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ABSTRACT 
 

This thesis presents the application of hierarchical state estimation techniques to 

consolidate the state output of a wide area power system network. In a wide area network 

a large number of interconnections exist between various utilities of the wide area. Power 

transactions between areas occur over large distances and hence for better security there 

is a need to monitor the state of the entire wide area systems. Hierarchical state 

estimation is preferred over integrated state estimation, due to the reduced computational 

time.  

Using existing state estimators of the member utilities of the wide area in the 

bottom level of hierarchical state estimation proves to be economical. The coordination 

level alone needs to be done using the state estimation output of the member areas for 

obtaining the overall state estimate. In this thesis a modified coordination technique 

derived from hierarchical state estimation is proposed to consolidate the state outputs of 

all the individual entities in the wide area. Issues due to heterogeneity of the estimators in 

each member utility of the wide area have been identified and addressed. A modification 

to the traditional hierarchical state estimation approach has been proposed which 

overcomes issues of delay and loss of state outputs from the estimators in the wide area. 

Use of synchronized phasor measurements in the hierarchical structure has been studied.  

The coordination algorithms have been tested on an IEEE 118 bus system by 

splitting the system into smaller areas. The results of the algorithms have been analyzed 

on the basis of accuracy and speed. The results of these algorithms have been compared 
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to integrated state estimation of the wide area. The results show that the coordination 

algorithm is four times faster than the integrated state estimator without sacrificing the 

level of accuracy. To account for the issues regarding the delay of state output arrivals 

and the absence of state outputs from an area, the coordination algorithm of the 

hierarchical state estimation technique has been modified. As might be expected, the 

modified coordination algorithm decreases the accuracy of the overall state estimate. In 

contrast, the use of synchronized phasor measurements in all the levels of the hierarchical 

state estimator increases the confidence of the overall estimate apart from increasing the 

performance of the estimation process.  
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CHAPTER I  

INTRODUCTION 

 

Motivation 

 

Close monitoring of power system transactions occurring over a wide area is 

required to facilitate secure and reliable operation. Due to the complexity of the system, 

many vital power system operations such as contingency analysis, transmission capability 

studies, transient stability analysis etc. needs to be studied over the whole area 

comprising many interconnected utilities. For all of these operations, the main starting 

point is state estimation. Since the vital power systems operation is done over a wide 

area, state estimation also needs to be done for the wide area. State estimation for a wide 

area comprising of number of utilities is not straightforward as it involves many issues.  

The volume of interconnections and number areas make state estimation difficult. 

To reduce the computational time of state estimation of the wide area, often a hierarchical 

structure of operation is preferred. In a hierarchical structure the individual areas perform 

the local operations, and in the higher levels the operations involving more than one area 

in a hierarchy are performed.  

Hierarchical state estimation is not new, but the main focus has been mostly on 

reduction in computational time, accuracy and reduction of problem size [1-4]. Detailed 

study of the hierarchical state estimation is presented in the following chapters.  
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In this thesis focus has been given on the use of existing state estimators in a 

hierarchical structure, and the issues interest include the effects of inconsistencies of 

transfer of data upwards in the hierarchy, the effects of lack of data, and the use of 

synchronized phasor measurements.  

Objective 

 

 There is a need for monitoring the state of consolidated power systems 

comprising of multiple areas. Hierarchical state estimation has been used for 

consolidation of state outputs. Hierarchical state estimation comprises of multiple 

estimation levels. The higher estimation levels are called coordination levels because the 

outputs from lower levels are consolidated into the total output of the hierarchy. The 

main advantage of the application of hierarchical state estimation for multi-area state 

estimation is that the existing local state estimators can be used. Hence, for overall 

visibility of wide area systems, coordination of the local estimates is all that is required. 

In this thesis, the focus is on how the coordination can be done effectively, identifying 

issues associated with the implementation of the coordinator and providing solutions to 

overcome these issues. The issues arise due to the dissimilarity of the local state 

estimators. These issues have been identified as asynchronism of data arrival, delay of 

data arrival, and loss of state outputs.  

Contribution 

 

 In this thesis hierarchical state estimation is applied to achieve wide area state 

estimation. Issues of incoherencies of data arrival, delay in state output arrival and 
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absence of data specifically on a wide area system have been studied. The hierarchical 

state estimation algorithm has been modified to accommodate these issues. Finally, the 

role of synchronized phasor measurements in hierarchical state estimation structure has 

been studied.  It is seen that hierarchical state estimation is faster than integrated state 

estimation for application in a large area. Furthermore, synchronized phasor 

measurements increase the performance of the hierarchical state estimator. In particular, 

use of synchronized phasor measurements improves the confidence of the coordination 

stage.  Hence, identification of the major issues in application of hierarchical state 

estimation to wide area power systems and alleviation of these issues with and without 

synchronized phasor measurements are considered as the contribution of this work. 

Weighted least square method 

 

This section explains the basics of weighted least square method used for power 

system state estimation. The commonly available measurements for state estimation are 

power flows, voltage magnitudes, and power injections. For state estimation the 

measurements are collected using supervisory control and data acquisition (SCADA). 

SCADA measurements are not free from errors. The errors can be in the form of noise in 

measurements, bad measurements, and wrong circuit connection information (more often 

called topology information).   

State estimation involves following major functions: 

1. Topology processing: this function involves obtaining the model of the system 

based on status of the circuit breaker, tap positions of transformers, parameters of 

transmission lines, etc.  
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2. Observability analysis: this function involves checking if the available SCADA 

measurements are sufficient to find the state of the system. If the SCADA 

measurements are not sufficient, pseudo measurements can be used based on 

forecasted data or previous state data to make the system observable.  

3. State estimation: this function obtains the best estimate of the system state using 

the SCADA measurements and the topology information.  

4. Bad data processing: this function checks for the possible bad measurements. If 

any bad measurements are detected, they are removed from the measurement set 

and the state estimation is repeated again.  

The best estimate of the system is obtained using weighted least squares (WLS). 

In state estimation, voltage magnitudes and voltage angles are estimated using the 

measurements and topology information obtained from the SCADA. The typical 

measurements used for state estimation are power flows (both active and reactive), 

voltage magnitudes at the buses, power injections at each bus both active and reactive, 

and current injections. 

Mathematical formulation of state estimation using wls 

 

The redundancy of measurements is very important in state estimation. The better 

the redundancy of good measurements, the more accurate the state estimate and the faster 

the convergence of the estimator. The relationship between the measurements and the 

state vector is a nonlinear function. Also the errors are assumed to have a Gaussian 

distribution. Hence the measurement equation can be represented as follows [5] 
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mmm exhz += )(  

 

where, Zm is the measurement vector, X is the state vector, hm(x) is the measurement 

function, and em is the random measurement error. The state vector includes voltage 

magnitudes and angles and hence can be taken as follows 

 

],...,,,,,...,,[ 32121 NN VVVVx δδδ=  

where δ1, δ2… δN are voltage angles of buses and V1, V2…VN are voltage magnitudes of all 

the buses and N is maximum number of buses.  

 

The Jacobian matrix for the measurement vector is formed which is denoted here 

as H. Now the common assumption in the WLS method is that the measurement errors 

are independent. This makes the measurement error covariance matrix a diagonal matrix. 

The main idea behind WLS estimation is the square of the measurement deviation from 

the initial estimate is minimized to obtain the best estimate. Hence the objective function 

is of the form [5] 
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where R is the measurement error covariance matrix and Rij is the ith row and jth 

coloumn of the matrix  
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In order to solve the above equation, the first order optimality conditions must be 

satisfied. These can be expressed as follows [5]: 
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The above non-linear equation can be solved via an iterative Gauss-Newton 

method as shown below [5]: 
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The gain matrix is G(x). If the system if fully observable, the gain matrix will be 

positive definite and symmetric. For each iteration, the gain matrix is decomposed into its 

triangular factors and the forward/backward substitution method is used to solve for 

following linear set of equations, giving 

)]([)()]([ 11 kkTkk xhzRxHxxG −=∆ −+  

kkk xxx −=∆ ++ 11  

 

References [5-10] describe the state estimation methods of solution. 
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State estimation methodologies 

  

State estimation is a vital part of power system operation as it is often the starting 

point for many applications. But in its implementation an important challenge is the 

increasing size and complexity of the power system. For this reason, state estimation 

tends to be slow and hence, for almost four decades, research has been conducted on how 

to improve the computational speed of the state estimation process. Communication 

requirements are also one of the important constraints in the implementation of the state 

estimators. This section gives a detailed review of the past research work in this area.  

 State estimation was first introduced by Schweppe and Wilde [11] to power 

systems. The method used is the regular static state estimation as descirbed in the 

previous section. This method has been fundamental for all other algorithms and the 

majority of the state estimators still use weighted least squares.  

 An important point to be noted here is that the state estimation is run repeatedly 

and it is better that the state vector always has the state of the system in the previous 

state, as the initial value, rather than using a flat start for every run.  

The idea of using dynamic state estimation was examined shortly after static state 

estimation was introduced by Schweppe [12]. Many of the dynamic state estimation 

techniques follow a prediction correction method. Prediction is very useful tool as it gives 

the operator a rough estimate of one state estimation step in the future. One of the 

methods by J.F de Queiroz, M.B. Do Coutto Filho et al [13], deals with state forecasting. 

This method uses statistical techniques such as Holt’s two parametric linear exponential 

smoothing to predict the state of the systems as the load changes. Hence the generation 

always follows a rough cyclic pattern.  
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 After the advent of various algorithmic enhancements such as parallel 

computation, distributed processing, hierarchical methods etc., techniques were examined 

to apply these methods to state estimation algorithm for better computational speed of 

state estimation for large systems. Some of these methods are explained here. Most of 

these methods compromise on the accuracy to obtain a sub-optimal solution for the state 

of the system which is faster to obtain than the optimal solution. One of the main 

approaches for this has been parallel and distributed processing. A decentralized 

approach was proposed by Van Custem et al [1,2] as early as 1981. The decentralized 

approach actually splits the system into smaller independent areas and estimates the state 

of each segment and then finally obtains the optimal estimate of the entire area from the 

smaller areas. Parallel execution deals with the running of the estimation process 

simultaneously in different systems so as to arrive at the optimal estimate faster. 

Hierarchical estimation technique is a hybrid of both, in a sense that problem is split into 

smaller areas and distributed among many estimators (and hence, a distributed algorithm) 

and all the lower level estimators run in parallel. Hierarchical state estimation procedures 

were studied by Van custem [3] mainly for computation speed gain. This technique will 

be reviewed later in detail in this chapter.  

 Distributed processing has also been exploited, primarily for enhancing the speed 

of state estimation. Y. Lin and H. Lin [14,15] proposed a scheme for distributed state 

estimation. The power system under consideration is partitioned into many areas, and 

areas are governed by the local control centers. Their propagation method is based on a 

tier structure. The tier structure for the areas of power system is formed by first 

designating the area containing the swing bus to be Area 1 and the areas are labeled with 
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tier numbers. The area with the swing bus starts the state estimation procedure. At the 

completion of the state estimation in Area 1, the local computer in Area 1 sends the 

values of the states of the external reference boundary buses to adjacent areas in next tier. 

Once the computer system in Area i of Tier j receives the values of the state vector of all 

the external reference boundary buses from adjacent areas in Tier (j-1), the computer 

performs the state estimation for its area. Since each local computer system in the 

network can perform its own computations independently, the processing speed of the 

distributed state estimator carried out by computer network should be fast. 

 

 Carvalho and Barbosa [16,17] proposed distributed processing for state estimation 

using conventional algorithms like standard WLS and standard decoupled minimum 

distance estimation (MDE). The power network is decomposed into areas connected 

through boundary buses which belong simultaneously to both adjacent areas. Each area 

shares the state of the boundary buses at the end of iteration.  

The method of Baldick and Ebrahimian [18] involves the application of the 

auxiliary problem principle to develop a distributed state estimator. The measurements of 

each area are telemetered to the computer of that area only, and only the computed border 

variables are exchanged between the adjacent areas. The neighboring areas interchange 

the border variables at each iteration and calculate the updated variables for the next 

iteration. With each iteration, a central computer will be informed of the status of each 

area for convergence. The communication transfer requirement in this method is much 

less than that of integrated state estimation.  
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Review of hierarchical state estimation 

  

As discussed earlier the hierarchical state estimation technique was first 

introduced shortly after state estimation was applied to power systems. In hierarchical 

state estimation, the power system is split into smaller areas; the constraints for the size 

of smaller areas may differ.  After splitting the power systems into smaller areas, state 

estimation for each smaller area is done using separate estimators. These estimators form 

one hierarchy. Now the outputs from these estimators are sent to the next higher level for 

consolidating outputs. This method of consolidation from the lower hierarchy is 

sometimes referred to as coordination. Always in hierarchical state estimation the lower 

levels are general state estimations and the higher levels are coordination levels, as only 

the lower levels alone deal with raw measurements. An estimator with one lower level 

and one upper level is called two-level state estimation.  

 Some of the earliest work on hierarchical state estimation was done by Van 

custem, Ribbens-Pavella et al in [1,2,3]. The reference [3] presents a critical survey of 

various hierarchical methods of state estimation. It compares one of the methods similar 

to the lower level and coordination level discussed earlier with a method using a split 

local estimation and local state estimate correction. In this reference, methods of 

decomposition of power systems have also been examined. The methods include a 

decomposition procedure, a direct method for decomposition and a relaxation method.  

 In reference [19,20] a dynamic and hierarchical state estimation techniques has 

been proposed. Here in this method an extended Kalman filter has been used for filtering 

the errors instead of simple WLS. State prediction has also been incorporated using 
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dynamic load prediction schemes. Both the lower and coordination levels of the state 

estimation have been implemented with dynamic filters. 

 M. S. Kurzyn [20] proposes a hierarchical static state estimation procedure in 

whihc the coordination method differs from the conventional two-level estimator. The 

coordination consists of three steps: the angle difference across the tie lines are 

calculated, and then the coordination angle between the reference area and neighboring 

area is calculated, and finally, the voltage angles of all the buses are recalculated from the 

obtained coordination angles. This method is achieved iteratively to obtain the 

coordination of other areas, even for those not directly connected to the reference. The 

method claims better performance than conventional WLS. 

 K.L.Lo, M.M. Salem et al [21] compare various techniques of hierarchical state 

estimation including the two-level state estimation technique. In large power systems it is 

enough to have one lowest state and one coordination level. The reference consists of two 

parts: one dealing with the logical analysis of the algorithms in consideration, and other 

dealing with computation experience obtained during the testing of these algorithms. 

Comparison of the algorithms led to the identification of various advantages and 

disadvantages of one algorithm over the other.  

 I.O. Habiballah [22] examines the effect of the application of two level state 

estimation on the accuracy of estimates, observability, etc. In this reference various 

scenarios were considered such as the absence or presence of boundary injection 

measurements, the absence or presence of tie line power flows, and the use of modifiable 

pseudo measurements. The method claims to be applicable in any partition strategy of a 

power system. The method was tested only on DC state estimation.  
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 A. Bahgat, M.M.F Sakr et al [23] explore a novel possibility of two-level state 

estimation using non linear transformation. In this method the nonlinear relation 

estimation procedure is transformed in to a linear estimation problem. The transformation 

is applied in both the levels of the state estimation. 

 A.K. Sinha and J.K. Mandal [24] explored the possibility of using artificial neural 

networks (ANNs) to predict the load variation, and subsequently to predict the system 

state, in a dynamic hierarchical estimation procedure. The method claims to be fast and in 

this method the extended Kalman filter has been used in both the lower and upper levels 

of the estimation procedure. The method claims that the ANN technique accurately 

models load hence a better state prediction can be obtained. Furthermore, it is claimed 

that the EKF takes less time to correct the predicted state.  

 J.K. Marsh and M. Azzam [25] present a general framework for the design of 

two-level power systems state estimation. The main concern is the decomposition of the 

power system into smaller areas, the very first step of implementation of two-level state 

estimation. The method used here is called the α-decomposition technique. The main 

criterion for partition is that each individual sub-system should be individually α-

observable.  

In summary, it can be seen from the following review that in the past, hierarchical 

state estimation was viewed as a tool to improve the computation speed of the state 

estimation alone, due to the primitive performance capabilities of those computers. 
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Mathematical modeling of hierarchical state estimation 

  

Traditional hierarchical state estimation, wherein the lowest level and one 

coordination level of state estimation is considered, will be discussed here. First, let us 

consider the lower levels. As discussed earlier a large power system will be split into 

smaller areas and in the lower levels of estimation, the state estimators estimate the state 

of the smaller subsystems.  

 We also need to consider some important criteria while partitioning the power 

system into smaller sub-systems. The first and foremost criterion is that the partitioning 

should be such that each individual should be independently observable. Moreover it will 

be better that there is enough redundancy of measurement in the sub systems. It is also a 

good practice to approximately match the generation and load in a particular area so that 

they are comparable. This will make sure that there is at least one generator bus in the 

sub-system. This is very important, because one of the buses is assumed to be a reference 

bus in the lower estimation level. Some of the references discussed in the previous 

section discuss specific techniques for partitioning areas.  

 Hence we can summarize the pre-estimation steps in hierarchical state estimation 

as follows. 

1. Partition a large power system into smaller sub-systems conforming to certain preset 

decomposition criteria. 

2. Identify the reference bus in each of the sub-systems. 

3. Identify the tie-lines and boundary buses of the entire system. 

Now since some of the basic information about the overall estimation has been 

established, the lower level estimation can be done. The lower level state estimation is a 
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regular integrated state estimation technique generally done using weighted least squares, 

but with respect to a local reference bus. The local reference bus is essentially a part of 

the sub-system. Hence the state vector of Area m can be defined as  

 

Ilmkmjmimkmjmimm VVVVx ,.....],,,...,,,[ δδδ=  

 

where  xm is the state vector of Area m, δim is the voltage angle of Bus i in Area m and Vim 

is the voltage magnitude of Bus i in Area m. 

The measurements are related to the state vectors as in any general state 

estimation. This process of local state estimation can be carried out for all the sub-

systems independently and asynchronously, and hence all the local state estimates are 

obtained. Next, the local state estimate outputs are sent to the coordinator. The 

coordination stage is the stage in which the individual state estimates are consolidated. 

The individual state estimates need to be consolidated because the local state estimates 

are with respect to the local reference, and before we do any further analysis, the state 

estimates of the local areas must be brought to one common reference. This common 

reference is generally referred to as the global reference for that hierarchy. If instead of a 

two-level state estimate there are multiple levels of estimation then at each level the 

global reference becomes the local reference for the next higher hierarchy.  

 The coordination process generally involves the estimation of the coordination 

vector. The coordination vector is a vector consisting of the slack bus angles of all the 

areas in a particular hierarchy. The angles for the slack bus of each local sub-system must 

be estimated with respect to one common global reference. As mentioned earlier, these 
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angles form the coordination vector. The length of the coordination vector is equal to one 

less than the total number of areas. Again the coordination process follows a simple 

weighted least square method. The coordination process is nothing but state estimation 

process on the tie-line power systems. The measurement for the coordination is tie-line 

power flows. The quantity being estimated is the coordination vector. The coordination 

process takes little time and few iterations because the number of measurements and the 

number of state vectors to be estimated are much less than that of the entire state. The 

local state estimates are required for the coordination process, because the coordination 

angles of each area add to the boundary bus angle of the areas and these angles are used 

to calculate the mismatch in power flow.  

 Mathematically the coordination process can be defined as follows. The 

coordination vector can be defined as 

 

U = {U1, U2, U3}
 T 

 

where  Ui is the coordination angle of the ith area. 

 Now the correlation between the coordination vector and the tie-line power flow 

can be viewed from the following equation: 

 

)cos( BjAiijijjiij UUYVVP ++−−= δδθ  

 

where, i is the ith bus in Area A, j is the jth bus in Area B, Vi and Vj are the voltage 

magnitude of bus i and j respectively, Yij is the magnitude of admittance of the tie-line, θij  
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is the angle of the admittance of the tie-line, δi and δj are the voltage angles obtained from 

the local state estimate of the ith and jth bus respecively, and UA and UB are the 

coordination angle to be estimated from each area. 

 From the tie-line measurements the coordination angles for each area can be 

estimated using WLS method 

 

ZT = h (U, Xb) + e 

where, ZT is the set of all tie-line measurements, U is the coordination vector to be 

estimated, Xb is the set of all boundary bus measurements used as parameter for the                 

estimation process, and e is the measurement error 

 

∆U = (HU
TRU

-1HU)-1HU
TRU

-1 (ZT – h(U,Xb)) 

 

where ∆U is change in coordination vector for each iteration, Hu is the Jacobian matrix 

for the coordination vector and Ru is the measurement error covariance matrix 

From this equation, the change in coordination vector is allowed to converge and 

then the coordination vector can be obtained. In some methods the coordination angles 

are sent back to the respective areas and the state of the local area is recalculated. A 

variant of this is that the coordinator itself consolidates the state output with the estimated 

coordination angles. This method of approach is depicted in Figure 1.1. 
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Outline 

 

 The reminder of the thesis is organized as follows. In Chapter II the issues 

associated with the application of hierarchical state estimation to wide area networks are 

studied. The application of synchronized phasor measurements in state estimation and in 

hierarchical state estimation are considered in Chapter III. Chapter IV deals with the 

exact simulation method of the state estimators and the results of simulation. Finally, 

Chapter V presents conclusions and discusses possible future work.  

 

Figure 1.1: A schematic of coordination of two level state estimation 

 
 

COORDINATOR 

AREA  
N 

AREA  
3 

AREA  
2 

AREA  
1 

TIE-LINE  
MEASUREMENT 

ESTIMATE  
SLACK BUS  

ANGLES 

CONSOLIDATE  
STATE OUTPUT  

OF  
COMPLETE 

SYSTEM WITH  
REFERENCE  

TO A  
SINGLE  

SLACK BUS 

. 

. 

. 



 18 

 

CHAPTER II 

STATE ESTIMATION FOR WIDE AREA POWER SYSTEMS 

 

Introduction 

 

This chapter deals with a detailed review of literature on monitoring of wide area 

power systems, the issues associated with the application of state estimators in wide 

areas, and a robust modified algorithm that can be applied to wide areas. 

Review on application of state estimation in large scale systems 

  

In large scale power systems comprising multiple areas, the measurement sets and 

the state vector becomes extremely large. For this reason, it becomes highly 

uneconomical to carry out centralized state estimation. First, there is a need to transfer 

huge amounts of data from the measurement units to the state estimator which increases 

the cost requirement for the communication link. Second, the computational burden 

involved for state estimation is also high. Hence many decentralized schemes have been 

proposed. The main advantage of using a decentralized scheme for a multi-area scenario 

is that the existing state estimators in each area can be used to obtain the global state 

estimate for a multi-area power system. This has been proposed by A. Abur and L. Zhao 

[20] wherein all the areas are assumed to have a state estimator and the coordination is 
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done using the obtained state outputs from these areas. The method also uses 

synchronized phasor measurements in coordination stage.  

 Phadke, Liu et al [27] propose a different approach for wide area information 

sharing. The approach targets wide area state estimation. It also proposes to use the 

internet for communication between the local area and the coordinator.  

 In all of the above mentioned references some of the issues in the application of 

state estimation to wide area have not been considered. Chun-Lien Su and Chan-Nan Lu 

[28] examine the possibility of delayed arrival of measurements and propose a dynamic 

filter for state estimation. Extending this further to wide area state estimation, there is a 

possibility that the state outputs for the local state estimator and/or measurements arrive 

delayed to the coordinator.  

 Gonazález-Pérez and Wollenberg [29] analyze the possibility of massive 

measurement loss in power systems using a DC state estimator. The DC state estimator is 

a linear state estimator which is an approximate model. Extending this further to the wide 

area scenario, a massive loss of measurement in one of the areas will make the state 

estimation impossible in that area for that cycle of measurement sweep. This leads to a 

complete absence of state output from that area to the coordinator.  

 Thorpe, Phadke et al [30] examine the issues associated with the development of a 

wide area analysis. The issues identified were: overlap of areas, time synchronization of 

the coordinator, and missing state outputs from one or more of the areas. The reference 

also states possible solutions of which some are tested as a part of this thesis. From the 

above review we can clearly infer the important issues concerning the application of state 

estimator for a wide area network. Also it can be inferred that a hierarchical scheme is 
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preferred over other techniques due to the use of existing state estimators. Such an 

approach cuts down the cost of setup of a wide area estimator, as there is obvious 

reduction in the cost of setup of the communication channel and the configuration 

requirements of the coordinator.  

The issues mentioned above can be listed as follows: (1) overlap of area, (2) 

asynchronism between the local state estimators, (3) delay in the arrival of state outputs 

to the coordinator, and (4) absence of state output from an area. The last two of these 

issues will be studied in detail in the following sections. Now the overlap of area can be 

avoided by proper indexing of the buses in the areas. The requirements are that no two 

areas overlap and the all the areas are connected by tie-lines. This requires a slight 

modification of the local state estimators.  

 A situation may arise in which the state estimators send their outputs at different 

time intervals to the coordinator. This will not be uncommon as the size of each area is 

different and the state estimators are very often different from one another. Thus it takes 

different times for the state estimators of the local area to converge. There can be 

additional inconsistencies due to the communication link. The delay due to the 

communication link depends on the type of communication and the distance to be 

traveled. The asynchronism will not pose a big problem if the convergence time of all the 

state estimators in the lower levels are comparable, in which case the coordinator can be 

set to stop the reception of the state outputs from the lower levels after a particular time. 

This time should be greater than the longest time the local state estimators need to 

achieve convergence.  
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 When the convergence time of some of the areas are very large compared to the 

of the other state estimators, then the coordination time interval can be set to a time 

smaller than the convergence time of these slow areas, and the state outputs from these 

areas can be considered to be delayed data for that particular cycle of coordination. 

Delayed arrival and loss of state output 

  

As mentioned earlier there is a good possibility that the state output does not 

arrive to the central coordinator on time to do the coordination. In general, the central 

coordinator can be set to stop the reception of state outputs from areas at specified time 

intervals. If the state output is received from a particular area after this time, then the data 

is considered to be delayed data, and these values should be considered for the next state 

without interrupting the already running coordination cycle.  

 There are many causes for the delayed arrival of state outputs, including the 

following: the state estimator of the local area does not converge, the area becomes 

unobservable, there is a software failure of the state estimator, and there is a failure of the 

communication link between the area and the state estimator. 

These causes can also lead to a complete absence of state outputs from an area, in 

which case it is said to be the loss of an area. It is possible to obtain status information 

through the communication link from the state estimator of an area. This status 

information can provide updated information about convergence, observability and other 

issues, from which the coordinator can identify whether the state output will be delayed 

or there is a loss of area.  
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 Thus, we need to consider these two issues while implementing the coordinator 

for the hierarchical state estimation in a wide-area system. If the outputs are delayed from 

a particular area, then it is a valid assumption that the states of the area do not change 

considerably for a short period of time. It follows that the coordination of the areas can be 

done using the state of that particular area obtained from the previously sent state output. 

Also a reduced weight for the state output of those areas can be used. The present value 

of state outputs for the delayed areas either can be neglected or used in the next 

coordination stage. For a situation when the state outputs are delayed for more than one 

coordinator steps, the weights can be decreased for consecutive coordination cycles.   

 In a situation for which there is a complete loss of area, the coordination can be 

done by considering the remaining areas, and the boundary buses and tielines connected 

to those areas will be neglected in coordination. This will lead to a decrease in accuracy 

and is demonstrated in the simulations shown in the following chapters.  

Modified algorithm 

 

Hierarchical state estimation can be modified to accommodate the above state 

issues. The following section shows the algorithm for hierarchical state estimation and 

the modified algorithm which takes into consideration the issues stated above. The first 

algorithm is a regular static hierarchical state estimator. 

 The following algorithm elucidates the coordination process alone, as the local 

state estimation is a regular static state estimation. 

1. The coordinator is ready for the reception of the state outputs from all the 

member area. 
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2. Tie-line measurements and boundary bus measurements are received. 

3. From the available state estimator outputs, boundary bus states are used as 

parameters and the coordination vector is estimated using the measurements. 

4. Using the coordination vector obtained from Step 3, the outputs of all the 

areas are consolidated and this output is sent to other applications and the 

corresponding areas. 

The following algorithm is the modified algorithm of the two-level state estimator 

in which the issues of delay in the arrival of state output and loss of areas has been 

incorporated. The algorithm is as follows. 

1. The coordinator waits for the reception of state output from any one of the 

areas. 

2. A timer is started and the coordinator receives state outputs from the areas 

until a preset time value. 

3. If some state outputs of some areas are not received, then the weights are 

decreased by a set amount from the previous value of weights of that 

particular area and the state output from the previous step for that area is used. 

4. If a weight falls below a particular value, the area is removed from the 

coordination list  and an alarm is raised untill the state output is received from 

that area. 

5. Using the boundary measurements and the state outputs, the coordination 

vector for the available number of areas is estimated. 
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6. The state outputs of the available areas are consolidated using the 

coordination vector, and the consolidated output is sent to other applications 

and the member areas.  

When the weight given to the state output of particular area falls below a 

particular value, it is indicative of the fact that the state outputs from an area were not 

available for some number of coordination steps, in which case it can be said that the area 

is lost. In this situation the coordination is done for the remaining areas. There is 

potentially a significant decrease in accuracy because the state output obtained from the 

previous step is used. This may not be suitable if rapid coordination steps are required 

and states of area fluctuate rapidly. This can be overcome by proper use of phasor 

measurement units in the areas.  

Both algorithms have been tested on a IEEE 118 system. The simulation 

techniques and results are discussed in detail in Chapter IV. It is observed that the 

accuracy decreases as the state output arrivals are delayed. The following diagram shows 

a flow chart of how the modified algorithm works. The coordination stage alone has been 

explained and the same process is repeated for every coordination cycle. During the start 

of every coordination cycle the weighting matrix is reinitialized and the values are 

retained if the state outputs are not received; otherwise, they are brought back to their 

original values. Again it can been seen that there are some issues regarding the accuracy. 

The method consolidates the state outputs for temporary delays of state output arrivals.  



 25 

 

 

Figure 2.1: Flowchart showing the modified algorithm of hierarchical state estimation  
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Figure 2.1: Flowchart showing the modified algorithm of hierarchical state estimation 

(continued) 
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CHAPTER III 

APPLICATION OF SYNCHRONIZED PHASOR  

MEASUREMENTS IN WIDE AREA SYSTEMS 
 

Introduction 

  

This chapter deals with the study and application of phasor measurements in  

wide area power system state estimation. The main concern is the use of phasor 

measurement units (PMUs) to increase the accuracy and efficiency of lower and higher 

level state estimation.  

Literature review on phasor measurement units in state estimation 

  

Phasor measurement units are the direct descendent of the symmetrical 

component distance relay. Work on phasor measurement units started as early as 1980s in 

Viginia Tech. Later, PMUs became a commercial product. PMUs have found their way in 

many power systems operations after its commercialization. One of the important 

functions in which PMU have been deployed is state estimation. A. G. Phadke [31] gives 

an historical review on the development of synchronized phasor measurements.  

 One of the main advantages of phasor measurement units are that all the phasor 

measurements are time synchronized with a GPS clock. This means that the 

measurements obtained from the PMUs are obtained at the same time without any time 



 28 

skewness. This is a very import advantage in its application as a monitoring device in  

wide area power systems.  

 Phasor measurement units are predicted to become a very vital part of power 

systems state estimation. As such, the measurements from PMUs are proven to increase 

the observability of power systems by strategic placement of a minimal number of phasor 

measurements. This has been discussed by Xu and Abur in [32] and many others. In this 

work the cost of installation of PMUs is taken as the objective function to be minimized 

with the constraint being the observability of the power systems. The observability can be 

defined using a matrix containing ones and zeros. If there is a PMU present on a bus or 

on an adjacent bus then it is given a value of one otherwise a zero is given. If there are 

other measurements available then these can be incorporated in the matrix which 

ultimately reduces the number of PMUs by reducing the cost.  

 Another approach for PMU placement using spanning trees of power systems 

graphs has been proposed by Nuqui and Phadke [33]. Here, a simulated annealing 

procedure has been used to add constraints on the PMU placement algorithm. One of the 

constraints is the reduced communication channel requirements.  

It has also been studied that PMU measurements drastically improve the 

performance of bad data processing of the state estimator. Bad data processing is nothing 

but weeding out of some inconsistent data which makes the measurement residual of the 

state estimator very large, or sometimes makes the state estimator unable to converge to a 

particular estimate. J. Chen and A. Abur [34] examined the performance of PMU units 

with respect to bad data processing. The basic valid assumption here is that the PMU 
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measurements have very high reliability and accuracy. Again a strategic placement of 

minimal number of PMU units will improves the accuracy. 

 In the past, the measurement skewness has been a great problem as the 

measurement takes longer time to reach the control center state estimator if the Remote 

Terminal Unit collecting the measurements is far away. The result is that the state 

estimates are for the older measurements and hence inaccurate. This has been overcome 

in PMUs by exploiting the time synchronization of the snapshots taken by the units with 

the GPS clock. But again this data has to be transferred to the control center through a 

communication link. This delay due to communication link has been dicussed by C. 

Valenti, A. Feliachi et al [35].  

 Before the way in which PMU can be used in wide areas is examined, the basic 

working of PMU is discussed. PMUs record the instantaneous voltage. This 

instantaneous value can be referenced with any wave which gives the magnitude and 

phase angle with respect to the reference wave. The synchronizing clock pulse actually 

samples the recorded pulse and then sends this recorded pulse to the control center 

through a communication link. 

 

Figure 3.1 : Reference wave 
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Figure 3.2 : Voltage at Bus m 

 

 

Figure 3.3: Voltage at Bus n 

 

 

 As we can see from the above voltage diagrams the peak of the two buses is 

displaced from the peak of the reference wave. Hence this is indicative of the phase angle 

of voltage of with respect to the reference wave shown in Figure 4.1. This is how the 

comparison in PMU units is made and the phase angle is calculated to a very high degree 

of accuracy. The measurement is then transferred to a control center and is then used for 
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state estimation. The priniciples of working with synchronized phasor measurement units 

has been explained by Moxley [36].  

 When using PMUs for wide area measurement phasor data concentrators are 

employed in different areas that collect the phasor data from their area and send the data 

through communication links to the central control center. Galvan [37] presents the role 

of PMUs in the eastern interconnection and the communication infrastructure required for 

achieving this. Here the role of PMUs has been extended for better data accumulation and 

visibility. Also, the possibility of enhancement of state estimation due to PMUs is 

discussed, keeping in mind the present standard of SCADA data available for state 

estimation.  

 Rice and Heydt [38] propose a method to quantify the accuracy improvement 

obtained by the introduction of PMUs in power systems. Using this technique, optimal 

PMU placement has also been studied. The method has been tested on a IEEE 14 bus 

system. The method basically uses the residual vector to quantify the accuracy, and the 

addition of PMUs reflects on the reduction of residuals. Normalized error, norm of 

residual vector and RMS of residuals have been used to quantify the accuracy.  

 Wu and Giri [39] explain the important constraints in the application of PMUs in 

a state estimator. The important observation made by the authors after application of 

PMUs on various systems is that the location of reference PMUs does not have any 

impact on the SE performance. The authors also address the key issues of calibration of 

PMUs, synchronization of PMU data and tuning of PMU data weights inside the state 

estimator. However all of these references examine the effect of PMUs in integrated state 

estimation.  
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 Abur [40] examines the operation of distributed state estimation in mega grids. 

There is an emphasis on the use of PMU in the distributed state estimation in this paper, 

but it mainly focuses on the data sharing between the areas and the coordination 

algorithm. A method of using the PMU measurements in the coordination has been 

suggested.  

Synchornized phasor measurements in lower level of  

hierarchical state estimation for wide area 

 

 Recently there has been an increase in the use of PMU units in many power 

systems in which they have been incorporated in the state estimator. To study how the 

PMU influences the performance of the state estimator, PMUs are employed in the local 

state estimator of the previously state algorithm given in Chapter III. PMU units give the 

exact voltage angle with respect to a specified reference. Assuming this reference to be 

the slack bus angle of that local area, the phase angles obtained from  phasor 

measurements are incorporated as measurements. This assumption is valid, as only a 

static state estimate is required and hence the fluctuation in frequencies and distortions 

can be neglected as they generally die out over a moderate period of time.  

 The relationship between the phase measurements and the state variables is linear, 

as we have the state variable itself as the measurement. The phase angle of the bus having 

the synchronized phasor measurements is taken out of the state vector, and the value 

obtained from the phasor measurements can be directly used as a parameter in the 

estimation process. Alternatively, it can be treated as measurement with high accuracy.  

 It follows that the Jacobian for the measurement will contain a one at the 

respective bus number and zeros for other state variables. In general, the phasor 
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measurement units are always used as a supplement to the regular measurements, due to 

the sparse occurrence of PMUs in power systems. The injection measurements are 

generally given low weights compared to power flow measurements. During the 

implementation of phasor measurements in our simulations, some of the power injections 

were removed as they led to ill conditioned case of the diagonal measurement error 

covariance matrix.  

Synchornized phasor measurements in coordination level of  

hierarchical state estimation for wide area systems 

 

 In the previous chapter some of the problems in the application of hierarchical 

state estimation in wide area systems have been discussed. Now some of these issues can 

be overcome using synchronized phasor measurements. When phasor  measurements are 

available in local areas, this measurement data, when made available to the coordinator, 

can be used to effectively increase the accuracy of the coordinator. 

 If a good number of phasor measurements are available in the lower level, then a 

linear coordinator can be designed which can be used to obtain the coordination angles. 

This offers the additional advantage of very fast convergence of the coordinator, and the 

tie-line measurements are not required. Hence if there is a loss of tie-line measurements 

and the coordinator itself becomes unobservable this method is very effective. Again this 

method relies very heavily on high reliability of the phasor measurements. Also the 

phasor measurements can be used for bad-measurement checks in the coordination level 

if tie-line measurements are used. If tie-line measurements are used, then the coordinator 

ceases to be a linear estimator and the phasor measurements can be used by giving high 

weights along with tie-line measurements. 
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Mathematical formulation of the linear estimator  

using pmu measurements for coordination 

 

 The following section deals with the mathematical formulation of the coordinator 

wherein phasor measurements alone are used for coordination. Now if N is defined as 

total number of areas, then as mentioned earlier the coordination vector will be of the 

form 

 

U = {U1, U2,..., UN}  T 

 

 If the total number of phasor measurements is m in the wide area, and if each 

phasor measurement is numbered 1 through m then we have the measurement set from 

the PMUs as follows: 

 

Z = {Z1, Z2,…, Zm}  T 

 

 The state will also be available from the areas and hence the buses having the 

phasor measurements can be taken and arranged in the same order as above will give a 

parametric bus state vector as 

 

Xb = {Xb1, Xb2,…, Xbm}  T 
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 The phasor measurements can be set to be received with respect to a global 

reference, and the state outputs received from the areas are with respect to local 

reference. Hence the difference between the two will give the coordination angle for the 

corresponding areas. If we have more than one number of PMU measurements in an area 

then we have a over-determined set. Using the Least Squares technique, we can find the 

coordination vector from the following measurement equation: 

 

Zm = [ZP  - XP] = H.U + e 

U = (HTR-1H)-1HTR-1Zm 

 

where, ZP is the phasor measurements of the buses in local areas, and XP is the state 

output of the buses having the phasor measurements alone, R is the measurement error 

covariance matrix, e is the measurement error, and U is the coordination vector. 

The H matrix shown above contains ones and zeros according to the areas a 

particular bus belongs to. If, for example, Z1 and X1 belongs to area three then the 3rd 

column corresponding to this measurement becomes 1 and everything else is zero in that 

row. The linear estimator has been tested on a IEEE 118 bus system and the results and 

method of simulation are shown in next chapter. 

 Though all the phasor measurements have high accuracy, the state outputs 

obtained from the areas may contain error and these error percentages can be determined 

from the information available from each area. If there is good redundancy then the error 

due to the use of previous states of the system can be eliminated. If there are high 

discrepancies then those bus states can be removed as bad data.  
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 An important thing to note here is that the coordinator needs to send the reference 

wave to the PMUs to recalculate the phase angle of the voltage. This is readily possible 

with the newer PMUs. By doing this, the state of the bus is obtained with respect to the 

global reference. In addition, the time delay to reach the coordinator is not much because 

the newer PMUs use Ethernet, fiber optics and other sophisticated communication 

techniques in which the travel time for the data is negligible. 
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CHAPTER IV 

SIMULATION OF ALGORITHMS AND RESULTS 

 

Introduction 

 

 In this chapter the complete simulation of the algorithm described in Chapter II 

and Chapter III is dealt with, followed by the results of the simulation. The test system 

taken into consideration is the IEEE 118 bus system [41].  

Partition of ieee 118 bus system 

 

 In general, to test a hierarchical or a distributed model, a test case is taken and the 

system is split into smaller systems. The main criterion for the partition of the areas is 

that the load in the smaller partition approximately matches the generation in that area. 

Moreover, it is also required that the tie-line power flows are present. In other words, all 

the areas should be electrically connected to one another.  

It is best if the sizes of the areas are comparable so that the state estimators of the 

areas converge at almost the same time. For this reason, the IEEE 118 bus system has 

been split into smaller areas as shown in Table 4.1. The area numbers have been listed in 

the table along with the bus number in the original IEEE 118 bus system. The reference 

bus for each area was selected as the biggest generator bus in that area. The reference bus 

number in the areas and in the overall system have been specified. 
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Table 4.1: Partition Information Of The IEEE 118 Bus System 
 

 

 

 When partitioning the power system it should be kept in mind that the sub 

systems obtained by partitioning should be observable; i.e, the state estimator should 

converge independently, without any measurements being transferred from the 

neighboring areas. Indeed, in the above design this constraint was kept in mind and it will 

be later seen that the areas converge separately and therefore can be solved 

independently. It is important that the areas are made independent so that the hierarchical 

state estimator is basically a parallel, dispersed algorithm and the estimation problem for 

each area should be run in parallel and asynchronously.  

 Apart from this, for the next higher level of state estimation, if a classical 

measurement model is used in which there are no PMU measurements, the tie-line 

measurements are needed for doing the coordination. To enable this, the tie-lines between 

the areas and the boundary buses of each area need to be identified before implementing 

the algorithm. In the real world this is provided by the coordination topology processor 

which gives all information about the topology of the tie-lines. This topology information 

is diagrammatically represented using Figure 4.1. Each and every bubble in the figure 

Area Bus Number in IEEE118 Reference Bus in the areas Reference Bus  

No in 118 Bus system 

1 1-17,30,113,117 10 10 

2 18-29,31-37,114,115 9 26 

3 38-79,116,118 32 69 

4 80-112 10 89 
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represents an area, and the bus numbers correspond to the bus number with respect to the 

whole IEEE 118 bus system and not with respect to the local areas. The lines represent 

the tie-lines connecting two boundary buses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: A schematic of Partition of IEEE 118 test case indicating the boundary buses 

and tie-lines. 
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 To enable this partition a simple code was written to calculate the total load and 

total generation for a particular set of buses. The number of areas are given as input and 

an approximate area matching is done using the program, after which the areas are fine 

tuned to get an acceptable range of load-generation mismatch. Then the numbers are 

again checked with the topology of the system so that the buses of adjacent areas are 

electrically near to one another.  

Use of an object oriented programming language – python 

 

 As mentioned earlier, hierarchical state estimation is a parallel, distributed 

algorithm, and thus, the local estimates have to run in parallel and asynchronously. This 

can be simulated by an object-oriented programming (OOP) concept known as multi-

threading. MATLAB or C programs which are traditionally used do not support multi-

threading. Python [42] offers good numerical libraries which can handle the matrix 

manipulation needed for the state estimation algorithm.  

 The Python programming language has also been used as a quick scripting tool in 

power systems simulator software called PSS/E developed by Siemens. Libraries for 

Numerical capabilities are compiled in Fortran and used in Python. Another advantage of 

Python is that can be interwoven with C and Fortran code.  

Result of integrated state estimator 

 

 To see the difference in performance between the centralized state estimation and 

the hierarchical approach, the IEEE 118 bus system has been run, and the state estimator 

output has been noted. The same integrated state output function has been used in the two 
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level estimators for the lower level estimates. It was clearly seen that the integrated state 

estimator took a longer time for four iteration of the system. The program took about 59 

sec to converge. 

Result of regular hierarchical state estimator 

 

 The first algorithm specified in Chapter II an unmodified hierarchical estimator in 

which the coordinator waits untill the output for all the areas are received is simulated 

here. The local state estimator for each area is designated a separate thread and the 

integrated state estimator function is called with the respective arguments pertaining to 

the sub system. The main thread which is representative of the central coordinator waits 

untill all the threads finish execution and return a completed flag. This flag is captured by 

the main thread along with the return values which are the state outputs and then the 

coordination is done. The results of the execution of this program are shown below.  

Area 1 Converged in 5 Iterations 5.04287099838 Seconds 

Area 2 Converged in 5 Iterations 4.74246406555 Seconds 

Area 4 Converged in 5 Iterations 7.89450407028 Seconds 

Area 3 Converged in 5 Iterations 10.5698409081 Seconds 

Recived all data 

coordinating... 

12.21 

Coordination Done in 3 Iterration 

Coordination Vector is 

[ [ 35.71426647 30.01102355 30. 39.72426094]] 
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13.82 

 

 The program log file has been inserted here. It can be seen that the hierarchical 

state estimator took about 14 sec which is much less than what would be needed with an 

integrated state estimator. Hence it is worthwhile to use hierarchical state estimator. The 

percentage error in the state variables due to the addition of randomly varying error to the 

measurements having a Gaussian distribution is shown in Figure 4.2. The graph presents 

precent error as a function of the bus number. 

 Moreover, it is evident from the figure that the voltage magnitude error is much 

less than to the phase angle errors. This is due to the high weight given to voltage 

measurements compared to power flows and injection measurements.  

Simulation of wide area scenario 

 

 In order to properly study the effect of the issues stated in Chapter III, the wide 

area scenario has also been simulated. The delay in the arrival of state output can be 

simulated by introducing artificial delay in the local state estimation thread. The delays 

occurring in the local state estimate are assumed to be random, making the setup more 

realistic. A preset timeout value for the main thread corresponding to the coordinator is 

used. This is equivalent to timeout of reception of state output in the modified algorithm 

explained in Chapter II. The random variable determining whether the state output is 

delayed or not, is modeled as a Bernoulli distribution. The reason behind this is explained 

as follows. 
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Figure 4.2: Percentage error vs State variable number for regular hierarchical state 

estimator. 

 

 

 The local state estimator can be delayed by any amount of time which varies 

randomly, but since the reception of state output stops at a predefined value of time, there 

can be only two possibilities. If the time taken by the local estimator is much less than 

this preset value, then the area’s output is not delayed; otherwise, it is delayed. This can 

represented by either 1 or 0. Thus the probability that an area i is delayed is set as p then 

the probability that it is not delayed is 1-p. 

 During the program each area is given a probability and this value is fixed. If, say, 

the value is 0.9, then the state output of that area is received, on average, 9 out of 10 

times. A random number generator provides a uniformaly distributed floating point 

number between 0 and 1. To convert the uniform distribution to a Bernoulli distribution a 
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simple function was written. The function returns randomly 0 or 1. The occurrence of 

zeros or ones depends on the probability value passed as an argument. This value again is 

passed to the lower level state estimator which invokes a sleep function for a particular 

period of time, depending on the whether the output needs to be delayed or not. The value 

can be varied according to the expected reliability of the local state estimators.  

 The modified algorithm described in Chapter II uses values from the previous 

step. This has been incorporated by storing the state values of the previous step as a back 

up before doing the local state estimate for the sub-system.  

 If the state output does not arrive to the coordinator, with respect to this program 

the local state estimator thread times out, and then the values from the stored backup of 

that particular area is moved to the state output list. Moreover, weights of measurements 

pertaining to that area are reduced by a fixed amount. Then a check is made for the 

threshold value of these weights. If it falls below a particular value then there is a loss of 

area. 

Results of the modified hierarchical state estimation algorithm 

 

Now, the simulation has been run with an initial value of probability of delay as 

0.95 for smaller areas and 0.9 for large areas (which is Area 3), because it is reasonable to 

assume that state estimation for larger areas can take more time. For a delay in area the 

weights of the measurement and state output were reduced by 5%. It has been observed 

that the accuracy is reduced for the situation in which the state output from one of the 

areas specifically Area 4, is delayed by one coordinator step. This is shown as a graph in 

Figure 4.3. 
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Figure 4.3: Percentage error vs state variable number for Area 4 which is delayed by one 

coordinator step 

 

 

 Now when the same area gets delayed by two coordinator steps then the accuracy 

deteriorates further. The weights were decreased by 15%. It can seen that the accuracy for 

other areas decrease as well. This is due to the fact that they are connected by tie-lines 

and the accuracy of coordination angle of other areas are dependent on the state outputs 

of this area.  

If there is a loss of area then the coordination is done without taking the area into 

consideration according to the modified algorithm specified in Chapter III. The results for 

this is shown in figure 4.5. It can be noted that the state variable numbers are reduced as 

the Area 4 is neglected from coordination. Moreover, the accuracy has decreased very 

much due to the fact that the power flow in and out of the lost area is not being 

considered in coordination. 
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Figure 4.4: Percentage error vs state variable number for area 4 output delayed by two 

coordinator steps 

 

 

Results of application of phasor measurements in the lowest level 

 

 The PMU measurements have been implemented and the Jacobian matrix was 

modified accordingly. This was incorporated in the lower level, and thus, the reference 

for the PMUs were the local references. PMU units were assumed in buses 1, 7, 18 - 19, 

30 - 34, 68, 79 – 81, and 115 -118. Most of the buses belong to high voltage levels. Some 

of the vital buses have been used here. Most of the buses are also boundary buses. It is 

clearly seen that the accuracy and the execution speed has increased by the application of 

PMU measurements. The results are  shown in Figure 4.6. 
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Figure 4.5: Percentage error vs state variable number for loss of area 4 

 

 

  

 

Figure 4.6: percentage error vs state variable number for incorporation PMU vs State 

variable number. 

 

 

Also the number of iterations has decreased and the speed of convergence has 

increased due to the addition of PMU measurements. This can be seen from the following 

program log.  
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Area 1 Converged in 4 Iterations 2.39033699036 Seconds 

Area 2 Converged in 4 Iterations 2.35015296936 Seconds 

Area 4 Converged in 3 Iterations 3.8940808773 Seconds 

Area 3 Converged in 4 Iterations 5.46229887009 Seconds 

Recived all data 

coordinating... 

Coordination Done in 3 Iterration 

Coordination Vector is 

[ [ 35.71770996 29.98987545 30. 39.7249489 ]] 

 

Results for application of phasor measurements in  

coordination level of hierarchical state estimation 

  

As mentioned in the earlier chapters, if good number of PMUs are available to the 

coordinator, then the coordination can be replaced by a linear estimator which can 

estimate the coordination angle for use with the buses which doesn’t have PMU. The 

main advantage of this linear estimator is that the unobservability in coordination due to 

the fact that the lack of tie-line measurements, can be avoided. Here PMUs from the local 

estimators reference to the global slack bus is taken as one measurement, and the linear 

estimator is run to do coordination. The following results of the program were obtained. 

The accuracy margin still remain about the same, but the coordination time is drastically 

improved. 

Area 2 Converged in 4 Iterations 2.25758385658 Seconds 

Area 1 Converged in 4 Iterations 3.22476196289 Seconds 
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Area 4 Converged in 3 Iterations 3.7106180191 Seconds 

Area 3 Converged in 4 Iterations 5.53035998344 Seconds 

Recived all data 

coordinating... 

Coordination Vector is 

[ [ 35.87913036 29.96007795 30.00073399 39.74902474]] 

The difference in the execution time of coordinator is 0.5 for the regular coordinator and 

0.2 secs for the linear estimator. The margin becomes higher as the number of areas 

increase.  
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CHAPTER V 

CONCLUSION 

 

Discussion of results 

 

 The application of hierarchical state estimation for a wide area power system has 

been studied in this thesis. The issues associated with the implementation of the estimator 

to a multi-area network such as asynchronism, delay of arrival of state outputs and loss of 

state estimation output have been dealt with in the proposed algorithm. Accuracy of the 

delayed area has been sacrificed for the consolidation of the state output. The accuracy 

decreases by 0.5% for single step delay of an area in this particular case. It is evident 

from the results shown that the accuracy of the neighboring area has not decreased. Use 

of synchronized phasor measurements in hierarchical state estimation structure has been 

examined, and the use of phasor measurements in coordination level proves to be more 

advantageous. Results obtained by simulation show that the computational time is 

decreased by 40% for IEEE 118 bus system and the coordination is more reliable, 

assuming high reliability of phasor measurements. Problems of tie-line power system 

observability in the coordination stage is reduced with the use of highly reliable 

synchronized phasor measurements. Hence, synchronized phasor measurements increase 

the confidence of the overall estimate when used in all the levels of the hierarchical state 

estimation algorithm. Thus, it can be concluded that the above stated issues are very 
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critical issues affecting the proper operation of hierarchical state estimation in a wide area 

scenario. Additionally, the use of synchronized phasor measurements in all the levels of 

hierarchical state estimation improves the confidence and performance of the estimator, 

especially in a multi-area scenario.  

Discussion of future work 

 

 Some of the critical problems addressed by this research can be vital for the 

improvement of wide area power system monitoring. A possible extension to this thesis is 

the introduction of a dynamic model for the coordination taking into consideration a state 

forecast for a particular area when state outputs are not available. The development of an 

efficient PMU placement algorithm taking into consideration the implementation of 

PMUs in lower levels and the upper levels to improve accuracy and observability will be 

a major contribution for the planning of the hierarchical state estimation structure in a 

wide area power system.  

Exploration of other techniques such as external network modeling and hybrids of 

these methods with hierarchical state estimation should also be considered for application 

on a wide area system.  
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Appendix A 

Common library functions for all the algorithms 

 
#Importing libraries (similar to include in C) 
from fileread1 import * 
from Numeric import * 
from Matrix import * 
from math import * 
from LinearAlgebra import * 
from time import * 
from MLab import angle as arg 
from random import * 
 
#Comments always start with # symbol 
 
 
def ybus_org(line1,shnt,n): 
#Ybus calculation Function 
#requires Linedata, shunt capacitor info and number of buses 
#linedata is in IEEE cdf format,  
#reference [41] has the details of cdf format 
    f = open(line1,'r') 
    ybus = Matrix([[complex(0,0)]*n]*n) 
    lc = [] 
    for line in f: 
        r = float(line.split()[6]) 
        x = float(line.split()[7]) 
        b = float(line.split()[8]) 
        start = int(float(line.split()[0])) 
        end = int(float(line.split()[1])) 
        tap = float(line.split()[14]) 
        if(tap == 0.0): 
            tap = 1 
        else: 
            tap = 1/tap 
        Y = 1/complex(r,x) 
        ybus[start-1,end-1] = ybus[start-1,end-1]-(Y*tap) 
        ybus[end-1,start-1] = ybus[end-1,start-1]-(Y*tap) 
        ybus[start-1,start-1] = ybus[start-1,start-1]+Y*(tap**2)+complex(0,b/2) 
        ybus[end-1,end-1] = ybus[end-1,end-1]+Y+complex(0,b/2) 
        send_ch = (tap)*(tap-1)*Y 
        rec_ch = (1-tap)*Y 
        lc.append([start-1,end-1,b/2+send_ch.imag]) 
        lc.append([end-1,start-1,b/2+rec_ch.imag]) 
    lin_ch = Matrix([[0.0]*n]*n) 
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    for j in lc: 
        lin_ch[j[0],j[1]] = lin_ch[j[0],j[1]]+j[2] 
    f.close() 
    for j in range(n): 
        ybus[j,j] = ybus[j,j] + complex(0,shnt[j,0]) 
    return ybus,lin_ch 
 
 
def jacob(zm,x,n,ybus,lst,lc,slack): 
# function to form Jacobian matrix for given Measurement set and state vector 
# Inputs required: measurement structure, state vector, number of buses, line charging 
and reference bus 
#Jacobian form the derivative of a measurement with respect to the particular state vector 
#very simalr to the jacobiann of Newton raphson method except the matrix is a diagonal 
#matrix as state estimation is always over determined 
#In this algorithm the measurements are sorted according to the type 
#for example injection,measurements are first processed and then the power flow 
#measurements etc 
#Here the jacobian and the measurement estimate is calculated in the same function 
    H = Matrix([[0.0]*x.shape[1]]*zm.shape[0]) 
    h = Matrix([0.0]*zm.shape[0]) 
    for i in range(lst[1]): 
        sb = int(zm[i,0]) 
        eb = int(zm[i,1]) 
        spr = [] 
        for y in range(n): 
            if(ybus[y,sb-1] != 0): 
                spr = spr + [y] 
        for y in spr: 
            H[i,y] = -1*x[0,n+y]*x[0,n-1+sb]*abs(ybus[y,sb-1])*sin(arg(ybus[y,sb-
1])+x[0,y]-x[0,sb-1]) 
        H[i,sb-1] = 0.0 
        H[i,sb-1] = -1*sum(H[i,0:n],1) 
        for y in spr: 
            H[i,n+y] = x[0,n-1+sb]*abs(ybus[y,sb-1])*cos(arg(ybus[y,sb-1])+x[0,y]-x[0,sb-
1]) 
        y = sb - 1 
        H[i,n+y] = 0 
        for z in spr: 
            if(z != y): 
                H[i,n+y] = H[i,n+y] + x[0,n+z]*abs(ybus[z,sb-1])*cos(arg(ybus[z,sb-
1])+x[0,z]-x[0,sb-1]) 
        z = y 
        tmp1 = 2*x[0,n+z]*(ybus[z,sb-1].real) 
        H[i,n+y] = H[i,n+y] + tmp1 
        h[0,i] = (H[i,n+sb-1] - (tmp1/2.0))*x[0,n-1+sb] 
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    for i in range(lst[1],lst[2]): 
        sb = int(zm[i,0]) 
        eb = int(zm[i,1]) 
        spr = [] 
        for y in range(n): 
            if(ybus[y,sb-1] != 0): 
                spr = spr + [y] 
        for y in spr: 
            H[i,y] = -1*x[0,n+y]*x[0,n-1+sb]*abs(ybus[y,sb-1])*cos(arg(ybus[y,sb-
1])+x[0,y]-x[0,sb-1]) 
        H[i,sb-1] = 0.0 
        H[i,sb-1] = -1*sum(H[i,0:n],1) 
        for y in spr: 
            H[i,n+y] = -1*x[0,n-1+sb]*abs(ybus[y,sb-1])*sin(arg(ybus[y,sb-1])+x[0,y]-
x[0,sb-1]) 
        y = sb-1 
        H[i,n+y] = 0 
        for z in spr: 
            if(z != y): 
                H[i,n+y] = H[i,n+y] - x[0,n+z]*abs(ybus[z,sb-1])*sin(arg(ybus[z,sb-1])+x[0,z]-
x[0,sb-1]) 
        z = y 
        tmp1 = 2*x[0,n+z]*(ybus[z,sb-1].imag) 
        H[i,n+y] = H[i,n+y] - tmp1 
        h[0,i] = (H[i,n+sb-1] + tmp1/2.0)*x[0,n-1+sb] 
    for i in range(lst[2],lst[3]): 
        sb = int(zm[i,0]) 
        eb = int(zm[i,1]) 
        P = x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*cos(arg(ybus[sb-1,eb-
1])+x[0,eb-1]-x[0,sb-1])  
        Q = -1*(x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*sin(arg(ybus[sb-1,eb-
1])+x[0,eb-1]-x[0,sb-1]) ) 
        H[i,sb-1] = -Q 
        H[i,eb-1] = Q 
        H[i,n+sb-1] = P/x[0,n-1+sb] - (x[0,n-1+sb]*2)*ybus[sb-1,eb-1].real 
        H[i,n+eb-1] = P/x[0,n-1+eb] 
        h[0,i] = P - (x[0,n-1+sb]**2)*ybus[sb-1,eb-1].real 
    for i in range(lst[3],lst[4]): 
        sb = int(zm[i,0]) 
        eb = int(zm[i,1]) 
        sum1 = lc[sb-1,eb-1] 
        P = x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*cos(arg(ybus[sb-1,eb-1])+x[0,-
1+eb]-x[0,-1+sb]) 
        Q = -1*(x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*sin(arg(ybus[sb-1,eb-
1])+x[0,eb-1]-x[0,sb-1])) 
        H[i,sb-1] = P 
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        H[i,eb-1] = -P 
        H[i,n+sb-1] = Q/x[0,n-1+sb] - (x[0,n-1+sb]*2)*(-ybus[sb-1,eb-1].imag +sum1) 
        H[i,n+eb-1] = Q/x[0,n-1+eb] 
        h[0,i] = Q - ((x[0,n-1+sb]**2)*(-ybus[sb-1,eb-1].imag + sum1)) 
    for i in range(lst[4],zm.shape[0]): 
        sb = int(zm[i,0]) 
        eb = int(zm[i,1]) 
        H[i,int(n+eb-1)] = 1.0 
        h[0,i] = x[0,n-1+sb] 
    H = take(H,Matrix(range(0,slack)+range(slack+1,n*2)),1) 
    H = H[:,0,:] 
    return h,Matrix(H) 
 
 
def ise(zm,busd,fline,n,slack,ang_ref): 
#function for integrated state estimate 
#requires the measurements, busdata in IEEE cdf format, linedata in IEEE cdf format 
#number of buses, slack bus number and angle of reference bus 
    tc = time() 
# This section sorts the measurement matrix according to the type of measurement 
     
    s = argsort(zm[:,2],0) 
    zm = take(zm,s) 
    lst = [0] 
    zm = zm[:,0,:] 
    min1 = 0 
# This loop locates the starting of different kinds of measurements in the Measurement 
matrix 
 
    for x in range(zm.shape[0]): 
        if(min1 < zm[x,2]): 
            lst = lst + [x] 
            min1 = zm[x,2] 
# Adding weights to each measurements from the standard deviation of the measurents 
# Injection get 5 percent errors and Power flow get 1 percent errors and Voltages get 0.5 
percent error 
 
    R_diag = [.15]*(lst[2]-lst[0])+[.1]*(lst[4]-lst[2])+[.005]*(zm.shape[0]-lst[4]) 
    R_diag = take(R_diag,s) 
 
#Weighting matrix is initialized to zero as the measurements are uncorrelated 
     
    W = Matrix([[0]*R_diag.shape[0]]*R_diag.shape[0]) 
    for j in range(R_diag.shape[0]): 
        W[j,j] = 1/R_diag[j,0]**2 
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    for j in range(R_diag.shape[0]): 
        zm[j,3] = zm[j,3] + zm[j,3]*random()*R_diag[j,0]**2 
     
# calculation of state vector size from Number of Buses 
     
    dx = transpose(Matrix([1]*((2*n) -1 ))) 
    x = Matrix([ang_ref]*(n-1)+[1]*n) 
    shnt_sus = busd[:,15] 
    del busd 
    [ybus,lc] = ybus_org(fline,Matrix(shnt_sus),n) 
    p = 1 
    m = 0 
    for m in range(25): 
#the state estimation loop 
        x1 = concatenate((x[0,0:slack],Matrix(ang_ref),x[0,slack:(2*n-1)]),1) 
        [h,H] = jacob(zm,x1,n,ybus,lst,lc,slack) 
        Gi = inverse(transpose(H)*W*H) 
        M = (zm[:,3]-h) 
        M = transpose(H)*W*Matrix(transpose(M)) 
        dx = Gi*M 
        x = x + transpose(dx) 
        p = p + 1 
        if(sum(abs(dx)) <= 0.0001): 
            break 
    x = concatenate((x[0,0:slack],Matrix(ang_ref),x[0,slack:(2*n-1)]),1) 
    putdata('output_ise.txt',transpose(x)) 
    return x,p 
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Appendix B 

Main function for integrated state estimator 

 
def main(): 
# A timer to record time of execution 
    t1 = time() 
#bus data input from the file 
    busdata = getdata('busdata.txt') 
#line data input from the file 
    linedata = getdata('linedata.txt') 
#measurements 
    zm = getdata('meas.txt') 
    slack = 69 
    n = 118 
#state estimation function is invoked 
    ise(zm,busdata,'linedata.txt',n,slack,30.0*pi/180) 
    return time() - t1 
 
print main() 
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Appendix C 

Main function for traditional hierarchical state estimator 

 

#Program first splits the areas into 4 which means splitting the linedata, bus data, 
#measurement set etc 
quit = 0 
recr = 1 
U1 = Matrix([30,30,30]) 
#endless loop, break to quit 
while(quit == 0): 
    t1 = time() 
    busdata = getdata('busdata.txt') 
    linedata = getdata('linedata.txt') 
    #Number of areas to be split this has to predetermined.. 
#for this case 4 was taken as number of areas 
    N =4 
    area = [] 
    #define area and buses belonging to areas  
    area.append(range(1,18)+[30,113,117]) 
    area.append(range(18,30)+range(31,38)+[114,115]) 
    area.append(range(38,80)+[116,118]) 
    area.append(range(80,113)) 
    #copy of area info with different number system i.e 1 – N-1 
    area_1 = [] 
    area_1.append(range(17)+[29,112,116]) 
    area_1.append(range(17,29)+range(30,37)+[113,114]) 
    area_1.append(range(37,79)+[115,117]) 
    area_1.append(range(79,112)) 
 
    #Define slack bus of each bus with global bus numbering 
    area_slk = [10,26,69,89] 
    dict = [] 
    for i in range(N): 
        dict.append({}) 
        cnt = 1 
        for j in area[i]: 
            dict[i][j] = cnt 
            cnt = cnt+1 
    line_area = [] 
    for i in range(N): 
        line_area.append([]) 
    #Gather tie-line information 
    line_tie = [] 
    for j in range(linedata.shape[0]): 
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        sb = linedata[j,0]  
        eb = linedata[j,1] 
        for ar in range(N): 
            if(dict[ar].get(sb) != None): 
                if(dict[ar].get(eb) != None): 
                    line_area[ar].append(((linedata[j,:]).asarray())[0,:]) 
                else:      
                    line_tie.append(((linedata[j,:]).asarray())[0,:]) 
                break 
    for i in range(N): 
        line_area[i] = Matrix(line_area[i]) 
 
 
 
    line_tie   = Matrix(line_tie) 
    tie_lines = line_tie 
 
    for i in range(N): 
        for j in range(line_area[i].shape[0]): 
            (line_area[i])[j,0] = dict[i][int((line_area[i])[j,0])]  
            (line_area[i])[j,1] = dict[i][int((line_area[i])[j,1])] 
    bus_area = [] 
    for i in range(N): 
        bus_area.append((take(busdata,Matrix(area_1[i])))[0,:,:]) 
    for i in range(N): 
        for j in range(len(area[i])): 
            bus_area[i][j,0] = dict[i][int(bus_area[i][j,0])] 
 
    list_bb = [] 
 
    #identify the boundary buses 
    for j in range(tie_lines.shape[0]): 
        if(int(tie_lines[j,0])  not in list_bb): 
            list_bb.append(int(tie_lines[j,0])) 
        else: 
            pass 
 
    for j in range(tie_lines.shape[0]): 
        if(int(tie_lines[j,1])  not in list_bb): 
            list_bb.append(int(tie_lines[j,1])) 
        else: 
            pass 
 
    k = len(list_bb) 
    x_b = Matrix([[0.0]*k+[1.0]*k]) 
    k = 1 
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    dict_bb = {} 
    dict_bb_rev = {} 
    list_bb.sort() 
    quit = 0 
    recr = 1 
 
    #get measurements 
    zm = getdata('Measure1.txt') 
    zm_ = [] 
    zm_t = [] 
    for i in range(N): 
        zm_.append([]) 
 
 
    for j in range(zm.shape[0]): 
        if(zm[j,2] in [0,1,4]): 
            if((zm[j,0] in list_bb) and (zm[j,2] != 4)): 
                continue 
            for i in range(N): 
                if(zm[j,0] in area[i]): 
                    zm_[i].append([dict[i][zm[j,0]],dict[i][zm[j,1]],zm[j,2],zm[j,3]]) 
                    break 
        else: 
            if((zm[j,0] in list_bb) and (zm[j,1] in list_bb)): 
                lst_b = [zm[j,0],zm[j,1]] 
                lst_revb = [zm[j,1],zm[j,0]] 
                cond = concatenate([sum(tie_lines[:,0:2] == lst_b,1),sum(tie_lines[:,0:2] == 
lst_revb,1)]) 
                if(2 in cond): 
                    zm_t.append([zm[j,0],zm[j,1],zm[j,2],zm[j,3]]) 
                    continue 
            for i in range(N): 
                if(zm[j,0] in area[i]): 
                    zm_[i].append([dict[i][zm[j,0]],dict[i][zm[j,1]],zm[j,2],zm[j,3]]) 
    str_line = [] 
    for i in range(N): 
        zm_[i] = Matrix(zm_[i]) 
        str_line.append('line_area'+str(i)+'.txt') 
        putdata(str_line[i],line_area[i]) 
 
    x_ = [] 
    p = [] 
#local state estimation starts here 
#Threads are started to run the local areas simultaneously 
#thread signifies one process 
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    #alpha = [0.98,0.95,0.99,0.5] 
    alpha = [1,1,1,1] 
    for i in range(N): 
        x_.append([]) 
        p.append(0) 
    thr = [] 
    for i in range(N): 
        thr.append(0) 
        thr[i] = 
Thread(None,ise,None,(zm_[i],Matrix(bus_area[i]),str_line[i],bus_area[i].shape[0],dict[i]
[area_slk[i]]-1,0,i,alpha[i])) 
        thr[i].start() 
    for i in range(N): 
        thr[i].join() 
 
#program itself is the main coordinator 
#program waits till all the threads finish operation – characteristic of traditional 
hierarchical state estimator 
    print str( time()-t1)+'\n' 
    x_ = [] 
    flag_delay = 0 
    for i in range(N): 
        x_.append(0) 
        str1 = 'output_ar'+str(i+1)+'.txt' 
        x_[i] = getdata(str1) 
        if(min(x_[i].shape) == 0): 
            print "Area "+str(i+1)+"'s Data Not Arrived... \n" 
            print "Using Data Recived in previous step \n" 
            flag_delay = flag_delay+1 
            x_[i] = getdata('output_old'+str(i+1)+'.txt') 
 
    if(flag_delay == 0): 
        print "Recived all data \n" 
#coordination started 
    print  "coordinating...\n" 
 
    zm_t = Matrix(zm_t) 
    for j in list_bb: 
        dict_bb[k] = j 
        dict_bb_rev[j] = k 
        k = k + 1 
    dict_area = {} 
    bbus = Matrix([[0.0]*bus_area[0].shape[1]]*(k-1)) 
    for j in range(1,k): 
        for i in range(N): 
            if(dict_bb[j] in area[i]): 
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                x_b[0,j-1] = x_[i][0,dict[i][dict_bb[j]]-1] 
                x_b[0,k+j-2] = x_[i][0,dict[i][dict_bb[j]]+bus_area[i].shape[0]-1] 
                dict_area[j] = i+1 
 
    tie_new = tie_lines 
    for j in range(tie_lines.shape[0]): 
        tie_new[j,0] = int(dict_bb_rev[int(tie_new[j,0])]) 
        tie_new[j,1] = int(dict_bb_rev[int(tie_new[j,1])]) 
    bbus = Matrix([[0.0]*busdata.shape[1]]*len(list_bb)) 
    cnt = 0 
    for j in list_bb: 
        bbus[cnt,:] = busdata[j-1,:] 
        bbus[cnt,0] = dict_bb_rev[j] 
        cnt = cnt + 1 
    putdata('tie_new.txt',tie_new) 
    shnt_sus = bbus[:,15] 
    [ybus,lc] = ybus_org('tie_new.txt',shnt_sus,bbus.shape[0]) 
    for j in range(zm_t.shape[0]): 
        zm_t[j,0] = dict_bb_rev[zm_t[j,0]] 
        zm_t[j,1] = dict_bb_rev[zm_t[j,1]] 
    s = argsort(zm_t[:,2],0) 
    zm_t = take(zm_t,s) 
    lst = [0] 
    zm_t = zm_t[:,0,:] 
    min1 = 2 
 
    for x in range(zm_t.shape[0]): 
        if(min1 < zm_t[x,2]): 
            lst = x 
            break 
             
 
    U = U1 
    U = U * pi/180 
    p = 1 
    area_recv = [1.0,1.0,1.0,1.0] 
    for m in range(25): 
        u = concatenate([U[0,0:2],Matrix([30*pi/180]),Matrix(U[0,2])],1) 
        [h,H,Ru] = jacob_coord(zm_t,lst+1,x_b,len(list_bb),4,ybus,lc,u,dict_area,area_recv) 
        Gi = inverse(Matrix(transpose(H))*Ru*H) 
        M = (zm_t[:,3]-h) 
        M = transpose(H)*(Matrix(inverse(Ru))*Matrix(transpose(M))) 
        dx = Gi*M 
        U = U + transpose(dx) 
        p = p + 1 
        if(sum(abs(dx)) <= 0.0001): 
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            print "Coordination Done in "+str(m+1)+" Iterration" 
            break 
    print "Coordination Vector is" 
    print u*180/pi 
    n = 118 
    for i in range(N): 
        x_[i][0,0:bus_area[i].shape[0]] = x_[i][0,0:bus_area[i].shape[0]] + u[0,i] 
    x_lf = getdata('output1.txt') 
    x_con = Matrix([[0.0]*2*n]) 
    for m in range(n): 
        for i in range(N): 
            if(m+1 in area[i]): 
                x_con[0,m] = x_[i][0,dict[i][m+1]-1] 
                x_con[0,n+m] =  x_[i][0,dict[i][m+1]-1+bus_area[i].shape[0]] 
    err = x_con - x_lf 
    err = err / x_lf 
    putdata('error.txt',abs(err)*100) 
    putdata('consolidate.txt',x_con) 
    print str( time() - t1)+'\n' 
    recr = recr + 1 
    print recr 
    U1 = U 
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Appendix D 

Main function for modified coordination algorithm 
 

#program very similar to traditional 
#has separate routine to identify the weigts and probability of delay of area and loss of 
#area 
#starts by splitting areas 
quit = 0 
recr = 1 
U1 = Matrix([36,30,39]) 
while(quit == 0): 
    t1 = time() 
    busdata = getdata('busdata.txt') 
    linedata = getdata('linedata.txt') 
    N =4 
 
    area = [] 
    area.append(range(1,18)+[30,113,117]) 
    area.append(range(18,30)+range(31,38)+[114,115]) 
    area.append(range(38,80)+[116,118]) 
    area.append(range(80,113)) 
    area_1 = [] 
    area_1.append(range(17)+[29,112,116]) 
    area_1.append(range(17,29)+range(30,37)+[113,114]) 
    area_1.append(range(37,79)+[115,117]) 
    area_1.append(range(79,112)) 
 
    area_slk = [10,26,69,89] 
    dict = [] 
    for i in range(N): 
        dict.append({}) 
        cnt = 1 
        for j in area[i]: 
            dict[i][j] = cnt 
            cnt = cnt+1 
    line_area = [] 
    for i in range(N): 
        line_area.append([]) 
 
    line_tie = [] 
    for j in range(linedata.shape[0]): 
        sb = linedata[j,0]  
        eb = linedata[j,1] 
        for ar in range(N): 
            if(dict[ar].get(sb) != None): 
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                if(dict[ar].get(eb) != None): 
                    line_area[ar].append(((linedata[j,:]).asarray())[0,:]) 
                else:      
                    line_tie.append(((linedata[j,:]).asarray())[0,:]) 
                break 
    for i in range(N): 
        line_area[i] = Matrix(line_area[i]) 
 
 
 
    line_tie   = Matrix(line_tie) 
    tie_lines = line_tie 
 
    for i in range(N): 
        for j in range(line_area[i].shape[0]): 
            (line_area[i])[j,0] = dict[i][int((line_area[i])[j,0])]  
            (line_area[i])[j,1] = dict[i][int((line_area[i])[j,1])] 
    bus_area = [] 
    for i in range(N): 
        bus_area.append((take(busdata,Matrix(area_1[i])))[0,:,:]) 
    for i in range(N): 
        for j in range(len(area[i])): 
            bus_area[i][j,0] = dict[i][int(bus_area[i][j,0])] 
 
    list_bb = [] 
 
    #identify the boundary buses 
    for j in range(tie_lines.shape[0]): 
        if(int(tie_lines[j,0])  not in list_bb): 
            list_bb.append(int(tie_lines[j,0])) 
        else: 
            pass 
 
    for j in range(tie_lines.shape[0]): 
        if(int(tie_lines[j,1])  not in list_bb): 
            list_bb.append(int(tie_lines[j,1])) 
        else: 
            pass 
 
    k = len(list_bb) 
    x_b = Matrix([[0.0]*k+[1.0]*k]) 
    k = 1 
    dict_bb = {} 
    dict_bb_rev = {} 
    list_bb.sort() 
    quit = 0 
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    zm = getdata('Measure1.txt') 
    zm_ = [] 
    zm_t = [] 
    for i in range(N): 
        zm_.append([]) 
 
 
    for j in range(zm.shape[0]): 
        if(zm[j,2] in [0,1,4]): 
            if((zm[j,0] in list_bb) and (zm[j,2] != 4)): 
                continue 
            for i in range(N): 
                if(zm[j,0] in area[i]): 
                    zm_[i].append([dict[i][zm[j,0]],dict[i][zm[j,1]],zm[j,2],zm[j,3]]) 
                    break 
        else: 
            if((zm[j,0] in list_bb) and (zm[j,1] in list_bb)): 
                lst_b = [zm[j,0],zm[j,1]] 
                lst_revb = [zm[j,1],zm[j,0]] 
                cond = concatenate([sum(tie_lines[:,0:2] == lst_b,1),sum(tie_lines[:,0:2] == 
lst_revb,1)]) 
                if(2 in cond): 
                    zm_t.append([zm[j,0],zm[j,1],zm[j,2],zm[j,3]]) 
                    continue 
            for i in range(N): 
                if(zm[j,0] in area[i]): 
                    zm_[i].append([dict[i][zm[j,0]],dict[i][zm[j,1]],zm[j,2],zm[j,3]]) 
    str_line = [] 
    for i in range(N): 
        zm_[i] = Matrix(zm_[i]) 
        str_line.append('line_area'+str(i)+'.txt') 
        putdata(str_line[i],line_area[i]) 
 
    x_ = [] 
    p = [] 
    alpha = [0.98,0.95,0.99,0.5] 
    for i in range(N): 
        x_.append([]) 
        p.append(0) 
    thr = [] 
    for i in range(N): 
        thr.append(0) 
        thr[i] = 
Thread(None,ise,None,(zm_[i],Matrix(bus_area[i]),str_line[i],bus_area[i].shape[0],dict[i]
[area_slk[i]]-1,0,i,alpha[i])) 
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        thr[i].start() 
    for i in range(N): 
        thr[i].join() 
 
    print str( time()-t1)+'\n' 
    x_ = [] 
    flag_delay = 0 
    for i in range(N): 
        x_.append(0) 
        str1 = 'output_ar'+str(i+1)+'.txt' 
        x_[i] = getdata(str1) 
        if(min(x_[i].shape) == 0): 
            print "Area "+str(i+1)+"'s Data Not Arrived... \n" 
            print "Using Data Recived in previous step \n" 
            flag_delay = flag_delay+1 
            x_[i] = getdata('output_old'+str(i+1)+'.txt') 
 
    if(flag_delay == 0): 
        print "Recived all data \n" 
 
    print  "coordinating...\n" 
 
    zm_t = Matrix(zm_t) 
    for j in list_bb: 
        dict_bb[k] = j 
        dict_bb_rev[j] = k 
        k = k + 1 
    dict_area = {} 
    bbus = Matrix([[0.0]*bus_area[0].shape[1]]*(k-1)) 
    for j in range(1,k): 
        for i in range(N): 
            if(dict_bb[j] in area[i]): 
                x_b[0,j-1] = x_[i][0,dict[i][dict_bb[j]]-1] 
                x_b[0,k+j-2] = x_[i][0,dict[i][dict_bb[j]]+bus_area[i].shape[0]-1] 
                dict_area[j] = i+1 
 
    tie_new = tie_lines 
    for j in range(tie_lines.shape[0]): 
        tie_new[j,0] = int(dict_bb_rev[int(tie_new[j,0])]) 
        tie_new[j,1] = int(dict_bb_rev[int(tie_new[j,1])]) 
    bbus = Matrix([[0.0]*busdata.shape[1]]*len(list_bb)) 
    cnt = 0 
    for j in list_bb: 
        bbus[cnt,:] = busdata[j-1,:] 
        bbus[cnt,0] = dict_bb_rev[j] 
        cnt = cnt + 1 



 69 

    putdata('tie_new.txt',tie_new) 
    shnt_sus = bbus[:,15] 
    [ybus,lc] = ybus_org('tie_new.txt',shnt_sus,bbus.shape[0]) 
    for j in range(zm_t.shape[0]): 
        zm_t[j,0] = dict_bb_rev[zm_t[j,0]] 
        zm_t[j,1] = dict_bb_rev[zm_t[j,1]] 
    s = argsort(zm_t[:,2],0) 
    zm_t = take(zm_t,s) 
    lst = [0] 
    zm_t = zm_t[:,0,:] 
    min1 = 2 
 
    for x in range(zm_t.shape[0]): 
        if(min1 < zm_t[x,2]): 
            lst = x 
            break 
             
 
    U = U1 
    U = U * pi/180 
    p = 1 
    u = concatenate([U[0,0:2],Matrix([30*pi/180]),Matrix(U[0,2])],1) 
    [h,H] = jacob_coord(zm_t,lst+1,x_b,len(list_bb),4,ybus,lc,u,dict_area) 
    if(recr == 1): 
        Pmin = Matrix([[1e2,0,0],[0,1e2,0],[0,0,1e2]]) 
    M = (zm_t[:,3]-h) 
    K = Pmin*transpose(H)*inverse(H*Pmin*transpose(H) + 
Matrix(identity(zm_t.shape[0])*1e-4)) 
 
    dx = K*transpose(M) 
    U = U + transpose(dx) 
    p = p + 1 
    Pmin = Matrix((identity(U.shape[0]) - K*H)*Pmin) 
    print "Coordination Vector is" 
    u = concatenate([U[0,0:2],Matrix([30*pi/180]),Matrix(U[0,2])],1) 
    print u*180/pi 
    n = 118 
    for i in range(N): 
        x_[i][0,0:bus_area[i].shape[0]] = x_[i][0,0:bus_area[i].shape[0]] + u[0,i] 
    x_lf = getdata('output1.txt') 
    x_con = Matrix([[0.0]*2*n]) 
    for m in range(n): 
        for i in range(N): 
            if(m+1 in area[i]): 
                x_con[0,m] = x_[i][0,dict[i][m+1]-1] 
                x_con[0,n+m] =  x_[i][0,dict[i][m+1]-1+bus_area[i].shape[0]] 
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    err = x_con - x_lf 
    err = err / x_lf 
    putdata('error.txt',abs(err)*100) 
    putdata('consolidate.txt',x_con) 
    print str( time() - t1)+'\n' 
    recr = recr + 1 
    print recr 
    U1 = U 
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Appendix E 

Libraries and main function for inclusion of phasor measurements  

in lower level of estimation 

 

#main function and libraries are changed to accomadate newer measurement type i.e 
#voltage angle measurement 
#Check Jacob – function (jacobian) for updated phasor measurement handling routines 
from fileread1 import * 
from Numeric import * 
from Matrix import * 
from math import * 
from LinearAlgebra import * 
from time import * 
from MLab import angle as arg 
from random import * 
from threading import * 
 
def bernoulli(p): 
    x = random() 
    if(x <= p): 
        return 1 
    else: 
        return 0 
 
def filecopy(str1,str2): 
    file1 = open(str1,'r') 
    file2 = open(str2,'w') 
    for i in file1: 
        file2.write(i) 
    file1.close() 
    file2.close() 
    return 0 
 
def filedel(str1): 
    file1 = open(str1,'w') 
    file1.close() 
 
def jacob(zm,x,n,ybus,lst,lc,slack): 
    H = Matrix([[0.0]*x.shape[1]]*zm.shape[0]) 
    h = Matrix([0.0]*zm.shape[0]) 
    for i in range(lst[1]): 
  sb = int(zm[i,0]) 
  eb = int(zm[i,1]) 
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  H[i,int(eb-1)] = 1.0 
  h[0,i] = x[0,-1+sb] 
 #for i in range(lst[1],lst[2]): 
 #    sb = int(zm[i,0]) 
 #    eb = int(zm[i,1]) 
 #    H[i,int(eb-1)] = 1.0 
 #    h[0,i] = x[0,-1+sb] 
    for i in range(lst[1],lst[2]): 
        sb = int(zm[i,0]) 
        eb = int(zm[i,1]) 
        P = x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*cos(arg(ybus[sb-1,eb-
1])+x[0,eb-1]-x[0,sb-1])  
        Q = -1*(x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*sin(arg(ybus[sb-1,eb-
1])+x[0,eb-1]-x[0,sb-1]) ) 
        H[i,sb-1] = -Q 
        H[i,eb-1] = Q 
        H[i,n+sb-1] = P/x[0,n-1+sb] - (x[0,n-1+sb]*2)*ybus[sb-1,eb-1].real 
        H[i,n+eb-1] = P/x[0,n-1+eb] 
        h[0,i] = P - (x[0,n-1+sb]**2)*ybus[sb-1,eb-1].real 
    for i in range(lst[2],lst[3]): 
        sb = int(zm[i,0]) 
        eb = int(zm[i,1]) 
        sum1 = lc[sb-1,eb-1] 
        P = x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*cos(arg(ybus[sb-1,eb-1])+x[0,-
1+eb]-x[0,-1+sb]) 
        Q = -1*(x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*sin(arg(ybus[sb-1,eb-
1])+x[0,eb-1]-x[0,sb-1])) 
        H[i,sb-1] = P 
        H[i,eb-1] = -P 
        H[i,n+sb-1] = Q/x[0,n-1+sb] - (x[0,n-1+sb]*2)*(-ybus[sb-1,eb-1].imag +sum1) 
        H[i,n+eb-1] = Q/x[0,n-1+eb] 
        h[0,i] = Q - ((x[0,n-1+sb]**2)*(-ybus[sb-1,eb-1].imag + sum1)) 
    for i in range(lst[3],zm.shape[0]): 
        sb = int(zm[i,0]) 
        eb = int(zm[i,1]) 
        H[i,int(n+eb-1)] = 1.0 
        h[0,i] = x[0,n-1+sb] 
    H = take(H,Matrix(range(0,slack)+range(slack+1,n*2)),1) 
    H = H[:,0,:] 
    return h,Matrix(H) 
 
 
 
 
def jacob_coord(zm,lst,x,n,N,ybus,lc,u,dict_area,area_recv): 
    H = Matrix([[0.0]*N]*zm.shape[0]) 
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    h = Matrix([0.0]*zm.shape[0]) 
    R = Matrix([[0.0]*zm.shape[0]]*zm.shape[0]) 
    for i in range(lst):  
        sb = int(zm[i,0]) 
        eb = int(zm[i,1]) 
        P = x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*cos(arg(ybus[sb-1,eb-
1])+x[0,eb-1]+u[0,((dict_area[eb])-1)]-u[0,((dict_area[sb])-1)]-x[0,sb-1]) 
        Q = -1*x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*sin(arg(ybus[sb-1,eb-
1])+x[0,eb-1]+u[0,((dict_area[eb])-1)]-u[0,((dict_area[sb])-1)]-x[0,sb-1]) 
        H[i,dict_area[sb]-1] = -Q 
        H[i,dict_area[eb]-1] = Q  
        h[0,i] = P - (x[0,n-1+sb]**2)*ybus[sb-1,eb-1].real 
        R[i,i] = area_recv[max(dict_area[sb],dict_area[eb])-1] 
    for i in range(lst,zm.shape[0]): 
        sb = int(zm[i,0]) 
        eb = int(zm[i,1]) 
        sum1 = lc[sb-1,eb-1] 
        P = x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*cos(arg(ybus[sb-1,eb-
1])+x[0,eb-1]+u[0,dict_area[eb]-1]-u[0,dict_area[sb]-1]-x[0,sb-1]) 
        Q = -1*x[0,n-1+sb]*x[0,n-1+eb]*abs(ybus[sb-1,eb-1])*sin(arg(ybus[sb-1,eb-
1])+x[0,eb-1]+u[0,dict_area[eb]-1]-u[0,dict_area[sb]-1]-x[0,sb-1]) 
        H[i,dict_area[sb]-1] = P 
        H[i,dict_area[eb]-1] = -P 
        h[0,i] = Q - ((x[0,n-1+sb]**2)*(-ybus[sb-1,eb-1].imag + sum1)) 
        R[i,i] = area_recv[max(dict_area[sb],dict_area[eb])-1] 
    H = take(H,[0,1,3],1) 
    return h,Matrix(H),R 
 
def ybus_org(line1,shnt,n): 
    f = open(line1,'r') 
    ybus = Matrix([[complex(0,0)]*n]*n) 
    lc = [] 
    for line in f: 
        r = float(line.split()[6]) 
        x = float(line.split()[7]) 
        b = float(line.split()[8]) 
        start = int(float(line.split()[0])) 
        end = int(float(line.split()[1])) 
        tap = float(line.split()[14]) 
        if(tap == 0.0): 
            tap = 1 
        else: 
            tap = 1/tap 
        Y = 1/complex(r,x) 
        ybus[start-1,end-1] = ybus[start-1,end-1]-(Y*tap) 
        ybus[end-1,start-1] = ybus[end-1,start-1]-(Y*tap) 



 74 

        ybus[start-1,start-1] = ybus[start-1,start-1]+Y*(tap**2)+complex(0,b/2) 
        ybus[end-1,end-1] = ybus[end-1,end-1]+Y+complex(0,b/2) 
        send_ch = (tap)*(tap-1)*Y 
        rec_ch = (1-tap)*Y 
        lc.append([start-1,end-1,b/2+send_ch.imag]) 
        lc.append([end-1,start-1,b/2+rec_ch.imag]) 
    lin_ch = Matrix([[0.0]*n]*n) 
    for j in lc: 
        lin_ch[j[0],j[1]] = lin_ch[j[0],j[1]]+j[2] 
    f.close() 
    for j in range(n): 
        ybus[j,j] = ybus[j,j] + complex(0,shnt[j,0]) 
    return ybus,lin_ch 
 
 
 
 
 
 
 
def ise(zm,busd,fline,n,slack,ang_ref,area,alpha): 
    old_fl = 'output_old'+str(area+1)+'.txt' 
    org_fl = 'output_ar'+str(area+1)+'.txt' 
    filecopy(org_fl,old_fl) 
    filedel(org_fl) 
    tc = time() 
# This section sorts the measurement matrix according to the type of measurement 
     
    s = argsort(zm[:,2],0) 
    zm = take(zm,s) 
    lst = [0] 
    zm = zm[:,0,:] 
    min1 = 0 
# This loop locates the starting of different kinds of measurements in the Measurement 
matrix 
 
    for x in range(zm.shape[0]): 
        if(min1 < zm[x,2]): 
            lst = lst + [x] 
            min1 = zm[x,2] 
    print lst 
# Adding weights to each measurements from the standard deviation of the measurents 
# Injection get 5 percent errors and Power flow get 1 percent errors and Voltages get 0.5 
percent error 
 
    R_diag = [.005]*(lst[1]-lst[0])+[0.01]*(lst[3]-lst[1])+[.005]*(zm.shape[0]-lst[3]) 
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    R_diag = take(R_diag,s) 
 
#Weighting matrix is initialized to zero as the measurements are uncorrelated 
     
    W = Matrix([[0]*R_diag.shape[0]]*R_diag.shape[0]) 
    for j in range(R_diag.shape[0]): 
        W[j,j] = 1/R_diag[j,0]**2 
 
    for j in range(R_diag.shape[0]): 
        zm[j,3] = zm[j,3] + zm[j,3]*random()*R_diag[j,0]**2 
     
#Number of Buses 
     
    dx = transpose(Matrix([1]*((2*n) -1 ))) 
    x = Matrix([ang_ref]*(n-1)+[1]*n) 
    shnt_sus = busd[:,15] 
    del busd 
    [ybus,lc] = ybus_org(fline,Matrix(shnt_sus),n) 
    p = 1 
    m = 0 
    for m in range(25): 
        x1 = concatenate((x[0,0:slack],Matrix(ang_ref),x[0,slack:(2*n-1)]),1) 
        [h,H] = jacob(zm,x1,n,ybus,lst,lc,slack) 
        Gi = inverse(transpose(H)*W*H) 
        M = (zm[:,3]-h) 
        M = transpose(H)*W*Matrix(transpose(M)) 
        dx = Gi*M 
        x = x + transpose(dx) 
        p = p + 1 
        if(sum(abs(dx)) <= 0.0001): 
            break 
    x = concatenate((x[0,0:slack],Matrix(ang_ref*pi/180),x[0,slack:(2*n-1)]),1) 
    delay_synth = random()*5*(1+bernoulli(alpha)) 
    print delay_synth 
    ##sleep(delay_synth) 
    putdata('output_ar'+str(area+1)+'.txt',x) 
    print 'Area '+str(area+1)+' Converged in '+str(p-1)+' Iterations '+str(time() - tc)+' 
Seconds \n' 
    return x,p 
 
quit = 0 
recr = 1 
U1 = Matrix([30,30,30]) 
while(quit == 0): 
    t1 = time() 
    busdata = getdata('busdata.txt') 
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    linedata = getdata('linedata.txt') 
    N =4 
 
    area = [] 
    area.append(range(1,18)+[30,113,117]) 
    area.append(range(18,30)+range(31,38)+[114,115]) 
    area.append(range(38,80)+[116,118]) 
    area.append(range(80,113)) 
    area_1 = [] 
    area_1.append(range(17)+[29,112,116]) 
    area_1.append(range(17,29)+range(30,37)+[113,114]) 
    area_1.append(range(37,79)+[115,117]) 
    area_1.append(range(79,112)) 
 
    area_slk = [10,26,69,89] 
    dict = [] 
    for i in range(N): 
        dict.append({}) 
        cnt = 1 
        for j in area[i]: 
            dict[i][j] = cnt 
            cnt = cnt+1 
    line_area = [] 
    for i in range(N): 
        line_area.append([]) 
 
    line_tie = [] 
    for j in range(linedata.shape[0]): 
        sb = linedata[j,0]  
        eb = linedata[j,1] 
        for ar in range(N): 
            if(dict[ar].get(sb) != None): 
                if(dict[ar].get(eb) != None): 
                    line_area[ar].append(((linedata[j,:]).asarray())[0,:]) 
                else:      
                    line_tie.append(((linedata[j,:]).asarray())[0,:]) 
                break 
    for i in range(N): 
        line_area[i] = Matrix(line_area[i]) 
 
 
 
    line_tie   = Matrix(line_tie) 
    tie_lines = line_tie 
 
    for i in range(N): 
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        for j in range(line_area[i].shape[0]): 
            (line_area[i])[j,0] = dict[i][int((line_area[i])[j,0])]  
            (line_area[i])[j,1] = dict[i][int((line_area[i])[j,1])] 
    bus_area = [] 
    for i in range(N): 
        bus_area.append((take(busdata,Matrix(area_1[i])))[0,:,:]) 
    for i in range(N): 
        for j in range(len(area[i])): 
            bus_area[i][j,0] = dict[i][int(bus_area[i][j,0])] 
 
    list_bb = [] 
 
    #identify the boundary buses 
    for j in range(tie_lines.shape[0]): 
        if(int(tie_lines[j,0])  not in list_bb): 
            list_bb.append(int(tie_lines[j,0])) 
        else: 
            pass 
 
    for j in range(tie_lines.shape[0]): 
        if(int(tie_lines[j,1])  not in list_bb): 
            list_bb.append(int(tie_lines[j,1])) 
        else: 
            pass 
 
    k = len(list_bb) 
    x_b = Matrix([[0.0]*k+[1.0]*k]) 
    k = 1 
    dict_bb = {} 
    dict_bb_rev = {} 
    list_bb.sort() 
    quit = 0 
    recr = 1 
 
    zm = getdata('Meas_pmu.txt') 
    zm_ = [] 
    zm_t = [] 
    for i in range(N): 
        zm_.append([]) 
 
 
    for j in range(zm.shape[0]): 
        if(zm[j,2] in [0,1,4]): 
            if((zm[j,0] in list_bb) and (zm[j,2] != 4)): 
                continue 
            for i in range(N): 



 78 

                if(zm[j,0] in area[i]): 
                    zm_[i].append([dict[i][zm[j,0]],dict[i][zm[j,1]],zm[j,2],zm[j,3]]) 
                    break 
        else: 
            if((zm[j,0] in list_bb) and (zm[j,1] in list_bb)): 
                lst_b = [zm[j,0],zm[j,1]] 
                lst_revb = [zm[j,1],zm[j,0]] 
                cond = concatenate([sum(tie_lines[:,0:2] == lst_b,1),sum(tie_lines[:,0:2] == 
lst_revb,1)]) 
                if(2 in cond): 
                    zm_t.append([zm[j,0],zm[j,1],zm[j,2],zm[j,3]]) 
                    continue 
            for i in range(N): 
                if(zm[j,0] in area[i]): 
                    zm_[i].append([dict[i][zm[j,0]],dict[i][zm[j,1]],zm[j,2],zm[j,3]]) 
    str_line = [] 
    for i in range(N): 
        zm_[i] = Matrix(zm_[i]) 
        str_line.append('line_area'+str(i)+'.txt') 
        putdata(str_line[i],line_area[i]) 
 
    x_ = [] 
    p = [] 
    #alpha = [0.98,0.95,0.99,0.5] 
    alpha = [1,1,1,1] 
    for i in range(N): 
        x_.append([]) 
        p.append(0) 
    thr = [] 
    for i in range(N): 
        thr.append(0) 
        thr[i] = 
Thread(None,ise,None,(zm_[i],Matrix(bus_area[i]),str_line[i],bus_area[i].shape[0],dict[i]
[area_slk[i]]-1,0,i,alpha[i])) 
        thr[i].start() 
    for i in range(N): 
        thr[i].join() 
 
    print str( time()-t1)+'\n' 
    x_ = [] 
    flag_delay = 0 
    for i in range(N): 
        x_.append(0) 
        str1 = 'output_ar'+str(i+1)+'.txt' 
        x_[i] = getdata(str1) 
        if(min(x_[i].shape) == 0): 
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            print "Area "+str(i+1)+"'s Data Not Arrived... \n" 
            print "Using Data Recived in previous step \n" 
            flag_delay = flag_delay+1 
            x_[i] = getdata('output_old'+str(i+1)+'.txt') 
 
    if(flag_delay == 0): 
        print "Recived all data \n" 
 
    print  "coordinating...\n" 
 
    zm_t = Matrix(zm_t) 
    for j in list_bb: 
        dict_bb[k] = j 
        dict_bb_rev[j] = k 
        k = k + 1 
    dict_area = {} 
    bbus = Matrix([[0.0]*bus_area[0].shape[1]]*(k-1)) 
    for j in range(1,k): 
        for i in range(N): 
            if(dict_bb[j] in area[i]): 
                x_b[0,j-1] = x_[i][0,dict[i][dict_bb[j]]-1] 
                x_b[0,k+j-2] = x_[i][0,dict[i][dict_bb[j]]+bus_area[i].shape[0]-1] 
                dict_area[j] = i+1 
 
    tie_new = tie_lines 
    for j in range(tie_lines.shape[0]): 
        tie_new[j,0] = int(dict_bb_rev[int(tie_new[j,0])]) 
        tie_new[j,1] = int(dict_bb_rev[int(tie_new[j,1])]) 
    bbus = Matrix([[0.0]*busdata.shape[1]]*len(list_bb)) 
    cnt = 0 
    for j in list_bb: 
        bbus[cnt,:] = busdata[j-1,:] 
        bbus[cnt,0] = dict_bb_rev[j] 
        cnt = cnt + 1 
    putdata('tie_new.txt',tie_new) 
    shnt_sus = bbus[:,15] 
    [ybus,lc] = ybus_org('tie_new.txt',shnt_sus,bbus.shape[0]) 
    for j in range(zm_t.shape[0]): 
        zm_t[j,0] = dict_bb_rev[zm_t[j,0]] 
        zm_t[j,1] = dict_bb_rev[zm_t[j,1]] 
    s = argsort(zm_t[:,2],0) 
    zm_t = take(zm_t,s) 
    lst = [0] 
    zm_t = zm_t[:,0,:] 
    min1 = 2 
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    for x in range(zm_t.shape[0]): 
        if(min1 < zm_t[x,2]): 
            lst = x 
            break 
             
 
    U = U1 
    U = U * pi/180 
    p = 1 
    area_recv = [1.0,1.0,1.0,1.0] 
    for m in range(25): 
        u = concatenate([U[0,0:2],Matrix([30*pi/180]),Matrix(U[0,2])],1) 
        [h,H,Ru] = jacob_coord(zm_t,lst+1,x_b,len(list_bb),4,ybus,lc,u,dict_area,area_recv) 
        Gi = inverse(Matrix(transpose(H))*Ru*H) 
        M = (zm_t[:,3]-h) 
        M = transpose(H)*(Matrix(inverse(Ru))*Matrix(transpose(M))) 
        dx = Gi*M 
        U = U + transpose(dx) 
        p = p + 1 
        if(sum(abs(dx)) <= 0.0001): 
            print "Coordination Done in "+str(m+1)+" Iterration" 
            break 
    print "Coordination Vector is" 
    print u*180/pi 
    n = 118 
    for i in range(N): 
        x_[i][0,0:bus_area[i].shape[0]] = x_[i][0,0:bus_area[i].shape[0]] + u[0,i] 
    x_lf = getdata('output1.txt') 
    x_con = Matrix([[0.0]*2*n]) 
    for m in range(n): 
        for i in range(N): 
            if(m+1 in area[i]): 
                x_con[0,m] = x_[i][0,dict[i][m+1]-1] 
                x_con[0,n+m] =  x_[i][0,dict[i][m+1]-1+bus_area[i].shape[0]] 
    err = x_con - x_lf 
    err = err / x_lf 
    putdata('error.txt',abs(err)*100) 
    putdata('consolidate.txt',x_con) 
    print str( time() - t1)+'\n' 
    recr = recr + 1 
    print recr 
    U1 = U 
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Appendix F 

Main function for phasor measurements  

implementation in coordination level 

 
 
#This program is for synchronized phasor measurements in coordination level 
#the function has linear coordinator 
quit = 0 
recr = 1 
U1 = Matrix([30,30,30]) 
while(quit == 0): 
    t1 = time() 
    busdata = getdata('busdata.txt') 
    linedata = getdata('linedata.txt') 
    N =4 
 
    area = [] 
    area.append(range(1,18)+[30,113,117]) 
    area.append(range(18,30)+range(31,38)+[114,115]) 
    area.append(range(38,80)+[116,118]) 
    area.append(range(80,113)) 
    area_1 = [] 
    area_1.append(range(17)+[29,112,116]) 
    area_1.append(range(17,29)+range(30,37)+[113,114]) 
    area_1.append(range(37,79)+[115,117]) 
    area_1.append(range(79,112)) 
 
    area_slk = [10,26,69,89] 
    dict = [] 
    for i in range(N): 
        dict.append({}) 
        cnt = 1 
        for j in area[i]: 
            dict[i][j] = cnt 
            cnt = cnt+1 
    line_area = [] 
    for i in range(N): 
        line_area.append([]) 
 
    line_tie = [] 
    for j in range(linedata.shape[0]): 
        sb = linedata[j,0]  
        eb = linedata[j,1] 
        for ar in range(N): 
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            if(dict[ar].get(sb) != None): 
                if(dict[ar].get(eb) != None): 
                    line_area[ar].append(((linedata[j,:]).asarray())[0,:]) 
                else:      
                    line_tie.append(((linedata[j,:]).asarray())[0,:]) 
                break 
    for i in range(N): 
        line_area[i] = Matrix(line_area[i]) 
 
 
 
    line_tie   = Matrix(line_tie) 
    tie_lines = line_tie 
 
    for i in range(N): 
        for j in range(line_area[i].shape[0]): 
            (line_area[i])[j,0] = dict[i][int((line_area[i])[j,0])]  
            (line_area[i])[j,1] = dict[i][int((line_area[i])[j,1])] 
    bus_area = [] 
    for i in range(N): 
        bus_area.append((take(busdata,Matrix(area_1[i])))[0,:,:]) 
    for i in range(N): 
        for j in range(len(area[i])): 
            bus_area[i][j,0] = dict[i][int(bus_area[i][j,0])] 
 
    list_bb = [] 
 
    #identify the boundary buses 
    for j in range(tie_lines.shape[0]): 
        if(int(tie_lines[j,0])  not in list_bb): 
            list_bb.append(int(tie_lines[j,0])) 
        else: 
            pass 
 
    for j in range(tie_lines.shape[0]): 
        if(int(tie_lines[j,1])  not in list_bb): 
            list_bb.append(int(tie_lines[j,1])) 
        else: 
            pass 
 
    k = len(list_bb) 
    x_b = Matrix([[0.0]*k+[1.0]*k]) 
    k = 1 
    dict_bb = {} 
    dict_bb_rev = {} 
    list_bb.sort() 
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    quit = 0 
    recr = 1 
 
    zm = getdata('Meas_pmu.txt') 
    zm_ = [] 
    zm_t = [] 
    for i in range(N): 
        zm_.append([]) 
 
 
    for j in range(zm.shape[0]): 
        if(zm[j,2] in [0,1,4]): 
            if((zm[j,0] in list_bb) and (zm[j,2] != 4)): 
                continue 
            for i in range(N): 
                if(zm[j,0] in area[i]): 
                    zm_[i].append([dict[i][zm[j,0]],dict[i][zm[j,1]],zm[j,2],zm[j,3]]) 
                    break 
        else: 
            if((zm[j,0] in list_bb) and (zm[j,1] in list_bb)): 
                lst_b = [zm[j,0],zm[j,1]] 
                lst_revb = [zm[j,1],zm[j,0]] 
                cond = concatenate([sum(tie_lines[:,0:2] == lst_b,1),sum(tie_lines[:,0:2] == 
lst_revb,1)]) 
                if(2 in cond): 
                    zm_t.append([zm[j,0],zm[j,1],zm[j,2],zm[j,3]]) 
                    continue 
            for i in range(N): 
                if(zm[j,0] in area[i]): 
                    zm_[i].append([dict[i][zm[j,0]],dict[i][zm[j,1]],zm[j,2],zm[j,3]]) 
    str_line = [] 
    for i in range(N): 
        zm_[i] = Matrix(zm_[i]) 
        str_line.append('line_area'+str(i)+'.txt') 
        putdata(str_line[i],line_area[i]) 
 
    x_ = [] 
    p = [] 
    #alpha = [0.98,0.95,0.99,0.5] 
    alpha = [1,1,1,1] 
    for i in range(N): 
        x_.append([]) 
        p.append(0) 
    thr = [] 
    for i in range(N): 
        thr.append(0) 
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        thr[i] = 
Thread(None,ise,None,(zm_[i],Matrix(bus_area[i]),str_line[i],bus_area[i].shape[0],dict[i]
[area_slk[i]]-1,0,i,alpha[i])) 
        thr[i].start() 
    for i in range(N): 
        thr[i].join() 
 
    print str( time()-t1)+'\n' 
    x_ = [] 
    flag_delay = 0 
    for i in range(N): 
        x_.append(0) 
        str1 = 'output_ar'+str(i+1)+'.txt' 
        x_[i] = getdata(str1) 
        if(min(x_[i].shape) == 0): 
            print "Area "+str(i+1)+"'s Data Not Arrived... \n" 
            print "Using Data Recived in previous step \n" 
            flag_delay = flag_delay+1 
            x_[i] = getdata('output_old'+str(i+1)+'.txt') 
 
    if(flag_delay == 0): 
        print "Recived all data \n" 
 
    print  "coordinating...\n" 
 
    zm_t = Matrix(zm_t) 
    for j in list_bb: 
        dict_bb[k] = j 
        dict_bb_rev[j] = k 
        k = k + 1 
    dict_area = {} 
    bbus = Matrix([[0.0]*bus_area[0].shape[1]]*(k-1)) 
    for j in range(1,k): 
        for i in range(N): 
            if(dict_bb[j] in area[i]): 
                x_b[0,j-1] = x_[i][0,dict[i][dict_bb[j]]-1] 
                x_b[0,k+j-2] = x_[i][0,dict[i][dict_bb[j]]+bus_area[i].shape[0]-1] 
                dict_area[j] = i+1 
 
    tie_new = tie_lines 
    for j in range(tie_lines.shape[0]): 
        tie_new[j,0] = int(dict_bb_rev[int(tie_new[j,0])]) 
        tie_new[j,1] = int(dict_bb_rev[int(tie_new[j,1])]) 
    bbus = Matrix([[0.0]*busdata.shape[1]]*len(list_bb)) 
    cnt = 0 
    for j in list_bb: 



 85 

        bbus[cnt,:] = busdata[j-1,:] 
        bbus[cnt,0] = dict_bb_rev[j] 
        cnt = cnt + 1 
    putdata('tie_new.txt',tie_new) 
    shnt_sus = bbus[:,15] 
    [ybus,lc] = ybus_org('tie_new.txt',shnt_sus,bbus.shape[0]) 
    for j in range(zm_t.shape[0]): 
        zm_t[j,0] = dict_bb_rev[zm_t[j,0]] 
        zm_t[j,1] = dict_bb_rev[zm_t[j,1]] 
    s = argsort(zm_t[:,2],0) 
    zm_t = take(zm_t,s) 
    lst = [0] 
    zm_t = zm_t[:,0,:] 
    min1 = 2 
 
    for x in range(zm_t.shape[0]): 
        if(min1 < zm_t[x,2]): 
            lst = x 
            break 
             
#coordination starts here 
#linear coordinator has been used 
#availability of synchronized phasor measurements 
 
    U = U1 
    U = U * pi/180 
    p = 1 
    area_recv = [1.0,1.0,1.0,1.0] 
    sel_pmu = [30,33,68,80] 
    x_lf = getdata('output1.txt') 
  
    u = concatenate([U[0,0:2],Matrix([30*pi/180]),Matrix(U[0,2])],1) 
    for pmno in range(N): 
  #print pmno,dict[pmno] 
     u[0,pmno] = x_lf[0,sel_pmu[pmno]-1] - 
x_[pmno][0,dict[pmno][sel_pmu[pmno]]-1] 
  
    print "Coordination Vector is" 
    print u*180/pi 
    n = 118 
    for i in range(N): 
        x_[i][0,0:bus_area[i].shape[0]] = x_[i][0,0:bus_area[i].shape[0]] + u[0,i] 
    x_con = Matrix([[0.0]*2*n]) 
    for m in range(n): 
        for i in range(N): 
            if(m+1 in area[i]): 
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                x_con[0,m] = x_[i][0,dict[i][m+1]-1] 
                x_con[0,n+m] =  x_[i][0,dict[i][m+1]-1+bus_area[i].shape[0]] 
    err = x_con - x_lf 
    err = err / x_lf 
    putdata('error.txt',abs(err)*100) 
    putdata('consolidate.txt',x_con) 
    print str( time() - t1)+'\n' 
    recr = recr + 1 
    print recr 
    U1 = U 
    quit = 1 
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Appendix G 

Parameters used in the implementation of the algorithms 

 

Measurement error – Power flows – 5% 
Measurement error – Power injections – 7% 
Measurement error – Voltage Magnitudes – 1% 
 
 
Modified coordination algorithm: - IEEE 118 
Weights for area delayed by single step – 90% 
Weights for area delayed by two steps – 75% 
  
Probabilities of Delay of areas – IEEE 118 
Area 1 90% 
Area 2 90% 
Area 3 95% 
Area 4 80% 
 
Justification for use of specific value is specified in chapter IV
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