480, 482, 483, 484.

Group III—Hist 331, 332, 340, 341, 342.

Modern Languages. Completion of 15 semester hours in one language from courses numbered higher than 300 is required to fulfill the requirements for the secondary field of concentration.

Philosophy. The recommended program of study consists of 15 semester hours of course work beyond Phil 201, 202—drawn from Phil 303, 304, 305, 312, 318, 322, 344, 422, 425, Rel 309.

Political Science. The recommended program of study consists of 15 semester hours beyond Pol Sc 101 (or 202 or 301) and 201 in courses drawn from at least three of the following fields:

1. American Government—Pol Sc 302, 403, 409
2. Public Administration—Pol Sc 321
3. Constitutional Law—Pol Sc 331, 432, 433
4. Political Behavior—Pol Sc 341, 442, 433
5. Political Thought—Pol Sc 351, 352
6. International Relations—Pol Sc 361, 462, 463, 464, 469, 473
7. Comparative Governments—Pol Sc 371, 372, 373

Psychology. The recommended program of study consists of required courses Psych 201, 202 and 15 semester hours to be selected from Psych 302, 321, 331, 341, 351, 361, 363, 401, 402, 403, 422, 442, 471, 498, Comp Sc 205.

CLUSTER MINORS

Group I—Social Sciences
No fewer than two courses in each subject chosen:
- History
- Political Science
- Psychology
- Sociology
- Economics

Group II—Philosophy and Religion

Group III—Fine Arts
Of these courses, 9 semester credits must be taken in courses numbered 300 or higher:
- Architecture 315, 316, 403, 415, 416, 511, 512;
- English 305, 311, 331, 332, 333;
- Music 151, 152, 310, 315, 316, 362, 363, 364, 365, 405, 406, 411;
- Philosophy 305;

Group IV—Administration
No fewer than two courses in each subject chosen:
- Economics
- Accounting
- Industrial Management

Group V—Life Sciences
No course in the 100 series is applicable and not more than two courses in the 200 series. No fewer than two courses in each subject chosen:
- Bacteriology
- Botany
- Genetics
- Zoology
Group VI—Physical Sciences
No course in the 100 series is applicable and not more than two courses in each subject chosen:
Physics
Chemistry
Geology
Mathematics

BACHELOR OF SCIENCE CURRICULUMS

CHEMISTRY
Chemistry, an experimental discipline based on observation guided by molecular theory, is of fundamental importance in much of modern science and technology. Its molecular concepts form the basis for ideas about complex material behavior. Due to the fundamental nature and extensive application of chemistry, an unusually large variety of challenging opportunities to contribute in the science-oriented community are open to the student whose education is built around the principles of this discipline.

The curriculum in chemistry provides, through its advanced chemistry courses and large number of elective hours, a program that may be suited to a student's specific needs, whether he be interested in graduate work; industrial chemistry, sales or supervision; or related professional fields. [Significant features of the program are the student’s extensive participation in experimental laboratory work and his association with teachers who also pursue research activities. Because the undergraduate and graduate studies are closely connected, an undergraduate may elect to take part in a research investigation during his junior and senior years.]

CHEMISTRY CURRICULUM

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
<td>Math 205 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>Phys 122 Mech. &amp; Wave Phen.</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>15</strong></td>
<td><strong>Total</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 223 Org. Chem.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Ch 225 Org. Chem. Lab.</td>
<td>2 (0,6)</td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Phys 221 Thermal &amp; Elect. Phen.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 223 Electron Phys. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>
### Degrees and Curriculums

#### Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 313 Quan. Analysis</td>
<td>Ch 332 Phys. Chemistry</td>
</tr>
<tr>
<td>Ch 331 Phys. Chemistry</td>
<td>Ch 442 Chem. Lit.</td>
</tr>
<tr>
<td>Ch 339 Phys. Chemistry Lab.</td>
<td>Ger 102 Elem. German</td>
</tr>
<tr>
<td>Ger 101 Elem. German</td>
<td>Elective*</td>
</tr>
<tr>
<td>Elective*</td>
<td>Elective*</td>
</tr>
<tr>
<td><strong>17</strong></td>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

#### Senior Year

<table>
<thead>
<tr>
<th>Ch 402 Inorg. Chem.</th>
<th>Ch 411 Instr. Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives*</td>
<td>Electives*</td>
</tr>
<tr>
<td><strong>15</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

| Electives: |
| For the degree of B.S. in Chemistry, a student must elect at least 18 hours in English, Languages, History, Political Science, Economics, Sociology, Psychology, etc. |

### GEOLOGY

Geology is a relatively young science. The word itself is only about 200 years old. It means the science of the earth. Such a science must be involved with the physics and chemistry of materials which comprise the earth, but equally important it must consider the development of life on earth. Fundamentally, then, the chemical, physical, and biological responses to various environments on and in the earth must be thoroughly understood so that the historical development of the earth may be deduced, predictions of the future inferred, and natural resources intelligently developed.

Industry in our modern civilization is dependent on minerals and rocks. Metals have their origin in them as do our chief power sources, coal, petroleum, and radioactive minerals. The power and wealth of nations depend largely on their exploration, control and development of mineral wealth.

Geologists today are entering upon a new era. Widening horizons are indicated by employment not only in mineral producing industries but by railroads, municipalities, engineering firms, and water authorities. For this reason, it is important that the geologists' education rest on a broad yet rigorous base.

This curriculum provides the student with the fundamentals in the geological sciences and excellent support in the other basic sciences. On successful completion of the Bachelor of Science program the student should be adequately prepared for employment or for graduate study in any field of geology.
## GEOLOGY CURRICULUM

### FIRST SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Modern Language*</td>
<td>3 (3,1)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>

### FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 102 General Chemistry</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 205 Cal. and Lin. Alg.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>

### SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Geol 201 Physical Geology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Geol 203 Phys. Geol. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>4 (5,0)</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3,1)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

### JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geol 306 Mineralogy</td>
<td>3 (3,3)</td>
</tr>
<tr>
<td>Phys 221 Thermal &amp; Elect. Phen.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 223 Electron Phys. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td>Zool 101 Gen. Zoology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Zool 103 Gen. Zoology Lab.</td>
<td>1 (0,2)</td>
</tr>
<tr>
<td>Electives†</td>
<td>5</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 101 General Botany</td>
<td>4 (3,3)</td>
</tr>
<tr>
<td>Ex St 301 Introd. Statistics</td>
<td>3 (2,2)</td>
</tr>
<tr>
<td>Geol 309 Petrology</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Geol 311 Strat. and Sed.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 222 Optics &amp; Mod. Phys.</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Phys 224 Modern Phys. Lab.</td>
<td>1 (0,3)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>

Summer Geology Field Camp,† 6 semester hours

### SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geol 402 Structural Geology</td>
<td>3 (2,2)</td>
</tr>
<tr>
<td>Geol 403 Invert. Paleontology</td>
<td>3 (2,3)</td>
</tr>
<tr>
<td>Approved Electives†</td>
<td>9</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geol 307 Optical Mineralogy</td>
<td>3 (2,5)</td>
</tr>
<tr>
<td>Geol 404 Economic Geology</td>
<td>3 (3,0)</td>
</tr>
<tr>
<td>Approved Electives†</td>
<td>9</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>

| **Total Semester Hours**            | **134** |

* German or French is recommended. Two years in the same language is required.
† At least 12 hours must be elected from the humanities and/or social sciences.
‡ Clemson University does not conduct a field camp in geology, but attendance at a camp approved by the geology staff is required.

## MATHEMATICS

The mathematics curriculum is designed to give basic training to those students whose ultimate goal is the creation of mathematical concepts and methods that are of basic and general applicability to the desired subject whether it be physics, computer science, communication theory, data processing, statistics, operations research, economics, or any branch of the physical sciences in which a strong mathematical background is a prerequisite. In addition to containing basic mathematics courses which are needed to prepare the student for the present day mathematical world, the curriculum allows the student in his junior year, to select one of seven optional sets of courses which will provide an introduction to an area where mathematics is applied. These options are physics, operations research, computer science, managerial science, communications, chemistry, and statistics.
This curriculum provides an adequate background for the student who plans to pursue graduate study in mathematics and at the same time adequately prepares the student to fill many interesting positions in space research, computer development, business, or government research.

### MATHEMATICS CURRICULUM

#### Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Fr 101 Elem. French</td>
<td>Fr 102 Elem. French</td>
</tr>
<tr>
<td>or Ger 101 Elem. German</td>
<td>or Ger 102 Elem. German</td>
</tr>
<tr>
<td>Hist 104 Western Civilization</td>
<td>Math 205 Cal. and Lin. Alg.</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>Phys 122 Mech. &amp; Wave Phen.</td>
</tr>
<tr>
<td>AS or MS or Elective†</td>
<td>AS or MS or Elective†</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

#### Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>Comp Sc 205 Comp. Prog. in PL/1</td>
</tr>
<tr>
<td>Math 206 Cal. of Sev. Var.</td>
<td>Engl 204 Surv. of Engl. &amp; Amer. Lit.</td>
</tr>
<tr>
<td>Phys 221 Thermal &amp; Elect. Phen.</td>
<td>Phys 222 Optics &amp; Mod. Phys.</td>
</tr>
<tr>
<td>Elective*</td>
<td>Elective*</td>
</tr>
<tr>
<td>AS or MS or Elective†</td>
<td>AS or MS or Elective†</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

#### Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>Engl 301 Public Speaking</td>
</tr>
<tr>
<td>Math 313 Stat. Th. &amp; Methods I</td>
<td>Math 411 Linear Algebra</td>
</tr>
<tr>
<td>or Math 463 Math. Anal. I*</td>
<td>or Math 464 Math. Anal. II*</td>
</tr>
<tr>
<td>Option</td>
<td>Option</td>
</tr>
<tr>
<td>Elective†</td>
<td>Elective†</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

#### Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 402 Th. of Probability</td>
<td>Math 403 Stat. Inference</td>
</tr>
<tr>
<td>Math 412 Intro. to Mod. Alg.</td>
<td>or Math 404 Intro. to Stoch. Proc.</td>
</tr>
<tr>
<td>Option</td>
<td>or Math 405 Stat. Th. &amp; Methods II</td>
</tr>
<tr>
<td>Elective†</td>
<td>Math Elective*</td>
</tr>
<tr>
<td>13</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Elective†</td>
</tr>
<tr>
<td>13</td>
<td>128 Total Semester Hours</td>
</tr>
</tbody>
</table>

* Those who expect to go to graduate school should take a second year of the language of his choice; should take Math 463, 464 instead of Math 453, 454; should take Math 413 or 415 or 424 for this elective.

† The electives may be taken from those courses which the catalog lists as approved courses in the College of Physical and Mathematical Sciences or the College of Liberal Arts or in other academic departments.

‡ Those electing not to take ROTC should take six hours of electives during each semester of the senior year.
The Options are:

A. CHEMISTRY

Ch 331 Physical Chemistry .......... 3 (3,0)
Ch 332 Physical Chemistry .......... 3 (3,0)
Ch 339 Physical Chem. Lab. .......... 1 (0,3)
Ch 340 Physical Chem. Lab. .......... 1 (0,3)
Ch 402 Inorganic Chemistry ......... 3 (3,0)
Ch 431 Atomic & Molec. Structure ... 3 (3,0)
Ch 433 Physical Chem. Lab. .......... 1 (0,3)

B. COMMUNICATIONS

EE 320 Electronics I ............... 2 (2,0)
EE 321 Electronics II .............. 2 (2,0)
EE 325 Elec. & Electromag. Lab. ... 1 (0,3)
EE 336 Elec. & Electromag. Lab. ... 1 (0,3)
EE 330 Systems I ................. 2 (2,0)
EE 331 Elec. Circuits Workshop I ... 2 (0,4)
EE 332 Systems II ................. 2 (2,0)
EE 333 Elec. Circ. Workshop II .... 2 (0,4)

C. COMPUTER SCIENCE

Comp Sc 311 Comp. Org. & Prog. ... 3 (3,0)
Comp Sc 409 Introd. to Num. ....... 3 (3,0)
Comp Sc 410 Introd. to Num. ....... 3 (3,0)
Comp Sc 428 Algo Lang. & Comp. ... 3 (3,0)
Math 452 Linear Programming ...... 3 (3,0)

D. MANAGERIAL SCIENCE

Econ 202 Principles of Econ. ..... 3 (3,0)
Econ 314 Inter. Econ. Th. .......... 3 (3,0)
Mgt Sc 311 Intro. to Econometrics ... 3 (3,0)
EE 404 Managerial Econ. .......... 3 (3,0)
Math 452 Linear Programming ...... 3 (3,0)
Math 473 Intro. to Nonlin. Opt. .. 3 (3,0)

E. OPERATIONS RESEARCH

IM 402 Oper. Plan. & Control ...... 3 (3,0)
Math 404 Introd. to Stoch. Proc. .. 3 (3,0)
Math 429 Num. Anal. I ............ 3 (3,0)
Math 452 Linear Programming ...... 3 (3,0)
Math 473 Intro. to Nonlin. Opt. .. 3 (3,0)

F. PHYSICS

Phys 321 Mechanics I .............. 3 (3,0)
Phys 322 Mechanics II ............ 3 (3,0)
or Phys 404 Astrodynamics ....... 3 (3,0)
or Phys 441 Elec. & Magnetism .... 3 (3,0)
Phys 341 Elec. & Magnetism ....... 3 (3,0)

G. STATISTICS

Math 404 Introd. to Stoch Proc. ... 3 (3,0)
Math 405 Stat. Th. and Methods II ... 3 (3,0)
Math 409 Stat. Th. and Methods III ... 3 (3,0)
Math 471 Appl. Stat. Decision Theory ... 3 (3,0)

MEDICAL TECHNOLOGY

Medical Technologists are qualified to perform a wide variety of chemical, microscopical, and bacteriological tests to aid physicians in the detection, diagnosis, and treatment of disease. Some medical technologists are responsible to a medical doctor, generally a pathologist, while others work under the supervision of a medical scientist who specializes in a particular branch of clinical science. The largest group of medical technologists work in hospital laboratories.

In cooperation with the Anderson Memorial Hospital and the Greenville General Hospital, Clemson offers a four-year curriculum leading to the Bachelor of Science in Medical Technology. The student spends the first three years of this program in class work at Clemson and the fourth year at the Anderson or Greenville hospital, according to the student's choice and previous agreement with the hospital. While in residence in Anderson or Greenville, the student will take specified courses under instructors on the hospital staff. During the fourth year of work, both room and board are furnished by the hospital.

Upon satisfactory completion of the prescribed courses, the student will be awarded the Bachelor of Science degree in Medical Technology.
MEDICAL TECHNOLOGY CURRICULUM

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Eng 101 English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Hist 101 American History</td>
<td>3</td>
</tr>
<tr>
<td>Math 101 Mathematical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3.1)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 101 General Botany</td>
<td>4</td>
</tr>
<tr>
<td>Ch 102 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3</td>
</tr>
<tr>
<td>Math 102 Mathematical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3 (3.1)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 223 Organic Chemistry*</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Ch 227 Organic Chem. Lab.</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Engl 203 Survey of Eng. Lit.</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Hist 102 American History</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Zool 101 Gen. Zoology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Zool 103 Gen. Zoology Lab.</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 313 Quan. Analysis</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Ch 317 Quan. Anal. Lab.</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>or Ch 310 Elem. Biochemistry</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Phys 202 Gen. Physics</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Phys 204 Gen. Physics Lab.</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Zool 307 An. Anat. &amp; Phys.</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen 302 Genetics</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Hist 204 History of Civilization</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Micro 301 Gen. Microbiology</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Psych 201 Gen. Psychology</td>
<td>3 (3.0)</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med Tech 401</td>
<td>4</td>
</tr>
<tr>
<td>Med Tech 402</td>
<td>7</td>
</tr>
<tr>
<td>Med Tech 403</td>
<td>5</td>
</tr>
<tr>
<td>Med Tech 404</td>
<td>3</td>
</tr>
<tr>
<td>Med Tech 405</td>
<td>1</td>
</tr>
<tr>
<td>Med Tech 406</td>
<td>3</td>
</tr>
<tr>
<td>Med Tech 407</td>
<td>2</td>
</tr>
<tr>
<td>Med Tech 408</td>
<td>10</td>
</tr>
<tr>
<td>Med Tech 409</td>
<td>1</td>
</tr>
</tbody>
</table>

36 Total Semester Hours

* First figure represents lecture hours, second figure represents seminar hours, and third figure represents clinical practice hours.

PHYSICS

Physics is the fundamental science. The word physics comes from the Greek term meaning nature. Therefore, physics is a science dedicated to the study of all natural phenomena. Physics is the foundation for the other experimental sciences. The physics curriculum is designed with this point of view.

The first two years of the physics curriculum is generally the same as that for mathematics, the other physical sciences and engineering. During the junior and senior years the physics student is given a strong background in the basic physics courses at an advanced level and is allowed to specialize in a variety of other fields by selecting one of eight options. The options are astrophysics, bio-
physics, chemical physics, computer science, electronics, geophysics, mathematical physics, and physics. After completing one of these curriculums the student is prepared for positions in industry (e. g., aircraft, electronics, petroleum, textiles, pharmaceutical) and government laboratories (e. g., space research). Those students who select the physics or mathematical physics options are well equipped for graduate study in physics.

### PHYSICS CURRICULUM WITH OPTIONS IN THE PHYSICAL AND MATHEMATICAL SCIENCES

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td>Ch 102 General Chemistry</td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td>Engl 102 English Composition</td>
</tr>
<tr>
<td>Fr 101 Elem. French*</td>
<td>3 (3,1)</td>
<td>Fr 102 Elem. French</td>
</tr>
<tr>
<td>or Ger 101 Elem. German*</td>
<td>3 (3,1)</td>
<td>or Ger 102 Elem. German*</td>
</tr>
<tr>
<td>Math 106 Cal. of One Var.</td>
<td>4 (5,0)</td>
<td>Math 205 Cal. &amp; Lin. Alg.</td>
</tr>
<tr>
<td>Phys 101 Current Phys.</td>
<td>1 (0,2)</td>
<td>Phys 132 Gen. Physics</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

#### Sophomore Year

<table>
<thead>
<tr>
<th></th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3 (3,0)</td>
<td>Engl 204 Surv. of Engl. &amp; Amer. Lit.</td>
</tr>
<tr>
<td>Math 206 Cal. of Dev. Var.</td>
<td>4 (5,0)</td>
<td>Math 208 Engr. Math. II</td>
</tr>
<tr>
<td>Phys 223 Electron Phys. Lab.</td>
<td>1 (0,3)</td>
<td>Phys 224 Modern Phys. Lab.</td>
</tr>
<tr>
<td>Phys 231 Gen. Physics II</td>
<td>3 (3,0)</td>
<td>Phys 232 Gen. Physics III</td>
</tr>
<tr>
<td>Approved Elective†</td>
<td>4</td>
<td>Approved Elective†</td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td>1</td>
<td>AS or MS or Elective</td>
</tr>
</tbody>
</table>

#### Junior Year

<table>
<thead>
<tr>
<th></th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist 204 History of Civilization</td>
<td>3 (3,0)</td>
<td>Phys 322 Mechanics II</td>
</tr>
<tr>
<td>Math 309 Engr. Math III</td>
<td>3 (3,0)</td>
<td>Phys 326 Exp. Physics II</td>
</tr>
<tr>
<td>Phys 321 Mechanics I</td>
<td>3 (3,0)</td>
<td>Phys 341 Elect. &amp; Magnetism</td>
</tr>
<tr>
<td>Phys 325 Exp. Physics I</td>
<td>4 (2,6)</td>
<td>Approved Elective†</td>
</tr>
<tr>
<td>Option§</td>
<td>3</td>
<td>Option§</td>
</tr>
</tbody>
</table>

#### Senior Year

<table>
<thead>
<tr>
<th></th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 441 Elect. &amp; Magnetism</td>
<td>3 (3,0)</td>
<td>Physics (as approved)</td>
</tr>
<tr>
<td>Phys 455 Quantum Physics I</td>
<td>3 (3,0)</td>
<td>Option§</td>
</tr>
<tr>
<td>Phys 465 Thermo. &amp; Stat. Mech.</td>
<td>3 (3,0)</td>
<td>Approved Elective†</td>
</tr>
<tr>
<td>Approved Elective†</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Option§</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

#### Total Semester Hours

*Russ 101, 102 may be substituted.
†A minimum of 12 hours of electives must be chosen from course offerings in the Humanities and Social Sciences.
§Math 306 and 411 may be taken in lieu of Math 208 and 309.

**A. ASTROPHYSICS**

<table>
<thead>
<tr>
<th></th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 304 Descriptive Astronomy</td>
<td>3 (3,0)</td>
<td>Ch 331 Physical Chem.</td>
</tr>
<tr>
<td>Phys 404 Astrodynamics</td>
<td>3 (3,0)</td>
<td>Ch 332 Physical Chem.</td>
</tr>
<tr>
<td>Phys 432 Physical Optics</td>
<td>3 (3,0)</td>
<td>Ch 431 Atomic &amp; Molec. Struct.</td>
</tr>
<tr>
<td>Phys 456 Quantum Physics II</td>
<td>3 (3,0)</td>
<td>Phys 456 Quantum Physics II</td>
</tr>
</tbody>
</table>

**B. CHEMICAL PHYSICS**

<table>
<thead>
<tr>
<th></th>
<th>Freshman Year</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 404 Descriptive Astronomy</td>
<td>3 (3,0)</td>
<td>Ch 331 Physical Chem.</td>
</tr>
<tr>
<td>Phys 404 Astrodynamics</td>
<td>3 (3,0)</td>
<td>Ch 332 Physical Chem.</td>
</tr>
<tr>
<td>Phys 432 Physical Optics</td>
<td>3 (3,0)</td>
<td>Ch 431 Atomic &amp; Molec. Struct.</td>
</tr>
<tr>
<td>Phys 456 Quantum Physics II</td>
<td>3 (3,0)</td>
<td>Phys 456 Quantum Physics II</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
### C. COMPUTER SCIENCE
- Comp Sc 205 Comp. Prog. ..... 3 (2,3)
- Comp Sc 311 Com. Organ. & Fro. ..... 3 (0,0)
- Comp Sc 409 Numerical Anal. ..... 3 (0,0)
- Comp Sc 428 Algorith. Lang. & Compilers ..... 3 (0,0)
- or Phys 446 Solid St. Phys. ..... 3 (0,0)
- or Math 429 Intro. Num. Anal. ..... 3 (0,0)

### D. ELECTRONICS
- EE 330 Systems I ..... 2 (0,0)
- EE 331 Elec. Workshop I ..... 2 (0,0)
- EE 332 Systems II ..... 2 (0,0)
- EE 333 Elec. Workshop II ..... 2 (0,0)
- EE 320 Electronics I ..... 2 (0,0)
- EE 325 Electronics Lab. I ..... 1 (0,2)

### E. GEOPHYSICS
- Geol 201 Physical Geo. ..... 3 (0,0)
- Geol 203 Physical Geo. Lab. ..... 1 (0,3)
- Geol 306 Mineralogy ..... 3 (2,3)
- Any two of Geol 309 ..... 3 (2,3)
- Geol 402 ..... 3 (2,2)
- Phys 446 ..... 3 (3,0)

### F. MATHEMATICAL PHYSICS
- Math 453 Advanced Cal. I ..... 3 (0,0)
- Math 454 Advanced Cal. II ..... 3 (0,0)
- Phys 456 Quantum Physics II ..... 3 (0,0)
- Math (as approved) ..... 3 (0,0)

### PHYSICS CURRICULUM WITH BIOPHYSICS OPTION

#### First Semester
- Ch 101 General Chemistry ..... 4 (3,3)
- Eng 101 English Composition. ..... 3 (0,0)
- Fr 101 Elem. French ..... 3 (0,0)
- or Ger 101 Elem. German* ..... 3 (0,0)
- Math 106 Cal. of One Var. ..... 4 (5,0)
- Phys 101 Current Phys. ..... 1 (0,2)
- AS or MS or Elective ..... 1

#### Second Semester
- Ch 102 General Chemistry ..... 4 (3,3)
- Eng 102 English Composition ..... 3 (0,0)
- Fr 102 Elem. French ..... 3 (0,0)
- or Ger 102 Elem. German* ..... 3 (0,0)
- Math 205 Cal. & Lin. Alg. ..... 4 (5,0)
- Phys 132 Gen. Physics I ..... 3 (0,0)
- AS or MS or Elective ..... 1

#### Sophomore Year
- Eng 203 Survey of Engl. Lit. ..... 3 (0,0)
- Math 206 Cal. of Sev. Var. ..... 4 (5,0)
- Phys 231 Gen. Physics Lab. ..... 1 (0,3)
- Phys 231 Gen. Physics II ..... 3 (0,3)
- Zool 101 Gen. Zoology ..... 3 (0,0)
- Zool 103 Gen. Zoology Lab. ..... 1 (0,3)
- AS or MS or Elective ..... 1

#### Junior Year
- Hist 204 History of Civilization ..... 3 (0,0)
- Phys 321 Mechanics I ..... 3 (0,0)
- Phys 325 Exp. Physics I ..... 4 (2,0)
- Ch 223 Organic Chemistry ..... 3 (0,0)
- Ch 227 Org. Chemistry Lab. ..... 1 (0,3)
- Approved Elective† ..... 2

#### Senior Year
- Phys 455 Quantum Physics I ..... 3 (0,0)
- Phys 465 Theor. & Stat. Mech. ..... 3 (0,0)
- Ch 423 BioChem. ..... 3 (0,0)
- Ch 425 BioChem. Lab. ..... 1 (0,3)
- Approved Elective† ..... 5

#### Total Semester Hours
- 128

* Rust 101, 102 may be substituted.
† A minimum of 12 hours of electives must be chosen from course offerings in the Humanities and Social Sciences.
Pre-medicine and Pre-dentistry

Medicine and dentistry need individuals with a diversity of educational backgrounds and a wide variety of talents and interests. The philosophies of education, specific premedical and predental courses requirements, other qualifications for enrollment, and systems of training vary among the medical and dental schools, but all recognize the desirability of a broad education—a good foundation in the natural sciences (mathematics, chemistry, biology, and physics), highly developed communication skills, and a solid background in the social sciences and humanities. The absolute requirements for medical and dental school admission (16 credit hours in chemistry, 8 credit hours in biology, 8 credit hours in physics, 6 credit hours in English, and 6 credit hours in mathematics) are purposely limited in order to allow latitude for developing individualized undergraduate programs of study.

The student preparing for a career in medicine or dentistry can major in the behavioral or natural sciences, and many do major in one of the sciences; however, this is not necessary. The Association of American Medical Colleges and the American Association of Dental Schools recommend that the premedical and predental student should feel free to develop his major area of interest, realizing that the medical and dental school is more interested in the quality and scope of the work accomplished than in the time spent or the major field chosen. It is possible to major in a nonscience area, carrying the necessary science courses as electives; however, since so much of medicine and dentistry is derived from a scientific basis, the student who majors in a nonscientific field and elects the minimum number of required science courses must excel in them to insure the adequacy of his preparation.

A suggested curriculum in Pre-medicine and Pre-dentistry, offered here, is designed to meet the general entrance requirements of most medical and dental schools and, as well, to provide a broad education in the natural sciences, the social sciences, the humanities, and communication skills.

Those preparing for the study of medicine are advised to complete four years of undergraduate work before entering a medical school, although some medical schools will admit an exceptional student after three years of preparation. Many dental schools will accept the better student after three years of preparation.
## PRE-MEDICINE AND PRE-DENTISTRY CURRICULUM

### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td></td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Math 106 Cal. of Ones Var.</td>
<td>4 (5,0)</td>
<td></td>
</tr>
<tr>
<td>Zool 101 Gen. Zoology</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Zool 103 Gen. Zoology Lab.</td>
<td>1 (0,2)</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 101 General Botany</td>
<td>4 (3,3)</td>
<td></td>
</tr>
<tr>
<td>Ch 102 General Chemistry</td>
<td>4 (3,3)</td>
<td></td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Math 205 Cal. and Lin. Alg.</td>
<td>4 (5,0)</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 223 Organic Chemistry</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Ch 227 Org. Chemistry Lab.</td>
<td>1 (0,3)</td>
<td></td>
</tr>
<tr>
<td>Engl 203 Survey of Engl. Lit.</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Hum 201 Introd. to Humanities</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Phys 122 Mech. &amp; Wave Phen.</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Soc 201 Introd. to Sociology</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>17</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 201 Principles of Econ.</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Gen 302 Genetics</td>
<td>3 (2,3)</td>
<td></td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Zool 301 Comp. Vert. Anat.</td>
<td>3 (2,3)</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 301 Public Speaking</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Psych 201 Gen. Psychology</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Pre-Pharmacy

Pharmacy is a five-year program, the first two years of which can be taken at Clemson. The student who does pre-pharmacy here will transfer, as a rule, to the School of Pharmacy of the Medical University of South Carolina, where the final three years will be completed and by which institution the degree in Pharmacy will be awarded.

## PRE-PHARMACY CURRICULUM

### First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 101 General Chemistry</td>
<td>4 (3,3)</td>
<td></td>
</tr>
<tr>
<td>Engl 101 English Composition</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Hist 203 History of Civilization</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Zool 101 Gen. Zoology</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Zool 103 Gen. Zoology Lab.</td>
<td>1 (0,2)</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>18</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot 101 General Botany</td>
<td>4 (3,3)</td>
<td></td>
</tr>
<tr>
<td>Ch 102 General Chemistry</td>
<td>4 (3,3)</td>
<td></td>
</tr>
<tr>
<td>Engl 102 English Composition</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Hist 204 History of Civilization</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>Math 102 Math Analysis II</td>
<td>3 (3,0)</td>
<td></td>
</tr>
<tr>
<td>AS or MS or Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>18</strong></td>
<td></td>
</tr>
</tbody>
</table>
Electives in the College of Physical and Mathematical Sciences

First Semester
- Ch 223 Organic Chemistry, 3 (3,0)
- Ch 227 Org. Chemistry Lab., 1 (0,3)
- Engl 203 Survey of Engl. Lit., 3 (3,0)
- Phys 201 General Physics, 3 (3,0)
- Phys 203 Gen. Physics Lab., 1 (0,3)
- Soc 201 Introd. to Sociology, 3 (3,0)
- AS or MS or Elective, 1

15

Sophomore Year
- Ch 224 Organic Chemistry, 3 (3,0)
- Ch 228 Org. Chemistry Lab., 1 (0,3)
- Engl 204 Surv. of Engl. & Amer. Lit., 3 (3,0)
- Phys 202 Gen. Physics, 3 (3,0)
- Phys 204 Gen. Physics Lab., 1 (0,3)
- Soc 202 Social Problems, 3 (3,0)
- Electives, 9
- AS or MS or Elective, 1

18

69 Total Semester Hours

Acceptable Electives for Students in the College of Physical and Mathematical Sciences

Class advisers in the College of Physical and Mathematical Sciences will normally approve the following courses as electives, but the Dean of Physical and Mathematical Sciences retains the prerogative of limiting the total number of credits that may be approved in a discipline or area:

All courses offered in the College of Liberal Arts and the College of Physical and Mathematical Sciences except Ch 450, Engl 111, 351, Geol 406, Math 102, 103, 104, 115, 116, 215, 216, Psych 101, 211, and Soc 101.

Certain upper level courses, not given in the College of Physical and Mathematical Sciences listed below, plus others recommended in a particular curriculum:

DESCRIPTION OF COURSES

This list of courses includes for each course the catalog number, title of course, credit in semester hours, class laboratory hours per week, and the description of the course. In general, courses numbered 100-199 are freshman courses; 200-299, sophomore courses; 300-399, junior courses; and 400-499, senior courses. Courses numbered 600 or above are graduate courses and are open only to students admitted to the Graduate School, except that seniors with exceptional records may be enrolled with special permission. Where courses are offered on a schedule, there is a designation F, S, or SS following the title of each course, indicating whether it is customarily offered in the fall, spring, or summer school.

ACCOUNTING

Professor: C. C. Davis
Associate Professors: F. R. Gray, J. M. Wannamaker
Assistant Professor: J. A. Turner
Instructor: J. E. Friese

Acct 201—Principles of Accounting—3 cr. (3 and 0)
Practice in handling real and nominal accounts, together with an introduction to the use of various types of books of original entry, statements of profit and loss, and balance sheets.

Acct 202—Principles of Accounting—3 cr. (3 and 0)
Continuation of Acct 201 with special attention to corporation and partnership accounting with emphasis on adjustment procedures and the analysis of financial statements. Prerequisite: Acct 201.

Acct 301—Intermediate Accounting—3 cr. (3 and 0)
A course in the theory of accountancy designed to follow introductory theory presented in the basic principles courses. Intermediate accounting seeks to broaden the student's knowledge of financial accounting theory and practice. Prerequisite: Acct 201 and 202.

Acct 302—Intermediate Accounting—3 cr. (3 and 0)
A continuation of Accounting 301 with emphasis on managerial accounting. Prerequisite: Acct 201 and 202.

Acct 303—Cost Accounting—3 cr. (3 and 0)
The application of cost analysis to manufacturing and distributing problems. Analysis of the behavior characteristics of business costs and a study of principles involved in standard cost systems. Lectures and problems. Prerequisite: Acct 201 and 202.

Acct 305—Income Taxation—3 cr. (3 and 0)
Interpretation of Federal Income Tax laws, regulations, and court decisions with practice in application of these laws to the returns of individuals, partnerships, and corporations. Prerequisite: Junior standing.
ACCT 403—ACCOUNTING RESEARCH—2 cr. (2 and 0)
A directed research course for those students interested in a career in accounting. Prerequisite: Acct 301, 302.

ACCT 405—ADVANCED FEDERAL TAXES—3 cr. (3 and 0)
Tax planning and research. Advanced phases of income taxation with emphasis on special problems applicable to corporations, partnerships, estates and trusts. Prerequisite: Acct 305.

ACCT 407—ACCOUNTING RESEARCH—1 cr. (1 and 0)
A directed research course for those students interested in a career in accounting. Prerequisite: Acct 301, 302.

ACCT 410—BUDGETING AND EXECUTIVE CONTROL—3 cr. (3 and 0)
The study and application of selected techniques used in the planning and control functions of business organizations. Prerequisite: Acct 303.

ACCT 411—ADVANCED ACCOUNTING—3 cr. (3 and 0)
A study of accounting principles and practices emphasizing parent-subsidiary accounting. Prerequisite: Acct 301, 302.

ACCT 415—AUDITING—3 cr. (3 and 0)
Professional and practical auditing theory. Review of internal controls, audit procedures, and development of audit programs for various types of businesses; consideration of auditor's professional and ethical standards. Prerequisite: Acct 301, 302.

ACCT 420—CPA REVIEW—3 cr. (3 and 0)
Intensive practice in analyzing and solving CPA level accounting problems. Prerequisite: Acct 411.

ACCT 705—ADVANCED FEDERAL TAXES—3 cr. (3 and 0)
ACCT 710—BUDGETING AND EXECUTIVE CONTROL—3 cr. (3 and 0)
ACCT 711—ADVANCED ACCOUNTING—3 cr. (3 and 0)
ACCT 715—AUDITING—3 cr. (3 and 0)

AEROSPACE STUDIES

Professor: COLONEL E. N. TYNDALL, Head

GENERAL MILITARY EDUCATION PROGRAM

AS 109—WORLD MILITARY SYSTEMS—1 cr. (1 and 1)
An introduction to factors of natural power, principles and nature of war; legislation, organization and function of the Department of Defense; history, missions, and organization of the United States Air Force. Corps Training includes drill fundamentals, customs and courtesies of the service.

AS 110—WORLD MILITARY SYSTEMS—1 cr. (1 and 1)
Surveys the history and development of U. S. strategic offensive and defensive forces including their missions, functions and organization; conventional nuclear weaponry, civil defense, aircraft and missile defense, concepts of
present and projections of future strategic defense requirements. Corps Training includes drill and ceremonies and Air Force career opportunities.

AS 209—World Military Systems—1 cr. (1 and 1)
A continuation of the study of world military forces placing special emphasis on the General Purposes forces of the Air Force, Army and Navy and their role throughout the entire spectrum of warfare. Also included are the roles of the aerospace support forces which enable the combat forces to carry out their primary missions. Corps Training.

AS 210—World Military Systems—1 cr. (1 and 1)
A study of the trends and implications in international affairs highlighting the struggle, the search and the prospects for peace. Special emphasis is given the conflict between democracy and communism, the alliances and collective security agreements of the United States to preserve peace and some of the specific problems and solutions involved in the search for peace. Corps Training.

PROFESSIONAL OFFICER EDUCATION PROGRAM

AS 309—Growth and Development of Aerospace Power—3 cr. (3 and 1)
A comprehensive study of the development of Aerospace Power and the USAF, its doctrine, mission and organization. Course objectives are accomplished through a student-centered program with emphasis on all phases of communicative skills development. Corps Training emphasizes leadership development and Air Force career opportunities.

AS 310—Growth and Development of Aerospace Power—3 cr. (3 and 1)
A study of current and planned space programs. Reviews the characteristics of the solar system and operating principles associated with the major components of space exploration systems. As in AS 309, course objectives are accomplished through a student-centered program with emphasis on all phases of communicative skills development. Corps Training includes drill and ceremonies and the environment of the Air Force officer.

AS 409—The Professional Officer—3 cr. (3 and 1)

AS 410—The Professional Officer—3 cr. (3 and 1)
A continuation of the study of professionalism with the stress on management principles and functions. An introduction to systems and approaches to decision making and resource control used in the Air Force. Includes participation in problem-situation exercises. The course concludes with instruction to prepare cadets for active duty in the Air Force. Corps Training emphasizes advanced leadership functions.
AGRICULTURAL ECONOMICS

Professors: W. J. LANHAM, Head; J. M. STEPP
Associate Professors: L. M. BAUKNIGHT, JR., J. W. HUBBARD, H. C. SPURLock,
G. R. von Tungeln
Assistant Professors: A. B. CarROLL, R. K. DeHAVEn, B. L. DLLMAN, J. C.
Hite, J. S. Lytle

AG EC 202—AGRICULTURAL Economics—3 cr. (3 and 0) F, S
An analytical survey of the various subdivisions of agricultural economics,
to include farm organization, enterprise analysis, land economics, marketing,
farm prices, governmental farm policies, and the relation of agriculture to the
national and international economy. Prerequisite: Econ 201.

AG EC 302—AGRICULTURAL Firm Management—3 cr. (2 and 3) F, S
Economic principles underlying the organization and operation of agricul-
tural firms and related business enterprises. Particular emphasis is directed
to management aspects of the farm as a production unit. Prerequisite: Ag Ec
202 or Econ 202.

AG EC 305—AGRICULTURAL Business Analysis—3 cr. (2 and 3) F, S
The principles of financial statement analysis applied to management of
farms and other agricultural business firms. Emphasis is placed on enterprise
analysis, profitability determination, and other aspects of internal financial
operations. Prerequisite: Ag Ec 202 or Econ 202.

AG EC 309—ECONOMICS OF AGRICULTURAL Marketing—3 cr. (3 and 0)
F, S
A general course in marketing agricultural commodities, with particular
emphasis upon food products. Efficiency criteria, consumer behavior, market
organizations and institutions, and marketing functions are analyzed. Pre-
requisite: Econ 201.

AG EC 351—ADVERTISING AND MERCHANDISING—3 cr. (3 and 0) F, S
A general introduction to advertising and merchandising theories and some
practice with basic techniques. A partial list of subjects covered includes:
function of advertising, propriety in advertising, institutions, media, market
research, consumer appeals, loss leaders, mass displays, trademarks and brands,
writing copy, color, layout, agencies and integrated advertising campaigns.
Prerequisite: Junior standing.

AG EC 352—PUBLIC Finance—3 cr. (3 and 0) F, S, SS
Principles of financing government, sources of public revenue, objects of
public expenditures, problems of fiscal administration, and the application of
fiscal policies in stabilizing the national economy.

AG EC 357—NATURAL Resource Economics—3 cr. (3 and 0) F, S, SS
The principles and problems involved in the use of soil, water, forest, and
mineral resources, with special emphasis on economic aspects of alternative
methods of resource utilization. Prerequisite: Econ 201.

AG EC 402—ECONOMICS OF AGRICULTURAL Production—3 cr. (3 and 0) F
An economic analysis of agricultural production involving (a) the concept
of the farm as a firm, (b) principles for decision making, (c) the quantitative
nature and use of production and cost functions and their interrelations and
application of these principles to resource allocation on farms and among areas. **Prerequisite:** Permission of instructor.

**Ag Ec 403—Land Economics—3 cr. (3 and 0)**
A study of the characteristics of land and of the physical, legal, social and economic principles and problems relating to the control and use of land resources. **Prerequisite:** Permission of instructor.

**Ag Ec 405—Seminar—1 cr. (1 and 0) F**
An examination of the relation of economics and sociology to specific problems. **Prerequisite:** Major in Agricultural Economics.

**Ag Ec 406—Seminar—1 cr. (1 and 0) S**
A continuation of Ag Ec 405.

**Ag Ec 451—Agricultural Cooperation—2 cr. (2 and 0) F**
The principles and practices of business organization and management governing the successful operation of cooperative business enterprises. Major emphasis is placed upon cooperative selling, processing, purchasing, and service enterprises that serve farm people. **Prerequisite:** Econ 201.

**Ag Ec 452—Agricultural Policy—3 cr. (3 and 0) F, S**
A review of public agricultural policy programs in the United States and a critical examination of current and proposed government policies and programs affecting the agricultural sector of the economy. Included are economic considerations as related to past and current farm price and income problems. **Prerequisite:** Ag Ec 202 or Econ 202.

**Ag Ec 456—Prices—3 cr. (3 and 0) F, S**
A review of the basic theory of price under competitive conditions and various modifications; nature, measurement and causes of daily, seasonal and cyclical price fluctuations; geographical price relationships; nature, function and behavior of futures markets; government price programs. **Prerequisite:** Ag Ec 202 or Econ 202.

**Ag Ec 460—Agricultural Finance—2 cr. (2 and 0) F, S**
The financial needs of agriculture and of the organization, functions and interrelationships of agencies developed to meet these needs. **Prerequisite:** Econ 201.

**Ag Ec 702—Economics of Agricultural Production—3 cr. (3 and 0)**
**Ag Ec 703—Land Economics—3 cr. (3 and 0)**
**Ag Ec 751—Agricultural Cooperation—2 cr. (2 and 0)**
**Ag Ec 752—Agricultural Policy—3 cr. (3 and 0)**
**Ag Ec 756—Prices—3 cr. (3 and 0)**
**Ag Ec 760—Agricultural Finance—2 cr. (2 and 0)**
**Ag Ec 802—Agricultural Production Economics Problems—3 cr. (3 and 0)**
**Ag Ec 804—Water Resource Policies—3 cr. (3 and 0)**
**Ag Ec 806—Economic Development in Agricultural Areas—3 cr. (3 and 0)**
Agricultural Education 227

Ag Ec 807—Market Structure in Agricultural Industries—3 cr. (3 and 0)
Ag Ec 808—Applied Quantifications in Agricultural Economics—3 cr. (3 and 0)
Ag Ec 814—Contemporary Economic Problems—3 cr. (3 and 0)
Ag Ec 851—Seminar in Research Methodology—1 cr. (1 and 0)
Ag Ec 891—Thesis Research—Credit to be arranged.
Ag Ec 904—Seminar in Resource Economics—3 cr. (3 and 0)
Ag Ec 906—Seminar in Area Economic Development—3 cr. (3 and 0)
Ag Ec 907—Agricultural Marketing Problems—3 cr. (3 and 0)
Ag Ec 991—Doctoral Research—Credit to be arranged.

AGRICULTURAL EDUCATION*

Professor: L. H. Davis, Head
Associate Professors: W. C. Bowen, E. T. Carpenter, F. E. Kirkley
Assistant Professor: J. A. Hash

Ag Ed 201—Introduction to Agricultural Education—3 cr. (2 and 2)
Principles of education, development of agricultural education, and an introduction to the formulation of instructional programs for the teaching of farm people.

Ag Ed 401—Methods in Agricultural Education—3 cr. (2 and 2)
Appropriate methods of teaching vocational agriculture in high schools. The course includes procedures for organizing teaching programs, teaching high school students, and directing F. F. A. activities.

Ag Ed 406—Directed Teaching—6 cr. (0 and 18)
Guided participation in the professional responsibilities of a teacher of vocational agriculture including an intensive study of the problems encountered and the competencies developed. A half semester of directed teaching in selected schools is required. Prerequisite: Ag Ed 401 and Ag Ed 422.

Ag Ed 422—Introduction to Adult Education—3 cr. (2 and 2)
History and nature of adult education in the United States, with emphasis on adult education for rural people.

Ag Ed 431—Methods in Conservation Education—3 cr. (3 and 0)
A study of various techniques appropriate to teaching conservation. Instruction is applicable to both elementary and high school teachers. (Offered in Summer School only.)

Ag Ed 463—Advanced Conservation Education—3 cr. (3 and 0)
The broader aspects of conservation education. The course includes historical, geographical, and national conservation problems. (Offered in Summer School only.)

*Jointly administered by the College of Education and the College of Agriculture and Biological Sciences.
Description of Courses

Ag Ed 465—Program Development in Agricultural Education—3 cr. (3 and 0)
Each student will determine needs and resources in a specific community and plan a program to meet these needs.

Ag Ed 467—Adult Education in Agriculture—3 cr. (2 and 3)
Principles and practices appropriate to the solution of problems encountered in instructional programs for adult farmers.

Ag Ed 701—Methods in Agricultural Education—3 cr. (2 and 3)

Ag Ed 763—Advanced Conservation Education—3 cr. (3 and 0)

Ag Ed 765—Program Development in Agricultural Education—3 cr. (3 and 0)

Ag Ed 767—Adult Education in Agriculture—3 cr. (2 and 3)

Ag Ed 803—Evaluation in Agricultural Education—3 cr. (2 and 3)

Ag Ed 804—Special Problems—3 cr. (2 and 3)

Ag Ed 805—Administration and Supervision in Agricultural Education—3 cr. (3 and 0)

Ag Ed 815—Advanced Methods of Teaching Farm Mechanics—3 cr. (2 and 3)

Ag Ed 820—Teaching Young Farmers—3 cr. (3 and 0)

Ag Ed 825—Supervision of Student Teaching—3 cr. (3 and 0)

Ag Ed 869—Seminar—1-3 cr. (1-3 and 0)

Ag Ed 891—Introduction to Research in Education—3 cr.

Agricultural Engineering*

Professors: A. W. Snell, Head; T. V. Wilson


Assistant Professor: J. T. Craig

AgE 205—Farm Shop—3 cr. (2 and 3) S
Correct methods and underlying reasons in proper use and maintenance of hand and power tools are emphasized. Principal topics include: carpentry, painting and finishing, soldering and sheet metal work, farm concrete, pipe fitting and plumbing, and farm and home water supply systems.

AgE 206—Agricultural Mechanization—3 cr. (2 and 3) F, S
The agricultural student is taught to apply physical principles and sound reasoning to the mechanization of modern agricultural production and processing enterprises. Planning efficient operational systems and wise selection of equipment, based on function and economic suitability, are stressed. Pre-requisite: Math 103, 104, Phys 201 and 203.

* Jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.
**Agricultural Engineering** 229

**AE 212—Fundamentals of Mechanization**—3 cr. (2 and 3) S
Functional analysis of selected agricultural equipment and the economic performance of machine systems; also, the utility and principles of applied technology and processes essential to providing a background for engineering design, research and development. *Prerequisite:* EG 109.

**AE 221—Soil and Water Resources Engineering I**—3 cr. (2 and 3) F
Physical relationships of factors governing rainfall disposition are used as bases for defining the hydrology of agricultural watersheds. The surveying necessary for design and application of resource management measures and structures is taught. *Prerequisite:* Math 106.

**AE 301—Soil and Water Conservation**—3 cr. (2 and 3) F
Engineering and agronomic principles are applied to water management in agriculture. Elementary surveying, mathematics, crops and soil fundamentals are embodied into principles and practices of erosion control, drainage, water conservation and irrigation. *Prerequisite:* Math 103, 104.

**AE 352—Farm Power**—3 cr. (2 and 3) F and SS, '71 and alternate years.
Farm tractors and stationary power units. Principles of operation, preventive maintenance, adjustment and general repair are emphasized. *Prerequisite:* AgE 206.

**AE 353—Computational Systems**—2 cr. (0 and 6) F
The fundamentals of computational systems including symbolic logic will be followed by methods and techniques of programming digital and analog computers to give solutions to agricultural engineering problems. *Prerequisite:* Math 208.

**AE 355—Engineering Analysis and Creativity**—2 cr. (1 and 3) F
The creative and analytical portions of the engineering design process are developed in a problem approach. Application of physical and mathematical principles, analytical and experimental modeling and intelligent assumption making are stressed. Students are also introduced to the techniques of systems analysis. *Prerequisite:* Math 208 and Phys 221.

**AE 360—Farm and Home Utilities**—3 cr. (2 and 3) S and SS, '70 and alternate years.
A course for seniors and graduate students in agriculture curriculums, involving a study of electric and other utilities on the farm and in the home. Selection installation and maintenance of wiring systems, motors and controls, home water systems and sewage disposal systems are emphasized. *Prerequisite:* Junior standing.

**AE 362—Energy Conversion in Agricultural Systems**—3 cr. (2 and 3) S, '71 and alternate years.
The energy requirements of agricultural systems with emphasis upon energy conversion methods. Characteristics of various sources of energy will be considered including economic aspects. The present energy conversion mechanisms used in agriculture will be studied and their limitations considered. *Prerequisite:* EM 202, ME 311.

**AE 416—Agricultural Machinery Design**—3 cr. (2 and 3) S
Engineering analysis of machines and basic agricultural operations and systems requiring machine functions. Fundamentals of machine design with
applications to agricultural machinery. Velocity and acceleration, analyses, dimension determination, power transmission, and vibrations in machinery are studied. **Prerequisite: EM 304.**

**AgE 422—Soil and Water Resources Engineering II**—3 cr. (2 and 3) S
Basic soil-water-plant relationships are used to establish criteria for the analysis and design of facilities and structures for conservation, water control, drainage and irrigation. Engineering relationships involved in the design of such facilities are emphasized. **Prerequisite: Math 208 and EM 320.**

**AgE 481—Agricultural Structures Design**—3 cr. (2 and 3) F, '71 and alternate years.
Analytic and synthetic design of building components, including fastening devices, as determined by both live and dead loads with emphasis on statically determinant members and their positions and utilization in frames and trusses. Major materials considered are wood, steel and concrete. **Corequisite: EM 304.**

**AgE 442—Agricultural Process Engineering**—3 cr. (2 and 3) S, '72 and alternate years.
Design of unit operations components used in agricultural processing. Engineering principles and instrumentation as applied to control systems, heat transfer, materials handling, storage and related subjects are emphasized. **Prerequisite: Math 311 and EE 308.**

**AgE 465—Engineering Properties of Biological Materials**—3 cr. (2 and 3) S, '71 and alternate years.
The thermal, electrical, mechanical, and chemical characteristics of biological materials, organisms, and metabolic processes are studied in relationship to engineering analysis and synthesis. The effects of environmental factors imposed by engineering processes are evaluated. **Prerequisite: Math 208, EM 304, Bot 101, Zool 101, 103.**

**AgE 471—Undergraduate Research**—1 cr. (0 and 3) F
A course to acquaint senior students in Agricultural Engineering with the scientific method. Literature investigations, planning and executing of an experiment are integral parts of the course. **Prerequisite: Senior standing in Agricultural Engineering.**

**AgE 473—Special Topics in Agricultural Engineering**—3 cr. (3 and 0)
A comprehensive study of special topics in the field of agricultural engineering not covered in other courses. Special emphasis will be placed on independent pursuit of detailed investigations.

**AgE H473—Special Topics in Agricultural Engineering**—3 cr. (3 and 0)
Honors section of AgE 473; admission by invitation.

**AgE 481—Fundamentals of Ginning Engineering**—3 cr. (2 and 3) S, '71 and alternate years.
An analysis of the engineering requirements and associated problems in all phases of ginning, such as handling, storage, drying, separating lint, cleaning, pressing, disposing of foreign matter, quarantine treatment, power requirements and safety precautions. **Prerequisite: EM 304 or equivalent.**

**AgE 652—Farm Power**—3 cr. (2 and 3)

**AgE 660—Farm and Home Utilities**—3 cr. (2 and 3)
AgE 716—Agricultural Machinery Design—3 cr. (2 and 3)
AgE 722—Soil and Water Resources Engineering II—3 cr. (2 and 3)
AgE 731—Agricultural Structural Design—3 cr. (2 and 3)
AgE 742—Agricultural Process Engineering—3 cr. (2 and 3)
AgE 765—Engineering Properties of Biological Materials—3 cr.
(2 and 3)
AgE 801—Special Problems in Agricultural Engineering—3 cr.
(3 and 0)
AgE 804—Engineering Application to Agricultural Processing—3 cr.
(2 and 3)
AgE 806—Instrumentation in Agricultural and Biological Research—3 cr. (2 and 3)
AgE 811—Tillage and Soil Dynamics—3 cr. (3 and 0)
AgE 822—Water Movement in Soils—3 cr. (3 and 0)
AgE 873—Radiological Health—3 cr. (2 and 3)
AgE 874—Radiological Health Engineering—3 cr. (2 and 3)
AgE 882—Systems Engineering—3 cr. (2 and 3)
AgE 891—Research—Credit to be arranged.
AgE 901—Special Problems in Agricultural Engineering—3 cr.
(3 and 0)
AgE 991—Doctoral Research—Credit to be arranged.

AGRICULTURE

Professors: J. W. Jones, J. T. Lazar, Jr., R. R. Ritchie
Associate Professors: J. B. Cooper, G. R. von Tungeln
Assistant Professors: R. K. DeHaven, M. W. Jutras, B. J. Skelton

Ag 101—Introduction to Agriculture—1 cr. (1 and 0) F, S
Guides to effectively study; agricultural sciences; scope of the agricultural industry; agriculture of South Carolina and the United States; organizations and function of the land-grant institution and other agencies serving agriculture; career opportunities.

Ag 201—Introduction to Animal Industries—3 cr. (2 and 3) F, S
Fundamental and descriptive aspects of the animal industries as applied biology and major segments of food production and distribution systems. The subject matter will be presented by Animal Science, Dairy Science, and Poultry Science Departments.

Ag 202—Introduction to Plant Sciences—3 cr. (2 and 3) F, S
A fundamental course in plant sciences, including Agronomic and Horticultural crops of the major agricultural areas of the world, and emphasizing the crops of South Carolina. Included in the laboratory exercises are applications of the basic biological concepts of morphology, heredity, physiology and ecology to the production of food, fiber and ornamentals for an expanding population.
AG 301—INTERNATIONAL AGRICULTURE—3 cr. (3 and 0) F
This course is designed to acquaint the student with current international agriculture. Topics covered include: international agricultural production and consumption patterns, stage of agricultural and industrial development in various countries of the world, current and projected future production-consumption-population balance, world trade patterns in agricultural products, world agricultural marketing problems (including tariffs, balance of trade, import quotas, and common markets). Also included are allied subjects such as population trends and agricultural mechanization.

AG 401—INTERNATIONAL AGRICULTURE SEMINAR—1 cr. (1 and 0) S
This seminar will be directed toward current topics in international agriculture. Seminar speakers will include invited guests from such agencies as the Foreign Agricultural Service, the Food and Agriculture Organization, The Ford Foundation, the Rockefeller Foundation, and the Agency for International Development. Other speakers will include staff members in the College of Agriculture and Biological Sciences that have had foreign assignments in their professional fields. Some sessions will be devoted specifically to employment opportunities in international agriculture.

AGRONYMO—CROPS AND SOILS
Professors: G. R. Craddock, C. M. Jones, U. S. Jones, Head; T. C. Peele
Associate Professors: E. B. Eskew, K. S. LaFleur, B. J. Gossett
Assistant Professors: W. D. Graham, M. W. Jutras, J. D. Maxwell, C. E. Rieck, J. R. Woodruff

AGRON 202—SOILS—3 cr. (2 and 2) F, S
A basic foundation in soil science is presented with emphasis on the chemical and physical properties of soil, the activities of the living soil organisms, and the origin and classification of soils. Prerequisite: Ch 101 and 102.

AGRON 301—FERTILIZERS—3 cr. (3 and 0) F
Sources, mining and manufacture, composition, physical characteristics, and use of fertilizers. A detailed study is made of crop responses to fertilizer use. Prerequisite: Agron 202.

AGRON 308—SOIL AND PLANT ANALYSIS—3 cr. (1 and 6) S
A laboratory study of the physical and chemical properties of soils and methods of their determination. The relation of these properties to the potential fertility and management of soils is emphasized. Methods of plant analysis and the use of plant analysis data as a diagnostic tool in plant nutrition is also studied. Prerequisite: Agron 202.

AGRON 310—FORAGE AND PASTURE CROPS—3 cr. (3 and 0) S
The characteristics, establishment, utilization and maintenance of crops for hay, silage, and pasture. Crops valuable in South Carolina are emphasized. Prerequisite: Ag 202, Agron 202 or consent of instructor.

AGRON 312—FORAGE CROPS LABORATORY—1 cr. (0 and 2) S
Identification, rating, and management of the important forage and pasture species of the Southeast. Prerequisite: Ag 202.
Agronomy—Crops and Soils 233

Agron 403—Soil Genesis and Classification—2 cr. (1 and 3) F
Theoretical and practical phases of soil survey, formation and classification in relation to land usage and plant adaptability. Prerequisite: Agron 202 or consent of instructor.

Agron 405—Plant Breeding—3 cr. (2 and 2) S
The application of genetic principles to the development of improved crop plants. Principal topics include the genetic and cytogetic basis of plant breeding, mode of reproduction, techniques in selfing and crossing, methods of breeding, inheritance in the major crops, and biometrical methods. Prerequisite: Gen 302.

Agron 407—Principles of Weed Control—3 cr. (2 and 2) F
Weeds, their introduction, ecology, methods of reproduction, dissemination, and control; chemistry and mode of action of herbicides, equipment and techniques of application; a characterization of the common weeds of the Southeast. Prerequisite: Ag 202, Agron 202 or consent of instructor.

Agron 410—Cotton and Other Fiber Crops—2 cr. (2 and 0) F, '71 and alternate years.
History, morphology, physiology, and fundamental principles and practices of production, harvesting, marketing, processing, and utilization of cotton and certain other fiber crops. Emphasis will be placed on the effect of environmental and production factors as they affect fiber quality and subsequent utilization. Prerequisite: Ag 202, Agron 202 or consent of instructor.

Agron 411—Grain Crops—2 cr. (2 and 0) F, '70 and alternate years.
A fundamental study involving principles of production, harvesting processing, marketing, and utilization of soybeans, corn, sorghum, and the small grains. Emphasis will be placed on factors affecting grain quality as related to utilization of grain. Prerequisite: Ag 202, Agron 202 or consent of instructor.

Agron 412—Tobacco and Special Use Crops—2 cr. (2 and 0) S, '72 and alternate years.
Principles involved in the production, harvesting, curing, grading and marketing of high quality flue-cured tobacco. Brief coverage of special use crops, such as peanuts, sugar cane, etc. Prerequisite: Ag 202, Agron 202 or consent of instructor.

Agron 452—Soil Fertility and Management—2 cr. (2 and 0) S
Principles of crop rotations, soil fertility, soil management, and other factors necessary for the practical utilization of soils. Prerequisite: Agron 202 or consent of instructor.

Agron 455—Seminar—1 cr. (1 and 0) F
Student presentation of current agronomic topics of special interest in crop production appearing in recent scientific journals and other publications.

Agron 456—Seminar—1 cr. (1 and 0) S
Student presentation of current topics of special interest in the field of soil science appearing in recent scientific journals and other publications.

Agron 601—Fertilizers—3 cr. (3 and 0)

Agron 608—Soil and Plant Analysis—3 cr. (1 and 6)

Agron 610—Forage and Pasture Crops—3 cr. (3 and 0)
Agron 612—Forage Crops Laboratory—1 cr. (0 and 2)
Agron 703—Soil Genesis and Classification—2 cr. (1 and 3)
Agron 705—Plant Breeding—3 cr. (2 and 2)
Agron 707—Principles of Weed Control—3 cr. (2 and 2)
Agron 710—Cotton and Other Fiber Crops—2 cr. (2 and 0)
Agron 711—Grain Crops—2 cr. (2 and 0)
Agron 712—Tobacco and Special Use Crops—2 cr. (2 and 0)
Agron 752—Soil Fertility and Management—3 cr. (2 and 0)
Agron 755—Seminar—1 cr. (1 and 0)
Agron 756—Seminar—1 cr. (1 and 0)
Agron 801—Crop Physiology and Nutrition—3 cr. (3 and 0)
Agron 802—Pedology and Soil Classification—3 cr. (2 and 3)
Agron 804—Theory and Methods of Plant Breeding—3 cr. (3 and 0)
Agron 805—Soil Fertility—3 cr. (3 and 0)
Agron 806—Special Problems—Credit to be arranged—1-3 cr.
Agron 807—Soil Physics—3 cr. (2 and 3)
Agron 808—Soil Chemistry—3 cr. (2 and 3)
Agron 812—Crop Ecology and Land Use—3 cr. (3 and 0)
Agron 820—Pesticide Residues in the Environment—3 cr. (3 and 0)
Agron 825—Seminar—1 cr. (1 and 0)
Agron 891—Research—Credit to be arranged.
Agron 991—Doctoral Research and Thesis—Credit to be arranged.

ANIMAL PHYSIOLOGY


Assistant Professors: Ruth L. Hays, D. M. Hendricks

Visiting Professor: D. R. Lamond

(See courses listed under Animal Science, Dairy Science, Entomology, Poultry Science, and Zoology)

An Ph 802—Vertebrate Physiology—3 cr. (2 and 3)
An Ph 803—Animal Physiology—4 cr. (3 and 3)
An Ph 804—Animal Physiology—4 cr. (3 and 3)
An Ph 805—Pharmacology—3 cr. (2 and 3)
An Ph 806—Experimental Animal Physiology—3 cr. (1 and 6)
An Ph 808—Mammalian and Avian Endocrinology—3 cr. (3 and 0)
An Ph 851—Animal Physiology Seminar I—1 cr. (1 and 0)
An Ph 852—Animal Physiology Seminar II—1 cr. (1 and 0)
An Ph 991—Doctoral Research—Credit to be arranged.

ANIMAL SCIENCE

Professors: W. C. Godley, R. R. Ritchie, R. F. Wheeler, Head
Associate Professors: R. L. Edwards, J. R. Hill, Jr., C. C. Skelley
Assistant Professor: D. L. Handlin

An Sc 201—Introduction to Animal Science—2 cr. (2 and 0)  
This course deals with basic principles concerning the breeding, feeding, management and marketing of beef cattle, swine, sheep and horses.

An Sc 203—Introduction to Animal Science Laboratory—1 cr. (0 and 3)  
A course designed to demonstrate the basic elements of livestock breeding, feeding and management. Beef cattle, swine, sheep and horses will be used. Evaluation of slaughter animals and carcasses is included.

An Sc 301—Feeds and Feeding—3 cr. (3 and 0)  F, S  
Feed nutrients, digestion, metabolism of feed stuffs, nutritive ratios, feeding standards, and the balancing or rations. Prerequisite: An Sc 201, 203 or equivalent and Ch 220 or consent of instructor.

An Sc 303—Feeds and Feeding Laboratory—1 cr. (0 and 3)  S  
Practical work in mixing and balancing rations and identifying feed stuffs. Prerequisite: An Sc 201, 203 or equivalent and Ch 220 or consent of instructor.

An Sc 305—Meat Grading and Selection—2 cr. (1 and 3)  F, '70 and alternate years.  
Classification, grading and selection of beef, lamb and pork carcasses and wholesale cuts. Factors influencing quality and value. Students enrolled in this course are eligible to compete in Intercollegiate Meat Judging Contests. Prerequisite: An Sc 201, 203.

An Sc 306—Livestock Selection and Evaluation—2 cr. (1 and 3)  S  
Selection, breed characteristics and grading of beef cattle, sheep and swine. Students enrolled in this course are eligible to compete in the Southeastern Intercollegiate Livestock Judging Contest. Prerequisite: An Sc 201, 203.

An Sc 353—Meats—2 cr. (2 and 0)  F  
The chemical and physical composition of meat, meat hygiene; nutritive value; curing; freezing; and meat by-products. Prerequisite: An Sc 201, 203.

An Sc 355—Meats Laboratory—1 cr. (0 and 3)  F  
The selection and grading of meat animals and carcasses. Practical work in slaughtering of animals and in the cutting, curing and freezing of meats. Emphasis is placed on the identification of wholesale and retail cuts. Prerequisite: An Sc 201, 203.

An Sc 401—Beef Production—3 cr. (3 and 0)  F  
Breeding, feeding, management and grading of beef cattle. Emphasis is placed on year-round grazing. Prerequisite: An Sc 301 or consent of instructor.
An Sc 403—Beef Production Laboratory—1 cr. (0 and 3) F
Practical application of beef production practices. Prerequisite: An Sc 301 or consent of instructor.

An Sc 405—Advanced Livestock Selection and Evaluation—1 cr. (0 and 3) F, '71 and alternate years.
A continuation of An Sc 306 for students who are interested in participating in judging contests or in receiving special training in the selection of breeding cattle, sheep and swine. Judging and grading of market classes are considered. Prerequisite: An Sc 306.

An Sc 406—Seminar—2 cr. (2 and 0) S
Special problems in animal production. Each student is given a subject on which he makes weekly reports before a seminar group. Prerequisite: An Sc 301 or consent of instructor.

An Sc 407—Horse and Sheep Production—2 cr. (2 and 0) F, '70 and alternate years.
The breeding, feeding and care of horses and sheep; the shearing and marketing of sheep and wool; the adaptability of breeds; and parasite and disease control. Prerequisite: An Sc 301 or consent of instructor.

An Sc 408—Pork Production—3 cr. (3 and 0) S
Feeding, breeding, management, and marketing of hogs. Emphasis is placed on winter and summer forages, protein supplements, mineral mixtures, and sanitation practices. In laboratory grading, selection, feeding, management and care of swine is given attention. Prerequisite: An Sc 301 or consent of instructor.

An Sc 409—Horse and Sheep Production Laboratory—1 cr. (0 and 3) F, '70 and alternate years.
Horse and sheep production practices. Prerequisite: An Sc 301 or consent of instructor.

An Sc 410—Pork Production Laboratory—1 cr. (0 and 3) S
Practical application of swine production practices. Prerequisite: An Sc 301 or consent of instructor.

An Sc 452—Animal Breeding—3 cr. (3 and 0) S
The fundamental principles relating to the breeding and improvement of livestock including variation, heredity, selection, linebreeding, inbreeding, crossbreeding and other related subjects. Prerequisite: Gen 302.

An Sc 701—Beef Production—3 cr. (3 and 0)
An Sc 703—Beef Production Laboratory—1 cr. (0 and 3)
An Sc 708—Pork Production—3 cr. (3 and 0)
An Sc 710—Pork Production Laboratory—1 cr. (0 and 3)
An Sc 752—Animal Breeding—3 cr. (3 and 0)
An Sc 802—Topical Problems—1-3 cr. (1-3 and 0)
An Sc 803—Meat Technology—3 cr. (3 and 0)
An Sc 804—Methods in Animal Breeding—3 cr. (3 and 0)
An Sc 805—Nutrition of Meat Animals—3 cr. (3 and 0)
An Sc 891—Research—Credit to be arranged.
ARCHITECTURE


Assistant Professors: K. E. Carpenter, J. McN. Clement, J. Dalton, K. Russo, S. Wang, J. R. Washburn, D. Waddell

Lecturers: S. Carter, K. R. Craig, F. P. Morris

Visiting Professor: T. K. Doruk, G. A. Rowe

Associate Visiting Professor: R. D. Bray

ARCH 101—AN INTRODUCTION TO ART AND ARCHITECTURE—3 cr. (1 and 6)
Studies of architecture and the visual arts with adjunct studio exercises.

ARCH 102—AN INTRODUCTION TO ART AND ARCHITECTURE—3 cr. (1 and 6)
Studies of architecture and the visual arts with adjunct studio exercises. Prerequisite: Arch 101.

ARCH CONST 141—ELEMENTS OF BUILDING I—4 cr. (2 and 6)
An introduction to the principles of building construction. Exercises in graphics, slide rule, print reading and interpretation. Lectures in building materials, building codes, safety, and basic construction methods.

ARCH CONST 142—ELEMENTS OF BUILDING II—4 cr. (2 and 6)
A continuation of Arch Const 141. Prerequisite: Arch Const 141.

ARCH CONST 241—ELEMENTS OF BUILDING III—4 cr. (2 and 6)
Interpretation and analysis of working drawings and specifications of selected building projects. Principles of estimating procedures with emphasis on quantity surveys and construction organization and planning. Prerequisite: Arch Const 142.

ARCH CONST 242—ELEMENTS OF BUILDING IV—4 cr. (2 and 6)
Continuation of Arch Const 241. Prerequisite: Arch Const 241.

ARCH 253—BASIC DESIGN I—4 cr. (1 and 9)
Studio problems in visual fundamentals, including graphic representations and adjunct lectures in visual theory. Prerequisite: Arch 102; corequisite: Math 206.

ARCH 254—ARCHITECTURAL DESIGN II—4 cr. (1 and 9)
Studio problems in the elements of architecture, basic site development, and three-dimensional representation. Prerequisite: Arch 253; corequisite: EM 201.

ARCH 302—ART AND ARCHITECTURE TOUR—3 cr. (3 and 0)
A tour of selected cities, either foreign or American, will be organized periodically primarily in a Summer Session. The purpose of the tour is to provide students with firsthand experience with the dynamic qualities of original works of painting and sculpture and especially the spatial qualities of architecture and the relationships of great works of architecture to their environment. The tour will be accompanied by lectures and will require examinations and/or reports.

* On leave.
ARCH 303—THE EVOLUTION OF THE VISUAL ARTS—3 cr. (3 and 0)
A consideration of man’s necessity for and development of the Visual Arts with particular attention to the environmental factors in society which demand Art as a medium of communication. Illustrated lectures and collateral reading. Not open, except by special permission, to students in the College of Architecture. Preference to students in Education. Prerequisite: Sophomore standing.

ARCH 304—THE EVOLUTION OF THE ENVIRONMENTAL ARTS—3 cr. (3 and 0)
A consideration of man’s necessity for and development of the Environmental Arts (Architecture, Landscape Architecture, City and Regional Planning) with particular attention to the Total Environment of Man and its demands and restrictions upon the architect and planner. Illustrated lectures and collateral reading. Not open, except by special permission, to students in the College of Architecture. Preference to students in Education. Prerequisite: Arch 303 or special permission of instructor.

ARCH 315—ARCHITECTURAL HISTORY I—3 cr. (3 and 0)
The architectural history of Western man from 1500 B.C. to A.D. 323, with particular attention to Egypt, Greece, Mesopotamia, and Rome.

ARCH 316—ARCHITECTURAL HISTORY II—3 cr. (3 and 0)
The architectural history of Europe and the Near East from A.D. 323 to 1453, with particular attention to the Byzantine, pre-Romanesque, Romanesque, and Gothic schools of Western Europe. Prerequisite: Arch 315.

ARCH 331—ARCHITECTURAL APPLICATIONS OF COMPUTER SCIENCE—2-2 cr. (2 each)
A two-semester course sequence, including computer theory and programming. Architectural applications of the computer as a resource will be studied; including use in problem solving in functional relationships of space, materials performance specifications, structural design and graphic usage.

ARCH 332—ARCHITECTURAL APPLICATIONS OF COMPUTER SCIENCE—2-2 cr. (2 each)
A continuation of Arch 331. Prerequisite: Arch 331.

ARCH Const 341—BUILDING CONSTRUCTION I—4 cr. (2 and 6)
A study of building construction projects with emphasis on labor relations and jurisdiction, job planning, scheduling, and project control. Prerequisite: Arch Const 242.

ARCH Const 342—BUILDING CONSTRUCTION II—4 cr. (2 and 6)
A continuation of Arch Const 341. Prerequisite: Arch Const 341.

ARCH 353—ARCHITECTURAL DESIGN III—5 cr. (1 and 12)
Intermediate architectural design problems involving programming and considerations of function, structure and aesthetics. Prerequisite: Arch 254; corequisite: EM 304.

ARCH 354—ARCHITECTURAL DESIGN IV—5 cr. (1 and 12)
Continuation of Arch 353. Prerequisite: Arch 353; corequisite: CE 301.

ARCH 415—ARCHITECTURAL HISTORY III—3 cr. (3 and 0)
The architectural history of Western Europe and the Americas from 1453 to 1775, with particular attention to the Renaissance, Baroque, and Revivalist schools. Prerequisite: Arch 316.
ARCH 416—ARCHITECTURAL HISTORY IV—3 cr. (3 and 0)
The architectural history of Western Europe and the Americas from 1775 to 1915 with particular attention to the architecture of the Industrial Revolution and the development of the academies. Prerequisite: Arch 415.

ARCH Const 432—CONCRETE FORMWORK—2 cr. (2 and 0)
The study of materials, methods, design and estimating of formwork for concrete structures. Prerequisite: CE 301.

ARCH Const 441—BUILDING CONSTRUCTION III—4 cr. (2 and 6)
A study of contractor organization and administration including contracts, insurance, bonds, financing, equipment, office procedures, and records. Prerequisite: Arch Const 342.

ARCH Const 442—BUILDING CONSTRUCTION IV—4 cr. (2 and 6)
A continuation of Arch Const 441. Prerequisite: Arch Const 441.

ARCH 451—ARCHITECTURAL DESIGN V—5 cr. (1 and 12)
Consideration of design problems involving programming of urban structures with adjunct lectures in design principles, construction and theory. Prerequisite: Arch 354; corequisite: CE 302.

ARCH 454—ARCHITECTURAL DESIGN VI—5 cr. (1 and 12)
Continuation of Arch 453. Prerequisite: Arch 453; corequisite: CE 402.

ARCH 490—DIRECTED STUDIES—1-5 cr.
Comprehensive studies and research of special topics not covered in other courses. Emphasis will be placed on field studies, research activities, and current developments in architecture.

ARCH 503—SEMINAR IN THE ANALYSIS AND CRITICISM OF ARCHITECTURAL AND TOWN BUILDING WORKS—3 cr. (3 and 0)
A seminar in the analysis and criticism of architectural and town building works. The course sequence will include historic and contemporary examples, literary searches, field trips, essays and oral reports. Fourth-year-design standing or permission of instructor.

ARCH 515—CONSTRUCTION METHODS—2 cr. (2 and 0)
A course relating contemporary construction methods with considerations of function, aesthetics and economics. Prerequisite: Fourth-year standing.

ARCH 517—STUDIES IN THE ART AND ARCHITECTURE OF THE ANCIENT WORLD I—3 cr. (3 and 0) F
A consideration of the visual arts and architectural monuments of the Ancient World (Egypt, the Near East, Greece and Rome), with a study in depth of selected examples from the period. Prerequisite: Arch 315, 316, 415, 416, or Arch 303, 304 and History 203, 204, all with a grade of "B" or better.

ARCH 518—STUDIES IN THE ART AND ARCHITECTURE OF THE ANCIENT WORLD II—3 cr. (3 and 0) S
A consideration of the visual arts and architectural monuments of the Ancient World (Egypt, the Near East, Greece and Rome), with a study in depth of selected examples from the period. Prerequisite: Arch 517, or with the permission of the instructor and the prerequisites for Arch 517.
Description of Courses

Arch 519—Studies in the Art and Architecture of the Early Middle Ages I—3 cr. (3 and 0) F
A consideration of the visual arts and architectural monuments of the Early Middle Ages (Byzantium and Western Europe from the 4th through 12th Centuries), with a study in depth of selected examples from the period. Prerequisite: Arch 315, 316, 415, 416, or Arch 303, 304 and History 203, 204, all with a grade of "B" or better.

Arch 520—Studies in the Art and Architecture of the Early Middle Ages II—3 cr. (3 and 0) S
A consideration of the visual arts and architectural monuments of the Early Middle Ages (Byzantium and Western Europe from the 4th through 12th Centuries), with a study in depth of selected examples from the period. Prerequisite: Arch 519, or with the permission of the instructor and the prerequisites for Arch 519.

Arch 521—Studies in the Art and Architecture of the Late Middle Ages I—3 cr. (3 and 0) F
A consideration of the visual arts and architectural monuments of the Late Middle Ages (Western Europe from the 12th to the 15th Centuries), with a study in depth of selected examples from the period. Prerequisite: Arch 315, 316, 415, 416, or Arch 303, 304 and History 203, 204, all with a grade of "B" or better.

Arch 522—Studies in the Art and Architecture of the Late Middle Ages II—3 cr. (3 and 0) S
A consideration of the visual arts and architectural monuments of the Late Middle Ages (Western Europe from the 12th to the 15th Centuries), with a study in depth of selected examples from the period. Prerequisite: Arch 521, or with the permission of the instructor and the prerequisites for Arch 521.

Arch 523—Studies in the Art and Architecture of the Renaissance I—3 cr. (3 and 0) F
A consideration of the visual arts and architectural monuments of the Renaissance (Western Europe from the 15th through the 18th Centuries), with a study in depth of selected examples from the period. Prerequisite: Arch 315, 316, 415, 416, or Arch 303, 304 and History 203, 204, all with a grade of "B" or better.

Arch 524—Studies in the Art and Architecture of the Renaissance II—3 cr. (3 and 0) S
A consideration of the visual arts and architectural monuments of the Renaissance (Western Europe from the 15th through the 18th Centuries), with a study in depth of selected examples from the period. Prerequisite: Arch 523, or with the permission of the instructor and the prerequisites for Arch 523.

Arch 525—Studies in the Art and Architecture of the Technological Revolution I—3 cr. (3 and 0) F
A consideration of the visual arts and architectural monuments of the Technological Revolution (Western Europe and America from 1685 to 1935), with a study in depth of selected examples from the period. Prerequisite: Arch 315, 316, 415, 416, or Arch 303, 304 and History 203, 204, all with a grade of "B" or better.
ARCH 526—STUDIES IN THE ART AND ARCHITECTURE OF THE TECHNOLOGICAL REVOLUTION II—3 cr. (3 and 0) S
A consideration of the visual arts and architectural monuments of the Technological Revolution (Western Europe and America from 1685 to 1935), with a study in depth of selected examples from the period. Prerequisite: Arch 525, or with the permission of the instructor and the prerequisites for Arch 525.

ARCH 527—STUDIES IN THE DEVELOPMENT OF ARCHITECTURAL TECHNOLOGY I—3 cr. (3 and 0) F
A consideration of the development of architectural technology from ancient through contemporary times with a study in depth of selected examples from each period. Prerequisite: Open to students who have completed Architectural History I-IV and to other students with senior standing and permission of the instructor.

ARCH 528—STUDIES IN THE DEVELOPMENT OF ARCHITECTURAL TECHNOLOGY II—3 cr. (3 and 0) S
A consideration of the development of architectural technology from ancient through contemporary times with a study in depth of selected examples from each period. Prerequisite: Open to students who have completed Architectural History I-IV and to other students with senior standing and permission of the instructor.

ARCH 529—STUDIES IN THE ART AND ARCHITECTURE OF INDIA AND THE FAR EAST I—3 cr. (3 and 0) F
A consideration of the visual arts and architectural monuments of India and the Far East, with a study in depth of selected examples from the period. Prerequisite: Arch 315, 316, 415, 416, or Arch 303, 304 and History 203, 204, all with a grade of "B" or better.

ARCH 530—STUDIES IN THE ART AND ARCHITECTURE OF INDIA AND THE FAR EAST II—3 cr. (3 and 0) S
A consideration of the visual arts and architectural monuments of India and the Far East, with a study in depth of selected examples from the period. Prerequisite: Arch 529, or with the permission of the instructor and the prerequisites for Arch 529.

ARCH 553—ADVANCED ARCHITECTURAL STRUCTURES—4 cr. (1 and 9)
A course in the synthesis of advanced architectural construction and structural analysis. Prerequisite: Arch 515 and CE 302.

ARCH 575—MECHANICAL PLANT—2 cr. (2 and 0)
The water supply, plumbing, heating and ventilating systems of present-day buildings.

ARCH 576—MECHANICAL PLANT—2 cr. (2 and 0)
Air-conditioning, electrical systems, lighting, mechanical transportation and acoustics as applied to contemporary buildings. Prerequisite: Arch 575.

ARCH 581—ARCHITECTURAL OFFICE PRACTICE—2 cr. (2 and 0)
General consideration of architectural office procedure. Study of the professional relationship of the architect to client and contractor, including problems of ethics, law, and business.

ARCH 582—ARCHITECTURAL OFFICE PRACTICE—2 cr. (2 and 0)
A continuation of Arch 581. Prerequisite: Arch 581.
ARCH 591—ARCHITECTURAL AND TOWN PLANNING DESIGN—11 cr. (5 and 18)
Lectures and studio problems in advanced architectural design and Town Planning. Course content will include pre-thesis studies. Prerequisite: Arch 454 with C standing.

ARCH 592—ARCHITECTURAL THESIS—11 cr. (5 and 18)
The student working individually will carefully program an environmental problems of appropriate scope, and conduct his own comprehensive research. He will make a complete oral, written and visual presentation of his solution. Prerequisite: Arch 591.

ARCH 593—STRUCTURAL THESIS RESEARCH—5 cr. (0 and 15)
Studio and laboratory research studies preliminary to undertaking a thesis in Architectural Structures. Prerequisite: Arch 553.

ARCH 594—THESIS IN ARCHITECTURAL STRUCTURES—11 cr. (5 and 18)
The student working individually with laboratory and lecture support will prepare and present a structural thesis of appropriate scope and complexity. Prerequisite: Arch 593.

ARCH 611—DIRECTED RESEARCH IN ART HISTORY—3 cr. (3 and 0)
ARCH 612—DIRECTED RESEARCH IN ART HISTORY—3 cr. (3 and 0)
ARCH 615—STRUCTURAL METHODS—2 cr. (2 and 0)
ARCH 653—ADVANCED ARCHITECTURAL CONSTRUCTION—4 cr. (1 and 9)
ARCH 811—TOWN PLANNING THEORY—3 cr. (3 and 0)
ARCH 812—TOWN PLANNING THEORY—3 cr. (3 and 0)
ARCH 853—GRADUATE DESIGN—8 cr. (0 and 24)
ARCH 854—GRADUATE DESIGN—8 cr. (0 and 24)
ARCH 855—THESIS RESEARCH—2 cr. (0 and 6)
ARCH 857—GRADUATE DESIGN—10 cr. (4 and 18)
ARCH 858—ARCHITECTURAL THESIS—17 cr. (5 and 36)
ARCH 861—ECONOMICS SEMINAR—3 cr. (3 and 0)
ARCH 875—MECHANICAL PLANT—2 cr. (2 and 0)
ARCH 876—MECHANICAL PLANT—2 cr. (2 and 0)
ARCH 881—OFFICE PRACTICE—2 cr. (2 and 0)
ARCH 882—OFFICE PRACTICE—2 cr. (2 and 0)
ARCH 890—DIRECTED STUDIES—1-5 cr.
ARCH 891—ARCHITECTURAL STRUCTURAL SEMINAR—2 cr. (2 and 0)
ARCH 892—ARCHITECTURAL STRUCTURAL SEMINAR—2 cr. (2 and 0)
ARCH 893—ARCHITECTURAL STRUCTURAL SEMINAR—2 cr. (2 and 0)
BIOCHEMISTRY

Professors: J. H. Mitchell, Jr., W. P. Williams, Jr., Head
Associate Professors: R. F. Borgman, D. E. Turk
Assistant Professors: L. Crook, D. M. Henricks, J. J. Jen

(See biochemistry courses listed under Chemistry)

Bioch 406—Physiological Chemistry—4 cr. (3 and 3) S
Chemistry of the physiological processes of respiration, digestion, membrane transport, blood and tissue homeostatis, and kidney function is studied. Current literature on these processes is studied and interpretations discussed.
Prerequisite: Ch 310 or Ch 423.

Bioch 706—Physiological Chemistry—4 cr. (3 and 3)

Bioch 810—Advanced Biochemical Techniques—3 cr. (1 and 6)
Bioch 812—Nutritional Biochemistry—3 cr. (3 and 0)
Bioch 814—Laboratory Methods in Nutrition—1 cr. (0 and 3)
Bioch 815—Lipids—2 cr. (2 and 0)
Bioch 816—Proteins and Nucleic Acids—3 cr. (3 and 0)
Bioch 817—Chemistry and Metabolism of Hormones—2 cr. (2 and 0)
Bioch 818—Vitamins and Minerals—3 cr. (3 and 0)
Bioch 819—Intermediary Metabolism—3 cr. (3 and 0)
Bioch 851—Biochemistry Seminar—1 cr. (1 and 0)
Bioch 852—Biochemistry Seminar—1 cr. (1 and 0)
Bioch 891—Research—Credit to be arranged.

BIOENGINEERING

Professor: H. R. Bungay III
Associate Professors: S. F. Hulbert, Program Coordinator; M. J. Eitel, R. S. Mathews
Adjunct Professor: F. H. Stelling

BioE 301—Engineering Aspects of Biology and Medicine—2 cr. (2 and 0)
The relationships of various branches of engineering to biology and medicine. Structural engineering fluid flow, and mass transfer in living systems. Artificial organs, biomaterials, implants, instrumentation, microbial systems, and other engineering challenges are discussed.

BioE 401—Computers for Bioscientists—3 cr. (2 and 3)
Analog and elementary digital computer techniques applied to processes in biology and biochemistry. The emphasis is simulation in modeling, not advanced mathematics or statistics. Prerequisite: One year of college mathematics, preferably calculus; closed to Engineering students.

BioE 701—Computers for Bioscientists—3 cr. (2 and 3)
BioE 800—Seminar in Bioengineering—1 cr. (1 and 0)
BioE 801—Biomaterials—3 cr. (3 and 0)
Description of Courses

BioE 810—Biochemical Engineering—3 cr. (3 and 0)
BioE 846—Elements of Bioengineering I—3 cr. (3 and 0)
BioE 847—Elements of Bioengineering II—3 cr. (3 and 0)
BioE 850—Special Topics in Biomedical Engineering—3 cr. (3 and 0)
BioE 891—Research—Credit to be arranged.
BioE 991—Doctoral Research—Credit to be arranged.

BIOLOGY

(For curriculums and offerings of sections of the Division of Biology see also Botany, Microbiology, and Zoology)

Professor: R. K. Guthrie, Director

BioL 450—Biology for High School Teachers—3 cr. (3 and 0) SS
The fundamental principles of biological processes are reviewed and expanded. Demonstrations, preparations, illustrations, and experiments suitable for use in high school teaching are emphasized. Expressly designed for biology teachers in the secondary schools.

BioL 750—Biology for High School Teachers—3 cr. (3 and 0)
BioL 800—Principles of Biology—3 cr. (2 and 3)

BOTANY

(See also Biology)

Assistant Professors: N. D. Camper, J. E. Fairey III
Instructor: Neina W. Thompson

Bot 101—General Botany—4 cr. (3 and 3) F, S, SS
The form, structure and physiology of the higher plants, followed by the algae, bacteria, fungi, liverworts, mosses and ferns, with the application of the biological laws. Descriptions, life histories and adaptation of representative organisms.

Bot 202—Survey of the Plant Kingdom—4 cr. (3 and 3) S
A survey of the major groups of plants, their structure, development, and reproduction. Evolutionary relationships as exemplified by comparisons of body organization and life cycles will be emphasized. Prerequisite: Bot 101.

Bot 352—Plant Physiology—4 cr. (3 and 3) F, S
The relations and processes which have to do with the maintenance, growth and reproduction of plants, including absorption of matter and energy, water relations of the plant, utilization of reserve products and liberation of energy. Prerequisite: Bot 101; Ch 101 and 102; Phys 201 and 203 or Phys 211 and 213.

Bot H352—Plant Physiology—4 cr. (3 and 3) F, S
Honors option for Bot 352, admission by special arrangement.
Bot 355—Histology—2 cr. (0 and 6)
The principles of fixing, cutting and staining plant tissues and the various other processes of micro-technique and their application to specific forms of plants. **Prerequisite:** Bot 101; Ch 101 and 102.

Bot 356—Taxonomy of Vascular Plants—3 cr. (1 and 6) S
The identification, classification, distribution and interrelationship of vascular plants with emphasis on the flora of South Carolina. **Prerequisite:** Bot 101.

Bot H356—Taxonomy of Vascular Plants—3 cr. (1 and 6) S
Honors option for Bot 356, admission by special arrangement.

Bot 404—Cytology—3 cr. (3 and 0) F, '71 and alternate years.
A detailed consideration of the morphology and ultrastructures of cells. **Prerequisite:** Bot 352, Zool 101, 103, or permission of instructor.

Bot H404—Cytology—3 cr. (3 and 3) F, '71 and alternate years.

Bot 406—Plant Anatomy—3 cr. (2 and 3) F, '70 and alternate years.
The origin and development of the organs and tissue systems of vascular plants and a comparative study of the structure of roots, stems, leaves, flowers, and fruits. **Prerequisite:** Bot 101.

Bot H406—Plant Anatomy—3 cr. (2 and 3) F, '70 and alternate years.
Honors option for Bot 406, admission by special arrangement.

Bot 451—Morphology of the Fungi—3 cr. (2 and 3) F, '70 and alternate years.
The morphology and taxonomy of the fungi, with special emphasis on species of economic importance. **Prerequisite:** Bot 101.

Bot 452—Plant Ecology—3 cr. (3 and 0) S, '70 and alternate years.
The fundamental principles of the relations between plants and their environment. **Prerequisite:** Bot 101.

Bot H452—Plant Ecology—3 cr. (3 and 0) S, '70 and alternate years.
Honors option for Bot 452, admission by special arrangement.

Bot 457—Phycology—3 cr. (2 and 3) S, '71 and alternate years.
The taxonomy, morphology, and ecology of freshwater algae with emphasis on the local flora. **Prerequisite:** Bot 101 or permission of instructor.

Bot H457—Phycology—3 cr. (2 and 3) S, '71 and alternate years.
Honors option for Bot 457, admission by special arrangement.

Bot 652—Plant Physiology—4 cr. (3 and 3)

Bot 656—Taxonomy of Vascular Plants—3 cr. (1 and 6)

Bot 704—Cytology—3 cr. (3 and 0)

Bot 706—Plant Anatomy—3 cr. (2 and 3)

Bot 751—Morphology of the Fungi—3 cr. (2 and 3)

Bot 752—Plant Ecology—3 cr. (3 and 0)

Bot 757—Phycology—3 cr. (2 and 3)

Bot 802—Mycology—4 cr. (3 and 3)

Bot 805—Special Problems in Botany—Credit to be arranged.
Description of Courses

BOT 807—Seminar—1 cr. (1 and 0)
BOT 811—Inorganic Plant Metabolism—4 cr. (3 and 3)
BOT 812—Organic Plant Metabolism—3 cr. (3 and 0)
BOT 813—Plant Growth and Development—3 cr. (3 and 0)
BOT 821—Plant Taxonomy I—4 cr. (2 and 6)
BOT 822—Plant Taxonomy II—4 cr. (2 and 6)
BOT 891—Research—Credit to be arranged.
BOT 991—Doctoral Research—Credit to be arranged.

CERAMIC ARTS

Professor: G. C. Robinson

Cr Ar 101—Pottery Materials—3 cr. (2 and 3)
The occurrence and properties of pottery raw materials. Attention is devoted
to the occurrence of natural pottery materials in South Carolina, and the
methods and equipment used in preparing these materials.

Cr Ar 102—Pottery Drying and Firing—3 cr. (3 and 0)
The drying and firing processes used in pottery making. A discussion is
included on the design and construction of simple pottery kilns and the student
is required to build and operate a small outdoor kiln. The laboratory work
demonstrates the drying and firing behavior of pottery.

Cr Ar 301—Pottery Glazes—3 cr. (3 and 0)
The materials and methods used in preparing glazes and a study of the
methods used in decorating pottery products. Prerequisite: Cr Ar 101 and 102.

Cr Ar 401—Advanced Pottery—3 cr. (2 and 3)
The student is given advanced training in pottery techniques and pottery
equipment. Prerequisite: Cr Ar 101 and 102.

CERAMIC ENGINEERING

Professors: G. C. Robinson, Head; H. H. Wilson
Associate Professors: C. C. Fain, H. G. Lefort
Assistant Professor: W. W. Coffeen

CrE 201—Introduction to Ceramic Engineering—2 cr. (2 and 0)
An introduction to ceramic engineering together with a study of ceramic
forming operation. Exercises are provided in the analysis of processing prob-
lems, the evaluation of background information and the creation of new solu-
tions to processing problems.

CrE 202—Ceramic Materials—3 cr. (3 and 0)
The properties and uses of commonly used ceramic materials. Equilibrium
diagrams are used to gain an understanding of the effect of heat on the
materials.

CrE 204—Laboratory Procedures—1 cr. (0 and 3)
An introduction to ceramic laboratory procedures. Primary consideration will
be given to the evaluation of sources of error and significance of measurement
in the major ceramic test procedures.
Ceramic Engineering 247

CrE 299—Digital Computation—1 cr. (0 and 3)
An introduction to digital computer programming for students majoring in Ceramic Engineering. Emphasis is placed on the computer languages in use at Clemson University, and their application to the solution of simple problems in ceramic engineering. Prerequisite: Sophomore standing.

CrE 302—Thermo-Chemical Ceramics—3 cr. (3 and 0)
High-temperature equilibrium using the laws of physical chemistry as applied to ceramic systems in both solid and liquid states. An introduction to the crystal chemistry of ceramic raw materials, and the effect of crystalline form on their high-temperature behavior.

CrE 303—Ceramic Products—2 cr. (2 and 0)
The application of ceramic products to a variety of use environments. Refractories, structural ceramics, coated metals and corrosion resistant products are included. The course is for both engineering and non-engineering majors.

CrE 304—Experiment Design—1 cr. (0 and 3)
An exercise in the planning and organization of experiments in the ceramic field.

CrE 306—Fuels Combustion and Heat Transfer—1 cr. (0 and 3)
Combustion devices, the calculation of combustion problems and heat transfer.

CrE 307—Thermal Processing of Ceramics—3 cr. (3 and 0)
The accomplishment of changes in structure and composition through the application of thermal energy. The course includes a study of simultaneous transfer of heat and mass, fluid flow, determinants of rates in a variety of reactions and calculations of the energy requirements to accomplish change in structure or composition.

CrE 309—Research Methods—2 cr. (0 and 6)
The planning and solution of selected research problems.

CrE 310—Introduction to Material Science—3 cr. (3 and 0)
A beginning course in material science designed primarily for engineering students. The course is a study of the relation between the electrical, mechanical and thermal properties of products and the structure and composition of these products. All levels of structure are considered from gross structures easily visible to the eye through electronic structure of atoms.

CrE 402—Solid State Ceramics—3 cr. (3 and 0)
The effects of the composition, form, and shape of ceramic raw materials on the manufacturing processes and final properties of ceramic products. Included are fundamental studies of such phenomena as deflocculation, plasticity, sintering and the behavior of ceramic products in electrical circuits. Prerequisite: Junior standing.

CrE 403—Glasses—3 cr. (3 and 0)
Glass structure and composition and their relation to the properties of glasses. Consideration is given to the processing variables which control the properties of glasses including glass products, enamels, glazes and vitreous bonds.

CrE 404—Ceramic Coatings—3 cr. (3 and 0)
The raw materials, methods of manufacture, and properties of ceramic coatings. Prerequisite: CrE 302.
CrE 406—Ceramic Project—2 cr. (0 and 6)
The completion of an original research into a ceramic problem. Prerequisite: CrE 302.

CrE 407—Plant Design—3 cr. (1 and 6)
The application of the fundamentals of ceramic engineering to problems in plant design. Prerequisite: Senior standing in Ceramic Engineering.

CrE 410—Analytical Processes—3 cr. (2 and 3)
An introductory course on the theory and use of X-ray diffraction and spectroscopic methods. Prerequisite: Junior standing.

CrE 412—Raw Material Preparation—3 cr. (3 and 0)
The equipment and processes used in the crushing and grinding of raw materials, the separation and classification of particle sizes, and the separation and purification of minerals by mineral dressing methods.

CrE 416—Electronic Ceramics—3 cr. (3 and 0)
The theory and measurement of the electronic properties of ceramic products.

CrE 418—Process Control—3 cr. (3 and 0)
Process control techniques and apparatus with particular emphasis on temperature measurement and control systems. The application of laboratory techniques to the control of product quality and process efficiency is included. Prerequisite: Junior standing.

CrE 419—Science of Engineering Materials—3 cr. (3 and 0)
This course is planned to acquaint engineers with the thermal, electrical, and chemical characteristics of engineering materials. It emphasizes fundamental consideration of the structure of matter in the solid and glassy states, solid state reactions, and the influence of particle and aggregate structure to speed of reaction and product properties. The reasons for the properties of materials at elevated temperatures and room temperatures are related to these fundamentals.

CrE H419—Science of Engineering Materials—3 cr. (3 and 0)
Same as CrE 419 except that this honors section is open to students only by invitation.

CrE 420—Science of Engineering Materials—3 cr. (3 and 0)
A continuation of CrE 419 with emphasis on applications of fundamentals in nuclear reactors and nuclear power plants. Consideration is given to the development of ceramics for fuel elements, moderator materials, control rods, shielding and in radioactive waste disposal.

CrE 702—Solid State Ceramics—3 cr. (3 and 0)
CrE 703—Glasses—3 cr. (3 and 0)
CrE 704—Ceramic Coatings—3 cr. (3 and 0)
CrE 710—Analytical Processes—3 cr. (2 and 3)
CrE 712—Raw Material Preparation—3 cr. (3 and 0)
CrE 716—Electronic Ceramics—3 cr. (3 and 0)
CrE 718—Process Control—3 cr. (3 and 0)
CrE 719—Science of Engineering Materials—3 cr. (3 and 0)
CrE 720—Science of Engineering Materials—3 cr. (3 and 0)
Chemical Engineering 249

CrE 807—Specialized Ceramics—3 cr. (3 and 0)
CrE 809—High-Temperature Materials—3 cr. (3 and 0)
CrE 810—Ceramic Engineering Thermodynamics—3 cr. (3 and 0)
CrE 811—Ceramic Engineering Kinetics—3 cr. (3 and 0)
CrE 812—Current Topics in Ceramic Engineering—1 cr. (1 and 0)
CrE 813—Nuclear Ceramics—3 cr. (3 and 0)
CrE 814—Ceramic Physical Processing—3 cr. (3 and 0)
CrE 815—Colloidal and Surface Science—3 cr. (3 and 0)
CrE 816—Constitution and Structure of Glasses—3 cr. (3 and 0)
CrE 821—Analytical Procedures and Equipment I—3 cr. (2 and 3)
CrE 822—Analytical Procedures and Equipment II—3 cr. (2 and 3)
CrE 823—Thermal Properties of Ceramic Materials—3 cr. (3 and 0)
CrE 824—Mechanical Properties of Ceramic Materials—3 cr.
(3 and 0)
CrE 825—Magnetic and Electrical Ceramic Material—3 cr. 3 and 0)
CrE 826—Ceramic Coatings—3 cr. (3 and 0)
CrE 828—Solid State Ceramic Science—3 cr. (3 and 0)
CrE 891—Research—Credit to be arranged.

CHEMICAL ENGINEERING

Professors: C. E. Littlejohn, Head; F. C. Alley, R. C. Harshman
Associate Professors: W. B. Barlage, W. F. Beckwith, D. F. Bruley, J. W.
Hall, J. C. Mullins
Assistant Professor: S. S. Melsheimer

ChE 204—Introduction to Chemical Engineering I—2 cr. (1 and 3)

Designed to acquaint students with the profession of Chemical Engineering
and to introduce them to certain basic concepts and methods used by the
chemical engineer. Topics include the chemical engineering literature, graphical
methods of presenting data, graphical solutions to problems, fundamental units
and dimensions, process variables, stoichiometry, and PVT relations for gases.
Prerequisite: Ch 102 and Math 205.

ChE 205—Introduction to Chemical Engineering II—3 cr. (2 and 3)

A continuation of ChE 204. Topics include properties of mixtures of gases
and vapors, material and energy balances, equilibria in chemical systems,
dimensional analysis, economic considerations, and an introduction to stagewise
calculations involving solvent extraction. Prerequisite: ChE 204.

ChE 210—Digital Computation and Numerical Methods—3 cr.
(3 and 0)

An introduction to digital computational techniques using a specific pro-
cedure oriented language and the use of numerical methods for the solution of
chemical engineering problems. The course will introduce students to computa-
tional methods to be used in subsequent chemical engineering courses. Pre-
requisite: ChE 204 and Math 205.
CHE 301—Unit Operations Theory I—3 cr. (3 and 0)
The general principles of Chemical Engineering and a study of the following unit operations: Fluid Flow, Fluid Transportation, Heat Transmission and Evaporation. Special emphasis is placed on theory and its practical application to design. Prerequisite: ChE 205, and Junior standing.

CHE 302—Unit Operations Theory II—3 cr. (3 and 0)
A study of selected unit operations based on diffusion. Both stagewise and differential contacts are studied for gas absorption, distillation, and gas-liquid contact operations. Prerequisite: ChE 301 and Junior standing.

CHE 306—Unit Operations Laboratory I—1 cr. (0 and 3)
Laboratory work in the unit operations of fluid flow, heat transfer, and evaporation. Stress is laid on the relation between theory and experimental results and on report writing. Prerequisite: ChE 301 and Junior standing.

CHE 307—Analog Computation—1 cr. (0 and 3)
An introduction to the theory and application of electronic analog computers. Prerequisite: Math 208.

CHE 331—Chemical Engineering Thermodynamics I—3 cr. (3 and 0)
A first basic course in static equilibria. Topics include the First and Second Law of Thermodynamics, real and ideal gases, thermodynamic properties of fluids, phase changes, and heats of reaction. Prerequisite: Ch 331, Math 208, and Junior standing; or permission of the Department Head.

CHE H331—Chemical Engineering Thermodynamics—3 cr. (3 and 0)
Honors section of ChE 301; admission by invitation.

CHE 401—Transport Phenomena—3 cr. (3 and 0)
Heat, mass, and momentum transport with emphasis being laid on how the three processes are related. A firmer theoretical foundation is laid for the previous work in unit operations. Prerequisite: ChE 302 and Senior standing.

CHE H401—Transport Phenomena—3 cr. (3 and 0)
Honors section of ChE 401; admission by invitation.

CHE 407—Unit Operations Laboratory II—2 cr. (0 and 6)
Laboratory work for the diffusional unit operations. Competent technical reports are required. Prerequisite: Enrollment in ChE 401 and Senior standing.

CHE 410—Unit Operations Theory III—3 cr. (3 and 0)
A study of simultaneous heat and mass transfer, filtration, crystallization, size reduction, and other less common unit operations.

CHE 415—Introduction to Nuclear Engineering—3 cr. (3 and 0)
Designed to acquaint the non-nuclear engineer with some of the engineering aspects of nuclear science. Topics include a brief survey of particle physics; nuclear reactions; energy transformations; nuclear reactors, their design, construction and use; radiation damage to materials of construction; and special problems in nuclear engineering peculiar to the basic engineering disciplines. Prerequisite: Junior or Senior standing in Engineering, Chemistry or Physics.

CHE 416—Introduction to Nuclear Engineering—3 cr. (3 and 0)
A continuation of ChE 415; topics to include reactor principles, plutonium production, reactor types, materials of reactor construction, control instruments, and waste disposal. Prerequisite: ChE 415.
CHE 421—Process Development, Design, and Optimization of Chemical Engineering Systems I—3 cr. (2 and 3)
A study of the steps in creating a chemical process design from the original concept to successful completion and operation of the plant. Topics include engineering economics, systems analysis, simulation, optimization, process equipment sizing and selection, and the application of analog and digital computers. Prerequisite: Completion of all required 200- and 300-level courses in chemistry, chemical engineering, and mathematics.

CHE 422—Process Development, Design, and Optimization of Chemical Engineering Systems II—3 cr. (0 and 9)
A continuation of CHE 421. The principles of process development, design, and optimization are applied in a comprehensive problem carried from a general statement of the problem to detailed design and economic evaluations. Prerequisite: CHE 401, 421, 430, and 450.

CHE 423—Theory of Bio-Oxidation Processes—2 cr. (2 and 0)
Designed to cover the basic biochemical principles underlying bio-oxidation and their applications in activated sludge and trickling filter processes; basic theory of oxygen transfer and its application to the design of aeration equipment; and the design and operation of typical industrial waste treatment processes. Prerequisite: CHE 331 or permission of instructor.

CHE 424—Introduction to Industrial Pollution—2 cr. (2 and 0)
An introduction to air and water pollution problems associated with chemical processing transportation, and power generation. Basic processes and mechanisms utilized in the control of liquid and gaseous wastes are discussed from a standpoint of equipment design and economics. Present and future trends in pollution legislation are reviewed. Prerequisite: Senior standing in chemical engineering, or permission of instructor.

CHE 425—Chemical Process Engineering—3 cr. (3 and 0)
An advanced treatment of chemical engineering unit operations and unit processes. The course is designed to give the undergraduate more depth in these areas. Prerequisite: Permission of the instructor.

CHE 430—Chemical Engineering Thermodynamics II—3 cr. (3 and 0)
A continuation of CHE 331. Subjects include heat engines, compressors, refrigeration, phase equilibria and chemical reaction equilibria. Prerequisite: CHE 331 and Senior standing.

CHE 440—Senior Inspection Trip—0 cr.
A three- or four-day trip is made to visit selected chemical plants. Using lectures by plant personnel supplemented by conducted tours of chemical plant installations, the student is introduced to current industrial practice. Prerequisite: Senior standing in Chemical Engineering.

CHE 450—Chemical Engineering Kinetics—3 cr. (3 and 0)
An introduction to the kinetics of chemical reactions. Topics include homogeneous and heterogeneous reactions, batch and flow reaction systems, catalysis, and design of industrial reactors. Prerequisite: CHE 430 or permission of the Department Head.
252 Description of Courses

ChE 452—Molecular and Turbulent Transport—3 cr. (3 and 0)
A theoretical treatment of the fundamental mechanisms of molecular and
turbulent heat, mass, and momentum transport with the major emphasis given
to the interrelation of all three mechanisms. Evaluation and correlation of
transport properties and both steady state and unsteady state processes are
considered. An elective course for non-chemical engineering students. Prereq:
Senior standing in Chemistry, Engineering, or Physics, and Math 208.

ChE 453—Process Dynamics—3 cr. (3 and 0)
Basic process control and the effect of feedback in various systems. The
mathematical analysis of the dynamic response of process systems to step and
sinusoidal changes. Determination of the optimum settings for various com-
binations of proportional, reset and derivative control. Prerequisite: Junior or
Senior standing in Engineering, Physics, or Chemistry, and Math 309 or per-
mission of department head.

ChE 491—Special Projects in Chemical Engineering—1-3 cr.
(1-3 and 0)
As a need arises, special topics requested by students or offered by the
faculty will be taught. Review of current research in an area, technological
advances and national engineering goals are possible topic areas.

ChE H491—Special Projects in Chemical Engineering—1-3 cr.
(1-3 and 0)
Honors Section of ChE 491; admission by invitation.

ChE 701—Transport Phenomena—3 cr. (3 and 0)
ChE 707—Unit Operations Laboratory II—2 cr. (0 and 6)
ChE 715—Introduction to Nuclear Engineering I—3 cr. (3 and 0)
ChE 716—Introduction to Nuclear Engineering II—3 cr. (3 and 0)
ChE 723—Theory of Bio-Oxidation Processes—2 cr. (2 and 0)
ChE 730—Chemical Engineering Thermodynamics II—3 cr. (3 and 0)
ChE 750—Chemical Engineering Kinetics—3 cr. (3 and 0)
ChE 752—Molecular and Turbulent Transport—3 cr. (3 and 0)
ChE 802—Process Dynamics and Control—3 cr. (3 and 0)
ChE 803—Heat, Mass, and Momentum Transfer—3 cr. (3 and 0)
ChE 804—Chemical Engineering Thermodynamics—3 cr. (3 and 0)
ChE 805—Chemical Engineering Kinetics—3 cr. (3 and 0)
ChE 806—Chemical Engineering Calculations I—3 cr. (3 and 0)
ChE 807—Chemical Engineering Calculations II—3 cr. (3 and 0)
ChE 808—Chemical Engineering Design and Analysis—3 cr. (1 and 6)
ChE 809—Waste Treatment—3 cr. (3 and 0)
ChE 810—Biochemical Engineering—3 cr. (3 and 0)
ChE 820—Fluid Mechanics—3 cr. (3 and 0)
ChE 821—Heat Transport—3 cr. (3 and 0)
CHE 822—Mass Transfer and Differential Contact Operations—
3 cr. (3 and 0)
CHE 823—Mass Transfer and Stagewise Contact Operations—
3 cr. (3 and 0)
CHE 830—Chemical Technology—3 cr. (3 and 0)
CHE 840—Graduate Laboratory—Credit to be arranged.
CHE 845—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
CHE 846—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
CHE 847—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
CHE 852—Air Pollution Control Processes—3 cr. (3 and 0)
CHE 853—Industrial Air Hygiene—3 cr. (3 and 0)
CHE 854—Environmental Instrumentation and Measurements—3 cr. (2 and 3)
CHE 891—Research—Credit to be arranged.
CHE 902—Process Dynamics and Control—3 cr. (3 and 0)
CHE 903—Transport Phenomena—3 cr. (3 and 0)
CHE 904—Chemical Engineering Thermodynamics—3 cr. (3 and 0)
CHE 905—Chemical Engineering Kinetics—3 cr. (3 and 0)
CHE 945—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
CHE 946—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
CHE 947—Selected Topics in Chemical Engineering—3 cr. (3 and 0)
CHE 954—Environmental Systems Design—3 cr. (3 and 0)
CHE 991—Doctoral Research—Credit to be arranged.

CHEMISTRY

Assistant Professors: J. R. Bacon, R. H. Bailey, Jr., A. L. Beyerlein, Muriel B. Bishop, J. F. Geldard, O. J. Jacobus, K. S. Landers, G. L. Powell

Ch 101—General Chemistry—4 cr. (3 and 3)
Gives the student a general knowledge of the fundamentals of the science of chemistry through lectures, lecture experiments, and laboratory exercises. Consideration is given to the common substances.

Ch 102—General Chemistry—4 cr. (3 and 3)
A continuation of Ch 101.

* On leave.
254 Description of Courses

CH H102—General Chemistry—4 cr. (3 and 3)
Same as Ch 102 except that this honors section is open to students by
invitation only.

CH 219—Chemical Principles—2 cr. (2 and 0)
The fundamental laws and theories pertaining to water and its solutions.
The nature of chemical equilibria present in aqueous solutions is emphasized. Prerequisite: Ch 101 and 102.

CH 220—Elementary Organic Chemistry—4 cr. (3 and 3)
A one semester course in organic chemistry. Typical classes of organic com-
pounds, both aliphatic and aromatic, are studied. Prerequisite: Ch 101 and 102.

CH 223—Organic Chemistry—3 cr. (3 and 0)
An introductory course covering the principles of organic chemistry and the
derivation of these principles from a study of the properties, preparations, and
interrelationships of the important classes of organic compounds. Prerequisite:
Ch 101 and 102.

CH 224—Organic Chemistry—3 cr. (3 and 0)
A continuation of Ch 223.

CH 225—Organic Chemistry Laboratory—2 cr. (0 and 6)
The laboratory techniques involved in the synthesis, separation and puri-
fication, and characterization of typical examples of the classes of organic
compounds. Prerequisite: Registration in Ch 223.

CH 226—Organic Chemistry Laboratory—2 cr. (0 and 6)
A continuation of Ch 225. Prerequisite: Registration in Ch 224.

CH 227—Organic Chemistry Laboratory—1 cr. (0 and 3)
The synthesis and properties of typical examples of the classes of organic
compounds. Prerequisite: Regulation in Ch 223.

CH 228—Organic Chemistry Laboratory—1 cr. (0 and 3)
A continuation of Ch 227. Prerequisite: Registration in Ch 224.

CH 310—Elementary Biochemistry—4 cr. (3 and 3)
An introductory course consisting of a review of equilibrium reactions; a
study of the chemistry of carbohydrates, proteins, and lipids, and their role in
cell metabolism. The laboratory work parallels classroom study. Prerequisite:
Organic Chemistry.

CH 313—Quantitative Analysis—3 cr. (3 and 0)
The fundamental principles of volumetric, gravimetric and certain ele-
mentary instrumental chemical analyses. Prerequisite: Organic Chemistry.

CH 315—Quantitative Analysis Laboratory—2 cr. (0 and 6)
The laboratory techniques of volumetric, gravimetric, and elementary instru-
mental analysis.

CH 317—Quantitative Analysis Laboratory—1 cr. (0 and 3)
The standard techniques of analytical chemistry—gravimetric, volumetric,
and instrumental.

CH 331—Physical Chemistry—3 cr. (3 and 0)
Includes the gaseous state, thermodynamics, chemical equilibria, and atomic
and molecular structure, from both experimental and theoretical points of view. Prerequisite: Math 206 and Physics.
**Chemistry** 255

**Ch 332—Physical Chemistry—3 cr. (3 and 0)**
Continuation of Ch 331 including chemical kinetics, liquid and solid state, phase equilibria, solutions, electrochemistry and surfaces.

**Ch 333—Physical Chemistry Laboratory—2 cr. (0 and 6)**
Experiments designed to illustrate the physical chemistry theory studied in Ch 331. *Prerequisite:* Registration in Ch 331.

**Ch 334—Physical Chemistry Laboratory—2 cr. (0 and 6)**
A continuation of Ch 333. *Prerequisite:* Registration in Ch 332.

**Ch 339—Physical Chemistry Laboratory—1 cr. (0 and 3)**
Experiments are selected to be of maximum value to Chemical Engineering majors. *Prerequisite:* Registration in Ch 331.

**Ch 340—Physical Chemistry Laboratory—1 cr. (0 and 3)**
A continuation of Ch 339. *Prerequisite:* Registration in Ch 332.

**Ch 402—Inorganic Chemistry—3 cr. (3 and 0)**
A comprehensive survey of the field of inorganic chemistry through lectures and lecture experiments. Development of modern theories of atomic structure and valence, and a detailed study of the elements and their compounds, based on the periodic system and including both well-known and rarer elements. *Prerequisite:* Ch 331 and 332.

**Ch 411—Instrumental Analysis—4 cr. (2 and 6)**
Demonstration and operation of modern optical and electronic precision measuring devices as they apply to the processes and analytical, physical and organic chemistry. *Prerequisite:* Physical Chemistry.

**Ch 421—Advanced Organic Chemistry—3 cr. (3 and 0)**
A survey of modern methods of organic synthesis, with an emphasis on the principles involved. Application of spectroscopy in organic chemistry. *Prerequisite:* Ch 224 and 332 or equivalent.

**Ch 422—Advanced Organic Chemistry Laboratory—2 cr. (0 and 6)**
Modern laboratory techniques are used in the synthesis and identification of organic compounds. *Prerequisite:* Registration in Ch 421.

**Ch 423—Principles of Biochemistry—3 cr. (3 and 0)**
The study of the organic chemistry of amino acids, monosaccharides, fatty acids, purines, pyrimidines and associated compounds leads to a fuller understanding of the chemical properties of proteins, carbohydrates, lipids, and nucleic acids that make them so important in biological processes. Relationships between the structure and function of these molecules and the modern techniques used to establish them are stressed. *Prerequisite:* Ch 224 or equivalent.

**Ch 424—Principles of Biochemistry—3 cr. (3 and 0)**
A continuation of Ch 423.

**Ch 425—General Biochemistry Laboratory—1 cr. (0 and 3)**
Experiments selected to illustrate current methods used in biochemical research.

**Ch 426—General Biochemistry Laboratory—1 cr. (0 and 3)**
A continuation of Ch 425.
CH 431—Atomic and Molecular Structure—3 cr. (3 and 0)
An introductory study of the principles of wave mechanics, hydrogen atom structure, approximate methods, molecular orbital and valence bond treatments of bonding, hybridization, ligand-field theory, and relationships of structure to physical and chemical properties.

CH 433—Physical Chemistry Laboratory—1 cr. (0 and 3)
To be taken in conjunction with CH 431. Laboratory work in spectroscopy and other related areas of atomic and molecular structure will acquaint the student with some of the instruments currently used in the elucidation of structure.

CH 441—Glass Manipulation—2 cr. (0 and 6)
A course designed to teach the fundamentals of glass manipulation and its application to the construction and repair of simple laboratory apparatus. Prerequisite: Senior standing.

CH 442—Chemical Literature—1 cr. (1 and 0)
This course is designed to give the student practice in the use of chemical literature, the writing of technical reports and the presentation of same before the faculty of the Department of Chemistry. Prerequisite: Junior standing in Chemistry.

CH 443—Research Problems—3 cr. (0 and 9)
Original investigation of an assigned problem in a fundamental branch of Chemistry. This work must be carried out under the supervision of a member of the staff. Prerequisite: Senior standing in Chemistry.

CH 444—Research Problems—3 cr. (0 and 9)
A continuation of CH 443.

CH 450—Review of General Chemistry I—3 cr. (3 and 0)
A lecture course designed to deal with the basic principles generally presented in a general chemistry course. Emphasis will be placed upon the explanation of observed facts in terms of modern atomic and molecular structure. Enrollment limited to secondary school teachers.

CH 454—Inorganic Synthesis—2 cr. (0 and 6)
A laboratory course designed to acquaint the student with various methods and techniques employed in the preparation and handling of inorganic compounds.

CH 472—Organic Synthesis—4 cr. (2 and 6)
A course designed to teach the student techniques and principles as applied in a research laboratory. Both macro and semi-macro methods are used in the preparation of several organic compounds. Prerequisite: Organic Chemistry.

CH 491—Introduction to Radiochemistry—3 cr. (2 and 3)
The natural and synthetic radioisotopes, including the consideration of atomic and nuclear structure, properties of radiation and tracer techniques and their application. The laboratory is concerned with the methods of detection and measurement of the various types of radiation and the various applications of tracer techniques. Prerequisite: Senior or Graduate standing and permission of instructor.

CH 613—Quantitative Analysis—3 cr. (3 and 0)
Chemistry 257

CH 615—Quantitative Analysis Laboratory—2 cr. (0 and 6)
CH 617—Quantitative Analysis Laboratory—1 cr. (0 and 3)
CH 631—Physical Chemistry—3 cr. (3 and 0)
CH 632—Physical Chemistry—3 cr. (3 and 0)
CH 639—Physical Chemistry Laboratory—1 cr. (0 and 3)
CH 640—Physical Chemistry Laboratory—1 cr. (0 and 3)
CH 702—Inorganic Chemistry—3 cr. (3 and 0)
CH 711—Instrumental Analysis—4 cr. (2 and 6)
CH 721—Advanced Organic Chemistry—3 cr. (3 and 0)
CH 722—Advanced Organic Chemistry Laboratory—2 cr. (0 and 6)
CH 723—Principles of Biochemistry—3 cr. (3 and 0)
CH 724—Principles of Biochemistry—3 cr. (3 and 0)
CH 725—General Biochemistry Laboratory—1 cr. (0 and 3)
CH 726—General Biochemistry Laboratory—1 cr. (0 and 3)
CH 731—Atomic and Molecular Structure—3 cr. (3 and 0)
CH 733—Physical Chemistry Laboratory—1 cr. (0 and 3)
CH 750—Review of General Chemistry I—3 cr. (3 and 0)
CH 754—Inorganic Synthesis—2 cr. (0 and 6)
CH 772—Organic Synthesis—4 cr. (2 and 6)
CH 791—Introduction to Radiochemistry—3 cr. (2 and 3)
CH 800T—Physical Science for the High School Teachers—3 cr. (3 and 0)
CH 805—Theoretical Inorganic Chemistry—3 cr. (3 and 0)
CH 806—Special Topics in Inorganic Chemistry—1 to 4 cr.
CH 807—Chemistry of the Transition Elements—3 cr. (3 and 0)
CH 808—Chemistry of the Non-Metallic Elements—3 cr. (3 and 0)
CH 814—Electroanalytical Chemistry—3 cr. (2 and 3)
CH 811—Analytical Chemistry—3 cr. (3 and 0)
CH 812—Chemical Spectroscopic Methods—3 cr. (2 and 3)
CH 821—Organic Chemistry I—3 cr. (3 and 0)
CH 822—Organic Chemistry II—3 cr. (3 and 0)
CH 823—Organic Reaction Mechanisms—3 cr. (3 and 0)
CH 824—Fundamental Principles of Polymer Chemistry—3 cr. (3 and 0)
CH 825—Current Topics in Organic Chemistry—1 cr. (1 and 0)
CH 826—Chemistry of Enzymes—3 cr. (3 and 0)
CH 829—Chemistry and Metabolism of Carbohydrates—2 cr. (2 and 0)
258 Description of Courses

Ch 831—Chemical Thermodynamics—3 cr. (3 and 0)
Ch 832—States of Matter—3 cr. (3 and 0)
Ch 834—Statistical Thermodynamics—3 cr. (3 and 0)
Ch 835—Chemical Kinetics—3 cr. (3 and 0)
Ch 836—Topics in Colloid Science—3 cr. (3 and 0)
Ch 837—Quantum Chemistry—3 cr. (3 and 0)
Ch 841—Mathematical Aspects of Chemical Spectroscopy—3 cr. (3 and 0)
Ch 850—A Review of General Chemistry II—3 cr. (2 and 3)
Ch 851—Chemistry Seminar—0 to 2 cr.
Ch 891—Research—Credit to be arranged.
Ch 921—Heterocyclic Compounds—3 cr. (3 and 0)
Ch 922—Stereochemistry—3 cr. (3 and 0)
Ch 923—Chemistry of Natural Products—3 cr. (3 and 0)
Ch 924—Chemistry of Natural Products—3 cr. (3 and 0)
Ch 930—Advanced Topics in Physical Chemistry—3 cr. (3 and 0)
Ch 950—Microanalytical Techniques—3 cr. (1 and 6)
Ch 991—Doctoral Research—Credit to be arranged.

CITY AND REGIONAL PLANNING

Professor: E. L. Falk
Lecturer: S. Carter
Visiting Associate Professor: R. D. Bray

CRP 411—Introduction to City and Regional Planning—3 cr. (3 and 0)
The overview of urban land-use planning. Analysis of current work in each significant phase of planning. Discussion of good formulation, foundation studies, land-use planning methods and consideration and continuing evaluation and modification of an urban-planning process.

CRP 412—City and Regional Planning Theory—3 cr. (3 and 0)
The philosophical, methodological, and ethical aspects of planning will be explored through selected readings, student reports, lectures and discussion. A critical examination of current planning theories.

CRP 421—Urban Social Structure—3 cr. (3 and 0)
The social, economic, and political aspects of communities of varying sizes and types. Elements will include housing, education, recreation, social services, governmental structure, and related community institutions.

CRP 441—History of Planning—3 cr. (3 and 0)
Offered first semester only. The development of the urban plan from ancient to modern times.

CRP 453—Introduction to Planning Studio—5 cr. (5 and 0)
New town site selection, preparation of goals and objectives, foundation studies and forecasts, and development of generalized land use and trans-
portation plan. Students will gain experience in project coordination and interdepartmental and governmental agency cooperation.

CRP 454—Planning Studio II—5 cr. (5 and 0)

Studies involving small or medium-sized cities. These will include evaluation of community goals and objectives, appropriate foundation surveys and projections, and development of generalized land-use alternatives. Work with available land-use data, professionals involved in the planning function, and development of a generalized land-use plan, reflective and responsive to community and official needs.

CRP 472—Planning Administration and Practice—3 cr. (3 and 0)

The organization and administration of types of planning agencies and their relationship to other governmental and private organizations.

CRP 473—Government and Planning Law—3 cr. (3 and 0)

A complete coverage of the laws and ordinances relating to redevelopment, subdivision control, zoning, official mapping, and other topics including interpretation, philosophy, enabling legislation, and model ordinances. The legal basis of current and long-range planning policy will be discussed. Prerequisite: CRP 472 (Planning Administration and Practice).

CRP 483—Seminar on Planning Communication—3 cr. (3 and 0)

Informal means open for plan implementation. The organization of effective public information and education programs, use of citizens’ advisory committees, and application of other implementation techniques. Lectures, student reports, selected readings, and visiting speakers.

CRP 711—Introduction to City and Regional Planning—3 cr. (3 and 0)

CRP 712—City and Regional Planning Theory—3 cr. (3 and 0)

CRP 721—Urban Social Structure—3 cr. (3 and 0)

CRP 741—History of Planning—3 cr. (3 and 0)

CRP 753—Introduction to Planning Studio—5 cr. (5 and 0)

CRP 754—Planning Studio II—5 cr. (5 and 0)

CRP 772—Planning Administration and Practice—3 cr. (3 and 0)

CRP 773—Government and Planning Law—3 cr. (3 and 0)

CRP 783—Seminar on Planning Communication—3 cr. (3 and 0)

CRP 822—Urban Systems—3 cr. (3 and 0)

CRP 831—Economics of Land Use Planning—3 cr. (3 and 0)

CRP 863—Planning Studio III—5 cr. (2 and 9)

CRP 864—Planning Thesis—9 cr. (0 and 27)

CRP 881—Seminar in Quantitative Methods I—3 cr. (3 and 0)

CRP 882—Seminar in Quantitative Methods II—3 cr. (3 and 0)

CRP 884—Public Facility Planning—3 cr. (3 and 0)

CRP 893—City and Regional Planning Internship—3 cr. (0 and 0)

CRP 894—City and Regional Planning Internship—3 cr. (0 and 0)
CIVIL ENGINEERING

Professors: L. G. Rich, I. A. Trively
Assistant Professors: D. B. Stafford, W. A. Welsh, Jr., F. L. Roberts
Instructor: R. A. Coleman

CE 201—SURVEYING—3 cr. (2 and 3)
Elementary plane surveying for other than Civil Engineering students. Coverage includes measurement of distance, leveling, horizontal and vertical angles, stadia and topography, area and volume calculations, construction surveying. Field exercises provide practice in the use of surveying instruments. Prerequisite: Math 106.

CE 205—CIVIL ENGINEERING METHODOLOGY—2 cr. (1 and 3)
Concepts of civil engineering analysis and design, case histories and project studies, introduction to theory and practice of plane surveying, measurements and errors, differential leveling, and topographic mapping. Laboratory includes typical design and construction problems. Prerequisite: Math 106.

CE 206—GEOMETRICS—2 cr. (1 and 3)
Application of geometrics to civil engineering problems, computations and triangulation, coordinate systems, electronic methods of measuring distances, photogrammetry, introduction to digital computation and elementary programming. Prerequisite: CE 205.

CE 301—INTRODUCTION TO STRUCTURAL SCIENCE—3 cr. (2 and 2)
Analysis of statically determinate and indeterminate structural elements and systems. Influence lines for beams and trusses, calculation of rotations and deflections by integration, moment area, conjugate beam and unit load methods. Indeterminate analysis by force and displacement methods and moment distribution. Prerequisite: EM 304, CE 206.

CE 302—STRUCTURAL DESIGN I—3 cr. (2 and 2)
Design and detail of components and connections for timber and metal structures. Prerequisite: CE 301.

CE 310—TRANSPORTATION ENGINEERING—4 cr. (3 and 2)
Planning, location, design, operation, and administration of highways, railroads, airports and other transportation facilities, including economic considerations, pavement design, and digital computer applications to geometric and earthwork computation. Prerequisite: CE 206; corequisite: CE 331.

CE 320—CONCRETE AND BITUMINOUS MATERIALS—2 cr. (1 and 3)
Investigation and selection of aggregates for portland cement concrete and asphaltic concrete; latest methods of design of portland cement mixes and asphaltic concrete mixes; field control and adjustments; field trips to nearby construction jobs. Prerequisite: EM 304 and Junior standing.

CE 331—SOIL MECHANICS—3 cr. (2 and 2)
Mechanical and physical properties of soils and their relation to soil action in problems of engineering, such as classification, permeability, shearing strength, consolidation, stress distribution and bearing capacity of soils. Prerequisite: EM 304 and Junior standing.
CE 341—ENVIRONMENTAL ENGINEERING—3 cr. (3 and 0)
An evaluation of the effects of the environment on man with special consideration given to air and water contacts. The analysis and review of engineering systems used in environmental control. Prerequisite or Concurrent: EM 320, EM 322.

CE 399—SIMULATION TECHNIQUES—1 cr. (0 and 3)
Modeling of civil engineering problems with the electronic analog computer, with conductive sheet methods and by digest analog simulation. The emphasis is in use rather than the theory of the methods. Prerequisite: Math 208.

CE 402—STRUCTURAL DESIGN II—3 cr. (2 and 2)
Design and detail of reinforced concrete members using elastic and ultimate strength theories, introduction to prestressed concrete. Prerequisite: CE 301, CE 320.

CE 410—TRAFFIC ENGINEERING: OPERATIONS—3 cr. (3 and 0)
Basic characteristics of motor-vehicle traffic; techniques for making traffic engineering investigations; design and application of traffic control devices; traffic design of parking facilities; traffic laws and ordinances; public relations. Prerequisite: CE 301.

CE 412—URBAN TRANSPORTATION PLANNING—3 cr. (3 and 0) F
Urban travel characteristics; characteristics of transportation systems; transportation and land-use studies; trip distribution and trip assignment models; city patterns and subdivision layout. Prerequisite: CE 311.

CE 415—SEMINAR IN TRAFFIC ENGINEERING—1 cr. (0 and 2)
Discussion, readings, and practical applications of the operational methods of traffic engineering and consideration of the problems confronting the city, county, and state traffic engineer.

CE 417—AIR PHOTO INTERPRETATION I—3 cr. (2 and 3)
A brief review of the basic geometry of aerial photographs, characteristics of geologic and topographic features identifiable from aerial photographs, and site characteristics related to soil profile. Laboratory work includes soil mapping, selection of construction sites, and location of soil deposits for engineering purposes. Prerequisite: Junior standing and/or permission of instructor.

CE 419—GENERAL PHOTOGRAMMETRY—3 cr. (2 and 3) S
Fundamentals of mapping by the use of aerial photographs; characteristics, production and use of aerial photographs; study of the operation of popular photogrammetric instruments including aerial cameras, stereoscopic viewing and plotting equipment; practice in the use of stereocomparator and multiplex plotting instruments; scale, tilt, and coordinate calculations; construction of photomosaics. Prerequisite: Math 205 and Junior standing.

CE 420—MECHANICAL PROPERTIES OF MATERIALS—3 cr. (3 and 0)
The course provides a comprehensive introduction to the analysis of mechanical response of materials. Emphasis is placed on the behavior of solid materials that are used in civil engineering structures but are not considered in depth in other undergraduate courses. Plastics, fibers, and composite materials are studied. Students are assisted in investigating a realistic problem in materials technology. Prerequisite: Permission of instructor.
CE 424—Construction Methods—2 cr. (2 and 0)
A survey of the principal method and equipment used in the construction industry. Prerequisite: Senior standing.

CE 425—Engineering Relations—3 cr. (3 and 0)
Business, legal, and ethical relations in engineering practice. Prerequisite: Senior standing.

CE 431—Applied Soil Mechanics—3 cr. (2 and 2)
Relationship of local geology to soil formations, ground water, planning of site investigation, sampling procedures, laboratory determination of design parameter, foundation design and settlement analysis. Prerequisite: CE 331.

CE 434—Construction Costs and Estimates—3 cr. (2 and 2)
Interpretation of specifications and plan reading necessary for the proper estimation of quantities of materials and costs of engineering structures. The course is presented from both the designer's and the constructor's viewpoint in order to fit the young engineer with the essential details an inspector or a construction engineer should have at his command. Prerequisite: Senior standing.

CE 435—Engineering Project Analysis—3 cr. (2 and 2)
Advanced analysis of engineering projects. Theory of economic, financial and intangible analysis of large-scale construction projects. Practical exercises in cost-benefit studies and construction decisions. Prerequisite: Permission of instructor.

CE 441—Water Resources Engineering—3 cr. (2 and 3)
The hydrologic and economic considerations involved in the control and utilization of water; analysis and design of water and waste water collection systems and water distribution systems. Prerequisite: CE 341, EM 320, and EM 322.

CE 453—Advanced Structural Analysis—3 cr. (3 and 0)
Slopes and deflections of beams and trusses by energy methods. Analysis of statically indeterminate structures and construction of influence lines by virtual-work method. Application of moment distribution and slope deflection methods. Prerequisite: CE 301.

CE 490—Special Projects—1-3 cr. (1-3 and 0-0)
Studies or laboratory investigations on special topics in the Civil Engineering field which are of interest to individual students and staff members. Arranged on a project basis with a maximum of individual student effort and a minimum of staff guidance. Prerequisite: Senior standing.

CE H490—Special Projects—1-3 cr. (1-3 and 0)
Honors section of CE 490; admission by invitation.

CE 631—Introductory Soil Mechanics—3 cr. (2 and 2)
(Non-Civil Engineering students only.)

CE 699—Simulation Techniques—1 cr. (0 and 3)

CE 710—Traffic Engineering: Operations—3 cr. (3 and 0)

CE 712—Urban Transportation Planning—3 cr. (3 and 0)

CE 715—Seminar in Traffic Engineering—1 cr. (0 and 2)
CE 717—Airphoto Interpretation I—3 cr. (2 and 3)
CE 719—General Photogrammetry—3 cr. (2 and 3)
CE 720—Mechanical Properties of Materials—3 cr. (3 and 0)
CE 731—Applied Soil Mechanics—3 cr. (2 and 2)
CE 734—Construction Costs and Estimates—3 cr. (2 and 3)
CE 735—Engineering Project Analysis—3 cr. (2 and 2)
CE 753—Advanced Structural Analysis—3 cr. (3 and 0)
CE 801—Structural Engineering I—3 cr. (3 and 0)
CE 802—Prestressed Concrete Analysis and Design—3 cr. (3 and 0)
CE 803—Reinforced Concrete Structural Systems—3 cr. (3 and 0)
CE 804—Theory and Design of Thin Plates—3 cr. (3 and 0)
CE 805—Plastic Design of Steel Structures—3 cr. (3 and 0)
CE 806—Design of Steel Members—3 cr. (3 and 0)
CE 807—Numerical and Approximate Methods of Structural Analysis—3 cr. (3 and 0)
CE 808—Finite Element Methods in Structural Analysis—3 cr. (3 and 0)
CE 813—Highway and Airport Pavement Design—3 cr. (3 and 0)
CE 814—Traffic Flow Theory—3 cr. (3 and 0)
CE 816—Highway Planning—3 cr. (3 and 0)
CE 819—Highway Research—2 to 4 cr.
CE 820—Cement and Concrete—3 cr. (2 and 3)
CE 821—Bituminous Paving Materials—3 cr. (2 and 3)
CE 822—Aggregates as Construction Materials—3 cr. (2 and 3)
CE 823—Inelastic Behavior of Engineering Materials—3 cr. (3 and 0)
CE 825—Distribution and Properties of Soils—3 cr. (3 and 0)
CE 831—Foundation Engineering—3 cr. (2 and 3)
CE 832—Advanced Soil Mechanics—3 cr. (3 and 0)
CE 835—Design of Earth Structures—3 cr. (3 and 0)
CE 889—Special Problems I—1-3 cr.
CE 890—Special Problems II—1-3 cr.
CE 891—Research—3 cr.
CE 901—Theory and Design of Shells—3 cr. (3 and 0)
CE 902—Structural Vibrations—3 cr. (3 and 0)
CE 991—Doctoral Research—Credit to be arranged.

**COMPUTER SCIENCE**

*Professor: A. T. Hind, Jr.*

*Associate Professors: R. E. Haymond, C. E. Kirkwood, Jr., M. C. Palmer*

*Instructor: Eugenie V. Bartmess*

**Comp Sc 205—Computer Programming in PL/1—3 cr. (2 and 3)**
A detailed study of the PL/1 programming language and its use in solving numerical problems. In addition to the basic language, a study is made of data, input-output and structures.

**Comp Sc 210—Algorithmic Processes for Engineers—3 cr. (3 and 0)**
Concept and properties of an algorithm, language and notations for describing algorithms, analysis of computational problems, development of algorithms, and applications to include polynomial interpolation, zeros of equations, systems of equations, matrix manipulations, and solution of differential equations.

**Comp Sc 311—Computer Organization and Programming—3 cr. (3 and 0)**
Logical basis of computer structure, machine representation of numbers and characters, flow of control, instruction codes, arithmetic and logical operations, indexing, input-output, subroutines, linkages, macros, interpretive and assembly systems, storage organization. *Prerequisite:* Comp Sc 205.

**Comp Sc 409—Introduction to Numerical Analysis I—3 cr. (3 and 0)**
An introduction to the problems of classical numerical analysis emphasizing computational procedures and application. Topics include: polynomial interpolation, matrix methods, systems of linear equations nonlinear equations, numerical solution of ordinary differential equations. *Prerequisite:* Comp Sc 205 or EE 299 and Math 208.

**Comp Sc 410—Introduction to Numerical Analysis II—3 cr. (3 and 0)**

**Comp Sc 428—Algorithmic Languages and Compilers—3 cr. (3 and 0)**
Formed description of algorithmic languages and the techniques used in their compilation, study of syntax, semantics, procedures, replication, iteration, and recursion in these languages, including comparisons of commonly used languages. *Prerequisite:* Comp Sc 205, Math 295 or equivalent.

**Comp Sc 611—Computer Organization and Programming—3 cr. (3 and 0)**

**Comp Sc 709—Introduction to Numerical Analysis I—3 cr. (3 and 0)**

**Comp Sc 728—Algorithmic Languages and Compilers—3 cr. (3 and 0)**

**Comp Sc 863—Digital Models I—3 cr. (3 and 0)**

**Comp Sc 864—Digital Models II—3 cr. (3 and 0)**
DAIRY SCIENCE

Professors: R. W. Henningson, V. Hurst, J. J. Janzen, W. A. King, Head; J. T. Lazar, Jr.

Associate Professors: C. C. Brannon, W. V. Chalupa, J. F. Dickey

Assistant Professor: G. D. O'Dell

DY Sc 201—INTRODUCTION TO DAIRY SCIENCE—3 cr. (2 and 3) F, S

A fundamental course designed to give the student a working knowledge of Dairy Science. Studies include history of dairying, dairy breeds and cattle evaluation, nutrition, physiology, housing, quality milk production, quality control and the evaluation of milk and its products, the manufacture of milk products and their value in the human food supply.

DY Sc 306—THE CHEMICAL AND PHYSICAL NATURE OF MILK—3 cr. (2 and 3) S

The nature and properties of the major and minor constituents of milk, the effect of chemical and physical treatment on milk constituents, and analytical methods necessary to determine the composition and properties of milk and its constituents. The philosophy and development of quality control.

DY Sc 307—MARKET MILK—3 cr. (2 and 3) F, '70 and alternate years.

Composition, procurement, processing, distribution, quality control, public health aspects, basic chemistry and bacteriology of industrial milk supplies and cultured products.

DY Sc 310—DAIRY CATTLE SELECTION—1 cr. (0 and 3) F, '70 and alternate years.

Emphasis is placed upon the selection of dairy cattle for profitable herd operations. Evaluations of herd classifications, fitting, showing, and true type are made.

DY Sc 402—DAIRY MANUFACTURES—4 cr. (3 and 3) S, '72 and alternate years.

The principles and practice of the manufacture of ice cream and related dairy products, the principles of the manufacturer of condensed and evaporated milks and milk powders, and the physical, chemical and biological factors involved.

DY Sc 404—PLANT MANAGEMENT—3 cr. (2 and 3) S, '71 and alternate years.

The organization and operation of dairy and food plants and the coordination of all functions into an orderly business enterprise. Emphasis will be given to management's responsibility concerning the procurement, processing, quality control and distribution of food products. Business and industrial techniques are used to develop maximum efficiencies.

DY Sc 409—DAIRY SCIENCE SEMINAR—2 cr. (2 and 0) F, '71 and alternate years.

Special research problems in production and manufactures are studied. Individual topics not fully covered in class work are assigned for special report before class and members of Dairy Science Staff.
Description of Courses

**DY Sc 410—Dairy Science Seminar—2 cr. (2 and 0)**
S, '72 and alternate years.
A continuation of Dy Sc 409 with emphasis on current research literature and research methods.

**DY Sc 452—Dairy Cattle Feeding and Management—3 cr. (2 and 3)**
S, '71 and alternate years.
Fundamental principles in the care, feeding, and management of dairy cattle of all ages. Topics include general consideration in selecting a breed and the individual cow, calf raising, growth and development of dairy heifers, care and management of the milking herd and feeding for milk production.

**DY Sc 453—Animal Reproduction—3 cr. (3 and 0) F**
Reproductive physiology and endocrinology of mammals with emphasis on farm animals and frequent reference to reproduction in laboratory animals and humans.

**DY Sc 455—Animal Reproduction Laboratory—1 cr. (0 and 3) F**
This course will supplement Dy Sc 453. Practical work will include comparative anatomy and histology of the male and female reproductive organs; semen collection, evaluation and processing; techniques of artificial insemination, sexual behavior and the principles of pregnancy tests for humans. **Prerequisite:** To be taken concurrently or to follow Dy Sc 453.

**DY Sc 606—Chemical and Physical Nature of Milk—3 cr. (2 and 3)**

**DY Sc 607—Market Milk—3 cr. (2 and 3)**

**DY Sc 702—Dairy Manufactures—4 cr. (3 and 3)**

**DY Sc 704—Plant Management—3 cr. (2 and 3)**

**DY Sc 752—Dairy Cattle Feeding and Management—3 cr. (2 and 3)**

**DY Sc 753—Animal Reproduction—3 cr. (3 and 0)**

**DY Sc 755—Animal Reproduction Laboratory—1 cr. (0 and 3)**

**DY Sc 801—Topical Problems—1 to 3 cr.**

**DY Sc 802—Genetics of Dairy Cattle Improvement—3 cr. (3 and 0)**

**DY Sc 803—Physiology of Reproduction and Milk Secretion—3 cr. (3 and 0)**

**DY Sc 804—Endocrinology—3 cr. (3 and 0)**

**DY Sc 805—Newer Knowledge of Dairy Nutrition—3 cr. (3 and 0)**

**DY Sc 807—Fermented Dairy Products—3 cr. (2 and 3)**

**DY Sc 808—Industrial Dairy Science—3 cr. (3 and 0)**

**DY Sc 809—Rumen Metabolism—3 cr. (2 and 3)**

**DY Sc 891—Research—Credit to be arranged.**
ECONOMICS

Professors: H. H. Macaulay, Jr., W. C. Whitten, Jr.
Associate Professors: J. F. Pearce, B. R. Skelton, H. J. Wheeler, Head
Assistant Professors: F. A. Close, R. D. Shannon, H. H. Ulbrich, T. B. Yandle, Jr., J. A. Ziegler

ECON 201—PRINCIPLES OF ECONOMICS—3 cr. (3 and 0)
The fundamental principles of pricing, stabilization and growth in a modern economy. Topics include supply and demand, employment theory and fiscal policy, the banking system and monetary policy, and the economics of growth.

ECON H201—PRINCIPLES OF ECONOMICS—3 cr. (3 and 0)
An enrichment of the subject matter of Econ 201 through assigned readings and individualized instruction; admission by invitation.

ECON 202—PRINCIPLES OF ECONOMICS—3 cr. (3 and 0)
Continuation of Econ 201 with an intensive study of the economics of the firm, the pricing of resources, and international economic relations. The theory is given relevance through the analysis of current economic problems. Prerequisite: Econ 201.

ECON H202—PRINCIPLES OF ECONOMICS—3 cr. (3 and 0)
An enrichment of the subject matter of Econ 202 through assigned readings and individualized instruction; admission by invitation. Prerequisite: Econ 201 or Econ H201.

ECON 301—ECONOMICS OF LABOR—3 cr. (3 and 0)
The economics of the labor market, the problems of the industrial worker, and the methods of adjusting labor-management disputes. Prerequisite: Econ 201.

ECON 302—MONEY AND BANKING—3 cr. (3 and 0)
Considers the function of money and banking in both the product and financial markets. Special emphasis is placed on monetary theory and current problems of monetary policy. Prerequisite: Econ 201 and 202.

ECON 305—INVESTMENT ANALYSIS—3 cr. (3 and 0)
A study of techniques useful in analyzing alternative investment opportunities, with emphasis on corporate securities. Investment planning and portfolio management are considered. Prerequisite: Econ 201.

ECON 306—RISK AND INSURANCE—3 cr. (3 and 0)
Studies the nature of risk and the role of insurance in risk management from individual and business viewpoints by considering insurance carriers, contracts, underwriting and regulation. Prerequisite: Econ 201.

ECON 308—COLLECTIVE BARGAINING—3 cr. (3 and 0)
The practices, procedures, legal foundations, and legal structure associated with collective bargaining. The form and content of the labor contract, the grievance machinery, and the mediation and arbitration institutions will also be studied. Prerequisite: Econ 201.

* Part-time.
Econ 309—Government and Business—3 cr. (3 and 0)
The relationships between government and business, including among other topics, governmental efforts to enforce competition, to regulate public utilities, and to protect the special interests of laborers, farmers, and consumers. Prerequisite: Econ 201.

Econ 314—Intermediate Economic Theory—3 cr. (3 and 0)
An analytical study of the basic concepts of value and distribution under alternative market conditions. Prerequisite: Econ 201 and 202.

Econ 403—Development of Economic Thought—3 cr. (3 and 0)
A study of the origin and evolution of ideas with some emphasis on the historical context, the problems which inspired these ideas, and the nature of the solutions which they provided: from ancient days to the present. Prerequisite: Econ 201 and 202.

Econ 404—Comparative Economic Systems—3 cr. (3 and 0)
A comparative analytical and historical study of the principal economic systems which have been important in the modern world including among others, capitalism and socialism. Prerequisite: Econ 201 and 202.

Econ 407—National Income and Employment Analysis—3 cr. (3 and 0)
An intensive study of selected economic theories with special emphasis on income and employment. Part of the course is devoted to the analysis of national income accounts and income. Prerequisite: Econ 201 and 202.

Econ 410—Economic Development—3 cr. (3 and 0)
Consideration and analysis of economic and related problems of the underdeveloped countries. Attention will be given to national and international programs designed to accelerate solution of these problems. Prerequisite: Econ 201 and 202.

Econ 412—International Trade—3 cr. (3 and 0)
A study of economic principles particularly applicable to trade between nations. Topics covered include the balance of payments, determination of foreign exchange rates, price and income effects on the composition and level of trade, and commercial policy. Prerequisite: Econ 314.

Econ 413—International Finance—3 cr. (3 and 0)
With primary emphasis upon international monetary relations, the course surveys history and theory. Topics covered include exchange-rate determination, exchange-stability conditions, the purchasing-power-parity doctrine, the effects of devaluation and exchanging speculation. (Not open to students who have taken Econ 412.) Prerequisite: Econ 302.

Econ 416—Development of the Modern Economy—3 cr. (3 and 0)
An analysis of the historical forces and influences which have contributed to the emergence and development of the modern economy. Prerequisite: Econ 201 and 202.

Econ 420—Economics of Taxation—3 cr. (3 and 0)
An intensive study of a limited number of problems in taxation with particular emphasis on the economic effects that cause and result from certain taxes. Topics include averaging, incentives to work, incidence, concepts of equity, excess burden, definitions of income, depletion, and capital gains. Prerequisite: Econ 314.
ECON 421—URBAN ECONOMICS—3 cr. (3 and 0)
Economic problems associated with the concentration of population in central places are examined. The historical development of cities and the associated economic implications for individuals, firms, and society are studied. Legislation of economic importance to urban living is analyzed. Prerequisite: Econ 201 and 202.

ECON 422—MONETARY THEORY AND POLICY—3 cr. (3 and 0)
An intensive study of the role of monetary factors in economic change. Modern monetary theories and their empirical relevance for policy are developed against a background of monetary history and institutions. Prerequisite: Econ 302 or permission of the instructor.

ECON 424—THE ORGANIZATION OF INDUSTRIES—3 cr. (3 and 0)
Empirical, historical, and theoretical analyses of market structure and concentration in American industry: the effects of oligopoly, monopoly, and cartelization upon price, output and other policies of the firm; antitrust and other public policies and problems will be studied. Prerequisite: Econ 314.

ECON 703—DEVELOPMENT OF ECONOMIC THOUGHT—3 cr. (3 and 0)
ECON 704—COMPARATIVE ECONOMIC SYSTEMS—3 cr. (3 and 0)
ECON 707—NATIONAL INCOME AND EMPLOYMENT ANALYSIS—3 cr. (3 and 0)
ECON 710—ECONOMIC DEVELOPMENT—3 cr. (3 and 0)
ECON 712—INTERNATIONAL TRADE—3 cr. (3 and 0)
ECON 713—INTERNATIONAL FINANCE—3 cr. (3 and 0)
ECON 716—DEVELOPMENT OF THE MODERN ECONOMY—3 cr. (3 and 0)
ECON 720—ECONOMICS OF TAXATION—3 cr. (3 and 0)
ECON 721—URBAN ECONOMICS—3 cr. (3 and 0)
ECON 722—MONETARY THEORY AND POLICY—3 cr. (3 and 0)
ECON 724—THE ORGANIZATION OF INDUSTRIES—3 cr. (3 and 0)
ECON 800—ADVANCED ECONOMIC ANALYSIS—3 cr. (3 and 0)
ECON 802—ADVANCED ECONOMIC CONCEPTS AND APPLICATIONS I—3 cr. (3 and 0)
ECON 803—ADVANCED ECONOMIC CONCEPTS AND APPLICATIONS II—3 cr. (3 and 0)
ECON 810—SEMINAR IN ECONOMIC ANALYSIS—3 cr. (3 and 0)
ECON 811—SEMINAR IN LABOR ECONOMICS—3 cr. (3 and 0)
ECON 812—SEMINAR IN THE DEVELOPMENT OF ECONOMIC THOUGHT—3 cr. (3 and 0)
ECON 813—SEMINAR IN COMMUNITY GOODS AND ENVIRONMENTAL QUALITY—3 cr. (3 and 0)
ECON 821—ECONOMIC THEORY I—3 cr. (3 and 0)
ECON 822—ECONOMIC THEORY II—3 cr. (3 and 0)
ECON 891—RESEARCH—Credit to be arranged.
ECON 900—SEMINAR IN ADVANCED ECONOMIC THEORY—3 cr. (3 and 0)
EDUCATION

Professors: L. H. Davis, M. A. King, Head; H. F. Landrith
Associate Professors: C. R. Freeze, G. W. Gray, M. A. Packer, W. W. Pennscott, R. E. Ware
Assistant Professors: L. L. Byrd, J. R. Harris, J. A. Hash, Barbara W. Morgan, T. H. Parry
Instructor: Elizabeth B. Galloway

Ed 100—Orientation—1 cr. (1 and 0)
Series of lectures and discussions on teaching and careers in education; personal and professional guidance. Required of all students in Elementary Education, Secondary Education, and Science Teaching.

Ed 101—Reading Improvement—1 cr. (0 and 2)
Developmental reading for University students who desire to improve reading skills; open to any University student, but priority given to referrals.

Ed 301—History of American Education—3 cr. (3 and 0)
Development of educational systems, theories and practices against a background of American social and intellectual history. Prerequisite: Junior standing or permission of the instructor.

Ed 302—Educational Psychology—3 cr. (3 and 0)
The nature, capacities, equipment, growth and development of the learner.

Ed 334—Child Growth and Development—3 cr. (3 and 0)
A study of the physical and emotional growth and development of the child. Prerequisite: Ed 302 or Psych 201.

Ed 335—Adolescent Growth and Development—3 cr. (3 and 0)
The physical and emotional growth and development of the adolescent. Prerequisite: Ed 302 or Psych 201.

Ed 336—Behavior of the Preschool Child—3 cr. (2 and 2)
A study of behavior of the preschool child, including observation and participation.

Ed 401—The Community College—3 cr. (3 and 0)
History and philosophy of the junior college, its functions, organization and administration.

Ed 405—Principles of Guidance—3 cr. (3 and 0)
Principles, procedures, and policies of the guidance services. For all personnel workers. Prerequisite: 6 semester hours in Education or Psychology.

Ed 406—History and Philosophy of Education—3 cr. (3 and 0)
An analysis of the development of modern education practices and philosophies with emphasis upon the historical and philosophical development in the United States.

(1 and 15)
A program of supervised observation and teaching in cooperation with selected public schools in which opportunities are provided for prospective teachers to obtain experiences in the subject area. Students to be sectioned according to teaching fields: English, History and Social Sciences, Mathematics,
Modern Languages, Science. (Enrollment is subject to individual approval of instructor in charge and is limited to seniors or graduates who have completed prerequisite courses and who have the accumulated grade-point ratio necessary for graduation.)

**Ed 424—Methods and Materials in Secondary School Instruction—**
3 cr. (3 and 0)
Development of instructional practices and materials appropriate for the secondary school; familiarization with curriculum materials. Students to be sectioned according to teaching area: English, History and Social Science, Mathematics, Modern Languages, Science.

**Ed 431—Special Institute Course: Early Childhood Education—** 3 cr. (3 and 0)
Subject areas organized according to Institute needs.

**Ed 432—Special Institute Course: Elementary School—** 3 cr. (3 and 0)
Subject areas organized according to Institute needs.

**Ed 433—Special Institute Course: Secondary School—** 3 cr. (3 and 0)
Subject areas organized according to Institute needs.

**Ed 434—Special Institute Course: Current Problems in Education—**
3 cr. (3 and 0)
Subject areas organized according to Institute needs.

**Ed 435—Special Institute Course: Curriculum—** 3 cr. (3 and 0)
Subject areas organized according to Institute needs.

**Ed 436—Special Institute Course: Supervision and Administration—**
3 cr. (3 and 0)
Subject areas organized according to Institute needs.

**Ed 458—Health Education—** 3 cr. (3 and 0)
A study of the information needed for effective cooperation with parents, physicians and public health agencies in the promotion and improvement of community health, including problems of personal hygiene, health records, immunization, and control of communicable disease.

**Ed 459—Fundamentals of Basic Reading—** 3 cr. (3 and 0)
Study of reading skills in relation to the psychological bases; developmental principles; historical and current issues in reading practices.

**Ed 460—Curriculum Development in the Elementary School—** 3 cr. (3 and 0)
An analysis and evaluation of newer practices in curriculum planning in the elementary school.

**Ed 461—Teaching Reading in the Elementary School—** 3 cr. (3 and 0)
Study of the various phases of reading and their relation to the elementary program. Emphasis on modern practices in the classroom teaching of reading.

**Ed 462—Reading Diagnosis and Remediation—** 3 cr. (2 and 3)
A clinical course in diagnostic and remedial procedures in the teaching of reading. Practice in the use of diagnostic instruments, interpretation of results, and case studies, with recommended remediation. Laboratory hours to be arranged with each individual. Prerequisite: 3 semester hours in reading or permission of the instructor.
Description of Courses

**Ed 465—Secondary School Curriculum—3 cr. (3 and 0)**
A study of the principles, techniques, and trends in second school curriculum development and evaluation.

**Ed 466—Curriculum for Early Childhood Education—3 cr. (3 and 0)**
Critical study of early childhood curriculum for nursery schools, kindergarten and early elementary grades.

**Ed 471—The Exceptional Child—3 cr. (3 and 0)**
Survey of exceptionality including handicapped and gifted children; nature, cause, and treatment of difficulties; educational problems.

**Ed 472—Psychology of Mental Retardation—3 cr. (3 and 0)**
Psychological aspects of mental retardation; learning, motivation, and personality development.

**Ed 473—Teaching the Mentally Retarded—3 cr. (3 and 0)**
Study, selection, and preparation of curricular materials; methods of teaching retarded children within the pre-adolescent and adolescent range. **Prerequisite:** Ed 472 or equivalent.

**Ed 480—Methods and Materials in the Elementary School—3 cr. (3 and 0)**
Study of the elementary program with emphasis upon materials, curriculum and methodology.

**Ed 481—Directed Teaching in the Elementary School—6 cr. (1 and 15)**
Supervised observation and teaching experiences in cooperation with selected elementary schools. (Enrollment is subject to individual approval of the instructor and is limited to seniors or graduates who have completed prerequisite courses and who have the accumulated grade-point ratio for graduation.)

**Ed 483—Methods and Materials for Early Childhood Education—3 cr. (3 and 0)**
Study of methods and materials applicable to nursery schools, kindergarten and early elementary grades.

**Ed 484—Directed Teaching in Early Childhood Education—6 cr. (1 and 15)**
Supervised observation and teaching experiences in cooperation with nursery, kindergartens and early elementary schools. (Enrollment is limited to seniors or graduates who have completed prerequisite courses and who have the accumulated grade-point ratio for graduation.)

**Ed 487—Methods and Materials in Speech Development—3 cr. (3 and 0)**
Approved methods of teaching speech development; study of materials; experience in clinical methodology.

**Ed 491—Descriptive Statistics—3 cr. (3 and 0)**
Basic descriptive statistics and research methodology applicable to education, psychology and other social sciences.

**Ed 494—School and Community Relationships—3 cr. (3 and 0)**
A study of the interdependence of the school and community, with emphasis on educational implications.
The techniques and uses of audio-visual aids in improving teaching effectiveness.

Methods and materials of teaching basic and developmental reading skills; programming special services in reading instruction. Demonstrations of tests and devices.

The techniques and uses of audio-visual aids in improving teaching effectiveness.

Methods and materials of teaching basic and developmental reading skills; programming special services in reading instruction. Demonstrations of tests and devices.

The techniques and uses of audio-visual aids in improving teaching effectiveness.

Methods and materials of teaching basic and developmental reading skills; programming special services in reading instruction. Demonstrations of tests and devices.

The techniques and uses of audio-visual aids in improving teaching effectiveness.

Methods and materials of teaching basic and developmental reading skills; programming special services in reading instruction. Demonstrations of tests and devices.

The techniques and uses of audio-visual aids in improving teaching effectiveness.

Methods and materials of teaching basic and developmental reading skills; programming special services in reading instruction. Demonstrations of tests and devices.

The techniques and uses of audio-visual aids in improving teaching effectiveness.

Methods and materials of teaching basic and developmental reading skills; programming special services in reading instruction. Demonstrations of tests and devices.
274 Description of Courses

Ed 810—Techniques of Counseling—3 cr. (3 and 0)

Ed 811—School Finance—3 cr. (3 and 0)

Ed 813—Educational and Vocational Informational Services and Placement—3 cr. (3 and 0)

Ed 814—Field Experiences in Elementary School Guidance—3 cr. (2 and 3)

Ed 815—Field Experiences in Secondary School Guidance—3 cr. (2 and 3)

Ed 816—Field Experiences in Personnel Services in Higher Education—3 cr. (2 and 3)

Ed 817—Clinical Studies in Counseling and Guidance—1 to 3 cr.

Ed 818—Field Problems in School Administration and Supervision of Instruction—3 cr. (2 and 3)

Ed 830—Techniques of Supervision—The Public Schools—3 cr. (3 and 0)

Ed 831—Evaluation of Secondary School Instruction—3 cr. (3 and 0)
(Offered in Summer Sessions only.)

Ed 832—Evaluation of Instruction in the Elementary Schools—3 cr. (3 and 0)

Ed 851—Organization and Administration of the Elementary School—3 cr. (3 and 0)

Ed 852—Organization and Administration of the Secondary School—3 cr. (3 and 0)

Ed 861—Organization and Supervision of Reading Programs—3 cr. (3 and 0)

Ed 862—Clinical Research in Reading—3 cr. (3 and 0)

Ed 863—Practicum in Reading—3 cr. (2 and 2)

Ed 871—Interpersonal and Group Relationships—3 cr. (3 and 0)

Ed 890—Introduction to Research in Education—3 cr. (3 and 0)

ELECTRICAL ENGINEERING


Associate Professors: W. L. Ball, T. L. Drake, B. E. Gilliland, C. P. Goodin, R. N. Kersey, Jr., H. V. Poe, R. W. Snelshires, M. L. Wolla, W. T. Zink

Assistant Professors: D. C. Amoss, H. J. Helgert, R. D. Stinaff

EE 298—Digital Computation; Systems and Programs—1 cr. (1 and 0)
An introduction to digital computation and digital computer systems: Historical background; components of the computer system; information flow; storage; basic algorithms; flow charting; and introduction to instruction writing.
EE 299—DIGITAL COMPUTATION—2 cr. (1 and 3)
A programming course designed to prepare students for the efficient use of
digital computers. Fortran and PL-1 languages are used. An ideal course for
those desiring a short but comprehensive introduction to computing. Prereq-
quisite: EE 298.

EE 303—INTRODUCTION TO ELECTRICAL ENGINEERING—3 cr. (3 and 0)
Principles of electrical engineering, with an introduction to circuits, elec-
tronics, measuring devices and machines. For students in Industrial Education.
Prerequisite: Math 106, Phys 202 and 204.

EE 307—BASIC ELECTRICAL ENGINEERING—3 cr. (3 and 0)
Electrical engineering for students who need a strong background in the
subject, but who are not planning to specialize in the field. A firm foundation
in circuit theory is provided in this course. Prerequisite: Math 206, Phys 222
and 224.

EE 308—BASIC ELECTRICAL ENGINEERING—3 cr. (3 and 0)
A continuation of EE 307, with emphasis on electronics, instrumentation,
and basic electromechanics. Prerequisite: EE 307.

EE 312—ELECTROMECHANICS—3 cr. (2 and 2)
The principles of energy conversion are introduced with emphasis on electro-
magnetic and electromechanical devices. From these, the mathematical and
equivalent circuit models are developed, considering non-linear magnetic char-
acteristics and linear approximation. These models facilitate representation of
the devices in extended systems. In laboratory characteristics are studied of
devices are saturable reactors, magnetic amplifiers, loudspeakers, transformers,
d-c motors and generators, and a-c motors and generators. These characteristics
are compared with those of the mathematical models. Prerequisite: EE 330,
331 and 340.

EE 315—INFORMATION THEORY—3 cr. (3 and 0)
A course designed for those interested in developing a precise definition of
information, and then applying this definition to the study of communication.
Coding and the effect of noise on the system will be discussed. In the last
part of the course upper bounds on the rate at which a process can transmit
information will be obtained. Prerequisite: Approval of department.

EE 320—ELECTRONICS I—2 cr. (2 and 0)
The fundamental principles of solid state electronic devices including the
structural properties of semi-conductors, charge carrier motion, p-n junction
theory, and electrical circuit models of transistors. Emphasis is given to the
physical principles describing the operation of modern electronics components.
Prerequisite: Phys 221, 222. Concurrent enrollment in EE 325.

EE 321—ELECTRONICS II—2 cr. (2 and 0)
Solid state circuit theory covering the design of small signal—low frequency
amplifiers and multistage and feedback systems; applications involving opera-
tional amplifiers, field effect transistors and integrated circuits are covered.
Prerequisite: EE 320, 330, 331. Concurrent enrollment in EE 326.
EE 325—Electronics and Electromagnetics Laboratory I—1 cr. (0 and 2)
Laboratory projects dealing with instrumentation and measurement procedures associated with solid state electronic devices and electromagnetic fields. **Prerequisite:** Concurrent enrollment in EE 320 and 340.

EE 326—Electronics and Electromagnetics Laboratory II—1 cr. (0 and 2)
Experimentation in electronics circuits design and electronic systems analysis, including integrated circuits. Projects relating to studies of time varying fields, transmission lines, wave guides, and antennas are included. **Prerequisite:** Concurrent enrollment in EE 321 and 341.

EE 327—Engineering Applications of Probability and Random Variables—3 cr. (3 and 0)
An introduction to probability and random variables with emphasis on engineering applications. Subjects which will be covered include: probability space, conditional probabilities, independent events, Bernoulli trials, random variables, distribution functions, functions of random variables, and correlation and power spectrum of stationary random processes. **Prerequisite:** Math 208.

EE 329—Logic and Computing Devices—3 cr. (2 and 2)
A study of logic with an introduction to propositional calculus and Boolean Algebra. Number systems and representation of information. The use of electric devices to implement logic functions and computing elements. The organization and structure of computing systems. **Prerequisite:** Approval of department.

EE 330—Systems I—2 cr. (2 and 0)
The systems concept and system analysis methods are developed. The system model is developed through the study of functions and data forms, perfect drivers, response, two terminal elements, system geometry, linear algebra and subsystems. Branch, node, mesh and state models are considered. Solution methods include the used of the analog and digital computer. Non-linear components are introduced in simple systems. **Prerequisite:** Math 208 or approval of department.

EE H330—Systems I—2 cr. (2 and 0)
A special honors course in which the systems concept and system analysis methods are developed. The system model is developed through the study of functions and data forms, perfect drivers, response, two terminal elements, system geometry, linear algebra and subsystems. Branch, node, mesh, and state models are considered. Solution methods include the use of the analog and digital computer. Non-linear components are introduced in simple systems. **Prerequisite:** Math 208 or approval of department.

EE 331—Electric Circuits Workshop I—2 cr. (0 and 4)
Computational sessions, demonstrations and laboratory projects are coordinated with EE 330 (Systems I) in the area of electrical phenomenon. Electrical instrumentation and measurement procedures are introduced to illustrate component modeling and network response. Applications involving both continuous and discrete behavior are discussed. Problem solving using digital and analog computers is emphasized. **Prerequisite:** Concurrent enrollment with EE 330.
EE H331—Electric Circuits Workshop I—2 cr. (0 and 4)
A special honors workshop including computational sessions, demonstrations, and laboratory projects are coordinated with EE H330 (Systems I) in the area of electrical phenomenon. Electrical instrumentation and measurement procedures are introduced to illustrate component modeling and network response. Applications involving both continuous and discrete behavior are discussed. Problem solving using digital and analog computers is emphasized. Prerequisite: Concurrent enrollment with EE H330.

EE 332—Systems II—2 cr. (2 and 0)
A continuation of Systems I. Transforms of equations and functions and formulation of system equations in the S-domain. Two-part and N-terminal component studies include input-output and transfer parameters, measurement procedures, and system reduction methods. Solution methods include the use of transforms, analog computers and digital computers. Optimization methods are introduced. Prerequisite: EE 330.

EE 333—Electric Circuits Workshop II—2 cr. (0 and 4)
A continuation of EE 331. Transfer function concepts, multi-terminal component modeling and computer simulations are among topics covered. A variety of electrical devices and systems are discussed including machinery and other energy conversion and solid state devices. Prerequisite: Concurrent enrollment in EE 332.

EE 340—Electric and Magnetic Fields I—2 cr. (2 and 0)
An introduction to classical electromagnetics. Topics include vector analysis, Coulomb’s law, electric field intensity, Gauss’s law, potential theory, solution of Laplace’s equation, D.C. magnetic fields, magnetic circuits and devices, and forces in magnetic fields. Prerequisite: Phys 222, Math 208.

EE 341—Electric and Magnetic Fields II—2 cr. (2 and 0)
Continuation of EE 340 to include time-varying fields, Maxwell’s equations, transmission lines, waveguides, and antennas. Prerequisite: EE 340.

EE 350—Digital Information Processing—3 cr. (2 and 2)
Introduction to the basic characteristics of general purpose digital computer systems. The computer is viewed as a discrete sequential processor operating on discrete data rather than as a high speed calculating device. Topics include: general machine organization and operation, information flow within the machine, internal and external data types and structures, data transfers and communication with external devices, and interrelations between software and hardware. The various levels of programming systems are reviewed, but the main emphasis is placed on lower-level languages which provide the means for more flexible control and utilization of the digital system. Prerequisite: Junior standing in engineering or physical sciences and consent of instructor.

EE 351—Real Time Application of Digital Computers—3 cr. (2 and 2)
An introduction of the application and operation of digital computers in a real-time or near real-time environment. An extension of the topics of EE 350 with the main emphasis on real-time applications and on-line data acquisition and reduction. Topics include: hardware characteristics such as interrupt and data break facilities, analog-to-digital and digital-to-analog signal conversion, timing considerations, and programming systems. The utilization of the com-
puter as a system control component is considered as well as its use in simulation. **Prerequisite:** EE 350 or approval of department.

EE 401—**Seminar**—1 cr. (1 and 0)

Emphasis is placed on methods of presenting engineering concepts appropriate to an industrial environment. Recent developments in the field of electrical engineering are discussed as examples with consideration being given to their economic as well as scientific significance. A library research paper is a required part of the course. **Prerequisite:** Senior standing.

EE 402—**Engineering Analysis**—1 cr. (1 and 0)

The application of engineering principles and methods to the study of typical problems that arise in the various fields of electrical engineering. **Prerequisite:** EE 401 and Senior standing.

EE 403—**Energy Conversion**—3 cr. (3 and 0)

Various methods of energy conversion, both electromechanical and direct. Fuel cells, magnetohydrodynamics, nuclear and other methods are discussed along with more conventional systems. **Prerequisite:** Approval of department.

EE 405—**Special Problems**—Variable credit.

Electrical Engineering problems assigned to the student according to his needs and capabilities. The purpose is to give students a chance to do projects, either theoretical or experimental, on subjects not covered in other courses. **Prerequisite:** Approval of department.

EE H405—**Special Problems**—Variable credit.

A special honors course of Electrical Engineering problems assigned to the student according to his needs and capabilities. The purpose is to give students a chance to do projects, either theoretical or experimental, on subjects not covered in other courses. **Prerequisite:** Approval of department.

EE 406—**Introduction to Integrated Circuits**—3 cr. (3 and 0)

Integrated circuit technology, devices and applications. Discussion of fabrication methods, survey of standard circuit characteristics, design and layout principles, linear and digital circuit applications. **Prerequisite:** Senior standing.

EE 410—**Systems III**—3 cr. (3 and 0)

An extension of Systems II into more advanced topics including flow concepts, stability, synthesis, optimization, and analysis with digital machines using—CSMP-ECAP and other simulation programs. **Prerequisite:** EE 332.

EE 411—**Electrical Systems Workshop III**—2 cr. (0 and 4)

A continuation of EE 333. Larger more complex systems are considered. Projects illustrating state space and classical control theory are undertaken. Network synthesis and analysis through digital simulations are also covered. **Prerequisite:** EE 333.

EE 419—**Electrical Machinery Laboratory I**—1 cr. (0 and 2)

A laboratory course designed to accompany EE 421. Includes measurements of A.C. and D.C. machine parameters, analog computer simulation with emphasis on control. **Prerequisite:** Enrollment in EE 421.

EE 420—**Power Systems Analysis**—3 cr. (3 and 0)

Study of electric power system operation. Subjects covered include transmission lines, load-flow studies, economic dispatching, symmetrical components,
fault calculations, and introduction to power system stability. Prerequisite: EE 312.

EE 421—Electrical Machinery—3 cr. (3 and 0)
Characteristics of A.C and D.C. machines are studied with emphasis on dynamic operation and control. Prerequisite: EE 333.

EE 422—Electronics III—2 cr. (2 and 0)
An introduction to logic circuits, switching devices, and electronic storage systems. Frequency response of electronic components and systems, oscillator fundamentals, principles of modulation and power supply design are also covered. Prerequisite: EE 321, EE 333.

EE 428—Communications Theory I—3 cr. (3 and 0)
A course in modern communications theory. Topics covered are Fourier transforms, power spectra, correlation, signals in linear networks, amplitude modulation, frequency modulation, sampling and pulse modulation. Prerequisite: EE 321.

EE 429—Fundamentals of Digital Computer Design—3 cr. (3 and 0)
This course is designed for senior engineering and science students who are interested in the organization, logic, and circuit aspects of digital computers. Preliminary investigation of algorithms for performing digital arithmetic operations is followed by a study of logic circuits, switching matrices, computer elements and computer organization. The course is concluded with the design of a digital computer. Prerequisite: EE 321.

EE 430—Communications Theory II—3 cr. (3 and 0)
A continuation of EE 428 with emphasis on the statistical properties of signals. Topics covered are random signals and noise, signal space and continuous channels, digital data systems, optimum detection theory. Prerequisite: EE 428 and 327.

EE 431—Advanced Electronics—3 cr. (3 and 0)
Active and passive wave-shaping, memory, and switching circuits. Prerequisite: EE 321 and concurrent registration in EE 433.

EE 432—Instrumentation—3 cr. (3 and 0)
Theory and analysis of transducers and related circuits and instrumentation. Generalized configurations and performance characteristics of instruments will be considered. Transduction devices for measuring physical parameters such as motion, force, torque, pressure, flow, and temperature will be discussed. Prerequisite: EE 321 or approval of department.

EE 433—Advanced Electronics Laboratory—1 cr. (0 and 2)
A laboratory course designed to accompany EE 431. Prerequisite: Concurrent registration in EE 431.

EE 435—Communications Circuits—3 cr. (3 and 0)
Communication circuits used in amplification, modulation, detection and other signal processing in modern communication systems. Recent developments in electronic devices, such as integrated circuits, will be considered as circuit components along with other solid state and vacuum electronic devices. Prerequisite: EE 422.
Description of Courses

EE 436—Radiation and Wave Propagation—3 cr. (3 and 0)
Electromagnetic waves, waveguides, and antennas. Prerequisite: EE 341.

EE 437—Laser Technology and Applications—3 cr. (3 and 0)
An introduction to the design factors and operating principles of solid state, gas, and semiconductor lasers, couched in the language of electrical engineering and electron physics. Applications of laser technology to such areas as communications, computers, measurements, and medicine are presented. The theory and applications of holography are explored. Special problems and demonstrations relative to electrical engineering application of lasers are designed to augment the theoretical presentations.

EE 450—Systems IV—3 cr. (3 and 0)
A continuation of Systems III. Modern control system concepts including matrices and vector spaces, state equations, sample data systems, controllability and observability, non-linear systems and synthesis. Also advanced computations including analog, digital, and hybrid in optimizing, parametric programming and simulation. Prerequisite: EE 410.

EE 451—System Design Workshop IV—2 cr. (0 and 4)
A project oriented course which brings together electrical engineering students of dissimilar training into teams or project groups. Assignments are made to each group which are designed to help develop an appreciation for individual and creative thinking as well as team effort. Prerequisite: EE 411.

EE 460—Computer-Aided Analysis and Design—3 cr. (3 and 0)
Principles and methods suited to the solution of engineering problems on the digital computer. Topics include widely used methods for the solution of the systems of algebraic and/or differential equations which arise in the modeling of engineering systems, data approximation and curve fitting, continuous system simulation languages, and design-oriented programming systems. Prerequisite: EE 332 or approval of department.

EE 461—Analog/Hybrid Computation and Simulation—3 cr. (2 and 2)
A continuation of the introductory analog concepts considered in the EE 331 and 333. Topics include non-linear modeling, function generation, signal processing, and an introduction to hybrid computing. Prerequisite: EE 333 or approval of department.

EE 703—Energy Conversion—3 cr. (3 and 0)

EE 706—Introduction to Integrated Circuits—3 cr. (3 and 0)

EE 710—Systems III—3 cr. (3 and 0)

EE 719—Electrical Machinery Laboratory I—1 cr. (0 and 2)

EE 720—Power System Analysis—3 cr. (3 and 0)

EE 721—Electrical Machinery—3 cr. (3 and 0)

EE 728—Communications Theory I—3 cr. (3 and 0)

EE 729—Fundamentals of Digital Computer Design—3 cr. (3 and 0)

EE 730—Communications Theory II—3 cr. (3 and 0)

EE 731—Advanced Electronics—3 cr. (3 and 0)

EE 733—Advanced Electronics Laboratory—1 cr. (0 and 2)
EE 735—Communications Circuits—3 cr. (3 and 0)
EE 736—Radiation and Wave Propagation—3 cr. (3 and 0)
EE 750—Systems IV—3 cr. (3 and 0)
EE 760—Computer-Aided Analysis and Design—3 cr. (3 and 0)
EE 761—Analog/Hybrid Computation and Simulation—3 cr. (2 and 2)
EE 801—Analysis of Linear Systems I—3 cr. (3 and 0)
EE 802—Analysis of Linear Systems II—3 cr. (3 and 0)
EE 803—Seminar—1 cr. (1 and 0)
EE 804—Network Synthesis I—3 cr. (3 and 0)
EE 805—Network Synthesis II—3 cr. (3 and 0)
EE 806—Nonlinear Networks and Systems I—3 cr. (3 and 0)
EE 807—Power System Stability—3 cr. (3 and 0)
EE 808—Energy Conversion—3 cr. (3 and 0)
EE 810—Modern Control Theory I—3 cr. (3 and 0)
EE 811—Modern Control Theory II—3 cr. (3 and 0)
EE 812—Sampled Data Systems—3 cr. (3 and 0)
EE 814—Nonlinear Automatic Controls—3 cr. (3 and 0)
EE 815—Random Data Measurements and Analysis—3 cr. (3 and 0)
EE 819—Detection and Estimation Theory—3 cr. (3 and 0)
EE 820—Theory of Communications I—3 cr. (3 and 0)
EE 821—Theory of Communications II—3 cr. (3 and 0)
EE 822—Information Theory—3 cr. (3 and 0)
EE 823—Integrated Circuit Technology—3 cr. (3 and 0)
EE 824—Applications of Integrated Circuits—3 cr. (3 and 0)
EE 825—Solid-State Electronics—3 cr. (3 and 0)
EE 826—Large Scale Integration—3 cr. (3 and 0)
EE 827—Instrumentation and Measurements—3 cr. (3 and 0)
EE 830—Electromagnetics I—3 cr. (3 and 0)
EE 831—Electromagnetics II—3 cr. (3 and 0)
EE 832—Antenna Theory I—3 cr. (3 and 0)
EE 833—Antenna Theory II—3 cr. (3 and 0)
EE 834—Microwave Electronics—3 cr. (3 and 0)
EE 836—Optical Electromagnetics and Quantum Electronics—3 cr. (3 and 0)
BioE 846—Elements of Bioengineering I—3 cr. (3 and 0)
BioE 847—Elements of Bioengineering II—3 cr. (3 and 0)
Description of Courses

EE 850—Computation and Simulation—3 cr. (3 and 0)
EE 851—Theory and Design of Digital-Analog-Machines—3 cr. (3 and 0)
EE 852—Digital Computers and Information Processing—3 cr. (3 and 0)
EE 857—Coding Theory—3 cr. (3 and 0)
EE 858—Automata Theory—3 cr. (3 and 0)
EE 860—Engineering Application of Optimization—3 cr. (3 and 0)
EE 861—Foundation and Methodology of Systems Engineering—3 cr. (3 and 0)
EE 863—Advanced Physical Systems I—3 cr. (3 and 0)
EE 864—Advanced Physical Systems II—3 cr. (3 and 0)
EE 870—Biosystems Analysis—3 cr. (3 and 0)
EE 890—Selected Topics in Electrical Engineering—3 cr. (3 and 0)
EE 891—Research—3 cr.
EE 991—Doctoral Research—Credit to be arranged.

ENGINEERING

Engr 101—Engineering Systems—Non-credit (1 and 0)
A series of lectures outlining the role and scope of engineering in service to mankind. Emphasis is placed on the difference between science and engineering, the emerging role of engineering in new technology, the important technological needs of mankind, and the importance of the humanities and social studies to the engineer.

Engr 491—Seminar—1-3 cr. (1-3 and 0)
A study of the dynamic role of engineering in relationship to man and his environment. Topics not covered in formal courses will be presented to keep students abreast of today’s rapidly changing technology. Prerequisite: Permission of instructor.

ENGINEERING GRAPHICS

Professor: E. Laitala, Head
Associate Professors: B. E. Dunkle, A. F. Hammond, L. H. Jameson, C. M. McHugh, R. L. Perry
Assistant Professors: C. W. Carter, C. D. Meeks
Instructor: C. O. Huey

EG 101—Freehand Sketching—1 cr. (0 and 3)
Principles of technical sketching, including the development of skills in technical lettering and freehand orthographic and pictorial drawing.

EG 103—Engineering Communications—3 cr. (1 and 6)
The role of engineering communication in engineering and management. Graphic communication includes lettering, sketching, orthographic projection, auxiliary projection, sections and conventional practices, dimensioning, work-
ing drawings. Architectural drawing, charts and graphs, presentation techniques. Manufacturing philosophy; interrelation between product design and production processes. For Industrial Management majors.

EG 104—ENGINEERING COMMUNICATION AND DESIGN—2 cr. (0 and 6)
The role of engineering communication from the manager's point of view. Working drawings relating product design and production processes. Architectural drawing nomography, charts and graphs, presentation techniques. Prerequisite: EG 109 or consent of instructor.

EG 105—ENGINEERING GRAPHICS—2 cr. (0 and 6)
A course in graphical communication. Freehand sketching, orthographic and auxiliary projection, sectional views, and conventional practices, dimensioning, reading drawings.

EG 109—ENGINEERING GRAPHICAL COMMUNICATION—2 cr. (0 and 6)
Graphical methods of communicating ideas and information in engineering. Development of the student's ability to visualize three dimensional forms and spatial relationships through the study of creative freehand sketching and basic fundamentals of engineering representation. Use of drafting aids, introduction to computer graphics, curve plotting, reproduction methods.

EG 110—ENGINEERING COMMUNICATION (FOR TECHNICAL OPERATIONS)—2 cr. (0 and 6)

EG 201—ENGINEERING GRAPHICS FOR INDUSTRIAL EDUCATION—3 cr. (1 and 6)
A comprehensive study of Engineering Graphics fundamentals. The course includes lettering, use of instruments, technical sketching, multi-viewing drawing, auxiliary projection, descriptive geometry, sectional views, dimensioning, fasteners, detail and assembly drawings.

EG 202—GRAPHICAL TECHNOLOGY FOR INDUSTRIAL EDUCATION—3 cr. (1 and 6)
Continuation of EG 201 with emphasis on depth in graphical communication. Working drawings to include detail and assembly drawings. Intersections and developments. Specifications, standards. Architectural drawings. Production illustration, pedagogy of graphics, pragmatic and creative design. Prerequisite: EG 201.

EG 301—ADVANCED ENGINEERING GRAPHICS—3 cr. (1 and 6)
Application of the fundamental principles of Engineering Graphics to the solution of three dimensional spatial problems in the design of various engineering systems. Creative functional design, introduction to graphical kinematics and computer-aided design. Prerequisite: EG 109 or 202.

EG 302—GRAPHICAL COMPUTATION—3 cr. (2 and 3)
Graphic layouts of empirical equations. The application of graphical solution of equations, nomography, and the graphical calculus to the solution of problems in engineering and science. Graphical solution of differential equations. Prerequisite: EG 109, Math 106 or equivalent.
**ENGINEERING MANAGEMENT**

*Professors: C. C. Davis, B. J. Todd, C. H. Whitehurst, Jr.*

*Associate Professors: F. R. Gray, E. A. LaRoche, S. O. Park,* C. O. Shuler, J. M. Wannamaker

*Assistant Professors: G. D. Riggs, J. A. Turner*

- **EMgt 910**—Seminar in Production Management—2 cr. (2 and 0)
- **EMgt 911**—Seminar in Decision Theory—2 cr. (2 and 0)
- **EMgt 912**—Seminar in Finance—3 cr. (3 and 0)
- **EMgt 913**—Systems Analysis—3 cr. (3 and 0)
- **EMgt 991**—Doctoral Research—Credit to be arranged.

**ENGINEERING MECHANICS**

*Professors: N. R. Bauld, Jr., R. W. Moorman, Head*


*Assistant Professor: C. R. Mitchell*

- **EM 201**—Engineering Mechanics (*Statics*)—3 cr. (3 and 0)
  Forces and force systems and their external effect on bodies; principally the condition of equilibrium. The techniques of vector mathematics are employed, and the rigor of physical analysis is emphasized. *Prerequisite:* Phys 122, concurrent registration in Math 206.

- **EM H201**—Engineering Mechanics (*Statics*)—3 cr. (3 and 0)
  An honors section of EM 201; admission by invitation.

- **EM 202**—Engineering Mechanics (*Dynamics*)—3 cr. (3 and 0)
  A continuation of EM 201. The principal topics are kinematics and kinetics of particles and bodies of finite size. Techniques of vector mathematics are employed. *Prerequisite:* EM 201, Math 206.

- **EM H202**—Engineering Mechanics (*Dynamics*)—3 cr. (3 and 0)
  An honors section of EM 202; admission by invitation.

- **EM 211**—Particle Mechanics: Statics and Dynamics—3 cr. (3 and 0)
  Force and force systems and their effect on particles; the conditions of equilibrium and the kinematics and kinetics of particle motion. The techniques of vector mathematics are employed, and the rigor of physical analysis is emphasized. *Prerequisite:* Phys 122, Math 206.

- **EM 304**—Mechanics of Materials—3 cr. (3 and 0)
  The relationships between external loads on solid bodies or members and the resulting internal effects and dimension changes, including the derivation of rational formulas for stresses and deformations and the identification and use of important mechanical properties of engineering materials. *Prerequisite:* 201 and Math 206.

- **EM H304**—Mechanics of Materials—3 cr. (3 and 0)
  An honors section of EM 304; admission by invitation.

* On leave.
EM 305—Mechanics of Materials Laboratory—1 cr. (0 and 3)
Theoretical relationships considered in EM 304 are verified. Students observe the behavior under load and the failure of engineering materials identify and evaluate mechanical properties of materials important to design and manufacturing processes; and are acquainted with various testing methods, testing machines, and instruments. Prerequisite: Must be accompanied or preceded by EM 304.

EM 320—Fluid Mechanics—3 cr. (3 and 0)
The behavior of fluids at rest or in motion, including the study of fluid properties. Emphasis is placed upon a rational, analytical approach from which are developed basic principles of broad applicability to all fields of engineering. Prerequisite: EM 202.

EM H320—Fluid Mechanics—3 cr. (3 and 0)
An honors section of EM 320; admission by invitation.

EM 322—Fluid Mechanics Laboratory—1 cr. (0 and 3)
The principles developed in EM 320 are verified and demonstrated. Familiarization with orderly techniques in organizing and reporting results of experimental investigations and with the use of instruments and equipment is afforded. Prerequisite: Must be accompanied or preceded by EM 320.

EM 420—Hydraulic Engineering—3 cr. (3 and 0)
Elements of hydrology and the application of principles of fluid mechanics to engineering problems. Topics included are open channel flow; flow in conduits under pressure; hydraulic machinery; and the broad principles of planning reservoirs, water supply systems, dams, spillways, and other hydraulic works. Prerequisite: EM 320.

EM 421—Hydrology and Hydraulics—2 cr. (2 and 0)
Elements of surface water and ground water hydrology are introduced and applied to engineering problems. Special topics of open channel hydraulics and water distribution systems are developed from the fundamentals of fluid mechanics. Prerequisite: EM 320.

EM 425—Advanced Mechanics of Materials—3 cr. (3 and 0)
A continuation of EM 304. This course includes traditional topics in strength of materials, such as shear center, unsymmetrical bending, torsion of non-circular sections, curved members, and elastic stability. Additionally, introduces topics from theory of elasticity as related to simple bending and torsion problems. Prerequisite: EM 304.

EM 450—Mechanical Vibrations—3 cr. (3 and 0)
Mathematical analysis of physical problems in the vibration of mechanical systems. Topics include: linear free vibrations, forced vibrations and damping in single degree of freedom systems, transient response, multidegrees of freedom systems with lumped parameters, Lagrange’s equations. Prerequisite: EM 202, 304, and Math 208.

EM 470—Experimental Stress Analysis I—3 cr. (2 and 3)
Experimental analysis of static and dynamic stress fields. Emphasis is on the techniques required to obtain data and the theoretical analysis required for proper interpretation. Methods and instrumentation associated with strain gages (including transducer applications), brittle laquers, and photoclasticity will be studied. Prerequisite: EM 304 and permission of instructor.
EM 721—Hydrology and Hydraulics—2 cr. (2 and 0)
EM 725—Advanced Mechanics of Materials—3 cr. (3 and 0)
EM 750—Mechanical Vibrations—3 cr. (3 and 0)
EM 770—Experimental Stress Analysis I—3 cr. (2 and 3)
EM 802—Experimental Stress Analysis II—3 cr. (2 and 3)
EM 821—Continuum Mechanics—3 cr. (3 and 0)
EM 823—Dimensional Analysis and Dynamic Similarity—3 cr. (3 and 0)
EM 827—Topics in Analytical Mechanics—3 cr. (3 and 0)
EM 829—Energy Methods and Variational Principles—3 cr. (3 and 0)
EM 831—Theory of Elasticity I—3 cr. (3 and 0)
EM 832—Theory of Elasticity II—3 cr. (3 and 0)
EM 834—Theory of Elastic Stability—3 cr. (3 and 0)
EM 845—Intermediate Dynamics—3 cr. (3 and 0)
EM 851—Fluid Dynamics—3 cr. (3 and 0)
EM 852—Theory of Ideal Fluid Flow—3 cr. (3 and 0)
EM 853—Theory of Viscous Fluid Flow—3 cr. (3 and 0)
EM 856—Flow in Open Channels—3 cr. (3 and 0)
EM 881—Special Problems—3 cr. (3 and 0)
EM 889—Seminar—0 or 1 cr. (1 and 0)
EM 890—Seminar—0 or 1 cr. (1 and 0)
EM 891—Research—Credit to be arranged.
EM 932—Theory of Plasticity—3 cr. (3 and 0)
EM 980—Special Topics in Mechanics—3 cr. (3 and 0)
EM 981—Special Topics in Mechanics—3 cr. (3 and 0)
EM 982—Special Topics in Mechanics—3 cr. (3 and 0)
EM 983—Special Topics in Mechanics—3 cr. (3 and 0)
EM 991—Doctoral Research—Credit to be arranged.
ENGLISH

Professors: R. J. Calhoun, H. M. Cox, C. B. Green, M. A. Owings, Head
Associate Professors: C. O. Caskey, A. J. Fear, H. M. Felder, Jr., C. Gum,
Harriet R. Holman, A. H. Holt, J. L. Idol, C. M. McGee, Jr., J. J.
McLaughlin, N. Olsen, Jr., M. S. Steadman, Jr., C. H. Watson,
J. P. Winter
Assistant Professors: R. E. Barfield, H. B. Bryant, R. L. Cross, T. E.
III, R. O. Rogers, Corinne H. Sawyer, J. B. Simms, B. N. Skardon,
R. T. Sorrells, M. O. Usrey, E. P. Willey
Instructors: Ottie W. Arrington, Marie I. Binsse, J. D. Blanche, W. V.
Bost, Joan T. Cross, S. K. Eisminger, G. L. Findlen, Virginia L.
Ganim, D. N. Griffin, R. B. Heaton, Jr., W. B. Wood, Jr., C. H.
Woodell
Lecturer: Ann M. Young

ENGL 101—ENGLISH COMPOSITION—3 cr. (3 and 0)
Training in correct and effective expression, in brief expository essays; review
of the fundamentals of grammar and punctuation; instruction in common ex-
pository methods.

ENGL H101—ENGLISH COMPOSITION—3 cr. (3 and 0)
Honors section of Engl 101; admission by invitation.

ENGL 102—ENGLISH COMPOSITION—3 cr. (3 and 0)
Continued emphasis on correct and effective expression; an introduction to
non-fiction prose, fiction, drama, and poetry; training in the organization and
writing of the research report. Prerequisite: Engl 101.

ENGL H102—ENGLISH COMPOSITION—3 cr. (3 and 0)
Honors section of Engl 102; admission by invitation.

ENGL 105—FUNDAMENTALS OF ORAL COMMUNICATION—3 cr. (3 and 0)
Introduction to the problems of oral communication in the following areas:
oral reading, listening, discussion, speaking, with emphasis on individual needs;
oral exercises.

ENGL 111—ENGLISH FOR FOREIGN STUDENTS—3 cr. (5 and 0)
A special course for students learning English as a second language. Inten-
sive study and drill in American English pronunciation and listening
comprehension. Required of all foreign students who do not make a satisfac-
tory grade on screening examinations in oral English.

ENGL 203—A SURVEY OF ENGLISH LITERATURE—3 cr. (3 and 0)
Chief British authors and works from Beowulf through the Romantic period;
continued emphasis on composition. Prerequisite: Engl 102.

ENGL H203—SURVEY OF ENGLISH LITERATURE—3 cr. (3 and 0)
Honors section of Engl 203; admission by invitation.

ENGL 204—A SURVEY OF ENGLISH AND AMERICAN LITERATURE—3 cr.
(3 and 0)
Chief British authors and works from the Victorian period to the present

* On leave.
time, and selected readings from American literature. Proficiency in composition must be demonstrated. **Prerequisite:** Engl 203.

**Engl H204—Survey of English and American Literature—3 cr.** (3 and 0)
Honors section of Engl 204; admission by invitation.

**Engl 215—Introduction to Drama—3 cr. (3 and 0)**
Introduction to drama as a literary form through readings of representative plays from Aeschylus to Ibsen. **Prerequisite:** Engl 101, 102. (Formerly Engl 415.)

**Engl 217—Vocabulary Building—3 cr. (3 and 0)**
Development of a useful, discriminating vocabulary for writing, speaking, and reading. Student notebooks and proficiency quizzes. **Prerequisite:** Engl 101 and 102.

**Engl 221—The Classics in Translation—3 cr. (3 and 0)**

**Engl 223—Continental Fiction in Translation—3 cr. (3 and 0)**
Selected fiction of the European masters, primarily Russian, French, German, and Spanish. **Prerequisite:** Engl 101, 102.

**Engl 231—Introduction to Journalism—3 cr. (3 and 0)**
Instruction and practice in writing for mass media; editorial responsibilities. **Prerequisite:** Engl 102.

**Engl 240—Black American Literature—3 cr. (3 and 0)**
Black American literature from its beginning to the present. A critical examination of essays, short stories, novels, drama, and poetry produced by the Black American. **Prerequisite:** Engl 101 and 102.

**Engl 300—Journalism Workshop—1 cr. (1 and 0)**
Responsibilities and duties of students editing uncensored publications; criticism of student publications. Open only to members of publication staffs. **Prerequisite:** Engl 102.

**Engl 301—Public Speaking—3 cr. (3 and 0)**
Practical training in public speaking; attention to diction, voice, and platform presence; an introduction to parliamentary procedure; practice in writing and delivering short speeches. **Prerequisite:** Engl 203 and 204.

**Engl 302—Persuasion—3 cr. (3 and 0)**
The theories and art of ethical oral persuasion. The composition and delivery of speeches of a persuasive nature to convince, to stimulate, and to actuate. **Prerequisite:** Engl 301.

**Engl 303—Voice and Diction—3 cr. (3 and 0)**
Practical training in speech, with emphasis on clarity, vocal variety, and tone quality.

**Engl 304—Advanced Composition—3 cr. (3 and 0)**
Supervised writing for students of advanced standing, each student undertaking projects according to his interest; some attention to reports, business letters, research methods and materials. Weekly papers and some larger exercises. Limited enrollment. **Prerequisite:** Engl 203 and 204.
ENGL 305—Oral Interpretation of Literature—3 cr. (3 and 0)
Analysis and oral interpretation of selected poetry and prose; training in
development of effective tone production. Prerequisite: Engl 101, 102.

ENGL 306—Debating—1 cr. (1 and 0)
The application of debating to contemporary problems. May be repeated
until a maximum of three credits has been earned. Prerequisite: Permission of
the instructor.

ENGL 310—Introduction to the Theatre—3 cr. (3 and 0)
The history of play production from the Greeks to modern times. The role
of lighting, costuming, set design and other elements in play production.
Prerequisite: Junior standing.

ENGL 311—Theatre Laboratory—1 cr. (0 and 3)
Participation in theatre production including stage management, direction,
costume, makeup, lighting, sound, scenery, and business management. No
formal class meetings. One credit. May be repeated for a total of three credits.
Prerequisite: Sophomore standing and permission of the instructor.

ENGL 331—Creative Writing—3 cr. (3 and 0)
The technique of non-expository writing—narration, description, dramatiza-
tion. Prerequisite: Sophomore standing or higher and permission of the
instructor.

ENGL 332—Creative Writing—3 cr. (3 and 0)
A continuation of Engl 331. Prerequisite: Engl 331 or permission of the
instructor.

ENGL 333—The Structure of Fiction—3 cr. (3 and 0)
A study of the short story, the novella, and the novel from the writer’s point
of view. Prerequisite: Permission of the instructor.

ENGL 351—Children’s Literature—3 cr. (3 and 0)
Wide reading in prose and verse suitable for children. Prerequisite: Engl
203 and 204.

ENGL 362—Speech in the Elementary Classroom—3 cr. (3 and 0)
The development of oral communication skills in children and the use of
speech improvement activities to motivate spontaneous, accurate self-expression.
Prerequisite: Junior standing.

ENGL 402—The English Language—3 cr. (3 and 0)
Studies in English usage and the historical development of the language.
Prerequisite: Engl 203 and 204.

ENGL 404—The Structure of Modern English—3 cr. (3 and 0)
Structural linguistic analysis; principles of phonology, morphology, and
syntax as related to traditional, structural, and transformational grammars.
Recommended for English teachers. Prerequisite: Engl 203, 204.

ENGL 405—Shakespeare—3 cr. (3 and 0)
An introduction to Shakespeare’s plays through a study of the tragedies
Hamlet, Othello, King Lear, Macbeth, Anthony and Cleopatra, and of the two
tragic plays Romeo and Juliet and Julius Caesar. Prerequisite: Engl 203, 204.

ENGL 406—Shakespeare—3 cr. (3 and 0)
A selective study of Shakespeare’s comedies and histories. Prerequisite: Engl
203 and 204.
ENGL 409—CHAUCER—3 cr. (3 and 0)
Chaucer as an artist; the "Prologue" for historical and linguistic orientation; "The Canterbury Tales," "House of Fame," "Parliament of Fowls," and "Troilus and Criseyde" as art forms. Prerequisite: Engl 203 and 204.

ENGL 413—CLASSICAL DRAMA—3 cr. (3 and 0)
Selected readings in the dramatic literature of classical Greece and Rome. Prerequisite: Engl 203 and 204.

ENGL 416—MODERN DRAMA—3 cr. (3 and 0)
Prerequisite:
Prerequisite: Principles and progress of drama from Ibsen to the present; analysis of representative plays; critical reports; discussion of trends in contemporary drama. Prerequisite: Engl 203 and 204.

ENGL 423—A SURVEY OF AMERICAN LITERATURE—3 cr. (3 and 0)
The colonial period to the Civil War, with emphasis on major authors. Prerequisite: Engl 203 and 204.

ENGL 424—A SURVEY OF AMERICAN LITERATURE—3 cr. (3 and 0)
From the Civil War to the present, with emphasis upon major authors. Prerequisite: Engl 203 and 204.

ENGL 425—THE ROMANTIC REVIVAL—3 cr. (3 and 0)
The eighteenth-century forerunners of Romanticism; Wordsworth, Coleridge, Byron, Shelley, Keats; the essayists. Prerequisite: Engl 203 and 204.

ENGL 427—VICTORIAN POETRY AND PROSE—3 cr. (3 and 0)
Representative works from the prose and poetry of Victorian writers; consideration of English intellectual, social, and political life of the period. Prerequisite: Engl 203 and 204.

ENGL 431—THE RESTORATION AND EIGHTEENTH CENTURY—3 cr. (3 and 0)
Readings in Dryden, Swift, Pope, and Dr. Johnson. Prerequisite: Engl 203 and 204.

ENGL 435—SOUTHERN LITERATURE—3 cr. (3 and 0)
The intellectual and literary achievement of the South from 1607 to the present, with emphasis upon the writers of the nineteenth century. Prerequisite: Engl 203 and 204.

ENGL 436—MILTON AND HIS AGE—3 cr. (3 and 0)
The development of Milton's thought and art in relation to his times and to the writings of his contemporaries. Prerequisite: Engl 203 and 204.

ENGL 437—THE ENGLISH NOVEL—3 cr. (3 and 0)
A critical and historical study of the English novel from Defoe to Jane Austen. Prerequisite: Engl 203 and 204.

ENGL 438—TWENTIETH CENTURY POETRY—3 cr. (3 and 0)
The modern tradition in English and American poetry from Yeats to the present; relevant critical essays. Prerequisite: Engl 203 and 204.

ENGL 439—TWENTIETH CENTURY FICTION—3 cr. (3 and 0)
American and British novelists and short story writers of the twentieth century. Prerequisite: Engl 203 and 204.

ENGL 440—APPLIED LITERARY CRITICISM—3 cr. (3 and 0)
Major critical approaches to literature, in theory and practice, from Aristotle to the present. Prerequisite: Engl 203 and 204.
ENGL 441—A Survey of World Literature I—3 cr. (3 and 0)
Translations from the Hellenic, Hebraic, and Oriental worlds, with emphasis on major authors. Prerequisite: Engl 203 and 204.

ENGL 442—A Survey of World Literature II—3 cr. (3 and 0)
Translations from the Medieval, Renaissance and Modern worlds, with emphasis on major authors. Prerequisite: Engl 203 and 204.

ENGL 443—Seventeenth Century Poetry and Prose—3 cr. (3 and 0)
A survey of British authors of the seventeenth century other than Shakespeare and Milton.

ENGL 445—Renaissance Non-Dramatic Literature—3 cr. (3 and 0)
Tudor and Elizabethan poetry, prose fiction, translations, essays, and criticism. Prerequisite: Engl 204.

ENGL 446—Tudor-Stuart Drama—3 cr. (3 and 0)
Selected readings in non-Shakespearean dramatic literature of the sixteenth and seventeenth centuries. Prerequisite: Engl 203 and 204.

ENGL 447—The American Novel—3 cr. (3 and 0)
A survey of the most significant forms and themes of the American novel from its beginnings to 1920. Prerequisite: Engl 203 and 204.

ENGL 461—Studies in English Literature to 1784—3 cr. (3 and 0)
Selected readings in English literature from the beginnings to 1700, with emphasis on social and intellectual backgrounds. Prerequisite: Engl 203, 204.

ENGL 462—Studies in English Literature since 1784—3 cr. (3 and 0)
Selected readings in English literature from 1700 to the present, with emphasis on social and intellectual backgrounds. Prerequisite: Engl 203, 204.

ENGL H470—Senior Division Honors English—3 cr. (3 and 0)
An intensive study of a period, topic, genre, or figure. Papers, reports, reading list, examination. Prerequisite: Engl 203, 204 or H203, H204 and approval of the Honors Council. May be repeated by arrangement with the Department for a total of twelve credits.

ENGL 481—Directed Reading—1, 2, or 3 cr. (1, 2, or 3 and 0)
Class and tutorial work for students with special interests or projects in American, British, or European literature outside the scope of existing courses. May be repeated for a maximum of six credits. Prerequisite: Engl 203, 204 or H203, H204, and invitation of the department.

ENGL 651—Children's Literature—3 cr. (3 and 0)
ENGL 702—The English Language—3 cr. (3 and 0)
ENGL 704—The Structure of Modern English—3 cr. (3 and 0)
ENGL 705—Shakespeare—3 cr. (3 and 0)
ENGL 706—Shakespeare—3 cr. (3 and 0)
ENGL 709—Chaucer—3 cr. (3 and 0)
ENGL 716—Drama—3 cr. (3 and 0)
ENGL 723—A Survey of American Literature—3 cr. (3 and 0)
ENGL 724—A Survey of American Literature—3 cr. (3 and 0)
292 Description of Courses

ENGL 725—The Romantic Revival—3 cr. (3 and 0)
ENGL 727—Victorian Poetry and Prose—3 cr. (3 and 0)
ENGL 731—The Restoration and Eighteenth Century—3 cr. (3 and 0)
ENGL 735—Southern Literature—3 cr. (3 and 0)
ENGL 736—Milton and His Age—3 cr. (3 and 0)
ENGL 738—Twentieth Century Poetry—3 cr. (3 and 0)
ENGL 739—Twentieth Century Fiction—3 cr. (3 and 0)
ENGL 740—Applied Literary Criticism—3 cr. (3 and 0)
ENGL 741—A Survey of World Literature—3 cr. (3 and 0)
ENGL 742—A Survey of World Literature—3 cr. (3 and 0)
ENGL 743—Seventeenth Century Poetry and Prose—3 cr. (3 and 0)
ENGL 745—Renaissance Non-Dramatic Literature—3 cr. (3 and 0)
ENGL 747—The American Novel—3 cr. (3 and 0)
ENGL 761—Studies in English Literature to 1784—3 cr. (3 and 0)
ENGL 762—Studies in English Literature Since 1784—3 cr. (3 and 0)
ENGL 801—The Teaching of English—3 cr. (3 and 0)
ENGL 803—Seminar—3 cr. (3 and 0)
ENGL 805—Seminar—3 cr. (3 and 0)
ENGL 890—Introduction to Research—1 cr. (1 and 0)
ENGL 891—Research—Credit to be arranged.

ENTOMOLOGY

Professors: T. R. Adkins, Jr., R. C. Fox, E. W. King, J. K. Reed
Associate Professor: S. B. Hays, Head
Assistant Professors: R. F. Nash, T. E. Skelton

ENT 200—Insects—2 cr. (2 and 0)
An introduction to insects; their various relationships with man, other animals and plants. The general nature of this course makes it beneficial to all students regardless of specialty.

ENT 301—General Entomology—3 cr. (2 and 3)
A general introduction to entomology with emphasis on anatomy, metamorphosis, and description of the most common insect species. Methods of control are introduced and current control practices are explained for some of the most important species.

ENT 307—Forest Entomology—3 cr. (2 and 3) F
Insects of economic importance to forests, forest products and shade trees, and their role in the practice of good forest management as well as their significance in the natural environment.

ENT 308 Apiculture—3 cr. (2 and 3)
A detailed study of the honey bee and its economic importance in pollination and honey production. Attention will be given to bee behavior, colony
management, equipment, honey plant identification, and honey production and processing. Prerequisite: Zool 101, 103 and permission of the instructor.

ENT 401—FIELD CROP AND STORED PRODUCT INSECTS—3 cr. (2 and 3)
Common insect pests of the following are studied: cotton, corn, small grains, legume field crops, tobacco, stored grain and seed. Primary emphasis is placed on life histories, identification of destructive stages, recognition of damage, and current control measures.

ENT 402—FRUIT, NUT, AND VEGETABLE INSECTS—3 cr. (2 and 3)
Common insect pests of the following are studied: peaches, apples, grapes, pecans, sweet corn, cole crops, cucurbits, potatoes, sweet potatoes, peas and beans. Primary emphasis is placed on life histories, identification of destructive stages, recognition of damage, and current control measures.

ENT 405—INSECT MORPHOLOGY—4 cr. (3 and 3) F
A study of insect structure in relation to function and of the variation of form in insects. Prerequisite: Ent 301.

ENT H405—INSECT MORPHOLOGY—4 cr. (3 and 3) F
Honors option for Ent 405, admission by special arrangement.

ENT 410—INSECT TAXONOMY—3 cr. (1 and 6)
The identification of the principal families of the major orders of adult insects. Laboratory work consists of intensive practice of such identification; lecture material deals with necessary theoretical discussion of taxonomic features observed in the laboratory. Prerequisite: Zool 101, 103; Ent 301; Ent 405 desirable.

ENT 455—MEDICAL AND VETERINARY ENTOMOLOGY—3 cr. (2 and 3) S
Insects and their arthropod relatives which are of considerable economic importance in their effect on man and animals.

ENT 461—SEMINAR—1 cr. (1 and 0) F
Students review the principal journals pertaining to insects and related animals; also review the lives and activities of prominent pioneer entomologists. Prerequisite: Zool 101, 103; Ent 301.

ENT 462—SEMINAR—1 cr. (1 and 0) S
Continuation of Ent 461.

ENT 468—INTRODUCTION TO RESEARCH—2 cr. (1 and 3) S
Principles, developments and changes in research methods related to certain fields of biological and agricultural research. The students obtain practice in experimental techniques, scientific writing and the use and maintenance of various research instruments and equipment.

ENT 705—INSECT MORPHOLOGY—4 cr. (3 and 3)

ENT 755—MEDICAL AND VETERINARY ENTOMOLOGY—3 cr. (2 and 3)

ENT 768—INTRODUCTION TO RESEARCH—2 cr. (1 and 3)

ENT 808—TAXONOMY OF IMMATURE INSECTS—3 cr. (1 and 6)

ENT 809—RECENT ADVANCES IN ENTOMOLOGY 1—1 cr. (1 and 0)
**Description of Courses**

**ENT 810—Recent Advances in Entomology II**—1 cr. (1 and 0)
**ENT 856—Medical Entomology**—3 cr. (2 and 3)
**ENT 860—Principles of Insect Control**—3 cr. (3 and 0)
**ENT 861—Insect Toxicology**—3 cr. (2 and 3)
**ENT 862—Insect Physiology**—3 cr. (2 and 3)
**ENT 863—Special Problems in Entomology**—3 to 6 cr.
**ENT 890—Research Techniques in Agriculture**—3 cr. (2 and 3)
**ENT 891—Research**—Credit to be arranged.
**ENT 991—Doctoral Research**—Credit to be arranged.

**ENVIRONMENTAL HEALTH**

*Associate Professor: R. F. Borgman, Program Director*

**ENH 471—Man and His Environment**—2 cr. (2 and 0)
The interactions of man with his environment will be surveyed. Health factors such as urbanization, population growth, pathogens, insects and other vectors, ionizing radiation, and toxic chemical residues will be emphasized. The effects of air, water, food, and solid waste contacts will be considered. *Prerequisite: Permission of instructor.*

**ENH 472—Environmental Planning and Control**—2 cr. (2 and 0)
Application of planning and design to effective environmental control. Topics such as land use, water supply and treatment, waste water treatment and disposal, and solid waste disposal will be considered from the standpoint of control. Not intended for graduate students in Engineering. *Prerequisite: Permission of the instructor.*

**ENH 771—Man and His Environment**—2 cr. (2 and 0)
**ENH 772—Environmental Planning and Control**—2 cr. (2 and 0)
**ENH 871—Environmental Health**—3 cr. (3 and 0)
**ENH 893—Environmental Health Seminar I**—1 cr. (1 and 0)
**ENH 894—Environmental Health Seminar II**—1 cr. (1 and 0)

**ENVIRONMENTAL SYSTEMS ENGINEERING**

*Professors: J. F. Andrews, Head; J. H. Austin
Associate Professor: A. R. Abernathy
Assistant Professors: B. C. Dysart, T. M. Keinath
Lecturer: G. M. McCallum
Adjunct Professor: W. M. Sanders*

**ESE 743—Environmental Engineering Chemistry I**—2 cr. (2 and 0)
**ESE 744—Environmental Engineering Chemistry Laboratory I**—2 cr. (0 and 6)
**ESE 842—Sanitary Engineering Processes**—3 cr. (3 and 0)
ESE 843—Unit Operations of Sanitary Engineering—3 cr. (3 and 0)
ESE 846—Pollution of the Aquatic Environment—3 cr. (2 and 3)
ESE 848—Environmental Engineering Chemistry II—2 cr. (2 and 0)
ESE 849—Environmental Engineering Chemistry Laboratory II—2 cr. (1 and 3)
ESE 851—Unit Operations and Processes Laboratory—2 cr. (1 and 3)
ESE 852—Water and Waste Treatment Systems—2 cr. (1 and 3)
ESE 853—Advanced Unit Operations and Processes—3 cr. (2 and 3)
ESE 854—Water and Waste Transport Systems—3 cr. (3 and 0)
ESE 855—Solid Wastes—3 cr. (3 and 0)
ESE 856—Environmental Systems Engineering Seminar—0 cr. (1 and 0)
ESE 857—Radiological Health—3 cr. (2 and 3)
ESE 858—Radiological Health Engineering—3 cr. (2 and 3)
ESE 859—Special Problems—1 to 4 cr.
ESE 860—Selected Topics in Environmental Engineering—3 cr. (3 and 0)
ESE 861—Environmental Systems Engineering Seminar—0 cr. (1 and 0)
ESE 862—Statistics Applied to Economics—3 cr. (3 and 0)

EXPERIMENTAL STATISTICS

Professor: W. P. Byrd
Assistant Professors: W. E. Johnston, C. B. Loadholt, J. S. Lytle

Ex St 301—Introductory Statistics—3 cr. (2 and 2), F, S, SS
Basic concepts and methods of statistical inference; organization and presentation of data, elementary probability, measures of central tendency and variation, tests of significance, sampling, simple linear regression and correlation. The role of statistics in interpreting research, and the general application of the methods are stressed.

Ex St 462—Statistics Applied to Economics—3 cr. (3 and 0) S
A continuation of Ex St 301 with emphasis on statistical methods used in the collection, analysis, presentation and interpretation of economic data. Special attention is given to time series analysis, the construction of index numbers and the designing of samples for surveys in the social science fields. Prerequisite: Ex St 301.

Ex St 601—Introductory Statistics—3 cr. (2 and 2)
Ex St 762—Statistics Applied to Economics—3 cr. (3 and 0)
Ex St 801—Statistical Methods—4 cr. (3 and 3)
Ex St 803—Regression and Least Squares Analysis—3 cr. (3 and 0)
Description of Courses

Ex St 804—Sampling—3 cr. (3 and 0)
Ex St 805—Design and Analysis of Experiments—3 cr. (3 and 0)

Food Science

Professors: J. H. Mitchell, Jr., A. L. Shewfelt, W. P. Williams, Head
Assistant Professors: J. J. Jen, L. E. Vereen

Fd Sc 212—Man's Food Resources—2 cr. (2 and 0)
S, '71 and alternate years.
  Food material resources with reference to quality preservation, processing,
  and nutritional requirements. The role of science and technology in the modern
  food industry is emphasized. The need for food standards and grades is
  explained, and the functions of regulatory agencies are discussed. Prerequisite:
  Bot 101.

Fd Sc 305—Dairy and Food Engineering—3 cr. (2 and 3) F, '70
  A study of the basic engineering principles and their application to the dairy
  and food processing operations. The relationship between engineering prin-
  ciples and fundamentals of food processing is emphasized for the dairy and
  food technologist. Topics include material and energy balance, electricity and
  power, steam generation, refrigeration, transfer of heat, flow and mechanics
  of fluids, evaporation and distillation, strength of materials and kinetics of
  biological reactions.

Fd Sc 311—Food Processing—3 cr. (3 and 0)
F, '71 and alternate years.
  Principles of food handling and processing by refrigerated storage, freezing,
  canning, fermentation, sugar concentration, and food additives. Prerequisite:
  Organic Chemistry and Physics.

Fd Sc 312—Food Processing—3 cr. (3 and 0)
S, '72 and alternate years.
  Principles of dehydration. Unit processes and manufacturing methods used
  in the processing of cereal grains, dairy products, meats and fish, vegetable
  oils, beverages, and confectioneries. Importance of water supply and waste
  disposal in food manufacture. Prerequisite: Organic Chemistry and Physics.

Fd Sc 313—Food Processing Laboratory—1 cr. (0 and 3)
F, '71 and alternate years.
  Laboratory exercises dealing with equipment and processes used in food
  manufacture. Prerequisite: Registration in Fd Sc 311.

Fd Sc 314—Food Processing Laboratory—1 cr. (0 and 3)
S, '72 and alternate years.
  A continuation of Fd Sc 313. Prerequisite: Registration in Fd Sc 312.

Fd Sc 412—Food Quality Control—2 cr. (2 and 0) S, '71
  A comprehensive treatment of the philosophy and organization of and the
  responsibility for food quality control function. Major emphasis is placed on
  principles, quality attributes, government and trade standards of identity and
  their development, acceptance sampling (inspection), recording and reporting,
  and production and inventory control.
Fd Sc 413—Biochemistry of Foods—2 cr. (2 and 0)
F, '71 and alternate years.

Biochemical and enzymatic phenomena in relation to the color, texture, flavor, and nutritive value of foods, changes in biochemical constituents as a result of food processing and storage. Prerequisite: Ch 310 or 423 or permission of instructor.

Fd Sc 414—Food Quality Control Laboratory—2 cr. (1 and 3) S, '71
Fundamental aspects of sensory techniques employed in the quality evaluation of food products. A study of laboratory methods employed in product evaluation and grading of processed foods. A concept of quality is formed through examination of various grades of each food product. Actual practice in the selection and operation of taste panels illustrate their use in the industry.

Fd Sc 415—Human Nutrition—2 cr. (2 and 0)
F, '71 and alternate years.

Characteristics and functions of basic food nutrients and how they are affected by food processing, preservation and storage methods. Pathways for the conversion of nutrients into living tissue will be examined. Prerequisite: Ch 310 or 423 or permission of instructor.

Fd Sc 416—Food Analysis—2 cr. (1 and 3)
S, '72 and alternate years.

Application of quantitative procedures to the analysis of food products. Procedures include solids, protein, carbohydrates, lipids, vitamins, fiber, pigments, and other components. Prerequisite: Quantitative analysis or permission of instructor.

Fd Sc 417—Seminar—1 cr. (1 and 0) F, '70
Literature research and oral presentation of current food science topics.

Fd Sc 418—Seminar—1 cr. (1 and 0) S, '71
Literature research and oral presentation of current food science topics.

Fd Sc 712—Food Quality Control—2 cr. (2 and 0)

Fd Sc 713—Biochemistry of Foods—2 cr. (2 and 0)

Fd Sc 714—Food Quality Control Laboratory—2 cr. (1 and 3)

Fd Sc 715—Human Nutrition—2 cr. (2 and 0)

Fd Sc 716—Food Analysis—2 cr. (1 and 3)
FORESTRY

Professors: R. M. Allen, B. M. Cool, K. Lehotsky, Head; J. R. Warner
Associate Professors: M. H. Bruner, W. H. D. McGregor, R. E. Schoenike, W. A. Shain
Assistant Professors: C. L. Lane, T. E. Wooten

For 101—INTRODUCTION TO FORESTRY—1 cr. (1 and 0) F
An informative sketch of forestry, forests, and forestry tasks of the nation; education in career opportunities of foresters.

For 205—DENDROLOGY—4 cr. (3 and 3) F
Identification and nomenclature of the principal forest trees of the United States; their geographical distribution and economic importance; identification of many forest shrubs and commonly planted exotics. Prerequisite: Bot 101.

For 206—SILVICS—2 cr. (2 and 0) S
Growth factors influencing the establishment and development of forest trees and stands. Prerequisite: Bot 101, Ch 102.

For 251S—SILVICS—2 cr. (Summer Camp) SS
Field studies of growth factors influencing the establishment and development of forest stands. Prerequisite: Agron 202, Bot 356, For 205, For 206.

For 252S—FOREST ENGINEERING—2 cr. (Summer Camp) SS
Field surveying, establishment of boundary lines, planning and construction of forest trails and roads. Prerequisite: CE 200, EG 105.

For 253S—DENDROMETRY—4 cr. (Summer Camp) SS
Elements of mensuration dealing with volume determination of standing and harvested trees as well as forest stands. Prerequisite: CE 200, EG 105, For 205.

For 254S—FOREST PRODUCTS—1 cr. (Summer Camp) SS
Field studies of logging methods and equipment; trips to selected wood-using industries. Prerequisite: For 205 or permission of instructor.

For 302—DENDROMETRY—3 cr. (2 and 3) S
Volume determination of trees, logs, and stands; statistical procedures applied to forest measurements. Prerequisite: Ex St 401 and Forestry Summer Camp.

For 304—FOREST ECONOMICS—3 cr. (3 and 0) S
Economic problems and principles involved in the utilization of forest land and timber and in the distribution of forest products; cost analysis of integrated forest operations. Prerequisite: Econ 201.

For 306—IDENTIFICATION OF WOOD AND WOOD FIBERS—1 cr. (0 and 3) S
Macroscopic and microscopic identification, properties, and uses of selected economically significant timbers. Prerequisite: Bot 101, Ch 102 or permission of instructor.

For 307—ELEMENTS OF FORESTRY—3 cr. (2 and 3) F, S
A compendium of forestry subjects forming a foundation for the management and utilization of farm forests and especially those of South Carolina. Prerequisite: Bot 101 or permission of instructor.
For 308—AERIAL PHOTOGRAPHS IN FORESTRY—3 cr. (2 and 3) S
Use of aerial photographs in forestry; elementary photographic measurements; aerial photo interpretations; mapping and timber estimating procedures. Prerequisite: CE 203 and Forestry Summer Camp or permission of instructor.

For 310—SILVICULTURE—4 cr. (3 and 3) S
Maintenance, harvesting, natural and artificial regeneration of forest stands based on the interrelation of biotic characteristics of stands and their environment. Prerequisite: For 206 and Forestry Summer Camp.

For 401—LOGGING AND MILLING—4 cr. (2 and 6) F
Logging and milling methods and costs, their administration; analysis of logging and milling operations; seasoning, grading, and marketing of lumber. Prerequisite: Senior standing.

For 404—MANAGEMENT PLANS—1 cr. (0 and 3) S
Analysis and assembling of factors entering into a forest working plan; drawing of maps corollary to forest regulation; preparation of management plans. Prerequisite: For 407.

For 406—FOREST POLICY AND ADMINISTRATION—2 cr. (2 and 0) S
Development of public and private forest policy in the United States; administrative and executive tasks in forestry; principles of organization, personnel management, and budget. Prerequisite: Senior standing.

For 407—FOREST REGULATION—4 cr. (3 and 3) F
Correlation of production factors and yields of forests; normal and empirical forests; rotations and cutting cycles; regulation of cuts and growing stock in sustained yield management. Prerequisite: For 302, 310.

For 408—FOREST VALUATION—3 cr. (3 and 0) S
Capital investments in forestry and the returns derivable from them; valuation of land, timber, and other resources associated with forestry; appraisal of damage and stumpage values. Prerequisite: For 304, 407.

For 410—FOREST PRODUCTS—3 cr. (2 and 3) S
Primary forest products other than sawlogs, e.g., poles, pulpwood, veneer stock, excelsior; secondary forest products, e.g., naval stores, maple syrup, Christmas trees; utilization and marketing of forest products. Prerequisite: Phys 202 and Senior standing.

For 412—FOREST PROTECTION—2 cr. (2 and 0) S
Causative and control factors of forest fires; fire prevention and suppression. Protection of forest resources against damages caused by man and animals. Prerequisite: Senior standing.

For 421—WOOD PROPERTIES I—3 cr. (2 and 3)
The formation of wood in forest trees; gross and minute characteristics of wood; defects in wood; variability in wood. Prerequisite: Bot 101, For 306 or permission of instructor.

For 422—WOOD PROPERTIES II—3 cr. (2 and 3)
Wood in relation to moisture, heat, sound, light, and electricity; mechanical properties of wood; standard testing procedures for wood. Prerequisite: For 306 or permission of instructor.

For 602—DENDROMETRY—3 cr. (2 and 3)
For 604—Forest Economics—3 cr. (3 and 0)
For 606—Identification of Wood and Wood Fibers—1 cr. (0 and 3)
For 607—Elements of Forestry—3 cr. (2 and 3)
For 608—Aerial Photographs in Forestry—3 cr. (2 and 3)
For 610—Silviculture—4 cr. (3 and 3)
For 701—Logging and Milling—4 cr. (2 and 6)
For 704—Management Plans—1 cr. (0 and 3)
For 706—Forest Policy and Administration—2 cr. (2 and 0)
For 707—Forest Regulation—4 cr. (3 and 3)
For 708—Forest Valuation—3 cr. (3 and 0)
For 710—Forest Products—3 cr. (2 and 3)
For 712—Forest Protection—2 cr. (2 and 0)
For 801—Data Processing in Forestry Problems—3 cr. (2 and 3)
For 802—Dendrometry—3 cr. (2 and 3)
For 803—Photo-Interpretation—3 cr. (2 and 3)
For 804—Forest Economics—3 cr. (2 and 3)
For 805—Cost Studies in Harvesting and Processing—3 cr. (2 and 3)
For 806—Multiple Use Management—3 cr. (3 and 0)
For 807—Special Problems in Forestry—Credit to be arranged.
For 801—Research—Credit to be arranged.

**FRENCH**

*Associate Professor: J. A. Dean*

*Assistant Professors: D. Y. Brannock,* R. R. McGregor, Jr., J. B. Macy, R. G. Robertson*

*Instructors: Irene A. Aiem, Mary J. Fazio, Dorothy F. Findlen, Germaine M. Lafitte, H. A. Lewis, Jo Ann McNatt, Elke M. Maron, A. G. Weymouth*

*Lecturer: R. H. McEntire*

Fr 101—Elementary French—3 cr. (3 and 1)
A course for beginners in which, through conversation, composition, and dictation, the fundamentals of the language are taught and a foundation is provided for further study and the eventual ability to read and speak the language. Three hours a week of classroom instruction and one hour a week in the language laboratory.

Fr 102—Elementary French—3 cr. (3 and 1)
A continuation of Fr 101; three hours a week of classroom instruction and one hour a week in the language laboratory.

* On leave.
Fr 151—French for Graduate Students—0 cr. (0 and 0)
An intensive program for graduate students preparing to take the reading examination in French. Some previous study of the language is helpful but not essential.

Fr 201—Intermediate French—3 cr. (3 and 1)
Attention to grammar, with conversation, composition and dictation continued from Fr 102, and the beginning of more serious reading of French prose in short stories or novels. Three hours a week of classroom instruction and one hour a week in the language laboratory.

Fr 202—Intermediate French—3 cr. (3 and 0)
While attention is paid to writing and speaking French, more stress is laid on the rapid reading of more difficult French prose than in the earlier courses. Prerequisite: Fr 201.

Fr 303—Survey of French Literature I—3 cr. (3 and 0)
Literary movements and authors from the beginnings to the eighteenth century. Required of French majors. Prerequisite: Fr 201 and 202.

Fr 304—Survey of French Literature II—3 cr. (3 and 0)
Literary movements and authors of the nineteenth and twentieth centuries. Required of French majors. Prerequisite: Fr 201 and 202.

Fr 305—Conversational French—3 cr. (3 and 0)
Practice in the spoken language, with stress on vocabulary building, pronunciation, intonation, and comprehension; written work to increase accuracy. Assignments in the language laboratory. Required of French majors. Prerequisite: Fr 201 and 202.

Fr 306—Advanced Conversation and Composition—3 cr. (3 and 0)
A continuation of Fr 305, with additional emphasis on written composition. Required of French majors. Prerequisite: Fr 305.

Fr 403—Twentieth Century Prose—3 cr. (3 and 0)
The outstanding authors of the first half of the twentieth century: Proust, Gide, Mauriac, Saint-Exupéry, Sarte, Camus, and others. Reading of selected works, discussions, and reports. Prerequisite: Fr 303 and 304.

Fr 404—Twentieth Century Drama—3 cr. (3 and 0)
The French theater since 1900, with emphasis on the period after 1930. Readings, discussions, and reports. Prerequisite: Fr 303 and 304.

Fr 405—Nineteenth Century French Romanticism—3 cr. (3 and 0)
The romantic movement as expressed in the works of Chateaubriand, Hugo, Merimée, Vigny, Stendahl, Sand, and others. Readings, discussions, and reports. Prerequisite: Fr 303 and 304.

Fr 406—Nineteenth Century French Realism—3 cr. (3 and 0)
Realism as expressed in the works of Balzac, Flaubert, Daudet, Maupassant, Zola, and others. Selected works, discussions, and reports. Prerequisite: Fr 303 and 304.

Fr 407—Eighteenth Century French Literature—3 cr. (3 and 0)
The principal literary figures of the eighteenth century, with particular emphasis on Voltaire and Rousseau. Selected works, discussions, and reports. Prerequisite: Fr 303 and 304.
Fr 408—Seventeenth Century French Drama—3 cr. (3 and 0)
The French classical drama, with emphasis on Corneille, Racine, and Molière. Selected works, discussions, and reports. Prerequisite: Fr 303 and 304.

GENETICS

Professor: C. M. Jones
Assistant Professor: J. D. Maxwell

Gen 302—Genetics—3 cr. (2 and 3) F, S, SS
A general coverage of the basic principles of genetics. Examples illustrating the fundamentals of heredity and variation are given for plants and animals, including man. Prerequisite: Bot 101 and Zool 101, 103 or consent of instructor.

Gen 451—Genetics—3 cr. (3 and 0) F
Methods and concepts in classical and modern genetics. Topics will include advanced studies of linkage; variations in chromosome number and structure; natural and induced mutations; extranuclear inheritance; experimental evolution; population, biochemical and medical genetics. Principles will be illustrated by examples from plants, animals (including man), and microorganisms. Prerequisite: Gen 302.

Gen 602—Genetics—3 cr. (2 and 3)
Gen 751—Genetics—3 cr. (3 and 0)
Gen 801—Cytogenetics—3 cr. (2 and 3)

GEOGRAPHY

Assistant Professor: H. F. McMains

Geog 201—Introduction to Geography—3 cr. (3 and 0)
An introduction to the study of geography, including maps, the physical elements of the natural environment and their distribution, and world cultural patterns.

Geog 301—Economic Geography—3 cr. (3 and 0)
The geographic conditions fundamental to the world’s resources—agricultural, mineral, commercial and industrial, and the conditions which affect the utilization, marketing, consumption and strategic significance of these resources.

Geog 302—Political Geography—3 cr. (3 and 0)
The geographic basis for and the geographic problems of the modern state; the relevance of geographical patterns to international affairs. Prerequisite: Junior standing or permission of the instructor.

GEOLOGY

Associate Professors: P. K. Birkhead, V. S. Griffin, Jr.
Assistant Professors: G. M. Haselton, R. D. Hatcher, Jr., D. S. Snipes

Geol 201—Physical Geology—3 cr. (3 and 0)
A study of the minerals and rock which compose the earth’s crust, their origins and transformations. Emphasis is placed upon geological processes, both internal and external, by which changes are produced on or in the earth. Prerequisite: Registration in Geol 203.
Geol 203—Physical Geology Laboratory—1 cr. (0 and 3)
Common minerals and rocks are studied. Instruction is also provided in the interpretation of geologic processes through study of topographic maps. Field trips provide direct observation of processes and results. Prerequisite: Geol 201 or registration in Geol 201.

Geol 204—Historical Geology—3 cr. (3 and 0)
Evolution, both organic and inorganic, is traced from the beginning of the record up through the ages to the present. Prerequisite: Geol 201 and registration in Geol 205 unless taken for elective credit.

Geol 205—Historical Geology Laboratory—1 cr. (0 and 3)
The student learns to recognize plants and animals which have left their record as fossils in the rocks of the earth's crust. Emphasis is placed upon geologic structures and the interpretation of geologic maps. Field trips are planned to demonstrate classroom concepts. Prerequisite: Geol 203 and simultaneous registration in Geol 204.

Geol 306—Mineralogy—3 cr. (2 and 3)
The student gains a working knowledge of crystallography and a comprehensive knowledge of determinative mineralogy. Identification of the minerals is based on their physical and chemical properties. Prerequisite: Geol 201 or 406.

Geol 307—Optical Mineralogy—3 cr. (2 and 2)
The purpose of this course is to enable the student to identify minerals under the microscope on the basis of their optical properties. Prerequisite: Geol 306.

Geol 309—Petrology—3 cr. (2 and 3)
The genesis, evolution, and classification of rocks through lectures, laboratory exercises, and field trips. The occurrences, chemical relationships, and distribution of rock types are emphasized. Prerequisite: Geol 306.

Geol 311—Stratigraphy and Sedimentation—3 cr. (3 and 0)
The processes by which sediments are eroded, transported, and deposited (sedimentation), with major emphasis on relationships of the areal and time distribution of stratified rocks and their historical significances (stratigraphy). Prerequisite: Geol 201 and 204 or 406.

Geol 402—Structural Geology—3 cr. (2 and 2)
The diverse geological structures of the earth, their description, origin, and field recognition. Practical problems in interpreting geologic structures are utilized, in addition to theoretical considerations of the mechanics and causes of tectonism. Prerequisite: Geol 201 and 204 or permission of the instructor.

Geol 403—Invertebrate Paleontology—3 cr. (2 and 3)
A study of life of past geologic ages, as shown by fossilized remains of ancient animals, with emphasis on the invertebrates. Prerequisite: Geol 201 and 204 or permission of the instructor.

Geol 404—Economic Geology—3 cr. (3 and 0)
This course concerns the description and classification of ore deposits and commercial non-metallic mineral deposits. The origin of mineral deposits and their occurrence is emphasized. Problem studies and field trips to nearby mines and quarries. Prerequisite: Geol 306.
Geol 405—Geomorphology—4 cr. (3 and 3)
A study of the surface features of the earth—their form, nature, origin, development, and the change they are undergoing. Prerequisite: Geol 201 and 203 or Geol 406 or permission of the instructor.

Geol 406—Engineering Geology—3 cr. (2 and 3)
This course is similar to Geol 201 except that progress is faster and emphasis is on the relationship of geology to engineering.

Geol 407—Glacial Geology—3 cr. (2 and 2)
Study of the types of glaciers, their distribution, nourishment and wastage, Continental and mountain glaciation, past and present, and the forms and deposits associated therewith. Ice contact forms, their significance and origins. Prerequisite: Geol 201 and 203, or Geol 406.

Geol 408—Geohydrology—3 cr. (3 and 0)
Study of the hydrologic cycle, aquifer characteristics, theory of ground water movement, mechanics of well flow, experimental methods, and subsurface mapping. Prerequisite: Geol 201 and 203, or Geol 406.

Geol 411—Research Problems—3 cr. (0 and 9)
A field, laboratory, or library study of an approved topic in geology. The topic would be one not normally covered in formal course offering, but may be an extension of a course. Prerequisite: Senior standing in geology or approval of the Department Head.

Geol 412—Research Problems—3 cr. (0 and 9)
A continuation of Geol 411.

Geol 606—Mineralogy—3 cr. (2 and 3)

Geol 607—Optical Mineralogy—3 cr. (2 and 2)

Geol 609—Petrology—3 cr. (2 and 3)

Geol 611—Stratigraphy and Sedimentation—3 cr. (3 and 0)

Geol 702—Structural Geology—3 cr. (2 and 2)

Geol 703—Invertebrate Paleontology—3 cr. (2 and 3)

Geol 704—Economic Geology—3 cr. (3 and 0)

Geol 705—Geomorphology—4 cr. (3 and 3)

Geol 707—Glacial Geology—3 cr. (2 and 2)

Geol 708—Geohydrology—3 cr. (3 and 0)

Geol 800—Earth Science I—3 cr. (2 and 3)

Geol 850—Earth Science II—3 cr. (2 and 3)

German
Assistant Professor: Patricia W. Wannamaker
Instructors: E. P. Arnold, Margaret S. Graham, H. L. Laws, Jr.

Ger 101—Elementary German—3 cr. (3 and 1)
A course for beginners in which, through conversation, composition and dictation, the fundamentals of the language are taught and a foundation is provided for further study and the eventual ability to read and speak the language.
Three hours a week of classroom instruction and one hour a week in the language laboratory.

**GER 102—Elementary German—3 cr. (3 and 1)**
A continuation of Ger 101; three hours a week of classroom instruction and one hour a week in the language laboratory.

**GER 151—German for Graduate Students—0 cr. (0 and 0)**
An intensive program for graduate students preparing to take the reading examination in German.

**GER 201—Intermediate German—3 cr. (3 and 1)**
A short review of grammar, with conversation, composition and dictation continued from Ger 102, and the beginning of more serious reading of German prose in short stories or novels. Three hours a week of classroom instruction and one hour a week in the language laboratory.

**GER 202—Intermediate German—3 cr. (3 and 0)**
While attention is paid to writing and speaking German, more stress is laid on the rapid reading of more difficult German prose than in the earlier courses. **Prerequisite:** Ger 201.

**GER 251—Scientific German—3 cr. (3 and 0)**
An alternate course to Ger 202; readings in general science and some review of grammar and syntax. **Prerequisite:** Ger 201.

**GER 303—Survey of German Literature I—3 cr. (3 and 0)**
Literary movements and authors from the beginnings through romanticism, with emphasis upon Goethe and his contemporaries. Required of German majors. **Prerequisite:** Ger 201 and 202.

**GER 304—Survey of German Literature II—3 cr. (3 and 0)**
Literary movements and authors from the end of romanticism to the present. Required of German majors. **Prerequisite:** Ger 201 and 202.

**GER 305—Conversational German—3 cr. (3 and 0)**
Practice in the spoken language, with emphasis on vocabulary, pronunciation, and comprehension; written exercises for accuracy; assignments in the language laboratory. Required of German majors. **Prerequisite:** Ger 202 or 251.

**GER 306—Advanced Conversation and Composition—3 cr. (3 and 0)**
Continuation of Ger 305 with additional emphasis on written composition. Required of German majors. **Prerequisite:** Ger 305.

**GER 403—Nineteenth Century German Literature—3 cr. (3 and 0)**
Selected works of Heine, Hebbel, Grillparzer, Keller, Meyer, Hauptmann, Schnitzler, and Hofmannsthal. Readings, discussions, and reports. **Prerequisite:** Ger 303 and 304.

**GER 404—20th Century German Literature—3 cr. (3 and 0)**
Selected works from authors of the twentieth century. **Prerequisite:** Ger 303 and 304.

**GER 405—The Age of Goethe—3 cr. (3 and 0)**
The development of German literature during Goethe's lifetime, 1749-1832; Aufklärung, Sturm und Drang, Klassik, Romantik. **Prerequisite:** Ger 303, 304.
Ger 406—Faust—3 cr. (3 and 0)
An intensive reading of Goethe’s masterpiece accompanied by extensive critical research. Prerequisite: Ger 303 and 304.

**HISTORY**

**Professors:** C. W. Bolen, R. S. Lambert, E. M. Lander, Jr.

**Associate Professor:** Virginia O. Bardsley *


**Instructors:** S. M. Appell, Bettina K. Beer, J. R. Beer, A. D. McClare, Ann R. Russell, R. L. Saunders, Jr., A. Viglione

**Lecturer:** Elizabeth M. Haw

**Hist 101—American History—3 cr. (3 and 0)**
The political, economic and social development of the American people from the period of discovery to the end of Reconstruction.

**Hist H101—American History—3 cr. (3 and 0)**
Same as Hist 101 except that this honors section is open to students only by invitation.

**Hist 102—American History—3 cr. (3 and 0)**
The political, economic and social development of the American people from the end of Reconstruction to the present.

**Hist H102—American History—3 cr. (3 and 0)**
Continuation of Hist H101.

**Hist 104—Western Civilization—3 cr. (3 and 0)**
A survey of the history of the modern world and the forces which have shaped its political, economic, and social institutions. (Not open to those who have passed Hist 204.)

**Hist H104—Western Civilization—3 cr. (3 and 0)**
Same as Hist 104 except that this honors section is open to students only by invitation.

**Hist 203—History of Civilization—3 cr. (3 and 0)**
The political, economic and social movements of Western Civilization from ancient times to 1660.

**Hist H203—History of Civilization—3 cr. (3 and 0)**
Same as Hist 203 except that this honors section is open to students only by invitation.

**Hist 204—History of Civilization—3 cr. (3 and 0)**
The political, economic and social movements of Western Civilization from 1660 to the present. (Not open to those who have passed Hist 104.)

**Hist 301—History of the United States Since 1865—3 cr. (3 and 0)**
An advanced study of the political, social, and economic development of the United States since the end of the Civil War. Prerequisite: Junior standing. Not open to students who have completed Hist 102.

* On leave.
History 307

Hist 306—American Economic Development—3 cr. (3 and 0)
The history of the economic development of the United States from 1492 to the present with emphasis on agriculture, transportation, banking, commerce, economic policies of the national government, and particularly the industrial revolutions. Prerequisite: Hist 101 and 102.

Hist 307—Recent U. S. Diplomatic History—3 cr. (3 and 0)
The history of American foreign policy from the late 19th century to the present, showing the rise of America’s world interests and gradual involvement in global affairs. Emphasis is placed on the role of public opinion in foreign policy. Not open to students who have taken Hist 413. Prerequisite: Hist 101, 102.

Hist 313—History of South Carolina—3 cr. (3 and 0)
The political, economic and social development of South Carolina from 1670 up to the present. Prerequisite: Junior standing.

Hist 314—History of the South—3 cr. (3 and 0)
Origins and development of political, economic, and cultural institutions of the South from the Colonial period to the present; and the role of the South in the nation’s development. (Formerly Hist 403.)

Hist 315—Black History in America—3 cr. (3 and 0)
This course is an effort to define and understand the relationship of Black Americans with White Americans within American society after 1619. Prerequisite: Permission of the instructor.

Hist 331—Pre-Modern History of East Asia—3 cr. (3 and 0)
A survey of the history of China and Japan from earliest times to the arrival of Europeans in the sixteenth century. Prerequisite: Hist 102 or 204.

Hist 332—Modernization of East Asia—3 cr. (3 and 0)
A survey of the history of China and Japan from the Sixteenth Century to the present, with emphasis on the impact of Western culture. Prerequisite: Hist 102 or 104.

Hist 340—Indigenous and Colonial Latin America—3 cr. (3 and 0)
An introduction to the geography of the region; structure and accomplishments of pre-Columbian societies; Iberian background to overseas expansion; conquest and settlement of the New World; political, economic, and social patterns in the colonial era leading to the Wars of Independence. Prerequisite: Junior standing or permission of the instructor.

Hist 341—Mexico, Central America, and the Caribbean Since 1800—3 cr. (3 and 0)
An introduction to the geography of the region; origins and progress of the Independence movements; political, economic and social developments after 1825; current domestic and international problems. Prerequisite: 6 hours of history or permission of instructor.

Hist 342—South America Since 1800—3 cr. (3 and 0)
An introduction to the geography of the region; origins and progress of the Independence movements; political, economic and social developments after 1825; current domestic and international problems. Prerequisite: 6 hours of history or permission of instructor.
Hist 361—History of England to 1603—3 cr. (3 and 0)
The history of England to 1603. Prerequisite: Junior standing. (Formerly Hist 308.)

Hist 363—History of England to 1603—3 cr. (3 and 0)
A continuation of History 361. Prerequisite: Junior standing. (Formerly Hist 309.)

Hist 371—Ancient Civilization—3 cr. (3 and 0)
A survey of the history of the Near East, Greece, and Rome to A.D. 476. Prerequisite: Hist 203, 204. (Formerly Hist 310.)

Hist 386—History of Russia—3 cr. (3 and 0)
A survey of the history of Russia from earliest times to the present. (Formerly Hist 312.)

Hist 410—History of Colonial America—3 cr. (3 and 0)
The development of American institutions and customs in the period before 1776. Considerable emphasis is placed on the imperial relations between Great Britain and her colonies and upon the movement towards, and the philosophy of, the American revolution. Prerequisite: Hist 101, 102.

Hist 411—United States, 1783-1850—3 cr. (3 and 0)
The formation and growing pains of the new nation through the Federal and Middle periods of its history, with emphasis on economic and political development, the westward movement, and the conflicting forces of nationalism and sectionalism. Prerequisite: Hist 101, 102.

Hist 412—United States, 1850-1900—3 cr. (3 and 0)
A course dealing with the background causes of developments during, and broad problems after, the Civil War in American history. Prerequisite: Hist 101, 102.

Hist 413—United States History Since 1900—3 cr. (3 and 0)
The history of the United States from 1900 to the present. Prerequisite: Hist 101, 102.

Hist 473—Medieval History—3 cr. (3 and 0)
A survey of the period from the eclipse of Rome to the advent of the Renaissance, emphasizing human migrations, feudalism, rise of towns, and cultural life. Prerequisite: Hist 203, 204. (Formerly Hist 402.)

Hist 475—The Renaissance—3 cr. (3 and 0)
An examination of the transitional period of European civilization (ca. 1300-1500) with emphasis on institutional, cultural, and intellectual developments. Prerequisite: Hist 203, 204. (Formerly Hist 404.)

Hist 476—Early Modern Europe—3 cr. (3 and 0)
The evolution of Modern Europe (ca. 1500-1660), as affected by the Reformation, wars of religion, and growth of nation-states. The study will include intellectual advances and the beginnings of European expansion overseas. Prerequisite: Hist 203, 204.

Hist 477—Absolutism and the Age of Reason—3 cr. (3 and 0)
A study of the quest for order and the consolidation of the European state system between 1660 and 1789 with emphasis on the idea of absolutism, the
question of French hegemony, and the synthesis of the eighteenth century Enlightenment. Prerequisite: Hist 203, 204.

Hist 479—Europe, 1789-1850—3 cr. (3 and 0)
A history of Europe from the outbreak of the French Revolutions through the Revolutions of 1848, with emphasis on the conflict between the forces of change and those of conservatism within the states and in Europe in general. (Formerly Hist 356.) Prerequisite: Hist 203, 204.

Hist 480—Europe, 1850-1914—3 cr. (3 and 0)
A history of Europe from the mid-nineteenth century to the outbreak of the First World War, with emphasis on the social, economic and political development of the European states and the forces of nationalism, imperialism, and liberalism. (Formerly Hist 357.) Prerequisite: Hist 203, 204.

Hist 482—International Relations Since 1914—3 cr. (3 and 0)
The great powers and world politics since 1914. (Formerly Hist 408.) Prerequisite: Hist 203, 204.

Hist 483—Europe in the Twentieth Century—3 cr. (3 and 0)
A study of the political, economic, and social institutions of the European peoples from 1914 to the present. Attention will be given to the world wars and to the collapse of the European state-system.

Hist 484—European Intellectual History Since 1789—3 cr. (3 and 0)
A survey, based upon representative works, of the major intellectual currents in Europe from the Enlightenment to the present. Prerequisite: Hist 203, 204.

Hist 499—Studies in History—3 cr. (3 and 0)
An attempt to integrate the students’ knowledge and understanding of the field of history by lectures, discussions, and readings on the broad themes of history and their relevance to particular periods and geographical areas. Required of all history majors. Prerequisite: Hist 101, 102, 203, 204, and permission of the history adviser.

Hist 710—History of Colonial America—3 cr. (3 and 0)

Hist 711—United States, 1783-1850—3 cr. (3 and 0)

Hist 712—United States, 1850-1900—3 cr. (3 and 0)

Hist 713—United States Since 1900—3 cr. (3 and 0)

Hist 773—Medieval History—3 cr. (3 and 0)
(Formerly Hist 702)

Hist 775—The Renaissance—3 cr. (3 and 0)
(Formerly Hist 704)

Hist 779—Europe, 1789-1850—3 cr. (3 and 0)
(Formerly Hist 356)

Hist 780—Europe, 1850-1914—3 cr. (3 and 0)
(Formerly Hist 357)

Hist 782—International Relations Since 1914—3 cr. (3 and 0)

Hist 807—United States Diplomatic History Since 1877—3 cr. (3 and 0)

Hist 811—Introduction to Historical Research—3 cr. (3 and 0)

Hist 812—United States Historiography—3 cr. (3 and 0)
Description of Courses

Hist 813—Medieval Historiography—3 cr. (3 and 0)
Hist 814—Modern European Historiography—3 cr. (3 and 0)
Hist 824—Seminar in the American South—3 cr. (3 and 0)
Hist 825—Seminar in the Civil War and Reconstruction—3 cr. (3 and 0)
Hist 861—Seminar in Medieval England—3 cr. (3 and 0)
Hist 862—Seminar in Medieval England to 1485—3 cr. (3 and 0)
Hist 863—Seminar in Tudor England—3 cr. (3 and 0)
Hist 864—Seminar in Stuart England—3 cr. (3 and 0)
Hist 865—Seminar in Modern England Since 1715—3 cr. (3 and 0)
Hist 866—Seminar in Modern England Since 1715—3 cr. (3 and 0)
Hist 891—Research—Credit to be arranged.

HORTICULTURE

Professors: L. O. Van Blaricom, W. L. Ogle, T. L. Senn, Head
Assistant Professors: J. P. Fulmer, C. R. Johnson, W. S. Jordan, F. B. Ledebauer

Hort 201—General Horticulture—3 cr. (2 and 2) F, S
A working knowledge of the fundamental plant processes is developed, showing the influence of light, temperature, water and nutrients upon vegetative growth and reproduction of horticultural plants. Production practices, harvesting, storage and marketing of the principal fruit, vegetable and ornamental crops are discussed with demonstrations and practice in greenhouse and orchard. Prerequisite: Bot 101 and Ch 101.

Hort 302—Principles of Vegetable Production—3 cr. (2 and 3) F
The general principles of vegetable growing and handling. Phases receiving special emphasis are economic importance, producing areas, management practices, plant forcing, cultural practices, irrigation, quality factors, harvesting, grading, packing, storage, market inspection, transportation, refrigeration, exhibition and seed production. Prerequisite: Hort 201.

Hort 303—Plant Materials I—3 cr. (2 and 2) F
Woody, ornamental plants and their aesthetic and functional uses in landscape developments. The study covers habit of growth, ultimate size, texture effect, period of bloom, color, and cultural requirements.

Hort 304—Plant Materials II—3 cr. (2 and 3) S
Herbaceous, ornamental plants which are commonly used as garden flowers. This study covers habit of growth, size, period of bloom, color and cultural requirements.

Hort 305—Plant Propagation—3 cr. (2 and 3) F
Methods of propagation; time, manner and material for making cuttings; temperature and media for rooting cuttings or ornamental trees, shrubs and flowering plants; propagating structures, soils and fertilizers. Practical instruction given in field and greenhouse. Prerequisite: Hort 201.
Horticulture 311

Hort 308—Landscape Design—3 cr. (2 and 3) S
Landscape planning of residential and public properties in order to achieve best use and most enjoyment from a given piece of ground. Prerequisite: Hort 303.

Hort 310—Floriculture—3 cr. (2 and 2) S
Greenhouse production of commercial flower crops; soils; fertilizers; greenhouse diseases and insects; flower crops to be grown on benches and as pot plants; marketing and costs of production. Prerequisite: Hort 201.

Hort 352—Commercial Pomology—3 cr. (2 and 3) F
Fruit bud formation, rest period and water relations of fruit plants, soils, fruit setting; orchard soil management and responses of various fruits to fertilizers; principles of pruning, effect of climatic differences, freezing of tissues and means of avoiding injury; harvesting, transportation and storage. Prerequisite: Hort 201.

Hort 405—Nut Tree Culture—2 cr. (2 and 0) F, '70 and alternate years.
The production, harvesting and marketing of the principal nut crops with emphasis on the pecan. Prerequisite: Hort 201.

Hort 406—Nursery Technology—3 cr. (2 and 3) S
Principles and techniques in handling nursery crops. Prerequisite: Hort 303 and Hort 305.

Hort 407—Landscape Design—3 cr. (2 and 3) F
The first half of this course is a study of trees, shrubs, vines and ground covers used in landscape planting. Attention is given to cultural requirements, growth habits, period of bloom, texture and fall color. The second half of the course is devoted to landscape planning for small residential properties.

Hort 408—Floral Design and Retail Marketing—3 cr. (2 and 2) F
Studies of the retail flower business with relation to financing, floor plan, equipment, personnel, supplies, salesmanship, advertising, and other important areas. Floral designing for the retail trade will include corsage construction, wreath construction, funeral and wedding designs as well as home arrangements.

Hort 409—Seminar—1 cr. (1 and 0) F
Recent research work on various phases of horticulture, methods of conducting investigations, and preparation of report of investigations.

Hort 410—Seminar—1 cr. (1 and 0) S
A continuation of Hort 409.

Hort 412—Turf Management—3 cr. (2 and 3) F
The identification, use, culture, and maintenance of turf grasses. Prerequisite: Junior standing.

Hort 451—Small Fruit Culture—3 cr. (2 and 3) S
Varieties, soils, sites, culture, fertilizers, harvesting and preparation for marketing of grapes, strawberries, dewberries, blackberries, raspberries and other small fruits. Prerequisite: Hort 201.

Hort 456—Vegetable Crops—3 cr. (3 and 0) S, '71 and alternate years.
The principles and practices employed in the commercial growing and marketing of vegetable crops. Emphasis is placed on temperature requirements, plant characteristics, varieties, soils, fertilizers, weed control, harvesting and preparation for market.
312 Description of Courses

Hort 460—Problems in Landscaping Design—5 cr. (3 and 6) F
Landscape planning for larger residential properties, schools, industrial plants, real estate developments; detailed finished plans, costs; further study of materials used; original problems; field study. Prerequisite: Hort 308 or 407.

Hort 464—Post Harvest Horticulture—3 cr. (2 and 3) F
The handling of fruits, vegetables, and ornamental crops after harvesting. Subjects include spoilage problems, hydrocooling, common and cold storage of crops, packaging and processing procedures.

Hort 468—Introduction to Research—2 cr. (1 and 3) S
Principles, developments and changes in research methods related to certain fields of agricultural research. The students obtain practice in experimental techniques, scientific writing and the use and maintenance of various research instruments and equipment. Prerequisite: Senior standing.

Hort 608—Landscape Design—3 cr. (2 and 3)
Hort 610—Floriculture—3 cr. (2 and 2)
Hort 652—Commercial Pomology—3 cr. (2 and 3)
Hort 705—Nut Tree Culture—2 cr. (2 and 0)
Hort 706—Nursery Technology—3 cr. (2 and 3)
Hort 707—Landscape Design—3 cr. (2 and 3)
Hort 712—Turf Management—3 cr. (2 and 3)
Hort 751—Small Fruit Culture—3 cr. (2 and 3)
Hort 756—Vegetable Crops—3 cr. (3 and 0)
Hort 760—Problems in Landscape Design—5 cr. (3 and 6)
Hort 764—Post Harvest Horticulture—3 cr. (2 and 3)
Hort 768—Introduction to Research—2 cr. (1 and 3)
Hort 801—Problems in Small Fruit Production—3 cr. (3 and 0)
Hort 802—Research Systems in Horticulture—3 cr. (2 and 3)
Hort 803—Experimental Olericulture—3 cr. (3 and 0)
Hort 804—Scientific Advances in Ornamental Horticulture—3 cr. (3 and 0)
Hort 805—Physicochemical Procedures for Determining Quality in Horticultural Crops—3 cr. (2 and 3)
Hort 806—Post-Harvest Physiology and Handling of Horticulture Crops—3 cr. (3 and 0)
Hort 807—Pomology—3 cr. (3 and 0)
Hort 808—Special Investigations in Horticulture—2 cr. (2 and 0)
Hort 809—Seminar I—1 cr. (1 and 0)
Hort 810—Seminar II—1 cr. (1 and 0)
Hort 811—Quantitative Exposition of Plant Development—2 cr. (1 and 3)
Hort 891—Research—Credit to be arranged.
Hort 991—Doctoral Research—Credit to be arranged.

HOSPITAL AND HEALTH SERVICES ADMINISTRATION

Professor: F. A. Burtner
Associate Professor: C. O. Shuler
Visiting Lecturer: R. E. Toomey

H Adm 308—Hospital and Health Services Administration—3 cr. (3 and 0)
An introduction to the organization and operation of modern American hospitals, separate clinics and public health services. Included will be legal status, organizational peculiarities, and specific legislation effecting such agencies. Prerequisite: Junior standing.

H Adm 410—Hospital Internship—3 cr. (0 and 9)
The student will spend nine hours per week on a specified program of observing, practicing and experiencing the duties of hospital administrators in selected local hospitals. The course will be specifically outlined along with the amount of time the student will spend in each phase or department of the hospital. Student progress will be constantly monitored by University faculty and hospital staff. Prerequisite: H Adm 308.

H Adm 710—Hospital Internship—3 cr. (0 and 9)
The student will spend approximately nine hours per week following a detailed plan of study consisting of observing, practicing and experiencing the duties of hospital administrators in selected local hospitals. Progress will be periodically evaluated by University and hospital staffs.

H Adm 800—The Function and Organization of Hospitals and Health Services Administration—3 cr. (3 and 0)
An overview of organization, function, place in the community and society of hospitals, individual health services and public health services. This course in conjunction with an administrative internship will prepare the student for major responsibilities in the area of health service administration.

HUMANITIES

Hum 201—Introduction to the Humanities—3 cr. (3 and 0)
A general introduction to humanistic studies, stressing the interrelatedness of various humanistic disciplines. Such fields as art, architecture, music, literature, philosophy, and drama will be considered as they interact with, support, and develop each other in various cultural settings.

Hum 202—Introduction to the Humanities—3 cr. (3 and 0)
A continuation of Hum 201. Prerequisite: Hum 201.

Hum 203—Critical Judgment of the Cinema—3 cr. (3 and 0)
The historical development of the aims and techniques of the cinema; the theory of cinematography, its artistic values, and its critical standards. Prerequisite: Sophomore standing.
Description of Courses

INDUSTRIAL EDUCATION

Professor: A. F. Newton, Head
Associate Professor: D. E. Maurer
Assistant Professors: F. A. Bisdell, P. C. Caley, J. P. Crouch, M. S. Hahn, H. E. Morgan, Jr., W. E. West
Instructor: J. J. Rohrbach

In Ed 101—Introduction to Industrial Education—1 cr. (1 and 0)
An introduction to the field of Industrial Education in terms of the underlying philosophies, the aims and goals, and the specific objectives of each of the Industrial Education options.

In Ed 102—Woodworking I—2 cr. (1 and 3)
A study of wood, its properties and the requisite skills necessary for understanding the use of wood in our technological way of life. Prerequisite: In Ed 101.

In Ed 202—Woodworking II—2 cr. (1 and 3)
A continuation of In Ed 102 in the study of wood, its properties, skills in machine and tool use with wood, project design, project costs and finishing processes necessary for teachers of industrial subjects. Prerequisite: In Ed 102.

In Ed 203—Basic Metal Processes—3 cr. (1 and 6)
Material separating, forming and combining practices in the metals industries, through the study of basic casting, welding and sheet metal techniques. Prerequisite: In Ed 101.

In Ed 204—Graphic Arts—3 cr. (1 and 6)
Major emphasis is placed on the basic principles underlying the graphic arts. Major areas of study include general photography, graphic layout and design, process photography, offset lithography, screen processing, printing, and bindery. Modern industrial applications are stressed throughout. Prerequisite: In Ed 101.

In Ed 205—Power Technology—3 cr. (2 and 2)
A study of power in terms of energy sources, and the generation, transmission and utilization of power. Emphasis is placed on the development of insights and understandings of the scientific and operational principles involved in the production, transmission, and utilization of power. Prerequisite: In Ed 101.

In Ed 220—Recreational and Avocational Crafts—3 cr. (2 and 3)
Provides exploratory experiences in the performance of a variety of arts and crafts activities, and encourages the development of an understanding of the purpose of arts and crafts in the comprehensive recreational program.

In Ed 302—Dwelling Materials and Construction Methods—2 cr. (1 and 2)
This course is designed as an introduction to the commonly used building materials and the methods of combining them in present day construction. Prerequisite: In Ed 102.

In Ed 303—Electricity—3 cr. (1 and 6)
A laboratory inquiry into the theory and application of components, circuits, and instrumentation associated within the realm of electricity. Prerequisite: In Ed 101.
In Ed 304—Photographic Techniques—3 cr. (1 and 6)

Emphasis is placed on applications of black and white and color photography as activities for vocation and avocation. Sufficient laboratory experiences are provided to assure confidence in the use of photographic techniques. The tools and materials of image preparation are also used in conjunction with several graphic reproduction processes to enrich the effectiveness of visual presentations. Problems encountered in action, portrait, still-life, and character study photography are considered.

In Ed 305—Machining Practices—3 cr. (1 and 6)

Basic practical shop experiences on the lathe, drill press, milling machine and shaper. Benchwork, measuring tools, theory and demonstrations related to a survey of fundamental machining practices. Prerequisite: In Ed 101.

In Ed 310—Methods of Trade Teaching—3 cr. (3 and 0)

This course is designed to give basic instruction to beginning teachers in trade work. Psychological factors of learning; individual differences; methods of teaching subjects; the special methods used in teaching skills; grading of students and keeping of proper records and reports. (Offered in Summer Sessions only.)

In Ed 312—Metal Processes in the General Shop—3 cr. (3 and 0)

Major emphasis is placed on planning and development of projects in wrought iron, sheet metal, art metal, metal spinning, welding, heat treating and other aspects of metal work that fit into a general shop program. (Offered in Summer Sessions only.)

In Ed 313—Arts and Crafts—3 cr. (2 and 3)

Emphasis on knowledge and skills in the industrial crafts by lecture, discussion and laboratory experiences. Stress is placed on several crafts basic to industrial production and popularity. Laboratory experience is required in at least four craft areas with an additional experience in one minor craft.

In Ed 314—Basic Electronics—3 cr. (1 and 6)

Basic principles of electronics as applied in radio, television, and automatic controls involving vacuum tubes, semiconductors, integrated circuits, and other electronic devices and materials. Prerequisite: In Ed 303.

In Ed 315—Construction Practices—3 cr. (3 and 0)

This course is a study of industrial practices commonly employed in the construction industry. Included will be the use of brick, tile, concrete, metal, wood, and other construction materials. (Offered in Summer Sessions only.)

In Ed 316—Plastics and Plastic Processes in the General Shop—3 cr. (3 and 0)

The industrial, commercial and personal uses of plastics are discussed and demonstrated. In addition, the kinds of plastics, their properties, and special uses are studied. (Offered in Summer Sessions only.)

In Ed 318—Industrial Technology Techniques—3 cr. (3 and 0)

Major emphasis is placed on casting, stamping and forming processes, forging and extrusion processes, machining processes, metal spraying or metallurgy, blast cutting, heating and case hardening, assembly processes, bending, finishing processes, inspection gaging. (Offered in Summer Sessions only.)
Description of Courses

In Ed 320—Machine Woodworking—2 cr. (1 and 3)
Basic characteristics of woodcutting, shaping, and finishing operations by use of machinery and auxiliary tools. Includes project work. Prerequisite: Junior standing. (Not for Industrial Education Students.)

In Ed 325—Industrial Organizations and People—3 cr. (3 and 0)
A study of the relationships of personnel to the kinds of tasks they are asked to perform in industrial situations and the ways such situations affect workers. Emphasis is placed on methods of personnel, organization, evaluation, working conditions, and safety.

In Ed 333—Design—3 cr. (2 and 3)
The study of the principles of form and design elements in two or three dimensions as related to products in the several industrial arts areas. Lectures and laboratory projects stress creativity in the use of materials in reaching design solutions and in developing a personal design philosophy. Limited market and engineering research is conducted along with the study of significant figures in the field. Prerequisite: Basic courses in laboratory methods.

In Ed 350—Industrial Cooperative Experience—6 cr.
A full-time work experience program in industry for industrial vocational-technical education degree candidates. The student, under the cooperative supervision of the University instructor and an industrial supervisor, is placed in industry to receive planned experiences in the technical specialty which he is preparing to teach. The University instructor will coordinate placement, supervision, and evaluation of the student. The course is offered during the summer only and students are required to register with the instructor one semester prior to the summer in which he plans to enroll. Prerequisite: Junior standing in the industrial vocational-technical education program and approval of the instructor.

In Ed 372—Arts and Crafts for the Elementary Child—3 cr. (2 and 3)
Provides the elementary teacher with an opportunity to develop skills and knowledge in the use of a variety of media suitable for integrating the study of industry and industrial technology into the usual classroom procedures.

In Ed 402—Directed Teaching—6 cr. (0 and 18)
Supervised observation and teaching in cooperation with selected public schools in which opportunities are provided for securing experience in teaching industrial subjects. Prerequisite: In Ed 416, 425, and grade-point ratio required for graduation.

In Ed 405—Course Organization and Evaluation—3 cr. (3 and 0)
Problems, techniques and procedures in the preparation, selection and organization of subject matter for instructional purposes. Methods, techniques and preparation of materials used in the evaluation of student achievement in industrial education subjects.

In Ed 408—Training Programs in Industry—3 cr. (3 and 0)
Basic concepts of supervision, administration, and management of training programs. Emphasis on determining training requirements, planning, directing, and evaluating training programs.
IN ED 416—DESIGN AND OPERATION OF INDUSTRIAL EDUCATION
LABORATORIES—3 cr. (2 and 2)
This course deals with laboratory design requirements of unit laboratories as well as multi-activity laboratories. Selection and procurement of tools and equipment, budgeting management and the coordination of activities in the laboratory are considered. Prerequisite: Ed 313.

IN ED 421—VOCATIONAL COOPERATIVE PROGRAMS—2 cr. (2 and 0)
A study of the developments, objectives and principles of industrial co-operative training programs. Emphasis is on the organization, promotion, and management of programs in this area of vocational education.

IN ED 422—HISTORY AND PHILOSOPHY OF INDUSTRIAL AND VOCATIONAL
EDUCATION—3 cr. (3 and 0)
A study of industrial and vocational education programs with the intent of developing a sound individual philosophy of industrial and vocational education. General topics covered: history; local, state, and federal legislation; types of vocational-technical programs; professional organizations; manpower utilization, vocational guidance, and training; industry, labor, and school relationships.

IN ED 425—TEACHING INDUSTRIAL SUBJECTS—3 cr. (3 and 0)
Effective methods and techniques of teaching industrial subjects. Emphasis is given to class organization, preparation of lesson outlines, and audio-visual aids. Prerequisite: Ed 335.

IN ED 432—ADVANCED WOODWORKING—2 cr. (1 and 3)

IN ED 435—ADVANCED WELDING—2 cr. (1 and 3)
An advanced consideration of studies originated in Ed 203, new theories and developments in welding technology. Inspection trips, written and oral reports. Prerequisite: Ed 203.

IN ED 436—ADVANCED MATERIAL FORMING—2 cr. (1 and 3)
Advanced consideration of studies initiated in Ed 203, development and evaluation of instructional materials and problems. Inspection trips and reports. Prerequisite: Ed 203.

IN ED 438—ADVANCED MACHINING—2 cr. (0 and 6)
Advanced experiences in the set-up, operation and maintenance of machine tools and equipment. Project and product design. Study and reports of recent machining technological developments. Prerequisite: Ed 305.

IN ED 440—ADVANCED TECHNIQUES OF THE GRAPHIC ARTS—3 cr. (1 and 6)
Students selecting to pursue the area of graphic arts will gain experience in the development of advanced techniques of layout and design; photographic copy preparation; cold type composition; line, halftone, duotone, and special effects photography, and advanced platemaking and pressmanship.

IN ED 441—COMPREHENSIVE GENERAL SHOP PRACTICES—2 cr. (2 and 0)
This course deals with the problems in the administration of the multiple activity programs in the comprehensive laboratory. Consideration and plan-
ning of multi-activity laboratory programs of instruction for the secondary schools is the major focus. Prerequisite: In Ed 318.

In Ed 442—Competency Testing in Vocational Subjects—3 cr. (3 and 0)
This course is especially designed for trade teachers who have assisted in making trade tests for S. C. Certification program. Teachers who expect to assist in making trade tests are also urged to enroll in this course. The course is devoted to revising present trade tests and developing tests in new fields. (Offered in Summer Sessions only.)

In Ed 444—Graphic Arts Production Control—3 cr. (2 and 3)
A study of commercial and industrial printing control. Emphasis is placed upon considerations for decision making in the areas of process and equipment selection, capital investment, and plant layout. Other topics include production flow, cost analysis, personnel supervision and training, and recent developments as they affect production. Prerequisite: In Ed 204, In Ed 440, and permission of the instructor.

In Ed 450—Industrial Cooperative Experience—6 cr.
Continuation of In Ed 350. Summer only. Prerequisite: Senior standing, In Ed 350, and approval of the instructor.

In Ed 451—Special Projects—3 cr. (3 and 0)
The student is assigned a project in accordance with his needs and capabilities. Projects are either experimental, theoretical or developmental and cover subjects not thoroughly covered in other courses.

In Ed 496—Public Relations—3 cr. (3 and 0)
This course emphasizes the techniques and methods of effective public and industrial relations which contribute to understanding and cooperation of labor, business, professional, educational, and industrial groups.

In Ed 705—Course Organization and Evaluation—3 cr. (3 and 0)

In Ed 708—Training Programs in Industry—3 cr. (3 and 0)

In Ed 716—Design and Operation of Industrial Education Laboratories—3 cr. (2 and 2)

In Ed 722—History and Philosophy of Industrial and Vocational Education—3 cr. (3 and 0)

In Ed 725—Teaching Industrial Subjects—3 cr. (3 and 0)

In Ed 732—Advanced Woodworking—2 cr. (1 and 3)

In Ed 735—Advanced Welding—2 cr. (1 and 3)

In Ed 736—Advanced Material Forming—2 cr. (1 and 3)

In Ed 738—Advanced Machining—2 cr. (1 and 3)

In Ed 740—Advanced Techniques of the Graphic Arts—3 cr. (1 and 6)

In Ed 741—Comprehensive General Shop Practices—2 cr. (2 and 0)

In Ed 744—Graphic Arts Production Control—3 cr. (2 and 3)

In Ed 796—Public Relations—3 cr. (3 and 0)

In Ed 815—Seminar in Industrial Education—1 cr. (1 and 0)
Industrial Engineering

In Ed 820—Recent Process Developments—3 cr. (3 and 0)
In Ed 840—School Shop Design—3 cr. (3 and 0)
In Ed 845—Curriculum Development in Industrial Education—3 cr. (3 and 0)
In Ed 860—Curriculum Planning and Development in Industrial Arts—3 cr. (3 and 0)
In Ed 861—Administration and Supervision of Vocational Education—3 cr. (3 and 0)
In Ed 865—American Industries—3 cr. (3 and 0)
In Ed 891—Research in Industrial Education—Credit to be arranged.
In Ed 895—Special Problems I—3 cr. (3 and 0)
In Ed 896—Special Problems II—3 cr. (3 and 0)

INDUSTRIAL ENGINEERING

Professor: E. Laitala, Head
Associate Professor: J. H. Couch

IE 301—Process Planning I—3 cr. (2 and 3)
Study of methods of conversion of raw materials into finished products. Emphasis is from the viewpoint of management and control of manufacturing operations. Includes basic terminology, interpretation and use of engineering plans, impact of production volume. This course will examine various manufacturing processes including material removal, casting, joining and forming of materials, and associated measurement techniques. Prerequisite: EG 103 or 109 and Phys 122.

IE 303—Job Evaluation and Wage Incentives—3 cr. (3 and 0)
Job description, specification, and classification. Systems employed for establishing relative ranks of jobs. Basic wage and salary determination. Wage incentive methods. Prerequisite: IE 307, 410 or consent of instructor.

IE 304—Methods and Standards—3 cr. (2 and 3)
Fundamentals relating to work methods design and analysis. Includes study of techniques necessary for determining efficient work methods. Work measurement as a basis for control of costs and scheduling. Prerequisite: Junior standing.

IE 306—Process Planning II—3 cr. (2 and 3)
Study of recent process developments and impact on planning and control of manufacturing operations. Numerical control of machines, computer-aided design, zero defects program, and others. Special laboratory investigations, and value engineering project. Prerequisite: IE 301.

IE 307—Survey of Engineering—3 cr. (3 and 0)
An examination of engineering in terms of types of fundamentals employed, governing parameters, basic plans, basic engineering functions, organization of divided engineering efforts, and measures of performance. Offered to students not majoring in engineering. Prerequisite: Phys 202 and Junior standing.

IE 307—Survey of Engineering—3 cr. (3 and 0)
IE 403—Process Planning III—3 cr. (3 and 0)
Continuation of IE 306; study of latest process developments. Prerequisite: IE 306.

IE 404—Engineering Economic Analysis—3 cr. (3 and 0)
Basic principles and techniques of economic analysis of engineering projects. Consideration of time value of money, short- and long-term investments, replacement analysis, depreciation methods, cost allocation and measures of cost effectiveness. Prerequisite: Senior standing in Engineering or consent of instructor.

IE 405—Plant Layout and Material Handling—3 cr. (2 and 3)
Fundamentals underlying the planning of factory layout for new products and increases in production volume. Layout by product and process. Scale model, template, and other planning techniques. Materials handling analysis and equipment decisions. Prerequisite: IE 301 and IM 408 or consent of instructor.

IE 407—Industrial Application of Statistics—3 cr. (2 and 3)
Application of statistical principles of analysis and control to production processes, studies of process capabilities, quality control, work sampling, reliability analysis, and machine interference. Prerequisite: Math 208 and Math 313.

IE 408—Plant Design—2 cr. (1 and 3)
Integration of unit operations into a total production system. Study of analytical procedures for determining layout of production and other facilities, line balance, manner in which operations shall be linked or material moved between them. Creation and analysis of alternative designs. Prerequisite: IE 304 and Senior standing.

IE 410—Engineering and Organization—3 cr. (3 and 0)
The nature of industrial enterprise in terms of purpose, organization structure, governing criteria, responsibilities and relationships of various functional groups. Project engineering and organization. Analysis and coordination of engineering functions as foundation for engineering management.

IE 411—Work Flow Systems and Control—3 cr. (3 and 0)
Fundamentals underlying the determination of production capacity requirements, economic lot sizes, and the regulating of flow and storage of materials to, within and from the production system. Elements of forecasting, determination of materials requirements, scheduling, inventory control, etc. Consideration of data processing methods. Prerequisite: Math 313 and IE 410 or consent of instructor.

IE 412—Seminar—1 cr. (1 and 0)
Library search and oral reports covering recent technological developments in the field of industrial engineering. Consideration of professional responsibilities and post graduation plans. A major term paper is required. Prerequisite: Senior standing in Industrial Engineering.

IE 413—Seminar—1 cr. (1 and 0)
Continuation of IE 412. Prerequisite: IE 412.

IE 416—Project Scheduling—3 cr. (3 and 0)
Basic planning and plans underlying the design and control of work flow systems for diverse engineering projects. Systems design of schedule plans
including design function, operations, materials procurement, facilities, equipment, etc. Fundamentals underlying critical path (PERT, C.P.M.) and data processing methods. **Prerequisite:** Senior standing in Engineering.

IE 704—ENGINEERING ECONOMIC ANALYSIS—3 cr. (3 and 0)
IE 707—INDUSTRIAL APPLICATION OF STATISTICS—3 cr. (2 and 3)
IE 710—ENGINEERING AND ORGANIZATION—3 cr. (3 and 0)
IE 711—WORK FLOW SYSTEMS AND CONTROL—3 cr. (3 and 0)
IE 716—PROJECT SCHEDULING—3 cr. (3 and 0)

**INDUSTRIAL MANAGEMENT**

**Professors:** C. C. Davis, B. J. Todd, C. H. Whitehurst, Jr., Head

**Associate Professors:** E. A. LaRoche, F. R. Gray, S. O. Park,* J. L. Richardson, C. O. Shuler, J. M. Wannamaker, C. V. Bray

**Assistant Professors:** Susan H. Brown, C. A. Burden, T. H. Gunter, Jr., G. D. Riggs, J. A. Turner

**Instructors:** E. E. Burch, J. E. Friese

**Visiting Lecturer:** R. E. Toomey

**IM 100—INTRODUCTION TO INDUSTRIAL MANAGEMENT**—0 cr. (1 and 0)
A series of lectures by University and industry speakers in which the role of the industrial manager in society is examined and explained. Particular emphasis is placed on orienting the student to understanding the manager's function in a market system economy.

**IM 201—INTRODUCTION TO INDUSTRIAL MANAGEMENT**—3 cr. (3 and 0)
An introductory survey of management's role as a fourth factor of economic production.

**IM 299—COMPUTER PROGRAMMING I**—1 cr. (0 and 3)
An elementary operating course primarily designed to familiarize the student with the various capabilities of electronic computers. A demonstrated ability to write basic programs applicable to management areas is required. **Prerequisite:** Permission of instructor.

**IM 304—QUALITY CONTROL**—3 cr. (3 and 0)
Basic control techniques in the field of industrial production, inspection and experimentation. Various sampling, control and inspection problems are studied with special reference to practical applications. Underlying theory, assumptions and limitations are presented. **Prerequisite:** Math 313.

**IM 306—CORPORATION FINANCE**—3 cr. (3 and 0)
The organization and operation of corporations with emphasis on the nature and influences of the various sources of funds. **Prerequisite:** Junior standing.

**IM 307—PERSONNEL MANAGEMENT**—3 cr. (3 and 0)
An introductory course dealing with the principles and policies governing present day employee-employer relationships. Attention directed to methods of electing, training, placing, and promoting of employees to develop sound personnel techniques. **Prerequisite:** Junior standing.

* On leave.
IM 312—Commercial Law—3 cr. (3 and 0)
An introduction to business law with primary attention given to contracts, agency, negotiable instruments and sales. Prerequisite: Junior standing.

IM 313—Commercial Law—3 cr. (3 and 0)
Continuation of IM 312 with emphasis on business organization, personal and real property, estates and bankruptcy and security services.

IM 322—Legal Environment of Business—3 cr. (3 and 0)
A comprehensive study of the development of governmental regulation of business including both state and national regulations. Attention is given to the constitutional source and limitation of power in both governments; specific areas in which the governments have acted (production, labor, combinations, prices, etc.) and the regulations that have been imposed in these areas; and the scope of the administrative process.

IM 401—Marketing Analysis—3 cr. (3 and 0)
An examination of the activities involved in the flow of goods and services from producer to consumer. Stressed will be the application of quantitative techniques for predicting sales and evaluating alternative promotional strategies. Prerequisite: Senior standing in IM or permission of instructor.

IM 402—Operations Planning and Control—3 cr. (3 and 0)
The application of modern statistical and mathematical techniques to the planning and control of industrial operations. Emphasis will be placed on applications in forecasting, inventory, production scheduling and control, equipment selection and replacement, maintenance and materials handling. Prerequisite: IM 304 and senior standing.

IM 403—Special Problems—2 cr. (2 and 0)
Each student will plan and develop a research project related to the field of management. Prerequisite: Senior standing in Industrial Management.

IM 404—Managerial Economics—3 cr. (3 and 0)
The objective of this course is to bridge the gap between theory and managerial practices. Its stress is on the use of tools of economic analysis in classifying problems, in organizing and evaluating information, and in comparing alternative courses of action. Prerequisite: Mgt Sc 311, or permission of instructor.

IM 405—Economics of Transportation—3 cr. (3 and 0)
History and structure of transportation systems of the United States; the nature of transportation costs and rates. Transportation systems as factors in industrial location. Government policy towards transportation. Prerequisite: Senior standing and permission of the instructor.

IM 406—Theory of Industrial Location—3 cr. (3 and 0)
A theoretical study of the general factors which determine plant location in a capitalist society. Particular attention is paid to the selection of location sites by small nonbranch manufacturing plants. A comparison of location theory and actual location patterns is stressed. Prerequisite: Senior standing and permission of instructor.

IM 407—Directed Research—1 cr. (1 and 0)
Each student will plan and develop a research project related to the field of management. Prerequisite: Senior standing in Industrial Management.
IM 408—Work Simplification and Standardization—3 cr. (2 and 3)
Principles and practices of motion and time as it is applied to industry. Emphasis is given to its application and its influence on methods, material handling, plant layout, and time study procedures.

IM 409—Management Simulation—0-1 cr. (0 and 3)
Practice in managerial decision-making under simulated competitive industry conditions. Guidance is furnished by the staff member administering the requirement. The model is designed to derive maximum benefit from previous courses in economics, econometrics and statistics. Prerequisite: Senior standing and permission of instructor.

IM 410—Marketing Research I—1 cr. (1 and 0)
A directed research course oriented toward those students interested in a career in marketing.

IM 411—Marketing Research—2 cr. (2 and 0)
A directed research course oriented toward those students interested in a career in marketing.

IM 412—Marketing Analysis II—3 cr. (3 and 0)
A continuation of Marketing Analysis, IM 401. Prerequisite: IM 401 or permission of instructor.

IM 413—Marketing Communications—3 cr. (3 and 0)
The vital role of advertising and public relations in today's marketing strategy is examined. Promotional mixes will be designed so as to be a blend of the markets, media, and messages by which corporate communications are maintained with buyers. Communications theory is explored and then the communications process is analyzed with emphasis on its effect upon the flow of goods and services to the consuming public. Prerequisite: IM 401.

IM 415—Managerial Decision Making—3 cr. (3 and 0)
Management problems and methods involved in the operation of manufacturing institutions, including location, equipment investment, organization structure, and budgets. Attention is given primarily to the above areas by the use of the case method. Emphasis on oral and written communication. Prerequisite: Permission of instructor.

IM 416—Management of Human Resources—3 cr. (3 and 0)
A course designed to orient the student toward recent developments in enlightened uses of human resources with emphasis on procurement, training, development, rewarding and retention of such resources. Prerequisite: Permission of instructor.

IM 417—Manufacturing Logistics—3 cr. (3 and 0)
A study of more advanced manufacturing and production techniques including predetermined motion time data systems, micromotion study analysis, work sampling or ratio delay studies, zero defects, materials handling techniques, machine interference, time study formula construction, machinery and equipment replacement calculations, economic lot size determination, development and use of standard data, cost reduction programs, operator training methods, charting of time study data, problems of machinery and equipment layout, and developing of complex time standards. Prerequisite: IM 408 or permission of instructor.
IM 499—Computer Programming II—1 cr. (0 and 3)
Each student will complete a research project relating to the accomplishment of some management function in which a computer program is now—or is expected to be—of cardinal importance. Prerequisite: IM 299 or equivalent.

IM 701—Marketing Analysis I—3 cr. (3 and 0)
IM 702—Operations Planning and Control—3 cr. (3 and 0)
IM 704—Managerial Economics—3 cr. (3 and 0)
IM 705—Economics of Transportation—3 cr. (3 and 0)
IM 706—Theory of Industrial Location—3 cr. (3 and 0)
IM 708—Work Simplification and Standardization—3 cr. (2 and 3)
IM 712—Marketing Analysis II—3 cr. (3 and 0)
IM 715—Managerial Decision Making—3 cr. (3 and 0)
IM 717—Manufacturing Logistics—3 cr. (3 and 0)
IM 800—Management Simulation—1 cr. (0 and 3)
IM 801—Quantitative Economic Analysis—3 cr. (3 and 0)
IM 802—Finance—3 cr. (3 and 0)
IM 803—Operations Management—3 cr. (3 and 0)
IM 804—Managerial Policy—3 cr. (3 and 0)
IM 805—Quality Control—3 cr. (3 and 0)
IM 811—Advanced Marketing Analysis—3 cr. (3 and 0)
IM 816—Management of Human Resources—3 cr. (3 and 0)
IM 891—Thesis—3 cr.

MANAGEMENT SCIENCE

Professors: B. J. Todd, C. H. Whitehurst
Associate Professors: E. A. LaRoche, S. O. Park *
Assistant Professors: G. D. Riggs, C. L. Dyer

Mgt Sc 311—Introduction to Econometrics—3 cr. (3 and 0)
An introduction to economic measurement. Emphasis is placed upon the mathematical formulation of economic theory, the application of calculus to economic theory, and the application of statistics with particular emphasis on the use of regression analysis in economics. Elementary econometric models are introduced. Prerequisite: Math 313 and Econ 314.

Mgt Sc 413—Management Science I—3 cr. (3 and 0)
The role and uses of management science techniques in decision making in business and industry; the problems of internal operation of a business enterprise in static and dynamic settings under conditions of certainty, risk and uncertainty. Deterministic models will be emphasized, and topics include classical optimization, marginal analysis, programming, the transportation problem, allocation and assignment, the game theory. Attention will also be given

* On leave.
to input-output, network analysis, and decision theory. \textit{Prerequisite:} Consent of instructor.

Mgt Sc 414—\textit{Statistical Analysis}—3 cr. (3 and 0)
This course is designed to provide the student with sufficient understanding of modern statistical methods to make judicious application of statistics in management decision making. Emphasis is placed on the proper design, analysis and interpretation of planned experiences in internal operations. Topics include single factor through fractional factorial experiments, response surface methodology and evolutionary operations. \textit{Prerequisite:} Math 313 or equivalent.

Mgt Sc 611—\textit{Introduction to Econometrics}—3 cr. (3 and 0)

Mgt Sc 713—\textit{Management Science I}—3 cr. (3 and 0)
Mgt Sc 714—\textit{Statistical Analysis}—3 cr. (3 and 0)
Mgt Sc 806—\textit{Regional Science Methods}—3 cr. (3 and 0)
Mgt Sc 807—\textit{Econometric Methods I}—3 cr. (3 and 0)
Mgt Sc 808—\textit{Econometric Methods II}—3 cr. (3 and 0)
Mgt Sc 812—\textit{Management Science II}—3 cr. (3 and 0)

\textbf{MATERIALS ENGINEERING}

\textit{Associate Professors:} M. J. Eitel, S. F. Hulbert, \textit{Program Coordinator}; J. S. Wolf

\textit{Assistant Professors:} D. A. Venkatu, F. A. Young

\textbf{MatE 301—Introduction to Metallurgical Engineering}—3 cr. (3 and 0)

An introduction to the structure and properties of engineering materials. Topics included are bonding in solids, mechanical behavior, equilibrium and non-equilibrium behavior of mixtures and alloys, material-environment interaction, selection of materials for engineering uses, and analysis of material failures. Emphasis is placed on metals and polymers. \textit{Prerequisite:} Junior standing in engineering, Ch 102, Phys 221.

\textbf{MatE 302—Materials Engineering Laboratory}—2 cr. (1 and 3)

Laboratory practice in the determination and analysis of the properties of engineering materials. Topics included are specimen selection and preparation, microscopy, photography, temperature measurement, thermal analysis, and mechanical testing. \textit{Prerequisite:} MatE 301 or CrE 310.

\textbf{MatE 307—Introduction to Polymer Engineering}—3 cr. (3 and 0)

An introduction to the materials science of organic polymers. The structures for many polymer types are surveyed and correlated with macroscopically observable characteristics. The properties of pure and coexisting polymer phases are defined, and thermally dependent phase transitions are discussed. Further considerations are devoted to swelling and solubility phenomena. \textit{Prerequisite:} MatE 301 or CrE 310.

\textbf{MatE 312—Materials Engineering Thermodynamics}—3 cr. (3 and 0)

An introduction to the thermodynamics of materials with special emphasis on metallic systems. Topics included are atomic and crystalline properties of metals, solid solutions and intermetallic compounds, the thermodynamic laws and their relation to solution theory and phase equilibria, and applications of
the above to the phase equilibria in unary, binary, and ternary metallic systems with special regard to microstructural evolution. Prerequisite: MatE 301 or CrE 310.

MatE 405—Physical Metallurgy I—3 cr. (3 and 0)
A comprehensive treatment of electron theory, lattice defects, diffusion, solutions and phase equilibria, phase transformations, creep and fracture applied to metals and simple alloys, with emphasis on structure-property relationships. Prerequisite: Mat 301 or CrE 310

MatE 406—Physical Metallurgy II—3 cr. (3 and 0)
A continuation of MatE 405. Prerequisite: MatE 405.

MatE 408—Principles of Polymer Science I—3 cr. (3 and 0)
Various polymerization methods are surveyed, and the possibilities are examined for bringing about surface modifications. The polymerizations kinetics of addition polymerization are dealt with in detail. Further considerations are concerned with viscoelastic phenomena and with various experimental methods for analyzing and testing polymeric samples. Prerequisite: MatE 307.

MatE 409—Principles of Polymer Science II—3 cr. (3 and 0)
An introduction to the properties of solutions containing polymeric solutes. Quantitative treatments are presented for characterizing polymer samples by experimentation with dilute solutions. The significant properties of polymer electrolytes will be discussed, and various applications of these systems will be considered. Prerequisite: MatE 408.

MatE 411—Materials Engineering Kinetics—3 cr. (3 and 0)
An introduction to the important rate processes in solid materials. Topics included are homogeneous and heterogeneous phase transitions, solidification and other nucleation processes, recrystallization and grain growth, and sintering reactions. Emphasis is placed upon the effects of these phenomena on the properties of engineering materials. Prerequisite: A course in thermodynamics.

MatE 421—Mechanical Metallurgy—3 cr. (3 and 0)
A comprehensive treatment of the concepts of the atomic and microstructural processes which govern the mechanical behavior of metals, alloys, metal oxides, and composite structures. The theories of plastic deformation, creep, and fatigue are applied to metal working processes and the selection of materials for loadbearing applications. Prerequisite: MatE 301 or CrE 310.

MatE 450—Special Topics in Materials Engineering—1-3 cr. (1-3 and 0)
A comprehensive study of a topic of current interest in the field of materials engineering. May be taken for credit more than one time. Prerequisite: Consent of instructor.

MatE 451—Corrosion of Materials—3 cr. (3 and 0)
An introduction to the aqueous and gaseous corrosion of metals and alloys. Topics included are ion migration in solid and liquid phases, Pourbaix diagrams, theory and application of corrosion rate measurements, and special corrosion process as they apply to metal degradation and failure. Prerequisite: A course in thermodynamics.

MatE 720—Mechanical Properties of Materials—3 cr. (3 and 0)
MatE 800—Seminar in Materials Research—1 cr. (1 and 0)
MATHEMATICS


Instructors: Eugenie V. Bartmess, Louise C. Fulmer, L. S. Haw, Jeuel G. LaTorre

Math 100—College Algebra—2 cr. (5 and 0)

Required of all freshmen who fail to make a satisfactory grade on the Mathematics Test, Level I (Standard). An intensified review of high school algebra and the topics listed under Math 103. Students enrolled in Math 100 must receive a passing grade in this course before they are eligible to enroll in any other mathematics course. Math 100 may be substituted for Math 103.

Math 101—Mathematical Analysis I—3 cr. (3 and 0)

Topics include: intuitive calculus (differentiation and integration), continuous methods, probability spaces, conditional probabilities and discrete random
variables. Prerequisite: A satisfactory score on the Mathematics Test, Level I (Standard) or consent of the instructor.

**Math 102—Mathematical Analysis II—3 cr. (3 and 0)**
Topics include: intuitive calculus (differentiation and Integration), continuous random variables, normal distribution and other probability densities. Prerequisite: Math 101.

**Math 103—College Algebra—2 cr. (3 and 0)**
Algebraic processes, functions, equations, inequalities, mathematical induction, theory of equations, determinants, and logarithms. Prerequisite: A satisfactory score on the Mathematics Test, Level I (Standard).

**Math 104—Trigonometry—2 cr. (3 and 0)**
Trigonometric functions, equations, identities, and solution of triangles. Logarithms and complex numbers. Prerequisite: A satisfactory score on the Mathematics Test, Level I (Standard).

**Math 106—Calculus of One Variable—4 cr. (5 and 0)**
Topics include: real numbers, analytic geometry, introduction to derivatives, computation and application of derivatives, integrals, techniques of integration, and approximations. Prerequisite: Math 103, 104, or a satisfactory score on the Mathematics Test Level I (Standard).

**Math H106—Calculus of One Variable—4 cr. (5 and 0)**
Same as Math 106 except that this honors section is open to students only by invitation.

**Math 115—Contemporary Mathematics for Elementary School Teachers I—3 cr. (3 and 0)**
Logic, sets, and the properties of the counting numbers, numeration systems.

**Math 116—Contemporary Mathematics for Elementary School Teachers II—3 cr. (3 and 0)**
A continuation of Math 115. Subtraction, properties of the integers, elementary number theory, rational number system, real number system. Prerequisite: Math 115.

**Math 203—Elementary Statistical Inference—3 cr. (3 and 0)**
A survey course in fundamental statistical principles with applications to social sciences and other fields. The development of the course will assume knowledge of finite probability. Major topics include: empirical frequency distributions, computation of descriptive statistics, basic statistical inference including estimation and $z$, $t$, and $F$ tests, regression and correlation analysis, contingency tables, analysis of variance. Prerequisite: Math 102 or a 3-credit course in finite probability.

**Math 205—Calculus and Linear Algebra—4 cr. (5 and 0)**
Topics include: matrices and vectors, transformation and matrices, representations of linear transformations and the topics in calculus are infinite series, limits, differentiation and integration. Prerequisite: Math 106.

**Math H205—Calculus and Linear Algebra—4 cr. (5 and 0)**
Same as Math 205 except this honors section is open to students only by invitation.
MATH 206—CALCULUS OF SEVERAL VARIABLES—4 cr. (5 and 0)
Topics include: real valued functions of several variables, multiple inte-
gration, differential calculus of functions of several variables, applications, 
vector field theory. Prerequisite: Math 205.

MATH H206—CALCULUS OF SEVERAL VARIABLES—4 cr. (5 and 0)
Same as Math 206 except this honors section is open to students only by
invitation.

MATH 207—MULTIPLE DIMENSION CALCULUS—3 cr. (3 and 0)
Principal topics include differential and integral calculus for functions of
several variables, extreme values of functions, Lagrangian multipliers, differ-
ential equations and difference equations. Examples from the managerial and
social sciences. Prerequisite: Math 205.

MATH 208—ENGINEERING MATHEMATICS I—4 cr. (5 and 0)
This course presents an introduction to the study of differential equations,
linear algebra, complex variables, and the Laplace transforms. Prerequisite:
Math 206.

MATH H208—ENGINEERING MATHEMATICS—4 cr. (5 and 0)
This course presents an introduction to the study of differential equations,
linear algebra, complex variables, and the Laplace transforms. This honors
section is open to students only by invitation.

MATH 215—ALGEBRA FOR ELEMENTARY SCHOOL TEACHERS—3 cr. (3 and 0)
Linear equations and linear inequalities in one variable, functions and
graphs, systems of linear equations and linear inequalities, quadratic equations,
complex number system. Finite number systems, algebraic structures.

MATH 216—GEOMETRY FOR ELEMENTARY SCHOOL TEACHERS—3 cr.
(3 and 0)
An informal treatment of the basic concepts of geometry.

MATH 295—FOUNDATION OF ANALYSIS—3 cr. (3 and 0)
An introduction to the language and use of symbolic logic and the properties
of the real number system with applications to the calculus. Prerequisite:
Math 205.

MATH 308—COLLEGE GEOMETRY—3 cr. (3 and 0)
Theorems and concepts more advanced than those of high school geometry.
A treatment of the various properties of the triangle, including the notable
points, lines, and circles associated with it. Prerequisite: Math 106.

MATH 309—ENGINEERING MATHEMATICS II—3 cr. (3 and 0)
A continuation of Math 208. An introduction to Fourier Series, numerical
methods, vector algebra, vector calculus, partial differential equations and cer-
tain special functions is given. Prerequisite: Math 208.

MATH H309—ENGINEERING MATHEMATICS II—3 cr. (3 and 0)
A continuation of Math H208. An introduction to Fourier series, numerical
methods, vector algebra, vector calculus, partial differential equations and cer-
tain special functions is given. This honors section is open to students
only by invitation. Prerequisite: Math 208.
330 Description of Courses

Math 313—Statistical Theory and Methods I—3 cr. (3 and 0)
Principal topics include: elementary probability theory, discrete and continuous random variables, expected values, normal distribution, chi-square distribution, t-distribution, F-distribution, test of hypothesis, point and interval estimation, curve fitting. Prerequisite: Math 206.

Math H313—Statistical Theory and Methods I—3 cr. (3 and 0)
Principal topics include: empirical distributions, random variables, probability space, normal distribution, chi-square distribution, T-distribution, F-distribution, test of hypothesis, estimation curve fitting. This honors section is open to students only by invitation. Prerequisite: Math 206.

Math 402—Theory of Probability—3 cr. (3 and 0)
Principal topics include: combinatorial theory, probability axioms, random variables, expected values, special discrete and continuous distributions, jointly distributed random variables, correlation, conditional expectation, law of large numbers, central limit theorem. Prerequisite: Math 206.

Math H402—Theory of Probability—3 cr. (3 and 0)
Principal topics include: combinatorial theory, random variables, correlation, conditional expectation, predictions, binomial distribution, poisson distribution, normal distribution law of large numbers, central limit theorem, elementary markov chains. This honors section is open to students only by invitation.

Math 403—Statistical Inference—3 cr. (3 and 0)
Principal topics include: sampling distributions, point and interval estimation, maximum likelihood estimators, method of moments, least squares estimators, tests of hypothesis, likelihood ration methods, regression and correlation analysis, introduction to analysis of variance. Prerequisite: Math 402.

Math H403—Statistical Inference—3 cr. (3 and 0)
Principal topics include: point estimation, linear hypothesis, correlation, regression, distribution free methods, sequential analysis. This honors section is open to students only by invitation.

Math 404—Introduction to Stochastic Processes—3 cr. (3 and 0)
Principal topics include—random variables, counting processes, stationary processes, ergodic processes, spectral distribution function, examples from scientific fields to indicate the use of stochastic processes in construction of models of physical and behavioral phenomena. Prerequisite: Math 402.

Math 405—Statistical Theory and Methods II—3 cr. (3 and 0)
Principal topics include contingency tables, goodness of fit, rank-sum tests. Kolmogorov-Smirnov tests, analysis of variance, factorial experimentation, applications to reliability and life testing, applications to quality assurance. Prerequisite: Math 313.

Math 407—Partial Differential Equations—3 cr. (3 and 0)
Partial differentiation and space geometry, origins of partial differential equations, linear and non-linear equations of the first order, Fourier series, linear equations of the second and higher orders. Prerequisite: Math 208.

Math 408—Topics in Geometry—3 cr. (3 and 0)
An introduction to topics in special geometries which include non-Euclidean space concepts, such as projective geometry, finite geometries, and intuitive
elementary topology. A brief introduction to vector geometry. **Prerequisite:** Math 206.

**Math 409—Statistical Theory and Methods III—3 cr. (3 and 0)**
A continuation of Math 405 with equal emphasis on both the mathematical foundations and practical applications of advanced statistical methods. Principal topics include: experimental designs, fractionally replicated experiments, multiple regression and response surface analysis, evolutionary operations, simultaneous inference, analysis of covariance, and time series analysis. **Prerequisite:** Math 405.

**Math 411—Linear Algebra—3 cr. (3 and 0)**
An introduction to the algebra of matrices, vector spaces, polynomials and linear transformations. **Prerequisite:** Math 206.

**Math 412—Introduction to Modern Algebra—3 cr. (3 and 0)**
An introduction to the concepts of algebra. Topics included are the number system; elementary theory of groups; rings, integral domains, and fields; matrices over a field; determinants and matrices; groups, rings, and ideals. **Prerequisite:** Math 206.

**Math H412—Introduction to Modern Algebra—3 cr. (3 and 0)**
An introduction to the concepts of algebra. Topics included are the number system; elementary theory of groups; rings, integral domains, and fields; matrices over a field; determinants and matrices; groups, rings and ideals. This honors section is open to students only by invitation. **Prerequisite:** Math 206.

**Math 413—Modern Algebra—3 cr. (3 and 0)**
A continuation of Math 412.

**Math H413—Modern Algebra—3 cr. (3 and 0)**
A continuation of Math H412, which is an introduction to the concepts of algebra. Topics included are the number system; elementary theory of groups, rings, integral domains, and fields; matrices over a field; determinants and matrices; groups, rings and ideals. This honors section is open to students only by invitation.

**Math 415—Introduction to Topology—3 cr. (3 and 0)**
An introduction to point set topology; Hausdorff, regular and normal spaces; metric connected and compact spaces; continuous mappings and homeomorphisms. **Prerequisite:** Math 295.

**Math H415—Introduction to Topology—3 cr. (3 and 0)**
Introduction to point set topology; Hausdorff, regular and normal spaces; metric connected and compact spaces; continuous mappings and homeomorphisms. This honors section is open to students only by invitation.

**Math 417—Mathematics Programs—3 cr. (3 and 0)**
Aspects of the new high school programs in mathematics. Open only to in-service teachers or students in the Mathematics Teacher Training Program. **Prerequisite:** Math 308; **corequisite:** Math 408.

**Math 422—Mathematical Logic—3 cr. (3 and 0)**
A detailed and rigorous study of a logical system as a foundation for mathematics. An analysis of basic concepts occurring in the foundations of mathematics. **Prerequisite:** Sufficient mathematical background.
Math 424—Foundations of Mathematics—3 cr. (3 and 0)
Naive set theory, cardinal and ordinal numbers, and axiom of choice and equivalents. A study of the set theoretic fundamentals of abstract mathematics.

Math 425—Intermediate Differential Equations—3 cr. (3 and 0)
Second order linear differential equations, regular singular points, Bessel, Legendre and hypergeometric functions, general linear equations, existence and uniqueness theorems, plane autonomous systems and phase plane concepts, Sturm-Louville systems. Corequisite: Advanced Calculus.

Math 429—Numerical Analysis I—3 cr. (3 and 0)
Difference and summation calculus, round off noise, finite Fourier series, polynomial approximation, numerical solution of differential equations. Prerequisite: Math 453.

Math 435—Complex Variables—3 cr. (3 and 0)

Math H435—Complex Variables—3 cr. (3 and 0)
Elementary functions. Differentiation and integration of analytic functions. Taylor and Laurent series. Contour integration and residue theory. Conformal mapping and residue theory. Schwartz-Christoffel transformation. This honors section is open to students only by invitation.

Math 452—Linear Programming—3 cr. (3 and 0)
An introduction to linear programming, using elementary matrix algebra and the theory of convex polygons. Applications to managerial problems, operations research, economic behavior, the theory of games and military strategy are considered. Prerequisite: Math 206 or permission of the instructor.

Math 453—Advanced Calculus I—3 cr. (3 and 0)
Limits, continuity, and differentiation of functions of one and several variables, the Riemann integral, and vector analysis. Prerequisite: Math 208 and Junior standing.

Math 454—Advanced Calculus II—3 cr. (3 and 0)
A continuation of Math 453. Transformations, multiple integrals, line and surface integrals, infinite sequences and series, and improper integrals.

Math 457—Applied Mathematics I—cr. (3 and 0)
Determinants and matrices, review of differential equations, finite differences, Fourier series and integrals, Laplace transformations, a large selection of applications. Prerequisite: Math 208.

Math 458—Applied Mathematics II—3 cr. (3 and 0)
A continuation of Math 457. Partial differential equations, Bessel functions and Legendre polynomials, analytic functions of complex variables, infinite series in a complex plane, the theory of residues, conformal mapping. Prerequisite: Math 457.

Math 463—Mathematical Analysis I—3 cr. (3 and 0)
Basic properties of the real number system, sequences and limits; continuous functions, uniform continuity and convergence. Integration, differentiation,
functions of several real variables, implicit function theory. Prerequisite: Math 295.

Math 464—Mathematical Analysis II—3 cr. (3 and 0)
A continuation of Math 463.

Math H464—Mathematical Analysis II—3 cr. (3 and 0)
A continuation of Math H463. This honors section is open to students only by invitation.

Math 471—Applied Statistical Decision Theory—3 cr. (3 and 0)
An introduction to statistical decision theory emphasizing the Bayesian approach. Behavioral axioms, characterizing the “Rational decision maker,” lead to the laws of probability theory and utility theory. Topics include: axioms of subjective probability and utility, extensive and normal form analysis, likelihood principle, conjugate distributions. Prerequisite: Math 402.

Math 473—Introduction to Nonlinear Optimization—3 cr. (3 and 0)
An introduction to the application and theory of nonlinear optimization problems. The primary topics include: classical optimization based on the calculus, approximation techniques, separable programming, quadratic programming, gradient methods, and dynamic programming. Prerequisite: Math 452, 453.

Math H481—Honors Seminar in Mathematics—Credit to be arranged (3 and 0)
At the discretion of the instructor, attention will be focused upon mathematical areas in which nonroutine problems can be posed with comparative ease. Emphasis will be upon independent study and student use of previously acquired mathematical skills and his own ingenuity in the examination, presentation or preparation of mathematical papers. These papers may be expository or creative in content and may deal with applications of the mathematics under investigation. This honors course is open to students only by invitation for not more than three hours credit.

Math H482—Honors Seminar in Mathematics—Credit to be arranged (3 and 0)
A continuation of Math H481.

Math 613—Statistical Theory and Methods I—3 cr. (3 and 0)
Math 702—Theory of Probability—3 cr. (3 and 0)
Math 703—Statistical Inference—3 cr. (3 and 0)
Math 704—Introduction to Stochastic Processes—3 cr. (3 and 0)
Math 705—Statistical Theory and Methods II—3 cr. (3 and 0)
Math 707—Partial Differential Equations—3 cr. (3 and 0)
Math 708—Topics in Geometry—3 cr. (3 and 0)
Math 709—Statistical Theory and Methods III—3 cr. (3 and 0)
Math 711—Linear Algebra—3 cr. (3 and 0)
Math 712—Introduction to Modern Algebra—3 cr. (3 and 0)
Math 713—Modern Algebra—3 cr. (3 and 0)
### Description of Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 715</td>
<td>Introduction to Topology</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 717</td>
<td>Mathematics Programs</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 725</td>
<td>Intermediate Differential Equations</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 729</td>
<td>Numerical Analysis I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 735</td>
<td>Complex Variables</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 752</td>
<td>Linear Programming</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 753</td>
<td>Advanced Calculus I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 754</td>
<td>Advanced Calculus II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 757</td>
<td>Applied Mathematics I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 758</td>
<td>Applied Mathematics II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 763</td>
<td>Mathematical Analysis I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 764</td>
<td>Mathematical Analysis II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 801</td>
<td>General Linear Hypothesis I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 802</td>
<td>General Linear Hypothesis II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 803</td>
<td>Stochastic Processes I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 804</td>
<td>Stochastic Processes II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 805</td>
<td>Advanced Methods in Probability and Statistics</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 807</td>
<td>Mathematical Statistics I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 808</td>
<td>Mathematical Statistics II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 821</td>
<td>Real Analysis I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 822</td>
<td>Real Analysis II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 823</td>
<td>Complex Analysis I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 824</td>
<td>Complex Analysis II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 825</td>
<td>Ordinary Differential Equations I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 826</td>
<td>Ordinary Differential Equations II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 831</td>
<td>Fourier Series</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 833</td>
<td>Operational Mathematics</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 835</td>
<td>Complex Variables</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 837</td>
<td>Calculus of Variations</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 839</td>
<td>Integral Equations</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 841</td>
<td>Applied Mathematics I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 842</td>
<td>Applied Mathematics II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 851</td>
<td>Abstract Algebra I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 852</td>
<td>Abstract Algebra II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 853</td>
<td>Advanced Linear Algebra</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Math 854</td>
<td>Theory of Graphs I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Math 855</td>
<td>Combinatorial Analysis</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 861</td>
<td>Numerical Analysis II</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 863</td>
<td>Calculus of Finite Differences</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 871</td>
<td>General Topology I</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 872</td>
<td>General Topology II</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 873</td>
<td>Algebraic Topology I</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 874</td>
<td>Algebraic Topology II</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 875</td>
<td>Convexity I</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 876</td>
<td>Convexity II</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 881</td>
<td>History of Mathematics</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 883</td>
<td>Theory of Numbers</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 885</td>
<td>Projective Geometry</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 891</td>
<td>Research</td>
<td>Credit to be arranged.</td>
<td></td>
</tr>
<tr>
<td>Math 901</td>
<td>Probability Theory I</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 902</td>
<td>Probability Theory II</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 903</td>
<td>Advanced Stochastic Processes</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 905</td>
<td>Decision Theory I</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 906</td>
<td>Decision Theory II</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 907</td>
<td>Multivariate Analysis</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 920</td>
<td>Introduction to Harmonic Analysis</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 921</td>
<td>Abstract Harmonic Analysis I</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 922</td>
<td>Abstract Harmonic Analysis II</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 923</td>
<td>Introduction to the Theory of Distribution I</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 924</td>
<td>Introduction to the Theory of Distribution II</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 925</td>
<td>Topics in Non-linear Differential Equations</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 927</td>
<td>Functional Analysis I</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 928</td>
<td>Functional Analysis II</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 929</td>
<td>Functional Analysis III</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 930</td>
<td>Functional Analysis IV</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 945</td>
<td>Potential Theory I</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 946</td>
<td>Potential Theory II</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 951</td>
<td>Group Theory</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 952</td>
<td>Ring Theory I</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>Math 953</td>
<td>Ring Theory II</td>
<td>3 cr.</td>
<td></td>
</tr>
</tbody>
</table>
Math 954—Theory of Graphics II—3 cr. (3 and 0)
Math 955—Combinatorial Analysis II—3 cr. (3 and 0)
Math 956—Field Theory—3 cr. (3 and 0)
Math 957—Semigroup Theory I—3 cr. (3 and 0)
Math 958—Semigroup Theory II—3 cr. (3 and 0)
Math 980—Special Topics in Probability—3 cr. (3 and 0)
Math 981—Special Topics in Mathematical Statistics—3 cr. (3 and 0)
Math 982—Special Topics in Analysis—3 cr. (3 and 0)
Math 983—Special Topics in Functional Analysis—3 cr. (3 and 0)
Math 984—Special Topics in Applied Mathematics—3 cr. (3 and 0)
Math 985—Special Topics in Algebra—3 cr. (3 and 0)
Math 986—Special Topics in Convexity—3 cr. (3 and 0)
Math 991—Research—credit variable.

MECHANICAL ENGINEERING

Professors: D. W. Bradbury, J. L. Edwards, T. C. Hardin, Head; E. Harrison, A. D. Lewis, S. M. Watson, T. Yang
Assistant Professor: J. K. Johnson, Jr.
Instructor: J. R. Fraker

ME 201—Engineering Design and Production—3 cr. (2 and 3)
An introduction to engineering design with emphasis on creativity, synthesis, participation in a realistic experience in design to satisfy human needs, experimentation and analysis commensurate with the student's background in mathematics and science. Problems are authentic. The building of a prototype, at least of critical parts, is the consummation of the design. Nontechnical aspects of engineering such as cost, market, contracts, and ethics are stressed. Engineering materials and methods of production are introduced to assist the student in making decisions concerning material selection and methods of production. Corequisite: EG 109, Phys 122, and Sophomore standing.

ME 299—Digital Computation—1 cr. (0 and 3)
An introduction to digital computer programming for students majoring in mechanical engineering. Emphasis is placed on the computer languages in use at Clemson University, and their application to the solution of simple problems in mechanical engineering. Prerequisite: Sophomore standing.

ME 304—Heat Transfer I—3 cr. (3 and 0)
A comprehensive study of the principles of heat transmission with applications to engineering problems. Special emphasis is given to the following topics: heat conduction in the steady and unsteady states; dimensional analysis of convection; free and forced convection; the combined effects of conduction, convection and radiation. Prerequisite: Junior standing, ME 311, or ChE 331, and Math 208.
ME 307—MECHANICAL ENGINEERING LABORATORY—1 cr. (0 and 2)
For those curriculums requiring one course in Mechanical Engineering Laboratory. The course is intended to illustrate mechanical engineering theory and to develop experimental technique. Experiments in the first and second laws of thermodynamics are covered. Prerequisite: ME 311.

ME 311—ENGINEERING THERMODYNAMICS I—3 cr. (3 and 0)
A study of thermodynamics as an engineering science. Topics stressed are the first and second laws of thermodynamics, properties of the pure substance, ideal gases, and gaseous mixtures. Prerequisite: Math 208, Phys 222, and Junior standing.

ME H311—ENGINEERING THERMODYNAMICS I—3 cr. (3 and 0)
Honors section of ME 311; admission by invitation.

ME 312—ENGINEERING THERMODYNAMICS II—3 cr. (3 and 0)
Chemical reactions and combustion, chemical equilibrium; analyses of processes and cycles; introduction to statistical thermodynamics, kinetic theory of gases, and irreversible thermodynamics. Prerequisite: ME 311.

ME 313—INSTRUMENTATION AND MEASUREMENTS—2 cr. (1 and 2)
Principles of measurements, accuracy of instruments, and data analysis. Modern instruments for measuring and recording static and dynamic pressures, temperatures, fluid flow, speed, power, and torque. Prerequisite: Enrollment in ME 311.

ME 314—ENGINEERING EXPERIMENTATION—2 cr. (1 and 2)
Theoretical, analytic and statistical aspects of basic engineering experimentation. Error analysis, dimensional analysis, experimental plans, and data analyses. Prerequisite: Math 313 and ME 313.

ME 316—DYNAMIC SYSTEM ANALYSIS—4 cr. (3 and 3)
Principles of dynamic system response with emphasis on the determination of mathematical models for mechanical, electrical, electomechanical, fluid and thermal systems. Differential equations are developed from a consideration of physical laws, system arrangement, and constraints. The Lagrangian state function and Lagrange's equation are introduced. Transient and steady-state analyses make use of Laplace transforms and frequency response techniques. Computers are used extensively. Prerequisite: Math 208, Phys 221, EM 202. Corequisite: EE 330, EE 331.

ME 321—FLUID DYNAMICS—3 cr. (3 and 0)
A continuation of EM 320. Topics include: concepts from thermodynamics; analogy between heat transfer and momentum transfer; reversible adiabatic flow with variable area; normal and oblique shocks and expansion fans; one dimensional flow in constant area ducts with friction and heat transfer; similarity laws in subsonic, transonic, and supersonic regions. Prerequisite: EM 320.

ME 401—PRINCIPLES OF MECHANICAL ENGINEERING DESIGN—3 cr. (3 and 0)
Stress, strain and strength considerations in engineering design. Theories of failure for yielding, brittle fracture and fatigue fracture are presented. Design considerations for impact, creep, elastic deflection, stress concentration, contact stresses and reliability are studied. Engineering problems are assigned to implement applications of principles of design. Prerequisite: EM 304, ME 316. Corequisite: CrE 310, Senior standing.
ME 402—MECHANICAL ENGINEERING ANALYSIS AND DESIGN—3 cr. (1 and 6)
The student is given the opportunity to apply creatively his general knowledge and his knowledge of engineering in the analysis and design of one or more engineering systems, machines, or devices. Problems may be selected from two sources: A meritorious problem of the student's own choice or a problem assigned by appropriate authority. Corequisite: ME 401, Senior standing.

ME 404—AUTOMATIC CONTROL—3 cr. (3 and 0)
Principles and techniques for the analysis and design of feedback control systems. State variable notation and modern control theory are introduced but emphasis is on the classical frequency domain and root locus techniques. Applications to electromechanical, hydraulic, and pneumatic systems. Prerequisite: ME 316, EE 332.

ME 406—PHYSICAL SYSTEMS ANALYSIS AND DESIGN—3 cr. (3 and 0)
A general approach to the analysis and synthesis of physical systems based on state variable representation, Lagrange's equations, matrix solution to state equations, and the calculus of variations. Computer solutions are obtained for application to mechanical, electrical, fluid, and thermal systems. Prerequisite: ME 316.

ME 408—INTRODUCTION TO COMPUTER-AIDED DESIGN—3 cr. (3 and 0)
Introduction to computer aided design, reliability, figures of merit, optimization techniques, search for extremes, and decision theory in design. Computer aided optimum design of engineering systems and the writing and use of problem-oriented languages will be emphasized. Prerequisite: Senior standing.

ME 411—GAS POWER—3 cr. (3 and 0)
A study of the effects of variation in specific heat, some fundamentals of compressible flow, the combustion process, and chemical dissociation. The theoretical and actual processes associated with the gas turbine, the thermal jet, the thermal rocket, and the spark ignition and compression ignition reciprocating engines are analyzed. Prerequisite: ME 312 and Senior Engineering.

ME 412—APPLIED THERMODYNAMICS—3 cr. (3 and 0)
Basic principles of first and second laws of thermodynamics applied to areas such as cryogenics, nonconventional energy conversion process, industrial process heat and electric power systems, etc. Prerequisite: ME 312.

ME 413—MECHANICAL ENGINEERING LABORATORY—1 cr. (0 and 2)
Experimental investigations in a wide variety of mechanical engineering areas, such as fluid dynamics, automatic control, heat and mass transfer, combustion, thermodynamics, and solid mechanics. Prerequisite: ME 313 and 314.

ME 414—MECHANICAL ENGINEERING LABORATORY—1 cr. (0 and 2)
Continuation of ME 413.

ME 415—UNDERGRADUATE RESEARCH—1 to 3 cr.
Individual research projects to be conducted under the direct supervision and guidance of a faculty member. Prerequisite: Consent of instructor.

ME H415—UNDERGRADUATE RESEARCH—1 to 3 cr.
Honors section of ME 415; admission by invitation.

ME 416—UNDERGRADUATE RESEARCH—1 to 3 cr.
Individual research projects to be conducted under the direct supervision and guidance of a faculty member. Prerequisite: Consent of instructor.
ME 422—Principles of Turbomachinery—3 cr. (3 and 0)
The guiding principles underlying all forms of turbomachinery. A unified treatment of turbomachinery to include pumps, fans, compressors and steam, gas and hydraulic turbines. Dimensional analysis as applied to turbomachinery, Euler's Equation, concepts of specific speed and thermodynamics of turbomachinery processes and allied topics are covered. Prerequisite: ME 312, EM 320, and Senior standing.

ME 424—Engineering Analysis—3 cr. (2 and 3)
A senior-level course requiring the student to utilize his knowledge of mathematics, fluid and solid mechanics, thermodynamics, heat transfer, and other background work in solving engineering problems. Both analog and digital computers are utilized as tools contributing to these solutions. Prerequisite: ME 299, ME 312, ME 304, EM 320.

ME 429—Air Conditioning—3 cr. (3 and 0)
Study of the principles of heating and air conditioning, including calculation of heat loss and heat gains for buildings, heating and cooling systems, psychrometric principles, air distribution, refrigeration and automatic control apparatus. Prerequisite: ME 304, 312, and Senior standing.

ME 430—Air Conditioning Design—1 cr. (0 and 3)
An application of the theory covered in ME 429 to the design of air-conditioning systems. Prerequisite: Enrollment in ME 429.

ME 441—Aeroelasticity—3 cr. (3 and 0)
Two and three dimensional theory of structural vibration and wing flutter. Lagrangian equations, energy methods, matrix methods and computer techniques for vibration analysis will be presented. Structural damping, aerodynamic forces, and flutter stability will be studied. Vertical bending, torsional vibration and flutter of fuselages, ailerons and stabilizers will be analyzed.

ME 480—Methods of Operations Research I—3 cr. (3 and 0)
Applications and elementary theory of selected topics from Operations Research. Topics included are linear algebra, linear programming, transportation and assignment problems, network analysis, and game theory. Prerequisite: ME 229 or equivalent.

ME 481—Methods of Operations Research II—3 cr. (3 and 0)
A continuation of ME 484. Topics included are nonlinear programming, dynamic programming, queuing theory, and markov processes. Prerequisite: Math 313 or equivalent.

ME 484—Engineering Economic Analysis—3 cr. (3 and 0)
Basic principles and techniques of economic analysis of engineering projects. Consideration of time value of money, short- and long-term investments, replacement analysis, depreciation methods, cost allocation and measures of cost effectiveness. Prerequisite: Senior standing in Engineering or consent of instructor.

ME 485—Industrial Application of Statistics—3 cr. (3 and 0)
Application of statistical principles of analysis and control to production processes, studies of process capabilities, quality control, work sampling, reliability and analysis, and machine interference. Prerequisite: Math 313.
340 Description of Courses

ME 486—Work Flow Systems and Control—3 cr. (3 and 0)
Fundamentals underlying the determination of production capacity requirements, economic lot sizes, and the regulating of flow and storage of materials to, within, and from the production system. Elements of forecasting, determination of materials requirements, scheduling, inventory control, etc. Consideration of data processing methods. Prerequisite: Math 313, consent of instructor.

ME 491—Selected Topics in Mechanical Engineering—3 cr. (3 and 0)
A comprehensive study of any topic in the field of Mechanical Engineering not covered in other courses.

ME 701—Principles of Mechanical Engineering Design—3 cr. (3 and 0)
ME 702—Mechanical Engineering Analysis and Design—3 cr. (1 and 6)
ME 704—Automatic Control—3 cr. (3 and 0)
ME 706—Physical Systems Analysis and Design—3 cr. (3 and 0)
ME 708—Computer-Aided Design—3 cr. (3 and 0)
ME 711—Gas Power—3 cr. (3 and 0)
ME 780—Methods of Operations Research I—3 cr. (3 and 0)
ME 781—Methods of Operations Research II—3 cr. (3 and 0)
ME 784—Engineering Economic Analysis—3 cr. (3 and 0)
ME 808—Fluid Mechanics—3 cr. (3 and 0)
ME 809—Aerodynamics—3 cr. (3 and 0)
ME 810—Advanced Thermodynamics—3 cr. (3 and 0)
ME 811—Gas Dynamics II—3 cr. (3 and 0)
ME 812—Boundary Layer Theory I—3 cr. (3 and 0)
ME 813—Gas Dynamics III—3 cr. (3 and 0)
ME 814—Hypersonics—3 cr. (3 and 0)
ME 815—Kinetics Theory of Cases—3 cr. (3 and 0)
ME 830—Heat Transfer II—3 cr. (3 and 0)
ME 831—Heat and Mass Transfer III—3 cr. (3 and 0)
ME 840—Kinematics II—3 cr. (3 and 0)
ME 842—Advanced Mechanical Engineering Design I—3 cr. (3 and 0)
ME 843—Advanced Mechanical Engineering Design II—3 cr. (3 and 0)
ME 844—Dynamics of Elastic Mechanical Systems—3 cr. (3 and 0)
ME 860—Dynamic Programming—3 cr. (3 and 0)
ME 861—Nonlinear Programming—3 cr. (3 and 0)
ME 862—Analytical Methods of Systems Analysis—3 cr. (3 and 0)
ME 863—Advanced Physical Systems I—3 cr. (3 and 0)
ME 864—Advanced Physical Systems II—3 cr. (3 and 0)
ME 865—Modern Control Theory—3 cr. (3 and 0)
ME 866—Nonlinear Automatic Controls—3 cr. (3 and 0)
ME 867—Control System Components—3 cr. (3 and 0)
ME 868—Control of Aerospace Systems—3 cr. (3 and 0)
ME 870—Biosystems Analysis—3 cr. (3 and 0)
ME 880—Advanced Methods of Operations Research I—3 cr. (3 and 0)
ME 881—Advanced Methods of Operations Research II—3 cr. (3 and 0)
ME 882—Reliability Engineering—3 cr. (3 and 0)
ME 883—Operations System Simulation I—3 cr. (3 and 0)
ME 884—Operations System Simulation II—3 cr. (3 and 0)
ME 886—Operations Research in Production Control—3 cr. (3 and 0)
ME 891—Research—Credit to be arranged.
ME 893—Selected Topics in Mechanical Engineering—1-6 cr. (1-6 and 0)
ME 912—Boundary Layer Theory II—3 cr. (3 and 0)
ME 914—Magnetohydrodynamics—3 cr. (3 and 0)
ME 915—Energy Conversion—3 cr. (3 and 0)
ME 930—Conduction Heat Transfer—3 cr. (3 and 0)
ME 931—Convection Heat Transfer—3 cr. (3 and 0)
ME 932—Radiation Heat Transfer—3 cr. (3 and 0)
ME 940—Applied Plasticity—3 cr. (3 and 0)
ME 941—Theory of Lubrication and Wear—3 cr. (3 and 0)
ME 991—Doctoral Research—Credit to be arranged.

MEDICAL TECHNOLOGY

Anderson—Lecturers: J. W. Black, R. E. Jones, Jr., N. L. Long
Teaching Supervisor: Kay Little

Greenville—Lecturers: E. C. Cox, E. A. Dreskin, D. G. Kilgore, Jr.,
J. H. McCarter, W. M. Waters
Teaching Supervisor: Patricia Thompson

Med Tech 401—Serology and Immunology—4 cr. (21,10,49)*

Presents the basic principles of serology and immunology and the tests
utilizing these principles to detect abnormalities helpful in the diagnosis of
disease.

Med Tech 402—Microbiology—7 cr. (59,6,470)
The principles of microbiology-bacteriology, mycology, and parasitology.
Emphasis is placed on human pathogenic organisms, using both fresh and
prepared organisms.

Med Tech 403—Hematology—5 cr. (12,32,276)
Information on blood as a tissue, the theory of hematological tests, factors
that affect test reliability. Knowledge of test results and knowledge of blood
dycrasias. Skill in the performance of hematological tests is emphasized and
the use of automation techniques is covered.

* First figure represents lecture hours, second figure represents seminar hours, and the
third figure represents clinical practice hours.
MED TECH 404—BLOOD BANK—3 cr. (8,20,132)
History and principles of blood group systems and methods of cross matching. Test for, and quantitative determination of, Rh antibodies with all available techniques. Selection, pre-testing and bleeding of donors and processing of blood for transfusions.

MED TECH 405—CYTOLOGY—1 cr. (2,12,26)
An introduction to cytology and cytotologic techniques in the diagnosis of cancer. Definition and brief history, sources of material, collection and preservation of specimens, together with practice in interpretation.

MED TECH 406—HISTOLOGY—3 cr. (20,30,190)
Histologic preparation, including actual preparation of tissue specimens derived from surgical procedures and autopsies. Routine and special staining, together with experience using the Cryostat.

MED TECH 407—URINALYSIS—2 cr. (10,8,102)
The study of renal function together with principles of urine analysis, pregnancy tests and anatomy of the urinary system. Emphasis is placed on laboratory procedures and their utilization to detect abnormalities helpful in the diagnosis of disease.

MED TECH 408—CHEMISTRY—10 cr. (40,50,470)
Introduction to the chemistry of carbohydrates, nitrogen, calcium, and phosphorus compounds, acid-base balance, etc., with emphasis on the chemistry of blood and urine using both qualitative and quantitative procedures in the laboratory.

MED TECH 409—RADIOISOTOPES—1 cr. (2,0,7)
Introduction to principles of diagnostic radioisotope procedures and the use of the scintillation detector, the well counter, and the scaler.

METALLURGICAL ENGINEERING

Associate Professor: S. F. Hulbert, Program Coordinator

MetE 301—PHYSICAL METALLURGY—3 cr. (2 and 3)
The first of two sequential courses to acquaint the student with the nature and properties of metals. The properties of metals are defined and studied in terms of solid state physics which explains how and why metals have the useful properties that they do possess. Basic metal forming processes involving these principles are studied. Prerequisite: MetE 202 or 302.

MetE 302—GENERAL METALLURGY—3 cr. (2 and 3)
Basic general metallurgy for students in Engineering and related curriculums. This course is designed to acquaint students with the properties of metals so that they may select intelligently for engineering applications. The nature of metals and of metal working processes are considered. Prerequisite: Junior standing in Engineering.

MetE 304—PHYSICAL METALLURGY—3 cr. (2 and 3)
A continuation of MetE 301. In this portion of the course alloys are considered particularly. The use of an equilibrium diagram to represent properties and phases is studied. The student learns to interpret and construct these diagrams. Solid state phase changes are studied, such as occur in the heat treating of steel and the age hardening of aluminum alloys. Prerequisite: MetE 301.
Metallurgical Engineering 343

METE 320—MECHANICAL METALLURGY—2 cr. (2 and 0)

The processes whereby useful shapes are formed in metal, and the response of the metal to the deformative forces. Rolling, forging, extrusion, drawing and "high energy" deformations are studied. The effects of these forces on the character and properties of the metal are evaluated. Prerequisite: MetE 304 or consent of instructor.

METE 323—METALLOGRAPHY—2 cr. (1 and 3)

The development of techniques necessary for metallographic investigations. The selection, cutting, mounting and polishing of specimens; the use of the microscope; the techniques of etching, and of photography. Training in the use of laboratory equipment in evaluating metallic material. Prerequisite: MetE 304, or MetE 302 and consent of instructor.

METE 350—METALLURY OF CAST METALS—3 cr. (2 and 3)

The fundamentals of melting, fluxing, pouring, and the control of the solidification of metals in molds. The metallurgical aspects of the production of all kinds of castings—sand mold, permanent mold, shell mold, die casting, and centrifugal casting. Studies are made of the physical properties of castings. Prerequisite: MetE 302 or MetE 304.

METE 402—METALLURGICAL LITERATURE—1 cr. (0 and 3)

To acquaint students with sources of information on metallurgy and to develop a background for the senior thesis. Prerequisite: Senior standing in Metallurgical Engineering.

METE 408—HEAT TREATING—3 cr. (2 and 3)

The phase changes in both ferrous and non-ferrous metals caused by changes in environment at significant times in the processing. Studies relating the time-temperature changes in metals with their physical properties. Prerequisite: MetE 302 or MetE 304.

METE 425—SENIOR THESIS—2 cr. (0 and 6)

The independent investigation of a project in Metallurgical Engineering. A competent bachelor thesis is required. Prerequisite: Senior standing in Metallurgical Engineering.

METE 430—POWDER METALLURGY—3 cr. (2 and 3)

The production of metal powders and of articles from these powders. By powder metal techniques it is possible to produce controlled porosity, unconventional alloys and to produce complex parts of limited size rapidly, accurately, and economically. Combinations of metals and non-metals may be produced. Prerequisite: MetE 302 or MetE 304.

METE 440—METALLURY OF REACTOR MATERIALS—3 cr. (2 and 3)

The metallurgy of materials used in reactor construction. The physical metallurgy of metallic fuels, controls, reflectors, and shielding. The effects of radiation on structural metals will be considered. Prerequisite: Senior standing and the consent of the instructor.

METE 450—METALLIC CORROSION—3 cr. (2 and 3)

The corrosion of metallic materials and means of preventing such corrosion. Environmental factors in corrosion are considered. Prerequisite: MetE 302 or MetE 304.
METE 455—ELECTROMETALLURGY—3 cr. (2 and 3)
The electrowinning and electrorefining of metals. Electrothermic cells will be studied. The principles and operation of electric furnaces will be considered. Electroplating, electroetching and electromachining will be studied. Prerequisite: MetE 302 or MetE 304 and EE 308.

MICROBIOLOGY
(See also Biology)

Professor: R. K. Guthrie
Associate Professor: J. H. Bond
Assistant Professors: Ann W. Baxter, M. J. B. Paynter, Chairman

MICRO 301—GENERAL MICROBIOLOGY—4 cr. (3 and 3) F, S, SS
Morphology, physiology, classification, distribution, and cultivation of microorganisms and health. Prerequisite: Bot 101 or Zool 101 and 103; Ch 101; Ch 102.

MICRO 401—ADVANCED BACTERIOLOGY—4 cr. (2 and 6) F
Metabolism, nutrition, growth, and death of bacteria; microbiological assays and industrial fermentation; emphasis on laboratory procedures for the identification of the more common taxonomic groups. Prerequisite: Micro 301; Ch 220 or 223 and 227.

MICRO H401—ADVANCED BACTERIOLOGY—4 cr. (2 and 6) F
Honors option for Micro 401, admission by special arrangement.

MICRO 402—DAIRY MICROBIOLOGY—3 cr. (2 and 3) S, '70 and alternate years.
Morphology, physiology, and culturing of microorganisms of importance in dairy products; standard methods for the determination of numbers of bacteria, yeasts, and molds in various dairy products. Prerequisite: Micro 301.

MICRO H402—DAIRY MICROBIOLOGY—3 cr. (2 and 3) S, '70 and alternate years.
Honors option for Micro 402, admission by special arrangement.

MICRO 404—FOOD MICROBIOLOGY—3 cr. (2 and 3) S, '71 and alternate years.
The microbiology of natural and processed foods. The nature of microorganisms involved in food processing, food spoilage, and food poisoning. Methods of isolating, enumerating and identifying these organisms are conducted in the laboratory. Prerequisite: Micro 301.

MICRO H404—FOOD MICROBIOLOGY—3 cr. (2 and 3) S, '71 and alternate years.
Honors option for Micro 404, admission by special arrangement.

MICRO 410—SOIL MICROBIOLOGY—3 cr. (2 and 3) S, '70 and alternate years.
The role of microorganisms in the decomposition of organic substances; transformation of nitrogen and mineral substances in the soil; interrelationships between higher plants and microorganisms; importance of microorganisms in soil fertility. Prerequisite: Micro 301.
Micro H410—Soil Microbiology—3 cr. (2 and 3) S, ’70 and alternate years.
Honors option for Micro 410, admission by special arrangement.

Micro 411—Pathogenic Bacteriology—3 cr. (2 and 3) S
A study of pathogenic bacteria, their morphology, cultural requirements and classification; diagnostic tests, methods of differentiation, and the diseases caused. Prerequisite: Micro 301.

Micro H411—Pathogenic Bacteriology—3 cr. (2 and 3) S
Honors option for Micro 411, admission by special arrangement.

Micro 412—Bacterial Physiology—4 cr. (3 and 3) S
A consideration of the cytology, physiology, metabolism, and genetics of bacteria. Included will be studies of growth and death, reproduction and mutation, nutrition and metabolic pathways, regulatory mechanisms, and effects of environment. Prerequisite: Micro 301, Organic Chemistry.

Micro H412—Bacterial Physiology—4 cr. (3 and 3) S
Honors option for Micro 412, admission by special arrangement.

Micro 413—Industrial Microbiology—3 cr. (2 and 3)
Microbial aspects of large scale processes for the production of foods, antibiotics, enzymes, fine chemicals, and beverages. Topics include strain selection, culture maintenance, biosynthetic pathways, continuous cultivation and production of single cell protein. Prerequisite: Micro 301.

Micro H413—Industrial Microbiology—3 cr. (2 and 3)
Honors option for Micro 413, admission by special arrangement.

Micro 414—Basic Immunology—3 cr. (2 and 3)
A consideration of the nature, production, and function of basic immune responses in animals. Procedures and mechanisms of antigen-antibody and other immune reactions. Prerequisite: Micro 301, Organic Chemistry.

Micro H414—Basic Immunology—3 cr. (2 and 3)
Honors option for Micro 414, admission by special arrangement.

Micro 415—Microbial Genetics—4 cr. (3 and 3)
The cytological basis of bacterial genetics; some molecular aspects; mutation and mutagenic agents; population changes; mechanisms of genetic transfers; bacterial viruses as genetic systems; episomes and plasmids. The genetics of certain fungi and of animal and plant viruses will also be considered. Prerequisite: Micro 301, Gen 302, Ch 224.

Micro H415—Microbial Genetics—4 cr. (3 and 3)
Honors option for Micro 415, admission by special arrangement.

Micro 416—Introductory Virology—3 cr. (3 and 0)
A general introduction to the field of virology, including animal, bacterial, and plant viruses. Topics will include nomenclature and classification, biochemical and biophysical characteristics, mechanisms of replication, chemotherapy, and techniques for isolation, assay and purification. Prerequisite: Micro 301.

Micro H416—Introductory Virology—3 cr. (3 and 0)
Honors option for Micro 416, admission by special arrangement.
Description of Courses

Micro 601—General Microbiology—4 cr. (3 and 3)
Micro 701—Advanced Bacteriology—4 cr. (2 and 6)
Micro 702—Dairy Microbiology—3 cr. (2 and 3)
Micro 704—Food Microbiology—3 cr. (2 and 3)
Micro 710—Soil Microbiology—3 cr. (2 and 3)
Micro 711—Pathogenic Bacteriology—3 cr. (2 and 3)
Micro 712—Bacterial Physiology—4 cr. (3 and 3)
Micro 713—Industrial Microbiology—3 cr. (2 and 3)
Micro 714—Basic Immunology—3 cr. (2 and 3)
Micro 715—Microbial Genetics—4 cr. (3 and 3)
Micro 716—Introductory Virology—3 cr. (3 and 0)
Micro 801—Bacterial Taxonomy—3 cr. (2 and 3)
Micro 802—Bacteriological Technic—4 cr. (2 and 6)
Micro 803—Special Problems in Microbiology—Credit to be arranged.
Micro 807—Seminar—1 cr. (1 and 0)
Micro 810—Soil Microbiology—3 cr. (2 and 3)
Micro 811—Bacterial Cytology and Physiology—4 cr. (4 and 0)
Micro 812—Bacterial Metabolism—3 cr. (3 and 0)
Micro 813—Bacterial Cytology and Physiology Laboratory—2 cr. (0 and 6)
Micro 814—Bacterial Metabolism Laboratory—2 cr. (0 and 6)
Micro 815—Advanced Microbial Genetics—3 cr. (3 and 0)
Micro 891—Research—Credit to be arranged.

MILITARY SCIENCE

Professor: Colonel George K. Maertens

MS 101—Fundamentals (Basic)—1 cr. (2 and 1)
A study of the evolution, organization, and mission of the Reserve Officers' Training Corps, individual weapons and marksmanship and the evolution of weapons and warfare. An introduction to First Aid, mass casualty treatment and Chemical Biological and Radiological Warfare and discussion seminar on current events. Laboratory periods provide training in basic drill, discipline, and leadership.
MS 102—THE NATIONAL DEFENSE (BASIC)—1 cr. (2 and 1)
A study of the organization of the Department of Defense and its role in national security. An introduction to the history, organization, equipment and mission of the United States Army, with detailed study of small units. A look at the principles and types of war and leadership traits. Current events seminar. Drill.

MS 201—AMERICAN MILITARY HISTORY (BASIC)—1 cr. (2 and 1)
A survey of American military history from the origins of the American Army to the present, with emphasis on the factors which led to the organizational, tactical, logistical, operational, strategic, social and similar patterns found in our present-day Army.

MS 202—INTRODUCTION TO OPERATIONS AND BASIC TACTICS AND MAP AND AERIAL PHOTOGRAPH READING (BASIC)—1 cr. (2 and 1)
An introduction to the organization, composition, and mission of infantry rifle squad and small infantry-tank teams. Interpretation and use of maps and aerial photographs in study and evaluation of terrain.

MS 300—MILITARY SCIENCE (ADVANCED)—6 cr. (ROTC 3, Elective 3)
Study and practical application of Leadership; Military Teaching Principles; Branches of the Army; Small Unit Tactics and Communications. Further training for duty as officers by application of principles of leadership in actual command during drills, parades, reviews, inspections and ceremonies. One three-hour elective or required normal academic curriculum subject, presented by appropriate department, approved by the PMS to be of value in furthering the professional qualifications of the student as a prospective commissioned officer in the United States Army. Students have the option of taking the elective course or Advanced ROTC during either semester but must participate in Leadership Laboratory Training throughout the school year.

Three class hours and one laboratory hour (presented by Military Science Department) each week in one semester and three class hours (elective presented by appropriate department) and one laboratory hour (presented by Military Science Department) each week in the other semester.

MS 400—MILITARY SCIENCE (ADVANCED)—6 cr. (ROTC 3, Elective 3)
A study of Military Operations; Logistics; Administrative Management; Military Law; Service Orientation; World Change and Military Implications; Internal Defense/Development; and Leadership Laboratory. One three-hour elective or required normal academic curriculum subject, presented by appropriate department, approved by the PMS to be of value in furthering the professional qualifications of the student as a prospective commissioned officer in the United States Army. Students have the option of taking the elective or Advanced ROTC during either semester but must participate in Leadership Laboratory Training throughout the school year.

Three class hours and two laboratory hours (presented by Military Science Department) each week in one semester and three class hours (elective presented by appropriate department) and two laboratory hours (presented by Military Science Department) each week in the other semester.
MUSIC

Associate Professor: J. H. Butler, Head
Assistant Professors: B. F. Cook, E. A. Freeman
Instructors: G. A. Benson, Edith B. Card, J. E. Jackson

Mus 151—Applied Music—1 cr. (1 and 0)
Individual study in performance medium (voice, piano, flute, oboe, clarinet, saxophone, bassoon, cornet, trumpet, French Horn, trombone, baritone, tuba, percussion). One hour-long private lesson each week, for which a minimum of four hours’ practice is required. The student is guided in a continuing advance of his technical and artistic proficiency, and is required to perform an appropriate solo in a student recital each semester. May be repeated for credit with departmental approval to allow for the study of differing performance media. Prerequisite: Consent of instructor, based on a qualifying audition.

Mus 152—Applied Music—1 cr. (1 and 0)
A continuation of Mus 151. Prerequisite: Mus 151.

Mus 310—Music Appreciation: Music in the Western World—3 cr. (3 and 0)
Designed to widen and deepen the student’s appreciation of his musical heritage through a study of the development of music in Western culture from the time of the early Christians to the present.

Mus 315—Music History—3 cr. (3 and 0)
The development of Western music from antiquity to 1750, emphasizing representative literature from various styles and periods.

Mus 316—Music History—3 cr. (3 and 0)
Continuation of Mus 315. Music from 1750 to present. Prerequisite: Mus 315.

Mus 361—Marching Band—1 cr. (0 and 3)
Ensembles: Devoted to the musical training of ensemble members through reading and rehearsal of appropriate music; public performances given periodically in addition to the minimum rehearsal time; may be repeated for credit, with a maximum of four hours of ensemble credit allowable toward a degree. Fall semester only. Prerequisite: Consent of director.

Mus 362—Concert Band—1 cr. (0 and 3)
Ensembles: Devoted to the musical training of ensemble members through reading and rehearsal of appropriate music; public performances given periodically in addition to the minimum rehearsal time; may be repeated for credit, with a maximum of four hours of ensemble credit allowable toward a degree. Spring semester only. Prerequisite: Consent of director.

Mus 363—Men’s Glee Club—1 cr. (0 and 3)
Ensembles: Devoted to the musical training of ensemble members through reading and rehearsal of appropriate music; public performances given periodically in addition to the minimum rehearsal time; may be repeated for credit, with a maximum of four hours of ensemble credit allowable toward a degree. Prerequisite: Consent of director.

* On leave.
Mus 364—Women’s Glee Club—1 cr. (0 and 3)
Ensembles: Devoted to the musical training of ensemble members through reading and rehearsal of appropriate music; public performances given periodically in addition to the minimum rehearsal time; may be repeated for credit, with a maximum of four hours of ensemble credit allowable toward a degree. Prerequisite: Consent of director.

Mus 365—University Chorus—1 cr. (0 and 3)
Ensembles: Devoted to the musical training of ensemble members through reading and rehearsal of appropriate music; public performances given periodically in addition to the minimum rehearsal time; may be repeated for credit, with a maximum of four hours of ensemble credit allowable toward a degree. Prerequisite: Consent of instructor.

Mus 400—Music in the Elementary School Classrooms—3 cr. (3 and 0)
Designed to give the teacher in the elementary school a familiarity with music suitable for use with children at the elementary level. Recordings of appropriate music, pre-band instruments, unison and part singing will be included. No previous training in music is required.

Mus 401—Methods and Materials in Elementary School Music—3 cr. (3 and 0)
Materials, methods, and techniques in elementary school. Prerequisite: Mus 400.

Mus 405—Music Theory—3 cr. (3 and 0)
The principles of notation, its symbols and abbreviations, major and minor scales, intervals and chords, measure, rhythm and tempo, and the terminology of music are the principal topics covered in this course.

Mus 406—Music Theory 3 cr. (3 and 0)
Continuation of Mus 405 with emphasis on sight singing, melodic dictation, and secondary chord structure. Prerequisite: Mus 405.

Mus 411—American Music: Music Appreciation—3 cr. (3 and 0)
Music in America from 1620 to the present. Indigenous and borrowed influences will be examined.

Nursing
(Associate Degree Program)
Assistant Professors: Dorothy C. Davenport, Aileen S. Prevost
Instructors: Edith G. Gunter, Esther B. Privette, Harriett E. Whitley

Nurs 101—Introduction to Nursing—6 cr. (3 and 9)
An introduction to nursing through historical concepts, interpersonal relations, health, hygiene, hospital community, basic nursing skills, asepsis, medications, assisting with diagnostic and therapeutic measures. Concurrent laboratory experiences are carefully selected.

Nurs 102—Acute Illness—Adult—6 cr. (2 and 12)
Built on the concepts of Nurs 101 with increasing depth to include—beginning understandings of body responses to illness. Carefully selected clinical experiences continue. Prerequisite: First semester courses in Nursing with C standing.
350 Description of Courses

NURS 104—MEDICAL-SURGICAL NURSING I—5 cr. (3 and 6)
A continuation of Nurs 102. It is concerned with nursing care of adult patients with long term illnesses and focuses on disruption of family living. Prerequisite: Second semester courses in Nursing with C standing.

NURS 105—INTEGRATED SCIENCE I—4 cr. (3 and 3)
A general course surveying chemistry, human anatomy, physiology, and microbiology, and emphasizing the physical and chemical bases for physiology.

NURS 106—INTEGRATED SCIENCE II—4 cr. (3 and 3)
Continuation of Nurs 105.

NURS 201—PSYCHODYNAMIC NURSING—5 cr. (3 and 6)
Designed to develop basic understandings and skills in the nursing care of patients with behavioral and anxiety problems. Lectures, discussions, field trips and clinical experiences are used concurrently. Prerequisite: Nurs 202 and Nurs 206 with C standing.

NURS 202—PEDIATRICS—5 cr. (3 and 6)
This course presents the nursing care of children from infancy to adolescence. It considers disease processes that cause deviations from normal through all stages of growth and development. Prerequisite: Nurs 104 with C standing.

NURS 204—MATERNAL AND NEWBORN CARE—5 cr. (3 and 6)
This course deals with prenatal, labor, delivery, postpartum care of the mother, and needs of the newborn infant. Prerequisite: Nurs 202 and Nurs 206 with C standing.

NURS 206—MEDICAL-SURGICAL NURSING II—6 cr. (3 and 9)
This is a continuation of Nurs 104. Emphasis is placed on the planning and executing care plans for groups of patients in conjunction with various coworkers present in hospital settings today. The student is introduced to her responsibilities as a graduate nurse. Prerequisite: Nurs 104 with C standing.

NURSING
(BACCALAUREATE DEGREE PROGRAM)

Professor: GERALDINE LABECKI, Director
Associate Professors: ELIZABETH J. HALL, ROSE A. GODFOUT
Assistant Professor: REGINA THOMPSON
Instructor: OPAL S. HIPPS
Lecturers: MARYLIN B. CHASSIE, JUANITA F. WOODS

NURS 207—DYNAMICS OF HUMAN RELATIONS—3 cr. (2 and 3) S
The purpose of this course is to further the student’s knowledge of behavioral influences and serves to introduce the student to the nurse’s role in interpersonal relationships; emphasis is placed on her role in the motivation of individuals toward health. Laboratory practice with adults in clinic settings, and with children attending pre-school agencies.

NURS 208—PROBLEM SOLVING IN NURSING—3 cr. (2 and 3)
Introduction to the concept of problem solving in nursing. Selected models are presented and analyzed. Relevant technical skills identified in the analysis are learned. Emphasis is on the creative approach to solving nursing problems and the utility of the technic to the solution. Laboratory experiences are with
patients in the Greenville Hospital System and in the classroom. Prerequisite: Successful completion of this course for all upper division courses in Nursing.

NURS 309—HUMAN VALUES IN NURSING—3 cr. (3 and 0)
The values guiding nursing theory and practice, including common human needs; the nature of man and his community.

NURS 310—PERSPECTIVES IN NURSING INTERVENTION—3 cr. (3 and 0)
Analysis of the decision making process used in making independent nursing judgments. Include planning, implementing and evaluation of nursing care.

NURS 311—NURSING DURING ALTERATIONS IN LIFE PATTERNS—4 cr. (1 and 9)
Guided experience and study in the ways people perceive and cope with change in life’s patterns; emphasis on the synthesis of knowledge from the arts and sciences as basis for deliberative nursing action. Includes hospital laboratory experience in care of mothers, children and adults.

NURS 312—NURSING OF THE ACUTE AND CHRONICALLY DISTRESSED—4 cr. (1 and 9)
Nursing concepts based on a broad patho-psycho-physiologic approach in understanding of changes in functions as a result of stress and disease. The study of nursing in agencies caring for the physically and mentally ill person.

NURS 313—THE PROMOTION OF HEALTH—3 cr. (2 and 3)
Teaching of health in the home and in agencies concerned with the prevention of illness and the improvement of health with nutrition as a positive factor.

NURS 314—NURSING IN THE HOME—3 cr. (2 and 3)
The dimensions of caring for the ill in the home; includes early detection, treatment, and the use of resources with emphasis on continuity of care.

NURS 415—NURSING AS A SOCIAL FORCE—3 cr. (3 and 0)
The role of professional nursing in the light of changes in the health systems. Individual and collective definitions of health. Comprehensive planning and community health.

NURS 417—INTENSIVE NURSING—4 cr. (1 and 9)
Nursing care in highly stressful situations. The dimensions of assisting individuals and families in coping with life-threatening experiences. Laboratory experiences such as the care of premature infants, patients with cardiac problems, and patients with marked regression.

NURS 419—THE MULTIPROBLEM FAMILY—3 cr. (2 and 3)
Focus is on the family as a unit of care. Use of the epidemiologic approach as a tool in the understanding of conditions influencing the family, such as social deprivation and malnutrition.

NURS 421—HISTORY AND PHILOSOPHY OF NURSING—3 cr. (3 and 0)
Analysis of the development of modern nursing. Emphasis will be placed on how the nursing profession articulates with society and the role of nurses as change agents. Consideration will be given to the legal and ethical implications in nursing practice.

NURS 422—CURRENT RESEARCH IN NURSING—3 cr. (3 and 0)
A study of approaches to problematic situations in nursing, with emphasis on interpretation of findings.
Nurs 425—Independent Study in Nursing—7 cr. (3 and 12)
Provides opportunity for students to focus on an in-depth study in an area of special concern in clinical nursing.

NUTRITION

Assistant Professors: L. Crook, D. M. Henricks, J. J. Jen
(See courses listed under Animal Science, Biochemistry, Dairy Science, Food Science, and Poultry Science)

Nutr 103—Principles of Nutrition—4 cr. (3 and 3)
Nutrition is discussed in relation to the requirement and role of nutrients in mammalian metabolism—nutrition and disease are emphasized. Laboratory exercises demonstrate nutrient assay methods and the importance of selected nutrients in mammalian diets.

Nutr 401—Fundamentals of Nutrition—3 cr. (3 and 0) F
Biochemical and physiological fundamentals of nutrition applicable to domestic animals and man. Considered are digestive processes, and absorption and metabolism of carbohydrates, lipids, proteins, water, minerals and vitamins. Energy metabolism and comparative anatomy and physiology of digestive systems are discussed.

Nutr 701—Fundamentals of Nutrition—3 cr. (3 and 0)
Nutr 851—Nutrition Seminar I—1 cr. (1 and 0)
Nutr 852—Nutrition Seminar II—1 cr. (1 and 0)
Nutr 891—Research—Credit to be arranged.
Nutr 991—Doctoral Research—Credit to be arranged.

PHILOSOPHY

Assistant Professors: R. B. Harris, J. L. McColloch, D. F. White, Jr.

Phil 201—Introduction to Philosophy—3 cr. (3 and 0)
An introduction to the basic issues involved in philosophical thinking, with special emphasis upon these issues as they occur in Greek philosophy. The systems of Plato and Aristotle will be considered in some detail.

Phil 202—Logic—3 cr. (3 and 0)
An introduction to the methods and techniques of logic and continuing to elementary symbolic logic.

Phil 303—Philosophy of Religion—3 cr. (3 and 0)
An analytical and critical consideration of the philosophical foundations of religion. Such topics as the existence of God, the problem of evil, theism and atheism, prayer, and immortality will be considered.

Phil 304—Introduction to Ethical Theory—3 cr. (3 and 0)
An examination of moral judgment; its concepts, criteria and relations to factual judgment. Classical theories and current issues are searched for an
ideal of the good man and the life we prize. Construction of a model theory of obligation, value, justice, and punishment is attempted.

**PHIL 305—AESTHETICS—3 cr. (3 and 0)**
A study of the function of art in human life along with a consideration of the various philosophical elements involved in art and art criticism. Various historical types of aesthetic theory will be considered. *Prerequisite:* Junior standing or permission of the instructor.

**PHIL 309—RELIGION OF THE FAR EAST—3 cr. (3 and 0)**

**PHIL 312—MODERN PHILOSOPHY—3 cr. (3 and 0)**
The development of the modern mind as seen in the Renaissance and Eighteenth Century philosophers. The writings of Hobbes, Locke, Spinoza, Leibniz, Hume, and Kant will be considered along with the development of Rationalism and Empiricism.

**PHIL 318—CONTEMPORARY PHILOSOPHY—3 cr. (3 and 0)**
A study of some of the recent schools and movements in philosophy. Pragmatism, Existentialism, Vitalism, Recent Realism, and some of the linguistic schools will be considered.

**PHIL 322—SYMBOLIC LOGIC—3 cr. (3 and 0)**
A consideration of the necessary logical structure of a very exact language in terms of modern relational logic. Quantification, Truth Functions, Propositional Functions, Properties of Relations, Arguments Involving Relations, and some non-formal logical systems will be considered. *Prerequisite:* Phil 302 or Math 205 or a computer programming course.

**PHIL 344—CURRENT ETHICAL THEORY—3 cr. (3 and 0)**
An examination of present trends in ethical and meta-ethical theory for their bearing upon the criteria of our judgments of human conduct and character and upon current moral issues. Selected topics from the logic, epistemology, and psychology of ethical judgment will be considered, with review of relevant journal literature. *Prerequisite:* Phil 304 or permission of the instructor.

**PHIL 422—MATHEMATICAL LOGIC—3 cr. (3 and 0)**
A detailed and rigorous study of a logical system as a foundation for mathematics. An analysis of basic concepts occurring in the foundations of mathematics. *Prerequisite:* Phil 322 or sufficient mathematical background.

**PHIL 425—PHILOSOPHY OF SCIENCE—3 cr. (3 and 0)**
A study of the presuppositions, categories, and implications of the physical and social sciences with special reference to the concepts of Space and Time, Matter, Causation, and Relativity. The logic of "scientific method" and the unity of the sciences are considered. *Prerequisite:* Junior standing and permission of the instructor.

**PHIL 825—SEMINAR IN PHILOSOPHY OF SCIENCE—3 cr. (3 and 0)**
PHYSICAL SCIENCE
(Jointly administered by the Chemistry and Physics Departments)

**Phy Sc 101—Physical Science I—4 cr. (3 and 2)**
An introduction to the physical sciences. Selected topics will be discussed to illustrate the structure and meaning of the physical sciences. Course cannot be taken for credit by students who have completed one year of a course in the physical science area.

**Phy Sc 102—Physical Science II—4 cr. (3 and 2)**
A continuation of Phy Sc 101. Course cannot be taken for credit by students who have completed one year of a course in the physical science area.

PHYSICS

**Professors:** L. D. Huff, M. J. Skove, E. P. Stillwell, H. E. Vogel, Head
**Associate Professors:** P. B. Burt, R. L. Chaplin, Jr., W. E. Gettys, J. L. Ging, H. W. Graben, A. L. Laskar, D. P. Miller, M. G. Miller, M. D. Sherrill, K. L. Wood
**Assistant Professors:** T. F. Collins,* J. A. Gilbreath, F. J. Keller, J. R. Manson, J. R. Ray, P. A. Steiner, R. C. Turner, C. W. Ulbrich

**Phys 101—Current Topics in Modern Physics—1 cr. (0 and 2)**
Demonstrations and lectures supplemented by slides and motion pictures on current topics in physics, such as superfluids, lasers, superconductors, elementary particles, etc., chosen from the fields of atomic, nuclear, solid state physics, and astrophysics. Several members of the staff will participate.

**Phys 122—Mechanics and Wave Phenomena—3 cr. (3 and 0)**
Vectors; laws of motion; rotation; vibratory and wave motion; mechanical properties of materials. **Prerequisite:** Registration in Math 205.

**Phys H122—Mechanics and Wave Phenomena—3 cr. (3 and 0)**
Honors section of Phys 122. Open by invitation only.

**Phys 132—General Physics for Physics Majors—3 cr. (3 and 0)**
Introduction to physical quantities, linear and rotational motion, conservation laws, gravitational and electric fields, and kinetic theory. **Prerequisite:** Registration in Math 205.

**Phys 201—General Physics—3 cr. (3 and 0)**
Motion; equilibrium; the conservation of momentum, mass and energy; vibrations; waves; temperature and heat. **Prerequisite:** Registration in Phys 203.

**Phys 202—General Physics—3 cr. (3 and 0)**
A continuation of Phys 201: Optics of lenses and mirrors; light waves; electric charges and currents, magnetism, electric and magnetic fields; properties of atomic particles; structure of atoms. **Prerequisite:** Phys 201 and registration in Phys 204.

**Phys 203—General Physics Laboratory—1 cr. (0 and 3)**
Experiments designed to test or exemplify the laws studied in Phys 201 and to introduce precision measuring instruments. **Prerequisite:** Registration in Phys 201.

---

* On leave.
Phys 204—General Physics Laboratory—1 cr. (0 and 3)
A continuation of Phys 203 using optical and electrical instruments. Prerequisite: Registration in Phys 202.

Phys H221—Thermal and Electrical Phenomena—3 cr. (3 and 0)
Thermal properties of matter; electric and magnetic fields; electric currents and circuits; motions of charged particles in fields. Prerequisite: Phys 122.

Phys 221—Thermal and Electrical Phenomena—3 cr. (3 and 0)
Honors section in Phys 221. Open by invitation only.

Phys 222—Optics and Modern Physics—3 cr. (3 and 0)
Theory of light waves and photons; optical instruments; relativity; atomic particles; nuclear physics. Prerequisite: Phys 221.

Phys H222—Optics and Modern Physics—3 cr. (3 and 0)
Honors section in Phys 222. Open by invitation only.

Phys 223—Electron Physics Laboratory—1 cr. (0 and 3)
An introduction to physical experimentation employing the Berkeley A laboratory course. Experiments are performed in acceleration and deflection of electrons, measurement of electron charge to mass ratio by helical motion and time of flight, oscillating systems involving capacitance, resistance and inductance, resonance, modulation, negative resistance and relaxation oscillations. Prerequisite: Registration in Phys 221 or 231.

Phys 224—Modern Physics Laboratory—1 cr. (0 and 3)
Continuation of Phys 223. Experiments in the areas of solid state, optical and modern physics. Experiments are performed on electrical carrier mobility in solids, minority carrier lifetime, transistor action, microwave optics, interference and diffraction, light polarizaton, gas laser optics, optical spectra, electron and X-ray diffraction, radioactive particle counting. Compton scattering of X-rays, radioactivity decay and Mossbauer effect. Prerequisite: Registration in Phys 222 or 232.

Phys 231—General Physics for Physics Majors II—3 cr. (3 and 0)
A continuation of Phys 132. An introduction to the magnetic field, electric circuits, wave motion, reflection, refraction, diffraction of waves, electromagnetic waves. Prerequisite: Phys 132, registration in Phys 223.

Phys 232—General Physics for Physics Majors III—3 cr. (3 and 0)
A continuation of Phys 231. An introduction to thermodynamics, relativity, particle and wave descriptions of matter and light. Includes a description of experiments which were crucial to recent developments in physics. Prerequisite: Phys 231, registration in Phys 224.

Phys 304—Descriptive Astronomy—3 cr. (3 and 0)
The properties of the planets and their satellites, their actual and apparent motions; the properties of stars and galaxies; current theories and speculations. Prerequisite: Phys 202, 222 or 232.

Phys 321—Mechanics I—3 cr. (3 and 0)
Statics; motions of particles and rigid bodies; vibratory motion; gravitation; properties of matter, flow of fluids. Prerequisite: Phys 221 or 231.
Phys 322—Mechanics II—3 cr. (3 and 0)
Dynamics of particles and of rigid bodies, Lagrangian and Hamiltonian formulations, vibrations of strings, wave propagation. Prerequisite: Phys 321 or permission of instructor.

Phys 325—Experimental Physics I—4 cr. (2 and 6)
Introduction to laboratory techniques, measurement of fundamental constants, and performance of some of the experiments (Stern-Gerlach, Zeeman, Photoelectric, specific charge of electrons and protons, etc.) which are crucial to the development of our present concepts of physics. Prerequisite: Phys 321 or equivalent or enrollment in Phys 321 or by permission of the instructor.

Phys 326—Experimental Physics II—4 cr. (2 and 6)
Continuation of Phys 325.

Phys 341—Electricity and Magnetism—3 cr. (3 and 0)
Electric potential and electrostatic fields; solutions of Laplace’s and Poisson’s equations; properties of dielectrics and of capacitors; electrostatic energy; current and treatment of circuit problems. Vector analysis is used throughout after introduction. Prerequisite: Phys 221 or 231.

Phys 401—Senior Thesis—3 cr. (1 and 6)
The senior thesis is a semi-original piece of work performed under the direction of a member of the physics staff. Theoretical fields available include relativity, statistical mechanics, nuclear physics and astrophysics. Experimental work may be done in the fields of X-ray diffraction elasticity, low-temperature thermal conductivity, super-conductivity, radiation damage in metals, and electron paramagnetic resonance. Prerequisite: At least three physics courses beyond General Physics.

Phys 404—Astrodynamics—3 cr. (3 and 0)
Astronomical coordinate systems, orbit determinations, multiple body problems, perturbations, non-gravitational and relativistic effects and observational theory. Special attention to problems of artificial satellites. Prerequisite: Phys 321.

Phys 432—Physical Optics and Introduction to Spectroscopy—3 cr. (3 and 0)
Theory and application of interference and diffraction phenomena, polarized light, magneto-optics and electro-optics. Introductory theory of spectroscopy. Prerequisite: Phys 222 or 232.

Phys 441—Electricity and Magnetism—3 cr. (3 and 0)
A continuation of Phys 341. Magnetic fields and energy; magnetic properties of materials; electromagnetic induction; A.C. circuit problems with vector methods and complex numbers; Maxwell’s field equations with applications. Prerequisite: Phys 341 or equivalent.

Phys 446—Solid State Physics—3 cr. (3 and 0)
An introductory treatment of the crystal structure of solids and the properties of solids which depend on crystal structure; free electron model of metals; band theory of solids; Brillouin zones, crystalline defects and diffusion. Prerequisite: Phys 222 or 232 or permission of instructor.
Phys 452—Introductory Nuclear Physics—3 cr. (3 and 0)
Various phases of nuclear physics including natural and induced radioactivity; properties of alpha, beta and gamma-rays; cosmic rays; nuclear energy levels and decay schemes; particle accelerators, fission, fusion and nuclear reactors. Prerequisite: Phys 222 or 232.

Phys 454—Nuclear Physics Laboratory—1 cr. (0 and 3)
Techniques and instruments used in detection and measurement of nuclear radiation. Experiments include half-life determination, absorption measurements, neutron activation, coincidence measurements, decay schemes, and gamma-ray spectroscopy. Prerequisite: Registration in Phys 452.

Phys 455—Quantum Physics I—3 cr. (3 and 0)
Discussion of solution of the Schroedinger equation for free particles, the hydrogen atom and the harmonic oscillator. Prerequisite: Phys 322 and 341 or permission of instructor.

Phys 456—Quantum Physics II—3 cr. (3 and 0)
Continuation of Physics 455. Application of principles of quantum mechanics as developed in Physics 455 to atomic, molecular, solid state and nuclear systems. Prerequisite: Phys 455.

Phys 460—Modern Physics for High School Teachers—3 cr. (3 and 0)
A study of later developments including the measurements of atomic particles. The formulation of new laws and the modifications of old ideas needed to describe the interactions of these particles.

Phys 465—Thermodynamics and Statistical Mechanics—3 cr. (3 and 0)
A study of temperature, development of the laws of thermodynamics and their application to thermodynamic systems. An introduction to low temperature physics is given. Prerequisite: Six hours of physics beyond Phys 222 or permission.

Phys 471—Electron Microscopy—3 cr. (2 and 3)
The theory and operation of the electron microscope. Magnetic lens theory. The technique of specimen mounting and the interpretation of electron micrographs and diffraction patterns. Each student may choose specimens from his major field. Prerequisite: General Physics, Math 206 and permission of instructor.

Phys 473—X-Ray Crystallography—3 cr. (2 and 3)
A study of crystal symmetry, elementary space group theory, diffraction of X-rays by electronic charge distribution. Experimental methods of optical goniometry, powder diffraction and single crystal techniques are used to obtain diffraction intensities from a simple crystalline solid and electron charge distribution is determined. Applications of X-ray diffraction to chemical, physical and metallurgical investigations are discussed.

Phys 621—Mechanics I—3 cr. (3 and 0)
Phys 622—Mechanics II—3 cr. (3 and 0)
Phys 625—Experimental Physics I—4 cr. (2 and 6)
Phys 626—Experimental Physics II—4 cr. (2 and 6)
Phys 641—Electricity and Magnetism—3 cr. (3 and 0)
**Description of Courses**

**Phys 704—Astrodynamics—3 cr. (3 and 0)**

**Phys 732—Physical Optics and Introduction to Spectroscopy—3 cr. (3 and 0)**

**Phys 741—Electricity and Magnetism—3 cr. (3 and 0)**

**Phys 746—Solid State Physics—3 cr. (3 and 0)**

**Phys 752—Introductory Nuclear Physics—3 cr. (3 and 0)**

**Phys 755—Quantum Physics I—3 cr. (3 and 0)**

**Phys 756—Quantum Physics II—3 cr. (3 and 0)**

**Phys 760—Modern Physics for High School Teachers—3 cr. (3 and 0)**

**Phys 765—Thermodynamics and Statistical Mechanics—3 cr. (3 and 0)**

**Phys 771—Electron Microscopy—3 cr. (2 and 3)**

**Phys 773—X-ray Crystallography—3 cr. (2 and 3)**

**Phys 801—Physics for High School Teachers I—3 cr. (3 and 0)**

**Phys 802—Physics for High School Teachers II—3 cr. (3 and 0)**

**Phys 804—Astronomy for High School Teachers—3 cr. (3 and 0)**

**Phys 811—Methods of Theoretical Physics I—3 cr. (3 and 0)**

**Phys 812—Methods of Theoretical Physics II—3 cr. (3 and 0)**

**Phys 813—Thermodynamics and Statistical Mechanics—3 cr. (3 and 0)**

**Phys 821—Classical Mechanics I—3 cr. (3 and 0)**

**Phys 822—Classical Mechanics II—3 cr. (3 and 0)**

**Phys 841—Electrodynamics I—3 cr. (3 and 0)**

**Phys 842—Electrodynamics II—3 cr. (3 and 0)**

**Phys 845—Solid State I—3 cr. (3 and 0)**

**Phys 846—Solid State II—3 cr. (3 and 0)**

**Phys 853—Nuclear Physics I—3 cr. (3 and 0)**

**Phys 854—Nuclear Physics II—3 cr. (3 and 0)**

**Phys 856—Crystallography—3 cr. (3 and 0)**

**Phys 875—Seminar in Contemporary Physics—1 or 2 or 3 cr. (1 or 2 or 3 and 0)**

**Phys 885—Colloquium—1 cr. (1 and 0)**

**Phys 891—Research—Credit to be arranged.**

**Phys 922—Hydrodynamics—3 cr. (3 and 0)**

**Phys 951—Quantum Mechanics I—3 cr. (3 and 0)**

**Phys 952—Quantum Mechanics II—3 cr. (3 and 0)**

**Phys 955—Advanced Modern Physics I—3 cr. (3 and 0)**

**Phys 956—Advanced Modern Physics II—3 cr. (3 and 0)**

**Phys 966—Relativity—3 cr. (3 and 0)**

**Phys 991—Doctoral Research and Dissertation—Credit to be arranged.**
PLANT PATHOLOGY

Professor: W. M. Epps, Head
Associate Professors: L. W. Baxter, J. E. Halpin, G. C. Kingsland, W. Witcher
Assistant Professors: O. W. Barnett, E. I. Zehr
Lecturer: W. W. Dowler*

PL PA 401—PLANT PATHOLOGY—3 cr. (2 and 3) F, S
The principles of the interrelationships between plant pathogens, their hosts, and the environment. Economically important plant diseases are used to illustrate these principles and the application of these principles to disease control. Prerequisite: Bot 101.

PL PA H401—PLANT PATHOLOGY—3 cr. (2 and 3) F, S
Honors option for PL Pa 401, admission by special arrangement.

PL PA 405—FOREST PATHOLOGY—3 cr. (2 and 3) F
Principles of plant pathology as related to forest tree diseases; casual agents and their effects on the suspect; prevention and control and minimizing losses; relation of disease control to silviculture, management, and forest products utilization. Prerequisite: Bot 101 and Bot 352 or permission of instructor.

PL PA H405—FORESTRY PATHOLOGY—3 cr. (2 and 3) F
Honors option for PL Pa 405, admission by special arrangement.

PL PA 456—PLANT VIROLOGY—3 cr. (3 and 0) S, '72 and alternate years
Plant viruses with emphasis on their morphology, biochemistry, purification and transmission; symptoms resulting from virus infection; virus-vector relationships; and serological procedures. The importance and control of plant virus diseases will be discussed. Prerequisite: Bot 101.

PL PA H456—PLANT VIROLOGY—3 cr. (3 and 0) S, '72 and alternate years
Honors option for PL Pa 456, admission by special arrangement.

PL PA 458—PLANT PARASITIC NEMATODES—3 cr. (2 and 3) F, '70 and alternate years.
Morphology and taxonomy of stylet bearing nematodes and their relationship with plant diseases. Prerequisite: Bot 101 and Zool 101 and 103.

PL PA H458—PLANT PARASITIC NEMATODES—3 cr. (2 and 3) F, '70 and alternate years.
Honors option for PL Pa 458, admission by special arrangement.

PL PA 701—PLANT PATHOLOGY—3 cr. (2 and 3)
PL PA 705—FOREST PATHOLOGY—3 cr. (2 and 3)

PL PA 756—PLANT VIROLOGY—3 cr. (3 and 0)

PL PA 758—PLANT PARASITIC NEMATODES—3 cr. (2 and 3)

PL PA 802—CONTROL OF PLANT DISEASES—3 cr. (3 and 0)

PL PA 803—PLANT PATHOLOGY—3 cr. (2 and 3)

PL PA 804—PHYSIOLOGICAL PLANT PATHOLOGY—3 cr. (3 and 0)

PL PA 805—SPECIAL PROBLEMS IN PLANT PATHOLOGY—Credit to be arranged.

* On leave.
Pl Pa 807—Seminar—1 cr. (1 and 0)

Pl Pa 891—Research—Credit to be arranged.

Pl Pa 991—Doctoral Research—Credit to be arranged.

POLITICAL SCIENCE

Associate Professor: J. E. Tuttle
Assistant Professors: W. H. Owens, Jr., J. W. Witt
Instructors: R. A. Fredland, M. W. Slann

Pol Sc 101—Introduction to Political Science I, American Government—3 cr. (3 and 0)
A general introduction to public administration, political behavior, and public law, with a concentrated treatment of American institutions. (Formerly Pol Sc 202.)

Pol Sc 201—Introduction to Political Science II—3 cr. (3 and 0)
A basic introduction to the study, analysis, scope, and sources of government. Emphasis is given to the comparative institutions of government, the international relations of government, the theoretical conceptions man has entertained about government, and analysis of the ways in which man has behaved in response to government. Prerequisite: Pol Sc 101 (or 202 or 301) or permission of instructor.

Pol Sc 301—American Government and Political Parties—3 cr. (3 and 0)
The Constitution: powers and functions of the governmental activities; political parties and elections. Not open to those who have completed Pol Sc 101 or 202.

Pol Sc 302—State and Local Government—3 cr. (3 and 0)
The structural features, functions, and legislative, executive and judicial processes of American state and local governments.

Pol Sc 321—General Public Administration—3 cr. (3 and 0)
An introduction to public administration including the elements of organization, personnel and financial management, and administrative law and administrative responsibility. Prerequisite: Pol Sc 101 (or 202 or 301) and 201.

Pol Sc 331—Constitutional Development of the United States—3 cr. (3 and 0)
The origin and growth of the Constitution of the United States. Prerequisite: Pol Sc 101 (or 201 or 202).

Pol Sc 341—Political Behavior—3 cr. (2 and 3)
An introduction to behavioral methods. Identification of regularities in the type, degree, and direction of political participation. Laboratory training and field work in interviewing. Prerequisite: Junior standing and permission of instructor.

Pol Sc 351—Classical Political Thought—3 cr. (3 and 0)
Political philosophy from the pre-Socratic period to Machiavelli. Prerequisite: Pol Sc 101 (or 202 or 301) and 201.
POL Sc 352—Modern Political Thought—3 cr. (3 and 0)
The early theories of the nation state in the sixteenth century and the major
political thinkers, problems and movements through the twentieth century.
Prerequisite: Pol Sc 101 (or 202 or 301) and 201.

POL Sc 361—International Politics—3 cr. (3 and 0)
An introduction to foreign policy, international law, and international organisms. Prerequisite: Pol Sc 101 (or 202 or 301) and 201.

POL Sc 371—Comparative European Governments I; Constitutional Systems—3 cr. (3 and 0)
Major emphasis on the United Kingdom, France, Germany, and the U.S.S.R.,
with brief attention given to Italy and Switzerland. Current methods of
comparison will be studied and applied to the formal and informal functioning
of these governments. Prerequisite: Pol Sc 201, 202.

POL Sc 372—Comparative European Government II; Totalitarian Systems—3 cr. (3 and 0)
A continuation of Pol Sc 371. This course will deal specifically with the
Soviet Union as an example of totalitarian political systems, with references
made to Nazi Germany and the present Eastern European political systems.
Prerequisite: Pol Sc 101 (or 202 or 301) and 201.

POL Sc 403—Legislative Process—3 cr. (3 and 0)
Individual behavior and the decision-making process within legislatures;
legislative functions; the relationship of legislatures to the Executive and other
entities in the political system. Prerequisite: Pol Sc 101, 201.

POL Sc 409—Directed Study in American Institutions—3 cr. (3 and 0)
Supervised reading and/or research in selected areas of American govern-
ment. Prerequisite: 18 semester hours in political science and permission of
the instructor.

POL Sc 432—American Constitutional Law I—3 cr. (3 and 0)
A brief introduction to the judicial process followed by a detailed exami-
nation of leading cases pertaining to the Judiciary, the Congress, the Presi-
dency, and the federal system. Prerequisite: Pol Sc 101 (or 202 or 301), 201,
and preferably 331.

POL Sc 433—American Constitutional Law II—3 cr. (3 and 0)
An examination of the relationship of the individual to his government;
focusing on the safeguards of liberty and property including freedoms of speech,
press and religion, and criminal procedure. Prerequisite: Pol Sc 101 (or 202
or 301), 201, and preferably 331.

POL Sc 434—The Judicial Process and Jurisprudence—3 cr. (3 and 0)
Courts as political subsystems; judicial decision-making; the development
of public policy through the judicial process; theories of law and jurisprudence.
Prerequisite: Pol Sc 101, 201.

POL Sc 442—Political Parties and Politics—3 cr. (3 and 0)
A study of the historical development of political parties, and the role they
play in the organization and functions of our national government, and the
influence of politics in policy making. Prerequisite: Pol Sc 101 (or 202 or
301) and 201.
POL SC 443—Public Opinion and Propaganda—3 cr. (3 and 0)
This course examines the nature of public opinion, its social and political context, the social-psychological processes basic to it, the dynamics of its formation and change and its measurement. Prerequisite: Pol Sc 341, IM 410, or permission of the instructor.

POL SC 462—International Organizations—3 cr. (3 and 0)
Emphasis on international organizations. Analysis of current problems and proposed solution. Prerequisite: Pol Sc 101 (or 202 or 301) and 201.

POL SC 463—United States Foreign Policy—3 cr. (3 and 0)
Focus on foreign policy in its historical perspective, examining the decision-making process in foreign policy; evaluates contemporary American capabilities, and analyzes specific issues. Prerequisite: Pol Sc 101 (or 202 or 301) and 201.

POL SC 464—International Law—3 cr. (3 and 0)
An examination of cases and other legal materials on the nature of international law, recognition of states, succession, the territory of states, and nationality. Prerequisite: Pol Sc 101, 201.

POL SC 469—Proseminar in International Studies—3 cr. (3 and 0)
Assessment of various theories and methods employed in the systematic study of International Relations; class discussions, readings, and reports. Required of International Studies majors. Prerequisite: For International Studies majors, senior standing and 24 hours toward the major; for others, Pol Sc 101, 201, and permission of the instructor.

POL SC 473—Politics of the Developing Nations—3 cr. (3 and 0)
A comparative analysis of the political and social problems of the developing nations of Africa, the Near East, East Asia and Latin America. Prerequisite: Pol Sc 101 and 201 or permission of the instructor.

POL SC 732—American Constitutional Law I—3 cr. (3 and 0)

POL SC 762—International Organizations—3 cr. (3 and 0)

POULTRY SCIENCE

Professors: B. D. Barnett, Head; M. A. Boone
Associate Professors: J. B. Cooper, D. E. Turk
Assistant Professors: J. E. Jones, J. Solis

PS 201—Introduction to Poultry Science—3 cr. (2 and 3) F, S
The application of the physical and biological sciences to modern poultry production and utilization. A study of the anatomy and physiology of the fowl and the economic aspects of poultry enterprises.

PS 354—Poultry Breeding—3 cr. (2 and 3) S, ’72 and alternate years.
The application of genetics to the improvement of poultry and a study of the physiology related to breeding. Prerequisite: Gen 302.

PS 355—Poultry Products Grading and Technology—3 cr. (2 and 3) F, ’71 and alternate years.
Factors important in the quality of poultry products will be considered. The effects of production, handling, packaging and storage on consumer acceptability will be discussed. Quality evaluation will be considered from the standpoint of tenderness, flavor, microbiology, and USDA grades.
PS 356—Incubation and Brooding—2 cr. (2 and 0)  
F, ’70 and alternate years.  
Principles and practice of incubation of chicken and turkey eggs with consideration of hatchery management and embryology of the chick.

PS 358—Incubation and Brooding Laboratory—1 cr. (0 and 3)  
F, ’70 and alternate years.  
Demonstration of subjects covered in PS 356. Must be concurrently enrolled in PS 356.

PS 401—Animal Environmental Technology—2 cr. (2 and 0)  
F, ’70 and alternate years.  
Demonstration of measurement and control of certain environmental factors with emphasis on light, temperature, and atmospheric gases. Demonstration of physiological response of animals to different environments. All domestic livestock will be considered.

PS 403—Animal Environmental Technology Laboratory—1 cr. (0 and 3)  
F, ’70 and alternate years.  
Demonstration of subjects covered in PS 401.

PS 451—Poultry Nutrition—2 cr. (2 and 0)  
S, ’72 and alternate years.  
Nutrient requirements of the various classes of poultry and the use of feedstuffs in meeting these needs. Prerequisite: An Sc 301.

PS 458—Avian Microbiology and Parasitology—4 cr. (3 and 3)  
F, ’70 and alternate years.  
Agents causing poultry diseases; the diagnosis, prevention, and treatment of specific diseases and their economic and public health significance.

PS 460—Seminar—2 cr. (2 and 0)  
S, ’71 and alternate years.  
Current research reported in journals covering the various areas of poultry science. Students will practice scientific writing and interpretation of technical material for lay readers. Prerequisite: Permission of instructor.

PS 654—Poultry Breeding—3 cr. (2 and 3)

PS 655—Poultry Products Grading and Technology—3 cr. (2 and 3)

PS 656—Incubation and Brooding—2 cr. (2 and 0)

PS 658—Incubation and Brooding Laboratory—1 cr. (0 and 3)

PS 701—Animal Environmental Technology—2 cr. (2 and 0)

PS 703—Animal Environmental Technology Laboratory—1 cr. (0 and 3)

PS 751—Poultry Nutrition—2 cr. (2 and 0)

PS 758—Avian Microbiology and Parasitology—4 cr. (3 and 3)

PS 760—Seminar—2 cr. (2 and 0)

PS 801—Poultry Nutrition and Metabolism—3 cr. (2 and 3)

PS 804—Poultry Pathology—3 cr. (1 and 6)

PS 805—Seminar—1 cr. (1 and 0)

PS 891—Research—Credit to be arranged.
PSYCHOLOGY

Associate Professors: J. D. Davenport, E. E. Waite, Jr.
Assistant Professors: C. B. Caffrey, S. N. Cole, W. B. Turpin
Instructor: R. Lawson
Lecturer: D. K. Freeman, Jr.

PSYCH 201—General Psychology—3 cr. (3 and 0)
A survey of the field of psychology: development and adjustment, motivation, emotions, intelligence, personality, the sensory experiences, perception, learning, thinking, imagination and mental hygiene.

PSYCH 202—Experimental Psychology I—3 cr. (2 and 2)
This course places emphasis on theoretical and practical problems of reporting research. Required of psychology majors (and minors after May, 1969). Not open to those who have had Psych 362. Prerequisite: Psych 201.

PSYCH 211—Growth and Development—3 cr. (3 and 0)
The course will focus on changes in personal and social behavior throughout the human life span. Prerequisite: Psych 201.

PSYCH 302—Social Psychology—3 cr. (3 and 0)
The interaction between the individual and the forces of society: the classical theories, the psychobiological bases of human behavior, the sociocultural bases of behavior, types of human behavior, overt and covert experiences, symbolism, personality and social interaction. Prerequisite: Psych 201.

PSYCH 303—The Psychology of Adjustment—3 cr. (3 and 0)
A course in personal adjustment dealing with the appropriate and inappropriate reactions to frustration and stress, including ways of handling conflicts, anxiety, fears, and the promotion of personal emotional adjustment. Prerequisite: Psych 201, 202, or permission of instructor. Not open to psychology majors.

PSYCH 321—Developmental Psychology—3 cr. (3 and 0)
A survey of current theory and research concerned with the psychological aspects of human growth and development. Prerequisite: Psych 201, 202.

PSYCH 331—Theories of Learning—3 cr. (3 and 0)
An historical approach to the study of the major modern learning theories. Prerequisite: Psych 201, 202.

PSYCH 341—Physiological Psychology—3 cr. (3 and 0)
The study of human neuroatomy, with an emphasis on the functions of the nervous system. Treats of the biological bases of behavior in both normal and abnormal dimensions.

PSYCH 351—History and Systems of Psychology—3 cr. (3 and 0)
A treatment of the science of psychology as understood in the light of the ideas of men who have been responsible for its development. Prerequisite: Psych 201, 202.

PSYCH 361—Motivation—3 cr. (3 and 0)
The various aspects of motivation are considered through a study of contributions of biologists, sociologists, anthropologists, and psychologists. The orientation is empirical rather than theoretical, with emphasis on pertinent research and research methods, and on the measurement of motives. Prerequisite: Psych 201, 202.
PSYCH 363—EXPERIMENTAL PSYCHOLOGY II—4 cr. (3 and 3)
A continuation of Experimental Psychology I, with a stress on the carrying
out of original research in the scientific study of human and animal behavior.
Laboratory periods stress the refinement of techniques and the execution of
research in a guided setting. **Prerequisite:** Psych 201, 202.

PSYCH 401—APPLIED PSYCHOLOGY—3 cr. (3 and 0)
A study of the concepts of psychology as applied to individual, business, and
professional behavior. **Prerequisite:** Psych 201.

PSYCH 402—ABNORMAL PSYCHOLOGY—3 cr. (3 and 0)
Mental and emotional disorders: theories of causation and problems of treat-
ment; special phenomena of consciousness and unconsciousness, e.g., dreams,
dissociation, hypnosis; analysis of pathological behavior: alcoholism, drug addic-
tion, suicide, criminality, neurosis, and psychoneurosis. **Prerequisite:** Psych 201.

PSYCH 403—PERSONALITY—3 cr. (3 and 0)
An analysis of the theories of personality: Freud, Adler, Jung, Sullivan,
Horney, Allport, *et al.* **Prerequisite:** Psych 201, 202 and permission of instructor.

PSYCH 422—CROSS CULTURAL STUDIES IN DEVELOPMENTAL PSYCHOLOGY—
3 cr. (3 and 0)
A comparative study of the development of human behavior and personality
emphasizing the contributions of learning theory, psychoanalysis, role theory,
and cultural anthropology. **Prerequisite:** Psych 201, 202, 321, 331 or 361, 402
or 403, or permission of the instructor.

PSYCH 432—CONDITIONING AND LEARNING—3 cr. (3 and 0)
A comprehensive study of the principles of learning. Includes classical,
instrumental, and operant conditioning paradigms. A detailed study of rein-
forcement, acquisition, generalization, discrimination, and extinction of behav-
ioral responses. **Prerequisite:** Psych 201, 202, 331, Math 203.

PSYCH 442—PSYCHOLOGY OF SENSATION AND PERCEPTION—3 cr. (3 and 0)
Current experimental findings in the field of perception and sensation, along
with theories of vision, audition, kinesthesis, vestibular function, the skin and
chemical senses and theories of perception. **Prerequisite:** Psych 201, 202 and
341.

PSYCH 471—PSYCHOMETRY—3 cr. (3 and 0)
An introduction to the theory of psychological testing. Emphasis is on
essentials of testing with experience in administering, scoring and interpreting
test, including those of scholastic achievement, mental ability, scholastic apti-
tude, interests and personality. **Prerequisite:** Nine hours of psychology includ-
ing 201, 202).

PSYCH 490—SPECIAL TOPICS IN PSYCHIATRY AND NEUROLOGY, 3 cr. (3 and 0)
Selected aspects of medical sciences related to clinical psychology—psychi-
atrie examination and nosology, central nervous system pathology, psycho-
pharmacology, child psychiatry, etc.—designed to assist the psychologist in
working effectively with representatives of these disciplines. **Prerequisite:**
Psych 201, 202, 402, 403 and/or permission of the instructor.
366 *Description of Courses*

**Psych 498—SEMINAR IN CURRENT RESEARCH IN PSYCHOLOGY—2 cr.** (2 and 0)
Reading and discussion of research being published in current psychological and related journals. For advanced psychology students. *Prerequisite: Psych 201, 202, and 363 or permission of the instructor.*

**RECREATION AND PARK ADMINISTRATION**

*Associate Professor: H. Brantley, Head*

*Assistant Professor: R. M. Frye, L. W. Gahan, C. E. Howard, M. O. Keith, J. R. Sellers, J. L. Stevenson, Sarah A. Walker*

**RPA 101—INTRODUCTION TO COMMUNITY RECREATION—3 cr. (3 and 0)**
History and foundations of Community Recreation in public, private and commercial settings; job opportunities, specifications and demands.

**RPA 102—HISTORY AND PRINCIPLES OF OUTDOOR RECREATION—3 cr.** (3 and 0)
Includes the study of the history, present status and the principles of operation of parks and park systems in America; Outdoor Education Programs; implications for continued growth of this leisure phenomenon.

**RPA 202—MANAGEMENT OF AQUATIC FACILITIES—2 cr. (2 and 0)**
Includes the organization of water safety programs and the maintenance of swimming pools and lake front facilities. Also trends and growth patterns of water-based recreation.

**RPA 203—PERSONAL AND COMMUNITY HEALTH—3 cr. (3 and 0)**
The course deals with health problems, disease prevention and control, school health practices, public health administration, and other health information which may enable one to live intelligently in today's complex society.

**RPA 204—SPORTS IN RECREATION—3 cr. (2 and 3)**
Administrative and supervisory skills indigenous to public and/or private agency athletic programs are considered. Group instruction is given in individual and team sports and officiating techniques applicable to these sports are taught.

**RPA 205—PROGRAM PLANNING FOR RECREATION—3 cr. (2 and 3)**
Course includes fields of activity available to participants; principles and methods of program development; utilization of time-blocks and facilities. *Formerly RPA 303.* *Prerequisite: Junior standing.*

**RPA 302—CAMP ORGANIZATION AND ADMINISTRATION—3 cr. (2 and 3)**
Surveys the development and trends of camping in America. Considers programming for the operations of agency and private camps. Enables student to master the techniques of group living. Laboratory offers practical experience in camp craft including trips and outdoor cooking.

**RPA 304—RECREATION IN MODERN SOCIETY—3 cr. (3 and 0)**
An historical study of the growth of leisure with special attention given to the utilization of community resources for recreation.

**RPA 305—PHYSICAL ASPECTS OF SPORTS IN RECREATION—3 cr. (2 and 3)**
The course considers the physiology of exercise as it relates to safety in recreational sports programs, the practice of first aid, and the treatment of athletic injuries.
RPA 306—Principles of Outdoor Education—3 cr. (3 and 0)
A study of the development of outdoor education in public, private and professional agencies with special emphasis on schools and park and recreation departments. Attention will be focused on our National land problems and on land needs for tomorrow.

RPA 307—Park Maintenance and Operation—4 cr. (3 and 3)
Maintenance techniques and materials, interpretive programs, job planning and scheduling, problems of overuse and preventive maintenance are included. (Formerly RPA 401.)

RPA 308—Methods and Techniques of Recreation Leadership—3 cr. (3 and 0)
Considers characteristics of the several levels of recreation leadership with special emphasis on supervision. Examination is made of the Group Processes. Also includes a study of community resources for leadership in specialized program areas.

RPA 402—Recreation Administration—3 cr. (3 and 0)
An analysis of the internal organization of a recreation department dealing with finances and accounting; records and reports; publicity and public relations; state and federal legislation; staff organization; coordination of community resources. Prerequisite: Senior standing.

RPA 403—Facility and Site Planning—3 cr. (2 and 3)
Trends in recreation facility development, planning principles involved in design of recreation buildings, and orientation of facilities to given area are integrated into sound planning programs. Prerequisite: RPA 307 or permission of instructor.

RPA 404—Methods of Recreation Research—3 cr. (3 and 0)
An analysis of the principal methods of recreation research; the development of experiments; use of questionnaires; research problem under the guidance of the instructor is developed. Prerequisite: Senior standing and Ed 491.

RPA 405—Field Training in Recreation—8 cr.
The student, in a ten-week program, has the opportunity to observe recreation programs in operation. He will also have responsibilities of organizing and conducting activities under supervision. Maintenance and operation of facilities will be observed and practiced. Total of 360 hours required. Prerequisite: Senior standing.

RPA 406—Recreation for the Ill and Handicapped—3 cr. (3 and 0)
Surveys the recreational opportunities and benefits available to the ill and handicapped citizens. Designed to provide the student with an awareness of the role of the professional recreator in serving the needs of such special groups as the mentally retarded, cerebral palsied, emotionally disturbed—institutionalized, hospitalized, etc. Particular emphasis will be given to program development applicable to each specific situation.

RPA 408—The Application of Recreation Therapy—3 cr. (3 and 0)
The study of the responsibility and role of the recreator as a member of the therapeutic team.
Description of Courses

RELIGION

Assistant Professors: R. B. Harris, D. F. White, Jr.

REL 301—The Old Testament—3 cr. (3 and 0)
A survey of books of the Old Testament with special consideration given to the development of the concepts, institutions, and theology of the ancient Hebrews.

REL 302—A Survey of New Testament Literature—3 cr. (3 and 0)
A study of the books of the New Testament from the standpoint of their occasion, content, literary form and basic theology.

REL 306—Religions of the West—3 cr. (3 and 0)
A study of the origin, evolution, and contemporary status of Judaism, Christianity, and Islam. Prerequisite: Junior standing.

REL 309—Religions of the Far East—3 cr. (3 and 0)
A study of the origin, evolution, and contemporary status of Hinduism, Buddhism, Confucianism, and Taoism. Prerequisite: Junior standing.

RURAL SOCIOLOGY

Professor: W. J. Lanham, Head
Associate Professor: V. A. Boyd

RS 301—Rural Sociology—3 cr. (3 and 0) F, S
A study of human social relationships as influenced by life in the open country and in small towns and villages including considerations of the rural population, rural social institutions, processes of change in agricultural technology, and community area planning and development.

RS 359—The Community—3 cr. (3 and 0) F
An examination of the sociological aspects of contemporary communities and of their growth and development. The structural relations of social class, status and power and the relationships among social institutions within the community are examined. Emphasis is placed on the organization and development of communities in a constantly changing environment.

RS 461—Rural Leadership—3 cr. (3 and 0) S
A consideration of the social and psychological factors involved in leadership including an examination and analysis of characteristics of the successful leader. Particular attention is paid to the role of the leader in the process of economic and social development of rural communities and small towns.

RS 650—The Community—3 cr. (3 and 0)

RS 761—Rural Leadership—3 cr. (3 and 0)

RS 801—Rural Social Systems—3 cr. (3 and 0)

RUSSIAN

Lecturer: Ludmila A. Savitsky

Russ 101—Elementary Russian—3 cr. (3 and 1)
Training in pronunciation, grammatical forms, and syntax with a view of giving the student the fundamentals necessary to read simple Russian texts.
Three hours a week classroom instruction and one hour a week in the language laboratory.

**Russ 102—Elementary Russian**—3 cr. (3 and 1)
A continuation of Russ 101; three hours a week classroom instruction and one hour a week in the language laboratory.

**Russ 201—Intermediate Russian**—3 cr. (3 and 1)
The reading of simple Russian prose; a review of grammar and syntax. Drill on vocabulary and idiom. Three hours a week classroom instruction and one hour a week in the language laboratory. **Prerequisite:** Russ 101 and 102.

**Russ 202—Intermediate Russian**—3 cr. (3 and 0)
A continuation of Russ 201.

---

**SOCIETY**

**Professor:** F. A. Burtner
**Assistant Professors:** W. C. Capel, Jr.,* W. B. Horton, Jr., R. J. Knapp
**Instructors:** K. D. Birtman, J. L. DeGregory, J. R. Doggett

**Soc 201—Introductory Sociology**—3 cr. (3 and 0)
The basic principles of sociology: culture, biological factors, the influence of geographical environment, human nature, group life, social stratification, communities, social institutions and social change. **Prerequisite:** Sophomore standing.

**Soc 202—Social Problems**—3 cr. (3 and 0)
A survey of the major social problems, including problems of industry, education, religion, disease and public health, poverty, dependency and factors affecting social adjustment. Required of all students presenting Sociology as the primary or secondary field of concentration. **Prerequisite:** Soc 201.

**Soc 311—The Family**—3 cr. (3 and 0)
The family as one of the basic institutions of society. The history of the family, and a study of its functions in early and modern social structures. A comparative study of family life in other cultures is made. **Prerequisite:** Soc 201, 202.

**Soc 321—Cultural Anthropology**—3 cr. (3 and 0)
Recent and contemporary man, as a social and culture-bearing animal, with emphasis on the constants and variants in human behavior involved in technology, social relations, language, religion, art, and other aspects of cultures. **Prerequisite:** Soc 201, 202.

**Soc 322—Cultural Anthropology**—3 cr. (3 and 0)
A continuation of Sociology 321. **Prerequisite:** Soc 321.

**Soc 324—Social and Cultural Change**—3 cr. (3 and 0)
An examination of theory and research on the processes of change; factors inducing or inhibiting change; the character, mechanisms, rate, extent, direction, and relative stabilization of change at different levels of social phenomena. **Prerequisite:** Soc 201, 202.

---

* On leave.
Soc 331—Urban Sociology—3 cr. (3 and 0)
A survey of the history and development of modern urban organization; rise of the city; problems of modern urban life. Prerequisite: Soc 201, 202 (for Sociology majors and minors).

Soc 341—Population Analysis—3 cr. (3 and 0)

Soc 351—Industrial Sociology—3 cr. (3 and 0)
Industry as a social organization; the factory as a social system; personality in industrial relations; power groupings within industry; and industry and the community. Prerequisite: Soc 201 and permission of the instructor.

Soc 361—Collective Behavior—3 cr. (3 and 0)
Examination of the nature, development and consequences of human behavior in situations where usual social norms and behavior do not apply. Particular attention to such collective behavior phenomena as crowds, mobs, mass, cults, publics, and the initial states of social movements. Prerequisite: Soc 201, 202.

Soc 371—Research Methods—3 cr. (3 and 0)
Analysis of scientific methods in social research and consideration of various techniques, methodological approaches and research designs. Prerequisite: Soc 201, 202, Math 203.

Soc 381—Society and Socialization—3 cr. (3 and 0)
The relationship between social structure and personality. Prerequisite: Soc 201, 202.

Soc 391—Sociology of Deviant Behavior—3 cr. (3 and 0)
Analysis of advanced theory and research on the social processes by which behavior becomes defined as deviant, the conditions promoting such behavior, and the career patterns of deviant persons. Prerequisite: Soc 201, 202.

Soc 411—Classical Sociological Theory—3 cr. (3 and 0)
A survey of sociological theory from Comte to Durkheim. Required of all sociology majors. Prerequisite: 9 semester hours in sociology.

Soc 421—Contemporary Sociological Theory—3 cr. (3 and 0)
A survey of sociological theory from Durkheim to the present. Required of all sociology majors. Prerequisite: Soc 201, 202, 411.

Soc 431—Complex Organizations—3 cr. (3 and 0)
An examination and comparison of theories of formal organization; and analysis of the structure and function of specific organizations illustrating various theoretical approaches. Prerequisite: Soc 201, 202.

Soc 441—Social Stratification—3 cr. (3 and 0)
Analysis of social structure in terms of class, status, prestige, rank and function. Attention is given to the social role of the elite, bureaucracies, the professional, and middle classes. Prerequisite: Soc 201, 202.

Soc 451—Sociology of Medicine—3 cr. (3 and 0)
Consideration of the major contributions of sociology to medicine; an exploration of patterned social relationships in the field of health and medicine. Prerequisite: Soc 201, 202.
SOC 481—Race Relations—3 cr. (3 and 0)
The study of the problem of racial and ethnic groups in adjusting to American society. The nature and causes of prejudice and discrimination. Programs for the reduction of intergroup tensions and conflicts are evaluated in the light of observed facts and sociological principles. Prerequisites: Soc 201, 202 (or permission of the instructor).

SOC 499—Seminar in Selected Topics in Contemporary Sociology—3 cr. (3 and 0)
Required of all sociology majors. Prerequisite: Soc 201, 202, 411, 421, or permission of senior adviser.

SOC 711—History of Social Thought—3 cr. (3 and 0)

SOC 721—Sociological Theory—3 cr. (3 and 0)

SOC 731—Complex Organizations—3 cr. (3 and 0)

SOC 741—Social Stratification—3 cr. (3 and 0)

SOC 751—Sociology of Medicine—3 cr. (3 and 0)

SPANISH

Assistant Professors: G. J. Fernandez, R. F. Mixon, J. M. Whitmire

Instructors: B. G. Durham, P. F. Parrado, L. T. Perry, Michele H. Risko, L. E. Seamon

Lecturer: Elena G. Fernandez

SPAN 101—Elementary Spanish—3 cr. (3 and 1)
A course for beginners in which the essentials of grammar are taught and a foundation is provided for a conversational and reading knowledge of the language. Three hours a week of classroom instruction and one hour a week in the language laboratory.

SPAN 102—Elementary Spanish—3 cr. (3 and 1)
A continuation of Span 101; three hours a week of classroom instruction and one hour a week in the language laboratory.

SPAN 201—Intermediate Spanish—3 cr. (3 and 1)
Grammar, vocabulary, and idioms; conversation, composition, and translation. Three hours a week classroom instruction and one hour a week in the language laboratory. Prerequisite: Span 102.

SPAN 202—Intermediate Spanish—3 cr. (3 and 0)
Introduction to Spanish literature: representative short stories, essays, novels, poetry, and plays. Prerequisite: Span 201.

SPAN 303—Survey of Spanish Literature I—3 cr. (3 and 0)
Literary movements, influences, and authors from the beginnings to the end of the seventeenth century. Representative works, discussions. Required of Spanish majors. Prerequisite: Span 201 and 202.

SPAN 304—Survey of Spanish Literature II—3 cr. (3 and 0)
Literary movements, influences, and authors from the eighteenth century to the present. Required of Spanish majors. Prerequisite: Span 303.
303
intonation, and required
Span
Professor:
cism, required
Span
Prerequisite:
registration.
Mixtures
Laplace
plots
cylinders.
Mechanics
Mechanics
Heat
Electrical
Electrical
Circuits
Circuits
Stress
Energy
momentum.
Prerequisite: Phys 202, concurrent registration in Math 206.

TO 302—Mechanics II—3 cr. (3 and 0)
Mechanical properties of solids and fluids. Stress analysis in solids; beams, columns and cylinders. Hydrostatic systems. Energy and flow characteristics of fluid dynamic systems. Prerequisite: TO 301.

TO 311—Electrical Circuits I—3 cr. (3 and 0)
Complete sinusoidal circuit analysis with emphasis on circuit components, power, frequency response, steady-state conditions, and theorems. S-plane plots and Z(S) functions incorporated throughout for later coverage of Laplace transformation. Prerequisite: Phys 202, concurrent registration in Math 206.

TO 312—Electrical Circuits II—3 cr. (3 and 0)
Continuation of Electrical Circuits I. Coverage includes circuit response to non-sinusoidal excitations, transient analysis by the Laplace transformation, and a study of polyphase circuits. Prerequisite: TO 311.

TO 321—Heat Power I—3 cr. (3 and 0)
First and second laws of thermodynamics, thermodynamic properties, gas mixtures and thermodynamic processes. Prerequisite: Phys 202, concurrent registration, Math 206.
TO 322—Heat Power II—3 cr. (3 and 0)
Internal combustion engines, gas turbines, air compressors, flow in nozzles, refrigeration and steam power plant cycles, and heat transfer. Prerequisite: TO 321.

TO 331—Heat Power Laboratory—1 cr. (0 and 3)
The course is intended to illustrate theory covered in heat power and in air conditioning; to develop experimental technique; to interpret data and results; and to develop basic skills in technical report writing. Prerequisite: TO 321 and registration in TO 322.

TO 411—Electrical Machinery—3 cr. (3 and 0)
Coverage includes the theory of operation and application of D-C and A-C machines and transformers. External characteristics are depicted from the machine equivalent circuit. Prerequisite: TO 312.

TO 412—Elements of Electronics—3 cr. (3 and 0)
Theory and operation of electronic circuits and control with emphasis on equipment for industrial application. Prerequisite: TO 311.

TO 415—Instrumentation—3 cr. (3 and 0)
A study of measurements and a survey of instruments and devices for measuring quantities found in industrial applications. Analog and digital output forms of data and conversion of analog-to-digital is included. Prerequisite: TO 311, TO 412.

TO 421—Heating and Air Conditioning—3 cr. (3 and 0)
Psychrometric properties and processes; heating and cooling load calculations; selection and layout of major equipment for heating systems and air conditioning systems, refrigeration and automatic controls. Prerequisite: TO 322.

TO 431—Electrical Laboratory—1 cr. (0 and 3)
A laboratory course designed to complement instruction in TO 311, TO 312, and TO 411. Prerequisite: TO 311, TO 312, and concurrent registration in TO 411.

TEXTILE CHEMISTRY

Professors: T. A. Campbell, Jr., Head; T. D. Efland, F. T. Simon
Associate Professors: R. H. Barker, J. L. Lundberg, D. W. Lyons, E. S. Olson, J. J. Porter
Instructor: C. G. Vauchn

TC 303—Textile Chemistry—3 cr. (3 and 0)
Fundamental principles of physical and organic chemistry with emphasis on those areas most frequently encountered in the textile industry including thermodynamics, kinetics, and solution properties. These concepts will be applied to the study of aliphatic organic compounds and organic reaction mechanisms. The basic principles of stereochemistry and conformational analysis will be developed. Prerequisite: Ch 102, Math 206.

TC 304—Textile Chemistry—3 cr. (3 and 0)
A study of the properties and reactions of aliphatic and aromatic organic compounds. Emphasis will be placed on mechanistic interpretations and the development of synthetic schemes leading to polyfunctional compounds of the types encountered in the textile industry. Prerequisite: TC 303.
TC 305—Textile Chemistry Laboratory—1 cr. (0 and 3)
An introduction to the techniques used in the synthesis of organic compounds and the measurement of their physico-chemical properties. To be taken concurrently with TC 303.

TC 306—Textile Chemistry Laboratory—1 cr. (0 and 3)
The techniques used in the synthesis and characterization of organic compounds. To be taken concurrently with TC 304.

TC 315—Introduction to Polymer Science and Engineering—3 cr. (3 and 0)
The chemistry of monomers and polymers and the chemical and physical properties of polymers are discussed emphasizing fiber forming, synthetic polymers. Kinetics of polymerization, molecular characterization, structure, morphology, and mechanical properties of polymers are studied demonstrating design of polymer systems for end use in textiles.

TC 316—Chemical Preparation of Textiles—3 cr. (2 and 3)
The chemicals used in the preparation of fabric for dyeing and finishing. Oxidizing and reducing agents and their control and effect on various fibers. Colloidal and surface active properties of various compounds and the fundamental factors influencing these properties. Prerequisite: TC 315.

TC 317—Polymer and Fiber Laboratory—1 cr. (0 and 3)
High polymers, prepared from monomers, are characterized and spun to make fibers. Chemical and physical properties of fiber forming polymers are measured as functions of parameters critical to properties of textiles.

TC 457—Dyeing and Finishing I—3 cr. (3 and 0)
A study of the different classes of dyestuffs and the chemistry of their applications to different fibers. The theories, principles and mechanisms for the dyeing of textile fibers and fabrics will be presented as well as the reaction mechanisms of various finishing agents applied to different substrates. Prerequisite: TC 315.

TC 458—Dyeing and Finishing II—3 cr. (3 and 0)
The kinetics and equilibria of dyeing processes. The use of conductivity, diffusion and other methods useful for measuring absorption isotherms and dyeing rates and the general thermodynamic relationships applicable to dyeing operations. Fiber properties such as zeta potential dye sites, relative amorphous area available will be included.

TC 459—Dyeing and Finishing Laboratory I—1 cr. (0 and 3)
To be scheduled concurrently with TC 457. The course will introduce the student to common dyeing and printing methods and to some of the machinery necessary to carry out dyeing operations.

TC 460—Dyeing and Finishing Laboratory II—1 cr. (0 and 3)
To be scheduled concurrently with TC 458. The course will cover finishing in addition to dyeing operations and their instrumental control.

TC 461—Seminar and Research—3 cr. (1 and 6)
An investigation by each textile chemistry senior of an assigned problem related to textile processing. A formal written report is required. Prerequisite: Senior standing.
TC 466—Textile Unit Operations—3 cr. (3 and 0)
   Designed to cover some of the principles behind textile equipment operation
   such as heat transfer in drying and dyeing processes and fluid flow in pressure
   and open dye operations and polymer production.

TC 475—Cellulose Chemistry—2 cr. (2 and 0)
   The organic chemistry of cellulose and its derivatives is developed from the
   basic principles of carbohydrate chemistry. Emphasis is placed in the substi-
   tution and degradation reactions which are of particular importance in textile
   applications. Fiber morphology is treated in relation to its effect on textile
   chemical processing. Prerequisite: TC 315 or permission of instructor.

TC 615—Introduction to Polymer Science and Engineering—3 cr.
   (3 and 0)

TC 616—Chemical Preparation of Textiles—3 cr. (2 and 3)

TC 617—Polymer and Fiber Laboratory—1 cr. (0 and 3)

TC 757—Dyeing and Finishing I—3 cr. (3 and 0)

TC 758—Dyeing and Finishing II—3 cr. (3 and 0)

TC 759—Dyeing and Finishing Laboratory I—1 cr. (0 and 3)

TC 766—Textile Unit Operations—3 cr. (3 and 0)

TC 775—Cellulose Chemistry—2 cr. (2 and 0)

TC 811—The Theory of Fiber-Forming High Polymers I—3 cr. (3 and 0)

TC 812—The Theory of Fiber-Forming High Polymers II—3 cr. (3 and 0)

TC 821—Advanced Cellulose Chemistry—3 cr. (3 and 0)

TC 831—The Physical Chemistry of Dyeing—3 cr. (3 and 0)

TC 891—Research—Credit to be arranged.

TEXTILE SCIENCE

Professors: T. A. Campbell, Jr., Head; T. D. Efland, F. T. Simon, J. V.
Walters

Associate Professors: J. C. Hubbard, Jr., J. L. Lundberg, D. W. Lyons, J. H.
Marvin, Jr., D. P. Thomson, Jr.

Assistant Professor: E. A. Vaughan

Instructor: C. G. Vaughan

Visiting Lecturer: H. M. El Behery

Text 122—Introduction to Textiles—1 cr. (1 and 0)
   An introduction to the various areas involved in the scientific processing of
   fibrous materials, and the production of yarns and fabrics. The finishing,
   fabrication and market potential textile materials.

Text 201—Fiber Processing I—3 cr. (2 and 3)
   A study of fibrous materials and their relationship to the fiber processing
   systems. The objectives, theories, principles, and mechanisms of the machines
   used in the earlier stages of fiber processing. The course is directed primarily
   to the staple fiber processing systems. Mechanical and mathematical funda-
   mentals are applied to the machines concerned.
Text 202—Fiber Processing II—3 cr. (2 and 3)
Continuation of Text 201 emphasizing the later stages of fiber processing for the ultimate yarn strand. Prerequisite: Text 201.

Text 303—Fiber Processing III—3 cr. (2 and 3)
The concepts of current fiber processing machines, techniques, practices, and their validity are investigated. Student group and individual problems are assigned that require use of acquired knowledge, textile testing equipment, and processing machines. Study and examination of the cause and effect relations of fibrous material properties and processing dynamics on the fiber assemblies produced. Prerequisite: Text 201 and 202.

Text 304—Fiber Processing IV—3 cr. (2 and 3)
Continuation of Text 303 with respect to the various fiber assemblies and yarn structures encountered in the fiber processing systems. Emphasis is placed on the machines and their fiber assemblies. Prerequisite: Text 201, 202, and 303.

Text 305—Yarn Structure I—3 cr. (2 and 3)
Basic study of materials used for manufacturing yarns. Machine mechanisms, theory and operations for the opening, picking, carding, and combing of fibers. Draft, production, and waste at these machines are analyzed. Other factors concerned with this portion of a textile plant covered generally, including organization and layout. Prerequisite: Junior standing. Non-textile majors.

Text 306—Yarn Structure II—3 cr. (2 and 3)
Machine mechanisms, theory, and operations for the drawing, roving, spinning, and twister frames. Emphasis is on the drafting, twisting, and winding components for these processes. Brief survey of the silk, and worsted system for yarn production. Prerequisite: Text 305. Non-textile majors.

Text 311—Fabric Development I—3 cr. (2 and 3)
The theory of mechanisms as applied to weaving machines together with the application of the theory of elementary textile designs used in the construction of woven fabrics.

Text 312—Fabric Development II—3 cr. (2 and 3)
A continuation of Text 311 with emphasis on special and compound materials fabrication. Prerequisite: Text 311.

Text 313—Fabric Structure I—3 cr. (2 and 3)
Theory and practice involved in the application of design to textile end uses. Principles involved in converting yarns to fabrics, including loom mechanics. Prerequisite: Junior standing. Non-textile majors.

Text 314—Fabric Structure II—3 cr. (2 and 3)
Continuation of Text 313, emphasizing fabric layout and analysis, cover factor, production analysis and scheduling. Prerequisite: Text 313.

Text 321—Fiber Science—3 cr. (2 and 3)
Fiber properties and the methods for scientific evaluation of these properties. Prerequisite: Math 206.

Text 322—Properties of Textile Structures—3 cr. (2 and 3)
The analysis and significance of yarn and fabric properties and a study of methods of determining these properties.
TEXT 324—TEXTILE STATISTICS—3 cr. (3 and 0)
An introduction to statistics with particular application to the Textile Industry. Measures of central value and variation, probability, the normal curve, tests of hypotheses, elementary correlation and regression. Prerequisite: Junior standing.

TEXT 401—POLYMER AND FIBER MECHANICS—3 cr. (3 and 0)
Study of elasticity theory and viscoelasticity applied to polymers and extended to non-linear behavior of fibers and non-linear rheological behavior of polymers with application to extrusion and fiber spinning.

TEXT 411—FABRIC DEVELOPMENT III—3 cr. (2 and 3)
The principles concerning the specifications required for the production of fabrics to include layouts, designs, construction, warping, and slashing. Prerequisite: Text 312.

TEXT 412—FABRIC DEVELOPMENT IV—3 cr. (2 and 3)
Production and analysis of woven patterns. Fabric development, analysis and cloth order problems. Prerequisite: Text 411.

TEXT 413—FABRIC DEVELOPMENT V—3 cr. (2 and 3)
A continuation of Text 412 covering more complex weaves for double cloths, pile fabrics, and jacquard effects. Prerequisite: Concurrent with Text 412.

TEXT 414—NON-WOVEN AND KNITTED STRUCTURES—3 cr. (3 and 0)
A survey of non-woven and knitted structures dealing with the principles and mechanisms involved. Various systems are covered with emphasis on yarn requirements and fabric properties.

TEXT 421—TEXTILE COSTING I—3 cr. (2 and 3)
Actual and standard cost principles as they apply to the manufacture of textiles. Allocating the cost of material, labor and overhead; determining the cost of individual yarns and fabrics; valuing the inventory; making of cost reports, payroll analysis and the use of data processing. Prerequisite: Acct 201 and Senior standing or permission of instructor.

TEXT 426—INSTRUMENTATION—3 cr. (3 and 0)
The principles of industrial and process instrumentation and process control. Static and dynamic characteristics of measurement devices. Transducer techniques for measurement of physical properties such as pressure, temperature, flow, weight, etc. Principles of process controllers.

TEXT 428—TEXTILE RESEARCH—0 to 3 cr.
The student will conduct an individual research problem in the textile or textile chemistry area under the direct supervision and guidance of a faculty member.

TEXT 429—TEXTILE RESEARCH—0 to 3 cr.
Same as Text 428.

TEXT 440—COLOR SCIENCE—3 cr. (2 and 3)
The application of the science of color to industrial practice in textiles, plastics, paints, lighting and ceramics. The laboratory work will be performed on modern instruments and computers.

TEXT 460—TEXTILE PROCESSES—3 cr. (3 and 0)
Survey of machinery and processes of textile manufacturing from fiber formation through fabric finishing. (For students with a non-textile background.)
Description of Courses

Text 475—Textile Marketing—3 cr. (3 and 0)
An examination of the activities involved in the distribution of textile products in today’s market. Emphasis will be placed on the role of consumer research and the analysis of fashion in the design and promotion of textile products.

Text 603—Fiber Processing III—3 cr. (2 and 3)
Text 604—Fiber Processing IV—3 cr. (2 and 3)
Text 621—Fiber Science—3 cr. (2 and 3)
Text 622—Properties of Textile Structures—3 cr. (2 and 3)
Text 701—Polymer and Fiber Mechanics—3 cr. (3 and 0)
Text 711—Fabric Development III—3 cr. (2 and 3)
Text 712—Fabric Development IV—3 cr. (2 and 3)
Text 726—Instrumentation—3 cr. (3 and 0)
Text 740—Color Science—3 cr. (2 and 3)
Text 760—Textile Processes—3 cr. (3 and 0)
Text 821—Fiber Physics I—3 cr. (3 and 0)
Text 822—Fiber Physics II—3 cr. (3 and 0)
Text 830—Textile Physics—3 cr. (3 and 0)
Text 840—Spectrophotometry—3 cr. (3 and 0)
Text 870—Advances in Textile Manufacturing—3 cr. (3 and 0)
Text 880—Selected Topics—3 cr. (3 and 0)
Text 891—Research—Credit to be arranged.

Visual Studies

Professor: R. H. Hunter, Head
Associate Professors: J. T. Acorn, I. G. Regnier
Assistant Professors: S. Wang, D. Wadell

Vis 203—Visual Arts Studio—2 cr. (0 and 6)
Studio work in drawing, painting, and related media. Prerequisite: Arch 403 or permission of the instructor.

Vis 205—Drawing—2 cr. (0 and 6)
Studio work in drawing and related media. Prerequisite: Arch 102 or Vis 203 or permission of instructor.

Vis 207—Beginning Painting—2 cr. (0 and 6)
Studio work in painting and related media. Prerequisite: Arch 102 or Vis 203 or permission of the instructor.

Vis 209—Beginning Sculpture—2 cr. (0 and 6)
Studio work in sculpture and related media. Prerequisite: Arch 102 or Vis 203 or permission of instructor.

* On leave.
VIS 211—Beginning Printmaking—2 cr. (0 and 6)
Studio work in lithography, silk screen, wood cuts, and graphics and related media. Prerequisite: Arch 102 or Vis 203 or permission of instructor.

VIS 213—Beginning Photography—2 cr. (0 and 6)
Studio work in photography and related media. Prerequisite: Arch 102 or Vis 203 or permission of instructor.

VIS 215—Beginning Graphics—2 cr. (0 and 6)
Studio work in graphic composition, letterpress, photo lithography, silk screen process and related media. Prerequisite: Arch 102 or Vis 203 or permission of instructor.

VIS 217—Beginning Ceramics—2 cr. (0 and 6)
Applied studio work in ceramic sculpture and pottery; creative experience in process of forming, decorating, glazing, and firing. Prerequisite: Cr Ar 101.

VIS 218—Ceramic Arts—2 cr. (0 and 6)
Continuation of Vis 217. Prerequisite: Vis 217.

VIS 205—Life Drawing—2 cr. (0 and 6)
Studio work in life drawing and related subject matter. Prerequisite: Vis 205, or Vis 207, or Vis 209.

VIS 206—Life Drawing—2 cr. (0 and 6)
Continuation of Vis 205. Prerequisite: Vis 205.

VIS 207—Painting—2 cr. (0 and 6)
Studio work in watercolor and related media. Prerequisite: Vis 207.

VIS 208—Painting—2 cr. (0 and 6)
Continuation of Vis 207. Prerequisite: Vis 207.

VIS 209—Sculpture—2 cr. (0 and 6)
Studio work in sculpture and related media. Prerequisite: Vis 209.

VIS 210—Sculpture—2 cr. (0 and 6)
Continuation of Vis 209. Prerequisite: Vis 209.

VIS 211—Beginning Printmaking—2 cr. (0 and 6)
Studio work in lithography, silk screen, wood cuts, and graphics and related media. Prerequisite: Arch 102 or Vis 203 or permission of instructor.

VIS 213—Beginning Photography—2 cr. (0 and 6)
Studio work in photography and related media. Prerequisite: Arch 102 or Vis 203 or permission of instructor.

VIS 215—Beginning Graphics—2 cr. (0 and 6)
Studio work in graphic composition, letterpress, photo lithography, silk screen process and related media. Prerequisite: Arch 102 or Vis 203 or permission of instructor.

VIS 217—Beginning Ceramics—2 cr. (0 and 6)
Applied studio work in ceramic sculpture and pottery; creative experience in process of forming, decorating, glazing, and firing. Prerequisite: Cr Ar 101.

VIS 218—Ceramic Arts—2 cr. (0 and 6)
Continuation of Vis 217. Prerequisite: Vis 217.
**Description of Courses**

**Vis 405—Drawing—3 cr. (0 and 9)**
Studio work in advanced drawing and related media. *Prerequisite:* Vis 306 or Vis 308 or Vis 312 or Vis 316.

**Vis 406—Drawing—3 cr. (0 and 9)**
Continuation of Vis 405. *Prerequisite:* Vis 405.

**Vis 407—Painting—3 cr. (0 and 9)**
Studio work in advanced painting and related media. *Prerequisite:* Vis 308 or Vis 312 or Vis 314, Vis 316.

**Vis 408—Painting—3 cr. (0 and 9)**
Continuation of Vis 407. *Prerequisite:* Vis 407.

**Vis 409—Sculpture—3 cr. (0 and 9)**
Advanced studio work in sculpture and related media. *Prerequisite:* Vis 310.

**Vis 410—Sculpture—3 cr. (0 and 9)**
Continuation of Vis 409. *Prerequisite:* Vis 409.

**Vis 411—Printmaking—3 cr. (0 and 9)**
Advanced studio in Printmaking and related media. *Prerequisite:* Vis 312.

**Vis 412—Printmaking—3 cr. (0 and 9)**
Continuation of Vis 411. *Prerequisite:* Vis 411.

**Vis 413—Photography—3 cr. (0 and 9)**
Advanced studio work in photography. *Prerequisite:* Vis 314.

**Vis 414—Photography—3 cr. (0 and 9)**
Continuation of Vis 413. *Prerequisite:* Vis 413.

**Vis 415—Graphics—3 cr. (0 and 9)**
Advanced work in graphic arts. *Prerequisite:* Vis 316.

**Vis 416—Graphics—3 cr. (0 and 9)**
Continuation of Vis 415. *Prerequisite:* Vis 415.

**Vis 417—Advanced Ceramic Arts—3 cr. (0 and 9)**
Advanced applied studio work in ceramic sculpture and pottery. *Prerequisite:* Vis 318.

**Vis 418—Advanced Ceramic Arts—3 cr. (0 and 9)**
Continuation of Vis 417. *Prerequisite:* Vis 417.

**Vis 503—Contemporary Art Criticism—3 cr. (3 and 0)**
A seminar course dealing with Twentieth Century visual art forms in relation to the factors that have influenced the artist and the consequence of his production on society. *Prerequisite:* Vis 305 or 307 or 309 or 311 or 313 and Arch 415.

**WATER RESOURCES ENGINEERING**

*Professor: L. G. Rich, Program Director*

**WRE 811—Climatology—3 cr. (3 and 0)**

**WRE 812—Meteorology—3 cr. (3 and 0)**

**WRE 822—Water Movement in Soils—3 cr. (3 and 0)**

**WRE 861—Hydrology—3 cr. (3 and 0)**
WRE 862—Advanced Hydrology—3 cr. (3 and 0)
WRE 864—Ground-Water Hydrology—3 cr. (3 and 0)
WRE 865—Hydrology I—3 cr. (3 and 0)
WRE 866—Hydrology II—3 cr. (3 and 0)
WRE 875—River Basin Planning—3 cr. (3 and 0)
WRE 881—Special Topics in Water Resources—3 cr. (3 and 0)
WRE 891—Research—Credit to be arranged.
WRE 981—Special Topics in Water Resources—3 cr. (3 and 0)
WRE 982—Special Topics in Water Resources—3 cr. (3 and 0)
WRE 991—Doctoral Research—Credit to be arranged.

WILDLIFE BIOLOGY

Associate Professors: S. B. Hays, R. E. Ware, L. G. Webb

WB 306—Wildlife Resources of the Southeastern United States—2 cr. (2 and 0) F, S
A study of the wildlife resources of the Southeastern States, including population trends, life histories and economic importance. Conservation and proper utilization by man is emphasized.

WB 412—Wildlife Management—3 cr. (2 and 3) F, S
Basic principles and general practices of wildlife management and conservation will be covered. This course deals with the major problems concerning the management of wildlife resources, with emphasis on upland game species. The laboratory work includes practical work on the Clemson University Woodlands and field trips to several areas where wildlife management is being practiced.

WB 712—Wildlife Management—3 cr. (2 and 3)
WB 809—Wildlife Biology Seminar I—1 cr. (1 and 0)
WB 810—Wildlife Biology Seminar II—1 cr. (1 and 0)
WB 815—Principles of Wildlife Biology—3 cr. (2 and 3)
WB 816—Applied Wildlife Biology—3 cr. (2 and 3)
WB 891—Research—1-6 cr.
ZOOLOGY

(See also Biology)

Professors: E. W. King, J. K. Reed
Associate Professors: G. W. Anderson, A. S. Tombes, Chairman; R. E. Ware

Instructor: J. M. Barrier

Zool 101, 103—General Zoology—4 cr. (3 and 2) F, S, SS
Thorough training in fundamental animal types and zoological principles. The morphology, physiology, behavior, reproduction, ecology, embryology, zoogeography, evolution and palaeontology of each phylum are presented.

Zool 201—Invertebrate Zoology—4 cr. (3 and 3) F, S
A survey of the phyla of invertebrate animals, including their taxonomy, morphology, development and evolution. Prerequisite: Zool 101, 103 or permission of instructor.

Zool 202—Vertebrate Zoology—4 cr. (3 and 3)
A study of vertebrates with an emphasis on systematic relationships and evolutionary advances. Laboratory will be concerned with basic morphological traits of each group as well as the ecology, life history, and identification of local forms. Prerequisite: Zool 101, 103,

Zool 301—Comparative Vertebrate Anatomy—3 cr. (2 and 3) F, S, SS
Advanced training in zoological principles, physiology and comparative vertebrate anatomy. Prerequisite: Zool 101, 103.

Zool 302—Vertebrate Embryology—3 cr. (2 and 3) F, S, SS
Fundamentals of developmental anatomy of the organ systems as illustrated by the chick and pig. Students prepare histological sections and mounts to acquire practice in laboratory procedures and knowledge of vertebrate microscopic anatomy. Identification of the various tissues is stressed. Prerequisite: Zool 101, 103 and 301 or permission of the instructor.

Zool H302—Vertebrate Embryology—3 cr. (2 and 3) F, S, SS
Honors option for Zool 302, admission by special arrangement.

Zool 304—Animal Ecology—3 cr. (2 and 3) F
Marine, fresh water and land animal communities as they exist in South Carolina. Students will gain a knowledge of the common animal associations as they are related to land use through lectures, reading, films and field trips.

Zool H304—Animal Ecology—3 cr. (2 and 3) F
Honors option for Zool 304, admission by special arrangement.

Zool 307—Animal Anatomy and Physiology—3 cr. (2 and 3) F
Anatomy, and physiological processes of ingestion, secretion, excretion, respiration, circulation, reproduction and metabolism of warm-blooded animals. This course is designed for students majoring in Pre-medicine, Pre-veterinary, Animal Science, Dairy Science, and Poultry Science. Prerequisite: Zool 101, 103.

Zool 403—Protozoology—3 cr. (2 and 3) S
Taxonomy of the sub-kingdom protozoa with special reference to the parasitic forms directly affecting man. Representative types of free-living forms are
surveyed with emphasis on their morphology, physiology and distribution.  

**Prerequisite:** Zool 101, 103.

**Zool H403—Protzoology—**3 cr. (2 and 3) S  
Honors option for Zool 403, admission by special arrangement.

**Zool 404—Animal Pathology—**3 cr. (2 and 3) S  
Designed to inform students in the causes, treatments, and prevention of animal diseases. Those transmissible to man are considered in detail. Emphasis is placed on hygiene and care of the sick.

**Zool 405—Animal Histology—**3 cr. (2 and 3) F  
Microscopic structures of tissues and organs of the animal body. This course is for students in Pre-veterinary, Pre-medicine and the Animal Science courses.  

**Prerequisite:** Zool 101, 103.

**Zool 410—Limnology—**3 cr. (2 and 3) F  
This course is designed to familiarize the student with interrelationships between fresh-water organisms and their abiotic environment.  

**Prerequisite:** Zool 101, 103.

**Zool H410—Limnology—**3 cr. (2 and 3) F  
Honors option for Zool 410, admission by special arrangement.

**Zool 411—Animal Ecology—**3 cr. (2 and 3)  
A fundamental approach to basic ecological principles underlying the interrelationships of organisms with their abiotic environment. A variety of equatic and terrestrial ecosystems will be studied both in the field and in the laboratory.

**Zool H411—Animal Ecology—**3 cr. (2 and 3)  
Honors option for Zool 411, admission by special arrangement.

**Zool 456—Parasitology—**3 cr. (2 and 3) F  
An introduction to the phenomenon of parasitism in the animal kingdom with emphasis on basic principles. Classical and experimental approaches to the study of parasitism are examined in reference to the protozoa, helminths and arthropods.

**Zool H456—Parasitology—**3 cr. (2 and 3) F  
Honors option for Zool 456, admission by special arrangement.

**Zool 458—Cell Physiology—**3 cr. (2 and 3) F  
An introduction to the fundamental processes of physiology as exemplified by the cell. Dynamic cellular environment, organelles, respiration, metabolism, protein synthesis, and basic thermodynamics as it applies to the cell, will be covered. Laboratory will include an introduction to techniques in study of cellular physiology.  

**Prerequisite:** Zool 101, 103, Organic Chemistry.

**Zool H458—Cell Physiology—**3 cr. (2 and 3) F  
Honors option for Zool 458, admission by special arrangement.

**Zool 460—General Physiology—**3 cr. (2 and 3) S  
Systematic study of the physiology of nervous activity, hormonal control, neuro-hormonal interrelations, circulation, respiration, digestion, renal control, muscular activity and reproduction. Effort in the laboratory will be concentrated toward acquainting the student with methods of obtaining information about these systems.  

**Prerequisite:** Zool 101, 103 or permission of instructor.
Description of Courses

Zool 461—Anatomy—3 cr. (3 and 0) F

Those aspects of anatomy related to the skeletal, circulatory, muscular, nervous, endocrine, respiratory, digestive and excretory systems will be covered. Emphasis will be placed on gross anatomy with some work in micro-anatomy. Prerequisite: Zool 101, 103 or permission of instructor.

Zool 462—Herpetology—3 cr. (2 and 3)

Systematics, life history, distribution, ecology, and current literature of amphibians and reptiles. Laboratory study of morphology and identification of world families and U. S. genera, as well as all southeastern species. Field trips will be required. Prerequisite: Vertebrate Zoology or approval of instructor.

Zool 463—Ichthyology—3 cr. (2 and 3)

Systematics, life history, distribution, ecology, and current literature of fish. Laboratory study of morphology and identification of U. S. genera, as well as all southeastern species. Field trips will be required. Prerequisite: Vertebrate Zoology or approval of instructor.

Zool 464—Mammalogy—3 cr. (2 and 3)

Systematics, life history, distribution, ecology, and current literature of mammals. Laboratory study of morphology and identification of U. S. genera, as well as all southeastern species. Field trips will be required. Prerequisite: Vertebrate Zoology or approval of instructor.

Zool 465—Ornithology—3 cr. (2 and 3)

The identification, life history and ecology of birds. Field trips, work with bird specimens and correlated reading will give the student a working knowledge of at least 100 species of the common birds.

Zool 470—Animal Ethology—3 cr. (2 and 3)

Classical and current concepts and controversies regarding animal behavior; individual and social behavioral patterns. Prerequisite: Vertebrate Zoology or consent of instructor.

Zool 475—General Endocrinology—3 cr. (2 and 3)

This course is an introduction to the basic principles of chemical integration via hormones found throughout the animal kingdom. Morphology and function of various endocrine tissues, hormone chemistry and modes of action will receive major consideration.

Zool 602—Vertebrate Embryology—3 cr. (2 and 3)

Zool 604—Animal Ecology—3 cr. (2 and 3)

Zool 703—Protozoology—3 cr. (2 and 3)

Zool 704—Animal Pathology—3 cr. (2 and 3)

Zool 705—Animal Histology—3 cr. (2 and 3)

Zool 710—Limnology—3 cr. (2 and 3)

Zool 711—Animal Ecology—3 cr. (2 and 3)

Zool 756—Parasitology—3 cr. (2 and 3)

Zool 758—Cell Physiology—3 cr. (2 and 3)

Zool 760—General Physiology—3 cr. (2 and 3)

Zool 761—Anatomy—3 cr. (3 and 0)
Zool 762—Herpetology—3 cr. (2 and 3)
Zool 763—Ichthyology—3 cr. (2 and 3)
Zool 764—Mammalogy—3 cr. (2 and 3)
Zool 765—Ornithology—3 cr. (2 and 3)
Zool 770—Animal Ethology—3 cr. (2 and 3)
Zool 775—General Endocrinology—3 cr. (3 and 0)
Zool 801—Animal Histology—3 cr. (2 and 3)
Zool 802—Histological Techniques—3 cr. (1 and 6)
Zool 803—Population Dynamics—4 cr. (2 and 6)
Zool 804—Ornithology—3 cr. (2 and 3)
Zool 805—Animal Pathology—3 cr. (3 and 0)
Zool 806—Comparative Animal Physiology—3 cr. (3 and 0)
Zool 807—Use of Radioisotopes in Biological Research—3 cr. (2 and 3)
Zool 808—Radiobiology—3 cr. (2 and 3)
Zool 809—Toxicology—3 cr. (2 and 3)
Zool 810—Mammalogy—3 cr. (2 and 3)
Zool 811—Recent Advances in Zoology I—1 cr. (1 and 0)
Zool 812—Recent Advances in Zoology II—1 cr. (1 and 0)
Zool 813—Evolution—3 cr. (3 and 0)
Zool 852—Principles and Methods of Systematic Zoology—2 cr. (2 and 0)
Zool 856—Economic Zoology—3 cr. (2 and 3)
Zool 863—Special Problems—1 to 4 cr.
Zool 891—Research—Credit to be arranged.
Zool 991—Research—Credit to be arranged.
PUBLIC SERVICE ACTIVITIES

PART VI
COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES STAFF

PUBLIC SERVICE ACTIVITIES

Agricultural Regulatory Committee of Board of Trustees

L. D. Holmes, Chairman ........................................ Johnston
Robert R. Coker .................................................. Hartsville
Winchester Smith .................................................. Williston
T. Kenneth Crubb .................................................. Spartanburg
Frank J. Jervey .................................................... Clemson

Administration

R. C. Edwards, B.S., LL.D. ...................................... President
Victor Hurst, Ph.D. ............................................. Vice-President for Academic Affairs
W. H. Wiley, Ph.D. ................................................ Dean of the College of Agriculture and Biological Sciences
C. E. Boyd, D.V.M. .............................................. Director, Livestock-Poultry Health Dept., Columbia
B. D. Cloaninger, M.S. ......................................... Director, Fertilizer Inspection and Analysis
O. B. Garrison, Ph.D. ........................................... Director of Agricultural Experiment Station, Director of Research in Agriculture
J. E. Halfpin, Ph.D. ............................................. Associate Director of Agricultural Experiment Station
J. W. Jones, Ph.D. .................................................. Director of Resident Instruction
P. K. Gable, Jr., B.S. ............................................ Administrative Assistant, Agricultural Experiment Station and Resident Instruction
W. T. O'Dell, Ph.D. ............................................... Director of Extension
J. B. Copeland, Ph.D. ............................................ Associate Director of Extension
G. H. Bonnette, B.S. .............................................. Administrative Assistant, Extension Service
H. V. Rogers, M.S. ................................................ Coordinator, State Extension Management Information System

Extension State Program Leaders

L. P. Anderson, Ph.D. .............................................. State Leader, Extension Agricultural Programs
G. H. Baker, B.S. .................................................. State Leader, 4-H and Youth Development Programs
Ruby M. Craven, Ph.D. ........................................... State Leader, Extension Home Economics Programs
B. L. Cunningham, M.S. ....................................... State Leader, Extension Special Programs
Madge W. Hardy, B.S. .......................................... Assistant to State Leader, Extension Home Economics Programs

Extension Supervisors

L. B. Massey, B.S. ................................................ District Agent, Piedmont District, Clemson
G. H. Liebenrood, M.Ed. ....................................... District Agent, Pee Dee District, Clemson
D. A. Shelley, B.S. ............................................... District Agent, Savannah Valley District, Clemson
Curtys Ballentine, M.S. .......................................... Associate District Agent, Piedmont District, Clemson
Elizabeth B. Berry, B.S. ....................................... Associate District Agent, Savannah Valley District, Clemson
Sarah S. Knox, B.S. .............................................. Associate District Agent, Pee Dee District, Clemson

Superintendents Branch Experiment Stations

W. C. Barnes, Ph.D.— Truck Station, P. O. Box 3158, St. Andrews Branch, Charleston
D. F. Cohoon, Ph.D. ............................................. P. O. Box C, Edisto Station, Blackville
J. B. Pitner, Ph.D. ................................................ P. O. Box 271, Pee Dee Station, Florence
W. H. Rhodes, B.S. ............................................... Sandhill Station, P. O. Box 1771, Columbia

Agricultural Chemical Services

N. R. Page, Ph.D.*† .............................................. Head of Department, Professor
J. S. Boswell, B.A.*† ............................................. Chemist Assistant
Dorothy Brock † .................................................. Assistant Chemist

* Teaching staff.
† Research staff.
College of Agriculture and Biological Sciences Staff

D. A. Colby, B.A.‡ Chemist Assistant
E. R. Colcolough, B.S.‡ Chemistry Assistant
J. T. Gillingham, Ph.D.‡ Assistant Chemist
H. Jurecek, B.S.‡ Chemistry Assistant
E. E. Leslie, B.S.‡ Associate Chemist
W. R. McCaskill, M.S.‡ Assistant Entomologist
Mary Lee McCrackan, A.B.‡ Assistant Chemist
J. J. Starnes, B.S.‡ Chemistry Assistant

Agricultural Communications
R. C. Hubbard, Jr., M.S.†§ Head of Department, Editor
L. C. Hamilton, M.S.†† Acting Head of Department, Editor
J. M. Cox, B.S.† Assistant Experiment Station Editor
W. B. Earle, Jr.† Extension Artist
J. E. Kingman, B.A.†† Assistant Radio-Television Editor
J. R. Mattison, B.S.‡ Assistant Radio Editor
Ann Lee A. McPhail, B.A.†† Assistant Radio-Television Editor
L. W. Riley †† Visual Instruction Editor
J. H. Rogers, B.A.‡ Assistant Extension Editor
Doris A. Timmerman, M.S.†† Assistant Home Economics Editor

Agricultural Economics and Rural Sociology
W. J. Lanham, Ph.D. ‡‡ Head of Department, Professor
L. M. Bauknight, M.S. ‡ Associate Professor
V. A. Boyd, M.S.A. ‡ Associate Professor
T. A. Burch, M.S.‡ Assistant Agricultural Economist
C. P. Butler, M.S.‡ Agricultural Economist (USDA)
A. B. Carroll, Ph.D. ‡‡ Assistant Professor
D. E. Crawford, M.S.‡ Associate Agricultural Economist
R. K. DeHaven, Ph.D. ‡‡ Assistant Professor
B. L. Dillman, Ph.D. ‡‡ Assistant Professor
J. C. Hite, Ph.D. ‡‡ Assistant Professor
J. W. Hubbard, Ph.D. ‡‡ Assistant Professor
D. C. Hutchins, B.S.‡ Associate Extension Specialist (Marketing), Columbia
O. W. Lloyd, M.S.‡ Associate Extension Specialist (Community and Resource Development), Principal Specialist
J. S. Lytle, Ph.D. ‡‡ Assistant Professor
J. V. McElveen, M.S.‡ Agricultural Economist (USDA)
L. D. Malphrus, Ph.D.‡ Associate Professor
J. F. Miles, Ph.D.‡ Associate Professor
J. E. Nix, M.S.‡ Agricultural Economist (USDA)
J. F. Pittman, Ph.D.‡ Extension Specialist (Marketing), Principal Specialist
M. C. Rochester, Ph.D.‡ Extension Specialist, Principal Specialist
E. W. Siedschlag, A.B.‡ Assistant Extension Specialist (Marketing), Columbia
H. C. Spurlock, Ph.D. ‡‡ Associate Professor
R. D. Steer, B.S.‡ Associate Extension Specialist (Marketing), Greenwood
J. M. Stepp, Ph.D. ‡‡ Alumni Professor
M. H. Sutherland, M.S.‡ Associate Extension Specialist
J. S. Taylor, B.S.‡ Agricultural Statistician, Columbia (USDA)
W. A. Tuten† Extension Assistant (Marketing), Columbia
G. R. von Tungeln, M.S. ‡‡ Associate Professor
C. H. Whitworth, B.S.A.‡ Agricultural Statistician, Columbia (USDA)
P. S. Williamson, M.S.‡ Associate Extension Specialist

* Teaching staff.
† Research staff.
‡ Extension staff.
§ On leave.
### Agricultural Education

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. H. Davis</td>
<td>Head of Department, Professor</td>
</tr>
<tr>
<td>W. C. Bowen</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>E. T. Carpenter</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>J. A. Hash</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>A. K. Jensen</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>F. E. Kirkley</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>A. W. Snell</td>
<td>Head of Department, Professor</td>
</tr>
<tr>
<td>J. C. Alphin</td>
<td>Associate Professor, Pee Dee Station</td>
</tr>
<tr>
<td>W. A. Balk</td>
<td>Agricultural Engineer, Edisto Station</td>
</tr>
<tr>
<td>J. B. Cocke</td>
<td>Agricultural Engineer (USDA)</td>
</tr>
<tr>
<td>J. T. Craig</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>D. G. Dickson</td>
<td>Research Assistant</td>
</tr>
<tr>
<td>C. W. Doty</td>
<td>Agricultural Engineer, Pee Dee Station (USDA)</td>
</tr>
<tr>
<td>T. H. Garner</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>W. E. Garner</td>
<td>Agricultural Engineer (USDA)</td>
</tr>
<tr>
<td>W. P. Gladden</td>
<td>Assistant Extension Specialist</td>
</tr>
<tr>
<td>F. H. Hedden</td>
<td>Associate Extension Specialist</td>
</tr>
<tr>
<td>C. E. Hood</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>J. R. Lambert</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>J. T. Ligon</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>H. P. Lynn</td>
<td>Associate Extension Specialist</td>
</tr>
<tr>
<td>M. C. McKenzie</td>
<td>Extension Specialist, Principal Specialist</td>
</tr>
<tr>
<td>C. V. Privette</td>
<td>Assistant Extension Specialist</td>
</tr>
<tr>
<td>E. B. Rogers</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>C. D. Veal</td>
<td>Research Assistant</td>
</tr>
<tr>
<td>B. K. Webb</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>J. M. Williams</td>
<td>Agricultural Engineer (USDA)</td>
</tr>
<tr>
<td>T. V. Wilson</td>
<td>Professor</td>
</tr>
</tbody>
</table>

### Agronomy and Soils

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S. Jones</td>
<td>Head of Department, Professor</td>
</tr>
<tr>
<td>L. R. Allen</td>
<td>Associate Extension Specialist</td>
</tr>
<tr>
<td>D. A. Benton</td>
<td>Associate Extension Specialist, Florence</td>
</tr>
<tr>
<td>C. C. Chen</td>
<td>Visiting Professor</td>
</tr>
<tr>
<td>G. R. Craddock</td>
<td>Professor</td>
</tr>
<tr>
<td>T. W. Culp</td>
<td>Research Agronomist (USDA)</td>
</tr>
<tr>
<td>R. E. Curran</td>
<td>Assistant Professor, Pee Dee Station</td>
</tr>
<tr>
<td>E. B. Eskew</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Z. T. Ford</td>
<td>Associate Agronomist, Pee Dee Station</td>
</tr>
<tr>
<td>A. D. Fore</td>
<td>Assistant, Pee Dee Station</td>
</tr>
<tr>
<td>P. B. Gibson</td>
<td>Research Agronomist (USDA)</td>
</tr>
<tr>
<td>B. J. Gossett</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>W. D. Graham</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>D. C. Harrell</td>
<td>Associate Agronomist, Pee Dee Station</td>
</tr>
<tr>
<td>F. M. Harrell</td>
<td>Supervisor, Pee Dee Station</td>
</tr>
<tr>
<td>L. H. Harvey</td>
<td>Assistant Professor, Extension Specialist</td>
</tr>
<tr>
<td>C. M. Jones</td>
<td>Professor</td>
</tr>
<tr>
<td>M. W. Jutras</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>K. S. LaFleur</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>E. F. McClain</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Alfred Manwiller</td>
<td>Associate Professor, Pee Dee Station</td>
</tr>
<tr>
<td>J. D. Maxwell</td>
<td>Agricultural Science Assistant</td>
</tr>
<tr>
<td>B. C. Morton</td>
<td>Associate Professor, Edisto Station</td>
</tr>
<tr>
<td>H. L. Musen</td>
<td>Extension Specialist, Principal Specialist</td>
</tr>
<tr>
<td>C. N. Nolan</td>
<td>Associate Extension Specialist</td>
</tr>
<tr>
<td>C. L. Parks</td>
<td>Associate Extension Specialist</td>
</tr>
</tbody>
</table>

* Teaching staff.
† Research staff.
‡ Extension staff.
College of Agriculture and Biological Sciences Staff

T. C. Peele, Ph.D.*t Professor
J. B. Pitner, Ph.D.† Superintendent and Professor, Pee Dee Station
D. E. Purvis, B.S.§ Assistant, Pee Dee Station
W. H. Rhodes, B.S.§ Superintendent, Sandhill Station
C. E. Rieck, Ph.D.*f Assistant Professor
R. F. Suman, M.S.§ Associate Professor, Edisto Station
J. R. Woodruff, Ph.D.*† Assistant Professor

**Animal Science**

R. F. Wheeler, Ph.D.°†† Head of Department, Professor
C. W. Ackerman, M.S.† Associate Extension Specialist
L. F. Cato, M.S.‡ Associate Extension Specialist
R. L. Edwards, Ph.D.† Associate Professor
W. C. Godley, Ph.D.°† Professor
D. L. Handlin, M.S.°† Assistant Professor
J. R. Hill, Jr., Ph.D.°† Associate Professor
D. R. Lamond, Ph.D., D.V.Sc.°† Visiting Professor
S. L. Moore, D.V.M.°† Assistant State Veterinarian
R. D. Rich, M.S.°† Professor
C. C. Skelley, Jr., Ph.D.°† Associate Professor
J. N. Williams II, Ph.D.† Principal Extension Specialist
J. F. Wise, M.S.† Associate Extension Specialist
S. G. Woods, B.S.† Assistant Professor, Edisto Station

**Dairy Science**

W. A. King, Ph.D.°†† Head of Department, Professor
G. W. Brandt, Ph.D.§ Associate Professor
C. C. Brannon, B.S.°†† Associate Professor
W. V. Chalupa, Ph.D.°† Associate Professor
J. F. Dickey, Ph.D.°† Associate Professor
R. W. Henningson, Ph.D.°† Professor
Victor Hurst, Ph. D.°† Professor
J. J. Janzen, Ph.D.°† Professor
J. W. Kelly, M.S.†† Assistant Professor
J. T. Lazar, Jr., Ph.D.°†† Professor
C. H. Lomas, M.A.† Associate Extension Specialist
S. L. Moore, D.V.M.°† Associate State Veterinarian
W. L. Northern, M.S.† Associate Extension Specialist, Principal Specialist
G. D. O’Dell, M.S.‖ Assistant Professor
F. E. Pardue, M.S.‖ Associate Extension Specialist
C. B. Reeves, M.S.‖ Associate Extension Specialist

**Entomology and Economic Zoology**

S. B. Hays, Ph.D.*†† Head of Department, Associate Professor
T. R. Adkins, Jr., Ph.D.°†† Professor
H. R. Agee, Ph.D.† Research Entomologist, Pee Dee Station (USDA)
N. Allen, M.S.† Research Entomologist, Pee Dee Station (USDA)
I. V. Bell, M.S.‖ Microbiologist, Truck Station (USDA)
C. S. Creighton, B.S.§ Research Entomologist, Truck Station (USDA)
F. P. Cribert, Jr., B.S.† Research Entomologist, Truck Station (USDA)
Augustine Day, B.S.‖ Entomologist, Truck Station (USDA)
J. A. DuRant III, Ph.D.† Assistant Professor, Pee Dee Station
R. C. Fox, Ph.D.°†† Professor
A. R. Hopkins, M.S.‖ Research Entomologist, Pee Dee Station (USDA)
P. J. Howard, Jr., M.S.††‖ Extension Assistant—Entomology
D. A. Johnson, B.S.‖ District Supervisor, Bureau of Sport Fisheries and Wildlife
J. B. Kissam, Ph.D.† Associate Extension Specialist—Entomology

* Teaching staff.
† Research staff.
‡ Extension staff.
§ Part time.
E. W. King, Ph.D.† .................................................. Professor
Frances McAlister, B.A.† ...................................... Entomology Assistant
R. F. Moore, Jr., Ph.D.† ....................................... Research Entomologist, Pee Dee Station (USDA)
W. C. Nettles, M.S.† .............................................. Extension Specialist,
Principal Specialist—Entomology and Plant Pathology
J. A. Onsager, Ph.D.† ............................................. Investigations Leader, Truck Station (USDA)
J. K. Reed, Ph.D.† ................................................. Professor
S. H. Roach, Ph.D.† .............................................. Research Entomologist, Pee Dee Station (USDA)
T. E. Skelton, Ph.D.† .............................................. Assistant Professor
L. M. Sparks, Jr., M.S.† .......................................... Associate Extension Specialist—Entomology
H. M. Taft, Ph.D.† ................................................ Leader, Cotton Insects Investigations, Pee Dee Station (USDA)
C. A. Thomas, Jr., Ph.D.† .................................... Associate Extension Specialist—Entomology
S. G. Turnipseed, Ph.D.† ................................... Associate Professor, Edisto Station
L. G. Webb, Ph.D.†† .............................................. Associate Professor
Leader, Clemson Wildlife Research Project

Experimental Statistics and Statistical Services
W. P. Byrd, Ph.D.† ............................................... Professor
W. E. Johnston, M.S.†† .......................................... Assistant Professor
C. B. Loadholt, M.S.† ........................................... Assistant Professor

Farms
John S. Evans, B.S.† .............................................. Head of Department

Food Science and Biochemistry
W. P. Williams, Ph.D.† ....................................... Head of Department, Professor
R. F. Borgman, D.V.M., Ph.D.†† ................................ Associate Professor
L. Grook, Ph.D.†.................................................. Associate Professor
D. M. Hendricks, Ph.D.†...................................... Associate Professor
J. J. Jen, Ph.D.†.................................................. Associate Professor
J. H. Mitchell, Jr., Ph.D.†...................................... Professor
L. E. Vereen, Ph.D.†............................................ Assistant Professor

Forestry
Koloman Lehotsky, Ph.D.†† .................................... Head of Department, Professor
R. M. Allen, Ph.D.†............................................... Belle W. Baruch Professor
W. J. Barker, B.S.† .............................................. Principal Extension Specialist
M. H. Bruner, M.F.†............................................. Associate Professor
B. M. Cool, Ph.D.†.............................................. Professor
T. E. Gaylor, B.S.F.†........................................... Assistant in Forestry
N. B. Goebel, M.F.†............................................. Associate Forester
C. W. Hall, B.S.† ................................................ Associate Extension Specialist
C. L. Lane, Ph.D.†............................................... Associate Professor
W. H. D. McGregor, Ph.D.†† ................................ Professor
S. A. Marbut, B.S.† ............................................. Associate Extension Specialist
L. D. Reamer, M.S.†............................................. Assistant in Forestry
R. E. Schoenike, Ph.D.†...................................... Associate Professor
W. A. Shain, Ph.D.†............................................. Associate Professor
A. T. Shearin, B.S.† ............................................ Baruch Resident Research Forest Manager
J. R. Warner, D.F.†............................................ Professor
T. E. Wooten, Ph.D.†........................................... Assistant Professor

Four-H Club Work
G. H. Baker, B.S.† .............................................. State Leader, 4-H Programs
J. B. Williams, B.S.† ....................................... Extension Specialist (4-H Club Work)

E. Joyce Richardson, M.S.† ................................ Assistant Extension Specialist (4-H Club Work)
Georgia T. Roberson, M.Ed.† Associate Extension Specialist (4-H Club Work)
J. T. Rogers, B.S.† ............................................. Associate Extension Specialist (4-H Club Work)

* Teaching staff.
† Research staff.
| Extension staff.
‡ Part time.
Home Economics
Veronica D. Carmack, M.S. ......................... Assistant Extension Specialist (Home Management)
Marie S. Hindman, M.S.† ......................... Extension Specialist (Nutrition)
Frances H. Odom, M.A.‡ ......................... Extension Specialist (Housing)
Julia B. Taylor, M.S.‡ ......................... Extension Specialist (Home Furnishings)
W. L. Yates, M.S.‡ ......................... Assistant Extension Specialist (Family Life)

Horticulture
T. L. Senn, Ph.D.*‡† ......................... Head of Department, Professor
W. C. Barnes, Ph.D.† ......................... Superintendent and Professor, Truck Station
R. A. Baumgardner, Ph.D.† ......................... Associate Extension Specialist
Guy L. Buckner† ......................... Horticultural Assistant, Truck Station
W. P. Cook, M.S.† ......................... Assistant Extension Specialist
J. H. Crawford, M.S.† ......................... Assistant Professor
D. O. Ezell, Ph.D.‡ ......................... Assistant Extension Specialist
R. J. Ferree, M.S.† ......................... Extension Specialist, Principal Specialist
J. P. Fulmer, M.S.*‡ ......................... Assistant Professor
C. E. Gambrell, Jr., M.S.*† ......................... Assistant Horticulturist, Sandhill Station
M. G. Hamilton, Ph.D.‡ ......................... Associate Professor, Edisto Station
M. B. Hughes, Ph.D.† ......................... Professor, Edisto Station
C. R. Johnson, Ph.D.*‡† ......................... Assistant Professor
E. V. Jones, M.S.† ......................... Assistant Extension Specialist
W. S. Jordan, Ph.D.‡ ......................... Assistant Professor
F. B. Ledeboer, Ph.D.*‡ ......................... Assistant Professor
J. A. Martin, B.S.§ ......................... Associate Professor
W. L. Ogle, Ph.D.§ ......................... Professor
H. J. Sefick, M.S.*‡ ......................... Associate Professor
E. T. Sims, Jr., Ph.D.*‡ ......................... Associate Professor
B. J. Skelton, Ph.D.*,‡ ......................... Associate Professor
G. E. Stembridge, Ph.D.*‡ ......................... Associate Professor
F. W. Thode, M.S.*‡ .......... Associate Professor
L. O. Van Blariccom, M.S., Ch.E.*‡† ......................... Professor

Plant Pathology and Physiology
W. M. Epps, Ph.D.‡† ......................... Head of Department, Professor
O. W. Barnett, Ph.D.‡† ......................... Assistant Professor
L. W. Baxter, Ph.D.‡† ......................... Associate Professor
C. W. Blackmon, Ph.D.‡ ......................... Assistant Professor, Edisto Station
N. D. Camper, Ph.D.‡† ......................... Assistant Professor
D. F. Cohoon, Ph.D.‡† ......................... Superintendent and Professor, Edisto Station
W. M. Dowler, Ph.D.‡† ......................... Lecturer, Plant Pathologist (USDA)
T. W. Graham, Ph.D.‡† ......................... Plant Pathologist, Pee Dee Station (USDA)
J. E. Halpin, Ph.D.‡† ......................... Professor
G. C. Kingsland, Ph.D.‡† ......................... Associate Professor
W. C. Nettles, M.S.‡† ......................... Principal Extension Specialist—Entomology and Plant Pathology
W. R. Sitterly, Ph.D.‡† ......................... Professor, Truck Station
F. H. Smith, M.S.‡† ......................... Associate Extension Specialist—Plant Pathology
Wesley Witcher, Ph.D.*‡† ......................... Associate Professor
E. I. Zehr, Ph.D.*‡† ......................... Assistant Professor

Plant Pest Regulatory Service
L. H. Senn, Ph.D.‡† ......................... State Entomologist
W. M. Epps, Ph.D.‡† ......................... State Plant Pathologist
R. C. Fox, Ph.D.‡† ......................... Professor
D. M. Guydon, M.S.‡ .......... Assistant Entomologist
F. J. Howard, Jr., M.S.‡† ......................... Research Assistant
V. H. McCaskill, M.S.‡† ......................... Assistant Entomologist
L. R. Morgan, B.S.‡† ......................... Entomology Assistant

* Teaching staff.
† Research staff.
‡ Extension staff.
Public Service Activities

D. C. Weeks, M.S.† .......................................................... Assistant Entomologist
Wesley Witcher, Ph.D.∗† .............................................. Associate Professor

Poultry Science

B. D. Barnett, Ph.D.∗†‡ .............................................. Head of Department, Professor
B. W. Bierer, V.M.D.† ....................................................... Professor, Laboratory Director, Columbia
M. A. Boone, Ph.D.† .............................................................. Professor
J. B. Cooper, M.S.∗† .......................................................... Associate Professor
J. E. Jones, Ph.D.∗‡ ............................................................ Assistant Professor
C. F. Risher, B.S.‡ .............................................................. Associate Extension Specialist, York
J. Solis, Ph.D.∗‡ .............................................................. Assistant Professor
T. C. Stewart, Sr., B.S.‡ ....................................................... Associate Extension Specialist
D. E. Turk, Ph.D.∗‡ ............................................................ Associate Professor
W. S. Walker, M.Ed.‡ ....................................................... Associate Extension Specialist, Columbia

Seed Certification

R. H. Garrison, B.S.† .............................................. Head of Department, Associate Plant Breeder
J. O. Black, Jr., M.S.† ....................................................... Assistant Agronomist
R. A. Jameson, M.S.† ....................................................... Assistant Agronomist

∗ Teaching staff.
 † Research staff.
 ‡ Extension staff.
<table>
<thead>
<tr>
<th>County</th>
<th>Name</th>
<th>Post Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbeville</td>
<td>L. H. Bull, B.S.</td>
<td>Abbeville</td>
</tr>
<tr>
<td>Aiken</td>
<td>J. H. Evans, B.S.</td>
<td>Aiken</td>
</tr>
<tr>
<td>Allendale</td>
<td>W. H. Funchess, M.S.</td>
<td>Allendale</td>
</tr>
<tr>
<td>Anderson</td>
<td>H. D. Maret, B.S.</td>
<td>Anderson</td>
</tr>
<tr>
<td>Bamberg</td>
<td>D. W. Howe, B.S.</td>
<td>Bamberg</td>
</tr>
<tr>
<td>Barnwell</td>
<td>J. B. Griffith, B.S.</td>
<td>Barnwell</td>
</tr>
<tr>
<td>Beaufort</td>
<td>W. L. Johnson, M.S.</td>
<td>Beaufort</td>
</tr>
<tr>
<td>Berkeley</td>
<td>M. C. Mason, B.S.</td>
<td>Moncks Corner</td>
</tr>
<tr>
<td>Calhoun</td>
<td>R. N. Chastain, B.S.</td>
<td>St. Matthews</td>
</tr>
<tr>
<td>Charleston</td>
<td>B. S. Lawrimore, B.S.</td>
<td>Charleston</td>
</tr>
<tr>
<td>Cherokee</td>
<td>W. A. Ridgeway, B.S.</td>
<td>Gaffney</td>
</tr>
<tr>
<td>Chester</td>
<td>D. C. Wylie, Jr., B.S.</td>
<td>Chester</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>J. C. Willis, B.S.</td>
<td>Chesterfield</td>
</tr>
<tr>
<td>Clarendon</td>
<td>A. D. Grainger, B.S.</td>
<td>Manning</td>
</tr>
<tr>
<td>Colleton</td>
<td>J. R. White, B.S.</td>
<td>Walterboro</td>
</tr>
<tr>
<td>Darlington</td>
<td>W. J. Gray, B.S.</td>
<td>Darlington</td>
</tr>
<tr>
<td>Dorchester</td>
<td>D. E. Epps, B.S.</td>
<td>St. George</td>
</tr>
<tr>
<td>Edgefield</td>
<td>J. W. Gilliam, Jr., B.S.</td>
<td>Edgefield</td>
</tr>
<tr>
<td>Fairfield</td>
<td>M. H. Lyons, B.S.</td>
<td>Winnboro</td>
</tr>
<tr>
<td>Florence</td>
<td>H. F. Livingston, Jr., B.S.</td>
<td>Florence</td>
</tr>
<tr>
<td>Georgetown</td>
<td>H. B. Hardee, B.S.</td>
<td>Georgetown</td>
</tr>
<tr>
<td>Greenville</td>
<td>J. K. Jones, B.S.</td>
<td>Greenville</td>
</tr>
<tr>
<td>Greenwood</td>
<td>T. J. Bryson, B.S.</td>
<td>Greenwood</td>
</tr>
<tr>
<td>Hampton</td>
<td>E. C. Wallace, M.S.</td>
<td>Hampton</td>
</tr>
<tr>
<td>Horry</td>
<td>W. D. Witherspoon, B.S.</td>
<td>Conway</td>
</tr>
<tr>
<td>Jasper</td>
<td>E. G. Tate, Jr., B.S.</td>
<td>Ridgeland</td>
</tr>
<tr>
<td>Kershaw</td>
<td>R. R. Montgomery, B.S.</td>
<td>Camden</td>
</tr>
<tr>
<td>Lancaster</td>
<td>F. W. Cannon, B.S.</td>
<td>Lancaster</td>
</tr>
<tr>
<td>Laurens</td>
<td>Marett Outz, B.S.</td>
<td>Laurens</td>
</tr>
<tr>
<td>Lee</td>
<td>V. F. Linder, B.S.</td>
<td>Bishopville</td>
</tr>
<tr>
<td>Lexington</td>
<td>M. A. Bouknight, B.S.</td>
<td>Lexington</td>
</tr>
<tr>
<td>McCormick</td>
<td>J. R. Meredith, M.S.</td>
<td>McCormick</td>
</tr>
<tr>
<td>Marion</td>
<td>J. L. King, B.S.</td>
<td>Marion</td>
</tr>
<tr>
<td>Marlboro</td>
<td>E. C. Abrams, M.Agr.</td>
<td>Bennettsville</td>
</tr>
<tr>
<td>Newberry</td>
<td>A. F. Busby, B.S.</td>
<td>Newberry</td>
</tr>
<tr>
<td>Oconee</td>
<td>J. C. Morgan, B.S.</td>
<td>Walhalla</td>
</tr>
<tr>
<td>Orangeburg</td>
<td>J. C. King, B.S.</td>
<td>Orangeburg</td>
</tr>
<tr>
<td>Pickens</td>
<td>J. R. Wood, B.S.</td>
<td>Pickens</td>
</tr>
<tr>
<td>Richland</td>
<td>R. W. Bailey, B.S.</td>
<td>Columbia</td>
</tr>
<tr>
<td>Saluda</td>
<td>W. H. Craven, Jr., B.S.</td>
<td>Saluda</td>
</tr>
<tr>
<td>Spartanburg</td>
<td>W. J. Martin, B.S.</td>
<td>Spartanburg</td>
</tr>
<tr>
<td>Sumter</td>
<td>T. O. Bowen, B.S.</td>
<td>Sumter</td>
</tr>
<tr>
<td>Union</td>
<td>J. L. Cochran, B.S.</td>
<td>Union</td>
</tr>
<tr>
<td>Williamsburg</td>
<td>L. B. Harrington, B.S.</td>
<td>Kingstree</td>
</tr>
<tr>
<td>York</td>
<td>C. H. Fant, B.S.</td>
<td>York</td>
</tr>
</tbody>
</table>

Area Agent—Livestock: J. E. Barker, M.S.  
Area-Agent—Com. and Res.:  
Development: A. L. Padgett  
Area Agent—Ornamentals: C. W. Thompson, M.S.  
Area Agent—Livestock: H. L. Eason, B.S.  
Area Agent—Agronomy: R. L. Stephens  
Area Agent—Poultry: J. F. Welter, M.S.  
Area Agent—Horticulture: J. D. Ridley  
Area Agent—Livestock: B. W. Sherer, B.S.
### ASSOCIATE AND ASSISTANT COUNTY AGENTS

<table>
<thead>
<tr>
<th>County</th>
<th>Name</th>
<th>Post Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbeville</td>
<td>J. S. Jones, B.S.</td>
<td>Abbeville</td>
</tr>
<tr>
<td>Aiken</td>
<td>F. M. Lolits, B.S.</td>
<td>Aiken</td>
</tr>
<tr>
<td>Aiken</td>
<td>W. A. Beasley, Assoc., M.S.</td>
<td>Aiken</td>
</tr>
<tr>
<td>Aiken</td>
<td>T. A. Hammond, Assoc., B.S.</td>
<td>Aiken</td>
</tr>
<tr>
<td>Allendale</td>
<td>J. E. Cely, B.S.</td>
<td>Allendale</td>
</tr>
<tr>
<td>Anderson</td>
<td>N. C. Anderson, Assoc., B.S.</td>
<td>Anderson</td>
</tr>
<tr>
<td>Anderson</td>
<td>R. C. McDaniel, Assoc., M.S.</td>
<td>Anderson</td>
</tr>
<tr>
<td>Anderson</td>
<td>G. W. Stewart, Assoc., B.S.</td>
<td>Anderson</td>
</tr>
<tr>
<td>Anderson</td>
<td>W. R. Roberts, B.S.</td>
<td>Anderson</td>
</tr>
<tr>
<td>Bamberg</td>
<td>E. D. Dean, Assoc., M.S.</td>
<td>Bamberg</td>
</tr>
<tr>
<td>Bamberg</td>
<td>D. L. Wilkins, B.S.</td>
<td>Bamberg</td>
</tr>
<tr>
<td>Barnwell</td>
<td>B. R. Stepp, B.S.§</td>
<td>Barnwell</td>
</tr>
<tr>
<td>Barnwell</td>
<td>J. M. Stout, M.S.</td>
<td>Barnwell</td>
</tr>
<tr>
<td>Beaufort</td>
<td>P. T. Seabrook, Assoc., M.S.</td>
<td>Beaufort</td>
</tr>
<tr>
<td>Berkeley</td>
<td>R. C. Bacote, Assoc., M.S.</td>
<td>Moncks Corner</td>
</tr>
<tr>
<td>Berkeley</td>
<td>W. C. Clinkscales, B.S.§</td>
<td>Moncks Corner</td>
</tr>
<tr>
<td>Charleston</td>
<td>J. L. Gowdy, B.S.</td>
<td>Charleston</td>
</tr>
<tr>
<td>Charleston</td>
<td>L. M. Muldrow, B.S.</td>
<td>Charleston</td>
</tr>
<tr>
<td>Cherokee</td>
<td>H. B. Pasley, B.S.</td>
<td>Gafney</td>
</tr>
<tr>
<td>Cherokee</td>
<td>W. J. Hendrix, B.S.</td>
<td>Gafney</td>
</tr>
<tr>
<td>Chester</td>
<td>C. N. Strange, Assoc., B.S.</td>
<td>Chester</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>D. D. Pruitt, B.S.</td>
<td>Chesterfield</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>W. F. Yates, B.S.§</td>
<td>Chesterfield</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>H. X. George, B.S.</td>
<td>Chesterfield</td>
</tr>
<tr>
<td>Clarendon</td>
<td>H. C. Scoville, B.S.</td>
<td>Manning</td>
</tr>
<tr>
<td>Clarendon</td>
<td>R. D. McNair, Assoc., B.S.</td>
<td>Manning</td>
</tr>
<tr>
<td>Colleton</td>
<td>J. J. Mitchell, Assoc., M.S.</td>
<td>Walterboro</td>
</tr>
<tr>
<td>Darlington</td>
<td>C. H. Gray, B.S.</td>
<td>Darlington</td>
</tr>
<tr>
<td>Darlington</td>
<td>R. C. DuBose, Assoc., B.S.</td>
<td>Darlington</td>
</tr>
<tr>
<td>Darlington</td>
<td>R. C. Smith, Jr., Assoc., B.S.</td>
<td>Darlington</td>
</tr>
<tr>
<td>Dillon</td>
<td>C. C. Adams, B.S.</td>
<td>Dillon</td>
</tr>
<tr>
<td>Dorchester</td>
<td>F. O. McAlhany, B.S.</td>
<td>St. George</td>
</tr>
<tr>
<td>Edgefield</td>
<td>C. R. Tutcn, Assoc., B.S.</td>
<td>Edgefield</td>
</tr>
<tr>
<td>Fairfield</td>
<td>D. G. Belton, Jr., B.S.</td>
<td>Winsboro</td>
</tr>
<tr>
<td>Fairfield</td>
<td>A. D. Boggs, Assoc., B.S.</td>
<td>Winsboro</td>
</tr>
<tr>
<td>Florence</td>
<td>A. J. Kinder, B.S.</td>
<td>Florence</td>
</tr>
<tr>
<td>Florence</td>
<td>J. M. Parnell, Assoc., B.S.</td>
<td>Florence</td>
</tr>
<tr>
<td>Florence</td>
<td>Amos Wells, Jr., B.S.</td>
<td>Florence</td>
</tr>
<tr>
<td>Georgetown</td>
<td>K. P. Williams B.S.</td>
<td>Georgetown</td>
</tr>
<tr>
<td>Greenville</td>
<td>C. K. Palmer, Assoc., B.S.</td>
<td>Greenville</td>
</tr>
<tr>
<td>Greenville</td>
<td>F. D. Garrett, Assoc., B.S.</td>
<td>Greenville</td>
</tr>
<tr>
<td>Greenville</td>
<td>H. G. Oates, B.S.</td>
<td>Greenville</td>
</tr>
<tr>
<td>Greenwood</td>
<td>H. A. Williams, B.S.</td>
<td>Greenwood</td>
</tr>
<tr>
<td>Hampton</td>
<td>J. A. Spruill, Assoc., M.S.</td>
<td>Hampton</td>
</tr>
<tr>
<td>Horry</td>
<td>Cleveland Sanders, B.S.</td>
<td>Conway</td>
</tr>
<tr>
<td>Horry</td>
<td>W. P. Johnson, Assoc., B.S.</td>
<td>Conway</td>
</tr>
<tr>
<td>Horry</td>
<td>J. W. Pruitt, B.S.</td>
<td>Conway</td>
</tr>
<tr>
<td>Horry</td>
<td>J. L. Brewer, B.S.</td>
<td>Conway</td>
</tr>
<tr>
<td>Jasper</td>
<td>H. E. Wilson, B.S.</td>
<td>Ridgeland</td>
</tr>
<tr>
<td>Kershaw</td>
<td>B. T. McIntosh, Assoc., M.S.</td>
<td>Camden</td>
</tr>
<tr>
<td>Kershaw</td>
<td>C. A. Powell, B.S.</td>
<td>Camden</td>
</tr>
<tr>
<td>Lancaster</td>
<td>D. R. Gowan, Assoc., M.S.</td>
<td>Lancaster</td>
</tr>
<tr>
<td>Lancaster</td>
<td>C. N. Wilson, Assoc., B.S.</td>
<td>Lancaster</td>
</tr>
<tr>
<td>Laurens</td>
<td>T. B. Reeves, B.S.</td>
<td>Laurens</td>
</tr>
<tr>
<td>Laurens</td>
<td>A. F. Williams, Assoc., M.S.</td>
<td>Laurens</td>
</tr>
<tr>
<td>Lee</td>
<td>L. S. Livingston, Assoc., B.S.</td>
<td>Bishopville</td>
</tr>
<tr>
<td>Lee</td>
<td>John Mott, B.S.</td>
<td>Bishopville</td>
</tr>
<tr>
<td>Lexington</td>
<td>R. L. Boozer, Assoc., M.Ed.</td>
<td>Lexington</td>
</tr>
<tr>
<td>Lexington</td>
<td>W. C. Jones, Jr., B.S.</td>
<td>Lexington</td>
</tr>
</tbody>
</table>
### Extension Home Economists

**County** | **Name** | **Post Office**
---|---|---
Marion | C. A. Brown, Assoc., B.S. | Marion
Marion | M. J. Carter, Assoc., B.S. | Marion
Marlboro | R. C. Smith, Assoc., B.S. | Bennettsville
Marlboro | W. C. Clinkscales, B.S. | Bennettsville
Newberry | J. O. Donkle, Assoc., B.S. | Newberry
Newberry | B. J. Gill, Assoc., B.S. | Newberry
Oconeé | M. S. Cely, Jr., B.S. | Walhalla
Orangeburg | J. L. Hayden, Assoc., B.S. | Orangeburg
Orangeburg | Reuel McLeod, Assoc., B.S. | Orangeburg
Orangeburg | Q. J. Smith, Assoc., M.S. | Orangeburg
Orangeburg | Leon Carson, B.S. | Orangeburg
Orangeburg | J. E. Yonce, B.S. | Orangeburg
Pickens | F. M. Fleming, Assoc., B.S. | Pickens
Richland | O. F. Huff, Assoc., B.S. | Columbia
Richland | Charlie Bronson, Jr., Assoc., M.S. | Columbia
Richland | D. B. Dunlap, M.S. | Columbia
Saluda | J. W. Riser, Assoc., B.S. | Saluda
Spartanburg | G. W. Bowen, Jr., Assoc., B.S. | Spartanburg
Spartanburg | Crayton McCown, Assoc., B.S. | Spartanburg
Spartanburg | R. N. Smith, Assoc., B.S. | Spartanburg
Sumter | Arthur Sanders, Assoc., B.S. | Sumter
Sumter | T. B. Tillman, Jr., Assoc., B.S. | Sumter
Union | W. J. Ruff, B.S. | Union
Williamsburg | R. M. Johnston, Assoc., B.S. | Kingstree
Williamsburg | J. F. Fitts, B.S. | Kingstree
York | J. G. Bowman, Assoc., B.S. | York
York | J. D. Williams, Assoc., B.S. | York
York | J. W. Pridmore, B.S. | York

### EXTENSION HOME ECONOMISTS

**County** | **Name** | **Post Office**
---|---|---
Abbeville | Sara M. Glenn, B.S. | Abbeville
Aiken | Alpha C. Jenkins, B.S. | Aiken
Allendale | Barbara O. Lewis, A.B. | Allendale
Anderson | Nancy H. Williams, B.S. | Anderson
 Bamberg | Rachel E. Anderson, B.S. | Bamberg
 Barnwell | Evelyn S. Williams, B.S. | Barnwell
 Beaufort | Vivian C. Gibson, B.S. | Beaufort
 Berkeley | Matilda B. von Lehe, B.S. | Moncks Corner
 Calhoun | Joann R. Zeigler, B.S. | St. Matthews
 Charleston | Lillian R. Goldberg, B.S. | Charleston
 Cherokee | Lucille B. Alsing, B.S. | Gaffney
 Chester | Judith C. Gaskins, B.S. | Chester
 Chesterfield | Lillian D. Rivers, B.S. | Chesterfield
 Clarendon | Miriam F. Rigby, B.S. | Manning
 Colleton | Emily E. Bridges, B.S. | Walterboro
 Darlington | Sara E. Roper, B.S. | Darlington
 Dillon | Claire Baker, B.S. | Dillon
 Dorchester | Bernice H. Brown, B.S. | St. George
 Edgefield | Dorothy O. Herlong, B.S. | Edgefield
 Fairfield | Theresa Beckham, B.S. | Winnsboro
 Florence | Eleanor M. Foster, B.S. | Florence
 Georgetown | Alice N. Milligan, B.S. | Georgetown
 Greenville | Mary M. Stone, M.S. | Greenville
 Greenwood | A. Louise McColl, B.S. | Greenwood
 Hampton | Judith E. Spires, B.S. | Hampton
 Horry | R. Violet Navy, B.S. | Conway
 Kershaw | Mary S. Day, B.S. | Camden
 Lancaster | Nancy C. Patterson, B.S. | Lancaster
<table>
<thead>
<tr>
<th>County</th>
<th>Name</th>
<th>Post Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laurens</td>
<td>Helen C. Camp, B.S.</td>
<td>Laurens</td>
</tr>
<tr>
<td>Lee</td>
<td>Carolyn Meares, B.S.</td>
<td>Bishopville</td>
</tr>
<tr>
<td>Lexington</td>
<td>Margaret G. McFadden, B.S.</td>
<td>Lexington</td>
</tr>
<tr>
<td>Marion</td>
<td>Sallie M. Smith, B.S.</td>
<td>Marion</td>
</tr>
<tr>
<td>Marlboro</td>
<td>Louise Heriot, M.Ed.</td>
<td>Bennettsville</td>
</tr>
<tr>
<td>Newberry</td>
<td>Mildred K. Holliday, B.S.</td>
<td>Newberry</td>
</tr>
<tr>
<td>Oconee</td>
<td>Julia D. Herron, B.S.</td>
<td>Walhalla</td>
</tr>
<tr>
<td>Orangeburg</td>
<td>Huldah P. McKnight, B.S</td>
<td>Orangeburg</td>
</tr>
<tr>
<td>Pickens</td>
<td>Sarah G. Cureton, B.S.</td>
<td>Pickens</td>
</tr>
<tr>
<td>Richland</td>
<td>Eleanor W. Jones, B.S.</td>
<td>Columbia</td>
</tr>
<tr>
<td>Saluda</td>
<td>Catherine S. Boozer, B.S.</td>
<td>Saluda</td>
</tr>
<tr>
<td>Spartanburg</td>
<td>Linda C. Durham, B.S.</td>
<td>Spartanburg</td>
</tr>
<tr>
<td>Sumter</td>
<td>Evangeline T. Thompson, B.S.</td>
<td>Sumter</td>
</tr>
<tr>
<td>Union</td>
<td>Laura W. Jeter, B.S.</td>
<td>Union</td>
</tr>
<tr>
<td>York</td>
<td>Jennie M. Riddle, B.S.</td>
<td>York</td>
</tr>
</tbody>
</table>

**ASSOCIATE AND ASSISTANT EXTENSION HOME ECONOMISTS**

<table>
<thead>
<tr>
<th>County</th>
<th>Name</th>
<th>Post Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aiken</td>
<td>Lonieal H. Jackson, Assoc., B.S.</td>
<td>Aiken</td>
</tr>
<tr>
<td>Aiken</td>
<td>Kathy L. Arthur, B.S.</td>
<td>Aiken</td>
</tr>
<tr>
<td>Allendale</td>
<td>Annie M. Butler, Assoc., B.S.</td>
<td>Allendale</td>
</tr>
<tr>
<td>Anderson</td>
<td>Mary M. Thompson, B.S.</td>
<td>Anderson</td>
</tr>
<tr>
<td>Anderson</td>
<td>Nancy V. Gary, B.S.</td>
<td>Anderson</td>
</tr>
<tr>
<td>Anderson</td>
<td>Cynthia W. Williford, Assoc., M.S.</td>
<td>Anderson</td>
</tr>
<tr>
<td>Bamberg</td>
<td>Lillie J. Limehouse, Assoc., B.S.</td>
<td>Bamberg</td>
</tr>
<tr>
<td>Barnwell</td>
<td>Edna K. DuPree, Assoc., B.S.</td>
<td>Barnwell</td>
</tr>
<tr>
<td>Beaufort</td>
<td>Lillie B. Crosby, Asst., B.S.</td>
<td>Beaufort</td>
</tr>
<tr>
<td>Berkeley</td>
<td>Doris T. Dauphiney, B.S.</td>
<td>Moncks Corner</td>
</tr>
<tr>
<td>Charleston</td>
<td>Dorthula B. Bonds, B.S.</td>
<td>Charleston</td>
</tr>
<tr>
<td>Charleston</td>
<td>Mary Ann DeFend, B.S.</td>
<td>Charleston</td>
</tr>
<tr>
<td>Cherokee</td>
<td>Leota S. Littlejohn, B.S.</td>
<td>Gaffney</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>Phyllis Bradham, B.S.</td>
<td>Chesterfield</td>
</tr>
<tr>
<td>Colleton</td>
<td>Gussie M. Gouldlock, Assoc., B.S.</td>
<td>Walterboro</td>
</tr>
<tr>
<td>Darlington</td>
<td>Frances K. Mitchell, B.S.</td>
<td>Darlington</td>
</tr>
<tr>
<td>Darlington</td>
<td>Joyce D. Byrd, B.S.</td>
<td>Darlington</td>
</tr>
<tr>
<td>Dorchester</td>
<td>Cynthia D. Phinney, B.S.</td>
<td>St. George</td>
</tr>
<tr>
<td>Edgefield</td>
<td>Mary H. Ouzts, B.S.</td>
<td>Edgefield</td>
</tr>
<tr>
<td>Florence</td>
<td>Grace L. Taylor, B.S.</td>
<td>Florence</td>
</tr>
<tr>
<td>Florence</td>
<td>Hattie P. Lowery, Assoc., M.S.</td>
<td>Florence</td>
</tr>
<tr>
<td>Florence</td>
<td>Sallie M. Moore, B.S.</td>
<td>Florence</td>
</tr>
<tr>
<td>Georgetown</td>
<td>Janie Lancaster, M.S.</td>
<td>Georgetown</td>
</tr>
<tr>
<td>Greenville</td>
<td>Mary P. Batson, B.S.</td>
<td>Greenville</td>
</tr>
<tr>
<td>Greenville</td>
<td>Alma A. Devore, B.S.</td>
<td>Greenville</td>
</tr>
<tr>
<td>Hampton</td>
<td>Leona B. Mungin, Assoc., B.S.</td>
<td>Hampton</td>
</tr>
<tr>
<td>Horry</td>
<td>Diane N. Hess, B.S.</td>
<td>Conway</td>
</tr>
<tr>
<td>Horry</td>
<td>Marian M. Watson, Assoc., M.Ed.</td>
<td>Conway</td>
</tr>
<tr>
<td>Jasper</td>
<td>Frances M. Petrie, B.S.</td>
<td>Ridgeland</td>
</tr>
<tr>
<td>Lancaster</td>
<td>Jessie J. Shannon, B.S.</td>
<td>Lancaster</td>
</tr>
<tr>
<td>Laurens</td>
<td>Nellie K. Harrison, B.S.</td>
<td>Laurens</td>
</tr>
<tr>
<td>Lee</td>
<td>Bertha G. Alston, B.S.</td>
<td>Bishopville</td>
</tr>
<tr>
<td>Lexington</td>
<td>Jeralyn K. Fallaw, B.S.</td>
<td>Lexington</td>
</tr>
<tr>
<td>Marion</td>
<td>Shirley M. Patterson, B.S.</td>
<td>Marion</td>
</tr>
<tr>
<td>Newberry</td>
<td>Mary Sue Day, B.S.</td>
<td>Newberry</td>
</tr>
<tr>
<td>Newberry</td>
<td>Lillian C. Saunders, Assoc., B.S.</td>
<td>Newberry</td>
</tr>
<tr>
<td>Orangeburg</td>
<td>Rosa R. Odom, Assoc., B.S.</td>
<td>Orangeburg</td>
</tr>
<tr>
<td>Orangeburg</td>
<td>Margaret A. Culler, B.S.</td>
<td>Orangeburg</td>
</tr>
<tr>
<td>Pickens</td>
<td>Sarah E. Richardson, B.S.</td>
<td>Pickens</td>
</tr>
<tr>
<td>Richland</td>
<td>Gertrude H. Sanders, Assoc., B.S.</td>
<td>Columbia</td>
</tr>
<tr>
<td>County</td>
<td>Name</td>
<td>Post Office</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Richland</td>
<td>Margaret F. Mattox, B.S.</td>
<td>Columbia</td>
</tr>
<tr>
<td>Saluda</td>
<td>Myrtice T. Boazman, Assoc., B.S.</td>
<td>Saluda</td>
</tr>
<tr>
<td>Spartanburg</td>
<td>Delphine O. Thornton, B.S.</td>
<td>Spartanburg</td>
</tr>
<tr>
<td>Sumter</td>
<td>Laura A. Webster, B.S.</td>
<td>Sumter</td>
</tr>
<tr>
<td>Sumter</td>
<td>Jacqueline M. McKnight, B.S.</td>
<td>Sumter</td>
</tr>
<tr>
<td>Union</td>
<td>Marie F. Wolfe, B.S.</td>
<td>Union</td>
</tr>
<tr>
<td>Williamsburg</td>
<td>Eva G. Lawrence, Assoc., B.S.</td>
<td>Kingstree</td>
</tr>
<tr>
<td>York</td>
<td>Johnnie G. Sloan, Assoc., B.S.</td>
<td>York</td>
</tr>
<tr>
<td>York</td>
<td>Laura J. Gramling, B.S.</td>
<td>York</td>
</tr>
</tbody>
</table>

**EXTENSION SERVICE EMERITI**

Lora Warner Alford, B.S. ................................... County Agent Emeritus
Caroline Simonton Alston .................................... Home Demonstration Agent Emeritus
John Chipley Anthony, B.A. .................................. County Agent Emeritus
Delphena Wilkerson Arnold, L.I., Assoc. Home Demonstration Agent Emeritus
Ophelia Sue Barker, B.S. ..................................... Home Demonstration Agent Emeritus
Benjamin Barnwell ............................................. County Agent Emeritus
George Washington Bonnette, B.S. .......................... County Agent Emeritus
Hugh Asbury Bowers, M.S. ..................................... Extension Horticulturist—Truck Crops Emeritus
Elizabeth DuBose Boykin, A.B. ............................... Home Demonstration Agent Emeritus
Harry Gilmore Boylston, B.S. ................................ Extension Cotton Improvement Specialist Emeritus
Lillian Watts Brown, L.I. ................................... Associate Home Demonstration Agent Emeritus
George Dewey Butler ......................................... Assistant County Agent Emeritus
Odil Williams Cain, B.S. ..................................... County Agent Emeritus
Charles Babb Cannon, B.S. .................................... County Agent Emeritus
Claude William Carraway, B.S. ............................... County Agent Emeritus
Eleanor DeVeaux Carson, A.B., M.S. ........................ Home Demonstration Agent Emeritus
Cammie Fludd Clagett, B.S. .................................. Associate Home Economist Emeritus
Mattie Lee Cooley, B.S. ...................................... Home Demonstration Agent Emeritus
Carl Golden Cushman, B.S. .................................... Leader Emeritus, Dairy Extension Work
George Washington Daniel, L.I. ............................. Associate County Agent Emeritus
George Washington Dean, M.S. ................................ Area Agent—Livestock Emeritus
James Ervin Dickson, B.S. .................................... Associate County Agent Emeritus
Spencer Cholier Disher, L.I. ................................ Associate County Agent Emeritus
Augustus Lowery DuRant, B.S., M.S. ........................ Leader, Livestock Work Emeritus
James Malcolm Eleazer, B.S. ................................ Extension Information Specialist Emeritus
Silas Wightman Epps, B.S. .................................... County Agent Emeritus
Samuel Ernest Evans, B.S., M.S. ............................. County Agent Emeritus
Paul Bryson Ezell, B.S. ...................................... County Agent Emeritus
Margaret Barron Fewell, B.A. ................................ Home Demonstration Agent Emeritus
Eugene Frederick, B.S. ...................................... Associate County Agent Emeritus
Rosa Gibbs Gadson, L.I. ...................................... Associate Home Demonstration Agent Emeritus
Minnie Estha Gandy ........................................... Associate Home Demonstration Agent Emeritus
Paul Matthew Garvin, B.S. .................................... County Agent Emeritus
Percy Harold Gooding, B.S., M.S. ............................ Leader, Poultry Extension Work Emeritus
Cecil Pound Goodeyar, B.S. .................................. Associate County Agent Emeritus
William Roy Gray, B.S. ...................................... County Agent Emeritus
Mary Catherine Haynie, B.A. ................................ Home Demonstration Agent Emeritus
Isobel Patterson Heaton, B.S. ............................... Extension Home Economist Emeritus
Elizabeth Herbert, B.A. ...................................... Home Demonstration Agent Emeritus
Ellie Lanham Herrick, B.S. .................................. Family Life Specialist Emeritus
Jesse Howard Hopkins, Sr., B.S. ............................. County Agent Emeritus
Julia Stebbins Howerton ..................................... Home Demonstration Agent Emeritus
Ralph Alexander Jackson, B.S. .............................. County Agent Emeritus
Harriett Frazier Johnson, A.B., B.S., M.A.  ................ State Girls’ Club Agent Emeritus
Laura Connor Johnson, B.S. ................................ Extension Home Economist Emeritus
Wayman Johnson, B.S., M.S. ................................ Associate Extension Specialist Emeritus
Vernon Morris Johnston, B.S. ................................ County Agent Emeritus
Jane Ketchen, B.A. Assistant State Home Demonstration Agent Emeritus
Lonny Inge Landrum, B.S. State Home Demonstration Agent Emeritus
Jamie Tarleton Lazar, B.S. District Agent Emeritus
Thomas Brougham Lee, B.S. County Agent Emeritus
Robert Howe Lemmon, B.S. County Agent Emeritus
Janie Letitia McDill, A.B., B.S., M.S. Nutritionist Emeritus
Henry Abner McGee Extension Tobacco Specialist Emeritus
Elizabeth McNab, A.B. Home Demonstration Agent Emeritus
John Doby Marshall, B.S. Associate County Agent Emeritus
Margaret Martin, B.A., M.A. Extension Food Production and Conservation Specialist Emeritus

Booker Talifer Miller, B.S. Associate County Agent Emeritus
John Dalton Miller, B.S. County Agent Emeritus
Izora Miley Home Demonstration Agent Emeritus
T. W. Morgan, M.S. Associate Director of Extension Emeritus
Sallie P. Musser, B.A., M.A. State Home Demonstration Agent Emeritus
Juanita Henderson Neely, A.B., M.S., State Home Demonstration Agent Emeritus
Margaret Myrtle Nesbitt, B.S. Extension Home Economist Emeritus
George Bass Nutt, B.S., M.S. Director of Extension Emeritus
Marian Baxter Paul, B.S. Assistant in Home Economics Extension Emeritus
Houston Stafford Person, B.S. Associate County Agent Emeritus
Theodosia Dargan Plowden District Agent Emeritus
Gertrude Hall Sanders, B.S. Associate Home Economist Emeritus
Portia Seabrook, A.B., M.S. Extension Clothing Specialist Emeritus
Etta Sue Sellers, B.A. Home Demonstration Agent Emeritus
Moses Marcus Sitton, B.S., M.S. Associate County Agent Emeritus
Mahala Jane Smith, B.S. Home Demonstration Agent Emeritus
Vela Mariah Smith, B.S., M.S. Extension Specialist Emeritus
—Home Economics Emeritus
Stiles Conger Stribling, B.S. Agriculture Editor Emeritus
Lena Elizabeth Sturgis Home Demonstration Agent Emeritus
Marguerite Spearman Summer, B.S. Home Demonstration Agent Emeritus
Van Buren Thomas, B.S.A. Assistant County Agent Emeritus
William Thompson, B.S. Associate County Agent Emeritus
Carrie Carson Tomlinson, B.S., M.A. Home Demonstration Agent Emeritus
Ernest Craig Turner, B.S. Extension Conservationist Emeritus
Larkin Vandiville Walker, B.S. Associate County Agent Emeritus
Audley Hoffman Ward, B.S., M.S. District Agent Emeritus
Mabel Price Washington, B.S. Associate Home Demonstration Agent Emeritus
David Wayne Watkins, B.S., M.A. Director Emeritus
Ernest Nesbit Williams, B.S. Assistant in Agricultural Extension Emeritus

LIVESTOCK-POULTRY HEALTH DEPARTMENT
P. O. Box 1771
COLUMBIA, SOUTH CAROLINA 29202

Director and State Veterinarian
Carl E. Boyd, D.V.M. Columbia

State Associate Director
John B. Thomas, D.V.M. Columbia

Federal Assistant Director
John A. Kimsey, D.V.M. Columbia

Meat Inspection Program
George D. Batcheldor, Sr., D.V.M., Chief Columbia
Lloyd V. Fry, D.V.M., Assistant Chief Columbia
A. F. Allison, D.V.M. Greenville
William Ginn, D.V.M. Columbia
The South Carolina Agricultural Experiment Station

A. R. Griffith, D.V.M. ......................................................... Orangeburg
Gus A. Vaninetti, D.V.M. .................................................... Florence

Livestock Laboratory
Bert W. Bierer, V.M.D., Director ........................................ Columbia
H. Gaffney Blalock, D.V.M., Ph.D. ........................................ Columbia
Walter T. Carll, D.V.M. ..................................................... Columbia
Julian Cornwell, D.V.M. ..................................................... Columbia
W. T. Derieux, D.V.M. ....................................................... Columbia
T. H. Eleazer, D.V.M. ....................................................... Columbia
W. H. Rhodes, D.V.M. ....................................................... Columbia

Field Veterinary Supervisors
O. E. Baker, D.V.M. .......................................................... Columbia
D. E. Goodman, D.V.M. ..................................................... Turbeville
S. L. Moore, D.V.M. ........................................................... Columbia

State Livestock Law Enforcement Officers
James C. Epps, Jr., B.Sc. .................................................. Columbia
Charles L. Fleming, B.Sc. .................................................. Columbia
Charles E. Grant, B.Sc. ...................................................... Columbia

Federal Veterinary Medical Officers
John N. Dalton, D.V.M. ...................................................... Bamberg
M. L. Gunnels, D.V.M. ....................................................... Walterboro
J. B. Hendricks, D.V.M. ..................................................... Columbia
Malcolm C. Johnson, D.V.M. .............................................. Camden
H. A. Jordan, D.V.M. ....................................................... Timmonsville
J. M. Love, D.V.M. ............................................................ Chester
Herbert Racoff, D.V.M. ...................................................... Columbia
Thomas J. Wheelin, D.V.M. ................................................. Saluda
Keith N. Wiser, D.V.M. ..................................................... Greer

THE SOUTH CAROLINA AGRICULTURAL EXPERIMENT STATION

The South Carolina Agricultural Experiment Station is the research branch of the College of Agriculture and Biological Sciences. The nucleus of its research planning and efforts are performed by scientists in 16 departments and two special units located on the campus at Clemson. Each department conducts specific research projects in its own field. The findings from these projects are made known to the public through special publication and news releases. Five branch experiment stations, each located in a different area of the state, operate as separate units under the direction and organization of the Clemson station.

The goal of the station is to provide, through research, needed materials, techniques, and information which can result in more effective agricultural production and marketing. The farmer’s work can be made easier, cheaper, and more profitable by applying the information obtained through research designed to learn what effect current farm practices have on the financial return he gets. Newer agricultural methods, not yet put into use by farmers, are also studied with the appropriate release of findings.

The opportunity is available, to a limited number of undergraduate students in most of the departments, to work and gain experience in research methods and procedures. Many of the departments also offer Graduate Research Assistantships to students interested in working on a research program while pursuing a graduate degree program in the corresponding discipline.

Laboratories of the station are open for inspection by students, farmers, and the public in general. Information may be requested on any specific problem encountered in Agriculture by writing to the station Director. A full report of the work and expenditures of the South Carolina Agricultural Experiment Station is published annually. This and other publications of the station will be sent, upon request, free of charge.

**FOUNDATION SEED AND SEED CERTIFICATION**

The South Carolina Foundation Seed Association is charged with the responsibility of increasing breeder seed of adapted Experiment Station and USDA varieties to foundation and registered seed in order that seedsmen and farmers might obtain these varieties at the earliest possible time. There are 16 crops and 55 varieties in the Foundation Seed Program.

The South Carolina Crop Improvement Association inspects and certifies fields for farmers where foundation and registered seed is planted in order that certified seed can be produced.

**FERTILIZER INSPECTION AND ANALYSIS**

The Fertilizer Inspection and Analysis Division functions as one of the five divisions in the College of Agriculture and Biological Sciences, Clemson University. Since 1893 this division has been procuring official samples and analyzing them to see that the guaranteed analysis has been met, inspecting for proper bag printing and weights of fertilizer. Before any fertilizer is offered for sale in South Carolina, it must be registered with the Fertilizer Inspection and Analysis Division. The director and eight part-time inspectors, who are also deputized as insecticide inspectors, visit all fertilizer and insecticide manufacturing plants. Samples are procured at plants, farms and dealers' warehouses, and as far as possible, in proportion to the sales of individual companies.

Some 6,000 fertilizer samples and 1,800 to 2,000 insecticide samples are procured annually. Normally, the percentage of samples deficient in analysis for fertilizers averages about 8 to 12 percent.
with refunds amounting to some $79,000. The penalty refund is made to the ultimate user. In the case of a deficiency in nitrogen the penalty is three times the actual value of the shortage, while for phosphoric acid and potash it is four times the value of the shortage.

The Annual Bulletin contains the following principal items: Fertilizer usage data; the average analytical findings by brand and grades of those samples meeting the guarantee and those not meeting the guarantees—deficient—along with the names, addresses and telephone numbers of all inspectors.

The Agricultural Chemical Services Department performs the analytical work for both fertilizers and insecticides.

THE CLEMSON UNIVERSITY EXTENSION SERVICE

The Clemson University Extension Service is a branch of Clemson University and is a cooperative service supported by the counties, the State, and the Federal government. The Extension Service is responsible for conducting, with all people of South Carolina, the cooperative educational and demonstration programs in agriculture and home economics of Clemson University and the United States Department of Agriculture.

The function of the Extension Service is to make available to farmers, homemakers, and rural boys and girls, through on-the-farm service, demonstrations, meetings, newspaper articles, publications, radio and television broadcasts, and other suitable methods, the results of research and successful farm and home experiences. The Service also assists, through interpretation, practical demonstrations and otherwise, in applying and using this information to improve farms, farm homes, and communities, to the end that a safe, sound, and progressive rural life and agriculture may be built.

The annual plan of agricultural and home economics extension work is developed and carried out with close cooperation between the Extension Service and the farm and home leadership of the State, the counties, and the rural communities and neighborhoods.

The Staff of Agricultural Extension Workers includes the director, associate director, 3 state program leaders, 3 district supervisory agents, an administrative assistant, 46 county agents—one in each county, 10 area agents, 47 associate county agents, 57 assistant county agents, and 69 agricultural specialists in agricultural economics, agricultural engineering, agronomy, 4-H club work, dairying, crop insects and diseases, cotton ginning, forestry, horticulture,
animal science, marketing, poultry and turkeys, publications, community and resource development, soil conservation, visual instruction, and television.

The Extension Home Economics Staff includes a state home economics program leader, 3 associate district supervisory agents, an assistant to the state home economics leader, 46 home economists—1 in each county—15 associate home economists, 49 assistant home economists, and 9 specialists in clothing, family life, 4-H club work, home management, nutrition, housing and house furnishings.

LIVESTOCK-POULTRY HEALTH DEPARTMENT

The Clemson University Livestock-Poultry Health Department is consolidated under one Director with the United States Department of Agriculture, Agricultural Research Service, Animal Disease Eradication Division, and is known as the State-Federal Livestock Disease Eradication Program. This department is charged with the control and eradication of contagious, infectious and communicable diseases of livestock and poultry, and with the inspection of meat and meat by-products at slaughtering and processing plants under state inspection. When requested investigations are made, consultations are held and assistance in diagnosis is rendered. This department further organizes, develops, and carries on education programs for the control and eradication of diseases. Quarantine measures are employed to prevent, as far as possible, the introduction or spread of livestock diseases into this state.

The Clemson Livestock Laboratory, a fully equipped modern laboratory staffed with highly trained personnel, is maintained 14 miles northeast of Columbia on U. S. Highway No. 1, at the site of the Sandhill Experiment Station. This laboratory is prepared to assist veterinarians and owners of livestock and poultry in making postmortem laboratory examinations and bacteriological and pathological studies to aid in the diagnosis of diseases. If necessary, sufficient equipment can be sent into the field to diagnose and control disease on the spot.

The administrative office is located in the Livestock Laboratory. Adequate records and identification of livestock are kept. A staff of veterinarians works from the Columbia office, and field veterinarians are located in various sections of the State. In addition to the regular field force of veterinarians directly connected with the Columbia office, practicing veterinarians are commissioned as State-Federal Accredited Veterinarians and assist in the eradication of
infectious diseases of livestock. At present there are 132 veterinarians so commissioned and their locations are such that the Clemson University Livestock-Poultry Health Department is in a position to control and eradicate disease promptly and completely in all sections of the State.

This department is required by legislative enactment and supported by legislative appropriation.

THE SOUTH CAROLINA STATE CROP PEST COMMISSION

The act creating the State Crop Pest Commission was passed by the legislature in 1912. According to the act, five members of the Board of Trustees of Clemson University shall compose the Commission.

The purpose of the Commission is to prevent, as far as possible, the introduction into South Carolina of injurious plant pests and to limit the spread of those already within the State. The Commission is also charged with the enforcement of the Bee Disease Act and the South Carolina Economic Poison Law.

The work is performed by the promulgation and enforcement of certain rules and regulations which in the judgment of the Commission are necessary to protect the agricultural interest of South Carolina. The enforcement of the regulations is the responsibility of the State Entomologist, State Plant Pathologist, and their agents.

THE OFFICE OF ENGINEERING RESEARCH

The Office of Engineering Research of Clemson University was established in the College of Engineering in July 1962. Its purpose is to coordinate and stimulate the research activities in the College of Engineering. These activities include the contribution of new knowledge in engineering science by prosecuting a vigorous program of basic research, the conduct of programs of developmental and applied research as a service to the industries of the State, and the determination of uses for the material resources of the State and thereby to encourage the growth of new industries.

The active research staff consists essentially of the faculty members of the College of Engineering and other divisions of the University. The laboratories of all departments, as well as the newly constructed 60,000-square-foot Rhodes Engineering Research Center, are available to the Office of Engineering Research in its investigations.
Research is the foundation for progress in a modern society. The well-equipped physical facilities and the thoroughly competent professional staff available to the Office of Engineering Research constitute extremely valuable resources for continuing and expanding this research effort.

OFFICE OF INDUSTRIAL AND MUNICIPAL RELATIONS
COLLEGE OF ENGINEERING

Seminars, workshops, institutes, short courses, and conferences are conducted for engineers of South Carolina and neighboring states. These activities are designed to keep the engineer abreast of changes in modern technology through a non-credit continuing engineering education program sponsored by the Departments of the College of Engineering and coordinated by the Office of Industrial and Municipal Relations.


All engineering departments participate in the Junior Engineers' Scientists' Summer Institute (JESSI) in which talented high school students receive a 2-week orientation in the Sciences and Engineering.

Refresher courses are coordinated for the National Engineer-in-Training and the Professional Engineer examinations for engineers employed in the Piedmont region of South Carolina.

With the assistance and support of the Department of Environmental Systems Engineering, continuing education programs in environmental control are made available to state, county and municipal agencies and professional organizations such as the South Carolina Water and Pollution Control Association. These programs take various forms, such as the writing of correspondence manuals for water and wastewater treatment plant operators, and conducting schools, workshops and seminars on various topics in environmental control for both the practicing technician and the official charged with the program administration. A national workshop has been co-sponsored with the Federal Water Pollution Control Administration on “Educational Systems for Operators of Water Pollution Control Facilities.”
One-fourth of the population of the United States will go back to school this year. More and more people including educators, have abandoned the idea that education is something that takes place during a block of time between six and eighteen (or twenty-two). It is lifelong.

The Professional Development Program is one answer to this “fourth dimension” of education. Now over thirteen years old, the program has served over 1,500 persons in one- and two-week long seminars plus hundreds more in various one- and two-day short courses.

The primary aim of the program is to provide a means and a place for business and industrial people from all levels and all areas to come back to the campus and retread their professional skills, to learn new ones, and to sharpen up old ones in the labs, classroom and during “midnight oil” sessions with other professionals.

Drawing on the full resources and faculty of Clemson University, the Professional Development Program for 1969 offered courses from introductory management to high level computer technology. It served an enrollment from 22 different states and two foreign countries, who represented 101 various business and industrial firms. The staff and faculty were secured from 10 different states and represented 5 universities and 25 different corporations.

A high percentage of participants in several of these courses already held their Ph.D., while quite a few had not completed their baccalaureate programs. This further emphasized the realization among professional people that “learning knows no age limit, nor does it know any skill level.”

TEACHER EDUCATION

Agricultural Education. The members of the staff of Agricultural Education visit all beginning teachers for the purpose of assisting them on the job and also for the purpose of collecting information which may prove helpful in improving the work of teacher education at the University. In addition, conferences of teachers are held and consulting services made available in the interest of the professional growth of agricultural teachers, the
rendering of service to agricultural communities, and the development of leadership among agricultural youth through the program of the Future Farmers of America.

Information concerning any phase of the in-service education activities in Agricultural Education may be secured by contacting the Head, Department of Agricultural Education, Clemson University.

Trades and Industrial Education. The University, in cooperation with the State Department of Education, is glad to assist those who teach vocational subjects in day trade schools and evening trade and industrial classes by supplying a trained man to assist in the work of organizing classes, organizing courses of study, making plans for teaching evening classes, and actually teaching vocational subjects. Requests for information regarding this service should be addressed to Dr. A. F. Newton, Head, Department of Industrial Education, Clemson University, Clemson, South Carolina 29631.

SHORT COURSES AND CONFERENCES

The facilities of the University are made available for special meetings, such as farm groups, rural ministers, religious organizations, and scientific societies; and arrangements are made for special short courses in poultry science, beekeeping, food preservation, cotton classing, dairy science, forestry, water supply and sanitation, ornamental nurseries, etc. Such activities, undertaken in the interest of the general welfare, are encouraged by the University.

CERAMIC ENGINEERING FORUM

The Ceramic Engineering Department, in cooperation with North Carolina State University, sponsors an annual Ceramic Engineering Forum for Ceramic Manufacturers of the Southeast. The meeting place alternates between Clemson University and North Carolina State. This meeting is intended to provide the latest scientific and engineering developments pertinent to Ceramic Manufacturers and to provide a forum for the stimulation of creative thinking.
**GRADUATES OF 1969**

**ASSOCIATE AND BACHELORS’ DEGREES CONFERRED**

**MAY 9, 1969**

**COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES**

**BACHELOR OF SCIENCE DEGREE**

<table>
<thead>
<tr>
<th>Field</th>
<th>Name</th>
<th>Town</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics</td>
<td>Jonathan Leroy Bauer</td>
<td>Andrews</td>
</tr>
<tr>
<td></td>
<td>John Joseph Branton</td>
<td>Seneca</td>
</tr>
<tr>
<td></td>
<td>Stephen Lundy Chryst</td>
<td>Conway</td>
</tr>
<tr>
<td></td>
<td>Joseph Charles Dawsey</td>
<td>Aynor</td>
</tr>
<tr>
<td></td>
<td>* Charles Russell Holland</td>
<td>Clinton</td>
</tr>
<tr>
<td>Agronomy</td>
<td>* John Thomas Bozard</td>
<td>Cameron</td>
</tr>
<tr>
<td></td>
<td>** Richard Gaines Dobbs</td>
<td>Townville</td>
</tr>
<tr>
<td></td>
<td>Delano Van Fraley</td>
<td>Florence</td>
</tr>
<tr>
<td>Animal Science</td>
<td>Thomas Elliott Bonnette, Jr.</td>
<td>Orangeburg</td>
</tr>
<tr>
<td></td>
<td>Daniel Andrew Durfes</td>
<td>Fair Lawn, N. J.</td>
</tr>
<tr>
<td></td>
<td>Gary Martin Hill</td>
<td>Flat Rock, N. C.</td>
</tr>
<tr>
<td></td>
<td>Sarah Thomas Bierley</td>
<td>Lancaster</td>
</tr>
<tr>
<td></td>
<td>Norman Leslie Burch, Jr.</td>
<td>Lake City</td>
</tr>
<tr>
<td></td>
<td>John Emmett Cely</td>
<td>Columbia</td>
</tr>
<tr>
<td></td>
<td>*** Charles Hill Courtney III</td>
<td>Albemarle, N. C.</td>
</tr>
<tr>
<td></td>
<td>Gerald Lyn Culler</td>
<td>Orangeburg</td>
</tr>
<tr>
<td></td>
<td>* John Stephen Culp</td>
<td>Fort Mill</td>
</tr>
<tr>
<td></td>
<td>* Glen Gordon Daves</td>
<td>Summerville</td>
</tr>
<tr>
<td></td>
<td>* Thomas Wayne Ferguson</td>
<td>Graniteville</td>
</tr>
<tr>
<td></td>
<td>* Joseph David Gangemi</td>
<td>Arden, Del.</td>
</tr>
<tr>
<td></td>
<td>* William Kenneth Glenn, Jr.</td>
<td>Starr</td>
</tr>
<tr>
<td></td>
<td>Aubrey Jay Gore, Jr.</td>
<td>Conway</td>
</tr>
<tr>
<td></td>
<td>Tommy Monroe Hall</td>
<td>Vaucluse</td>
</tr>
<tr>
<td></td>
<td>* Thomas Marion Hill</td>
<td>Union</td>
</tr>
<tr>
<td>Dairy Science</td>
<td>George Richard Cornwall</td>
<td>Lattimore, N. C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Science</td>
<td>*** Keith Royal Parris</td>
<td>Spartanburg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forestry</td>
<td>James Patrick Bradley</td>
<td>Albany, Ga.</td>
</tr>
<tr>
<td></td>
<td>Gerald Eugene Brockenfeld</td>
<td>Charleston</td>
</tr>
<tr>
<td></td>
<td>Robert Jordan Counts</td>
<td>Ocala, Fla.</td>
</tr>
<tr>
<td></td>
<td>Robert Earle Lee, Jr.</td>
<td>Barnwell</td>
</tr>
<tr>
<td></td>
<td>Michael William Leonard</td>
<td>Poughkeepsie, N. Y.</td>
</tr>
<tr>
<td>Horticulture</td>
<td>Stiles Mikel Harper, Jr.</td>
<td>Estill</td>
</tr>
<tr>
<td></td>
<td>Ronald Allison McDaniel</td>
<td>Edgefield</td>
</tr>
<tr>
<td>Poultry Science</td>
<td>James Robin Foy</td>
<td>Newberry</td>
</tr>
<tr>
<td></td>
<td>Henry Tutt Hahn</td>
<td>Greenwood</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHOOL OF ARCHITECTURE</td>
<td>Philip Washington Fairey III</td>
<td>Columbia</td>
</tr>
<tr>
<td></td>
<td>William Norton Skardon</td>
<td>Spartanburg</td>
</tr>
</tbody>
</table>

[410]
<table>
<thead>
<tr>
<th>Name</th>
<th>City/State</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Tremel Allen</td>
<td>Spartanburg</td>
</tr>
<tr>
<td>Phillip Lester Anderson</td>
<td>North Augusta</td>
</tr>
<tr>
<td>Wade Hamilton Barber</td>
<td>Pickens</td>
</tr>
<tr>
<td>Ronald Firth Beck</td>
<td>Orlando, Fla.</td>
</tr>
<tr>
<td>John Anthony Blackburn</td>
<td>Kingsport, Tenn.</td>
</tr>
<tr>
<td>Richard Albert Compton</td>
<td>Falls Church, Va.</td>
</tr>
<tr>
<td>Clarence Wayne Crocker</td>
<td>Union</td>
</tr>
<tr>
<td>Harold Eugene Davis, Jr.</td>
<td>Memphis, Tenn.</td>
</tr>
<tr>
<td>Cecil Meredith Drakeford, Jr.</td>
<td>Sumter</td>
</tr>
<tr>
<td>Gary Franceschi</td>
<td>Vineyard, N. J.</td>
</tr>
<tr>
<td>Larry Charles Harritos</td>
<td>Savannah, Ga.</td>
</tr>
<tr>
<td>John Darnell Hartley</td>
<td>Rockville, Md.</td>
</tr>
<tr>
<td>rederick Charles Bicksler</td>
<td>Sanatoga, Pa.</td>
</tr>
<tr>
<td>James Michael Brittian</td>
<td>Spartanburg</td>
</tr>
<tr>
<td>nest Clifton Brown, Jr.</td>
<td>Sumter</td>
</tr>
<tr>
<td>angton Hastings Dinkins</td>
<td>Sumter</td>
</tr>
<tr>
<td>Jerry William Abernathy</td>
<td>North Augusta</td>
</tr>
<tr>
<td>Arton Douglas Aldridge</td>
<td>North Augusta</td>
</tr>
<tr>
<td>John Monton Alford</td>
<td>Dillon</td>
</tr>
<tr>
<td>tanley Boles Angle, Jr.</td>
<td>Kingsport, Tenn.</td>
</tr>
<tr>
<td>Dorothy Mae Ashford</td>
<td>Columbia</td>
</tr>
<tr>
<td>Roderick Glen Ayers, Jr.</td>
<td>Nichols</td>
</tr>
<tr>
<td>twins Fleming Bailey</td>
<td>Summerville</td>
</tr>
<tr>
<td>red Kenneth Baldwin</td>
<td>Taylors</td>
</tr>
<tr>
<td>catherine Mary Dallas</td>
<td>Jacksonville Beach, Fl.</td>
</tr>
<tr>
<td>Mary Nell Barker</td>
<td>Westminster</td>
</tr>
<tr>
<td>avid Lee Bank</td>
<td>Simpsonville</td>
</tr>
<tr>
<td>aris Lewis Beach, Jr.</td>
<td>St. George</td>
</tr>
<tr>
<td>ynda Helen Bethea, Jr.</td>
<td>Cartersville, Ga.</td>
</tr>
<tr>
<td>Lewis deVeaux Blake III</td>
<td>Belton</td>
</tr>
<tr>
<td>enhen LeRoy Chappell</td>
<td>Central</td>
</tr>
<tr>
<td>oliver Davis Christopher, Jr.</td>
<td>Barnwell</td>
</tr>
<tr>
<td>avid Ross Clarke</td>
<td>Greenville</td>
</tr>
<tr>
<td>ale Thomas Cobb</td>
<td>San Loenzo, Puerto Rico</td>
</tr>
<tr>
<td>yles Furman Cobb</td>
<td>Starr</td>
</tr>
<tr>
<td>Shirley Ann Couch</td>
<td>Williamson</td>
</tr>
<tr>
<td>george Moore Covington III</td>
<td>Norway</td>
</tr>
<tr>
<td>an Carroll Crenshaw</td>
<td>Kershaw</td>
</tr>
<tr>
<td>avid Lee Crenshaw</td>
<td>Kershaw</td>
</tr>
<tr>
<td>John Raymond Davey</td>
<td>North Arlington, N. J.</td>
</tr>
<tr>
<td>illiam Earl Dean, Jr.</td>
<td>Greenville</td>
</tr>
<tr>
<td>Martha Roselle Dinwiddie</td>
<td>Clemson</td>
</tr>
<tr>
<td>ancy Welty Dixon</td>
<td>Sumter</td>
</tr>
<tr>
<td>ephen Newton DuBay</td>
<td>Lancaster</td>
</tr>
<tr>
<td>vin John Dyke</td>
<td>Alexandria, Va.</td>
</tr>
<tr>
<td>James Stephenson Eakes</td>
<td>Pendleton</td>
</tr>
<tr>
<td>nn Emerson Ensen</td>
<td>Wetumpka, Ala.</td>
</tr>
<tr>
<td>David Leroy Dean</td>
<td>Warrentville</td>
</tr>
<tr>
<td>* Richard Harold Gentry</td>
<td>Bishopville</td>
</tr>
<tr>
<td>** Richard Andrew Kaba</td>
<td>Matthews, N. C.</td>
</tr>
<tr>
<td>Elle McKenzie Jackson</td>
<td>Myrtle Beach AFB</td>
</tr>
<tr>
<td>Thomas Clark Mozen</td>
<td>Decatur, Ga.</td>
</tr>
<tr>
<td>David Leon Narrmore</td>
<td>Greenville</td>
</tr>
<tr>
<td>Kenneth Thomas Ricket</td>
<td>Greenville</td>
</tr>
<tr>
<td>Thomas Wesley Salmons III</td>
<td>Havertown, Pa.</td>
</tr>
<tr>
<td>James Schettino</td>
<td>Norwalk, Conn.</td>
</tr>
<tr>
<td>Roger Norris Simmons</td>
<td>Greenwood</td>
</tr>
<tr>
<td>Fayette Louis Sims</td>
<td>Hartsville</td>
</tr>
<tr>
<td>John Carroll Stewart</td>
<td>Greenville</td>
</tr>
<tr>
<td>Kenneth Edward Whelchel</td>
<td>Gaffney</td>
</tr>
<tr>
<td>James Albert Yarborough</td>
<td>Miami, Fl.</td>
</tr>
<tr>
<td>Ronald Wayne Garner</td>
<td>Gaffney</td>
</tr>
<tr>
<td>Charles Rucker Hipp, Jr.</td>
<td>Charleston</td>
</tr>
<tr>
<td>Larry Reed Kendall</td>
<td>Columbia</td>
</tr>
<tr>
<td>Donald Gene Lesley</td>
<td>Easley</td>
</tr>
<tr>
<td>John Fernandez</td>
<td>Elberton, Ga.</td>
</tr>
<tr>
<td>Ebb Horton Field III</td>
<td>Seneca</td>
</tr>
<tr>
<td>* Jonathan Brittian Floyd</td>
<td>Silverstreet</td>
</tr>
<tr>
<td>Janet Kay Garrison</td>
<td>Johnston</td>
</tr>
<tr>
<td>William Joseph Gestrich, Jr.</td>
<td>Seneca</td>
</tr>
<tr>
<td>Edward Jerome Greene</td>
<td>Spruce Pine, N. C.</td>
</tr>
<tr>
<td>Sandra Leigh Hart</td>
<td>Walhalla</td>
</tr>
<tr>
<td>** Dana Lewis Jackel</td>
<td>Atlanta, Ga.</td>
</tr>
<tr>
<td>Donald Stephen Kahler, Jr.</td>
<td>Kershaw</td>
</tr>
<tr>
<td>Delores Ann Kimes</td>
<td>Columbia</td>
</tr>
<tr>
<td>Evron Matt Laitala</td>
<td>Clemson</td>
</tr>
<tr>
<td>Jack Albert LeGrand, Jr.</td>
<td>Winnsboro</td>
</tr>
<tr>
<td>* John Allen Martin</td>
<td>Anderson</td>
</tr>
<tr>
<td>Walter Davies Merry III</td>
<td>Columbia</td>
</tr>
<tr>
<td>Betty Smith Miller</td>
<td>Rome, Ga.</td>
</tr>
<tr>
<td>Charles Aaron Newton</td>
<td>Deltona, Fla.</td>
</tr>
<tr>
<td>Frances Suzanne Clark O'Neal</td>
<td>Johnston</td>
</tr>
<tr>
<td>* Carolyn Skelton Patey</td>
<td>Charleston</td>
</tr>
<tr>
<td>Michael Yates Patterson</td>
<td>Easley</td>
</tr>
<tr>
<td>Sharon Lynne Plancck</td>
<td>Eau Gallie, Fla.</td>
</tr>
<tr>
<td>Laura Elizabeth Pratt</td>
<td>Hampton</td>
</tr>
<tr>
<td>Wallace Edward Roberts</td>
<td>Anderson</td>
</tr>
<tr>
<td>Timothy Folk Rogers</td>
<td>Walterboro</td>
</tr>
<tr>
<td>* William Alan Rush</td>
<td>Greenville</td>
</tr>
<tr>
<td>Woodrow Geiger Sen, Jr.</td>
<td>West Columbia</td>
</tr>
<tr>
<td>Dora Ellen Shelton</td>
<td>Central</td>
</tr>
<tr>
<td>Sharon Nathalie Skagseth</td>
<td>Columbia</td>
</tr>
<tr>
<td>** David Errol Thompson</td>
<td>Florence, Ala.</td>
</tr>
<tr>
<td>Ronald Adrian Thrower</td>
<td>Mt. Holly, N. C.</td>
</tr>
<tr>
<td>Harry Lee Tinsley III</td>
<td>Rock Hill</td>
</tr>
<tr>
<td>* James Ronald Vehorn</td>
<td>Anderson</td>
</tr>
<tr>
<td>Linda Ann Watts</td>
<td>Westminster</td>
</tr>
<tr>
<td>Paul Randall Wright</td>
<td>Spartanburg</td>
</tr>
</tbody>
</table>

### BACHELOR OF ARCHITECTURE DEGREE

- Spartanburg
- Issaquah
- St. Petersburg
- Atlanta, Ga.
- Charleston

### BACHELOR OF ARTS DEGREE

- Chemistry
- John Fernandez
- Elberton, Ga.
- David Leroy Dean
- Warrentville

- Sociology
- Robert Freed Bock, Jr.
- Clemson
- Charles M. Smith
- Bishopville

- Anthropology
- Robert Freed Bock, Jr.
- Clemson
- Charles M. Smith
- Bishopville

### BACHELOR OF SCIENCE DEGREE

- Building Construction
- Ronald Wayne Garner
- Gaffney
- Decatur, Ga.
- Easley

- Engineering
- Larry Reed Kendall
- Columbia
- Easley

- Mathematics
- Donald Gene Lesley
- Columbia
- Easley

- Biology
- David Leroy Dean
- Warrentville
- Easley
Mathematics

Philip George Buckhiester  Piedmont
Samuel Livingston Callcott, Jr.  Ninety Six
* John Richard Crammer  Anderson
Tillman Wingfield Derrick, Jr.  Fort Mill
* Daniel Edgar Duncan  Fageland
Wade Hardie, Jr.  Spruce Pine, N. C.
Charles Irving Houston, Jr.  Charleston
Jeffrey Jerome Lapin  Charleston
Thomas Edward McClendon  Riverdale, Ga.

Robert Wellington Blackwell  Travelers Rest
* George Thomas Fabian  Charleston
** Wenaard Livingston Miller, Jr.  Greenville
William Joel Millsap  Easley

John Julian Abbott  Sumter
Rebecca Ballard  Easley
David Michael Ballenger  Charleston
* Carl Timothy Bessent  Baltimore, Md.
William Earl Bishop, Jr.  Greenville
* Edsel Dean Blair  Greenville
* Horace William Bonekat  Broomall, Pa.
Frank Templeton Brown  Laurens
Lewis Earle Brown  Ehrhardt
* Max Vincent Bryant  Sumter
John Elliott Carder  Front Royal, Va.
James McCowin Carroll  Florence
* Joseph William Cullom  Allendale
Brian Samuel Danziger  Cameron
Jerome Barlow Degen  Sumter
* William Lee Dobbins, Jr.  Anderson
* Edward Macdonald DuBose, Jr.  Oswego
John Frank Ellenberg, Jr.  Greenwood
Lewis William Goldstein  Spartanburg

Physics

Burnett Alexander Pettit, Jr.  Baltimore, Md.
* James Daniel Phillips  Greenville
** Charles Garrison Shirley, Jr.  Greensboro
Ronald Eugene Speer  Abbeville

Pre-Medicine

Irvin Goodman  Charleston
* Rudolph Cole Harrington, Jr.  Winnsboro
David O'Neal Holman, Jr.  Timmonsville
* Kenneth Allen Humphrey  Croton-on-Hudson, N. Y.
* Gerard Charles Jebbally  Florence
* Carl Henry Jones III  Great Falls
Douglas Wayne Jones  Columbus
John Conrad Malmgren  Greensboro, N. C.
* Marshall Vance Marchbanks  Clemson
* John Luther Moore  Nicholas
* Charlie Kinchin Potts, Jr.  Columbus
Norman Gardie Rentz, Jr.  Varnville
* Paul Belton Skinner, Jr.  Ware Shoals
Robert Hylle Snoddy, Jr.  Clemson
William Lewis Weber  Union
James Ryan White III  Walterboro
Larry Carl Young  Hamptons

SCHOOL OF EDUCATION

BACHELOR OF ARTS DEGREE

Elementary Education

Sharon Joan Carrington  Greenwood
Martha Ann Dobbins  Fountain Inn
Cheryl Smock Fox  Yorges Island
Jo Ellen Gill  Walhalla
Margaret Ann Knight  Williamston
Mary Ellen Knight  Greenville
* Jane Cobb Lane  St. Simons Island, Ga.
Nancy Elizabeth Mills  Greenville

Secondary Education

* Virginia Elizabeth Carroll  Augusta, Ga.
Sara Elizabeth Chapman  Pelzer
Robert Milton Crain  Greenville
* Edward Wallace Dickerson, Jr.
Kitty Sue Dill  Greenwood
Constance Louise Gilstrap  Brevard, N. C.
** Patricia Anne Heller  Sandy Springs
Edward Parker Holliday  Central
** Barbara Ann Hudgens  Greenwood
Carrell Anne Hunter  Charlotte, N. C.
* Laura Rogers Johnson  Clio
William Ludwig Lacher  Greenville
* Linda Jean Lanham  Clemson

* Suzanne McCown Moore  Anderson
Linda Gail Prichard  Westminster
Helen Grace Smith  Lancaster
* Mary Ann Stackman  Columbia
* Gloria Elizabeth Tate  Anderson
Gloria Jean Trasher  Anderson
Olivia Hayes Williams  Rock Hill

Peggy Huckaby Mellichamp  Toccoa, Ga.
* Sandra Harper Mercier  Copperhill, Ten.
* Linda Curran Miller  Greenville
James Fredrick Reames, Jr.  Bishopville
Rutland Edward Riddle  Greenville
Patricia Ann Seawright  Anderson
* John Kelley Segars  Bishopville
Russell Edward Stiegel, Jr.  Charlotte, N. C.
* Stanley Hanks Thompson  Clio
John Fletcher Townsend, Jr.  Bennettsville
Gary Russell Warner  Salamanca, N.
Julian Ray Wates  Great Falls
John Albert Woods  Syosset, N.
BACHELOR OF SCIENCE DEGREE
(Agricultural Education is jointly administered by the College of Agriculture and Biological Sciences and the School of Education.)

Agricultural Education

*Harry Max Dubose Myrtle Beach
Donald Daniel Durham Piedmont
John Charles Horton Kershaw
John Thomas Meehan, Jr. Pendleton

James Walker Painter Caneel
Willie Durant Sansbury Conway
James Thomas Shell Fountain Inn
* Walley Anson Turner Florence

Industrial Education

* Steward Lynwood Baylor Kingston
Eber Johnson Blackwood Inman
John Douglas Edwards Spartanburg
Gary Earl Gerhold Pittsburgh, Pa.
William White Gregory III Inman
Norman Anthony Howard Landrum
David Guy Jackel West Mifflin, Pa.
Gerald Morris Jennings Ware Shoals
Roger Dayle Jolley Columbus, N. C.
Odius Odell Knight II Spartanburg

Micaj John LaRoche III Wadmalaw Island
Ray Ernest Linke West Orange, N. J.
Milledge Galphin Murray North Augusta
Charles William Patterson, Jr. Simpsonville
Paul Joseph Posch Delran, N. J.
Albert Richard Reid Greenville
William Johnson Stevens, Jr. Yorges Island
Richard Marvin Tucker Enoree
Ronald Earl Whitmire Marietta

Recreation and Park Administration

Philip David Ackerman St. George
Helen Louise Bunch Suffolk, Va.
Marshall Jethro Coleman, Jr. Darlington
Robert Thomas Dennis Rembert
Lamar Herman Entrekin Liberty
Eleanor Dion Fairley Summerville
Edward Eric Freit, Jr. Lakewood, N. J.
Robert Wesley Isenhour Salisbury, N. C.
William Thomas Kissam Statesville, N. C.
Alan Willis Kuester Charlotte, N. C.
John Garnett Lawton III York
John Crawford Lynn Dillon

Tom Lee Murrell, Jr. Kingsport, Tenn.
Alvin Benjamin Phillips, Jr. Graniteville
Barry Carroll Robinson Augusta, Ga.
Bruce Thomas Rush Camden
Curtis Alan Shirer Anderson
Marion Jackson Smith, Jr. West Columbia
Terrell Parker Spence Charleston
Craig Mercia Thomas Georgetown
Ronald Adrian Thrower Mt. Holly, N. C.
Robert Logan Wilder, Jr. Sumter
Rosalind Marie Wright Gastonia, N. C.

Science Teaching

Karen Robey Benedict Clinton, Md.
James Michael Blackwell Gaffney
* Becky Scott Carlson Mullins
Richard Lee Colman Knoxville, Tenn.
Patricia Ellen Greenfield Clemson

Helen Frances Hawkins Central
Allen Marc Levine Passaic, N. J.
Betty Chloe Lynn Greenville
Michael Thomas Voselle Fairfield, Calif.

COLLEGE OF ENGINEERING

BACHELOR OF SCIENCE DEGREE

Ceramic Engineering

Harry Patterson Adams Saluda
John McKay Burns Macon, Ga.
James Gary Childress Greenville

William Anthony Meister Union City, N. J.
* Charles Norman Wilson Worthington, Ohio

Chemical Engineering

Wayne Fulmer Addy Columbia
Hugh Cook Brown, Jr. McCormick
William Harold Bruggeman Savannah, Ga.
** Charles David Cooper Winter Park, Fla.
David George Dempsey Spartanburg
Marion Rollins DeWitt, Jr. Darlington
* Richard Greedy Fessler Charleston
Joseph Judkins Forbes Birmingham, Ala.
James William Hannah Greer
Howard Michael Herron Dallas, Texas
Don Keith Johnson Simpsonville
Gary McDaniel Johnson Greenville
* Michael Allan Lake Jamestown
* David Randall Mayfield Anderson

Jack Harris Mitchell III Clemson
* Michael William Osborne Camden
Owen Charles Robertson, Jr. Bowersville, Ga.
George Christopher Rodrigues Fayetteville, N. C.
** James Edward Salamony Summerville
Ronald Edward Steele Knoxville, Tenn.
* John Nixon Talbert, Jr. McCormick
Henry Wademeyer Theilling, Jr. Charleston
** Allan James Thompson, Jr. Charleston
Ray Morgan Thompson Memphis, Tenn.
Richard Clark Walker Pittsburgh, Pa.
Civil Engineering

Richard Allen Albers  Mt. Pleasant
Neil Robert Baer  Edgewater, Md.
John William Beeson  Liberty
Ronnie Joe Catoe  Kershaw
Robert Martin Dulin, Jr.  Bowling Green
Paul Curtis Eckard, Jr.  Connelly Springs, N. C.
David Carmichael Fishetti  Brooklyn, N. Y.
* William Jennings Ford, Jr.  Charleston
* Oscar James Gilstrap  Seneca
David Charles Harris  North Charleston

Earl Lewis Belcher, Jr.  Aiken
** David Monroe Bell  Hartsville
* David Blanchard Bullard  Jackson
William Allen Crumpler  Myrtle Beach
William Rowley Dill, Jr.  Greenville
* Terrence Mitchell Easley  Greenwood
Lyle Wilson Fairey, Jr.  Orangeburg
John Edward Frederiksen  Toms River, N. J.
Donald Carl Fulmer  Wagener
Michael John Hillyer  Asheville, N. C.
* Howard McDonald Jones  Greenville
James William Jones, Jr.  Travellers Rest
* Philip Ervin Law  Columbia
* Robert Edward Lemacks  Charleston

James Alan Doss  Chattanooga, Tenn.
Paul Jerry Barraco  Clintondale, N. Y.
Robert Coleman Blair, Jr.  Columbia
* James Edward Caldwell, Jr.  Belton
Julian Walter Davis II  Westminster
Bruce Miller Dixon  Clinton
** Alan Ray Franklin  Anderson
David Neal Gay  North Augusta

Roy Charles Dunham  Poughkeepsie, N. Y.
** Joseph Daniel Fickling  Lancaster

Electrical Engineering

* William Edward Miller  Neptune Beach, Fla.
†*** Steve Julius Mitchem  Wellford
† Felix Joseph Neveux IV  Orangeburg
Edward Dominick Nicasarti  Orange Beach, Fla.
David Cummings Nusbickel, Jr.  Winter Park, Fla.
** Richard Albert Schmalz, Jr.  Sudbury, Mass.
William Jeffrey Smith  Newberry
Edward Raney Stokes  Beaufort
Charles Weldon Street, Jr.  Florence
†** James Everett Thomas  Williamston
Dibbon Keith Walters III  Charleston

Industrial Engineering

James Alan Doss  Chattanooga, Tenn.

Mechanical Engineering

Charles Manly Harbin III  Greenville
Donald Ray Kennedy  Woodruff
Joel Robert Matthews  Ft. Myers, Fla.
William Martin Orr  Greenville
** Donald Bissell Pounder  North Charleston
Russell Farran Smith  Birmingham, Mich.

Metallurgical Engineering

Arthur Kenneth Fox  Adams Run

SCHOOL OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

BACHELOR OF ARTS DEGREE

Arts and Sciences

James Clyde Addison, Jr.  Allendale
Almon Lamar Buckalew  Columbia
Jerry Zack Campbell  Landrum
James Glenn Cantrell  Greenville
Robert Newlon Church  Travelers Rest
Robert Carnwell Clarkson II  Sumter
James Paul Cromer, Jr.  Sumter
Henry Grady Denton, Jr.  Lancaster
Gordon Ray Edgin  Aiken, Mass.
Charles Derrick Ethridge  Charleston
James Allen Ferguson, Jr.  Anderson
* Jamie James Francis, Jr.  Greenville
Donald Charles Frost, Jr.  Macon, Ga.
Alan Goldfarb  Miami Beach, Fla.
Merritt Riggs Goodman, Jr.  Burlington, N. C.
David Smith Humberd  Cleveland, Tenn.

Arthur Welling LaGrone, Jr.  Greenville
Henry Dean McAllister, Jr.  Barnwell
Marion Lee Manning  Calhoun Falls
* Larry Swain Mercel  La France
Robert Arthur Moffatt  Anderson
Lawrence Terry Owen  Brevard, N. C.
Jonathan Henry Owings  Greenville
Richard Lee Roche  Gaffney
Frank Randall Schmidt  New Hyde Park, N. Y.

Richard Brevard Skillon  Maitland, Fla.
Grover Clyde Stewart, Jr.  Anderson
Joel Allen Sitrom  North Augusta
* Milton Allom Toole  Greenville
Walter McGee Welch, Jr.  North Charleston
Thomas Asbury Wilson  Anderson
BACHELOR OF SCIENCE DEGREE
Industrial Management
Vernon Wayne Andis .......... Mauldin
Sam Morgan Barfield, Jr. ... Seneca
Richard Preston Black ...... Anderson
Ronald Lee Blasco .......... Bronx, N. Y.
Norman Kevin Bryant ......... Rock Hill
Toby Gerald Chapman ......... Winsboro
Harry Earl Childs, Jr. ..... Seneca
Jennings Bennett Collins ..... Greenville
William Vinson Cummings ...... Spartanburg
Benjamin Harold Cuttino, Jr. Lithonia, Ga.
Danny Ray Davis ............... Pelzer
Jesse Frank Dillard .......... Taylors
Paul Winfree Dowdy .......... Clemson
James Albert Dye ............. Anderson
Calvin Lynn Farmer .......... Greenville
Richard Larrique Garick ...... Orangeburg
Beaufort Charles Hallman, Jr. Denmark
James Wallace Huckaby ...... Roebuck
Tony Allen Jones ............. Charleston Heights
Thomas Leland Jones .......... North Augusta
Robert McGee Jordan .......... Hartsville
Dennis Leroy Joye .......... Charleston
Harvey James Kinder .......... Kingstree
George John Knight .......... Varnville
Whitner Kilpatrick Livington III .. Mauldin
David Wade Mayes .......... Aiken
Grover Eugene Myers III .... Portsmouth, Va.
Obert Eugene Olson .......... Sunburg, Minn.
Garry Curtis Phillips ......... Hartwell, Ga.
Thomas Edward Pospisil ...... Bloomfield, N. J.
Walter Eugene Riggs .......... Madison, Ohio
John Howard Robuck ......... Spartanburg
Roy Dayne Smith .............. Ninety Six
James Kirby Snead, Jr. ..... Greenwood
Hampton Broadus Steedly, Jr. Charleston
Theodore Henry Steiner ...... Pittsburgh, Pa.
John Hall Waddell ........... Hendersonville, N. C.
Lawrence Reed Watson ...... Greenville
Fredrick Donald Welch, Jr. ... Columbia
Larry Franklin Whitfield .... Anderson
Danny Ray Wilson .......... Fort Mill
Ronald Allen Wingard ........ Lexington

Textile Chemistry

** Terry Kenneth Anderson .......... Edwardsville, Ill.
* James Edward Bostic, Jr. .... Bennettsville

William Thomas Jackson ........ York
Vernon Alton Robbins, Jr. ... Rock Hill
* William Milton Sibley .......... Rock Hill

Textiles

* Ronald James Small .......... Bethune

Donny Lee Smith .......... Rock Hill
Ronnie Alton Smith .......... Honea Path

SCHOOL OF NURSING
ASSOCIATE IN ARTS DEGREE
Nursing

* Sarah Josephine Blackmon .... Greenville
* Harolyn Faye Bratcher .......... Belton
* Martha Karen Buckner .......... Union
* Victoria Gidaro Caldwell ...... Spartanburg
* Brenda Marcine Calloway ....... Forest City, N. C.
Judy Cleveland ................. Elberton, Ga.
Alice Lorraine Culbertson ...... Honea Path

* Judith Babb Davis .......... Greenwood
Sandra Ann Dossey .......... Sumter
Harriet Ann Hall .......... Anderson
Nancy Luellen Hicks .......... Aiken
Mary JoAnne Knight .......... Honea Path
Wanda Gail Mason .......... Anderson
* Susan Rebecca Tyndall ........ Clemson
Sandra Jean Yeargin .......... Elberton, Ga.

* With honor
** With high honor
*** With highest honor
† With departmental honors
MASTERS' DEGREES CONFERRED MAY 9, 1969

COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES

MASTER OF SCIENCE DEGREE

Agricultural Economics

Animal Science

Entomology
Howard Roy Harris ............. Queens, N. Y.

Horticulture
Mack James Fleming ............ Charleston

Plant Pathology
Christopher Randall Freeman .. Sumter William Timothy Mercier .... Blue Ridge, Ga.

Zoology
Herbert DeWitt Blackwood ..... Spartanburg Mary Lang Olson Edwards .... Greenville

COLLEGE OF ARTS AND SCIENCES

MASTER OF ARTS DEGREE

English
Mary Sue Jones ................. Taylors

MASTER OF SCIENCE DEGREE

Chemistry
Samuel Jones Price III ....... Birmingham, Ala.

Mathematics

Physics

SCHOOL OF EDUCATION

MASTER OF AGRICULTURAL EDUCATION DEGREE

(Agricultural Education is jointly administered by the College of Agriculture and Biological Sciences and the School of Education.)

Jack Percy Corn .......... Mauldin
MASTER OF EDUCATION DEGREE

Mary Helen Bennett Acker  Greenville
Donald Houston Batson  Easley
Edna Coker Bush  Easley
Kathie Robbins Butler  Rock Hill
Mary Gillespie Fowler  Greenville
Lillian Brown Glenn  Anderson
Elizabeth Lynch Lashley  Rock Hill

Wilma Smith Murphree  Walhalla
Allene Coker Peden  Greenville
Jean Underwood Phillips  Walhalla
George Wyatt Thompson  Anderson
Annie Stephens Tribble  Anderson
Edith Wiles Williams  Anderson

COLLEGE OF ENGINEERING

MASTER OF SCIENCE DEGREE

Ceramic Engineering
Martin Milner Cooper  Thomasville, Ga.
Erik Francis Croen  Asheville, N. C.
Donald Lee Hindman  Walhalla

John Michael Jenkins  Montgomery, Ala.
Christian Dallas Talbert  Venice, Fla.

Chemical Engineering
Rudolf Othmar Friederich  Mobile, Ala.

Hermogenes Moreno  Puerto San Jose, Guatemala

Civil Engineering
Sheong San Liao  Taipei, Taiwan
Chuan Chung Lin  Taipei, Taiwan

Leo Richard Smith  Cheyenne, Wyo.

Electrical Engineering
Luther Lee Joyner  Savannah, Ga.
William Ray Sutton  Myrtle Beach

David Oliver Ward  Kingstown

Engineering Mechanics
William Jacob Craft  Rutherfordton, N. C.

Water Resources Engineering
William Harold Allen  Waynesville, N. C.

Donald Hugh Higgins  Asheville, N. C.

SCHOOL OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

MASTER OF ARTS DEGREE

Economics
Samuel Jacob Montgomery  Chappells

MASTER OF SCIENCE DEGREE

Industrial Management
Ben Terry Clark III  Charleston
James Wilton Orr  Greenville

Perry McCallum Parrott, Jr.  Greenville
Brent Eric Zepke  Haddonfield, N. J.

Textile Chemistry
Warren Sumner Perkins  Elloree

Textile Science
Woodrow Parker Greene  Marion, N. C.
DOCTORS' DEGREES CONFERRED MAY 9, 1969

COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES

DOCTOR OF PHILOSOPHY DEGREE

Agricultural Economics

Henry Cornelius Gilliam, Jr.  Raleigh, N. C.
B.S., M.S., North Carolina State University
Dissertation: An Analysis of the Valuation of Agricultural Land in Cotton-Producing Areas of the South Carolina Coastal Plain

Agronomy

Jerry Clyde Walker  Pharr, Texas
B.S., Pan American College
Dissertation: Effects of Trifluralin and Inorganic Salts on the Growth of Seedling Cotton

COLLEGE OF ARTS AND SCIENCES

DOCTOR OF PHILOSOPHY DEGREE

Chemistry

Frank Garnett Cowherd III  North Laurel, Md.
B.S., Duke University
Dissertation: Iron Pentacarbonyl Catalyzed Isomerization of Unsaturated Alcohols: The Mechanism of 1,3-Hydrogen Shifts

Randolph Bruce Huff  Clinton
B.S., Furman University; M.S., Clemson University
Dissertation: I. Reactions of Hydrogen Chloride Gas with Solid 1,10-Phenanthroline and 2,2-Bipyridine Transition Metal Compounds  II. Reactions of Hydrogen Chloride Gas with Solid beta Diketone Copper (II) Compounds

Billy Thomas Upchurch  Rocky Mount, N. C.
B.S., North Carolina Wesleyan College; M.S. Clemson University
Dissertation: A Study of the Alkaline Earth Chelates, of the Optically Active trans-Cyclopentane-1,2-diaminetetraacetic Acid

Mathematics

Harold Braun Reiter  New Orleans, La.
B.S., Louisiana State University; M.S., Clemson University
Dissertation: On Embeddings of Topological Spaces in a Product of Real Number Line

Arthur Godwin Sparks  Brooklet, Ga.
B.S., Georgia Southern College; M.Ed., University of Georgia; M.A., University of Florida
Dissertation: Intersections of Maximal Ln Sets and the Generalized Convex Kernel

Physics

Thomas Lee Ferrell  Anniston, Ala.
B.S., Auburn University
Dissertation: The Equation of Motion for a Particle in an Arbitrary Gravitational Field

Robert Riggs Marchini  Antioch, Ill.
B.S., DePaul University
Dissertation: Energy Gap Measurements in Thin Superconducting Films

John Thaddeus Rompala  Chicago, Ill.
B.S., DePaul University
Dissertation: A Nuclear Scattering Theory
Student Register 419

COLLEGE OF ENGINEERING

DOCTOR OF PHILOSOPHY DEGREE

Engineering

John Lyall Taggart ........................................ Clarksville, Md.
B.S., Tri-State College; M.S., Carnegie Institute of Technology
Dissertation: Gradient Optimization Techniques and the Economic Dispatch Problem (Field of Specialization: Mechanical Engineering)

SCHOOL OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

DOCTOR OF PHILOSOPHY DEGREE

Engineering Management

Donald Lee Haney ........................................ Decaturville, Tenn.
B.S., Massachusetts Institute of Technology
Dissertation: A Statistical Interpretation of the Shift-Share Technique and Its Application to Multi-stage Regional Analysis

Joseph McRae Mellichamp ................................ Toccoa, Ga.
B.I.E., Georgia Institute of Technology
Dissertation: A Model for Estimating the Secondary Benefits to a Regional Economy Resulting from Development of a Water Resource

HONORARY DEGREES CONFERRED MAY 9, 1969

DOCTOR OF HUMANE LETTERS

Clarence Hugh Holman ...................................... Chapel Hill, N. C.

DOCTOR OF LAWS

Hugh Pate Harris ......................................... Charleston, S. C.
Jenkin Lloyd Jones ...................................... Tulsa, Okla.
Hubert Bond Owens ..................................... Athens, Ga.

DOCTOR OF SCIENCE

Wilson Alvin Reeves ...................................... New Orleans, La.
ASSOCIATE AND BACHELORS' DEGREES CONFERRED
AUGUST 9, 1969

COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES
BACHELOR OF SCIENCE DEGREE

Agricultural Economics
Curtis Cavney Kimbrell III ............ Sumter

Agronomy
Kenneth Franklin Hines .............. Greenville

Animal Science
Robert Allen Brooks, Jr. ............ Landrum
John Cecil Pardue, Jr. ............... Johnston

Biology
Furman Henry Alewine ............. Taylors
** Herbert Wayne Beam ............. Chester
Gretchen Howell Belser ............ Columbia
Heyward Belser Douglass .......... Columbia
George Alston Gore ................. Columbia
David Lee Hisman ................. Atlanta, Ga.

Horticulture
Wilson Counts Childers, Jr. ....... Great Falls

SCHOOL OF ARCHITECTURE
BACHELOR OF ARCHITECTURE DEGREE

Gregory Paul Benz ............ Jackson Heights, N. Y.
William Hunter O'Cain ....... Hendersonville, N. C.

BACHELOR OF SCIENCE DEGREE
Building Construction
Dan Gerald Askins, Jr. ........... Hartsville
Jack Warren Burgess ............ Cleveland
David William Cecil II ......... Spartanburg

SCHOOL OF EDUCATION
BACHELOR OF ARTS DEGREE
Elementary Education
* Diane Porter Bishop .......... Greenville
* Christine Jackson Ferguson .... Greenville
Karen Bernadette Lutz ........... Pittsburgh, Pa.
Christine Anne Mercier ......... Summerville

Secondary Education
Mary Jane Braswell Albey ......... Rockmart, Ga.
William Perry Beckham III ....... Camden
* Judith Roberts Clarke ............ Greenville
Rebecca Ann Fortner .......... Anderson

BACHELOR OF SCIENCE DEGREE
Agricultural Education
( Agricultural Education is jointly administered by the College of Agriculture and Biological Sciences and the School of Education.)

Alfred Randolph Clarke .......... McColl
Larry Eugene Greer ............. Anderson

Joel Kenneth Richardson ......... Clemson
William Henry Wise, Jr. ......... Rock Hill
James Evans Mayer ............... Little Mountain
Ronald Brian Ritchie .......... Kennesaw, Ga.
Julian Stanley Schraibman ..... Charleston
Everett Albert Taylor .......... Sumter
Stephen Charles Thomas .......... Honea Path

Donald Lee Skelton .......... Clemson

Orville Van Player III ......... Sumter
Thomas Marion Fitts .......... Gaston
William Silas Turbeville, Jr. ... Columbia

Cheryl Calgoci Miller .......... Niles, Ohl
Kathy Brock Welborn .......... Anderson
Cheryl Simpson Whittfield ..... Clemson

Laura Anne Hayes .......... Anderson
* Betty Gleaton Moore .......... Anderson
Vivian Louise Nichols .......... Tamass
Elizabeth Marie Palmer .......... Townville

Martin Howard Hutto .......... Swans

* Jointly administered by the College of Agriculture and Biological Sciences and the School of Education.
Industrial Education

Raymond Sylvester Fedele — Somerville, N. J.
Daniel Lawrence Fry ———— Kingstree
Cleveland Adger Huey ———— Anderson
William Jackson Singletary ———— Lake City

Louis Paul Stith, Jr. ———— Sullivans Islanc
James Harold Stoner, Jr. ———— Enoree
Dennis Holland Walsh ———— Savannah, Ga.

Recreation and Park Administration

Nancy Sharon Alley ———— Columbia
Robert Earle Ambrose ———— Omaha, Nebr.
Alec Darvin Blalock ———— Cameron
Thomas Edward Bulwith ———— Bayonne, N. J.
James Cecil Catoe, Jr. ———— Kershaw
Joe Barry Cockfield ———— Abbeville
Richard Hunter Crouch ———— Saluda
Stanley Bruce Edens ———— Moncks Corner

Nicholas Fletcher III ———— Charlotte, N. C.
Thomas Kirkpatrick Gaither, Jr. ———— Fort Mill
* Alan Berry Hiatt ———— Greer
* Angelina Spearman Howard ———— Clemson
Virgil Finch Lindner, Jr. ———— Bishopville
John Edward Mann ———— Rock Hill
Hinton Arnold Price, Jr. ———— Greenville
Simeon Pinckney Wright, Jr. ———— Sumter

Science Teaching

Thomas Murray Arant ———— Fort Motte
Lawrence Joseph Delaney, Jr. ———— Colchester, Conn.

Andrew Patrick Inabinet ———— Orangeburg

COLLEGE OF ENGINEERING

BACHELOR OF SCIENCE DEGREE

Agricultural Engineering

(Agricultural Engineering is jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.)

John Wayne Mishoe ———— Loris

Ceramic Engineering

James Franklin Ramsay ———— Simpsonville
* Thomas Earl Smith ———— Anderson
Frankie Darrell Wilson ———— Anderson

Chemical Engineering

William Jackson Blanks, Jr. ———— Rock Hill
Stephen James Hayes ———— Moncks Corner

John Eugene McAliley ———— Rock Hill
Samuel Eugene Smith ———— Rock Hill

Civil Engineering

William Noah Burley, Jr. ———— Walhalla
Michael Wayne Foster ———— West Union
* Richard Marvin Garris ———— Marion
George Fouad Kammoun ———— Tripoli, Lebanon

William Nicholas Kellahan, Jr. ———— Kingstree
Robert McFaddin Marshall ———— Sumter
Randy Gerald Parris ———— Gaffney

Electrical Engineering

* Fred Marshall Alexander, Jr. ———— Abbeville
Richard Ernest Frank ———— Panama, Panama
Charles Roy Gregory ———— Waterloo
* James Richard Kirby ———— Greenville

William Calhoune Locke, Jr. ———— Rock Hill
John Fike Mabry, Jr. ———— Fairforest
Joseph Horace Simpson III ———— Whitmire

Industrial Engineering

Mir Zulfiqar Rahim ———— Lahore, Pakistan
Ernest Little Spears ———— Union

Rollin John Stickle II ———— Columbia

Mechanical Engineering

Richard James Belken ———— Fort Walton Beach, Fla.
Youssuf Fouad Boutros ———— El-Koura, Lebanon
James King Brinkley ———— Columbia

Milton Andrew Gatlin ———— Newberry
Peter Henry Johnson ———— Glen Head, N. Y.
Robert Joseph Stanzione ———— Hartsville
SCHOOL OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

BACHELOR OF ARTS DEGREE

Arts and Sciences

Carl Montgomery Allen .......................... Charleston
Robert William Ayers ................................ Orangeburg
Glenn Gray Burdette ................................ Greenville
Ray O'Brian Carter .................................. Columbia
Charles Michael Craven .............................. Greenville
William Ronald Hinson .................. Charlotte, N. C.
Terry Louis Lee .................................. Greensboro, N. C.
Bruce Temple Linthicum ............................. Memphis, Tenn.

Gregory Allen McClure .......................... Charlotte, N. C.
Charles Ronald Mauney .......................... Greer
Joseph Edward Netzel, Jr. .............. Concord, N. H.
Richard Samuel Proctor, Jr. .............. Sumter
William Ted Robertson .......................... Spartanburg
Walter Preston Thompson .................. Spartanburg
James Andrew Vaughan .......................... Greenville
Prince Otto Wilson, Jr. .................. Greenville

BACHELOR OF SCIENCE DEGREE

Industrial Management

William Leroy Abercrombie, Jr. ............ Easley
Benjamin Edward Abernathy ........................ Connelly Springs, N. C.
Bruce Burgess Albee ................................ Rockmart, Ga.
Paul Franklin Baker ................................ Piedmont
Stephen Lee Barbery ................................ Simpsonville
Gregg Alon Belknap ................................ Charleston
Edmond Brown, Jr. .................................. Elliott
James Abraham Bruce, Jr. ...................... Lake View
Terry Lee Cameron .................................. Ninety Six
Donald Brian Cashin ................................ Orangeburg
George Rembert Crowe ........................ Anchorage, Alaska
Lawrence Bruce Elleston ........................ Spartanburg
Ronald James Hathazy ............................ Pittsburgh, Pa.
George David Hathazy .......................... Asheville, N. C.

* James Michael Klosky .......................... Anderson
Richard Linwood Lavender ........................ Gaffney
Michael Bryan McKeown ........................ Great Falls
Clyde Michael Moore ................................ Greenville
Craig Russell Morrison .......................... Fairhaven, N. J.
William Cone Peters .......................... Charleston
Steven McKell Phillips .......................... North Augusta
Perry Howard Reynolds ...................... Anniston, Ala.
Wayne Jackson Roberson ................... Asheville, N. C.
William Henry Scoggins ........................ Greenville
John Henry Segars ................................ Darlington
Dennis Gerald Shealy .......................... Greenville
Jimmy Dyran Speer ................................ Anderson
* Robert Marion Thomason ........................ Laurens
Charles Bergen Wilson .......................... Camden

Textile Chemistry

Thomas Anthony Tantillo ..................... North Augusta

Textiles

Pascal Servene Brock .............................. Belton

COLLEGE OF LIBERAL ARTS

BACHELOR OF ARTS DEGREE

Nancy Diana Ball .................................. Simpsonville
** Awtry Stephen Dawes .......................... Greenville
William Brunson DePass, Jr. .................. Rock Hill
Charles William Gibson ........................... Newton, Mass.
Kathryn Scott Hanna .............................. Greenwood
Cheryl Denise Jensen ............................. Myrtle Beach
Pamela Joy King .................................. Simpsonville
Mary Delia Mackay Lawton ........................ Orangeburg

** Nancy Evelyn McGill .......................... Anderson
George Glenn Matthews, Jr. .................. Columbia
* John McKey Milling .......................... Darlington
Hugh Deaver Putnam, Jr. .................. Cherryville, N. C.
** Sara Golden Skardon .......................... Clemson
Paul Jeffrey Steinfeldt .......................... Rochester, N. Y.
John Marshall Swails .......................... Kingstree
Richard Hill Woodward .......................... Knoxville, Tenn.

SCHOOL OF NURSING

ASSOCIATE IN ARTS DEGREE

Nursing

* Linda Faye Willis .......................... Greenwood
# College of Physical and Mathematical Sciences

## Bachelor of Science Degree

### Chemistry
- Donald Milton Boggs  
  Clemson
- James Michael Davis  
  Greer
- William Earle Glazener  
  Greenville
- Lester Yerby Pilcher  
  Columbia

### Geology
- Thomas McLeod Goforth  
  Rock Hill

### Mathematics
- Marilyn Jean Jones  
  Rocky Mount, N. C.
- John Augustus Neuffer  
  Clayton, N. Y.
- Walter Lawrence Northrup  
  Wilmington, Del.
- Jeffrey Alan O’Cain  
  Columbia
- Jeff O'Donnell Pritchard  
  Sumter
- William Henry Turner  
  Columbia

### Physics
- Edward Licus Prater  
  Westminster

### Pre-Medicine
- Richard Leon Beauvais, Jr.  
  Cranston, R. I.
- Arthur Thomas Craig  
  Greer
- William Rhodes Holland  
  Greenville
- Peter Wischan Moxon  
  Columbia

* With honor
** With high honor
MASTERS' DEGREES CONFERRED AUGUST 9, 1969

COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES

MASTER OF SCIENCE DEGREE
Agricultural Economics
James Carl Jordan ________________ Aiken
Gary Frank Young ____________ Smithville, Tenn.
Tommy Cleveland Meadows __ Franklin, N. C.

Animal Science
Ralph Duane Roland ________ Weiser, Idaho

Forestry
Ansel Eldon Miller ___________ Picayune, Miss.

Plant Pathology
Sharon Ursula Brown Miller __ Travelers Rest

Zoology
James Joseph Colcolough, Jr. ___ Mt. Pleasant
Jay Dee Hair _________________ Newark, Del.

SCHOOL OF EDUCATION

MASTER OF EDUCATION DEGREE

Katherine Gardner Adkins ___________ Ninety Six
Judith Belk Askins _________________ Hartsville
Don Raye Beck ____________________ Anderson
Terry Leigh Brogdon ________________ Mt. Pleasant
Elaine Hicks Chambers _____________ Liberty
Rebecca Meredith Chamblee __________ Anderson
Carole Bryant Coker _______________ Greenville
Ella Perrin Cox _________________ Abbeville
Mary Bass Crum _________________ Denmark
Anne Cuba Fletcher _______________ Marietta, Ga.
Suzanne Kaye Ginther _______________ North Canton, Ohio
Ruth Dunlap Jackson ______________ Greenville
Robert Loie Jones ____________ Pelzer
Linda Tune Leatherman ___________ Morganton, N. C.
Helen Chamblee Lee _____________ Anderson
Frances Holtzclaw Lockaby ___________ Travelers Rest
DaCosta Muckenfuss, Jr. __________ Summerville
Daneille Touchberry Muckenfuss __ Greenville
Louise Klugh Rankin _______________ Anderson
Earle Franklin Rochester __________ Walhalla
Martha Messman Stearns ___________ Atlanta, Ga.
Faye Robertson Walls _____________ Slater

MASTER OF INDUSTRIAL EDUCATION DEGREE

Ephriam George Cope, Jr. __________ Newberry
Charles Edward Dumas ______________ Forsyth, Ga.
Ernst Allen Neumeister _____________ Charleston

COLLEGE OF ENGINEERING

MASTER OF SCIENCE DEGREE
Ceramic Engineering
Robert Brown Clem ______________ Huntsville, Ala.

Chemical Engineering
Moa-Tseng William Chien __________ Taipei, Taiwan
James Thomas Haney ______________ Lyman

Civil Engineering
Philip Howard Clarkson ___________ Cowpens
James William Page ______________ Lake View
Neil Arden Smoak ________________ Orangeburg
Environmental Systems Engineering
James Malcolm Campbell    Bucyrus, Ohio    Lawrence Charles Tropea, Jr.    Buffalo, N. Y.

Water Resources Engineering

SCHOOL OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE
MASTER OF SCIENCE DEGREE
Industrial Management
Joseph Larry Avant        Charleston    Raymond Wayne Davies        Saddle Brook, N. J.

Textile Chemistry
Scott Bruce Speares, Jr.    Anderson

Textile Science
Johnny Mack Butler        Rock Hill

COLLEGE OF LIBERAL ARTS
MASTER OF ARTS DEGREE
English
Kenneth Charles Burrows    Nottingham, England
Laurens Hunter Irby        Woodruff
                                   Frank Walter Pearce, Jr.        Cheraw

History
Noel David Evans         Greenville    Elizabeth Merritt Haw        Thibodaux, La.

COLLEGE OF PHYSICAL AND MATHEMATICAL SCIENCES
MASTER OF SCIENCE DEGREE
Mathematics
Gordon Lee Bailes, Jr.    Greenwood    Amelia Nichols Richardson    Clinton
Cheryl Elaine Henderson    Bogalusa, La.

Physics
Charles Lee Watlington    Jackson, Tenn.
DOCTORS' DEGREES CONFERRED AUGUST 9, 1969

COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES

DOCTOR OF PHILOSOPHY DEGREE
Agricultural Economics

Robert Henry Elrod
B.A., Presbyterian College; M.S., Clemson University
Dissertation: Development and Use of Updated Input-Output Tables in Economic Forecasting and Planning

Entomology

Wesley Wright Gregory, Jr.
B.S., Wofford College; M.S., Clemson University
Dissertation: Bioaccumulation of Endrin from Natural Food Sources in the Eastern Bobwhite Quail, Colinus virginianus virginianus L.

COLLEGE OF ENGINEERING

DOCTOR OF PHILOSOPHY DEGREE
Engineering

Asa Orin Bishop, Jr.
B.S., Virginia Military Institute, M.S., Clemson University
Dissertation: The Development of an On-Line Real Time Digital Computer Technique for the Analysis of Electroencephalograms (Field of Specialization: Electrical Engineering)

Conor Deane Johnson
B.S., Virginia Polytechnic Institute; M.S., Clemson University

Billy Howard Kornegay
B.S., Virginia Military Institute; M.S., Clemson University
Dissertation: Characteristics and Kinetics of Fixed Film Biological Reactors (Field of Specialization: Environmental Systems Engineering)

SCHOOL OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

DOCTOR OF PHILOSOPHY DEGREE
Engineering Management

Edward Romfh Clayton
B.S., University of Florida
Dissertation: Estimating Distributed Lags in the Demand for Money

COLLEGE OF PHYSICAL AND MATHEMATICAL SCIENCES

DOCTOR OF PHILOSOPHY DEGREE
Chemistry

Ronald Edward Block
B.S., College of Charleston; M.S., Clemson University
Dissertation: Determination of the Microstructure of Copolymers of Vinylidene Chloride and Methacrylonitrile
Nina Griffin Charles  Kinston, N. C.  B.A., Agnes Scott College  Dissertation: Investigation of the Quasi-Linear Model and its Application to the Bending Vibration of Sulfur Dioxide

Mathematics
Harry Hammond Suber  Jackson  B.S., M.S., Clemson University  Dissertation: Integral Manifolds for Perturbed Nonlinear Systems

Physics
Barry Leeds Illman  Fairfield, Conn.  B.S., Tennessee Polytechnic Institute; M.S., Clemson University  Dissertation: The Generally Covariant, Non-Divergent Equations of Motion of a Charged Particle
Donald Eugene Kinkaid  Joy, Ill.  B.S., M.S., Clemson University  Dissertation: A Numerical Analysis of the Inelastic Scattering of Nucleons from Lithium-Seven
ASSOCIATE AND BACHELORS’ DEGREES CONFERRED
DECEMBER 18, 1969

COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES

BACHELOR OF SCIENCE

Agricultural Economics
William Kenneth Orr Clinton

Agronomy
Alton Beasley Jeffords Lamar

Animal Science
Lewis Daniel Malphrus, Jr. Clemson
Clark Edwin Woods Fountain Inn

Franklyn Curtis Allen Greenville
Paul David Amos North Augusta
Roy Truett Greene Easley
Daniel Edward Meyer Ramsey, N. J
Lucas Randolph Peele, Jr. Bishopville

Biology

*Frank Kirby Bridwell Taylors
Herbert Tarrant Corbett, Jr. Springfiel

Paul David Craig Sheppard Winston-Salem, N. C.
Darra Dane Williamson Loris
Judith Carol Wolper Summerville

Dairy Science


Ronald Edward Ducworth Anderson

Charles Pershing Beam, Jr. Gaffney

James Othol Holcombe Easley

*Kenard Michael Knust Sparrows Point, Md.

Leslie Keith Compton Myrtle Beach
Frank Kostyra Nutley, N. J.

Duane Larry Falls Clover

David LaGrone Tompkins, Jr. Edgefield

Asa Stuart Godbold Florence

Horticulture

*Elizabeth Hamlin Schirmer Mt. Pleasant

Kenneth Boyd Simmons, Jr. Columbia

Hugh Lee Gault Simpsonville

Poultry Science

Roger Neron Langley Johnsonville

Donald Raymond Heller Stroudsburg, Pa.

Harry Raymond Askins, Jr. Lake City

Donald Raymond Heller Stroudsburg, Pa.

Charles Pershing Beam, Jr. Gaffney

Kenard Michael Knust Sparrows Point, Md.

James Arthur Buck Sumter

Earl O’Neill McCoy, Jr. Oswego

Leslie Keith Compton Myrtle Beach

Robert Francis Moore Greenville

Duane Larry Falls Clover

Vinroe Stephen Player Sumter

Asa Stuart Godbold Florence

Waylon Brown Wilson, Jr. Charleston

Horticulture

Norman Edward Bello Charleston Heights

BACHELOR OF ARCHITECTURE

Building Construction

Donald Edward Darden Balboa, Canal Zone

BACHELOR OF ARCHITECTURE

Han Choon Lee Beckley, W. Va.

Norman Edward Bello Charleston Heights

Paul Forrest Levine Kensington, Md.
### COLLEGE OF EDUCATION

#### BACHELOR OF ARTS

**Elementary Education**

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Judith Katherine Bell</td>
<td>Piedmont</td>
</tr>
<tr>
<td>*Bessie Louise Durham</td>
<td>Piedmont</td>
</tr>
<tr>
<td>*Linda Ann English</td>
<td>LaFrance</td>
</tr>
<tr>
<td>**Martenza Lenoir Jones</td>
<td>Columbia</td>
</tr>
<tr>
<td>**Willie Chiles Martin</td>
<td>Clemson</td>
</tr>
<tr>
<td>Brenda Stephens Miller</td>
<td>Anderson</td>
</tr>
<tr>
<td>Elizabeth Wilson Nelson</td>
<td>Taylors</td>
</tr>
<tr>
<td>Sarah Cornelia Powell</td>
<td>High Point, N. C.</td>
</tr>
<tr>
<td>Barbara Lynn Yost Rogers</td>
<td>Canton, N. C.</td>
</tr>
<tr>
<td>Sharon Frances Shirley</td>
<td>Anderson</td>
</tr>
<tr>
<td>Mary Claudia Young</td>
<td>Clemson</td>
</tr>
</tbody>
</table>

**Secondary Education**

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Elizabeth Fleming Balk</strong></td>
<td>Blackville</td>
</tr>
<tr>
<td>Ronnie Terrill Blume</td>
<td>Anderson</td>
</tr>
<tr>
<td>Grady Spence Burger</td>
<td>Chattanooga, Tenn.</td>
</tr>
<tr>
<td>*Mary Alice Marette Clayton</td>
<td>Westminster</td>
</tr>
<tr>
<td>Larry Ray Crain</td>
<td>Westminster</td>
</tr>
<tr>
<td>*Martha Elaine Hart</td>
<td>Easley</td>
</tr>
<tr>
<td>**Nancy LaVerne Hill</td>
<td>Piedmont</td>
</tr>
<tr>
<td>James Alexander Johns</td>
<td>Timonium, Md.</td>
</tr>
<tr>
<td>**Susan Elizabeth Klinck</td>
<td>Columbia</td>
</tr>
<tr>
<td>Gary Owen Leonard</td>
<td>Charleston</td>
</tr>
<tr>
<td>*Victoria Anne Mattis</td>
<td>Camden</td>
</tr>
<tr>
<td>Donald Edward Rochester</td>
<td>Seneca</td>
</tr>
<tr>
<td>*Sally Ann Smith</td>
<td>Clemson</td>
</tr>
<tr>
<td>Tessa Leah Stewart</td>
<td>Greenville</td>
</tr>
<tr>
<td>Richard Warren Thomas</td>
<td>Warren, Ohio</td>
</tr>
<tr>
<td>*Sara Gene Tripp</td>
<td>Greenville</td>
</tr>
</tbody>
</table>

#### BACHELOR OF SCIENCE

**(Agricultural Education is jointly administered by the College of Agriculture and Biological Sciences and the College of Education.)**

**Agricultural Education**

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dennis Nevitte Haltwanger</td>
<td>Little Mountain</td>
</tr>
<tr>
<td>Ryan Tillman Jackson III</td>
<td>Decatur, Ga.</td>
</tr>
<tr>
<td>*John Allen Livingston</td>
<td>Cross Hill</td>
</tr>
<tr>
<td>Charles Alexander Miller</td>
<td>Bennettsville</td>
</tr>
<tr>
<td>William Abner Nash</td>
<td>Fountain Inn</td>
</tr>
<tr>
<td>George Milton Reed Jr.</td>
<td>Anderson</td>
</tr>
<tr>
<td>Don Carlos Sharp III</td>
<td>Allendale</td>
</tr>
<tr>
<td>Perry Daniel Willis</td>
<td>Roebuck</td>
</tr>
</tbody>
</table>

**Industrial Education**

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert Wayne Abrams</td>
<td>Cayce</td>
</tr>
<tr>
<td>James Robert Byrd</td>
<td>Landrum</td>
</tr>
<tr>
<td>Heyward Douglas Elliott</td>
<td>Camden</td>
</tr>
<tr>
<td>John Edward Charles Elliott</td>
<td>Camden</td>
</tr>
<tr>
<td>Paul Francis Herbst, Jr.</td>
<td>Kearny, N. J.</td>
</tr>
<tr>
<td>Kenneth Herbert Jones</td>
<td>Pickens</td>
</tr>
<tr>
<td>Robert Jeffrey Lake</td>
<td>Hicksville, N. Y.</td>
</tr>
<tr>
<td>Jeffrey Charles Pringle</td>
<td>Edgewater, Md.</td>
</tr>
<tr>
<td>Craig Gill Rice</td>
<td>Baltimore, Md.</td>
</tr>
<tr>
<td>Richard Locke Sparks</td>
<td>Cave Spring, Ga.</td>
</tr>
<tr>
<td>*Walter Price Spires</td>
<td>Clayton, Ala.</td>
</tr>
<tr>
<td>Michael Leon Tilley</td>
<td>Anderson</td>
</tr>
</tbody>
</table>

**Recreation and Park Administration**

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>William Ross Ammons</td>
<td>Lugoff</td>
</tr>
<tr>
<td>Gary John Arthur</td>
<td>Baltimore, Md.</td>
</tr>
<tr>
<td>Joseph Wilton Bandy</td>
<td>McCormick</td>
</tr>
<tr>
<td>Glenn Allen Bickett, Jr.</td>
<td>Chester</td>
</tr>
<tr>
<td>James Gordon Collier III</td>
<td>Greenville</td>
</tr>
<tr>
<td>Robert Marion Craig, Jr.</td>
<td>Port St. Joe, Fla.</td>
</tr>
<tr>
<td>Wesley Davis Edson</td>
<td>Kannapolis, N. C.</td>
</tr>
<tr>
<td>Johnny Michael Embler</td>
<td>Townville</td>
</tr>
<tr>
<td>Bernard Charles Fagan</td>
<td>Cliffwood Beach, N. J.</td>
</tr>
<tr>
<td>*Nicholas Purdy Gettys, Jr.</td>
<td>Lugoff</td>
</tr>
<tr>
<td>*Richard Jehu Hanks</td>
<td>Taylors</td>
</tr>
<tr>
<td>John Charles Hughes</td>
<td>Hartsdale</td>
</tr>
<tr>
<td>William McArthur Hughes</td>
<td>Marion</td>
</tr>
<tr>
<td>Laval Hipp Johnson</td>
<td>Newberry</td>
</tr>
<tr>
<td>Crawford Martin Keese</td>
<td>Westminster</td>
</tr>
<tr>
<td>Margaret Owings Lhotsky</td>
<td>Miami, Fla.</td>
</tr>
<tr>
<td>Kenneth Lane Lindsey</td>
<td>Townville</td>
</tr>
<tr>
<td>Michael Lee Locklair</td>
<td>Great Falls</td>
</tr>
<tr>
<td>Bruce Wayne Lowry</td>
<td>Eatontown, N. J.</td>
</tr>
<tr>
<td>Dexter Conrad Moore, Jr.</td>
<td>Blackstock</td>
</tr>
<tr>
<td>Henry Edwin Nichols</td>
<td>Silverstreet</td>
</tr>
<tr>
<td>Warren Thomas Player</td>
<td>Sumter</td>
</tr>
<tr>
<td>James LaBorde Prather, Jr.</td>
<td>Lexington</td>
</tr>
<tr>
<td>Robert Charles Price</td>
<td>Martin</td>
</tr>
<tr>
<td>Charles Lamar Roediger, Jr.</td>
<td>Winston-Salem, N. C.</td>
</tr>
<tr>
<td>John Dennis Scott</td>
<td>Concord, N. C.</td>
</tr>
<tr>
<td>Larry Bruce Stancil</td>
<td>Anderson</td>
</tr>
<tr>
<td>Francis Green Wilson</td>
<td>Chester</td>
</tr>
<tr>
<td>Manley Storme Young III</td>
<td>Fort Mill</td>
</tr>
</tbody>
</table>

**Science Teaching**

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles August Lawyer</td>
<td>Camden, N. J.</td>
</tr>
<tr>
<td>Doris Ann Snow</td>
<td>Simpsonville</td>
</tr>
</tbody>
</table>
COLLEGE OF ENGINEERING

BACHELOR OF SCIENCE

Agricultural Engineering
(Agricultural Engineering is jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.)

Thomas Ernest Bell III ........ Orangeburg
George Edward Hand ........ San Antonio, Texas
John Frederick Long .......... Newberry

William Alfred McNeill ........ Abbeville
James Lloyd Wilson, Jr. ......... Chester

Ceramic Engineering

William Frederick Brandt ........ Easley
Joseph Allen Carroll ........ Chester
David Gadsden McClure .......... Anderson
George Stone Robinson .......... Lancaster

Thomas Lee Sinclair ........ Union
George Allen Southgate ......... West Palm Beach, Fla.

Chemical Engineering

James Wesley Bracken III ...... Rock Hill
Johnnie Earle Cockcroft ....... Moncks Corner

Donald Bawden Knudson, Jr. .... Arlington, Va.

Civil Engineering

George Newman Allman, Jr. .... Hampton, Va.
Scott Stilwell Askew .......... Miami, Fla.
*Thomas Osborn Barnwell, Jr. ..... Yongs Island
Kenneth Monroe Barrett ....... Rock Hill
Robert Preston Chaplin III ...... Ravenel
Samuel Frank Copeland ........ Bamberg
John Thomas CoxeY ........ Spartanburg
Robert Martin Crisp ........ Ashville, N. C.
Arthur Bancroft deLaski III .... Bay Village, Ohio
Louis DesChamps Eckley ........ Bishopville
James Ralph Freeland .......... Greenwood
Charles Robert Gatch .......... Beaufort
John William Glenn ............ Anderson
Joseph Banks Graham, Jr. ...... Chester
Don Richard McCombs .......... Greenville
Gary Lynn Pace ................. Easley

Richard Marion Pace .......... Greenville
James Russell III ........ Schenectady, N. Y.
Charles Lewis Shackelford, Jr. .... Bethlehem, Pa.
Guy Elmore Slagle, Jr. .... Garden City Beach
Donald Alexander Slate ........ Atlanta, Ga.
Richard Lide Stroman .......... Bowman
Virgil Garrett Svendsen ........ Charleston
William Ronald Terry .......... Greenville
*Reuben Sims Thomas ........ Carlisle
Robert Edward Thomson, Jr. .... Aiken
Jerry Robert Timmons .......... Travelers Rest
James Roy Todd, Jr. .......... Matthews, N. C.
Peter Toussaint ............... Augusta, N. J.
Lawrence Earl Triplett .......... Cordova
Paul Coker Watson, Jr. ....... Columbia
David Earl Yount .......... Spartanburg

Electrical Engineering

Brunello Accomando ........ Inwood, N. Y.
Wayne Harris Atkinson .... Greenville
Harry Carlisle Avinger, Jr. .... Orangeburg
Ronnie Sheldon Benjamin ...... Liberty
William Joseph Byrum, Jr. .... Anderson
*William Lawrence Calkins ....... Winsboro
Jerry Lee Cox ............... Taylors
Fred Elms Culvem III ........ Columbia
Charles Donald Godsey .......... Greenwood

Talmadge Hardman Luker ........ Donald
Harry Edwin Moose, Jr. .......... Newberry
Philip Cauthen Okey ......... Rock Hill
Robert Andrew Pace .......... Asheville, N. C.
Mickey Earl Reeves .......... Laurens
James Harold Smith .......... Belton
Larry Wayne Taylor .......... Rock Hill
Charles Robert Tolley ........ Hot Springs, N. C.
George Furman Williamson III .... Cades

Industrial Engineering

Charles Alan Berkovich .......... Bethesda, Md.
James Ronald Cathey ........ Anderson

David Marshall O'Shields .......... Paulin
Mechanical Engineering

Louis Lee Abernethy Charlotte, N. C.
David James Bell Lodge
*Nigel Robert Brooks Baltimore, Md.
Michael Lawrence Casey Clemson
Danny O'Brian Derrick Columbia
Thomas Fields Hash Easton, Md.
Harold William Johnson, Jr. Sullivan Island

Richard Manning Jones, Jr. Greenville
David Patterson McAliley, Jr. Rock Hill
John Charles Marquardt Riviera Beach, Fla.
Renaud Eugene Pelletier Rock Hill
Terry Stephen Smith Pinopolis
Joseph Booker Whitehead Jacksonville, N. C.

Metallurgical Engineering

William Shaul Armstrong Georgetown
John Yarborough Latimer Bishopville

William Greene Williams III Lancaster

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

BACHELOR OF ARTS

Arts and Sciences

Frank Herbert Arnold III Charleston
Richard Hamilton Burgess Athens, Ga.
Margaret Seales Chapin Jacksonville, Fla.
Jerry Dale Eskew Greenville
Kenneth Edgar Hall Columbia
Hugh Valentine Harbort, Jr. Columbia
Edward Jennings King Charleston

William Edward Martin Umatilla, Fla.
Lawrence Lee Maxwell Greenville
William Elwood Mays Seneca
Raymond Thomas Peden Piedmont
Harvey Thornton Smith, Jr. Augusta, Ga.
Charles Hamilton Tennent Spartanburg
Andrew Phillips Wise Greenville

BACHELOR OF SCIENCE

Industrial Management

Richard Jones Ashmore Greenville
*John Oliver Avinger Orangeburg
Terry Lee Bailey Anderson
William Everett Batson Pickens
Charles Edwin Bolen Orangeburg
George Fox Bolen, Jr. Greenville
James Plummer Chick, Jr. Rock Hill
John Lee Cline Rutherford College, N. C.
Robert Martin Cochran Union
Thomas Francis Cook Ft. Worth, Texas
Gary Felton Crooks Walhalla
Wayne Joseph Demcsak Metuchen, N. J.
Samuel Pacy Dyer Baltimore, Md.
James Edward Floyd Conway
Michael Harry Fowler Charleston
Michael Wayne Fowler Charleston
Daniel Stephen Freeman Duncan
George Willard Gaillard Rock Hill
John Melton Gault III Jonesville
James Arthur Gulliedge III Sumter
Clyde Walton Hanes, Jr. Holly Hill
Stephen Lee Hixon Hartsville
James Douglas Hood Greenville
Julius Clifford Hubbard III Clemson

James Douglas Huff, Jr. Anderson
John Charles James Sumter
Samuel Dickson Kentette Greer
Jac Edward Knust Baltimore, Md.
Joseph Michael Lhotsky, Jr. Baltimore, Md.
Marvin Edward McAbee, Jr. Blacksburg
Clarence Edward McAlister, Jr. Anderson
Joe Franklin McHugh Gaffney
Daniel Frederick Moore Upper St. Clair, Pa.
Rodney Locke Nelson Lincoln, R. I.
Houston Addy Peden Greenville
Roland Lee Rayburn Richmond, Va.
Charles Wallace Seigler Rock Hill
Robert James Sevier Washington, D. C.
James Chester Simpson, Jr. Varnville
Kenneth Everett Smith Baltimore, Md.
Thomas Carlyle Smith Atlanta, Ga.
Danny Howard Swanger Rock Hill
Robert Arthur Tedcastle Lantana, Fla.
William Echols Thompson, Jr. North Augusta
George Daniel Walker Somerville, N. J.
Wesley Franklin Walker Rock Hill
John Marshall Wickham Charlotte, N. C.
James Eugene Wiggins III Greenville

Textiles

Harry Benjamin Partlow, Jr. Rock Hill
James Norman Williams, Jr. Anderson
COLLEGE OF LIBERAL ARTS

BACHELOR OF ARTS

Sandra Michelle Goodwin Anderson .......................... West Monroe, La.
William Allen Behrens .......................... Piedmont
*Diana Kay Bissey .......................... Charleston
Richard Cornell Burgess .......................... Lancaster
William Edwin Childress .......................... Liberty
David George Dutt .......................... York, Pa.
Peggy Joyce Gentile .......................... Birmingham, Ala.
Dean Ardash Haledjian .......................... Teaneck, N. J.
*Pelham Hancock .......................... Easley
James Dalton Head III .......................... Greenville
Gordon Louis Hesse .......................... Lavallette, N. J.
*Barbara Rawley Hinkle .......................... Mount Solon, Va.
Pope Duncan Johnson III .......................... Newberry
Mark Evans Kelly .......................... Montpelier, Vt.
Terence James Mulligan .......................... Upper Montclair, N. J.
Fred Eugene Pearman, Jr. .......................... Anderson
Gary Phillip Pulliam .......................... Easley
Jere Louise Ragsdale .......................... Easley
John Arthur Reagan III .......................... Hartsville
Connie Joyce Robinson .......................... Anderson
James Fenwick Shotton .......................... Havelock, Pa.
**Joseph Francis Shumpert .......................... Pelion
Durward Belmont Stinson, Jr. .......................... Charleston
James Edward Tompkins .......................... Lake Placid, Fla.
Ronald Rex Watson .......................... Greenville
John Dane Weston .......................... Union
Ann LaVene Williams .......................... Hodges
Peggy Lynn Wilson .......................... Pendleton

COLLEGE OF PHYSICAL AND MATHEMATICAL SCIENCES

BACHELOR OF ARTS

Arts and Sciences
Ashby Burgess Bodine II .......................... Cheverly, Md.
Robert Marshall Dixon .......................... Sumter
**Jane Watson Hass .......................... Charleston
David James Parker .......................... Camden
Tommy Gene Perkins .......................... Greenwood

BACHELOR OF SCIENCE

Chemistry
David Anthony Colby .......................... Richmond, Va.
*Taylor Bowman Jones .......................... Florence
Alan Constantine Walter, Jr. .......................... San Diego, Calif.

Geology
Louis Ligon Acker .......................... Anderson

Mathematics
Eva Sue Edwards .......................... Saluda
Clinton Roger Hinson .......................... Columbia
Robert Erwin Liphard .......................... Baltimore, Md.
Myrtle Janice Mull .......................... Marietta

Medical Technology
*Frances Helen Bowen .......................... Anderson

Pre-Medicine
Guery Alan Bowers .......................... Union
***Michael James Faer .......................... West Mifflin, Pa.
*James Roger Mahon .......................... Gray Court
Dennis Arthur Moore .......................... Stratford, Conn.
James Van Robertson .......................... Fairfield, Ga.
Garland Delma Sentell .......................... Norris

*With honor
**With high honor
***With highest honor
MASTERS' DEGREES CONFERRED DECEMBER 18, 1969

COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES

MASTER OF SCIENCE

Agricultural Economics
Robert Alan Graham .......................... Gretna, La.
William Phillip Hardee ........................ Conway
William Woodward Hall, Jr. ........................ York

Animal Science
Don Avell Ballington .......................... Lexington

Dairy Science

Entomology
Joseph Lane Kennedy .......................... Darien, Ga.

Forestry
Edward Jackson Cornwell ........................ Rock Hill
Richard Camman Niederhof ........................ Bonneau

Horticulture
James Theodore McClary, Jr. ........................ Kingstree
Billy LeRoy Morris, Jr. .......................... Andrews

Microbiology
Katherine Fuller Kelly .......................... Newberry

Poultry Science
Don Wendell Creed .......................... Laurinburg, N. C.
Charles Durham Humphrey ........................ Shannon, N. C.
Stanley Roger North .......................... Demarest, N. J.
James Thomas Parker .......................... Elizabethtown, N. C.

Zoology
Nora Hull Featherston .......................... Spartanburg
Charles Daniel Riddle .......................... Spartanburg

COLLEGE OF EDUCATION

MASTER OF EDUCATION

Karen Meredith LaFleur .......................... Clemson
Colon Terry Lane .......................... Mountville

MASTER OF INDUSTRIAL EDUCATION

Benjamin Henry Phillips, Jr. .......................... Newberry
John Orville Schleig, Jr. ........................ Long Branch, N. J.

COLLEGE OF ENGINEERING

MASTER OF SCIENCE

Agricultural Engineering
(Agricultural Engineering is jointly administered by the College of Agriculture and Biological Sciences and the College of Engineering.)
William Larry Vick ........................ Camden, Tenn.
Ceramic Engineering
Charles Richard Reese Union Warren Richard Walle
------------------- -------------------
------------------- Monmouth Junction, N. J.

Chemical Engineering
Frederick Charles Ayer III Seneca Joseph Edward Reilly Charleston

Electrical Engineering
Thomas Oscar Curlee III Greenville Donald Edward Gray Spartanburg

Engineering Mechanics
Kai-Chia Wang Taipei, Taiwan

Mechanical Engineering
Joseph William Culp Rock Hill Harrell Hudson Waldrop Greenville
Nan-Sen Liao Hsinchu, Taiwan

Water Resources Engineering
Gleen Wayne Dukes Greenville

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE
MASTER OF SCIENCE
Management
Wolf Dieter Bender LaUnion, Chile

COLLEGE OF LIBERAL ARTS
MASTER OF ARTS
English
William Alvin Shore Baldwin, Ga.

COLLEGE OF PHYSICAL AND MATHEMATICAL SCIENCES
MASTER OF SCIENCE
Chemistry
Clyde Preston Brown Charleston Richard Merle Rice Kingsville, Texas

Mathematics
Patricia Thompson Brown Laurens Julia Wood Tilley Atlanta, Ga.

Physics
DOCTORS' DEGREES CONFERRED DECEMBER 18, 1969

COLLEGE OF AGRICULTURE AND BIOLOGICAL SCIENCES

DOCTOR OF PHILOSOPHY

Agricultural Economics

B.S., Presbyterian College; M.S., Clemson University
Dissertation: An Econometric Analysis of the United States Shrimp Industry

Agronomy

James Howell Palmer ................................................... Pendleton
B.S., Clemson University; M.S., University of Georgia
Dissertation: Estimates of Genetic Parameters in Hybrid Soft Red Winter Wheat Populations

Leslie Roger Reinhardt .................................................. Bismarck, N.D.
B.S., Kansas State University
Dissertation: Weed Control and Environmental Factors Relating to the Activity of Chloroxuron and Selected Herbicides

COLLEGE OF ENGINEERING

DOCTOR OF PHILOSOPHY

Engineering

John Irving Elsey .......................................................... Baytown, Texas
B.S., M.S., Clemson University
Dissertation: The Design of Optimal Control Systems for Multivariable Processes by Direct Search (Field of Specialization: Chemical Engineering)

Michael Robert Halberg ............................................... Hibbing, Minn.
B.S., University of Minnesota; M.S., Iowa State University
Dissertation: Simulation of Oxygen Transport in the Brain by Monte Carlo Methods (Field of Specialization: Chemical Engineering)

Charles Lee Tsul .......................................................... Taipei, Taiwan
B.S., Taiwan University; M.S., University of Minnesota
Dissertation: An Analytical and Numerical Study of Circular Sandwich Plates Under Thermal and Mechanical Loads (Field of Specialization: Civil Engineering)

Charles David Veal ........................................................ Panama City, Fla.
B.Ag.E., M.S., University of Florida
Dissertation: Use of Radio Frequency Waves for Evaluation of Tomatoes (Field of Specialization: Agricultural Engineering)

COLLEGE OF INDUSTRIAL MANAGEMENT AND TEXTILE SCIENCE

DOCTOR OF PHILOSOPHY

Engineering Management

Max Grey Holland .......................................................... Gastonia, N. C.
B.S., Clemson University; M.B.A., Georgia State College
Dissertation: An Efficient Allocation of General Hospital Facilities in Rural Areas: A Computer Algorithm Methodology
COLLEGE OF PHYSICAL AND MATHEMATICAL SCIENCES
DOCTOR OF PHILOSOPHY

Chemistry

Clyde Edward Opliger  ........................................ Fredericksburg, Ohio
B.S., Kent State University; M.S., Emory University
Dissertation: Approaches to and a New Total Synthesis of Reduced d, 1-Proaporphines and Related Compounds

B.S., Philadelphia College; M.S., Clemson University
Dissertation: Synthesis and Properties of Metal Chelates for Polymerization Studies

Chemical Physics

George Francis Adams  ........................................... Oakland, Calif.
B.S., Wabash College; M.S., Clemson University
Dissertation: Application of the Quantum Mechanical 3-Body Problem to the Study of Non-Linear, Triatomic Molecules

Mathematics

John Cleveland Perkins  ........................................ Valdese, N. C.
B.A., Wofford College; M.S., Clemson University
Dissertation: Symmetric and Involutory Matrices over Fields of Characteristic Two

Physics

Edward Thomas Hutcheson  ........................................ Purcellville, Va.
B.S., University of Richmond; M.S., Clemson University
Dissertation: The Effect of Applied Strain on the Electrical Resistance and Superconducting Transition Temperature of Thin Lead Films

Danny Ray Overcash  ............................................ China Grove, N. C.
B.A., Pfeiffer College
Dissertation: Fermi Surface Topology Changes in In Alloys Deduced from the Behavior of In Alloy Whiskers Under Strain

Michael William Riley  ........................................... Kingsville, Md.
B.S., Loyola College; M.S., Clemson University
Dissertation: Higher Order Elastic Constants in Metal Whiskers
DEGREES AWARDED IN 1968-69 BY MAJOR COURSES

ASSOCIATE DEGREES AWARDED IN 1968-69

| School of Nursing | 17 |

TOTAL ASSOCIATE DEGREES AWARDED IN 1968-69 | 17 |

BACHELORS' DEGREES AWARDED IN 1968-69

<table>
<thead>
<tr>
<th>College of Agriculture and Biological Sciences</th>
<th>116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics</td>
<td>11</td>
</tr>
<tr>
<td>Agronomy</td>
<td>10</td>
</tr>
<tr>
<td>Animal Science</td>
<td>13</td>
</tr>
<tr>
<td>Biology</td>
<td>48</td>
</tr>
<tr>
<td>Dairy Science</td>
<td>2</td>
</tr>
<tr>
<td>Food Science</td>
<td>4</td>
</tr>
<tr>
<td>Forestry</td>
<td>15</td>
</tr>
<tr>
<td>Horticulture</td>
<td>9</td>
</tr>
<tr>
<td>Poultry Science</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Architecture</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>32</td>
</tr>
<tr>
<td>Building Construction</td>
<td>16</td>
</tr>
<tr>
<td>Pre-architecture</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Arts and Sciences *</th>
<th>177</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Sciences</td>
<td>90</td>
</tr>
<tr>
<td>Chemistry</td>
<td>7</td>
</tr>
<tr>
<td>Geology</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics</td>
<td>19</td>
</tr>
<tr>
<td>Medical Technology</td>
<td>2</td>
</tr>
<tr>
<td>Physics</td>
<td>9</td>
</tr>
<tr>
<td>Pre-medicine</td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Education</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Education</td>
<td>18</td>
</tr>
<tr>
<td>Elementary Education</td>
<td>28</td>
</tr>
<tr>
<td>Industrial Education</td>
<td>33</td>
</tr>
<tr>
<td>Recreation and Park Administration</td>
<td>50</td>
</tr>
<tr>
<td>Science Teaching</td>
<td>14</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Engineering</th>
<th>189</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>16</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>31</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>46</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>46</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>10</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>36</td>
</tr>
<tr>
<td>Metallurgical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Industrial Management and Textile Science</th>
<th>208</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>73</td>
</tr>
<tr>
<td>Industrial Management</td>
<td>114</td>
</tr>
<tr>
<td>Textile Chemistry</td>
<td>7</td>
</tr>
<tr>
<td>Textile Management</td>
<td>1</td>
</tr>
<tr>
<td>Textiles</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Liberal Arts *</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Sciences</td>
<td>17</td>
</tr>
</tbody>
</table>

* College of Arts and Sciences discontinued and College of Liberal Arts and College of Physical and Mathematical Sciences established July 1, 1969.
### College of Physical and Mathematical Sciences

<table>
<thead>
<tr>
<th>Subject</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Geology</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics</td>
<td>6</td>
</tr>
<tr>
<td>Physics</td>
<td>1</td>
</tr>
<tr>
<td>Pre-medicine</td>
<td>4</td>
</tr>
</tbody>
</table>

**Total Bachelors' Degrees Awarded in 1968-69:** 962

### Masters' Degrees Awarded in 1968-69

<table>
<thead>
<tr>
<th>College of Agriculture and Biological Sciences</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics</td>
<td>8</td>
</tr>
<tr>
<td>Agronomy</td>
<td>1</td>
</tr>
<tr>
<td>Animal Science</td>
<td>2</td>
</tr>
<tr>
<td>Entomology</td>
<td>2</td>
</tr>
<tr>
<td>Forestry</td>
<td>2</td>
</tr>
<tr>
<td>Horticulture</td>
<td>3</td>
</tr>
<tr>
<td>Plant Pathology</td>
<td>3</td>
</tr>
<tr>
<td>Zoology</td>
<td>7</td>
</tr>
</tbody>
</table>

### School of Architecture

<table>
<thead>
<tr>
<th>Subject</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>1</td>
</tr>
</tbody>
</table>

### College of Arts and Sciences

<table>
<thead>
<tr>
<th>Subject</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>History</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics</td>
<td>8</td>
</tr>
<tr>
<td>Physics</td>
<td>6</td>
</tr>
</tbody>
</table>

### School of Education

<table>
<thead>
<tr>
<th>Subject</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Education</td>
<td>1</td>
</tr>
<tr>
<td>Education</td>
<td>39</td>
</tr>
<tr>
<td>Industrial Education</td>
<td>7</td>
</tr>
</tbody>
</table>

### College of Engineering

<table>
<thead>
<tr>
<th>Subject</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioengineering</td>
<td>1</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>9</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>8</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>9</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>7</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>2</td>
</tr>
<tr>
<td>Environmental Systems Engineering</td>
<td>8</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Water Resources Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

### School of Industrial Management and Textile Science

<table>
<thead>
<tr>
<th>Subject</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>2</td>
</tr>
<tr>
<td>Industrial Management</td>
<td>10</td>
</tr>
<tr>
<td>Textile Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Textile Science</td>
<td>2</td>
</tr>
<tr>
<td>Textiles</td>
<td>1</td>
</tr>
</tbody>
</table>

### College of Liberal Arts

<table>
<thead>
<tr>
<th>Subject</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>History</td>
<td>2</td>
</tr>
</tbody>
</table>

### College of Physical and Mathematical Sciences

<table>
<thead>
<tr>
<th>Subject</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Physics</td>
<td>1</td>
</tr>
</tbody>
</table>

**Total Masters' Degrees Awarded in 1968-69:** 174

*College of Arts and Sciences discontinued and College of Liberal Arts and College of Physical and Mathematical Sciences established July 1, 1969.*
DOCTORS' DEGREES AWARDED IN 1968-69

**College of Agricultural and Biological Sciences**
- Agricultural Economics: 3
- Agronomy: 1
- Entomology: 1

**College of Arts and Sciences**
- Chemistry: 5
- Mathematics: 3
- Physics: 6

**College of Engineering**
- Bioengineering: 1
- Chemical Engineering: 1
- Electrical Engineering: 1
- Engineering Mechanics: 1
- Environmental Systems Engineering: 1
- Mechanical Engineering: 1

**School of Industrial Management and Textile Science**
- Engineering Management: 3

**College of Physical and Mathematical Sciences**
- Chemistry: 2
- Mathematics: 1
- Physics: 2

**Total Doctors' Degrees Awarded in 1968-69**: 33

**Total Number Degrees Awarded in 1968-69**: 1,186

**Total Degrees Awarded by Major Courses, 1896-1969**

**Major Course**

**Associate**
- Nursing: 69

**Bachelors'**
- Agriculture: 244
- Agriculture and Animal Industry: 80
- Agriculture and Chemistry: 69
- Agricultural Chemistry: 102
- Agricultural Economics: 332
- Agricultural Education: 441
- Agricultural Engineering: 466
- Agronomy: 769
- Animal Science: 790
- Applied Mathematics: 34
- Architectural Engineering: 118
- Architecture: 615
- Arts and Sciences: 1,421
- Bachelor of Science: 3
- Biology: 170
- Botany: 12
- Building Construction: 30
- Ceramic Engineering: 219
- Chemical-Engineering: 402
- Chemistry: 391
- Chemistry and Geology: 11
- Chemistry-Engineering: 43
- Civil Engineering: 1,390
- Dairy Science: 393

*College of Arts and Sciences discontinued and College of Liberal Arts and College of Physical and Mathematical Sciences established July 1, 1969.*
Major Course

Education .................................................. 242
Electrical Engineering ................................... 1,770
Elementary Education ....................................... 35
Engineering Industrial Education ......................... 70
Entomology .................................................. 164
Food Science ................................................ 10
Forestry ..................................................... 188
General Science ............................................. 359
Geology ..................................................... 12
Horticulture ................................................ 480
Industrial Education ....................................... 376
Industrial Engineering ..................................... 135
Industrial Management .................................... 1,035
Industrial Physics ......................................... 56
Mathematics ................................................. 91
Mechanical Engineering .................................... 1,517
Mechanical and Electrical Engineering .................. 489
Medical Technology ........................................ 12
Metallurgical Engineering .................................. 9
Physics ...................................................... 87
Poultry Science ............................................. 46
Pre-architecture ............................................ 8
Pre-medicine ................................................ 469
Recreation and Park Administration ........................ 60
Secondary Education ........................................ 58
Science Teaching .......................................... 32
Soils ........................................................ 9
Textile Chemistry .......................................... 328
Textile Engineering .................................... 1,060
Textile Industrial Education .............................. 85
Textile Management ....................................... 306
Textile Manufacturing .................................... 1,045
Textile Science ............................................ 36
Textiles ...................................................... 20
Veterinary Science ......................................... 16
Vocational Agricultural Education ....................... 729
Weaving and Design ........................................ 42

Double Majors

Agricultural Chemistry and Arts and Sciences .......... 1
Agricultural Chemistry and General Science .......... 1
Agricultural Economics and Animal Husbandry .......... 1
Agricultural Economics and Vocational Agricultural Education 1
Agricultural Engineering and Civil Engineering ....... 2
Agricultural Engineering and Electrical Engineering .. 1
Agricultural Engineering and Mechanical Engineering 1
Agronomy and Agricultural Education ................... 1
Agronomy and Vocational Agricultural Education ...... 4
Animal Husbandry and Industrial Management .......... 1
Animal Husbandry and Vocational Agricultural Education 5
Animal Husbandry and Agricultural Education ........ 3
Animal Husbandry and Ceramic Engineering ............ 1
Animal Husbandry and Dairy ................................ 2
Architectural Engineering and Architecture, five-year .. 1
Architecture and Architectural Engineering .............. 11
Architecture and Civil Engineering ....................... 1
Architecture, four-year, and Architecture, five-year .... 18
Architecture, four-year, and Mechanical Engineering .. 1
Arts and Sciences and Agricultural Economics .......... 1
Chemical Engineering and Chemistry and Chemistry-Engineering 3
Chemical Engineering and Chemical Engineering ....... 1
<table>
<thead>
<tr>
<th>Major Course</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry and Chemical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Chemistry-Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and General Science</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Industrial Physics</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry and Agricultural Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering and Architecture</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering and Chemistry and Geology</td>
<td>2</td>
</tr>
<tr>
<td>Civil Engineering and Industrial Physics</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering and Electrical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering and Mechanical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Engineering and Applied Mathematics</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Engineering and Industrial Physics</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Engineering and Mechanical Engineering</td>
<td>17</td>
</tr>
<tr>
<td>Electrical Engineering and Textile Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Entomology and Architecture, five-year</td>
<td>1</td>
</tr>
<tr>
<td>Entomology and Pre-medicine</td>
<td>1</td>
</tr>
<tr>
<td>General Science and Ceramic Engineering</td>
<td>1</td>
</tr>
<tr>
<td>General Science and Education</td>
<td>1</td>
</tr>
<tr>
<td>General Science and Electrical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Horticulture and Agronomy</td>
<td>1</td>
</tr>
<tr>
<td>Horticulture and Architectural Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Horticulture and Civil Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Education and Architecture</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Education and Electrical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Education and Forestry</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Engineering and Mechanical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Mechanical Engineering and Textile Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Poultry and Vocational Agricultural Education</td>
<td>1</td>
</tr>
<tr>
<td>Pre-medicine and Arts and Sciences</td>
<td>1</td>
</tr>
<tr>
<td>Pre-medicine and Textile Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>Textile Chemistry and Civil Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Textile Chemistry and Textile Manufacturing</td>
<td>1</td>
</tr>
<tr>
<td>Textile Engineering and Civil Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Textile Engineering and Mechanical and Electrical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Textile Engineering and Textile Industrial Education</td>
<td>1</td>
</tr>
<tr>
<td>Textile Engineering and Textile Manufacturing</td>
<td>1</td>
</tr>
<tr>
<td>Textile Engineering and Weaving and Designing</td>
<td>1</td>
</tr>
<tr>
<td>Textile Manufacturing and Mechanical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Masters'</td>
<td>77</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>82</td>
</tr>
<tr>
<td>Agricultural Education</td>
<td>36</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>27</td>
</tr>
<tr>
<td>Agronomy</td>
<td>23</td>
</tr>
<tr>
<td>Architecture</td>
<td>5</td>
</tr>
<tr>
<td>Bacteriology</td>
<td>6</td>
</tr>
<tr>
<td>Bioengineering</td>
<td>1</td>
</tr>
<tr>
<td>Botany</td>
<td>2</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>56</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>41</td>
</tr>
<tr>
<td>Chemistry</td>
<td>85</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>43</td>
</tr>
<tr>
<td>Dairy Science</td>
<td>20</td>
</tr>
<tr>
<td>Economics</td>
<td>4</td>
</tr>
<tr>
<td>Education</td>
<td>198</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>37</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>6</td>
</tr>
<tr>
<td>English</td>
<td>17</td>
</tr>
<tr>
<td>Entomology</td>
<td>59</td>
</tr>
<tr>
<td>Environmental Systems Engineering</td>
<td>20</td>
</tr>
</tbody>
</table>
Major Course

Forestry........................................... 5
History........................................... 5
Horticulture..................................... 51
Industrial Education............................ 34
Industrial Management........................... 36
Mathematics....................................... 72
Mechanical Engineering......................... 56
Microbiology..................................... 3
Nuclear Science................................... 3
Nutrition.......................................... 1
Physics........................................... 53
Plant Pathology................................... 17
Plant Physiology.................................. 2
Poultry Science................................... 9
Textile Chemistry.................................. 42
Textile Industrial Education..................... 4
Textiles........................................... 2
Textile Science................................... 2
Water Resources Engineering..................... 21
Zoology........................................... 52

Doctors’

Agricultural Economics.......................... 7
Agronomy.......................................... 10
Animal Physiology.................................. 1
Bioengineering.................................... 2
Chemical Engineering............................ 6
Chemical Physics................................... 1
Chemistry.......................................... 40
Civil Engineering.................................. 1
Electrical Engineering........................... 3
Engineering Management........................... 4
Engineering Mechanics............................ 1
Entomology.......................................... 18
Environmental Systems Engineering............... 1
Materials Engineering............................. 2
Mathematics....................................... 7
Mechanical Engineering........................... 4
Nutrition.......................................... 2
Physics........................................... 19
Plant Pathology.................................... 6
Zoology........................................... 1

Total Degrees Awarded 1896-1969.................. 21,668
## Enrollment by Counties and States

First Semester, 1969-70

<table>
<thead>
<tr>
<th>County</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbeville</td>
<td>51</td>
</tr>
<tr>
<td>Aiken</td>
<td>129</td>
</tr>
<tr>
<td>Allendale</td>
<td>22</td>
</tr>
<tr>
<td>Anderson</td>
<td>414</td>
</tr>
<tr>
<td>Bamberg</td>
<td>31</td>
</tr>
<tr>
<td>Barnwell</td>
<td>44</td>
</tr>
<tr>
<td>Beaufort</td>
<td>20</td>
</tr>
<tr>
<td>Berkeley</td>
<td>40</td>
</tr>
<tr>
<td>Calhoun</td>
<td>15</td>
</tr>
<tr>
<td>Charleston</td>
<td>335</td>
</tr>
<tr>
<td>Cherokee</td>
<td>68</td>
</tr>
<tr>
<td>Chester</td>
<td>66</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>37</td>
</tr>
<tr>
<td>Clarendon</td>
<td>25</td>
</tr>
<tr>
<td>Colleton</td>
<td>41</td>
</tr>
<tr>
<td>Darlington</td>
<td>83</td>
</tr>
<tr>
<td>Dillon</td>
<td>34</td>
</tr>
<tr>
<td>Dorchester</td>
<td>47</td>
</tr>
<tr>
<td>Edgefield</td>
<td>28</td>
</tr>
<tr>
<td>Fairfield</td>
<td>29</td>
</tr>
<tr>
<td>Florence</td>
<td>127</td>
</tr>
<tr>
<td>Georgetown</td>
<td>23</td>
</tr>
<tr>
<td>Greenville</td>
<td>747</td>
</tr>
<tr>
<td>Greenwood</td>
<td>128</td>
</tr>
<tr>
<td>Hampton</td>
<td>27</td>
</tr>
<tr>
<td>Horry</td>
<td>95</td>
</tr>
<tr>
<td>Jasper</td>
<td>15</td>
</tr>
<tr>
<td>Kershaw</td>
<td>54</td>
</tr>
<tr>
<td>Lancaster</td>
<td>53</td>
</tr>
<tr>
<td>Laurens</td>
<td>104</td>
</tr>
<tr>
<td>Lee</td>
<td>21</td>
</tr>
<tr>
<td>Lexington</td>
<td>88</td>
</tr>
<tr>
<td>Marion</td>
<td>28</td>
</tr>
<tr>
<td>Marlboro</td>
<td>27</td>
</tr>
<tr>
<td>McCormick</td>
<td>8</td>
</tr>
<tr>
<td>Newberry</td>
<td>71</td>
</tr>
<tr>
<td>Oconee</td>
<td>173</td>
</tr>
<tr>
<td>Orangeburg</td>
<td>127</td>
</tr>
<tr>
<td>Pickens</td>
<td>416</td>
</tr>
<tr>
<td>Richland</td>
<td>220</td>
</tr>
<tr>
<td>Saluda</td>
<td>24</td>
</tr>
<tr>
<td>Spartanburg</td>
<td>259</td>
</tr>
<tr>
<td>Sumter</td>
<td>145</td>
</tr>
<tr>
<td>Union</td>
<td>43</td>
</tr>
<tr>
<td>Williamsburg</td>
<td>40</td>
</tr>
<tr>
<td>York</td>
<td>177</td>
</tr>
</tbody>
</table>

**South Carolina Total**: 4,799

<table>
<thead>
<tr>
<th>State or Country</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>27</td>
</tr>
<tr>
<td>Argentina</td>
<td>1</td>
</tr>
<tr>
<td>Arizona</td>
<td>1</td>
</tr>
<tr>
<td>Arkansas</td>
<td>5</td>
</tr>
<tr>
<td>Austria</td>
<td>1</td>
</tr>
<tr>
<td>California</td>
<td>10</td>
</tr>
<tr>
<td>Canada</td>
<td>4</td>
</tr>
<tr>
<td>Canal Zone</td>
<td>7</td>
</tr>
<tr>
<td>Chile</td>
<td>1</td>
</tr>
<tr>
<td>China</td>
<td>22</td>
</tr>
<tr>
<td>Colorado</td>
<td>3</td>
</tr>
<tr>
<td>Connecticut</td>
<td>47</td>
</tr>
<tr>
<td>Delaware</td>
<td>21</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>10</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>1</td>
</tr>
<tr>
<td>Ecuador</td>
<td>1</td>
</tr>
<tr>
<td>England</td>
<td>2</td>
</tr>
<tr>
<td>Finland</td>
<td>1</td>
</tr>
<tr>
<td>Florida</td>
<td>139</td>
</tr>
<tr>
<td>France</td>
<td>1</td>
</tr>
<tr>
<td>Georgia</td>
<td>233</td>
</tr>
<tr>
<td>Germany</td>
<td>1</td>
</tr>
<tr>
<td>Greece</td>
<td>3</td>
</tr>
<tr>
<td>Guatemala</td>
<td>1</td>
</tr>
<tr>
<td>Hawaii</td>
<td>1</td>
</tr>
<tr>
<td>Holland</td>
<td>1</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>6</td>
</tr>
<tr>
<td>Illinois</td>
<td>15</td>
</tr>
<tr>
<td>India</td>
<td>10</td>
</tr>
<tr>
<td>Indiana</td>
<td>10</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1</td>
</tr>
<tr>
<td>Iowa</td>
<td>2</td>
</tr>
<tr>
<td>Israel</td>
<td>2</td>
</tr>
<tr>
<td>Japan</td>
<td>2</td>
</tr>
<tr>
<td>Kansas</td>
<td>2</td>
</tr>
<tr>
<td>Kentucky</td>
<td>15</td>
</tr>
<tr>
<td>Lebanon</td>
<td>1</td>
</tr>
<tr>
<td>Libya</td>
<td>1</td>
</tr>
<tr>
<td>Louisiana</td>
<td>15</td>
</tr>
<tr>
<td>Maine</td>
<td>4</td>
</tr>
<tr>
<td>Maryland</td>
<td>159</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>32</td>
</tr>
<tr>
<td>Michigan</td>
<td>4</td>
</tr>
<tr>
<td>Minnesota</td>
<td>3</td>
</tr>
<tr>
<td>Mississippi</td>
<td>4</td>
</tr>
<tr>
<td>Missouri</td>
<td>2</td>
</tr>
<tr>
<td>Netherlands, W. I.</td>
<td>1</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>3</td>
</tr>
<tr>
<td>New Jersey</td>
<td>254</td>
</tr>
<tr>
<td>New Mexico</td>
<td>2</td>
</tr>
<tr>
<td>New York</td>
<td>137</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>1</td>
</tr>
<tr>
<td>North Carolina</td>
<td>244</td>
</tr>
<tr>
<td>North Dakota</td>
<td>1</td>
</tr>
<tr>
<td>Ohio</td>
<td>35</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>4</td>
</tr>
<tr>
<td>Pakistan</td>
<td>1</td>
</tr>
<tr>
<td>Panama</td>
<td>4</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>112</td>
</tr>
<tr>
<td>Philippines</td>
<td>1</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>2</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>5</td>
</tr>
<tr>
<td>South Carolina</td>
<td>4,799</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1</td>
</tr>
<tr>
<td>Tennessee</td>
<td>63</td>
</tr>
<tr>
<td>Texas</td>
<td>9</td>
</tr>
<tr>
<td>Thailand</td>
<td>2</td>
</tr>
<tr>
<td>Turkey</td>
<td>3</td>
</tr>
<tr>
<td>Vermont</td>
<td>1</td>
</tr>
<tr>
<td>Virginia</td>
<td>131</td>
</tr>
<tr>
<td>Washington</td>
<td>2</td>
</tr>
<tr>
<td>West Virginia</td>
<td>12</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1</td>
</tr>
</tbody>
</table>

**Grand Total**: 6,666
ENROLLMENT BY COUNTIES AND STATES  
FIRST SEMESTER, 1969-70 (Greenville and Sumter Campuses)

<table>
<thead>
<tr>
<th>County</th>
<th>Greenville</th>
<th>Sumter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbeville</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Anderson</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Clarendon</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Darlington</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Florence</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Georgetown</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Greenville</td>
<td>113</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Kershaw</td>
<td>14</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Laurens</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lee</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Marion</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Newberry</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Orangeburg</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pickens</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Richland</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sumter</td>
<td>103</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Williamsburg</td>
<td>113</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>123</td>
<td>148</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Greenville</th>
<th>Sumter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>123</td>
<td>148</td>
<td>271</td>
</tr>
<tr>
<td>Tennessee</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>126</td>
<td>152</td>
<td>278</td>
</tr>
</tbody>
</table>

So. Carolina Total 271
### NUMBER OF STUDENTS MAJORING IN EACH CURRICULUM, FIRST SEMESTER, 1969-70

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Senior</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Junior</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Sophomore</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Freshman</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Graduate</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Unclassified</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
</tr>
</tbody>
</table>

### CLASSIFICATION

<table>
<thead>
<tr>
<th></th>
<th>Metallurgical Engr.</th>
<th>Economics</th>
<th>Industrial Mgt.</th>
<th>Textile Chemistry</th>
<th>Textiles</th>
<th>Liberal Arts</th>
<th>English</th>
<th>French</th>
<th>German</th>
<th>History</th>
<th>Political Science</th>
<th>Psychology</th>
<th>Sociology</th>
<th>Spanish</th>
<th>Nursing (AA)</th>
<th>Nursing (BS)</th>
<th>Chemistry (BS)</th>
<th>Biology</th>
<th>Geology</th>
<th>Mathematics (BS)</th>
<th>Medical Technology</th>
<th>Physics (BS)</th>
<th>Pre-dentistry</th>
<th>Pre-pharmacy</th>
<th>Postgraduate</th>
<th>Graduate</th>
<th>Unclassified</th>
<th>University by Graduates</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Senior</strong></td>
<td>5</td>
<td>66</td>
<td>155</td>
<td>3</td>
<td>26</td>
<td>66</td>
<td>33</td>
<td>6</td>
<td>1</td>
<td>32</td>
<td>14</td>
<td>24</td>
<td>22</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>30</td>
<td>1</td>
<td>11</td>
<td>7</td>
<td>18</td>
<td>12</td>
<td>3</td>
<td>18</td>
<td>1,339</td>
</tr>
<tr>
<td><strong>Junior</strong></td>
<td>1</td>
<td>91</td>
<td>91</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>42</td>
<td>6</td>
<td>2</td>
<td>47</td>
<td>50</td>
<td>39</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>18</td>
<td>12</td>
<td>18</td>
<td>4</td>
<td>14</td>
<td>1,344</td>
</tr>
<tr>
<td><strong>Sophomore</strong></td>
<td>1</td>
<td>91</td>
<td>91</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>42</td>
<td>6</td>
<td>2</td>
<td>47</td>
<td>50</td>
<td>39</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>18</td>
<td>12</td>
<td>18</td>
<td>4</td>
<td>14</td>
<td>1,119</td>
</tr>
<tr>
<td><strong>Freshman</strong></td>
<td>1</td>
<td>91</td>
<td>91</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>42</td>
<td>6</td>
<td>2</td>
<td>47</td>
<td>50</td>
<td>39</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>18</td>
<td>12</td>
<td>18</td>
<td>4</td>
<td>14</td>
<td>1,193</td>
</tr>
<tr>
<td><strong>Graduate</strong></td>
<td>1</td>
<td>91</td>
<td>91</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>42</td>
<td>6</td>
<td>2</td>
<td>47</td>
<td>50</td>
<td>39</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>18</td>
<td>12</td>
<td>18</td>
<td>4</td>
<td>14</td>
<td>1,793</td>
</tr>
<tr>
<td><strong>Unclassified</strong></td>
<td>5</td>
<td>66</td>
<td>155</td>
<td>3</td>
<td>26</td>
<td>66</td>
<td>33</td>
<td>6</td>
<td>1</td>
<td>32</td>
<td>14</td>
<td>24</td>
<td>22</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>30</td>
<td>1</td>
<td>11</td>
<td>7</td>
<td>18</td>
<td>12</td>
<td>3</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>10</td>
<td>302</td>
<td>513</td>
<td>20</td>
<td>4</td>
<td>33</td>
<td>81</td>
<td>149</td>
<td>18</td>
<td>418</td>
<td>151</td>
<td>134</td>
<td>79</td>
<td>8</td>
<td>33</td>
<td>24</td>
<td>6</td>
<td>65</td>
<td>1</td>
<td>25</td>
<td>22</td>
<td>154</td>
<td>32</td>
<td>35</td>
<td>88</td>
<td>240</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Senior</td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
</tr>
<tr>
<td>Freshman</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Postgraduate</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

NUMBER OF STUDENTS MAJORING IN EACH CURRICULUM, FIRST SEMESTER, 1969-70 (Greenville Campus)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshman</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>14</td>
<td>5</td>
<td></td>
<td>106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postgraduate</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>14</td>
<td>8</td>
<td>18</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>152</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

<table>
<thead>
<tr>
<th>Page</th>
<th>Academic and Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Administration</td>
</tr>
<tr>
<td></td>
<td>Academic Faculty</td>
</tr>
<tr>
<td></td>
<td>Accounting</td>
</tr>
<tr>
<td>186</td>
<td>Accreditation</td>
</tr>
<tr>
<td>50, 149, 172</td>
<td>Administration of University</td>
</tr>
<tr>
<td>50</td>
<td>Academic and Research</td>
</tr>
<tr>
<td>9</td>
<td>Business and Financial Affairs</td>
</tr>
<tr>
<td>44</td>
<td>Development Activities</td>
</tr>
<tr>
<td>45</td>
<td>Executive</td>
</tr>
<tr>
<td>9</td>
<td>Student Affairs</td>
</tr>
<tr>
<td>46</td>
<td>Administrative Council</td>
</tr>
<tr>
<td>44</td>
<td>Administrative Officers and Staff</td>
</tr>
<tr>
<td>9, 44, 45, 46</td>
<td>Administration Management</td>
</tr>
<tr>
<td>187</td>
<td>Admission</td>
</tr>
<tr>
<td>52</td>
<td>Admissions, Foreign Students</td>
</tr>
<tr>
<td>54</td>
<td>Admissions and Registration, Office of Advanced Placement by Committees of the University</td>
</tr>
<tr>
<td>54, 117</td>
<td>Aerospace Studies</td>
</tr>
<tr>
<td>10, 94, 223</td>
<td>Agricultural Chemical Services</td>
</tr>
<tr>
<td>364</td>
<td>Agricultural Communications</td>
</tr>
<tr>
<td>388</td>
<td>Agricultural Economics</td>
</tr>
<tr>
<td>129, 225, 389</td>
<td>Agricultural Education</td>
</tr>
<tr>
<td>130, 163, 227, 390, 407</td>
<td>Agricultural Engineering</td>
</tr>
<tr>
<td>131, 174, 228, 390</td>
<td>Agricultural Experiment Station</td>
</tr>
<tr>
<td>388, 401</td>
<td>Agricultural Extension Service</td>
</tr>
<tr>
<td>388, 405</td>
<td>Agriculture</td>
</tr>
<tr>
<td>231</td>
<td>Agriculture and Biological Sciences, College of</td>
</tr>
<tr>
<td>9, 126, 388</td>
<td>Agriculture, Basic Curriculum</td>
</tr>
<tr>
<td>125</td>
<td>Agronomy and Soils</td>
</tr>
<tr>
<td>141, 232, 390</td>
<td>Air Force</td>
</tr>
<tr>
<td>94</td>
<td>Alpha Phi Omega</td>
</tr>
<tr>
<td>108</td>
<td>Alpha Zeta; Agricultural Fraternity</td>
</tr>
<tr>
<td>108</td>
<td>Alumni</td>
</tr>
<tr>
<td>45, 100</td>
<td>Angel Flight</td>
</tr>
<tr>
<td>108</td>
<td>Animal Industries</td>
</tr>
<tr>
<td>133</td>
<td>Animal Physiology</td>
</tr>
<tr>
<td>234</td>
<td>Animal Science</td>
</tr>
<tr>
<td>133, 235, 391</td>
<td>Application Forms</td>
</tr>
<tr>
<td>53</td>
<td>Architectural Foundation Lectures</td>
</tr>
<tr>
<td>105</td>
<td>Architecture</td>
</tr>
<tr>
<td>151, 237</td>
<td>Architecture, College of</td>
</tr>
<tr>
<td>9, 148</td>
<td>Army</td>
</tr>
<tr>
<td>93, 96</td>
<td>Arnold Air Society</td>
</tr>
<tr>
<td>108</td>
<td>Associate in Arts Degree</td>
</tr>
<tr>
<td>125</td>
<td>Athletic Council</td>
</tr>
<tr>
<td>47</td>
<td>Athletics</td>
</tr>
<tr>
<td>47, 111</td>
<td>Auditing Policies</td>
</tr>
<tr>
<td>78, 119</td>
<td>Automobile Privileges</td>
</tr>
<tr>
<td>112</td>
<td>Auxiliary Enterprises</td>
</tr>
<tr>
<td>44</td>
<td>Awards to Students</td>
</tr>
<tr>
<td>69, 79</td>
<td>Bachelors' Degrees</td>
</tr>
<tr>
<td>124</td>
<td>Bands</td>
</tr>
<tr>
<td>46, 105</td>
<td>Banking Accounts</td>
</tr>
<tr>
<td>61</td>
<td>Bugle Club, Clemson</td>
</tr>
<tr>
<td>95</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>243, 392</td>
<td>Bio-Engineering</td>
</tr>
<tr>
<td>243</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>9, 126, 169</td>
<td>Biology and War Orphans</td>
</tr>
<tr>
<td>137, 144, 244</td>
<td>Block and Bridle Club</td>
</tr>
<tr>
<td>108</td>
<td>Block &quot;C&quot; Club</td>
</tr>
<tr>
<td>107</td>
<td>Blue Key</td>
</tr>
<tr>
<td>108</td>
<td>Board of Trustees</td>
</tr>
<tr>
<td>8, 50</td>
<td>Board of Visitors</td>
</tr>
<tr>
<td>8</td>
<td>Board, Room, etc., Cost of Books and Supplies</td>
</tr>
<tr>
<td>57</td>
<td>Botany</td>
</tr>
<tr>
<td>61</td>
<td>Branch Experimental Stations</td>
</tr>
<tr>
<td>388</td>
<td>Building Construction</td>
</tr>
<tr>
<td>151</td>
<td>Buildings</td>
</tr>
<tr>
<td>92</td>
<td>Calhoun Mansion</td>
</tr>
<tr>
<td>92</td>
<td>Campus Leadership and Service</td>
</tr>
<tr>
<td>107</td>
<td>Central Dance Association</td>
</tr>
<tr>
<td>107</td>
<td>Ceramic Arts</td>
</tr>
<tr>
<td>176, 246</td>
<td>Ceramic Engineering</td>
</tr>
<tr>
<td>408</td>
<td>Ceramic Engineering Forum</td>
</tr>
<tr>
<td>57</td>
<td>Charges, Schedule of</td>
</tr>
<tr>
<td>177, 249</td>
<td>Chemistry, Agricultural</td>
</tr>
<tr>
<td>388</td>
<td>Chemistry</td>
</tr>
<tr>
<td>170, 206, 211, 253</td>
<td>Chemistry, Textile</td>
</tr>
<tr>
<td>193, 373</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>179, 260</td>
<td>Circle &quot;K&quot; International</td>
</tr>
<tr>
<td>107</td>
<td>City and Regional Planning</td>
</tr>
<tr>
<td>151, 258</td>
<td>Classification Requirements</td>
</tr>
<tr>
<td>118</td>
<td>Clemson House Hotel</td>
</tr>
<tr>
<td>44, 53</td>
<td>Clemson, Thomas G.</td>
</tr>
<tr>
<td>98</td>
<td>Clemson, Will of</td>
</tr>
<tr>
<td>99</td>
<td>Clubs and Societies</td>
</tr>
<tr>
<td>108</td>
<td>County Agents</td>
</tr>
<tr>
<td>395</td>
<td>Courses of Study</td>
</tr>
<tr>
<td>102</td>
<td>Course Prerequisites</td>
</tr>
<tr>
<td>119</td>
<td>Courses, Rescheduling</td>
</tr>
<tr>
<td>116</td>
<td>Credit by Examination</td>
</tr>
<tr>
<td>117</td>
<td>Credit Load Limit</td>
</tr>
<tr>
<td>119</td>
<td>Credits</td>
</tr>
<tr>
<td>114</td>
<td>Credit Work at Other Institutions</td>
</tr>
<tr>
<td>52, 118</td>
<td>Crop Pest Commission</td>
</tr>
<tr>
<td>405</td>
<td>Cultural Activities</td>
</tr>
<tr>
<td>125</td>
<td>Curriculums</td>
</tr>
<tr>
<td>125</td>
<td>Dairy Science</td>
</tr>
<tr>
<td>134, 265, 391</td>
<td>Deans</td>
</tr>
<tr>
<td>9, 50</td>
<td>Deferment</td>
</tr>
<tr>
<td>55</td>
<td>Degrees and Curriculums</td>
</tr>
<tr>
<td>123</td>
<td>Degrees, Bachelors'</td>
</tr>
<tr>
<td>124</td>
<td>Degrees, Graduate</td>
</tr>
<tr>
<td>125</td>
<td>Degrees, Requirements</td>
</tr>
<tr>
<td>121</td>
<td>Delta Sigma Rho</td>
</tr>
<tr>
<td>108</td>
<td>Demonstration Work</td>
</tr>
<tr>
<td>403</td>
<td>Depository, Student</td>
</tr>
<tr>
<td>61</td>
<td>Description of Courses</td>
</tr>
<tr>
<td>222</td>
<td>Development Activities</td>
</tr>
<tr>
<td>45</td>
<td>Administration of Development, Vice-President</td>
</tr>
<tr>
<td>115</td>
<td>Early Childhood Education</td>
</tr>
<tr>
<td>154</td>
<td>Economics, Agricultural</td>
</tr>
<tr>
<td>129, 225, 389</td>
<td>Economics</td>
</tr>
<tr>
<td>157, 188, 267</td>
<td>Education</td>
</tr>
<tr>
<td>130, 163, 227, 390, 407</td>
<td>Education, Agricultural</td>
</tr>
<tr>
<td>270</td>
<td>Education, Description of Courses</td>
</tr>
<tr>
<td>164, 314, 408</td>
<td>Education, Industrial</td>
</tr>
<tr>
<td>10, 153</td>
<td>Education, College of</td>
</tr>
<tr>
<td>55</td>
<td>Educational Benefits for Veterans</td>
</tr>
<tr>
<td>11</td>
<td>Educational Council</td>
</tr>
<tr>
<td>181, 274</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>153</td>
<td>Elementary Education</td>
</tr>
<tr>
<td>39</td>
<td>Emeritus Faculty</td>
</tr>
<tr>
<td>78</td>
<td>Employment, Part-Time</td>
</tr>
<tr>
<td>282</td>
<td>Engineering</td>
</tr>
<tr>
<td>173</td>
<td>Engineering Analysis</td>
</tr>
<tr>
<td>128</td>
<td>Engineering, Basic Curriculum</td>
</tr>
<tr>
<td>10, 172</td>
<td>Engineering, College of</td>
</tr>
<tr>
<td>108</td>
<td>Engineering Graphics</td>
</tr>
<tr>
<td>282</td>
<td>Engineering Management</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Public Service</td>
<td>388</td>
</tr>
<tr>
<td>Purchasing Division</td>
<td>44</td>
</tr>
<tr>
<td>Qualifying Examinations</td>
<td>53</td>
</tr>
<tr>
<td>Quality Requirements for Graduation</td>
<td>121</td>
</tr>
<tr>
<td>Radio</td>
<td>108</td>
</tr>
<tr>
<td>Recreation and Parks Administration</td>
<td>168, 366</td>
</tr>
<tr>
<td>Re-examination</td>
<td>120</td>
</tr>
<tr>
<td>Refunds to Students</td>
<td>57, 63</td>
</tr>
<tr>
<td>Registration for Selective Service</td>
<td>55</td>
</tr>
<tr>
<td>Registration Period</td>
<td>4</td>
</tr>
<tr>
<td>Religion, Courses in</td>
<td>368</td>
</tr>
<tr>
<td>Religious Life</td>
<td>107</td>
</tr>
<tr>
<td>Remedial Mathematics, Scheduling of</td>
<td>116</td>
</tr>
<tr>
<td>Remittances</td>
<td>56</td>
</tr>
<tr>
<td>Reports</td>
<td>114</td>
</tr>
<tr>
<td>Requirements for Admission</td>
<td>52</td>
</tr>
<tr>
<td>Requirements for Classification</td>
<td>118</td>
</tr>
<tr>
<td>Requirements for Degrees</td>
<td>121</td>
</tr>
<tr>
<td>Requirements to Continue Enrollment</td>
<td>117</td>
</tr>
<tr>
<td>Rescheduling Courses</td>
<td>116</td>
</tr>
<tr>
<td>Research, Agricultural</td>
<td>401</td>
</tr>
<tr>
<td>Research, Engineering</td>
<td>405</td>
</tr>
<tr>
<td>Research Faculty</td>
<td>12</td>
</tr>
<tr>
<td>Research Faculty Council</td>
<td>43</td>
</tr>
<tr>
<td>Research, Textile</td>
<td>10, 101</td>
</tr>
<tr>
<td>Research, University</td>
<td>11</td>
</tr>
<tr>
<td>Reserve Officers' Training Corps</td>
<td>93</td>
</tr>
<tr>
<td>Residence Halls</td>
<td>44, 64</td>
</tr>
<tr>
<td>Residence Requirement</td>
<td>59, 120</td>
</tr>
<tr>
<td>Rifle Team</td>
<td>108</td>
</tr>
<tr>
<td>Rules for Classification</td>
<td>118</td>
</tr>
<tr>
<td>Rural Sociology</td>
<td>129, 369, 389</td>
</tr>
<tr>
<td>Russian</td>
<td>368</td>
</tr>
<tr>
<td>Scabbard and Blade</td>
<td>108</td>
</tr>
<tr>
<td>Scholarships</td>
<td>69</td>
</tr>
<tr>
<td>Scholastic Regulations</td>
<td>113</td>
</tr>
<tr>
<td>Science Teaching</td>
<td>169</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>156</td>
</tr>
<tr>
<td>Seed Certification</td>
<td>394, 402</td>
</tr>
<tr>
<td>Selective Service Regulations</td>
<td>55</td>
</tr>
<tr>
<td>Short Courses and Conferences</td>
<td>408</td>
</tr>
<tr>
<td>Sigma Xi</td>
<td>108</td>
</tr>
<tr>
<td>Sirrine Foundation</td>
<td>101</td>
</tr>
<tr>
<td>Societies</td>
<td>108</td>
</tr>
<tr>
<td>Sociology</td>
<td>162, 199, 369</td>
</tr>
<tr>
<td>Sociology, Rural</td>
<td>129, 368, 389</td>
</tr>
<tr>
<td>Soil Testing</td>
<td>390</td>
</tr>
<tr>
<td>Sororities</td>
<td>111</td>
</tr>
<tr>
<td>Spanish</td>
<td>371</td>
</tr>
<tr>
<td>Statistical Services</td>
<td>392</td>
</tr>
<tr>
<td>Student Affairs</td>
<td>46, 51</td>
</tr>
<tr>
<td>Student Awards</td>
<td>69, 79</td>
</tr>
<tr>
<td>Student Body</td>
<td>104</td>
</tr>
<tr>
<td>Student Banking Accounts</td>
<td>61</td>
</tr>
<tr>
<td>Student Center</td>
<td>104</td>
</tr>
<tr>
<td>Student Clubs</td>
<td>108</td>
</tr>
<tr>
<td>Student Financial Aid</td>
<td>46, 68</td>
</tr>
<tr>
<td>Student Government</td>
<td>104</td>
</tr>
<tr>
<td>Student Health Service</td>
<td>46, 67</td>
</tr>
<tr>
<td>Student Placement</td>
<td>46</td>
</tr>
<tr>
<td>Student Publications</td>
<td>104</td>
</tr>
<tr>
<td>Students, Women</td>
<td>104</td>
</tr>
<tr>
<td>Summer Sessions</td>
<td>9</td>
</tr>
<tr>
<td>Tau Beta Pi Engineering Fraternity</td>
<td>108</td>
</tr>
<tr>
<td>Tau Sigma Delta</td>
<td>108</td>
</tr>
<tr>
<td>Teacher Education</td>
<td>407</td>
</tr>
<tr>
<td>Technical Operations</td>
<td>173, 372</td>
</tr>
<tr>
<td>Textbooks</td>
<td>61</td>
</tr>
<tr>
<td>Textile Chemistry</td>
<td>193, 373</td>
</tr>
<tr>
<td>Textile Science</td>
<td>10, 194, 375</td>
</tr>
<tr>
<td>Theatrical Activities</td>
<td>105</td>
</tr>
<tr>
<td>Tiger Brotherhood</td>
<td>107</td>
</tr>
<tr>
<td>Trade Teaching</td>
<td>408</td>
</tr>
<tr>
<td>Transcripts of Records</td>
<td>61</td>
</tr>
<tr>
<td>Trustees</td>
<td>8, 50</td>
</tr>
<tr>
<td>Tuition</td>
<td>57</td>
</tr>
<tr>
<td>Uniforms</td>
<td>94</td>
</tr>
<tr>
<td>University Committees</td>
<td>41</td>
</tr>
<tr>
<td>University Organization</td>
<td>9</td>
</tr>
<tr>
<td>Veterans, Educational Benefits</td>
<td>55</td>
</tr>
<tr>
<td>Visitors, Board of</td>
<td>8</td>
</tr>
<tr>
<td>Visual Studies</td>
<td>378</td>
</tr>
<tr>
<td>Water Resources Engineering</td>
<td>380</td>
</tr>
<tr>
<td>Wildlife Biology</td>
<td>381</td>
</tr>
<tr>
<td>Withdrawals</td>
<td>115, 116</td>
</tr>
<tr>
<td>Women's Student Association</td>
<td>104</td>
</tr>
<tr>
<td>Xi Sigma Pi</td>
<td>108</td>
</tr>
<tr>
<td>Y. M. C. A.</td>
<td>47, 106</td>
</tr>
<tr>
<td>Zoology</td>
<td>147, 382, 391</td>
</tr>
<tr>
<td>County</td>
<td>Total</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Abbeville</td>
<td>53</td>
</tr>
<tr>
<td>Aiken</td>
<td>133</td>
</tr>
<tr>
<td>Allendale</td>
<td>24</td>
</tr>
<tr>
<td>Anderson</td>
<td>461</td>
</tr>
<tr>
<td>Bamberg</td>
<td>33</td>
</tr>
<tr>
<td>Barnwell</td>
<td>46</td>
</tr>
<tr>
<td>Beaufort</td>
<td>21</td>
</tr>
<tr>
<td>Berkeley</td>
<td>42</td>
</tr>
<tr>
<td>Calhoun</td>
<td>15</td>
</tr>
<tr>
<td>Charleston</td>
<td>345</td>
</tr>
<tr>
<td>Cherokee</td>
<td>71</td>
</tr>
<tr>
<td>Chester</td>
<td>67</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>38</td>
</tr>
<tr>
<td>Clarendon</td>
<td>28</td>
</tr>
<tr>
<td>Colleton</td>
<td>45</td>
</tr>
<tr>
<td>Darlington</td>
<td>87</td>
</tr>
<tr>
<td>Dillon</td>
<td>34</td>
</tr>
<tr>
<td>Dorchester</td>
<td>48</td>
</tr>
<tr>
<td>Edgefield</td>
<td>28</td>
</tr>
<tr>
<td>Fairfield</td>
<td>29</td>
</tr>
<tr>
<td>Florence</td>
<td>128</td>
</tr>
<tr>
<td>Georgetown</td>
<td>25</td>
</tr>
<tr>
<td>Greenville</td>
<td>779</td>
</tr>
<tr>
<td>Greenwood</td>
<td>131</td>
</tr>
<tr>
<td>Hampton</td>
<td>30</td>
</tr>
<tr>
<td>Horry</td>
<td>99</td>
</tr>
<tr>
<td>Jasper</td>
<td>15</td>
</tr>
<tr>
<td>Kershaw</td>
<td>56</td>
</tr>
<tr>
<td>Lancaster</td>
<td>53</td>
</tr>
<tr>
<td>Laurens</td>
<td>110</td>
</tr>
<tr>
<td>Lee</td>
<td>23</td>
</tr>
<tr>
<td>Lexington</td>
<td>91</td>
</tr>
<tr>
<td>Marion</td>
<td>28</td>
</tr>
<tr>
<td>Marlboro</td>
<td>30</td>
</tr>
<tr>
<td>McCormick</td>
<td>8</td>
</tr>
<tr>
<td>Newberry</td>
<td>73</td>
</tr>
<tr>
<td>Oconee</td>
<td>185</td>
</tr>
<tr>
<td>Orangeburg</td>
<td>130</td>
</tr>
<tr>
<td>Pickens</td>
<td>475</td>
</tr>
<tr>
<td>Richland</td>
<td>230</td>
</tr>
<tr>
<td>Saluda</td>
<td>26</td>
</tr>
<tr>
<td>Spartanburg</td>
<td>270</td>
</tr>
<tr>
<td>Sunter</td>
<td>158</td>
</tr>
<tr>
<td>Union</td>
<td>44</td>
</tr>
<tr>
<td>Williamsburg</td>
<td>41</td>
</tr>
<tr>
<td>York</td>
<td>182</td>
</tr>
</tbody>
</table>

**South Carolina Total** 5,068

<table>
<thead>
<tr>
<th>State or Country</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>District of Columbia</td>
<td>10</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>1</td>
</tr>
<tr>
<td>Ecuador</td>
<td>1</td>
</tr>
<tr>
<td>England</td>
<td>2</td>
</tr>
<tr>
<td>Finland</td>
<td>1</td>
</tr>
<tr>
<td>Florida</td>
<td>149</td>
</tr>
<tr>
<td>France</td>
<td>1</td>
</tr>
<tr>
<td>Georgia</td>
<td>248</td>
</tr>
<tr>
<td>Germany</td>
<td>1</td>
</tr>
<tr>
<td>Greece</td>
<td>3</td>
</tr>
<tr>
<td>Guatemala</td>
<td>1</td>
</tr>
<tr>
<td>Hawaii</td>
<td>1</td>
</tr>
<tr>
<td>Holland</td>
<td>1</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>7</td>
</tr>
<tr>
<td>Illinois</td>
<td>16</td>
</tr>
<tr>
<td>India</td>
<td>13</td>
</tr>
<tr>
<td>Indiana</td>
<td>11</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1</td>
</tr>
<tr>
<td>Iowa</td>
<td>2</td>
</tr>
<tr>
<td>Israel</td>
<td>2</td>
</tr>
<tr>
<td>Japan</td>
<td>3</td>
</tr>
<tr>
<td>Kansas</td>
<td>2</td>
</tr>
<tr>
<td>Kentucky</td>
<td>15</td>
</tr>
<tr>
<td>Lebanon</td>
<td>2</td>
</tr>
<tr>
<td>Libya</td>
<td>1</td>
</tr>
<tr>
<td>Louisiana</td>
<td>19</td>
</tr>
<tr>
<td>Maine</td>
<td>4</td>
</tr>
<tr>
<td>Maryland</td>
<td>163</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>33</td>
</tr>
<tr>
<td>Michigan</td>
<td>6</td>
</tr>
<tr>
<td>Minnesota</td>
<td>3</td>
</tr>
<tr>
<td>Mississippi</td>
<td>6</td>
</tr>
<tr>
<td>Missouri</td>
<td>2</td>
</tr>
<tr>
<td>Netherlands, W. I.</td>
<td>1</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>3</td>
</tr>
<tr>
<td>New Jersey</td>
<td>262</td>
</tr>
<tr>
<td>New Mexico</td>
<td>2</td>
</tr>
<tr>
<td>New York</td>
<td>144</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>1</td>
</tr>
<tr>
<td>North Carolina</td>
<td>244</td>
</tr>
<tr>
<td>North Dakota</td>
<td>2</td>
</tr>
<tr>
<td>Ohio</td>
<td>38</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>6</td>
</tr>
<tr>
<td>Oregon</td>
<td>1</td>
</tr>
<tr>
<td>Pakistan</td>
<td>1</td>
</tr>
<tr>
<td>Panama</td>
<td>4</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>118</td>
</tr>
<tr>
<td>Philippines</td>
<td>1</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>2</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>5</td>
</tr>
<tr>
<td>South Carolina</td>
<td>5,068</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1</td>
</tr>
<tr>
<td>Tennessee</td>
<td>67</td>
</tr>
<tr>
<td>Texas</td>
<td>9</td>
</tr>
<tr>
<td>Thailand</td>
<td>2</td>
</tr>
<tr>
<td>Turkey</td>
<td>3</td>
</tr>
<tr>
<td>Vermont</td>
<td>1</td>
</tr>
<tr>
<td>Virginia</td>
<td>134</td>
</tr>
<tr>
<td>Washington</td>
<td>3</td>
</tr>
<tr>
<td>West Virginia</td>
<td>12</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>1</td>
</tr>
</tbody>
</table>

**Grand Total** 7,028
## ENROLLMENT BY COUNTIES AND STATES, 1969-70
(Greenville and Sumter Campuses)

<table>
<thead>
<tr>
<th>County</th>
<th>Greenville</th>
<th>Sumter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbeville</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Anderson</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Clarendon</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Colleton</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Darlington</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Florence</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Georgetown</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Greenville</td>
<td>158</td>
<td>1</td>
<td>159</td>
</tr>
<tr>
<td>Kershaw</td>
<td>15</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Laurens</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lee</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Marion</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Newberry</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Orangeburg</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pickens</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Richland</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Spartanburg</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sumter</td>
<td>124</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Williamsburg</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State or County</th>
<th>Greenville</th>
<th>Sumter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Georgia</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Jordan</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>179</td>
<td>177</td>
<td>356</td>
</tr>
<tr>
<td>Tennessee</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| Total           | 171        | 172    | 343   |
| So. Carolina Total |          |        | 356   |
### NUMBER OF STUDENTS MAJORING IN EACH CURRICULUM, 1969-70

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior</td>
<td>20</td>
<td>14</td>
<td>13</td>
<td>19</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>32</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>38</td>
<td>83</td>
<td>33</td>
<td>8</td>
<td>23</td>
<td>29</td>
<td>33</td>
<td>98</td>
<td>17</td>
<td>56</td>
<td>12</td>
<td>16</td>
<td>44</td>
<td>87</td>
<td>67</td>
<td>.5</td>
</tr>
<tr>
<td>Junior</td>
<td>24</td>
<td>14</td>
<td>13</td>
<td>19</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>32</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>38</td>
<td>83</td>
<td>33</td>
<td>8</td>
<td>23</td>
<td>29</td>
<td>33</td>
<td>98</td>
<td>17</td>
<td>56</td>
<td>12</td>
<td>16</td>
<td>44</td>
<td>87</td>
<td>67</td>
<td>.5</td>
</tr>
<tr>
<td>Sophomore</td>
<td>25</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td>23</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>18</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>28</td>
<td>17</td>
<td>17</td>
<td>49</td>
<td>23</td>
<td>71</td>
<td>58</td>
<td>71</td>
<td>12</td>
<td>78</td>
<td>11</td>
<td>11</td>
<td>45</td>
<td>78</td>
<td>105</td>
</tr>
<tr>
<td>Freshman</td>
<td>15</td>
<td>10</td>
<td>1</td>
<td>16</td>
<td>35</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>18</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>28</td>
<td>17</td>
<td>17</td>
<td>49</td>
<td>23</td>
<td>71</td>
<td>58</td>
<td>71</td>
<td>12</td>
<td>78</td>
<td>11</td>
<td>11</td>
<td>45</td>
<td>78</td>
<td>105</td>
</tr>
<tr>
<td>Postgraduate</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>91</td>
<td>11</td>
<td>19</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td>57</td>
<td>16</td>
<td>9</td>
<td>82</td>
<td>122</td>
<td>86</td>
<td>98</td>
<td>171</td>
<td>88</td>
<td>223</td>
<td>178</td>
<td>322</td>
<td>50</td>
<td>305</td>
<td>46</td>
<td>56</td>
<td>186</td>
<td>310</td>
<td>382</td>
</tr>
<tr>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>2</td>
<td>84</td>
<td>45</td>
<td>2</td>
<td>91</td>
<td>11</td>
<td>19</td>
<td>7</td>
<td>17</td>
<td>127</td>
<td>57</td>
<td>16</td>
<td>9</td>
<td>82</td>
<td>122</td>
<td>86</td>
<td>98</td>
<td>171</td>
<td>88</td>
<td>223</td>
<td>178</td>
<td>322</td>
<td>50</td>
<td>305</td>
<td>46</td>
<td>56</td>
<td>186</td>
<td>310</td>
</tr>
</tbody>
</table>

### CLASSIFICATION

<table>
<thead>
<tr>
<th>CLASSIFICATION</th>
<th>Metallurgical Engr.</th>
<th>Accounting</th>
<th>Industrial Mgt.</th>
<th>Textile Chemistry</th>
<th>Textiles</th>
<th>Liberal Arts</th>
<th>English</th>
<th>French</th>
<th>German</th>
<th>History</th>
<th>Political Science</th>
<th>Psychology</th>
<th>Sociology</th>
<th>Spanish</th>
<th>Nursing (AA)</th>
<th>Chemistry (BA)</th>
<th>Geology (BA)</th>
<th>Mathematics (BA)</th>
<th>Medical Technology</th>
<th>Physics (BA)</th>
<th>Pre-dentistry</th>
<th>Pre-pharmacy</th>
<th>Postgraduate</th>
<th>Graduate</th>
<th>Unclassified</th>
<th>Enrollment by Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior</td>
<td>5</td>
<td>69</td>
<td>160</td>
<td>2</td>
<td>16</td>
<td>33</td>
<td>6</td>
<td>1</td>
<td>33</td>
<td>14</td>
<td>24</td>
<td>22</td>
<td>4</td>
<td></td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>30</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>44</td>
<td>.5</td>
<td>1,371</td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td>4</td>
<td>93</td>
<td>146</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>46</td>
<td>5</td>
<td>1</td>
<td>46</td>
<td>33</td>
<td>27</td>
<td>4</td>
<td></td>
<td>1</td>
<td>11</td>
<td>18</td>
<td>55</td>
<td>3</td>
<td>11</td>
<td>18</td>
<td>55</td>
<td>3</td>
<td>.5</td>
<td>1,384</td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td>1</td>
<td>1</td>
<td>96</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>46</td>
<td>5</td>
<td>1</td>
<td>46</td>
<td>33</td>
<td>27</td>
<td>4</td>
<td></td>
<td>1</td>
<td>11</td>
<td>18</td>
<td>55</td>
<td>3</td>
<td>11</td>
<td>18</td>
<td>55</td>
<td>3</td>
<td>.5</td>
<td>1,498</td>
<td></td>
</tr>
<tr>
<td>Freshman</td>
<td>1</td>
<td>57</td>
<td>134</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>60</td>
<td>39</td>
<td>1</td>
<td>64</td>
<td>45</td>
<td>48</td>
<td>16</td>
<td></td>
<td>3</td>
<td>17</td>
<td>19</td>
<td>29</td>
<td>3</td>
<td>9</td>
<td>65</td>
<td>14</td>
<td>12</td>
<td>.23</td>
<td>1,866</td>
<td></td>
</tr>
<tr>
<td>Postgraduate</td>
<td></td>
<td>23</td>
<td>.23</td>
</tr>
<tr>
<td>Graduate</td>
<td></td>
<td>847</td>
<td>.847</td>
</tr>
<tr>
<td>Unclassified</td>
<td></td>
<td>.39</td>
<td>.39</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>10</td>
<td>1315</td>
<td>536</td>
<td>20</td>
<td>4</td>
<td>33</td>
<td>83</td>
<td>157</td>
<td>19</td>
<td>4195</td>
<td>143</td>
<td>141</td>
<td>82</td>
<td>34</td>
<td>25</td>
<td>8</td>
<td>67</td>
<td>1</td>
<td>25</td>
<td>25</td>
<td>158</td>
<td>33</td>
<td>1</td>
<td>35</td>
<td>89246</td>
<td>31</td>
</tr>
</tbody>
</table>

Enrollment by Classes: .5, .59, .68, .47, .2, .1, .5, .59, .68, .47, .2, .1.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior</td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
</tr>
<tr>
<td>Freshman</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Postgraduate</td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

**NUMBER OF STUDENTS MAJORING IN EACH CURRICULUM, 1969-70 (Greenville Campus)**
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Postgraduate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>116</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>207</strong></td>
<td><strong>84</strong></td>
<td><strong>128</strong></td>
<td><strong>176</strong></td>
<td></td>
</tr>
</tbody>
</table>