3-2016

Stability of copper(II) complexes of sulfur and selenium antioxidants

Jaime M. Murphy
Clemson University

Brian A. Powell
Clemson University

Julia Brumaghim
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/cars

Part of the Chemistry Commons

Recommended Citation
https://tigerprints.clemson.edu/cars/7

This Poster is brought to you for free and open access by the Student Works at TigerPrints. It has been accepted for inclusion in Chemistry Annual Research Symposium by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.
The data was analyzed and speciation models determined using ICP-OES. The copper solutions were then titrated with sulfur and selenium antioxidants in aqueous conditions. Binding of sulfur and selenium antioxidants in 1:2 ratios of metal:ligand with metal concentrations at 1.0 mM were added to bring the solution pH down to 2-3 and were bubbled with 0.1 M HClO₄. 0.1 M HCl was added to the titration solutions to maintain a constant ionic strength of 0.1 M NaClO₄. Precipitation occurred above pH=7.

Results and Discussion
- For all of the Cu²⁺ amino acid solutions analyzed, models indicated that three species were present through the titration – CuL⁺, Cu₂L⁺, and a constant ionic strength of 0.1 M NaClO₄.
- For the Cu²⁺-methimazole solution, two species were identified, [Cu(MetIm)₂]⁺ and [Cu₂(MetIm)₂]⁺ (Figure 4), but precipitation occurs at pH=6, indicating a high stability for the 1:2 complex as the solution approaches biological concentrations.
- A weak correlation trend exists between the stability of the ML₂ species and the antioxidant abilities of the amino acids (Figure 7).
- Little difference is observed in stability of Cu²⁺-amino acid complexes (Table 1), regardless of the thioether/selenoether moiety, likely indicating primarily O and N interactions with the metal center.
- Glycine, the only amino acid tested without sulfur or selenium, had the highest stability for the ML₂ species.
- For the methimazole compounds, the dmit only weakly associates with Cu²⁺, but the [Cu₂(MetIm)₂]⁻ and [Cu₂(MeCys)₂]⁻ species are very stable.

Antioxidant Capability vs. Stability

<table>
<thead>
<tr>
<th>Ligand (L)</th>
<th>LH (pKᵢ)</th>
<th>LH₂ (pKᵢ)</th>
<th>CuL (log β)</th>
<th>Cu₂L (log β)</th>
<th>IC₅₀ (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>2.28±0.04</td>
<td>9.67±0.02</td>
<td>8.26±0.01</td>
<td>15.10±0.05</td>
<td>22.2±1.1</td>
</tr>
<tr>
<td>Met</td>
<td>2.09±0.01</td>
<td>9.20±0.01</td>
<td>7.96±0.05</td>
<td>14.65±0.07</td>
<td>11.0±0.02</td>
</tr>
<tr>
<td>SeMet</td>
<td>2.05±0.01</td>
<td>9.29±0.02</td>
<td>8.02±0.02</td>
<td>14.6±0.02</td>
<td>25.1±0.01</td>
</tr>
<tr>
<td>MeCys</td>
<td>2.02±0.05</td>
<td>8.79±0.02</td>
<td>8.06±0.05</td>
<td>14.47±0.06</td>
<td>10.0±0.02</td>
</tr>
<tr>
<td>SeMeCys</td>
<td>2.3±0.2</td>
<td>8.86±0.02</td>
<td>8.1±0.01</td>
<td>14.5±0.03</td>
<td>8.64±0.02</td>
</tr>
<tr>
<td>Dmit</td>
<td></td>
<td></td>
<td>1.9±0.1</td>
<td></td>
<td>1500±0.3</td>
</tr>
<tr>
<td>Metim</td>
<td>11.3±0.01</td>
<td>-</td>
<td>10.8±0.1</td>
<td>20.1±0.1</td>
<td>102±3.0</td>
</tr>
</tbody>
</table>

References

Acknowledgements
We thank the National Science Foundation (CHE11213912) and the Clemson University Chemistry Department for financial support.