THE
GRADUATE SCHOOL
ANNOUNCEMENTS
1987-88
CLEMSON UNIVERSITY
PURPOSE OF CATALOG

The purpose of this catalog is to provide prospective students with a general description of Clemson University and give detailed information regarding the various colleges and departments within the University and curricula offered by the University. Inasmuch as the educational process necessitates change, the information and educational requirements in this catalog represent a flexible program which may be altered where such alterations are thought to be in the mutual interest of the University and its students.

The provisions of this catalog do not constitute any offer for a contract which may be accepted by students through registration and enrollment in the University. The University reserves the right to change without notice any fee, provision, offering or requirement in this catalog and to determine whether a student has satisfactorily met its requirements for admission or graduation. The University further reserves the right to require a student to withdraw from the University for cause at any time.

Each curriculum (GS Form 2) shall be governed by the requirements in effect on the date of enrollment. If a student withdraws from the University and subsequently returns or does not remain continuously enrolled (summers excluded), the requirements in effect at the time of return will govern.

STUDENT RESPONSIBILITY

All colleges and departments establish certain academic requirements that must be met before a degree is granted. Advisers, department heads and deans are available to help the student understand and arrange to meet these requirements, but the student is responsible for fulfilling them. If, at the end of a student's course of study the requirements for graduation have not been satisfied, the degree will not be granted. For this reason, it is important for each student to acquaint himself or herself with all academic requirements throughout his or her college career and to be responsible for completing all such requirements within prescribed deadlines and time limits.

Except as they apply to undergraduate students only, graduate students are subject to the usual procedures and regulations of the University as listed in the general catalog, Clemson University Announcements, and in particular to those dealing with academic dishonesty.

EQUAL OPPORTUNITY IN PROGRAMS AND ACTIVITIES

Federal laws prohibit discrimination under programs and activities receiving Federal financial assistance. The statutes listed below are applicable to Clemson University and provide in part:

Title VI of the Civil Rights Act of 1964

"No person in the United States shall, on the ground of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance."

Title IX of the Education Amendments of 1972

"No person in the United States shall, on the basis of sex, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any education program or activity receiving Federal financial assistance."

Section 504 of the Rehabilitation Act of 1973

"No otherwise qualified handicapped individual in the United States shall, solely by reason of his handicap, be excluded from the participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance."

Clemson University conducts its programs and activities involving admission and treatment of students, employment, teaching, research and public service in a nondiscriminatory manner as prescribed by Federal law and regulation.

Inquiries concerning the above may be addressed to:

President
Clemson University
Clemson, South Carolina 29633-0992

Director
Office for Civil Rights
Department of Education
Washington, D.C. 20201
THE
GRADUATE SCHOOL
ANNOUNCEMENTS
1987-88
CLEMSON UNIVERSITY
DEADLINE DATES
For those who expect to receive a graduate degree on:

<table>
<thead>
<tr>
<th>Last day for:</th>
<th>August 8, 1987</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Filing Form GS2, Graduate Degree Curriculum</td>
<td>May 8, 1987</td>
</tr>
<tr>
<td>†Filing Form GS4, Admission to Candidacy and Diploma Order</td>
<td>June 8, 1987</td>
</tr>
<tr>
<td>Oral and/or written examination</td>
<td>July 17, 1987</td>
</tr>
<tr>
<td>Review by the Graduate School, of completed (signed) theses and dissertations, prior to duplication</td>
<td>July 24, 1987</td>
</tr>
<tr>
<td>Final submission of theses and dissertations to the Graduate School Office</td>
<td>July 31, 1987</td>
</tr>
</tbody>
</table>

CHECKLIST ON GRADUATE SCHOOL PROCEDURES
The graduate student should carefully note this checklist as well as the above deadline dates.

1. Select (in consultation with the appropriate department head) a major advisor and advisory committee. (See page 41.)
2. Submit Graduate Degree Curriculum (Form GS2). (See page 42.)
3. Satisfy any prescribed language requirement and comprehensive examination prerequisite to admission to candidacy. (See pages 51 and 55.)
4. Apply for admission to candidacy for a degree and order diploma (Form GS4) after completing at least half the prescribed course work. (See page 42.)
5. Submit completed thesis (if required) or dissertation to research advisor and arrange for final examination by the advisory committee. (See pages 48, 52 and 56.)
6. Arrange for review of thesis or dissertation with the Graduate School prior to duplication. (See page 48.)
7. Pay binding fee to the bursar and submit approved copies of thesis or dissertation to the Graduate School. Doctoral candidates pay for abstract publication in Dissertation Abstracts and microfilming of dissertation. (See page 48.)

The final responsibility for following Graduate School procedures rests with the graduate student. Special problems should be referred to the graduate dean.

*Although Form GS2 will be accepted up through the deadline dates listed, students are encouraged to submit this form within the time frame suggested under "Filing of a Graduate Degree Curriculum" on page 42. The filing dates are deadlines for signed forms to be in the Graduate School Office. A $25.00 late fee will be assessed a student whose form is submitted after the deadline.
†These deadline dates refer to filing, with the Graduate School, of forms carrying all required signatures. A $25.00 late fee will be assessed a student whose form is submitted after the deadline.
December 17, 1987 May 6, 1988 August 6, 1988
August 7, 1987 December 17, 1987 May 6, 1988
December 3, 1987 April 22, 1988 July 22, 1988

ORGANIZATION OF THIS PUBLICATION

The first 56 pages of the Graduate School Announcements are confined to a description of the University, a listing of academic and administrative officers, and a description of Graduate School policies and procedures. Beginning on page 56 are the graduate programs and courses offered under the colleges of Agricultural Sciences, Architecture, Commerce and Industry, Education, Engineering, Forest and Recreation Resources, Liberal Arts, Nursing and Sciences. The programs and courses are listed alphabetically within each college.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEADLINE DATES</td>
<td>2</td>
</tr>
<tr>
<td>CHECKLIST ON GRADUATE SCHOOL PROCEDURES</td>
<td>2</td>
</tr>
<tr>
<td>ORGANIZATION OF THIS PUBLICATION</td>
<td>3</td>
</tr>
<tr>
<td>UNIVERSITY CALENDAR</td>
<td>7</td>
</tr>
<tr>
<td>THE UNIVERSITY</td>
<td>10</td>
</tr>
<tr>
<td>Introduction</td>
<td>10</td>
</tr>
<tr>
<td>University Government and Administration</td>
<td>10</td>
</tr>
<tr>
<td>Commission on Graduate Studies and Research</td>
<td>12</td>
</tr>
<tr>
<td>Graduate School</td>
<td>12</td>
</tr>
<tr>
<td>Clemson University Libraries</td>
<td>17</td>
</tr>
<tr>
<td>DCIT Computing Facilities</td>
<td>18</td>
</tr>
<tr>
<td>Other Research Facilities</td>
<td>19</td>
</tr>
<tr>
<td>STUDENT SERVICES</td>
<td>20</td>
</tr>
<tr>
<td>Housing</td>
<td>20</td>
</tr>
<tr>
<td>Food Service</td>
<td>21</td>
</tr>
<tr>
<td>Handicapped Students</td>
<td>22</td>
</tr>
<tr>
<td>Health Services</td>
<td>22</td>
</tr>
<tr>
<td>International Students and Visiting Scholars</td>
<td>23</td>
</tr>
<tr>
<td>GRADUATE EXPENSES</td>
<td>24</td>
</tr>
<tr>
<td>Academic Expenses, 1987-88</td>
<td>24</td>
</tr>
<tr>
<td>Fiscal Policy</td>
<td>27</td>
</tr>
<tr>
<td>STUDENT EMPLOYMENT AND FINANCIAL ASSISTANCE</td>
<td>29</td>
</tr>
<tr>
<td>Graduate Appointments</td>
<td>29</td>
</tr>
<tr>
<td>Hourly Employment</td>
<td>31</td>
</tr>
<tr>
<td>Other Funds</td>
<td>32</td>
</tr>
<tr>
<td>Cooperative Education Program</td>
<td>32</td>
</tr>
<tr>
<td>Special Employment Restrictions</td>
<td>32</td>
</tr>
<tr>
<td>ADMISSION PROCEDURES AND REQUIREMENTS</td>
<td>33</td>
</tr>
<tr>
<td>Procedures</td>
<td>33</td>
</tr>
<tr>
<td>Academic Requirements</td>
<td>34</td>
</tr>
<tr>
<td>Medical Requirements</td>
<td>36</td>
</tr>
<tr>
<td>Admission Classifications</td>
<td>37</td>
</tr>
<tr>
<td>Enrollment in Graduate Courses</td>
<td>39</td>
</tr>
<tr>
<td>GENERAL GRADUATE SCHOOL REGULATIONS</td>
<td>40</td>
</tr>
<tr>
<td>Procedures to Follow in Pursuing a Degree</td>
<td>41</td>
</tr>
<tr>
<td>Academic Regulations</td>
<td>43</td>
</tr>
<tr>
<td>Academic Research</td>
<td>48</td>
</tr>
<tr>
<td>DEGREE REQUIREMENTS</td>
<td>50</td>
</tr>
<tr>
<td>Master’s Degree</td>
<td>50</td>
</tr>
<tr>
<td>Specialist in Education Degree</td>
<td>52</td>
</tr>
<tr>
<td>Doctor of Philosophy Degree</td>
<td>52</td>
</tr>
<tr>
<td>Doctor of Education Degree</td>
<td>56</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

GRADUATE PROGRAMS AND COURSE OFFERINGS

Explanation of Course Listings .. 56
College of Agricultural Sciences ... 60
Agricultural Economics ... M.Ag., M.S. 60
 Community and Rural Development (no major or minor) 64
 Rural Sociology (no major or minor) ... 65
Agricultural Education ... M.Ag.Ed. 65
Agricultural Mechanization .. M.Ag. 68
Agronomy ... M.Ag., M.S., Ph.D. 69
Animal and Food Industries ... M.S. 71
Animal Physiology ... Ph.D. 72
Animal Science .. M.Ag. 75
Applied Economics ... Ph.D. 76
Aquaculture, Fisheries and Wildlife Biology M.S. 76
Dairy Science .. M.Ag. 78
Entomology ... M.Ag., M.S., Ph.D. 79
Environmental Science .. Minor 81
Experimental Statistics .. Minor 81
Food Science ... Minor 82
Food Technology .. Ph.D. 84
Genetics .. Minor 84
Horticulture ... M.Ag., M.S. 85
Nutrition .. M.N.S., M.S., Ph.D. 88
Plant Pathology .. M.Ag., M.S., Ph.D. 92
 Integrated Pest Management (no major or minor) 93
Plant Physiology ... Ph.D. 94
Poultry Science .. M.Ag. 95
College of Architecture .. 98
 Architecture .. M.Arch. 99
 Building Science and Management ... M.B.S.M. 102
 City and Regional Planning .. M.C.R.P. 104
 Visual Arts ... M.F.A. 108
 Art and Architectural History (no major or minor) 110
College of Commerce and Industry ... 114
 Accounting .. M.P.Acc. 114
 Business Administration ... M.B.A.* 116
 Economics ... M.A. 121
 Finance (no major or minor) ... 125
 Industrial Management ... M.S., Ph.D. 126
 Management (no major or minor) ... 126

*The Master of Business Administration (MBA) is offered by Clemson University, and courses in this program are taught on the Furman University campus, Greenville, S.C., by the faculty of both universities. Requests for information concerning this program should be addressed to the Director, Clemson-at-Furman MBA program, Furman University, Greenville, S.C. 29613, (803) 294-2090.
<table>
<thead>
<tr>
<th>Department/Program</th>
<th>Degree(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital Administration (no major or minor)</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>Management Science</td>
<td>Ph.D.</td>
<td>131</td>
</tr>
<tr>
<td>Marketing (no major or minor)</td>
<td></td>
<td>133</td>
</tr>
<tr>
<td>Textile and Polymer Science</td>
<td>Ph.D.</td>
<td>134</td>
</tr>
<tr>
<td>Textile Chemistry</td>
<td>M.S.</td>
<td>135</td>
</tr>
<tr>
<td>Textile Science</td>
<td>M.S.</td>
<td>136</td>
</tr>
<tr>
<td>College of Education</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Administration and Supervision</td>
<td>M.Ed., Ed.S.</td>
<td>141</td>
</tr>
<tr>
<td>Counseling and Guidance Services</td>
<td>M.Ed.</td>
<td>140</td>
</tr>
<tr>
<td>Elementary Education</td>
<td>M.Ed.</td>
<td>141</td>
</tr>
<tr>
<td>Industrial Education</td>
<td>M.In.Ed.</td>
<td>154</td>
</tr>
<tr>
<td>Reading</td>
<td>M.Ed.</td>
<td>141</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>M.Ed.</td>
<td>141</td>
</tr>
<tr>
<td>Special Education</td>
<td>M.Ed.</td>
<td>141</td>
</tr>
<tr>
<td>Vocational/Technical Education</td>
<td>Ed.D.</td>
<td>157</td>
</tr>
<tr>
<td>College of Engineering</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>162</td>
</tr>
<tr>
<td>Bioengineering</td>
<td>M.S., Ph.D.</td>
<td>164</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>167</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>169</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>172</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>M.S., Ph.D.</td>
<td>179</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>184</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>M.S., Ph.D.</td>
<td>192</td>
</tr>
<tr>
<td>Environmental Systems Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>193</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>M.S., Ph.D.</td>
<td>198</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
<td>202</td>
</tr>
<tr>
<td>College of Forest and Recreation Resources</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>Forestry</td>
<td>M.For., M.S., Ph.D.</td>
<td>210</td>
</tr>
<tr>
<td>Parks, Recreation and Tourism</td>
<td></td>
<td>213</td>
</tr>
<tr>
<td>Management</td>
<td>M.P.R.T.M., M.S., Ph.D.</td>
<td>213</td>
</tr>
<tr>
<td>College of Liberal Arts</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>English</td>
<td>M.A.</td>
<td>220</td>
</tr>
<tr>
<td>History</td>
<td>M.A.</td>
<td>224</td>
</tr>
<tr>
<td>Languages (no major or minor)</td>
<td></td>
<td>226</td>
</tr>
<tr>
<td>Political Science (no major or minor)</td>
<td></td>
<td>227</td>
</tr>
<tr>
<td>Psychology (no major or minor)</td>
<td></td>
<td>227</td>
</tr>
<tr>
<td>Sociology</td>
<td>Minor</td>
<td>228</td>
</tr>
<tr>
<td>College of Nursing</td>
<td></td>
<td>232</td>
</tr>
<tr>
<td>Nursing</td>
<td>M.S.</td>
<td>232</td>
</tr>
<tr>
<td>College of Sciences</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>M.S., Ph.D.</td>
<td>238</td>
</tr>
<tr>
<td>Biological Sciences (no major or minor)</td>
<td></td>
<td>241</td>
</tr>
<tr>
<td>Biology (no major or minor)</td>
<td></td>
<td>241</td>
</tr>
<tr>
<td>Botany</td>
<td>M.S.</td>
<td>244</td>
</tr>
</tbody>
</table>
CLEMSON UNIVERSITY CALENDAR
SUMMER 1987—SUMMER 1988

FIRST SIX-WEEKS SUMMER SESSION 1987

May 18, M Registration
May 19, Tu Classes begin; late registration fee applies
May 20, W Last day to register; last day to add a subject
May 26, Tu Last day to drop a subject without record of withdrawal
June 8, M Last day to order diploma for August graduation
June 10, W Last day to drop a subject or withdraw from the University without receiving final grades
June 23, Tu Examinations

SECOND SIX-WEEKS SUMMER SESSION 1987

June 29, M Orientation
June 30, Tu Registration
July 1, W Classes begin; late registration fee applies
July 2, Th Last day to register; last day to add a subject
July 6, M Holiday
July 9, Th Last day to drop a subject without record of withdrawal
July 11, S Classes meet
July 24, F Last day to drop a subject or withdraw from the University without receiving final grades
July 31, F Last day to pre-register for fall semester
August 5, W Examinations
August 8, S Graduation
FALL SEMESTER 1987

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 17, M</td>
<td>Orientation</td>
</tr>
<tr>
<td>August 18, Tu</td>
<td>Registration</td>
</tr>
<tr>
<td>August 19, W</td>
<td>Late registration</td>
</tr>
<tr>
<td>August 20, Th</td>
<td>Classes begin; late registration fee applies</td>
</tr>
<tr>
<td>August 26, W</td>
<td>Last day to register; last day to add a subject</td>
</tr>
<tr>
<td>September 9, W</td>
<td>Last day to order diploma for December graduation</td>
</tr>
<tr>
<td>September 16, W</td>
<td>Last day to drop a subject without record of withdrawal</td>
</tr>
<tr>
<td>October 26-27, M-Tu</td>
<td>Fall Break</td>
</tr>
<tr>
<td>October 28, W</td>
<td>Last day to drop a subject or withdraw from the University without receiving final grades based on full semester requirements</td>
</tr>
<tr>
<td>November 2-6, M-F</td>
<td>Pre-registration for spring term</td>
</tr>
<tr>
<td>November 26-27, Th-F</td>
<td>Thanksgiving holidays</td>
</tr>
<tr>
<td>December 7-12, M-S</td>
<td>Examinations</td>
</tr>
<tr>
<td>December 16, W</td>
<td>Last day to pre-register for spring semester</td>
</tr>
<tr>
<td>December 17, Th</td>
<td>Graduation</td>
</tr>
</tbody>
</table>

SPRING SEMESTER 1988

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 4, M</td>
<td>Orientation; registration</td>
</tr>
<tr>
<td>January 5, Tu</td>
<td>Late registration</td>
</tr>
<tr>
<td>January 6, W</td>
<td>Classes begin; late registration fee applies</td>
</tr>
<tr>
<td>January 12, Tu</td>
<td>Last day to register; last day to add a subject</td>
</tr>
<tr>
<td>January 26, Tu</td>
<td>Last day to order diploma for May commencement</td>
</tr>
<tr>
<td>February 2, Tu</td>
<td>Last day to drop a subject without record of withdrawal</td>
</tr>
<tr>
<td>March 11, F</td>
<td>Last day to drop a subject or withdraw from the University without receiving final grades based on full semester requirements</td>
</tr>
<tr>
<td>March 14-18, M-F</td>
<td>Spring Break</td>
</tr>
<tr>
<td>April 4-8, M-F</td>
<td>Pre-registration</td>
</tr>
<tr>
<td>April 9, S</td>
<td>Honors and Awards Day</td>
</tr>
<tr>
<td>April 25-30, M-S</td>
<td>Examinations</td>
</tr>
<tr>
<td>May 6, F</td>
<td>Commencement</td>
</tr>
</tbody>
</table>

FIRST SIX-WEEKS SUMMER SESSION 1988

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 16, M</td>
<td>Registration</td>
</tr>
<tr>
<td>May 17, Tu</td>
<td>Classes begin; late registration fee applies</td>
</tr>
</tbody>
</table>
May 18, W Last day to register; last day to add a subject
May 24, Tu Last day to drop a subject without record of withdrawal
June 6, M Last day to order diploma for August graduation
June 9, Th Last day to drop a subject or withdraw from the University without receiving final grades
June 21, Tu Examinations

SECOND SUMMER SESSION 1988

June 27, M Orientation
June 28, Tu Registration
June 29, W Classes begin; late registration fee applies
June 30, Th Last day to register; last day to add a subject
July 4, M Independence Day Holiday
July 7, Th Last day to drop a subject without record of withdrawal
July 9, S Classes meet
July 22, F Last day to drop subject or withdraw from the University without receiving final grades
July 29, F Last day to pre-register for fall semester
August 3, W Examinations
August 6, S Graduation
INTRODUCTION

Clemson University is a coeducational, land-grant university offering 64 fields of undergraduate study and 101 degree programs in 61 areas of graduate study in nine colleges. The academic units are the colleges of Agricultural Sciences, Architecture, Commerce and Industry, Education, Engineering, Forest and Recreation Resources, Liberal Arts, Nursing and Sciences. Fully accredited by the Southern Association of Colleges and Schools, the graduate curricula form a background of education for the hundreds of occupations which Clemson graduates enter.

Present on-campus enrollment totals more than 12,000 students, which includes approximately 1,900 graduate students. In addition, there are approximately 800 off-campus graduate students. The 1,400-acre main campus is located on the shores of Lake Hartwell in the northwestern part of South Carolina, approximately two and one-half hours' driving time from both Atlanta, Georgia, and Charlotte, North Carolina.

UNIVERSITY GOVERNMENT AND ADMINISTRATION

The University is governed by a board of 13 members, including six elected by the state legislature and seven self-perpetuating life members, in accord with the will of Thomas G. Clemson. The Board of Trustees is primarily responsible for setting policy and approving budgets and expenditures. The University's day-to-day operations are administered by its president; vice presidents for academic affairs, business and finance, institutional advancement, and student affairs; and the president's executive staff. The president of the University is the chief executive and administrative officer.

Academic deans are responsible for programs and personnel in their individual colleges and report directly to the provost. At the direction of the provost, the academic deans coordinate graduate programs and research with the dean of the Graduate School.

The vice provost and dean of the Graduate School coordinates all graduate programs and advises the provost on policies and regulations pertaining to graduate study and research. Matters concerning graduate admissions policies, graduate student programs and the granting of graduate degrees are coordinated through this office. The dean chairs the Graduate Curriculum Committee and the Commission on Graduate Studies and Research.

Board of Trustees
Louis P. Batson, Jr., Chairman of the Board Greenville, S.C.
Bill L. Amick .. Batesburg, S.C.
James E. Bostic, Jr. Aiken, S.C.
Robert Coker .. Hartsville, S.C.
Fletcher C. Derrick, Jr. .. Charleston, S.C.
William Green DesChamps, Jr. Bishopville, S.C.
William N. Geiger, Jr. ... Columbia, S.C.
Paul W. McAllister .. Laurens, S.C.
Thomas B. McTeer, Jr. ... Columbia, S. C.
Buck Mickel .. Greenville, S.C.
James C. Self ... Greenwood, S.C.
B. Marion Smith, Jr. .. Columbia, S.C.
James M. Waddell, Jr. .. Beaufort, S.C.

Executive Officers and Deans
Max Lennon, Ph.D. .. President
W. David Maxwell, Ph.D. Provost, Vice President for Academic Affairs
David R. Larson, M.B.A., C.P.A Vice President for Business and Finance
Gary A. Ransdell, Ed.D. ... Vice President for Institutional Advancement
Manning N. Lomax, B.S. .. Vice President for Student Affairs and Dean of Students
Hugh S. Clausen, LL.B. ... Vice President for Administration and Secretary of the Board of Trustees
Benjamin W. Anderson, J.D. University Legal Counsel
Wade A. Green .. Assistant to the President for Public Affairs
Frank Mauldin, M.Ed. ... Assistant to the President and Director, Office of Human Resources
Jerome V. Reel, Ph.D. .. Undergraduate Studies and Vice Provost
Arnold E. Schwartz, Ph.D. Dean of the Graduate School and Vice Provost
Christopher Duckenfield, Ph.D. Vice Provost for Computing and Information Technology
Milton B. Wise, Ph.D. .. Vice President/Vice Provost for Agriculture and Natural Resources
Stephen R. Chapman, Ph.D. Acting Dean, College of Agricultural Sciences
James F. Barker, M.Arch. .. Dean, College of Architecture
Ryan C. Amacher, Ph.D. Dean, College of Commerce and Industry
James E. Matthews, Ed.D. Dean, College of Education
J. Charles Jennett, Ph.D. Dean, College of Engineering
Benton H. Box, Ph.D. .. Dean, College of Forest and Recreation Resources
Robert A. Waller, Ph.D. ... Dean, College of Liberal Arts
Opal S. Hipps, Ed.D. .. Dean, College of Nursing
Henry E. Vogel, Ph.D. .. Dean, College of Sciences

*Retiring in 1987
COMMISSION ON GRADUATE STUDIES AND RESEARCH

The Commission on Graduate Studies and Research exists to study, formulate and recommend to the President’s Council general policies and procedures pertaining to graduate studies, graduate student academic affairs, research, and resources and services that affect graduate studies and research. Areas of specific concern include:

- Admission standards and procedures; student research; financial assistance and awards through scholarships, fellowships and assistantships; library resources; housing; and other matters relating to the academic environment of graduate students.
- University faculty research and the immediate and long-range goals of the University in research and graduate studies.
- Continuing education, extension and other public educational programs related to graduate credit.

The Commission is composed of 10 members: the dean of the Graduate School (chairperson), one administrative representative from each of two colleges appointed by the president of the University upon the recommendation of the provost, one faculty representative from each college elected by the college faculty, the chairperson of the Faculty Senate Research Committee, a representative from the library as selected by the provost, a faculty senator elected by the Senate, the director of the Office of University Research, and three graduate student representatives elected by the Graduate Student Association.

GRADUATE SCHOOL

The Graduate School exists to formulate policies and standards and to unify administrative procedures concerning all graduate work at Clemson. The aims of the graduate programs at Clemson are to provide comprehensive training in special fields, to offer instruction in the methods of independent investigation and to foster the spirit of research scholarship. Graduate study is much more than a continuation of undergraduate work. Its true spirit is one of inquiry and the desire to add to human knowledge. Graduate study should therefore be contemplated only by students who have already demonstrated in their undergraduate programs unusual intellectual attainments and the power of independent thought and investigation.

Graduate Curriculum Committee

The Graduate Curriculum Committee shall be advisory to the provost and shall be comprised of a vice provost or other member of the provost’s staff.
designated by him or her as (non-voting) chairperson, plus the respective chairpersons of the graduate school curriculum committees of the academic colleges.

This committee shall process all requests for graduate curricular changes emanating from the colleges after favorable action by the faculties thereof and make recommendations concerning them to the provost. In doing so, the committee will be guided by all applicable University rules and regulations and by the policies established by the President’s Council upon the recommendation of the appropriate commission(s) thereof.

The provost and vice president for academic affairs will take the recommendations of the Graduate Curriculum Committee to the Council of Academic Deans for its scrutiny and advice. The provost and vice president for academic affairs will then transmit his or her recommendations to the president for final approval and will inform the President’s Council, in summary form, of those curricular changes the president has approved.

Graduate students and faculty who are not members of the Curriculum Committee are free to attend its meetings.

Graduate Student Association
The Graduate Student Association (GSA) provides a voice for all graduate students by investigating problems or issues that concern graduate students and making recommendations to the proper authorities.

The GSA elects representatives to various University councils which may elicit graduate student opinions. It also seeks to support and promote an academic and cultural atmosphere in the University community and establish better interdepartmental communications among graduate students.

The GSA is composed of a Steering Committee with elected officers including at least one graduate student from each department on campus.

Appeals Provisions
Appeals regarding admission, degree requirements or other policy decisions affecting the welfare of graduate students are referred to the Commission on Graduate Studies and Research. The appeal must be presented in writing to the dean of the Graduate School or to members of the commission.

Graduate Student Academic Grievances
The Graduate Student Academic Grievance Committee hears all grievances involving the following: (a) graduate student academic dishonesty; (b) allegations by graduate students against faculty or staff of discrimination in academics on the basis of race, color, national origin, sex, age, handicap or veterans’ rights (except in those cases where the grievance involves graduate student employment, in which case the grievance falls under the jurisdiction of the Student Nonacademic Grievance Committee); and (c) grievances of a personal or professional nature involving an individual student and a faculty member. In all unresolved cases, the committee makes its
recommendations to the president through the provost. All proceedings of
the committee are confidential.

If there is a question as to whether the Graduate Student Academic Grievance Committee or the Student Nonacademic Grievance Committee has jurisdiction over a particular grievance, the provost and the vice president for student affairs decide which, if either, committee has jurisdiction, and the student is so notified. If the provost and vice president for student affairs cannot agree, the matter will be referred to the president of the University for final determination of which committee has jurisdiction. The committee is comprised of five members as follows: (a) two members of the faculty appointed for two-year staggered terms by the respective college dean in collegiate rotation; (b) two graduate students, representing two colleges other than those represented by the faculty, nominated and approved by the Graduate Student Association and appointed by the provost for one-year terms; and (c) the dean or associate dean of the Graduate School. The chairperson is the faculty member in the senior year of service on the committee. Rules and procedures for the filing and hearing of grievances are as follows:

1. Any complaint should first be taken to the faculty or staff member involved for resolution. If no resolution is reached, the graduate student should consult with the department head and the dean or the immediate superior of the staff member to hear the grievance and act as a referee. The student, dean, department head and faculty or staff member should make every effort to reach a solution.

2. If the grievance remains unresolved, the student may bring it before the Graduate Student Academic Grievance Committee by a written statement detailing the grievance. The statement must be delivered in a sealed envelope to the Office of the Dean of the Graduate School within 60 calendar days of the date the graduate student alleges to have been aggrieved, except as provided in rule three below. The dean will forward this letter to the chairperson of the Graduate Student Academic Grievance Committee. Failure of the student to file a grievance within the 60-day time period will result in forfeiture of the right to file a grievance under this procedure.

3. In cases involving academic dishonesty, the Policy on Academic Dishonesty (see page 16) shall be applied, and the grievance shall be filed within seven days from the date a written charge is made by the professor. A copy of the charge is to be given to the department head or dean.

4. The committee will attempt to gather all pertinent information in separate meetings with all individuals able to give information concerning the grievance.

5. The Graduate Student Academic Grievance Committee will, if at all possible, handle each case as a confidential matter.

6. The committee will formulate its findings in writing and seek to obtain signed approval for the recommended solution from all parties involved.

7. If the committee cannot obtain a solution that is acceptable to all involved parties, the committee will provide an opportunity for a hearing on
the grievance at a time convenient to all involved parties. Either party to the grievance may petition for a hearing on the grievance.

8. The hearing on the grievance will be informal and closed to the public. The chairperson of the committee shall take whatever action is necessary to ensure an equitable, orderly and expeditious hearing. Minutes of the meeting will be taken, and all parties to the grievance will be given an opportunity to be heard. Each party is responsible for having present at the hearing all witnesses that will speak on his or her behalf. In addition, the chairperson may request the presence at the hearing of any other person who has pertinent information on the grievance. Witnesses shall not be present during the hearing proceedings except when called upon to speak before the committee. The parties will be permitted to question all individuals present at the hearing and heard by the committee. If any witness is unable to be present at the hearing, the chairperson may, at his or her discretion, accept a written statement from that witness to be presented at the hearing. The parties shall be accorded the right to assistance of counsel of their own choice; however, the role of counsel shall be solely to assist the party, and counsel shall not be permitted to participate actively in the proceedings.

9. Upon conclusion of the hearing, the committee, meeting in executive session, shall reach, by a majority vote of those committee members present, a solution to the grievance. If the chairperson can persuade all parties to the grievance to accept the committee’s solution, the matter of the grievance will be considered closed when the solution is effected.

10. If, after the conclusion of the hearing, the chairperson cannot obtain approval of the committee’s recommended solution from all involved parties, the grievance will be referred to the president of the University via the provost with the committee’s solution as the recommended solution to the grievance. When grievances are referred in this manner, the president shall make the final decision on behalf of the University.

11. The chairperson shall keep in confidence all records pertinent to each grievance and pass these records to the Office of the Provost for filing. Records shall be available to succeeding chairpersons of the Graduate Student Academic Grievance Committee.

12. A majority of committee members shall constitute a quorum for transacting of committee business; at least one appointed faculty member and one appointed graduate student must be present.

13. The Graduate Student Academic Grievance Committee shall meet as often as necessary to dispense expeditiously with grievances brought before the committee.

14. These rules and procedures can be amended by the Commission on Graduate Studies. Such rule changes will not affect any case under consideration at the time of the change. Notification of any amendments to these rules and procedures should be given to the president of the University via the President’s Council.
Policy on Academic Dishonesty

I. General
 A. Academic dishonesty includes giving, receiving or using unauthorized aid on any academic work.
 B. Plagiarism, a form of academic dishonesty, includes the copying of language, structure or ideas of another and attributing the work to one's own efforts.
 C. All academic work submitted for grading contains an implicit pledge and may contain, at the request of the instructor, an explicit pledge by the student that no unauthorized aid has been received.
 D. Academic dishonesty includes attempts to copy, edit or delete computer files that belong to another person or use Computer Center account numbers that belong to another person without the permission of the file owner, account number owner or file number.

II. Penalties
 A. A student guilty of the first offense of academic dishonesty will receive as a maximum penalty a grade of F for the course.
 B. A student guilty of the second offense of academic dishonesty will receive a grade of F for the course, will be suspended for one or more semesters and may be permanently dismissed. Suspension and dismissal require approval of the president of the University.

III. Procedure
 A. Academic honesty is the individual responsibility of each student. Students should report violations of this policy either to the instructor of the affected course or to any member of the administration.
 B. When, in the opinion of an instructor, a student has committed an act of academic dishonesty, the following procedure must be followed:
 1. The instructor will inform the student in private of the nature of the alleged charge of academic dishonesty and will simultaneously request in writing that the department head verify from the registrar the incident's being a first offense.
 2. When this information has been received, the instructor will notify the student in writing of the charge of academic dishonesty and the penalty recommended by the instructor and approved by the head of the department in which the course is taught. The notification will further state that if the student regards the charge as unfair, the student has seven days from the date of receipt of notice to file a grievance with the Graduate Student Academic Grievance Committee.
 3. If no grievance is filed by the student, the instructor will forward copies of the written notification to the dean of the college and to the registrar.
 4. Should the act of dishonesty not be in the college of the student's major, the registrar will notify the major department head.
CLEMSON UNIVERSITY LIBRARIES

Current resources and facilities of Clemson's libraries make it one of the most important research institutions in the Southeast. Today, the libraries have a collection of more than 6,640 serial titles and 1,300,000 volumes. Outstanding collections of journals, books and primary research materials have been developed in many areas, especially agriculture, natural and physical sciences, economics and technology. In the social sciences, particularly strong manuscript collections have been developed around the papers of Vice President John C. Calhoun, S.C. Gov. James F. Byrnes and Sen. Edgar A. Brown. These and other resources are drawn on by scholars from all over the United States, Japan and Europe. The library recently acquired the papers of U.S. Sen. Strom Thurmond of South Carolina; these will soon be made available for research.

Extensive use of the collection is made by borrowers from many parts of the Southeast through modern, efficient techniques. The University libraries have an on-line catalog, LUIS (Library User Information System), which permits access by any terminal tied to the University's mainframe computer. The Robert Muldrow Cooper Library is also linked by computer terminals to more than 3,000 other libraries through OCLC Inc. for cataloging and interlibrary loan services. On-line bibliographic retrieval is available through the powerful database searching capabilities of Lockheed and SDC search services. A remote center with terminals accessing the Clemson mainframe computer is available in the Cooper Library.

The libraries are primarily used by students, staff and faculty of Clemson University who are engaged in the instructional, research and service efforts of the institution. The resources are available to, and frequently used by, other citizens of the state under liberal use policies. Other individuals have access to the libraries under special arrangements through the library public service staff of the Cooper Library.

The main library (Cooper) consists of six approximately equal floors that occupy a total of 145,000 usable square feet of floor space. Almost 70,000 linear feet of shelving provide space for 1.25 to 1.5 million volumes. Seating space accommodates 1,365 readers.

In addition to the Cooper Library, a major branch is operated at the College of Architecture in Lee Hall. This branch has more than 2,000 square feet of space, 25,097 volumes, 260 serial subscriptions and seating for 60 users. A second branch, operated at the College of Commerce and Industry in Sirrine Hall, specializes in textile-related publications. There are also organized departmental libraries in the departments of Chemistry and Earth Science (Howard L. Hunter Chemistry Laboratory), Physics (Kinard Hall), Horticulture (P&AS) and Chemical Engineering (Earle Hall).

Except for adjustments in scheduling during holiday periods, the Cooper Library is open Monday-Thursday, 7:45 a.m.-1 a.m.; Friday, 7:45 a.m.-11 p.m.; Saturday, 8 a.m.-6 p.m.; Sunday, 1 p.m.-1 a.m.

Library policy governing undergraduate students also applies to graduate
students. All students must present validated I.D. cards to check out library materials. However, a graduate student may be granted the privilege of extended loan for one semester, subject to recall. The following regulations apply to extended loans:

1. The privilege is not given automatically but must be requested for each book. Otherwise a two-week due date will be stamped in the book. The privilege applies only to those books in which the borrower’s major research is concentrated and should be used with discretion.

2. Graduate students must have a graduate validation sticker attached to their I.D. cards if they wish to have the privilege of extended loans and other graduate privileges.

3. The date stamped in the book indicates the date the book is due. After that date, overdue fines apply. Since overdue notices are sent as a courtesy to the borrower, failure to receive such a notice does not excuse the borrower from the payment of fines. Circumstances may prevent the library from sending overdue notices.

4. If a book is recalled, regulations apply the same as for undergraduate students. The due date is changed and higher fines are assessed when the books are not returned by that date.

DCIT COMPUTING FACILITIES

The Clemson University Division of Computing and Information Technology (DCIT) supports graduate student course work and research through a network of on-campus computers. This network consists of an NAS AS/XL-60 with 128 megabytes of main memory and 32 I/O channels running the MVS/XA operating system and several VAX computers, ranging in size from the MicroVAX II to the VAX 8650. Two VAXes, an 8600 and an 8650, along with an intelligent disk and tape controller, form what is known as a VAXcluster running the VAX/VMS operating system. A VAX-11/780 computer running the Ultrix operating system, and a Floating Point Systems T20 Hypercube are also available.

Remote sites containing a variety of computers, terminals and peripheral equipment are maintained in Martin, Riggs, Daniel, Lee, Lowry, and Sirrine halls, the Howard L. Hunter Chemistry Laboratory and the Cooper Library. Among these, the facilities in the library, Daniel, Martin and Lowry halls contain large laboratories of microcomputers. Dial-up telephone numbers are available for use with portable terminals or suitably equipped personal computers.

An extensive campus Ethernet connects all major buildings on campus to the VAX network. Terminals attached to this network have interactive access to all computers on campus. There is also an extensive network that supports the NAS system. Terminals attached to this network allow interactive access to the NAS system only. However, RJE facilities are available to allow file transfer between the NAS and other systems. A variety of national and international networks is accessible. The Division supports connections to
BITNET, UUCPnet, CSnet, SURAnet and Telenet. The first three provide national and international electronic mail. SURAnet is comprised of major Southeastern universities and is a subnet of the NSFnet. It provides researchers medium speed (56Kb) access to supercomputing facilities. Telenet is a public packet-switching data network that provides access to other off-campus computers and services, as well as a link back to the University's systems when away from campus (with the proper equipment).

Consulting & Technical Services (CTS) provides graduate students with free short courses to teach them to use the Clemson systems. CTS maintains a Help Desk to assist users with their computer-related questions and problems. CTS handout material can be obtained free of charge at the Help Desk, and inexpensive manuals can be purchased from the University Bookstore.

The administrative offices of the DCIT Computing Facilities, as well as the Help Desk, are located in the basement of Poole Agricultural Center. Except for adjustments in scheduling during holiday periods, the main center is open Monday-Friday, 7:45 a.m.-12 midnight; Saturday, 8 a.m.-6 p.m.; and Sunday, 2-11:30 p.m. Among the remote facilities, hours for Riggs, Sirrine, Lowry, Lee, Daniel and Martin halls, and the Hunter Chemistry Laboratory are similar to those for the main center. Library terminals are available whenever the library is open.

OTHER RESEARCH FACILITIES

Electron Microscope Facility
The Electron Microscope Facility is equipped with two transmission electron microscopes, a Philips 300 with routine resolution of five angstroms and a JEOL 100-C. Also available are two scanning electron microscopes, an ETEC-Autoscan with 150 angstrom resolution and a JEOL-848 with stage capacity to handle six-inch samples, IC stage and an energy dispersive x-ray analyzer. The JEOL-848 has 45 angstrom resolution. In addition, there is a JAMP-10S Auger microprobe with a SIMS, backscatter detector and 600° heating stage. Secondary equipment includes microtomes, a critical point dryer and a freeze-drying apparatus. A histology laboratory adjacent to the main laboratory provides light microscopy facilities. The facility includes darkrooms for preparation of negatives and separate areas for printing.

Experimental Statistics Unit
The Experimental Statistics Unit provides a statistical consulting service to faculty, staff and graduate students. Advice and assistance are provided in the design, analysis and interpretation of research. Entry and computer analysis of data are available. Faculty, especially new faculty, are encouraged to avail themselves of these services. Collaborative relationships should be established in the planning stage of research projects.
Electronic and Photographic Services

The Department of Electronic and Photographic Services (The Communications Center) produces professional-quality video and audio tapes, multi-image presentations, and still and motion picture photography. Staff artists provide administrative and instructional graphics support. Various types of projectors, screens, and audio and video recorder/players are available for loan. The unit is staffed and equipped to produce and receive state- and nationwide audio or video teleconferences.

STUDENT SERVICES

HOUSING

Single Students

Residence halls and apartments are located on the main campus and provide excellent accommodations at economical rates for graduate and undergraduate students. All University housing is air-conditioned and equipped with clothes lockers, study desks, chairs and single convertible bunk beds with inner spring mattresses. Two students are assigned to a room. Apartments have two bedrooms, a living room and a kitchen. Four students are assigned to each unit.

Graduate students interested in single student accommodations should write directly to the Housing Office, Mell Hall, Clemson University, Clemson, South Carolina 29634-4075, to obtain information regarding assignments. This should be accomplished promptly because there is a critical shortage of on-campus housing. To request a space, applicants should contact the Housing Office at least three to six months prior to the date scheduled for enrollment. A $75 advance payment is required to reserve a room in University housing. This payment is made to the Housing Office in accordance with room reservation instructions provided by that office.

Prospective students should understand that during periods between semesters all residence halls are closed, but all apartments are open for occupancy.

Rental rates per semester are as follows:

Residence Halls
Johnstone Hall: Sections A,B,C,D,E,F $490.00
Annexes A,F ... $525.00
Donaldson, Bowen, Wannamaker,
Bradley and Norris $525.00
Benet, Young, Cope, Geer and Sanders $525.00
Mauldin, Barnett, Smith, Manning,
Lever and Byrnes $580.00
Clemson House $590.00

Apartments
Calhoun Courts (4 occupants) $735.00
Thornhill Village (4 occupants) $645.00
Clemson House (3 or 4 occupants) $615.00
Married Student Housing
The University provides comfortable and economical housing for its married students with 150 apartments conveniently located near the campus. Applications and booklets describing these facilities are available upon request from the University’s Housing Office. Monthly rental fees range from $90 to $220.

Students who have received graduate assistantships or fellowships are given priority in assignments to married student housing. To qualify for this priority, students must submit applications to the Housing Office before May 1 for first semester housing, before November 1 for second semester housing and before March 1 for summer housing.

Off-Campus Housing
Commercial housing in the surrounding community accommodates the majority of graduate students, both married and single. A complimentary listing of real estate companies and other contacts is available upon request from the Housing Office.

International Students and Visiting Scholars
The International Services Office assists international students or visiting scholars in finding housing in the local community as well as on campus. Requests for on-campus housing should be made well in advance of arrival at Clemson since space is severely limited.

FOOD SERVICE
The University offers three economical board plans and also provides meals on a cash basis in two student dining halls with unlimited seconds on all items with the exception of some entree selections. Board-plan students may also use meal cards at the Clemson House as a cash equivalency, or they can select a predesignated meal at no extra cost.

The meal plans are as follows:
1. Five-Day Board Plan—15 meals, Monday through Friday, excluding holidays, $495 per semester.
2. Seven-Day Board Plan—21 meals, Monday through Sunday, excluding holidays, $570 per semester.
3. Lunch Only—Monday through Friday, excluding holidays, $255 per semester.

Meal plans begin immediately after the student obtains a meal card at the beginning of a semester or session and end after the evening meal on the day of graduation. The dining halls remain open between the two regular summer sessions. The meal card is personal and may not be loaned, transferred or sold to another person.

Graduate students have the option at the time of their enrollment of selecting one of the three board plans (five-day, seven-day, or lunch only) on a
semester or session basis or paying cash for individual meals at the prevailing prices.

Board plans for graduate students are selected on a semester or session basis and may not be discontinued as long as the student remains enrolled, except in the case of marriage or circumstances which are determined by the University to be beyond the student's control. Refunds, when authorized, will be made on a prorated basis.

HANDICAPPED STUDENTS

Clemson University recognizes a handicapped student as anyone who has a physical or mental impairment that substantially limits one or more of his or her major life activities.

In compliance with Section 504 of the Rehabilitation Act of 1973, Clemson University has appointed an advisor to the handicapped, as well as a University Committee on the Handicapped. One of the primary responsibilities of the advisor and the committee is to help integrate the handicapped student into the normal academic process.

Prospective students are invited to visit Clemson to determine whether or not their needs can be met by the campus facilities and services. Additional information is available from the advisor for the handicapped, Office of Student Life, 101 Mell Hall, telephone 803-656-2153.

HEALTH SERVICES

All graduate students living in University residence halls, all graduate students enrolled in 12 or more semester hours and who pay the full-time rate irrespective of their residence, and all international graduate students are required to subscribe to the University health plan. The University health service is not available to students enrolled in the M.B.A. program. The health plan offers a variety of services including infirmary care, outpatient treatment for illnesses and injury, mental health counseling, dermatology and gynecological care.

The $70 per semester medical fee (summer session fees are on a prorated basis) covers the services of the University physicians and health service staff for most illnesses and injuries. It also includes complete X-ray services and laboratory work done in the health service lab.

Items not covered by the health service fee include pharmaceuticals, physical examinations for employment or transfer to another school, outside physicians called in for consultation, lab tests that must be sent to a reference laboratory, ambulance service not supplied by the University, and medical or surgical services performed away from campus. Dental care is not offered by the health service but can be obtained locally at your expense.

The University offers an inexpensive plan of accident and sickness insurance designed to cover major medical expenses not covered by the health plan. Each year prior to the beginning of fall semester, complete information
on this insurance plan is sent to all prospective full-time students who plan to register.

The health service is housed in Redfern Health Center and is complete with an outpatient department and a 24-bed hospital. The outpatient clinic is open 7:30 a.m.-4:30 p.m. weekdays. Saturday office hours are 9-11 a.m. only. On Sunday, physicians' rounds are the only service provided other than emergency treatment. Intercom boxes are stationed at each entrance for emergency use after hours. Nurses are on duty at all times, and a doctor is on call at all times.

The student health service has the basic function of providing medical care for the ill and injured; however, it attempts to put strong emphasis on health rather than illness. This emphasis begins with the entrance medical questionnaire designed to obtain information regarding medical history to better equip the staff in protecting the student from illness and to serve as a guide for the care of pre-existing medical problems.

INTERNATIONAL STUDENTS AND VISITING SCHOLARS

Students

The International Services Office assists foreign students in academic, social, financial and personal matters. It serves as a liaison between Clemson University and the U.S. Immigration Service. All foreign students should report immediately to this office upon arrival at Clemson.

International students coming from abroad or transferring from another school are required to meet academic, language and financial qualifications as determined by Clemson University. The Graduate Record Examination, Graduate Management Admission Test, Test of English as a Foreign Language (TOEFL) and transcripts of previous academic studies are some of the determinants used for appraising academic and language ability. Advanced payment of tuition and fees for one academic semester is one of the determinants of financial ability. Prepayment must be made prior to the issuing of a certificate of eligibility for entering the United States. Should the student not enroll at Clemson, the prepayment will be refunded.

International students must at all times have the type of visa which is required by their sponsor. If the sponsor has no such requirement and no clear guidelines are otherwise available, then the student may choose his or her own visa type. Once the choice is made, the International Services Office will not be involved with status changes inasmuch as this is a United States Consulate responsibility. Failure to maintain legal status with the Immigration Service will result in international students forfeiting continued enrollment at Clemson University.

An international student sponsored by his or her home country government or by an agency promoting international education cannot change degree objectives without the written consent of the sponsor.
Health and accident insurance is required of all international students and may be obtained through the International Services Office.

Deadline Dates

The following information applies to all foreign students whether or not they reside in the U.S.

<table>
<thead>
<tr>
<th>Completed Application*</th>
<th>Issuance of Form IAP-66 for visa**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>May 1</td>
<td>October 1</td>
</tr>
<tr>
<td>June 15</td>
<td>November 15</td>
</tr>
</tbody>
</table>

*Implies receipt by the Graduate School of all application materials.
**Action taken by the Office of International Services after review by the department and acceptance by the Graduate School.

Initial enrollment in the summer sessions will rarely be considered.

Visiting Scholars

The visiting international scholar (hereafter referred to simply as a visitor) is a foreign national associated with an academic department of the University for purposes other than employment or the attainment of a degree or academic credits. Typically, the association is for a period of three to 24 months and may begin at any time during the year. The visitor status is formalized by admission to the University via an application secured from and approved by the International Services Office (ISO). Confirmation of English ability and academic degrees by ISO is required prior to admission.

An administrative fee of $200 per month is required. The established University health fees and accident insurance are also required and will not be waived.

Visitors who subsequently desire to enroll in courses for credit must be admitted to the University in a non-degree student status and must be present and register during the normal registration periods. Because the visitor’s program is designed for internationals wishing to do research, the courses taken for credit will normally be limited to one per semester.

GRADUATE EXPENSES

ACADEMIC EXPENSES, 1987-1988

Tuition and Fees

1. *Graduate Students.* Semester charges for graduate students are determined by the credit load, with no distinction between graduate and undergraduate credits. Actual charges for 1987-88 are not known when the catalog is printed. The charges reflected below are for 1986-87 and are subject to change as conditions warrant.

 Graduate students enrolled in 12 or more semester hours during a semester will pay the following fees:
GRADUATE EXPENSES

Tuition .. $ 25.00
University Fee 861.00
Matriculation Fee (nonrefundable) 5.00
Medical Fee 70.00
Semester Total (excluding room and board) $961.00

Payment of the above fees entitles the student to use Fike Recreation Center, attend University concerts and obtain tickets to athletic events with the same privileges and restrictions as apply to undergraduates.

Graduate students enrolled in less than 12 credit hours during a semester will pay the following fees:

<table>
<thead>
<tr>
<th>Fee</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition (per semester hour)</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>University Fee (per semester hour)</td>
<td>66.00</td>
</tr>
<tr>
<td>Matriculation Fee (nonrefundable)</td>
<td>5.00</td>
</tr>
<tr>
<td>Medical Fee (optional for non-dormitory domestic students)</td>
<td>70.00</td>
</tr>
<tr>
<td>Fike Recreation Center Fee (optional)</td>
<td>15.00</td>
</tr>
</tbody>
</table>

These fees do not provide for admission to athletic events, concert series presentations or other such activities. Students electing not to pay the medical fee are responsible for arranging their own medical care. Students enrolled in the M.B.A. program will pay $125.00 per credit hour and are ineligible for medical or athletic privileges previously described.

2. **Graduate Assistants.** Graduate assistants pay a flat fee of $300.00 per semester and $100.00 for each summer session. Graduate assistants may elect to sign a payroll deduction agreement at the time of registration. Details on the deferred payment deduction schedule may be found on page 27 under the heading "Fiscal Policy."

Use of Fike Recreation Center facilities by graduate assistants during the fall and spring semesters is at no additional cost while the summer fee is $8.00 for first session and $10.00 for second session for all students. Graduate assistants using the student health service must pay the medical fee of $70.00 per semester. Season athletic tickets may be purchased at the faculty-employee rate.

A graduate assistant is defined as a student with at least a bachelor's degree who is enrolled in a degree program, devotes a minimum of 10 and a maximum of 30 hours of service per week to the University and satisfies the minimum enrollment described on page 30. For the graduate assistant to qualify for the above academic fee structure, the assistantship appointment must be in effect on or before the last day of regular registration and must remain in effect through the last day of the academic semester or session or through the time of completion of all degree requirements within that semester or session. Otherwise, the student is liable for full fees applicable to graduate students.

3. **Permanent University Faculty and Staff.** Permanent University staff members and faculty will pay the following fees:

<table>
<thead>
<tr>
<th>Fee</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition (per semester hour)</td>
<td>$ 1.00</td>
</tr>
</tbody>
</table>
GRADUATE EXPENSES

University Fee (per semester hour) 33.00
Matriculation Fee (nonrefundable) 5.00

A permanent employee (as defined by the Clemson University Office of Business and Finance) is a person employed full time (37 1/2-40 hours per week, nine or 12 months per year) in a regular position, subject to the full control and responsibility of the University and receiving full remuneration for his or her services in the regular University budget.

Faculty should be aware of the policy restricting pursuit of advanced degrees as found under "University Employees" on page 39.

Auditing
Charges for auditing are made each semester according to the following schedule:

Tuition (per semester hour) $ 1.00
University Fee (per semester hour) 33.00

Refer to page 46 for the policy on auditing.

Graduation Fees
The following graduation fees are in addition to the above charges:

Diploma ... $ 2.25*
Diploma with Case 8.00*
Mailing fee .. 2.25*
Apparel for Graduation (attendance optional)
 Master's or Education Specialist Degree
 Candidates ... 20.50*
 Doctoral Degree Candidates 29.95*
Binding Fees for Theses or Dissertations
 (if applicable) 18.75*
Publication of Dissertation Abstract
 (if applicable) 40.00*

Costs for preparation and duplication of the thesis, dissertation or departmental project report, as well as binding fees for personal copies, are extra charges to be borne by the student.

Athletic Contests and University Concerts

Departmental graduate assistants and graduate resident assistants (see pages 29 and 30) will be eligible to purchase two season tickets at the faculty-employee rates. Applications must be completed at the Jervey Athletic Center ticket office.

Graduate students enrolled in 12 or more semester hours are full-time students and are eligible for tickets with the same restrictions and privileges as apply to undergraduate students. (See undergraduate catalog.)

Graduate students enrolled in less than 12 semester hours are considered part-time students and are not eligible for reduced-price tickets. They may

*Subject to change.
purchase tickets at the regular full prices. Part-time graduate students may elect to pay a full fee schedule of $961\(^*\) entitling them to the same restrictions and privileges of undergraduate students.

Graduate students enrolled for less than 12 hours may attend University concerts upon purchase of season tickets. The privileges just described do not apply to students enrolled in the M.B.A. program.

FISCAL POLICY

Settlement of University Fees

The entire amount of the expense for each semester or summer session is due and payable at the beginning of each semester or summer session, and no student is officially enrolled until all expenses are satisfied. In special cases the University will accept, at the beginning of a semester, a non-interest-bearing promissory note for a portion of the semester residence hall and board fee. In such cases, the note for the first semester charges will be due October 1, and the note for the second semester charges will be due March 1. International graduate students are not eligible for this promissory note.

Upon certification by the dean of the Graduate School and upon authorization by the student of a payroll deduction for payment, deferred payment of academic fees may be granted to a student employed as a graduate assistant. The total amount deferred shall not exceed 50 percent of the sum of the student’s assistantship for the first six consecutive pay periods for the semester. Payment of the amount deferred is to be made in six equal installments through payroll deductions beginning with the first full pay period of the semester. Should an assistantship be terminated, any unpaid balance of funds deferred is payable immediately as well as any additional fees due. No deferred payments are permitted for summer sessions for any graduate student.

All other transactions relating to payment should be conducted with the Financial Management Division. All checks and money orders should be made payable to Clemson University. A personal check given in payment of University expenses which is returned by the bank unpaid immediately creates an indebtedness to the University.

Refund of Fees

Regular Semester. No refunds will be made on a semester’s academic and medical fees after four weeks from the last day to register. In the case of a withdrawal from school, the refund will be based on the effective date of withdrawal as shown on the official University withdrawal form. Refunds for full-time students who drop to part time and part-time students who drop credit hours will be based on the date the Schedule Change Form is returned to the Registrar’s Office. To be eligible for a refund, the request must be

\[^*\text{Subject to change.}\]
GRADUATE EXPENSES

received by the Office of Financial Management prior to the beginning of the next fall or spring semester. **Beginning with the day following the last day to register**, refunds for periods of four weeks or less during a semester shall be made on the following basis:

<table>
<thead>
<tr>
<th>Period of Enrollment After</th>
<th>Percent Refunded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Day to Register</td>
<td></td>
</tr>
<tr>
<td>One week or less</td>
<td>80%</td>
</tr>
<tr>
<td>More than 1 but not more than 2 weeks</td>
<td>60%</td>
</tr>
<tr>
<td>More than 2 but not more than 3 weeks</td>
<td>40%</td>
</tr>
<tr>
<td>More than 3 but not more than 4 weeks</td>
<td>20%</td>
</tr>
<tr>
<td>More than 4 weeks</td>
<td>0%</td>
</tr>
</tbody>
</table>

Summer Session. No refunds of academic and medical fees will be made after three weeks from the last day to register. In the case of a withdrawal from school, the refund will be based on the effective date of withdrawal as shown on the official University withdrawal form. Refunds for students who drop credit hours will be based on the date the Schedule Change Form is returned to the Registrar’s Office. To be eligible for a refund, the request must be received by the Office of Financial Management prior to the beginning of the fall semester. **Beginning with the day following the last day to register**, refunds for summer school sessions shall be made on the following basis:

<table>
<thead>
<tr>
<th>Period of Enrollment After</th>
<th>Percent Refunded by Length of Summer Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Day to Register</td>
<td>Less than 3 wks.</td>
</tr>
<tr>
<td>One week or less</td>
<td>0%</td>
</tr>
<tr>
<td>More than 1 but not more than 2 weeks</td>
<td>0%</td>
</tr>
<tr>
<td>More than 2 but not more than 3 weeks</td>
<td>0%</td>
</tr>
<tr>
<td>More than 3 weeks</td>
<td>0%</td>
</tr>
</tbody>
</table>

Past Due Student Accounts

Any indebtedness to the University that becomes past due immediately jeopardizes the student’s enrollment, and no such student will be permitted to graduate or register for a subsequent semester or summer school term. Further, any student who fails to pay all indebtedness to the University may not be issued a transcript or diploma.

Establishment of University Fees

The annual State Appropriation Act imposes the general requirement that student fees be fixed by the University Board of Trustees. The act imposes two specific requirements on the Board: (1) In fixing fees applicable to academic and general maintenance and operation costs, the Board must maintain a minimum student fee not less than the fee charged the previous year; (2) In fixing fees applicable to dormitory rental, dining halls, laundry,
infirmary and all other personal subsistence expenses, the Board must charge students an amount sufficient to fully cover the cost of providing such facilities and services.

STUDENT EMPLOYMENT AND FINANCIAL ASSISTANCE

GRADUATE APPOINTMENTS

Approximately 950 graduate students hold Clemson University appointments. These are of two kinds: (1) graduate assistantships requiring, for the most part, half-time employment and (2) fellowships or traineeships which require no service to the University.

Clemson University, as a member of the Council of Graduate Schools in the United States, subscribes to the following policy inherent in the resolution adopted by the Council regarding graduate appointments. In every case in which an appointment for the next academic year is offered to an actual or prospective student, the student, if acceptance is indicated before April 15, will have complete freedom through April 15 to submit, in writing, a resignation of the appointment in order to accept one elsewhere. However, an acceptance given or left in force after April 15 commits the student not to accept another appointment (at Clemson or elsewhere) without first obtaining a formal release from the first party to whom a commitment has been made. Similarly, an offer made after April 15 is conditional on presentation by the student of the written release from any previously accepted offer.

To be eligible for any graduate appointment, a graduate student must satisfy the appropriate minimum enrollment requirement as described in each section below. The University reserves the right to withdraw the appointment at any time because of failure to meet this requirement.

Departmental Graduate Assistantships

Assistantships are available in instruction, research or extension. Such appointments may be made on an annual basis or a nine-month basis with work periods and duties assigned by the department. Application forms can be obtained from the Graduate School or from department heads and should be completed and filed early in the academic year before the student enrolls. Selection of assistantship recipients as well as notification of the appointment, its duration and the stipend are the responsibilities of the academic departments. All graduate assistants are granted partial remission of tuition and fees and enjoy certain other benefits provided for University staff personnel.

1. Eligibility. To qualify for one of the various departmental graduate assistantship appointments, a student must be enrolled in a degree program and must devote at least 10 but no more than 30 hours of service per week to the University for the entire semester or session. The normal assistantship is on a half-time basis requiring an average of 20 hours of service per week although the appointment may be for any number of hours from 10 (quarter-
time assistantship) through 30 (three-quarter-time assistantship). Multiple employment of graduate students by the University (graduate appointment and/or hourly employment) is permitted. It is the responsibility of the secondary employer to receive permission of the primary employer and the Graduate School prior to assignment of any additional work and to ensure that the maximum work load of 30 hours per week is not exceeded. Upper limits on academic loads as related to hours of service per week are found in the section entitled “Credit Loads” on page 46.

2. Minimum Enrollment. A minimum enrollment is required for appointment as a departmental graduate assistant. During the academic year, students in a master’s program or predoctoral students must enroll for at least nine credit hours per semester. A predoctoral student is defined as one who is working directly toward a doctoral degree without possession of a master’s degree in a related discipline (as determined by the department) and who has completed less than 30 hours of graduate credit toward the doctoral degree. Doctoral students who hold a related master’s degree or who have completed 30 credit hours of graduate credit in their doctoral programs must enroll for at least six credit hours per semester. Minimum enrollment in the summer sessions is three semester hours per session irrespective of the degree objective. Undergraduate credits may be included in the minimum provided they are relevant to the student’s degree program and required by the advisory committee. Credits in GS 799 may be included in the minimum in unusual circumstances.

Graduate students should understand that the assistantship may be withdrawn at any time for failure to maintain satisfactory academic status as described under “Academic Standards” on page 43.

Graduate Resident Assistantships
Part-time employment on the program staff of the residence halls is available to qualified graduate students. In general, 20 hours of service per week is required, and compensation for such employment amounts to a room or apartment, partial remission on tuition and fees, and approximately $1,000 per semester. Graduate resident assistants are subject to the credit load limitation found on page 46, and the required minimum enrollment is coincident with that of departmental graduate assistants. Interested applicants should apply directly to the Housing Office. A personal interview is required prior to final selection.

Fellowships and Traineeships
Approximately 60 outstanding graduate students hold fellowships or traineeships at Clemson University. These awards, received from a wide variety of alumni, foundation, governmental, individual or industrial sources, require no services. Payment in excess of actual educational costs are subject to federal and state taxes.

Graduate Alumni Fellowships and R. C. Edwards Research Fellowships
are University-wide awards administered by the Graduate School. These awards, of $5,000 each for the academic year, are made on a competitive basis to nominees selected by the departments. Scholarly potential and academic excellence are the sole criteria for the awards.

Two H. W. Close Graduate Fellowships of $12,000 each are awarded annually to two outstanding students applying to master’s programs. The fellowships, renewable for a second year, require the student to rank in the top 10 percent of his or her class. The fellowships also emphasize extracurricular activities indicative of potential leadership. One award is made to a student enrolling in the College of Commerce and Industry and the other is open on a University-wide basis.

Most fellowships and traineeships are administered by the individual colleges and departments. Some awards, such as the Industrial Graduate Residency Fellowships, may limit the student’s research to areas of interest to the donor and require a period of residency at the industrial site. Detailed information is available in the colleges or departments.

South Carolina Graduate Incentive Fellowships of $5,000 or $10,000 annually are available to minority graduate students. These renewable awards are restricted to citizens of South Carolina. Preference is given to new applicants and those who express a commitment to remain and be employed in the state for a period of two years. These fellowships are administered by the Graduate School.

Unless stipulated otherwise by the grantor and/or donor, holders of fellowships or traineeships are required to enroll in the same minimum credit load as is applicable to departmental graduate assistants. Continued receipt of any fellowship or traineeship is contingent on the student’s maintaining a satisfactory academic status. A student cannot hold concurrently two or more full fellowships or traineeships (or the equivalents thereof) administered by the University.

Fellowships and traineeships are usually offered in early March. Inquiries relative to available funds may be made to the department of the student’s major interest or to the Graduate School.

HOURLY EMPLOYMENT

Employment on an hourly basis for a portion of a semester or session is possible in some departments. The maximum credit load is the same as that for graduate assistants found under “Credit Loads” on page 46. Enrolled graduate students (exclusive of full-time University employees) may not be employed by the University for more than 30 hours per week (graduate appointments and hourly employment combined), and no portion of the hourly employment shall be utilized to qualify students for benefits afforded those on graduate assistantship appointments.
OTHER FUNDS
The Student Financial Aid Office coordinates and/or administers loan assistance available to graduate students. The primary loan programs are the National Direct Student Loan (NDSL) and the Guaranteed Student Loan (GSL). Students who seek assistance through the NDSL program must establish financial need via the submission of the Financial Aid Form (FAF) to College Scholarship Service. Also, the Clemson Student Application for Financial Aid (on which the applicant indicates a desire to be considered for NDSL) must be received in the Financial Aid Office by April 1. For graduate students, the Guaranteed Student Loan is generally the preferred loan since the maximum loan amounts are greater through this program than through the NDSL, and students with loan assistance through the NDSL program face earnings limitations in that all earnings they receive while on the program must be monitored by the Financial Aid Office in accordance with federal regulations. Other miscellaneous loan programs are available to accommodate the particular needs of students. In addition to other forms of graduate student employment, graduate students who establish financial need via the FAF and who submit the Clemson Student Application for Financial Aid by April 1 may be eligible to participate in the College Work-Study Program. Further information and the appropriate forms are available in the Student Financial Aid Office, G01 Sikes Hall.

COOPERATIVE EDUCATION PROGRAM
The Cooperative Education Program is a planned program in which graduate students at the University combine periods of academic study and periods of related work with a participating business, industry, agency or organization. A minimum of two work periods is required, and the work periods normally take place after the student's first semester on campus.

All graduate students desiring to enter the program are requested to schedule an interview with the Office of Cooperative Education, 806 University Union, where application forms and additional information are available.

SPECIAL EMPLOYMENT RESTRICTIONS
Current South Carolina law prohibits the employment by state agencies or institutions of persons who have willfully defaulted on a National Direct Student Loan, a National Defense Student Loan, a Guaranteed Federally Insured Student Loan, a Nursing Student Loan, a Health Professions Student Loan or a Law Enforcement Education Loan. Graduate students who are employed in programs administered directly or indirectly by Clemson University and are found to be in willful default on payment of these loans, will have such employment terminated unless they can provide a written agreement with the lender whereby the payments on the loans may be deferred under certain conditions such as completion of their graduate program.
ADMISSION PROCEDURES AND REQUIREMENTS

PROCEDURES

Application Deadlines
Application for admission of U.S. citizens and residents should be submitted four weeks prior to registration (see the calendar on pages 7-9 for dates). Applicants to programs requiring standardized test scores should complete these examinations at least 12 weeks before registration and make arrangements for official results to reach the Graduate School four weeks prior to registration. Unless all admission credentials reach the Graduate School at least four weeks prior to registration, an acceptance decision cannot be guaranteed. Students applying to a graduate major significantly different from their undergraduate major may anticipate an even longer period of time for a decision.

Applications for admission of prospective international students must be completed by May 1 and October 1 for registration in the fall and spring semesters, respectively. This means that every required item in support of the application must be on file with the Graduate School by these dates and that the actual application must have been on file at least four weeks in advance of these dates. Thus, international applicants living outside the U.S. should complete the required standardized tests at least three months prior to May 1 or October 1, as appropriate. Issuance of Form IAP-66 for a student visa will be issued no later than June 15 and November 15 for registration in the fall and spring semesters, respectively. These dates apply to all international applicants irrespective of their present domicile. Initial enrollment of international students in the summer sessions is strongly discouraged and is permitted only on rare occasions.

Application Fee and Time Limit
For applicants wishing to enroll in the Graduate School for the first time, a nonrefundable fee of $15 payable to Clemson University via a money order or a check drawn on a U.S. bank must accompany the application before it will be processed. The application is valid for a period of one year beyond the initial date desired for enrollment, inclusive. Applicants who enroll within this time period pay the fee only once regardless of the number or date of future enrollments. Applicants who do not enroll within this time period and who subsequently wish to be admitted must reapply and repay the fee (nonrefundable) and may be required to resubmit all supporting materials.

Disposition of Application Materials
Credentials or supporting materials submitted for admission to the Graduate School become the property of the University and are not returned. Furthermore, no copies will be provided to a third party outside the University
even if the applicant requests this release. Copies will be provided to appropriate offices at the University in the interest of academic matters or financial awards relative to the applicant.

ACADEMIC REQUIREMENTS

New Applicants

As a minimum and general requirement for admission to any of the University’s graduate programs, a prospective student must hold at least a four-year bachelor’s degree from an institution whose scholastic rating is satisfactory to the University and must have the approval of the department head or program coordinator in which the major work is planned. Although the quality of an applicant’s previous academic record always plays an integral role in any admission decision, a general division in requirements, based on the degree objective, exists as follows:

1. Master of Arts, Master of Science or Doctor of Philosophy Degrees. Criteria for admission to these University-wide degrees include satisfactory scores on the general portion of the Graduate Record Examination (GRE).* Applicants to the M.S. degree program in industrial management must submit satisfactory scores on the Graduate Management Admission Test (GMAT)* in lieu of GRE scores.

2. The Professional Degrees. Admission criteria, recommended by the individual colleges awarding the degree, may include professional experience and/or credentials as well as GRE general scores.* Specifically, the professional programs in accounting and business administration require satisfactory scores on the GMAT* in lieu of the GRE.

International students, in addition to meeting the minimum and general requirement stated previously, must submit satisfactory scores on the general portion of the Graduate Record Examination* regardless of the degree objective. (However, see items 1 and 2 above for the master’s programs in industrial management, accounting and business administration.) A satisfactory score on the Test of English as a Foreign Language** (TOEFL) is also required of international students whose native tongue is not English, but this requirement may be waived by the Graduate School if the applicant has a demonstrated command of the English language.

Admission in all programs is restricted to those students whose academic records clearly indicate they are prepared to benefit from graduate study. The Graduate School reserves the right to require additional quantitative and aptitude examinations as well as personal interviews and/or oral examinations prior to reaching an admission decision. Neither an academic record exceeding minimum requirements, satisfactory scores on standardized

*GRE or GMAT scores more than five years old relative to date of initial enrollment will not be accepted.
**TOEFL scores more than two years old relative to date of initial enrollment will not be accepted.
tests, nor professional expertise alone will assure a student's admission. Rather, the total record must indicate the likelihood of successful graduate study.

Assessment of Previous Academic Work
The grade point ratio representing an assessment of an applicant's undergraduate work will be based on the last half of the course work listed on the transcript or transcripts. In conventional cases, this will equate to the full junior and senior years. As a minimum, 60 semester hours (or 90 quarter hours) will be examined and in no cases will a partial term, session, or enrollment period be utilized. Excluded in the computation are courses graded P/F and certain electives having no relationship to a curriculum. Departments are at liberty to discount still other courses in assessing an applicant's academic record. Certain professional programs may use the total undergraduate grade point average in order to satisfy accreditation standards.

In evaluating the grade point ratio of an applicant's graduate work, all graduate course work will be used except research and/or courses graded P/F.

Conditional Acceptance
Notice of conditional acceptance may be given to highly qualified applicants prior to receipt of the degree they are presently pursuing; however, all requirements for this degree must be completed prior to enrolling in the proposed graduate program at Clemson University. Likewise, conditional acceptance may be given prior to receipt of satisfactory GRE or GMAT scores, if required, but such scores must be received prior to or during the first semester of enrollment.

Clemson University seniors lacking less than a full semester of work to complete the requirements for their bachelor's degrees may apply to a graduate program and, if granted conditional acceptance, be allowed to enroll in courses for graduate credit. Refer to "Clemson University Seniors" on page 39.

Applicants Presently Enrolled in Graduate School
Students enrolled in a master's degree program at Clemson University who wish to continue their studies in another master's program, a specialist program or in a doctoral program after completing their initial degree objective may apply by submitting the normal application color coded green. This application must be supported by the student's advisory committee for the master's degree or other faculty designated by the graduate dean who are associated with the applicant's present or proposed program.

Students holding both the bachelor's and master's degrees from Clemson University are encouraged to pursue doctoral programs at other institutions.

Change of Degree Program
Students who have enrolled in a given degree program within the past two
calendar years may request a change of major and/or degree without submitting a new application. Instead, the student must submit to the Graduate School Form GS14 endorsed by the department head(s) or program chairperson(s) of the affected degree program(s). All program and Graduate School requirements must be met before final approval will be granted.

Readmission

A former graduate student who has not maintained continuous enrollment (summers excluded) but who is academically eligible to continue in the graduate degree program where he or she was most recently enrolled may be permitted to return. The procedures are dictated by the period of absence from enrollment as follows:

1. **Less Than Two Years.** The student simply notifies the Graduate School and the program coordinator of his or her plans to return.
2. **Two to Six Years.** A new application must be submitted and endorsed by the program coordinator and the Graduate School. The application must show any intervening graduate work and appropriate official transcripts of the work may be required by the Graduate School.
3. **Six or More Years.** A new application and all supporting materials will be required; that is, such persons are considered to be new applicants. The only exceptions are those doctoral students who have an eight-year time limit for completion of the degree. (See "Time Limit" on page 55.)

Former graduate students described above who wish to return to Clemson University to pursue an undergraduate degree and/or course work with no immediate plans for graduate work should contact the Registrar’s Office for procedures.

Duplication of Higher Degrees

The duplication of higher degrees is discouraged on the same basis as the duplication of the bachelor’s degree. Thus, a student holding a master’s degree may not as a rule become a candidate for another master’s degree of the same designation, regardless of the field of study. Nor may the holder of a master’s degree in a given field, received at another institution, become a candidate for an additional master’s degree in the same field at Clemson.

MEDICAL REQUIREMENTS

Submission of a medical history is required of all students who subscribe to the health service and in particular of all full-time graduate students entering Clemson University for the first time. Prior to or during the registration period, the student will receive a medical questionnaire to be completed and returned to the director of student health services.

The medical questionnaire, once submitted, is valid for the duration of the student’s continuous enrollment. A formerly enrolled student who has not
registered for a period of three years or who has withdrawn due to health reasons will be required to complete a new questionnaire.

The University further requires that all new students receive a current tetanus toxoid series or have had a toxoid series or booster within 10 years.

ADMISSION CLASSIFICATIONS

Admission to a Degree Program

This is the classification of qualified students who become candidates for an advanced degree from Clemson University. Conditional acceptance (page 35) does not constitute admission to a degree program because certain required materials are pending. Admission to a degree program is possible only after all required application materials are present and will be in one of the following categories:

1. **Full Status.** The applicant’s credentials equal or exceed every minimum admission criterion prescribed for the particular degree.

2. **Provisional Status.** At least one admission criterion prescribed for the particular degree is marginal. Such applicants will be required to remove the provisional status with a satisfactory academic performance during their first semester. *Doctoral degree applicants will not be admitted provisionally.*

In addition to meeting the minimum requirements for degree programs listed under “Degree Requirements” (page 50), the student must be recommended for admission by the program chairperson or department head and must meet any special departmental requirements.

Admission as a Non-Degree Student

Admission in this category is restricted primarily to those persons who may benefit professionally from additional study at the graduate level; for example, public school teachers who are required to complete graduate courses for recertification. In general, the only supportive material required for such admission is a valid transcript showing an appropriate background and confirming the awarding of a bachelor’s degree or higher.

Non-degree students are ineligible to become candidates for advanced degrees or to receive a graduate appointment for financial assistance. Should the student subsequently be admitted to a degree program, a maximum of 12 semester hours of graduate credit taken at any campus (non-degree and/or transfer) may be applied toward the degree. In all cases the non-degree student must receive permission from the head of the department before enrolling in graduate courses. This classification is not open to international students.

Students enrolled in a non-degree status are subject to the same aca-

An academic semester is defined as a minimum of nine credit hours of course work. An academic year is defined as the total of two academic semesters.
Admission as a Post-Baccalaureate Student

An applicant may be accepted by the Graduate School as a post-baccalaureate student if he or she applies to a specific graduate degree program without the appropriate academic background. The applicant must be recommended by the appropriate department or program chairperson and must meet all the other requirements for admission to that degree program regarding grade point ratio and standardized test scores. A change in major between the undergraduate and graduate levels may require a longer review time by the department. A student in this category who is denied admission because of failure to meet the minimum requirements has access to the same appeal procedure as any other student applying to the Graduate School.

Applicants will be classified as post-baccalaureate students if they are not qualified to take at least one graduate course per semester which can be included in the minimum hours required for the graduate degree. Additionally, any student required to complete more than 18 semester hours of undergraduate credits will be classified as post-baccalaureate. Until the required number of undergraduate credit hours is less than or equal to 18 and the student is qualified to take a graduate course each semester that can be included in the minimum hours required for the graduate degree, he or she will remain classified as post-baccalaureate. A department or a student may request post-baccalaureate status even though the above criteria are satisfied.

At the time a post-baccalaureate student becomes eligible for classification as a graduate student, the decision as to eventual admission status (full-time status or provisional) will be made according to criteria used by the department and the Graduate School for all other applicants to the particular degree program. The post-baccalaureate student is expected to maintain a B average and receive no grade lower than a C to qualify for admission to a graduate program.

Post-baccalaureate students may enroll in the same number of credits per semester as any undergraduate student but cannot enroll in graduate courses (600-level or above) or receive a graduate assistantship. No degree or certificate shall be awarded to students in the post-baccalaureate status, and students who subsequently desire to obtain an additional baccalaureate degree must apply through the Office of Admissions and Registration. The applicability of credits earned toward the undergraduate degree will be determined by the policy pertaining to transfer students. Tuition and fees for post-baccalaureate students shall be those applicable to undergraduates with the exception of the application fee and admissions deposit.

A student possessing an undergraduate or graduate degree who wishes to enroll in specific undergraduate courses for reasons other than future
admission to the Graduate School shall not be classified as post-baccalaureate and shall be governed by policies established by the Office of Admissions and Registration.

ENROLLMENT IN GRADUATE COURSES

Clemson University Seniors

Enrollment in any graduate course is subject to approval by the department offering the course and the graduate dean. This approval is required prior to registration and may be obtained by completing and returning the appropriate form (Form GS6) available at the Graduate School. The total course work load for the semester must not exceed 18 hours, and the cumulative graduate credit earned by seniors may not exceed 12 semester hours.

Seniors with a cumulative grade point ratio of 3.0 or higher may enroll in 700- and/or 800-level courses and may choose to use these courses to meet requirements for the bachelor’s degree. However, courses used for this purpose may not be counted later toward an advanced degree. Alternatively, students who take graduate courses (any level) in excess of the requirements for their undergraduate degrees may request that these courses be included as a part of their graduate program if they are subsequently admitted to the Graduate School at Clemson.

A Clemson senior with a cumulative grade point ratio less than 3.0 may apply to the Graduate School for conditional acceptance as described on page 35. If accepted, the student may enroll in graduate courses subject to approval of Form GS6.

Transient Graduate Students

A student who has been admitted to a degree program at another institution and who wishes to take courses for transfer to that institution may be permitted to enroll as a non-degree student in graduate courses on receipt of the Certificate of Transient Graduate Admission (Form GS8), which may be obtained from the Graduate School at Clemson University. This form and a completed application to the Graduate School must be presented three weeks prior to registration. A student may earn no more than 12 total semester hours while in transient status.

University Employees

With the approval of the appropriate dean or director, a qualified employee of Clemson University may pursue graduate work for credit. However, no member of the faculty or staff who has a rank higher than instructor or its equivalent may be considered as a candidate for an advanced degree at this institution.

Limitations on the number of hours taken per semester are explained under “Credit Loads” on page 46.
Teacher Certification or Recertification

Initial certification (endorsement) at the graduate level is available only in educational administration, reading and personnel services (elementary and secondary counseling). Students seeking admission to these programs should hold an appropriate teacher's certificate.

Those who possess a bachelor's degree or higher and who desire initial certification in a teaching area must complete the undergraduate courses needed for certification in a post-graduate status administered by the Office of Admissions and Registration and may not enroll in graduate courses until their eligibility for certification has been established by their major department.

Prospective students should understand that the material in this catalog applies only to requirements for graduate degrees and has no direct relation to certification or recertification for public school teachers. The Graduate School gives no assurance that a program for a graduate degree and a program for a certificate, or recertification thereof, will coincide. Students interested in professional certificates should, prior to beginning any work, confer with the dean of the College of Education or the appropriate department head in that college.

Restrictions

Enrollment in any graduate course is subject to approval by the department offering the course and requires permission of the instructor, whether or not such is specifically stated in the course description. To enroll in or receive credit for any courses of the 600 series or above, the student (with the exception of certain Clemson University seniors) must have been officially admitted by the Graduate School either to a degree program (page 37) or as a non-degree student (page 37), or must have been granted conditional acceptance as described on page 35.

Students may not enroll in 600-level courses for which undergraduate credit has been awarded, nor can graduate credit be awarded retroactively for undergraduate courses already completed.

GENERAL GRADUATE SCHOOL REGULATIONS

Except as they apply to undergraduate students only, graduate students are subject to the usual procedures and regulations of the University and in particular to those dealing with academic dishonesty (see page 16).

Immediately upon enrollment, a student should become acquainted with the degree requirements and the regulations of the Graduate School published in this catalog, particularly the deadline dates on pages 2 and 3. Each advisor and student should by all means have a current copy of the graduate catalog.
PROCEDURES TO FOLLOW IN PURSUING A DEGREE

This is not a step-by-step outline of all procedures to be followed while pursuing a graduate degree, but is an explanation of primary factors to be encountered during the process.

The Major Advisor

Before registering, a student must, with the aid and approval of the department head or program coordinator, select a major advisor. This advisor must be a member of the program faculty offering the degree and meet the requirements for advisory committee membership described below. In departments or programs with large faculties, new graduate students may be assigned to one professor until each student decides upon a particular interest. This advisor recommends and approves courses to be taken during the student’s first semester. The course work selected should be of a fundamental or core nature so the advisory committee will have maximum flexibility to formulate the remainder of the student’s program of study.

The Advisory Committee

An advisory committee will approve the student’s graduate degree curriculum, supervise the graduate program, administer the preliminary and/or final comprehensive examination, and initiate the recommendation for the awarding of the degree. One member of the committee will be designated as chairman or major advisor and normally will direct the student’s dissertation or thesis, if required. This committee is selected by the student and approved by the department head or program coordinator. Concurrently with submission of the graduate degree curriculum, the department head or program coordinator will forward recommendations to the dean of the college, who will, if he or she approves, then transmit the recommendations to the graduate dean.

A minimum of three faculty members shall be selected for a student seeking a master’s or specialist’s degree, and a minimum of four faculty members shall be selected for a student seeking a doctoral degree. Only Clemson University faculty who hold full-time faculty positions which carry eligibility for tenure can serve as major advisors or comprise the minimum membership of the committee. Part-time, visiting and adjunct faculty may serve as additional members of the committee and as research advisors. The student and committee members are notified of the appointments by the graduate dean.

At least one-half of the graduate advisory committee shall be comprised of faculty from the program (i.e., major) in which the student is enrolled. Committee members of interdepartmental programs shall be appointed according to by-laws, formulated by the program faculty and approved by the Graduate School, that assure appropriate representation of the participating departments.
Filing of a Graduate Degree Curriculum

A graduate degree curriculum (Form GS2) must be filed with the Graduate School by those students who are in degree programs. Since fixed curricula normally do not exist for graduate degrees, this planned program represents the formulation of an individual student's curriculum as recommended by the advisory committee. It must adhere to departmental as well as Graduate School policies. Courses taken in excess of those required by the advisory committee for the degree should not be listed on the curriculum. Graduate credit is received only for courses numbered 600 or above; no student shall receive both undergraduate and graduate credit for the same course. The Graduate School discourages inclusion of 600-level courses in the minimum hours required for graduate degrees if these courses are clearly equivalents of undergraduate courses required for an undergraduate degree in the same major at Clemson University. Transfer credit appearing in the curriculum must adhere to the stipulation described under "Acceptance of Transfer Credit" on page 47.

Candidates for master's or specialist's degrees should submit the curriculum by the middle of their second semester and doctoral candidates no later than the beginning of their second year of study. Before a curriculum is approved, it must be reviewed and signed by the advisory committee. It is then submitted to department head(s) and college dean(s) for approval and is forwarded to the graduate dean for approval and appropriate distribution of copies.

Admission to Candidacy for a Degree

Admission to the Graduate School does not qualify a student as a candidate for an advanced degree. Such candidacy depends upon the acceptance by the graduate dean of a written request for admission to candidacy. This request (Form GS4) may be filed by the student as follows: for the master's degree, after completion of 15 hours of course work; for the Ph.D degree, after completion of a major share of course work and successful completion of the comprehensive examination (page 55).

All students desiring admission to candidacy must have received full status admission to the Graduate School, have a satisfactory academic standing, and have on file an approved graduate degree curriculum (Form GS2).

Application for a Diploma

A formal application for a diploma is placed by the student simultaneously when he or she applies for admission to candidacy (Form GS4). This order is submitted to the graduate dean and must be resubmitted should the student not graduate on the anticipated date. A $25.00 late fee will be assessed a

*An academic semester is defined as a minimum of nine credit hours of course work taken during a given semester. An academic year is defined as the total of two academic semesters.
student whose Form GS4 is submitted after the deadline dates shown on pages 2 and 3.

ACADEMIC REGULATIONS

Permanent Academic Records

The student’s permanent academic record is a historical record of the student’s academic progress. It is maintained in the Registrar’s Office and contains personal identifying information, grades and credits. Where appropriate, statements of a corrective nature, withdrawals, suspension for failure to meet academic standards, suspension for disciplinary reasons and graduation data are added.

Academic Standards

Most graduate courses are graded on an A-B-C-F scale. Thesis and dissertation research and several other graduate courses are graded on a pass/fail basis. These courses are not included in the academic average; however, the grade is placed on the student’s permanent record. Only credit hours for which a grade of pass is achieved apply toward the number of credit hours required for the degree. The accumulation of grades of pass in thesis or dissertation research does not imply completion of the research, but indicates satisfactory progress only.

A minimum grade of C must be made on all course work to obtain graduate credit. The graduate student must maintain a cumulative B average in all graduate-level courses (600-level or above). In addition, the graduate student must maintain a cumulative B average in all courses including undergraduate courses but excluding those taken on a pass/fail basis. See “Enrollment on a Pass/Fail Basis,” page 46. Students who fail to meet these requirements become ineligible for graduation and are placed on academic probation. Those who remain on probation for two consecutive semesters will not be permitted to continue a graduate program without the written approval of the graduate dean.

The cumulative B average requirements described above apply independently to graduate degrees sought at Clemson University; that is, the grade point ratio computation begins anew after the student has completed the first degree. The only exceptions are those instances in which a doctoral degree is pursued after completion of a master’s degree in the same major.

A grade lower than the specified minimum can be raised to count toward an advanced degree only by repetition of the course. Reexamination is not permitted.

A graduate student must understand that he or she can be dropped from the Graduate School at any time for failure to maintain an adequate academic status.
Final Examinations in Graduate Courses

Graduate work by its nature varies widely between disciplines in the specifications required in course work. It is expected that the evaluation of graduate work be based upon a number of observations, presentations, tests, papers, and/or other measures. The final evaluation should also include an examination at the conclusion of the course which in most cases will be written but may take on other forms.

Incomplete Graduate Course Work

Except for courses graded on a pass/fail basis, the grade of incomplete (I) may be given for incomplete work for any graduate course in which work remains undone and the student is unable to fulfill all requirements because of circumstances beyond his or her control. This grade is not given in lieu of unsatisfactory or failing grades received for completed courses for the opportunity of improving the grade later.

It is the student's responsibility to contact the instructor regarding the work required to complete the course. Upon request by the student, the instructor shall provide a written statement of the work to be completed.

The grade of I will be valid in normal lecture or laboratory courses for only 30 days after the beginning of the next scheduled session, excluding summers and irrespective of the student's enrollment status. Within this period, the student must either complete his or her work, or request approval from the graduate dean for an extension of time by means of a petition endorsed by the instructor and head of the department responsible for the course, stating the reason for the request and the length of time needed. Form GS12, available in the academic departments or the Graduate School, is the preferred mechanism for requesting an extension. Normally, only one request for an extension of time for each grade of I will be considered by the graduate dean.

Students receiving a grade of I in courses such as special problems or other unstructured, independent study courses as designated by the Graduate School must, in general, complete all work and receive a final grade within one calendar year. The only exceptions apply to students receiving the grade of I prior to completing enrollment in all other courses (exclusive of thesis or dissertation research) listed on their approved graduate degree curriculum, if one is on file, and who maintain continuous enrollment, excluding summer sessions, in pursuit of these courses. In such cases, the one calendar year deadline begins at the end of the term of enrollment in the final course(s) listed on the curriculum, excluding thesis or dissertation research. At the prerogative of the instructor, the deadline for removal of these incomplete grades may be less than those just described.

A graduate student will not be permitted to repeat any portion or reregister for any course (except GS 799) for which the grade of I has been given, or register in any other course for the purpose of removing the grade of I. Should any work remain incomplete at the expiration of the appropriate
deadlines described in the previous paragraphs, a grade of F will be recorded on the student's permanent record. Although the Graduate School will attempt to bring the deadlines to the attention of the student and department head, it is the sole responsibility of the graduate student to comply with these regulations.

Students who receive a grade of I while enrolled in the Graduate School at Clemson University remain ineligible for graduation until the incomplete work has been made up and a letter grade submitted to the Office of Admissions and Registration.

Withdrawal from Courses

Withdrawal from graduate course work beyond the first few weeks of class is strongly discouraged, particularly from those courses listed on a student's Form GS2. Withdrawals after the first few weeks of class should only be made for unusual academic reasons or for pressing medical or personal reasons. Students who officially withdraw within the first four weeks of classes will have no grades recorded, while those who officially withdraw after the first four weeks and prior to the last five weeks will have a grade of W (withdrew) entered on the official records. Students may not withdraw within the last five weeks of classes.

Permission to withdraw should be obtained from the faculty advisor on the Schedule Change Form available from the Office of Admissions and Registration. If the advisor does not grant permission to withdraw, the student may appeal to the department head. A refusal by the department head may be appealed to the dean of the Graduate School. The date on which the approval form is filed with the registrar is the official date of withdrawal.

The withdrawal dates described above apply to the regular semesters only. Reference should be made to pages 7-9 for the appropriate dates for the summer sessions.

Failure to attend classes or verbal notification to instructors does not constitute withdrawal. Students who drop out of a course without officially withdrawing as previously described will be credited with a failure.

Continuous Enrollment

Although continuous enrollment is not a formal requirement for an advanced degree, graduate students are expected to pursue their degrees with a minimum of interruption. Students who do not remain continuously enrolled (summers excluded) are subject to the requirements in effect at the time of return.

Only students who are enrolled are eligible to use University facilities and human resources and/or receive any form of financial aid. Students who have completed all required work and who find it necessary to be enrolled during a given semester so as to use facilities or human resources may enroll in GS 799 for a minimum of one credit.
Credit Loads

University upper limits on graduate student loads per semester refer to graduate and undergraduate credits combined and should be attempted only by the most qualified students.

<table>
<thead>
<tr>
<th>Student Category</th>
<th>Semester</th>
<th>Session</th>
<th>Session*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-Time Student</td>
<td>18</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Assistants (1/4 time)</td>
<td>15</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Assistants (1/2 time)</td>
<td>12</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Graduate Assistants (3/4 time)</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Persons Employed Full Time</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Quarter-time, half-time and three-quarter-time graduate assistants are defined as those who contribute an average of 10, 20 and 30 clock hours per week, respectively, of service to the University for the entire semester. A person employed full time is defined as anyone employed five full working days per week regardless of the employer(s). Graduate students paid solely on an hourly basis are not classified as graduate assistants but are subject to the same limitation in credit loads previously described.

For students whose hours of service per week fall between those defining each student category, the maximum credit load during a regular semester is found by linear interpolation. Any exceptions to the maximum credit loads must be requested by the department and approved in advance by the Graduate School.

Enrollment on a Pass/Fail Basis

The only graduate courses that may be taken on a pass/fail basis are thesis and dissertation research and a small number of unstructured courses in which the pass/fail grading scheme appears directly in the course description.

Graduate students shall not enroll on a pass/fail basis or audit any course required by the department or program as an undergraduate deficiency. All other undergraduate courses may be taken on a pass/fail basis. This decision must be made by the last day to add a class and is implemented by the student's major advisor or department head forwarding a request to the Graduate School.

Auditing by Graduate Students

Audited courses do not carry credit, and the fact that a course has been audited is not noted on the graduate student's official record. Graduate auditors are not required to stand tests or examinations. However, the instructor,
at his or her own discretion, may demand or deny the auditor's participation in class to whatever extent deemed desirable.

A graduate student may not satisfy by audit a stated prerequisite for a graduate course. Additionally, a graduate student may not establish credit through examination in any course for which he or she was previously registered as an auditor.

Acceptance of Transfer Credit

A maximum of 12 semester credit hours of work may be transferred from an accredited institution* for the purpose of meeting the requirements for a master's degree. Credits earned in a non-degree status at Clemson University are considered as transfer because they were earned prior to admission to a degree program. For the doctoral degree as many as 48 semester credit hours of work may be transferred.

In all cases, the use of transfer credits must be recommended by the student's advisory committee and approved by the department. Under no circumstances will transfer credit be awarded for research, internship or courses graded P/F, or for courses in which a grade lower than B, or its equivalent, has been received. Quality points for courses taken at institutions other than Clemson University will not be included in the student's academic average.

Credits may be transferred for work completed at off-campus centers of accredited institutions provided such courses are acceptable, without reservation, in degree programs at those institutions. No credit will be given for continuing education units, correspondence, extension or in-service courses, or for concentrated courses and workshops that award credits at a rate exceeding one credit per week.

All transfer credits must be verified by an official transcript from the institution at which the work was completed. Course work completed outside the six-year time limit may not be transferred to Clemson University or validated for graduate credit. Valid transfer credits will appear on the student's transcript as credits earned.

It is the student's responsibility to request a transcript of transfer credits to be sent directly to the Graduate School. The degree will not be conferred at the close of the term during which the student has been registered elsewhere for the purpose of transferring credits.

Independence of Graduate Degrees

The requirements for a graduate degree at Clemson University cannot be met with credits used to satisfy the requirements of another graduate degree earned at Clemson University or elsewhere. Thus, the degrees are independent, implying that the formal curriculum for the degree at Clemson University can contain no credits used for an earlier graduate degree.

Refers to accreditation by one of the six regional Associations of Colleges and Schools.
ACADEMIC RESEARCH

Theses and Dissertations

Candidates for advanced degrees receive academic credit for conducting research and preparing a thesis (master’s candidates) or a dissertation (doctoral candidates) under the direction of the research advisor. In those Master of Arts or Master of Science degree curricula requiring a thesis, six credits of research (891) are required. The thesis option curricula in the Master of Architecture, Master of City and Regional Planning, and Master of Fine Arts degree programs require 12, 6 and 15 credits of research, respectively. A dissertation, mandatory for all candidates for the Ph.D. or Ed.D. degrees, requires 18 credits of doctoral research (991) exclusive of any research credits earned at the master’s level.

The accumulation of grades of pass in thesis or dissertation research does not imply completion of the research, but indicates satisfactory progress only.

1. **Student Responsibility.** The student, in consultation with his or her major advisor, shall provide each remaining advisory committee member with a copy of the manuscript for initial review. This action should take place well in advance of, and not less than three weeks prior to, the final examination and defense of the thesis or dissertation. Students must prepare the manuscript in a style acceptable to the Graduate School; a guide for the preparation of theses and dissertations at Clemson University may be obtained from the Clemson University Bookstore at a cost of $2.50 per copy. Following approval of the manuscript by the advisory committee and any ex officio members, the thesis or dissertation is presented to the Graduate School for review and approval prior to duplication.

Three copies of the thesis or dissertation, required for hard binding, must be submitted to the Graduate School by the deadline date appropriate for the anticipated graduation date (see pages 2 and 3). A binding fee of $18.75 must be paid to the bursar and the bursar’s receipt submitted to the Graduate School at the time the duplicated thesis or dissertation is submitted. If the student desires, additional copies may be bound at a cost of $6.25 per copy.

For doctoral candidates, a fourth copy of the dissertation is required for microfilming and is placed by the Graduate School with University Microfilms International of Ann Arbor, Michigan. An additional copy of the title page and abstract must also be submitted, with the latter not exceeding 2,450 typewriter characters, including spaces. Occasionally, this will necessitate revision of the longer original abstract, which is retained in all copies. The abstract should be written and edited in a form suitable for publication and database retrieval. The total microfilming fee is $40.00 and must be paid to the bursar simultaneously with the binding fees. An additional fee of $20.00 is necessary if copyright is desired.

2. **Faculty Responsibility.** The research advisor will determine when the manuscript is suitable for initial review by the remaining committee mem-
bers. Guidelines for the review process and a thesis/dissertation review form are available in the departments and the Graduate School. These guidelines are designed to produce a timely review by each committee member and to provide a measure of protection for all affected parties against problems resulting from lack of communication and/or attention. If the student requests, the research advisor is obligated to initiate the thesis/dissertation review form and forward it to the remaining committee members along with the manuscript. The research advisor must be cognizant also of departmental practices regarding the quality of the manuscript at the various review stages and of the wishes of the department head, as an *ex officio* committee member, to exercise the option of approving the thesis or dissertation in its final form.

Committee members should normally complete the initial review in three weeks or less. Provisions of the guidelines, however, allow for additional time if necessary. Failure of a committee member to complete the initial review within six weeks may result in his or her replacement, provided the student has requested use of the thesis/dissertation review form. A second review after revisions should be completed in one week, with provisions being available for additional time.

It should be understood that a vote to pass a student on his or her performance at the final examination (Form GS7) does not imply final approval of the thesis or dissertation since an independent approval page exists.

Restriction on Use of Theses and Dissertations

Unpublished theses and dissertations submitted to the Graduate School in partial fulfillment of the requirements for graduate degrees and deposited in the University library are, as a rule, open to the public for reference purposes. However, extended quotations or summaries may be published only with the permission of the author and the graduate dean.

Publication Policy

A university’s primary function is the accumulation and dissemination of knowledge. It is therefore expected that the results of research performed using University facilities be published in the open literature; i.e., theses, dissertations, journals, magazines or books, and that any information obtained may be freely disclosed by the faculty in the teaching programs of the University.

Exceptional cases may arise, however, and the following guidelines shall apply to any sponsored projects requiring that results be kept confidential.

1. The University shall not accept awards that require research results to be kept confidential forever. A definite term of confidentiality shall be stated in a written nondisclosure agreement and shall not exceed one year beyond the date of notification to the sponsor that a manuscript suitable for publication has been prepared. Exceptions may be granted by the University administration only under unusual circumstances;
e.g., for national security, national emergency, classified activities or certain confidential agreements.

2. Students associated with confidential projects must have prior approval for the use of results in preparing reports, theses or dissertations in fulfillment of degree requirements. The Graduate School will normally not accept a thesis or dissertation which must be held in confidence for more than one year. Documents submitted in partial fulfillment of degree requirements will be retained by the Graduate School (or the department in the case of project reports for non-thesis programs) in accordance with the nondisclosure agreement. The student's thesis or dissertation defense shall not be open to those not bound by the nondisclosure agreement.

DEGREE REQUIREMENTS

Courses are offered leading to the research degrees of Master of Arts, Master of Science and Doctor of Philosophy.

In addition, courses are offered leading to the professional degrees of Doctor of Education, Specialist in Education, Master of Agriculture, Master of Agricultural Education, Master of Architecture, Master of Building Science and Management, Master of Business Administration, Master of City and Regional Planning, Master of Education, Master of Engineering, Master of Fine Arts, Master of Forestry, Master of Industrial Education, Master of Nutritional Sciences, Master of Parks, Recreation and Tourism Management, and Master of Professional Accounting.

MASTER'S DEGREE

Residence Requirements

To receive the Master of Science or Master of Arts degree, the student must complete at least nine semester hours of graduate credit on the Clemson University campus during one academic semester or two consecutive summer sessions of the program.

Alternatively, the student may complete at least 15 semester hours of graduate credit including up to six credit hours of research (891) on the Clemson University campus during a continuous 12-month period. The residence requirements for professional master's degrees are determined by the colleges offering the degree.

Time Limit

All course work which is to be credited toward any of the master's degrees must have been enrolled in and completed within six calendar years prior to the date on which the degree is to be awarded. When recommended by the student's advisory committee and approved by the graduate dean, as many as six semester hours of course work completed outside the six-year limit
may be validated by written examination. Such examinations will be under
the direction of the department regularly offering the course or courses for
which the student seeks validation. Course work completed outside the six-
year time limit at an institution other than Clemson University may not be
transferred to Clemson or validated for graduate credit.

Course Work Required
The total number of graduate credits required for the degree shall be
determined by the student’s advisory committee, consistent with the spe-
cific program guidelines and Graduate School policy. These credits
constitute the core of the student’s Graduate Degree Curriculum (Form GS2)
and will appear on the form at the location entitled REQUIRED COURSES
(GRADUATE LEVEL ONLY). Undergraduate deficiencies will be listed at the
designated location. Supplemental courses, carrying undergraduate or
graduate credit and chosen to broaden the student’s academic experience,
are not required on Form GS2. However, if a listing is desirable, such courses
will be listed as departmental requirements at the designated location.

The Graduate School requires each degree program to consist of a mini-
mum of 30 semester hours of graduate credit with at least 12 semester
hours, exclusive of thesis research credits, in the student’s major disci-
pline. A minor, if chosen, shall consist of at least six semester hours in that
area. The following conditions, appropriate for the types of degrees, must
also be observed:

1. Master of Arts or Master of Science (Thesis Option). Each program
will include a minimum of 24 semester hours of graduate credit exclusive of
thesis research and six semester hours of thesis research (891). At least one-
half of the total graduate credit hours required by the advisory committee
must be selected from courses numbered at the 800-level or above, exclu-
sive of thesis research.

2. Master of Arts or Master of Science (Non-thesis Option). Each pro-
gram will include a minimum of 30 semester hours of graduate credit, none of
which may be thesis research. At least one-half of the total graduate credit
hours required by the advisory committee must be selected from courses
numbered at the 800-level or above.

3. Professional Master’s Degrees. Each program will include a mini-
mum of 30 semester hours of graduate credit. Except for professional
programs in the College of Architecture which require a thesis, research
credits (891 or 991) may not be included in the program requirements. At
least one-half of the total graduate credit hours required by the advisory com-
mittee must be selected from courses numbered at the 700-level or above.
Any additional requirements for these degrees are described under the col-
leges which offer the degrees.

Foreign Language Requirement
A reading knowledge of one approved foreign language is a departmental
DEGREE REQUIREMENTS

requirement for certain Master of Arts and Master of Science degrees. The required reading knowledge is equivalent to that provided by two years of study of the language at the college level. The procedures for satisfying this language requirement are identical to those for the doctoral degree as listed on page 55.

Study in Absentia

Although thesis research is normally performed at Clemson University, it is recognized that Clemson University may not have on its campus certain specialized equipment or facilities which would be desirable for advanced training at the master's level. Thus, for those cases in which thesis or other advanced study is required and the facilities to pursue such study are not available on the Clemson campus, permission may be granted for study in absentia. The requirements to be satisfied in such cases are identical to those listed under "Doctor of Philosophy Degree — Off-Campus Research" on page 53, with the exception that the off-campus research supervisor need not hold the Ph.D. degree, provided he or she is qualified and certified for the supervisory position by the department and college involved and by the graduate dean.

Final Examination

Each candidate for the master's degree, after completion of the thesis, if required, and at least three weeks before the degree is to be awarded, must pass a final examination administered by the student's advisory committee. The examination, which may be oral and/or written, will ascertain the general knowledge of the candidate with particular reference to the major and minor subjects and the thesis or departmental research report. The Graduate School will be notified of the time and place of the examination at least 10 days prior to the time scheduled. Members of the faculty are invited to attend the examination as well as members of the Graduate Curriculum Committee and the dean of the Graduate School. Within three days after the examination, the examining committee, through the appropriate form (Form GS7), will notify the graduate dean of the results of the examination. A student who fails a final examination may be allowed a second opportunity only with the recommendation of the advisory committee. Failure of the second examination will result in dismissal from the Graduate School.

SPECIALIST IN EDUCATION DEGREE

The foregoing degree requirements pertaining to residency, time limits and final examination for professional master's degrees also apply to the Specialist in Education degree. Course work required includes 30 semester hours beyond the master's degree to be selected from five areas prescribed by the Department of Elementary and Secondary Education.

DOCTOR OF PHILOSOPHY DEGREE

Work leading to the Doctor of Philosophy degree is planned in such a way
as to give the student a comprehensive knowledge of his or her field of specialization and a mastery of the methods of research. The degree is not awarded solely on the basis of course work completed, residence or other routine requirements. The final basis of granting the degree will be the student’s grasp of the subject matter of a broad field of study, competency to plan and conduct research, and ability to express himself or herself adequately and professionally in oral and written language.

The advisory committee will aid the student in developing a graduate degree curriculum, which will include the selection of specific courses and their sequence. Although no minimum course work requirements exist for the doctoral degree, committees are encouraged to require courses other than those which directly support the dissertation research. Work in the minor field or fields, if required, normally should comprise from 12 to 24 hours in courses carrying graduate credit. A minimum of 18 hours of doctoral research is required. Should the direction of study or research interest change, the student may request the appointment of a new advisor.

Residency Requirements

Residency is a necessary concept in graduate education, particularly in the preparation of the dissertation. The purpose of residency is to require the student to spend a specified minimum amount of time as follows:

1. In direct personal association with members of the faculty of the University.
2. Under direct tutelage and advisement of a research advisor and advisory committee in the department or program of the major.
3. Participating in other normal activities pertinent to graduate education such as seminars and close association with other student researchers.

To receive the Doctor of Philosophy degree, the student must complete at least 15 semester hours of graduate credit including research credit hours (991) on the Clemson University campus in a continuous 12-month period.

For students employed substantially more than half time, a statement specifying the manner in which the residence requirement is to be satisfied shall be formulated by the advisory committee and be included in the graduate degree curriculum. Also, upon completion of the final examination, the student’s committee will forward to the Graduate School a statement approved by the department head and college dean certifying that residence requirements have been met.

Off-Campus Research

Under special circumstances, it may appear desirable that doctoral research be conducted away from the Clemson University campus. If such research is to be performed under the immediate direction of a Clemson University faculty member acting as dissertation advisor and supervisor, then in order to accommodate the student as well as to exercise proper and necessary control over this most important phase of doctoral study, the following additional requirements will be made:
1. **Written Consent and Research Plan.** The student must have the written consent of his or her dissertation advisor, full advisory committee, department head, college dean and the graduate dean. Prior to departure from campus, the student must submit a written plan for his or her research effort to the advisory committee for approval. The plan should include a discussion of the problem and intended scope of the investigation, and should be structured in terms of a specific time frame.

2. **Statement from Organization Where Research Will Be Conducted.** The advisory committee may require a statement from an appropriate officer of the organization at which the student will be located agreeing to the following: the student’s plan to complete dissertation research using the organization’s equipment and facilities; the apportioning of at least 25 percent or other appropriate amount of the student’s employment hours to dissertation research; and the organization’s release of patent rights or copyrights arising from discoveries or concepts that evolve during the course of the student’s doctoral research.

3. **Travel.** The student may be required to travel to Clemson University, not at the expense of Clemson University, to meet with the dissertation advisor and advisory committee as often as is deemed necessary by the committee. Further, the student may, at the discretion of the dissertation advisor and advisory committee, be required to return to the Clemson campus subsequent to the performance of the mechanics of the research for the purpose of comprehensive review and analysis of the research.

4. **Continuous Enrollment.** The student must maintain continuous enrollment at Clemson University each semester while the research is in progress. It will be the student’s responsibility to make suitable arrangements with the department to maintain this continuous registration. Normally the student will not be required to register for summer sessions; however, he or she must be registered for the term which involves the review of the completed dissertation and/or the final examination.

5. **Supervision and Reports.** When doctoral research is conducted away from the Clemson campus and under the immediate direction of a dissertation supervisor who is employed by an organization other than Clemson University, in order to accommodate the student, as well as to exercise proper and necessary control over this important phase of doctoral study, the following requirements must be met:

 (a) An employee, having earned a Ph.D. and being engaged in the general subject area of the student’s research, must be designated by an officer of the organization to supervise the student’s research work.

 (b) The employee must be recommended to the provost by the appropriate college dean for appointment as an adjunct professor of Clemson University.

 (c) A résumé of the research supervisor must be submitted to the student’s full advisory committee for its review and recommendation to the graduate dean.
(d) The research supervisor must submit a final statement regarding the dissertation research, as well as interim reports if the committee deems such as necessary.
(e) The off-campus research supervisor cannot serve as the student's major advisor.

Time Limit
All requirements for a Doctor of Philosophy degree must be completed within eight years from the date of enrollment in the degree program. If a student possesses a master's degree in the same or in a closely allied area of study, all requirements for the Doctor of Philosophy degree must be completed within six years from the date of enrollment in the degree program. Special limitations, applying to the result of the comprehensive examination, are found below in the section describing this examination.

Foreign Language Requirement
Certain doctoral programs include a foreign language requirement. Languages accepted by all departments are French and German. Under certain conditions Spanish, Russian or the classical languages may be accepted. Upon the recommendation of the head of the Department of Languages, use of still other languages may be approved, provided adequate justification can be presented, the language is not native to the student, and a proper testing procedure can be established. Any expense incurred in obtaining assistance for such testing must be paid by the student.

The language requirement is a basic reading knowledge, equivalent to that provided by two years of study at the college level, of one or two languages as specified by the program faculty awarding the degree. A student may satisfy a foreign language requirement by passing a translation test administered by the Department of Languages or by passing the same kind of test given as the final examination at the end of an undergraduate language course designed for graduate students.

The undergraduate courses, offered in the summer sessions, will carry three semester hours of credit. In addition, the Department of Languages will administer its foreign language reading test four times annually on the first Thursdays of November and March and once in each of the summer sessions. A $20 test administration fee will be assessed to cover the expenses incurred for those who have not enrolled in the appropriate course. Applications must be made at least three full weeks prior to the test date.

All language requirements must be satisfied prior to the student's attempting the comprehensive examination and prior to admission to candidacy for the degree.

Comprehensive Examinations Before Admission to Candidacy
Satisfactory completion of the comprehensive examination, i.e., a written or a written and oral examination taken after completion of most required
course work, must occur no less than six months and no more than five years prior to the date of graduation. The function of the examination is to obtain objective evidence of an adequate intellectual mastery of the areas of the major and minor specializations.

The chairperson of the advisory committee will inform the Graduate School of the result, via Form GS5, within three weeks following the examination. The student's performance on this examination will determine whether he or she will be recommended for admission to candidacy for the degree.

Should the student fail to pass the comprehensive examination, he or she may be given a second opportunity if so recommended by the advisory committee. A second failure shall result in the student being declared ineligible to receive the Doctor of Philosophy degree at Clemson University.

Some doctoral programs require preliminary or qualifying examinations prior to the comprehensive examination. Information about these examinations may be obtained from the individual departments.

Final Doctoral Oral Examination

The candidate for the Doctor of Philosophy degree must pass a final oral examination (dissertation defense) at least three weeks prior to the time of the commencement at which he or she plans to obtain the degree. The examination will be conducted by the student’s advisory committee, and all faculty members are invited to participate. The Graduate School will be notified of the time and place of the examination at least 10 days prior to the time scheduled.

This final examination demands a broad and penetrating interpretation by the student of the research project and conclusions. It may include examination of the student in the major and minor fields of specialization.

A student who fails a final oral examination may be allowed a second opportunity only with the recommendation of the advisory committee. Failure of the second examination will result in dismissal from the Graduate School.

DOCTOR OF EDUCATION DEGREE

Degree requirements pertaining to residency, time limit, comprehensive and final examinations are the same as those for the Doctor of Philosophy degree. In addition, the candidate for the Doctor of Education degree must arrange with his or her advisory committee to engage in an internship appropriate to his or her field of professional service.

GRADUATE PROGRAMS AND COURSE OFFERINGS

EXPLANATION OF COURSE LISTINGS

Courses are listed alphabetically within the college that offers them. In certain departments offering more than one course sequence, the secondary courses (not leading to a major or a minor) are listed immediately after those normally associated with the degree program or departmental name. The list
of courses offered under each program includes for each course the catalog number, title of course, credit in semester hours, class/laboratory hours per week and, for courses numbered 700 or above, the description of the course. Where courses are offered on a schedule, there is a designation F, S or SS following the class/laboratory hours, indicating whether the course is customarily offered in the fall, spring or summer school.

Graduate credit can be earned only for courses numbered 600 or above. Courses listed in this catalog in the 600-699 series are taught concurrently in the same classroom setting as the corresponding 300/400 series undergraduate courses. These are described in the general catalog, Announcements 1987-88, which may be obtained from the director of undergraduate admissions.

Courses numbered in the 300 and 400 sequence are primarily for advanced undergraduates but are also offered for graduate credit when they carry the corresponding 600-level number. Students who receive graduate credit in such courses must be required to do extra work of an appropriate nature as determined by the department and will be graded according to graduate standards. Courses numbered 700 or above are restricted to graduate students and certain qualified Clemson University seniors as described on page 39.

Some course listings under certain programs may contain 700-, 800- and 900-level courses with a number, title, credits and hours, but no description. These courses are administered by a department other than the one under which they are listed. In these cases, a note will indicate where the descriptions are located.

A secondary listing of a course in parentheses implies that this course is cross-listed with the parent course. The course description appears with the parent course only.

The 700-level courses are designed primarily for the degrees that emphasize professional practice rather than research.
COLLEGE OF AGRICULTURAL SCIENCES

AGRICULTURAL ECONOMICS
AGRICULTURAL EDUCATION
AGRICULTURAL MECHANIZATION
AGRONOMY
ANIMAL AND FOOD INDUSTRIES
ANIMAL PHYSIOLOGY
ANIMAL SCIENCE
APPLIED ECONOMICS
AQUACULTURE, FISHERIES AND WILDLIFE
DAIRY SCIENCE
ENTOMOLOGY
ENVIRONMENTAL SCIENCE
EXPERIMENTAL STATISTICS
FOOD SCIENCE
FOOD TECHNOLOGY
GENETICS
HORTICULTURE
NUTRITION
PLANT PATHOLOGY
PLANT PHYSIOLOGY
POULTRY SCIENCE
The College of Agricultural Sciences offers advanced degrees in the following areas of study:

- Agricultural Economics
- Aquaculture, Fisheries and Wildlife Biology
- Agricultural Education
- Dairy Science
- Agricultural Engineering*
- Entomology
- Agricultural Mechanization
- Food Technology
- Agronomy
- Horticulture
- Animal and Food Industries
- Nutrition
- Animal Physiology
- Plant Pathology
- Animal Science
- Plant Physiology
- Applied Economics**
- Poultry Science

In addition to the M.S. and Ph.D. degrees, the College of Agricultural Sciences offers three professional degrees: Master of Agriculture, Master of Agricultural Education and Master of Nutritional Sciences. These post-baccalaureate degree programs are designed primarily to provide continuing education for individuals whose interests lie outside a research-oriented profession.

A minimum of 30 semester hours is required for the professional degree. At least one-half of the credit hours in the student’s program must come from courses numbered 700 or above. The student’s program of study must be approved by his or her advisory committee.

All candidates for the degree of Master of Agriculture, Master of Agricultural Education or Master of Nutritional Sciences will be required to take a course in applied statistics if such a course has not been a part of the undergraduate degree program. In addition, a knowledge of research methods will be required and may be acquired through a research methods or a special problems course.

AGRICULTURAL ECONOMICS
Bobby H. Robinson, Head, Department of Agricultural Economics and Rural Sociology

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics</td>
<td>M.Ag., M.S.</td>
</tr>
<tr>
<td>Applied Economics</td>
<td>Ph.D.</td>
</tr>
</tbody>
</table>

Graduate work in agricultural economics is of increasing importance since it enables the student to attain a higher degree of specialized professional competence and to secure a greater mastery of techniques for applying

*Jointly administered by the College of Agricultural Sciences and the College of Engineering. The M.S. and Ph.D. degrees are awarded by the College of Engineering.

**Jointly administered by the College of Agricultural Sciences and the College of Commerce and Industry. The Ph.D. degree is awarded by the College of Agricultural Sciences.
quantitative economic analysis to agricultural and natural resource problems. Industry, government and universities offer challenging opportunities in research, development, education, management and other related areas for persons with advanced training.

Special emphasis in the graduate program is placed on the economics of agricultural production and marketing, economic development, analysis of programs and policies affecting agriculture, and statistical techniques used in solving economic and institutional problems.

In addition to applicants with baccalaureate degrees in agricultural economics and related programs, the department encourages applications from students who have a sound background in general economics. In many cases, such students may be admitted to full graduate status without prerequisites other than those required of all graduate students.

AG EC 602 PRODUCTION ECONOMICS
3 cr. (3 and 0) F

AG EC 603 LAND ECONOMICS
3 cr. (3 and 0) S

AG EC 609 COMMODITY FUTURES MARKETS
3 cr. (3 and 0) F

AG EC/ CRD 611 REGIONAL IMPACT ANALYSIS
2 cr. (2 and 0) F

AG EC/ CRD 612 SPATIAL COMPETITION AND RURAL DEVELOPMENT
2 cr. (2 and 0) S

AG EC 613 RURAL PROPERTY APPRAISAL
3 cr. (3 and 0) S

AG EC 620 WORLD AGRICULTURAL TRADE
3 cr. (3 and 0) S

AG EC 625 AQUACULTURE ECONOMICS
3 cr. (3 and 0) F (offered in alternate years)

AG EC 652 AGRICULTURAL POLICY
3 cr. (3 and 0) F

AG EC 656 PRICES
3 cr. (3 and 0) S

AG EC 660 AGRICULTURAL FINANCE
3 cr. (3 and 0) F

AG EC 719 PROFESSIONAL PROBLEMS IN AGribusiness MANAGEMENT
3 cr. (3 and 0) F

Concepts and principles of agribusiness firm management; decision theory, information systems, systems analysis and organization theory applied to the organization, administration and management of agriculturally related businesses.

AG EC 791 SELECTED TOPICS IN AGRICULTURAL ECONOMICS
1-3 cr. (1-3 and 0) F, S

Students working toward Master of Agriculture degree in Department of Agri-
cultural Economics and Rural Sociology study selected topics under guidance of major professor. Course may be repeated for a maximum of six credits.

AG EC 802 ADVANCED PRODUCTION ECONOMICS
3 cr. (3 and 0) S
Production economics theory in a quantitative framework; technical and economic factor-product, factor-factor and product-product relationships in single and multiproduct firms under conditions of perfect and imperfect competition in both factor and product markets. Prerequisite: AG EC 808 or permission of instructor.

AG EC 806 INPUT-OUTPUT ANALYSIS AND REGIONAL STRUCTURE
2 cr. (2 and 0) F
Leontief price and value models; U.S. input-output system; regional nonsurvey techniques and applications of IO to problems of regional economies and environmental management. Prerequisite: CRD 411/611 or permission of instructor.

AG EC 807 MARKET STRUCTURE IN AGRICULTURAL INDUSTRIES
3 cr. (3 and 0) S
Market structure and other approaches related to agricultural marketing. Individual assignments in the student's field of interest required. Prerequisite: Permission of instructor.

AG EC 808 APPLIED QUANTIFICATIONS IN AGRICULTURAL ECONOMICS
3 cr. (3 and 0) F
Mathematical tools needed for concise description of agricultural economic principles; microeconomic theory under assumptions of perfect competition; relations among agricultural demand, supply, cost, revenue and productivity. Prerequisite: Permission of instructor.

AG EC 809 ADVANCED NATURAL RESOURCE ECONOMICS
3 cr. (3 and 0) S
Applications of economic theory to problems of natural resource management; epistemological considerations; rent theory; public and private investment criteria; benefit-cost analysis and general equilibrium management models. Prerequisite: AG EC 802 or permission of instructor.

AG EC 810 WATER AND MARINE RESOURCES MANAGEMENT AND POLICY
3 cr. (3 and 0) F
Economic, institutional and legal aspects of control and management of natural resources; concepts of economic science applied to public policy questions related to land and water resources. Specialized background in economics not necessary. Prerequisite: Permission of instructor.

AG EC 812 INTERREGIONAL COMPETITION ANALYSIS
2 cr. (2 and 0) S
Basic spatial dimensions of pricing and allocation examined within context of competitive equilibrium, emphasizing resource and commodity markets of the U.S. economy. Prerequisite: AG EC/CRD 412/612 or permission of instructor.
AG EC 814 CONTEMPORARY PUBLIC POLICY
3 cr. (3 and 0) S
Contemporary public policy, including price and resource policy, affecting rural areas; public participation, or the lack thereof, related to programs designed to implement public policy.

AG EC 827 ADVANCED AGRICULTURAL CONSUMPTION AND DEMAND
3 cr. (3 and 0) F
Advanced analysis of individual and aggregate consumption decisions concerning agricultural products, emphasizing agricultural marketing applications; market interdependencies; policy applications of empirical work. Prerequisite: EX ST 803 or its equivalent.

AG EC 851 SEMINAR IN RESEARCH METHODOLOGY
1 cr. (1 and 0) F
Logic and the scientific method; formulation, initiation and carrying out of research problems in economics and business; methods and problems of obtaining and analyzing economic data; role of electronic computers and data processing systems; group discussions of proposed thesis topics of individual students. (Required of all graduate students who have not already had a comparable course.)

AG EC 852 RESEARCH METHODS FOR AGRICULTURAL ECONOMISTS I
2 cr. (2 and 0) F
Linear models and their application to problems related to the economics of agriculture. Topics include the simplex method, developing farm planning LP models, solving LP problems using the MPSX computer program, parametric analysis techniques and other LP applications related to rural problems.

AG EC 853 RESEARCH METHODS FOR AGRICULTURAL ECONOMISTS II
2 cr. (2 and 0) F
Application of econometric techniques and stochastic models to problems related to the economics of agriculture. Topics include distribution theory, simple and multiple regression modeling, hypothesis testing and other issues in regression analysis.

AG EC 871 WORKSHOP IN QUANTITATIVE METHODS IN AGRICULTURAL ECONOMICS
1 cr. (1 and 0) S
Application of quantitative methods in agricultural economics research; linear and nonlinear techniques. Prerequisites: AG EC 808, 852 and 853.

AG EC 872 TECHNIQUES OF SURVEY ANALYSIS IN SOCIAL SCIENCES
1 cr. (1 and 0) S
Techniques and procedures used by social scientists to collect primary data with survey techniques. Topics include sample selection, questionnaire construction and personal interview techniques. Prerequisite: Permission of instructor.

AG EC 881 INTERNSHIP IN COMMUNITY AND RESOURCE DEVELOPMENT
1-6 cr.
Supervised employment in an agency dealing with socioeconomic aspects, community development and/or natural resource management. Monthly reports
covering student's experience required. **Prerequisite**: 18 semester hours of graduate credit.

AG EC 891
MASTER'S THESIS RESEARCH
Credit to be arranged.

AG EC 901
PRICE THEORY
(ECON 901) 3 cr. (3 and 0)
See ECON 901 for description.

AG EC 902
PRODUCTION ECONOMICS PROBLEMS
(ECON 902) 2 cr. (2 and 0) F
Application of production economic theory and quantitative techniques to current problems. Extensions of theory and new techniques may be introduced when examining problem areas. **Prerequisite**: AG EC 802.

AG EC 903
GENERAL EQUILIBRIUM AND WELFARE THEORY
(ECON 903) 3 cr. (3 and 0) S
The second of a two-course sequence of advanced price theory. The first part of this course is the development of the theory of general equilibrium and the economics of welfare; the second is the capital theory and the determination of the rate of interest. **Prerequisite**: AG EC 901.

AG EC 904
SEMINAR IN RESOURCE ECONOMICS
(ECON 904) 3 cr. (3 and 0) S
Special problems and recent periodical literature relating to the control, management, development and use of land and water resources in the United States and in other parts of the world. **Prerequisite**: AG EC 403/603.

AG EC 905
ADVANCED MACROECONOMIC ISSUES
(ECON 905) 3 cr. (3 and 0)
See ECON 905 for description.

AG EC 906
SEMINAR IN AREA ECONOMIC DEVELOPMENT
(ECON 906) 3 cr. (3 and 0) F
Recent research developments in economic development; review of research publications, journal articles and other literature; objectives, analytical techniques and procedures used in area or regional development efforts. **Prerequisite**: AG EC 806.

AG EC 907
AGRICULTURAL MARKETING PROBLEMS
(ECON 907) 2 cr. (2 and 0) F
Theory and research related to consumer behavior; economic consequences of individuals' and firms' decisions upon supply and demand; general interdependency among economic variables. **Prerequisite**: AG EC 807.

AG EC 917
ADVANCED SEMINAR IN LABOR ECONOMICS
(ECON 917) 3 cr. (3 and 0)
See ECON 917 for description.

AG EC 991
DOCTORAL DISSERTATION RESEARCH
(ECON 991) Credit to be arranged.

CRD/
REGIONAL IMPACT ANALYSIS

AG EC 611
2 cr. (2 and 0) F
AGRICULTURAL EDUCATION

CRD/EC 612 SPATIAL COMPETITION AND RURAL DEVELOPMENT 2 cr. (2 and 0) S
RS 601 HUMAN ECOLOGY 3 cr. (3 and 0) S
RS 603 METHODS OF SOCIAL RESEARCH II (SOC 603) 3 cr. (3 and 0)
RS 659 THE COMMUNITY 3 cr. (3 and 0) F
RS 671 DEMOGRAPHY 3 cr. (3 and 0) S
RS 881 SPECIAL PROBLEMS IN RURAL SOCIAL RESEARCH 1-3 cr. (0 and 2-6)

Recent research problems and literature emphasizing research design, analysis, theoretical generalizations and application programs. May be repeated for a maximum of six credits. Prerequisite: Six semester hours of 600-level sociology or rural sociology courses or permission of instructor.

AGRICULTURAL EDUCATION
John H. Rodgers, Head, Department of Agricultural Education

Major Degree
Agricultural Education M.Ag.Ed.

The Master of Agricultural Education degree is designed for people who wish to increase their competence in providing professional educational services in agricultural and vocational education. The flexible program permits specialization in interest areas. Degree recipients often return to positions as agriculture teachers in high schools, vocational schools, technical education centers and community colleges. They are also in demand for administrative, supervisory and specialized positions in these institutions. Agricultural Extension workers and many others who have educational responsibilities in the agribusiness complex find this program to be a valuable step in their professional development.

Candidates for the degree are required to complete:
1. A minimum of 12 semester hours in the student’s major field.
2. At least three semester hours in statistics, three semester hours in adult education and three semester hours in research methods.
3. A minimum of six semester hours in an area of concentration outside the major field.

AG ED 601 METHODS IN AGRICULTURAL EDUCATION 3 cr. (2 and 3) S
AG ED 623 CURRICULUM 2 cr. (2 and 0) F
AG ED 625 TEACHING AGRICULTURAL MECHANICS 2 cr. (1 and 3) S
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG ED 628</td>
<td>SPECIAL STUDIES IN AGRICULTURAL EDUCATION</td>
<td>1-3 cr. (1-3 and 0)</td>
<td></td>
</tr>
<tr>
<td>AG ED 630</td>
<td>FUNDAMENTALS OF EXTENSION EDUCATION</td>
<td>2 cr. (2 and 0) F</td>
<td></td>
</tr>
<tr>
<td>AG ED 631</td>
<td>METHODS IN ENVIRONMENTAL EDUCATION</td>
<td>3 cr. (3 and 0) SS</td>
<td></td>
</tr>
<tr>
<td>AG ED 632</td>
<td>VISUAL MEDIA FOR AGribusiness</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>AG ED 650</td>
<td>MODERN TOPICS AND ISSUES</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>AG ED 665</td>
<td>PROGRAM AND CURRICULUM DEVELOPMENT</td>
<td>3 cr. (3 and 0) F (even numbered years)</td>
<td></td>
</tr>
<tr>
<td>AG ED 667</td>
<td>ADULT EDUCATION IN AGRICULTURE</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>AG ED 680</td>
<td>EDUCATIONAL APPLICATIONS OF MICROCOMPUTERS (IN ED 680)</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>AG ED 680</td>
<td>(COL ED 680)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG ED 682</td>
<td>ADVANCED EDUCATIONAL APPLICATIONS OF MICROCOMPUTERS (IN ED 682)</td>
<td>3 cr. (2 and 2)</td>
<td></td>
</tr>
<tr>
<td>AG ED 682</td>
<td>(COL ED 682)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG ED 682</td>
<td>(ED 682)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG ED 726</td>
<td>AGRICULTURAL MECHANIZATION FOR IN-SERVICE TEACHERS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>AG ED 727</td>
<td>AGRICULTURAL EDUCATION SHOP MANAGEMENT</td>
<td>3 cr. (1 and 6)</td>
<td></td>
</tr>
<tr>
<td>AG ED 736</td>
<td>INTERNSHIP: TEACHING</td>
<td>3 cr. (1 and 6) S</td>
<td></td>
</tr>
<tr>
<td>AG ED 737</td>
<td>INTERNSHIP IN AGribusiness FIRMS</td>
<td>3 cr. (1 and 6)</td>
<td></td>
</tr>
<tr>
<td>AG ED 737</td>
<td>INTERNSHIP IN AGribusiness FIRMS</td>
<td>3 cr. (1 and 6)</td>
<td></td>
</tr>
</tbody>
</table>
AG ED 750 SPECIAL INSTITUTE COURSE: SELECTED TOPICS IN AGRICULTURAL EDUCATION
1-3 cr. (1-3 and 0)
Subject areas organized according to institute needs. Topics vary from course to course. May be repeated for a maximum of nine credits. **Prerequisite:** Permission of instructor.

AG ED 803 EVALUATION OF INSTRUCTIONAL PROGRAMS
3 cr. (2 and 3) F (odd numbered years)
Measurement and evaluation in general and as applied to agricultural and vocational education; selection and/or development and use of instruments for appraising educational outcomes of student achievement and total programs. **Prerequisite:** Permission of instructor.

AG ED 804 SPECIAL PROBLEMS
3 cr. (2 and 3) F, S, SS
Planning, conducting and reporting a special problem in agricultural and vocational education appropriate to students' needs.

AG ED 805 ADMINISTRATION AND SUPERVISION IN AGRICULTURAL EDUCATION
3 cr. (3 and 0) S (even numbered years)
Developing a philosophy of education including application of administrative concepts in supervising agricultural education programs. **Prerequisite:** Experience in agricultural education.

AG ED 815 TEACHING AGRICULTURAL AND POWER MECHANICS
3 cr. (2 and 3) SS (odd numbered years)
Methods of determining course content, organizing teaching modules in logical sequence, equipping shop, teaching agricultural and power mechanics to farm and agribusiness clientele, providing individualized instruction, developing off-farm experience programs.

AG ED 821 THEORIES AND PRACTICES OF ADULT EDUCATION
3 cr. (3 and 0) S
Analysis of recent research on adult learnings; a comparison of the assumptions supporting pedagogy and andragogy. Emphasis on teaching adults through formal classes and community organizations. **Prerequisite:** PSYCH 201, ED 302 or equivalent.

AG ED 825 SUPERVISION OF STUDENT TEACHING
3 cr. (3 and 0)
Developing philosophy of teacher education; analyzing present teacher training program in South Carolina for problem situations on which to base teacher-education programs; determining relative emphasis for each teacher to place upon solving problems in teacher-education program; projecting plans for apprentice training program; supervising apprentice training. **Prerequisites:** Experience in agricultural education and permission of instructor.

AG ED 869 SEMINAR
1-3 cr. (1-3 and 0)
Students and faculty review current topics in agricultural education.
AG ED 889 RESEARCH IN EDUCATION
(ED 889) 3 cr. (3 and 0) F, S, SS
(IN ED 889)
Problem selection; types of educational research and techniques employed; use of ERIC system and computer program packages; interpretation of research findings.

AGRICULTURAL MECHANIZATION
Richard O. Hegg, Head, Department of Agricultural Engineering

Major Degree
Agricultural Mechanization M.Ag.

This program prepares individuals with agricultural and related backgrounds for positions of leadership in technical services, mechanized production and other businesses serving modern agriculture. Students with undergraduate backgrounds in agricultural mechanization, other agricultural curricula or related curricula from nonagricultural colleges and universities may apply.

The student’s program will be arranged to include courses in the agricultural mechanization specialty and in supporting areas. Emphasis is placed on developing a coherent program to satisfy student objectives. An independent investigation is required of all students, including a minimum of three credit hours of AG M 781.

AG M 602 DRAINAGE, IRRIGATION AND WASTE MANAGEMENT
3 cr. (2 and 3)

AG M 604 FARM STRUCTURES
3 cr. (2 and 3)

AG M 606 MECHANICAL AND HYDRAULIC SYSTEMS
3 cr. (2 and 3)

AG M 652 FARM POWER
3 cr. (2 and 3)

AG M 660 FARM AND HOME UTILITIES
3 cr. (2 and 3)

AG M 712 FARM MACHINERY MANAGEMENT
3 cr. (2 and 3)

Selection, functional analysis and maximum utilization of existing and developing farm machinery; computer applications to programming of field operations; available capital and labor; machine size; critical field operations; growing degree days; weather; maintenance equipment, procedures and scheduling.

AG M 771 SELECTED TOPICS IN AGRICULTURAL MECHANIZATION
1-3 cr. (1-3 and 0)

Selected topics not covered in other course offerings. Performance measured by oral or written reports or examinations; may be repeated for a maximum of six credits.
AG M 781 SPECIAL PROBLEMS 1-3 cr. (1-3 and 0)
Independent analysis through literature review and laboratory or field research. Requires written documentation; may be repeated for a maximum of six credits.

AG M 851 SIMULATION OF AGRICULTURAL SYSTEMS 3 cr. (3 and 0)
Synthesis and analysis of agricultural systems via computer simulation; continuous and discrete systems; philosophy of system simulation and optimization. Models will be used to teach working techniques, and each student will build a model of a system; computer background not required. **Prerequisite:** MTH SC 106 or permission of instructor.

AGRONOMY

Ralph E. Franklin, Head, Department of Agronomy and Soils

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy</td>
<td>M.Ag., M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Students with undergraduate backgrounds in agriculture, biology and other sciences may apply. The Ph.D. and M.S. degree programs are research degrees that require a dissertation and thesis, respectively. The M.Ag. degree is a professional degree for students who do not plan careers in research and do not plan to pursue the Ph.D. degree. The student is required to complete a special research problem and to prepare a report on the findings.

AGRON 602 LAND POLLUTION CONTROL
3 cr. (3 and 0) S (odd numbered years)

AGRON 603 SOIL GENESIS AND CLASSIFICATION
2 cr. (1 and 3) F

AGRON 604 SOILS AND LAND USE
2 cr. (1 and 3) F

AGRON 605 PLANT BREEDING
3 cr. (2 and 2) S

AGRON 607 PRINCIPLES OF WEED CONTROL
3 cr. (2 and 2) F

AGRON 621 FIELD CROPS-MONOCOTS AND SPECIALTY CROPS
3 cr. (3 and 0) F

AGRON 622 FIELD CROPS-DICOTS
3 cr. (3 and 0) S

AGRON 623 FIELD CROPS-FORAGES
3 cr. (3 and 0) S

AGRON 624 ADVANCED FIELD CROPS LABORATORY
1 cr. (0 and 2) F (even numbered years)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offered</th>
<th>Prerequisites/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRON 625</td>
<td>SEED SCIENCE AND TECHNOLOGY</td>
<td>3 cr.</td>
<td>(2 and 2) S (odd numbered years)</td>
<td></td>
</tr>
<tr>
<td>AGRON 633</td>
<td>INTEGRATED WEED MANAGEMENT FOR AGRONOMIC (HORT 633) AND HORTICULTURAL CROPS</td>
<td>3 cr.</td>
<td>(3 and 0) S</td>
<td></td>
</tr>
<tr>
<td>AGRON 646</td>
<td>SOIL MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
<td></td>
</tr>
<tr>
<td>AGRON 652</td>
<td>SOIL FERTILITY AND MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0) S</td>
<td></td>
</tr>
<tr>
<td>AGRON 653</td>
<td>SOIL FERTILITY LABORATORY</td>
<td>1 cr.</td>
<td>(0 and 3) S</td>
<td></td>
</tr>
<tr>
<td>AGRON 655</td>
<td>SEMINAR</td>
<td>1 cr.</td>
<td>(1 and 0) F</td>
<td></td>
</tr>
<tr>
<td>AGRON 656</td>
<td>SEMINAR</td>
<td>1 cr.</td>
<td>(1 and 0) S</td>
<td></td>
</tr>
<tr>
<td>AGRON 675</td>
<td>SOIL PHYSICS AND CHEMISTRY</td>
<td>3 cr.</td>
<td>(2 and 3) S</td>
<td></td>
</tr>
<tr>
<td>AGRON 690</td>
<td>SOIL ORGANISMS IN CROP PRODUCTION</td>
<td>3 cr.</td>
<td>(2 and 3) F (even numbered years)</td>
<td></td>
</tr>
<tr>
<td>AGRON 801</td>
<td>CROP PHYSIOLOGY AND NUTRITION</td>
<td>3 cr.</td>
<td>(3 and 0) F (odd numbered years)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic concepts and physiologic aspects of growth and culture applied to crop management practices. Prerequisite: BOT 421/621 or equivalent.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGRON 802</td>
<td>PEDOLOGY</td>
<td>3 cr.</td>
<td>(3 and 0) F (odd numbered years)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current concepts and theories in soil genesis and morphology; advanced study of soil taxonomy. Prerequisite: AGRON 403/603.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGRON 804</td>
<td>THEORY AND METHODS OF PLANT BREEDING</td>
<td>3 cr.</td>
<td>(3 and 0) F (even numbered years)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concepts and principles of plant breeding and genetics as applied to development and maintenance of improved crop varieties; theoretical considerations of various breeding methods. Prerequisites: AGRON 405/605 and EX ST 801 or permission of instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGRON 805</td>
<td>SOIL FERTILITY</td>
<td>3 cr.</td>
<td>(3 and 0) S (even numbered years)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil properties affecting nutrient availability and plant growth; inventory of major soil groups with reference to plant stress features; behavior of essential elements in soils in relation to plant availability; current soil fertility research. Prerequisite: AGRON 452, 403 or permission of instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGRON 806</td>
<td>SPECIAL PROBLEMS</td>
<td>1-3 cr.</td>
<td>(0 and 3-9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Research not related to a thesis.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AGRON 807 SOIL PHYSICS
4 cr. (3 and 3) F (even numbered years)
Principles and applications of transport of water and solutes in soils emphasizing unsaturated flow phenomenon. Prerequisite: MTH SC 108 or equivalent.

AGRON 808 SOIL CHEMISTRY
3 cr. (2 and 3) F (odd numbered years)
Principles and theories concerning the structure and chemical properties of soil colloids, ion exchange and surface phenomena, chemical equilibria, soil acidity and oxidation-reduction reactions.

AGRON 810 SOIL MICROBIOLOGY
3 cr. (3 and 0) F (odd numbered years)
In-depth coverage of biological nitrogen fixation, mycorrhizal fungi, and pesticide interactions in soils with emphasis on microbial-plant-soil relationships. Prerequisites: AGRON 690 or MICRO 610 and permission of instructor.

AGRON 812 CROP ECOLOGY AND LAND USE
3 cr. (3 and 0) F (even numbered years)
Concepts and factors affecting adaptation and distribution of crop plants; microclimate and crop response to environmental factors with modifications of microclimate by agricultural operations; interactions among crop plants and between weeds and crop plants under field conditions.

AGRON 820 PESTICIDE RESIDUES IN THE ENVIRONMENT
3 cr. (3 and 0) S (odd numbered years)
Accumulation, decomposition and/or attenuation of pesticides in man’s environment; pesticide structures and properties; sorption-desorption by soil; diffusion and transport in water; volatility and diffusion in air; chemical-, bio- and photo-degradation. Prerequisites: Introductory courses in organic and physical chemistry or permission of instructor.

AGRON 825 SEMINAR
1 cr. (1 and 0) F, S
Special topics and original research in agronomy. Credit may be earned for more than one semester by doctoral candidates.

AGRON 890 SPECIAL TOPICS IN AGRONOMY
1-3 cr. (1-3 and 0)
Group discussion of recent developments in agronomic research. May be repeated for a maximum of six credit hours. Prerequisite: Permission of instructor.

AGRON 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

AGRON 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

ANIMAL AND FOOD INDUSTRIES
Larry W. Hudson, Acting Head, Department of Animal Science

Major Degree
Animal and Food Industries M.S.

Students may concentrate in animal science, dairy science, food science
ANIMAL PHYSIOLOGY

Donald M. Henricks, Program Coordinator, Department of Animal Science

Major
Animal Physiology

Degree
Ph.D.

Animal physiology is an interdepartmental graduate program developed and offered by faculty members who are in the departments of Animal Science, Dairy Science, Poultry Science, Food Science, Biological Sciences and the Department of Aquaculture, Fisheries and Wildlife Biology. Applicants should have a strong background in the biological and physical sciences. Students with deficiencies in these sciences may be admitted provided they correct these deficiencies during the first year of their program of study.

A student’s program will include a core of basic courses in physiology, biochemistry and statistics. Additional course work may be taken in areas of the student’s interest as approved by the graduate advisory committee. The student’s program and research will emphasize a study of physiological processes, particularly those relating to reproduction, endocrinology, digestion and environmental factors.

AN PH 660 SYSTEMS PHYSIOLOGY
1 cr. (1 and 0) F

AN PH 801 ELECTRON MICROSCOPY OF BIOLOGICAL SPECIMENS
3 cr. (1 and 6) F, S

Concepts and practice in preparing biological specimens for electron microscopy: fixing, embedding, thin-sectioning, staining, operating microscopes and photographing, developing, printing and interpreting micrographs. Each student must achieve proficiency with a selected specimen, including writing a brief research proposal, preparing specimen, studying specimen with electron microscope and interpreting micrographs. Prerequisite: Permission of instructor.

AN PH 802 SPECIAL TOPICS IN ANIMAL PHYSIOLOGY
1 cr. (1 and 0) F, S

Current topics of special interest in animal physiology not covered in other courses. May be repeated for credit. Prerequisite: Permission of instructor.

AN PH 806 EXPERIMENTAL ANIMAL PHYSIOLOGY
3 cr. (1 and 6) F

Demonstration and practice of research methodology in animal physiology; scientific approach for using farm and laboratory animals as experimental units; study of anesthesia, pain and endogenous opioid peptides; surgical procedures for altering physiological and endocrinological activities with large and small animals. Prerequisites: ZOOL 459/659 and AN PH 460/660 or permission of instructor.
AN PH 807 SPECIAL PROBLEMS IN ANIMAL PHYSIOLOGY
1-3 cr. (1-3 and 0) F, S, SS
Research not related to a thesis. May include a comprehensive review of related literature.

AN PH 808 CURRENT CONCEPTS IN ENDOCRINOLOGY
3 cr. (3 and 0) F (odd numbered years)
Study of advanced concepts relevant to interrelationships between the nervous and endocrine systems as they influence growth and development, body metabolism and regulatory mechanisms, reproduction and lactation. **Prerequisites:** AN PH 660 and ZOOL 675, or BIO CH 817 or consent of coordinator.

AN PH 812 DIGESTIVE-METABOLIC, EXCRETORY AND RESPIRATORY PHYSIOLOGY
5 cr. (4 and 3) F (even numbered years)
Development of advanced concepts of mechanisms and functions of gastrointestinal tract (mastication, salivation, digestion, absorption, metabolism, excretion), kidney (anatomy, filtration, secretion, reabsorption) and respiratory systems (transport, exchange and utilization of gases), and the action of the nervous system, hormones and pharmacologic agents on these organ systems. **Prerequisites:** ZOOL 459/659 and AN PH 660 or permission of course coordinator.

AN PH 814 MEMBRANE, CARDIOVASCULAR AND NEUROMUSCULAR PHYSIOLOGY
5 cr. (4 and 3) S (even numbered years)
Development of advanced concepts in membrane physiology (permeability, action potentials, specialized functions), cardiovascular physiology (functions of the heart, blood-vascular system in maintaining acid-base balance, clotting mechanisms, homeostasis, circulation), neuromuscular physiology (anatomy and function of the nervous system, special senses, reflexes, control of muscular activity), and the action of several pharmacologic agents on muscle and nerve functions. **Prerequisites:** ZOOL 459/659 and AN PH 660 or permission of course coordinator.

AN PH 851 ANIMAL PHYSIOLOGY SEMINAR
1 cr. (1 and 0) F, S
Current research and development in animal physiology through related literature and student and faculty participation. May be repeated for a maximum of two credit hours.

AN PH 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

The following courses offered by various departments represent possible electives for the student in animal physiology. Descriptions for all 800-level courses can be found under the respective department headings.

BIOCH 606 PHYSIOLOGICAL CHEMISTRY
3 cr. (3 and 0)

BIOCH 608 PHYSIOLOGICAL CHEMISTRY LABORATORY
1 cr. (0 and 3)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOCH 623</td>
<td>PRINCIPLES OF BIOCHEMISTRY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>BIOCH 624</td>
<td>PRINCIPLES OF BIOCHEMISTRY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>BIOCH 625</td>
<td>GENERAL BIOCHEMISTRY LABORATORY</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>BIOCH 626</td>
<td>GENERAL BIOCHEMISTRY LABORATORY</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>BIOCH 815</td>
<td>LIPIDS AND BIOMEMBRANES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>BIOCH 817</td>
<td>CHEMISTRY AND METABOLISM OF HORMONES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>BIOCH 819</td>
<td>REGULATION OF INTERMEDIARY METABOLISM</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>BIOCH 824</td>
<td>CELLULAR REGULATIONS AT THE MOLECULAR LEVEL</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>DY SC 653</td>
<td>ANIMAL REPRODUCTION</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>DY SC 655</td>
<td>REPRODUCTIVE MANAGEMENT</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>DY SC 661</td>
<td>PHYSIOLOGY OF LACTATION</td>
<td>2 cr.</td>
<td>(2 and 0)</td>
</tr>
<tr>
<td>DY SC 803</td>
<td>PHYSIOLOGY OF REPRODUCTION AND MILK SECRETION</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>ENT 640</td>
<td>INSECT BEHAVIOR</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>ENT 670</td>
<td>INSECT PHYSIOLOGY</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>MICRO 614</td>
<td>BASIC IMMUNOLOGY</td>
<td>3 cr.</td>
<td>(2 and 3) F</td>
</tr>
<tr>
<td>MICRO 811</td>
<td>BACTERIAL CYTOLOGY AND PHYSIOLOGY</td>
<td>4 cr.</td>
<td>(4 and 0) S (odd numbered years)</td>
</tr>
<tr>
<td>PS 600</td>
<td>AVIAN PHYSIOLOGY</td>
<td>3 cr.</td>
<td>(3 and 0) S (even numbered years)</td>
</tr>
<tr>
<td>ZOOL 605</td>
<td>ANIMAL HISTOLOGY</td>
<td>4 cr.</td>
<td>(3 and 3)</td>
</tr>
<tr>
<td>ZOOL 657</td>
<td>COMPARATIVE PHYSIOLOGY</td>
<td>4 cr.</td>
<td>(3 and 3)</td>
</tr>
<tr>
<td>ZOOL 659</td>
<td>SYSTEMS PHYSIOLOGY</td>
<td>4 cr.</td>
<td>(3 and 3)</td>
</tr>
<tr>
<td>ZOOL 670</td>
<td>ANIMAL BEHAVIOR</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>
ZOOI 671 ANIMAL BEHAVIOR LABORATORY
1 cr. (0 and 3)

ZOOI 675 VERTEBRATE ENDOCRINOLOGY
3 cr. (3 and 0)

ZOOI 680 ANALYSIS OF DEVELOPMENT
3 cr. (3 and 0)

ANIMAL SCIENCE
Larry W. Hudson, Acting Head, Department of Animal Science

Major
Animal and Food Industries
Animal Physiology
Nutrition
Animal Science

Degrees
M.S.
Ph.D.
M.S., Ph.D.
M.Ag.

AN SC 601 BEEF PRODUCTION
3 cr. (3 and 0)

AN SC 608 PORK PRODUCTION
3 cr. (3 and 0)

AN SC 652 ANIMAL BREEDING
3 cr. (3 and 0)

AN SC 802 TOPICAL PROBLEMS
1-3 cr. (1-3 and 0)

Animal science experiments and interpretation of their results.

AN SC 803 MEAT TECHNOLOGY
3 cr. (3 and 0)

Biochemistry, histology and microbiology of fresh, frozen, cured, smoked and processed meats; quality of meats and meat products, processing methods, nutritive value and research techniques. Prerequisites: AN SC 353 and 355.

AN SC 804 METHODS IN ANIMAL BREEDING
3 cr. (3 and 0)

Gene and zygotic frequency; systems of mating; heritabilities; genetic consequences of selection; and criteria for evaluating improvement in beef cattle, swine and sheep. Prerequisite: AN SC 452/652.

AN SC 805 NUTRITION OF MEAT ANIMALS
3 cr. (3 and 0)

Metabolism of carbohydrates, lipids, proteins, inorganic elements and vitamins in the nutrition of beef cattle, swine and sheep; nutritional requirements of meat animals; properties and functions of nutrients in relation to practical production situations; common nutritional aberrations. Prerequisite: NUTR 401/601 or equivalent.

AN SC 891 MASTER'S THESIS RESEARCH
Credit to be arranged.
The graduate program in applied economics utilizes the facilities and faculty of the Department of Agricultural Economics and Rural Sociology in the College of Agricultural Sciences and the Department of Economics in the College of Commerce and Industry. Students may carry out their dissertation research under the direction of a faculty member from either department.

Students desiring to pursue graduate work in aquaculture, fisheries and wildlife biology should have sound undergraduate training in the biological or related sciences. Programs of study are designed to emphasize relationships between wild animals and their changing environments and production of aquatic organisms. Additional course work is usually taken in experimental statistics, biological sciences, forestry and other related areas. The following areas of concentration are offered: uplands and wetlands wildlife biology, aquaculture, freshwater fisheries science and marine fisheries science.

WFB 612 WILDLIFE MANAGEMENT 3 cr. (2 and 3)
WFB 616 FISHERY BIOLOGY 3 cr. (2 and 3)
WFB 650 AQUACULTURE 3 cr. (3 and 0)
WFB 660 WARMWATER FISH DISEASES 2 cr. (2 and 0)
WFB 662 WETLAND WILDLIFE BIOLOGY 3 cr. (3 and 0)
WFB 669 AQUATIC INSECTS (ENT 669) 3 cr. (1 and 6)
WFB 809 SEMINAR IN WILDLIFE AND FISHERIES SCIENCE 1 cr. (1 and 0)

Current literature and research in fisheries and wildlife sciences. One or more
presentations required. May be repeated for a maximum of four credits. **Prerequisite:** Permission of instructor.

WFB 815
PRINCIPLES OF WILDLIFE BIOLOGY
3 cr. (2 and 3)
Theories and principles applicable to wildlife biology emphasizing upland game species.

WFB 816
APPLIED WILDLIFE BIOLOGY
3 cr. (2 and 3)
Techniques and practices involved in management of wildlife species emphasizing upland game.

WFB 818
ECOLOGY AND MANAGEMENT OF WETLAND WILDLIFE
3 cr. (2 and 3)
Identification, ecology and management of waterfowl and marshland furbearers emphasizing economically important species. Laboratory work includes demonstration and application of relevant wetland management techniques, current literature topics and field trips. **Prerequisite:** BIO SC 441/641 or WFB 412/612 or permission of instructor.

WFB 819
SPECIAL TOPICS IN WILDLIFE MANAGEMENT
1-4 cr. (1-4 and 0)
Current areas of wildlife research and management. May be repeated for credit. **Prerequisite:** Permission of instructor.

WFB 840
FISH AND SHELLFISH MANAGEMENT
3 cr. (2 and 3)
Principles and techniques of managing aquatic systems for recreational and/or commercial fishing emphasizing streams, rivers, estuaries and impoundments. Laboratory work includes demonstration and application of management techniques and field trips to observe management practices. **Prerequisite:** WFB 416/616 or ZOOL 463/663 or consent of instructor.

WFB 860
DIAGNOSTIC PROCEDURES OF WARMWATER FISH DISEASES
2 cr. (1 and 2)
Study of warmwater fish disease diagnostic procedures employing proper protocol and procedures to be followed by a fish disease diagnostician. **Corequisite:** WFB 460/660 or consent of instructor.

WFB 861
SPECIAL TOPICS IN FISHERY BIOLOGY
1-4 cr. (1-4 and 0)
Current areas of active fisheries research and management presented in lecture/seminar format. May be repeated for credit. **Prerequisite:** Permission of instructor.

WFB 863
SPECIAL PROBLEMS IN WILDLIFE AND FISHERIES BIOLOGY
1-3 cr. (0 and 3-9)
Research not related to a thesis. Credit varies with problems selected. **Prerequisite:** Permission of instructor.

WFB 891
MASTER'S THESIS RESEARCH
Credit to be arranged.
DAIRY SCIENCE

Dixon D. Lee, Jr., Head, Department of Dairy Science

Major Degrees

<table>
<thead>
<tr>
<th>Animal and Food Industries</th>
<th>M.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Physiology</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Dairy Science</td>
<td>M.Ag.</td>
</tr>
<tr>
<td>Nutrition</td>
<td>M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (Terms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY SC 600</td>
<td>CULTURED DAIRY PRODUCTS</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>DY SC 602</td>
<td>DAIRY MANUFACTURERS</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>DY SC 603</td>
<td>LABORATORY TECHNIQUES</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>DY SC 604</td>
<td>PLANT MANAGEMENT</td>
<td>2 cr. (2 and 0)</td>
</tr>
<tr>
<td>DY SC 607</td>
<td>MARKET MILK</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>DY SC 652</td>
<td>DAIRY CATTLE FEEDING AND MANAGEMENT</td>
<td>4 cr. (3 and 3)</td>
</tr>
<tr>
<td>DY SC 653</td>
<td>ANIMAL REPRODUCTION</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>DY SC 655</td>
<td>ANIMAL REPRODUCTIVE MANAGEMENT</td>
<td>1 cr. (0 and 3)</td>
</tr>
<tr>
<td>DY SC 661</td>
<td>PHYSIOLOGY OF LACTATION</td>
<td>2 cr. (2 and 0)</td>
</tr>
<tr>
<td>DY SC 801</td>
<td>TOPICAL PROBLEMS</td>
<td>1-3 cr. (1-3 and 0)</td>
</tr>
</tbody>
</table>

Problems in dairying not covered by thesis research. Credit varies with problems selected.

Prerequisites

DY SC 453/653 and 461/661 or permission of instructor.

Description

- **DY SC 600 CULTURED DAIRY PRODUCTS**: Development of advanced concepts of steroidogenesis, gametogenesis, fertilization, placentation, embryogenesis, embryonic-endometrial relationships, parturition and lactation, and the influence of hormones on these processes. Students will evaluate the most recent scientific literature in these areas for information, experimental methods and validity of authors' conclusions, and will select a problem, review related literature and write a research proposal for solving the problem. **Prerequisites**: DY SC 453/653 and 461/661 or permission of instructor.

- **DY SC 803 PHYSIOLOGY OF REPRODUCTION AND MILK SECRETION**: Managerial training for operating dairy and food plants; managerial policy and decision making.
DY SC 820 DAIRY SCIENCE GRADUATE SEMINAR
1 cr. (1 and 0)
Ongoing research, evaluation of research needs, research techniques, critical reviews and discussions of published research in all areas of dairy science. Relevant to all dairy science disciplines.

DY SC 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

ENTOMOLOGY

Sidney B. Hays, Head, Department of Entomology

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entomology</td>
<td>M.Ag., M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Facilities of the Agricultural Experiment Station on campus and at four substations located in various parts of the state are available for graduate student research. Teaching and research laboratories, greenhouses and other facilities are equipped for study and research in economic entomology, insect ecology, insect pathology, insect behavior, insect physiology, insect toxicology, medical and veterinary entomology, urban entomology, aquatic entomology, pest management and the traditional fields of taxonomy and morphology.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENT 601</td>
<td>INSECT PESTS OF ORNAMENTAL PLANTS AND SHADE TREES</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>ENT 602</td>
<td>FRUIT, NUT AND VEGETABLE INSECTS</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>ENT 603</td>
<td>FIELD CROP ENTOMOLOGY</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>ENT 604</td>
<td>URBAN ENTOMOLOGY</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>ENT 605</td>
<td>INSECT MORPHOLOGY</td>
<td>4 cr. (3 and 3)</td>
<td></td>
</tr>
<tr>
<td>ENT 610</td>
<td>INSECT TAXONOMY</td>
<td>3 cr. (1 and 6)</td>
<td></td>
</tr>
<tr>
<td>ENT 612</td>
<td>FIELD AND MUSEUM ENTOMOLOGY</td>
<td>3 cr. (0 and 9)</td>
<td></td>
</tr>
<tr>
<td>ENT 620</td>
<td>TOXICOLOGY OF INSECTICIDES</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>ENT 630</td>
<td>TOXICOLOGY</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ENT 640</td>
<td>INSECT BEHAVIOR</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>ENT 655</td>
<td>MEDICAL AND VETERINARY ENTOMOLOGY</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>ENT 668</td>
<td>RESEARCH TECHNIQUES</td>
<td>2 cr.</td>
<td>(2 and 0)</td>
</tr>
<tr>
<td>ENT 669</td>
<td>AQUATIC INSECTS</td>
<td>3 cr.</td>
<td>(1 and 6)</td>
</tr>
<tr>
<td>(WFB 669)</td>
<td>INSECT PHYSIOLOGY</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>ENT 670</td>
<td>INSECT PATHOLOGY</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>ENT 680</td>
<td>TAXONOMY OF IMMATURE INSECTS</td>
<td>3 cr.</td>
<td>(1 and 6)</td>
</tr>
<tr>
<td></td>
<td>Identification of immature insects emphasizing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Holometabola. Identified collection required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENT 808</td>
<td>SEMINAR IN ENTOMOLOGY</td>
<td>1 cr.</td>
<td>(1 and 0)</td>
</tr>
<tr>
<td></td>
<td>Current literature and research in entomology.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>One or more presentations required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENT 810</td>
<td>SPECIAL TOPICS IN ENTOMOLOGY</td>
<td>1-4 cr.</td>
<td>(1-4 and 0)</td>
</tr>
<tr>
<td></td>
<td>Current areas of entomological research and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pest management. Course may be repeated for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>credit. Prerequisite: Permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENT 812</td>
<td>ENTOMOLOGY HISTORY AND LITERATURE</td>
<td>1 cr.</td>
<td>(1 and 0)</td>
</tr>
<tr>
<td></td>
<td>Literature related to development of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>science of entomology. Reading in the available</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>journals, indexing and abstracting journals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENT 840</td>
<td>INSECT ECOLOGY</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td></td>
<td>Principles of insect ecology, population</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dynamics and natural regulating mechanisms of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>insect populations; effect of environment on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>distribution and abundance of insects.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENT 853</td>
<td>APPLIED SYSTEMATICS</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td></td>
<td>Application of evolutionary principles to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>resolution of contemporary zoological problems;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>legal issues and technical skills for efficient</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>operation of international zoological</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>information storage and retrieval system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: A taxonomic course in entomology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or zoology or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENT 856</td>
<td>MEDICAL ENTOMOLOGY</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td></td>
<td>Disease vectors of animals emphasizing insects</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and related Arthropod disease carriers. Prequisite:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENT 301 or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENT 860</td>
<td>INSECT PEST MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Application of ecological principles to the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>management or control of insect populations;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>major factors influencing insect population</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fluctuations; integrated systems including</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>biological, cultural, physical, chemical and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>other techniques forming a unified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multifaceted approach based on applied ecology.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENT 861 INSECT TOXICOLOGY
3 cr. (2 and 3)
History, development, application, chemical nature and mode of action of insecticides. Prerequisite: Organic chemistry.

ENT 863 SPECIAL PROBLEMS IN ENTOMOLOGY
1-3 cr. (0 and 3-9)
Entomological research not related to thesis. Prerequisite: Permission of instructor.

ENT 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

ENT 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

ENVIRONMENTAL SCIENCE
Thomas M. Keinath, Program Coordinator, Department of Environmental Systems Engineering

Advanced degrees are not awarded in environmental science. Courses are offered to provide a minor or electives for students in other areas.

EN SC 631 PUBLIC HEALTH ADMINISTRATION
3 cr. (3 and 0) F

EN SC 671 MAN AND HIS ENVIRONMENT
2 cr. (2 and 0) F

EN SC 672 ENVIRONMENTAL PLANNING AND CONTROL
2 cr. (2 and 0) S

EXPERIMENTAL STATISTICS
Wilbert P. Byrd, Chairman, Experimental Statistics and Statistical Services

Advanced degrees are not awarded in experimental statistics. A minor is offered at the master’s and doctoral levels. Courses are offered as support for students majoring in other areas.

Courses to be used to satisfy the minor should be approved at the beginning of the student’s program.

Students who elect a minor at the doctoral level must demonstrate competence in the theoretical basis as well as the application of statistics.

EX ST 662 STATISTICS APPLIED TO ECONOMICS
3 cr. (3 and 0) S

EX ST 801 STATISTICAL METHODS
4 cr. (3 and 3) F, S, SS

Role and application of statistics in research; estimation, test of significance, analysis of variance, multiple comparison techniques, basic designs, mean square expectations, variance components analysis, simple and multiple linear regression and correlation, and nonparametric procedures. Prerequisite: Permission of instructor.
EX ST 803 REGRESSION AND LEAST SQUARES ANALYSIS
3 cr. (3 and 0) F
Regression analysis; simple and multiple linear, curvilinear and multiple curvilinear; curve fitting; least squares and computer techniques for fitting of constants and analysis of planned experiments. Prerequisite: EX ST 801.

EX ST 804 SAMPLING
3 cr. (3 and 0) F
Principles of scientific sampling; finite population sampling; simple random, stratified, multistage and systematic sampling; optimum allocation; methods of obtaining, processing and reporting survey information. Sampling as related to the environment, natural resources, and social and economic problems. Prerequisite: EX ST 801.

EX ST 805 DESIGN AND ANALYSIS OF EXPERIMENTS
3 cr. (3 and 0) S
Review of the basic designs and analysis; data transformations; single degree of freedom, orthogonality and responses in ANOVA; covariance; response surfaces; incomplete blocks; introduction to least squares analysis of experiments; uses of standard computer programs for selected analyses. Prerequisite: EX ST 801.

EX ST 811 SPECIAL PROBLEMS IN EXPERIMENTAL STATISTICS
1-3 cr. (0 and 2-6)
Statistical aspects of an individualized research problem; emphasis on determining an appropriate experimental design, performing proper analyses and generating effective reports.

EX ST 812 SPECIAL TOPICS IN EXPERIMENTAL STATISTICS
1-3 cr. (1-3 and 0) S
Selected topics in applied statistics not covered in other courses.

FOOD SCIENCE
Woodie P. Williams, Head, Department of Food Science

Major
Animal and Food Industries
Animal Physiology
Food Technology
Nutrition

Degrees
M.S.
Ph.D.
Ph.D.
M.N.S., M.S., Ph.D.

FD SC 601 FOOD CHEMISTRY I
4 cr. (3 and 3)

FD SC 602 FOOD CHEMISTRY II
4 cr. (3 and 3)

FD SC 603 FOOD PRESERVATION AND PROCESSING I
3 cr. (3 and 0)

FD SC 604 FOOD PRESERVATION AND PROCESSING II
3 cr. (3 and 0)

FD SC 605 FOOD PRESERVATION AND PROCESSING LABORATORY I
1 cr. (0 and 3)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD SC 606</td>
<td>FOOD PRESERVATION AND PROCESSING LABORATORY II</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>FD SC 622</td>
<td>QUALITY ASSURANCE AND SENSORY EVALUATION</td>
<td>2 cr.</td>
<td>(2 and 0)</td>
</tr>
<tr>
<td>FD SC 624</td>
<td>QUALITY ASSURANCE AND SENSORY EVALUATION LABORATORY</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>FD SC 664</td>
<td>FOOD PACKAGING SYSTEMS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>FD SC 666</td>
<td>FOOD PACKAGING SYSTEMS LABORATORY</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>FD SC 802</td>
<td>FOOD ENZYMEOLOGY</td>
<td>2 cr.</td>
<td>(2 and 0)</td>
</tr>
<tr>
<td>FD SC 804</td>
<td>THERMAL PROCESSING OF PACKAGED FOODS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>FD SC 810</td>
<td>CHEMICAL AND BIOCHEMICAL ASPECTS OF FOODS</td>
<td>4 cr.</td>
<td>(4 and 0)</td>
</tr>
<tr>
<td>FD SC 811</td>
<td>PHYSICAL AND THERMO-PHYSICAL PROPERTIES OF FOODS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>FD SC 812</td>
<td>MICROBIOLOGICAL ASPECTS OF FOOD SYSTEMS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>FD SC 820</td>
<td>SPECIAL TOPICS IN FOOD SCIENCE</td>
<td>1-3 cr.</td>
<td>(1-3 and 0)</td>
</tr>
</tbody>
</table>

Production, utilization and application of food enzymes in the food industry; effect of food enzymes on color, texture and flavor of foods and food products; health and legal aspects of use of enzymes in foods; current topics in food enzymology. **Prerequisite:** FD SC 401/601 or permission of instructor.

Mathematical methods and models used to design and evaluate heat processing of packaged foods; prediction of shelf life and nutrient loss; comparison with other methods of preservation. **Prerequisite:** Permission of instructor.

Chemical, biochemical and functional properties of food components and their interactions in food emulsions, foams, colloids, and gel and solution states; the influences of processing on isolation, utilization and production of the constituents using techniques based on constituent properties. **Prerequisites:** BIOCH 623 and FD SC 401/601 or permission of instructor.

Basic principles involved in relating physical and thermo-physical properties to food quality, including standard methods and instruments to determine texture and the relationship of physical properties to sensory evaluation. Emphasis on interrelationships of chemical structure and physical properties in food processing operations. **Prerequisite:** FD SC 810 or permission of instructor.

Function and characteristics of microorganisms in the utilization and manufacture of food products; food fermentations, microbially induced chemical and physical changes, environmental aspects and production of food ingredients and resources. **Prerequisite:** MICRO 407/607 or equivalent or permission of instructor.

Comprehensive study of special topics in food science not covered in other
FOOD SCIENCE

courses. Cumulative credits are not to exceed four.

FD SC 821 SPECIAL PROBLEMS IN FOOD SCIENCE
1-3 cr. (0 and 3-9)
Independent research investigation in food science areas not conducted in
other courses. Cumulative maximum of three credits. Prerequisite: Permission
of instructor.

FD SC 851 FOOD SCIENCE SEMINAR
1 cr. (1 and 0)
A review of current research and related developments in food science by fac-
tulty, students and invited lecturers.

FD SC 852 FOOD SCIENCE SEMINAR
1 cr. (1 and 0)
Continuation of FD SC 851.

FD SC 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

FOOD TECHNOLOGY
Charles V. Morr, Program Chairman, Department of Food Science

Major Degree
Food Technology Ph.D.

The interdepartmental food technology doctoral program is offered by
selected faculty from the departments of Agricultural Engineering, Animal
Applicants must have a strong background in food science and technology
and related areas. Required courses will include FD TECH 851, Food Tech-
nology Seminar, and FD TECH 991, Doctoral Dissertation Research.
Additional courses are taken from those offered in agricultural economics,
agricultural engineering, animal science, dairy science, experimental statis-
tics, food science, horticulture, poultry science and microbiology, as
required by the student’s graduate advisory committee.

FD TECH 851 FOOD TECHNOLOGY SEMINAR
1 cr. (1 and 0) F, S
Review of current and ongoing research, as well as developments in food tech-
nology by faculty, students and invited lecturers.

FD TECH 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

GENETICS
Ralph E. Franklin, Head, Department of Agronomy and Soils

Advanced degrees are not awarded in genetics. Courses are offered as a
minor for students majoring in other areas.
GEN 605 MOLECULAR GENETICS
3 cr. (3 and 0) F, S, SS

GEN 651 ADVANCED GENETICS
3 cr. (3 and 0) F

GEN 701 MODERN DEVELOPMENTS IN GENETICS
3 cr. (3 and 0)
Contemporary developments in genetics for secondary school teachers; genetic approaches to the problems of health and behavior; methods and equipment used to illustrate principles of genetics in theory and in the laboratory. Prerequisite: A genetics course or equivalent in biology courses.

GEN 801 CYTOGENETICS
3 cr. (2 and 3) S (odd numbered years)
Classical and contemporary problems of chromosome structure, behavior and transmission; recombination; interspecific hybridization; euchromatin and heterochromatin; polyploidy, mutable genetic systems; structural and numerical aberrations of chromosomes and their effects upon breeding systems of plants and animals. Prerequisite: GEN 302 or equivalent.

GEN 803 BIOMETRICAL GENETICS
3 cr. (3 and 0) S
Statistical methodology in the study of population genetics. Probability as applied to genetic systems, gene and zygotic frequencies, derivation of genetic expectations, forces that change gene frequency, inbreeding, estimation and testing of genetic parameters, partitioning of variance, responses to selection and other statistical aspects of continuous variation. Prerequisite: GEN 451/651, EX ST 801 or equivalent.

GEN 806 SPECIAL PROBLEMS IN GENETICS
1-3 cr. (0 and 3-9)
Research not related to a thesis.

GEN 890 SPECIAL TOPICS IN GENETICS
1-3 cr. (1-3 and 0)
Group discussion of recent developments in genetic research. May be repeated for a maximum of six credit hours. Prerequisites: GEN 302 or 305 and permission of instructor.

HORTICULTURE
R. Daniel Lineberger, Head, Department of Horticulture

Major
Horticulture
Plant Physiology

Degrees
M.Ag., M.S.
Ph.D.

Graduate study in horticulture is designed to acquaint the student with the important biological principles underlying the production, postharvest physiology and handling of horticultural crops. This includes not only the study of the economic product prior to harvest, but also of its harvesting, handling, processing, storage and marketing. Scientific knowledge obtained in horticultural research, as well as that available in the related fields of botany, plant
physiology, biochemistry and genetics, gives the student a broad base for future work.

The Master of Science and Master of Agriculture degrees are offered in the areas of pomology, olericulture, floriculture, ornamental horticulture, turf, postharvest physiology and handling, and horticultural products technology.

The department participates in an interdepartmental program awarding the Doctor of Philosophy degree with a major in plant physiology. This program offers opportunities for doctoral research in horticulture and is described on page 94.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORT 606</td>
<td>NURSERY TECHNOLOGY</td>
<td>3 cr.</td>
<td>S</td>
</tr>
<tr>
<td>HORT 607</td>
<td>LANDSCAPE DESIGN</td>
<td>3 cr.</td>
<td>F</td>
</tr>
<tr>
<td>HORT 612</td>
<td>TURF MANAGEMENT</td>
<td>3 cr.</td>
<td>F</td>
</tr>
<tr>
<td>HORT 615</td>
<td>FOLIAGE PLANTS FOR INTERIOR UTILIZATION</td>
<td>3 cr.</td>
<td>F</td>
</tr>
<tr>
<td>HORT 633</td>
<td>INTEGRATED WEED MANAGEMENT FOR AGRONOMIC AND HORTICULTURAL CROPS</td>
<td>3 cr.</td>
<td>S</td>
</tr>
<tr>
<td>HORT 652</td>
<td>COMMERCIAL POMOLOGY</td>
<td>3 cr.</td>
<td>F</td>
</tr>
<tr>
<td>HORT 654</td>
<td>SUBTROPICAL AND TROPICAL HORTICULTURE</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>HORT 655</td>
<td>SMALL FRUIT AND NUT CROPS</td>
<td>4 cr.</td>
<td>S</td>
</tr>
<tr>
<td>HORT 656</td>
<td>VEGETABLE CROPS</td>
<td>3 cr.</td>
<td>S</td>
</tr>
<tr>
<td>HORT 661</td>
<td>PROBLEMS IN LANDSCAPE DESIGN</td>
<td>4 cr.</td>
<td>S</td>
</tr>
<tr>
<td>HORT 662</td>
<td>LANDSCAPE DESIGN IMPLEMENTATION</td>
<td>3 cr.</td>
<td>S</td>
</tr>
<tr>
<td>HORT 664</td>
<td>POSTHARVEST HORTICULTURE</td>
<td>3 cr.</td>
<td>F</td>
</tr>
<tr>
<td>HORT 670</td>
<td>HORTITHERAPY</td>
<td>3 cr.</td>
<td>S</td>
</tr>
<tr>
<td>HORT 671</td>
<td>INTERNSHIP</td>
<td>1-6 cr.</td>
<td></td>
</tr>
<tr>
<td>HORT 701</td>
<td>HORTICULTURE: PLANT AND ENVIRONMENTAL SCIENCE</td>
<td>3 cr.</td>
<td>SS</td>
</tr>
</tbody>
</table>

Scope of South Carolina horticulture and how it affects the quality of life economically and aesthetically; environmental responsibilities explored; methods of
teaching plant principles demonstrated; three-day statewide field trip to horticultural industries is included. Not to be taken for credit by graduate students in horticulture.

HORT 801 PROBLEMS IN SMALL FRUIT PRODUCTION
3 cr. (3 and 0) F (odd numbered years)
Problems in producing blueberries, strawberries, brambles and grapes.

HORT 802 RESEARCH SYSTEMS IN HORTICULTURE
3 cr. (2 and 3) F (even numbered years)
Current trends, developments and techniques in horticultural research. Prerequisites: CH 223 and 227, or CH 201 and PHYS 207, or BIOCH 210.

HORT 803 EXPERIMENTAL OLERICULTURE
3 cr. (3 and 0) F (even numbered years)
Sources of information on research developments in vegetable crops.

HORT 804 SCIENTIFIC ADVANCES IN ORNAMENTAL HORTICULTURE
3 cr. (3 and 0) S (odd numbered years)
Research and current developments in ornamental horticulture covered in scientific periodicals.

HORT 805 PHYSIOCHEMICAL PROCEDURES FOR DETERMINING QUALITY IN HORTICULTURAL CROPS
3 cr. (2 and 3) F (even numbered years)
Titrations, organoleptic evaluations, refractory, colorimetry and quality evaluations with succulometers and texturometers; effect of acids, sugars, salts and other chemical constituents on quality of horticultural crops.

HORT 806 POSTHARVEST PHYSIOLOGY AND HANDLING OF HORTICULTURAL CROPS
3 cr. (3 and 0) S (even numbered years)
Principles, developments and research findings dealing with physiological and biochemical changes and processes occurring in horticultural plant organs after harvest; biological aspects of methods and practices relating to harvesting, handling, transportation and storage of horticultural commodities for fresh market. Prerequisite: BOT 421/621 or equivalent.

HORT 807 POMOLOGY
3 cr. (3 and 0) S (odd numbered years)
Growth and development of deciduous fruits emphasizing peach and apple. Prerequisite: HORT 352.

HORT 809 SEMINAR I
1 cr. (1 and 0) F
Current topics in horticulture prepared and presented by the student.

HORT 810 SEMINAR II
1 cr. (1 and 0) S
Continuation of HORT 809.

HORT 811 QUANTITATIVE EXPOSITION OF PLANT DEVELOPMENT
2 cr. (1 and 3) S (even numbered years)
Principles and application of quantitative morphology and crop production analysis; techniques for visually detecting minute daily changes in plant development; graphic and statistical evaluation of the influence of specific environmental
factors and their interactions on plant development; practical and theoretical applications of derived systems of observation and analysis.

HORT 812 SPECIAL PROBLEMS IN HORTICULTURE
1-4 cr. (1-4 and 0)
Research not related to a thesis. Course may be repeated for credit, but total credit may not exceed four hours. Prerequisite: Consent of instructor.

HORT 870 PRACTICUM IN HORTITHERAPY
3 cr. (1 and 4 S
Practicum in developing, evaluating and reporting on a hortitherapy project. Prerequisite: HORT 470/670 or permission of instructor.

HORT 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

HORT 921 PLANT PHYSIOLOGY COLLOQUIUM
(BOT 921) 1 cr. (1 and 0)
See BOT 921 for description.

HORT 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

NUTRITION
Denzil V. Maurice, Program Coordinator, Department of Poultry Science

Major Degrees
Nutrition M.N.S., M.S., Ph.D.

The M.S. and Ph.D. degree programs in nutrition are interdepartmental with course work and curricula developed and offered by the nutrition faculty domiciled in the departments of Animal Science, Dairy Science, Food Science and Poultry Science. Applicants should have a strong background in the biological and physical sciences. Students with deficiencies may be admitted if their deficiencies are corrected by completing appropriate undergraduate courses. A student's program of study will include a core of basic courses in nutrition, biochemistry, statistics and physiology. Additional course work may be taken in areas of special interest as approved by the advisory committee.

A student must complete an original research project and submit a thesis or dissertation. The subject area of the research project will involve the use of human, laboratory animal or domestic animal models.

The Master of Nutritional Sciences degree program is a graduate program in human nutrition offered through the Department of Food Science for the student with career aspirations in public health, community nutrition or clinical dietetics. Applicants should have a strong background in the biological sciences. Those with background deficiencies may be admitted by completing undergraduate course work to correct deficiencies. The student's program of study will include a core of courses in human nutrition in addition
to course work in statistics, biochemistry and physiology. An experimental education practicum will be completed in lieu of a thesis.

NUTR 601 FUNDAMENTALS OF NUTRITION
3 cr. (3 and 0) F

NUTR 625 NUTRITION AND DIETETICS
3 cr. (3 and 0) F

NUTR 651 HUMAN NUTRITION
3 cr. (3 and 0) F, S

NUTR 655 NUTRITION AND METABOLISM
3 cr. (3 and 0) S

NUTR 701 THERAPEUTIC NUTRITION
3 cr. (3 and 0) S

Interrelationship of pathological, physiological and metabolic alterations produced by various disease states and body nutrient status; application of current practices in nutritional therapy and dietary management in treatment of diseases.

NUTR 702 PUBLIC HEALTH NUTRITION
3 cr. (3 and 0) SS

Improvement of dietary practices of the general population; application of nutritional principles to problems of disease and infection.

NUTR 703 NUTRITION EDUCATION
3 cr. (3 and 0) SS

Methods of instruction appropriate for varied age and educational levels; preparation and use of visual aids; cultural patterns in food use as related to nutrition improvement programs for various population groups.

NUTR 704 FOOD SERVICE SYSTEMS
3 cr. (3 and 0) F

Volume feeding systems and their relationship to food quality, food acceptability, sanitation and materials selection; physical plant layout; management structure; food flow dynamics; computer-assisted diet formulation and accounting in various feeding systems.

NUTR 705 NUTRITION PRACTICUM
1-6 cr. (0 and 3-18) F, S, SS

Supervised training in outlining important aspects of practical nutrition situations and preparing plans to make improvements or changes.

NUTR 706 NUTRITION FOR TEACHERS
3 cr. (3 and 0) SS

Principles of nutrition applied to nutrition education. Prerequisite: Permission of instructor.

NUTR 721 METHODS IN HUMAN NUTRITION I
2 cr. (2 and 0)

Introduction to evaluation of methods in human nutrition and constraints in the use of human subjects for experimental research. Prerequisite: NUTR 451/651, EX ST 801 or consent of instructor.
NUTR 722 METHODS IN HUMAN NUTRITION II
2 cr. (2 and 0)
Continuation of NUTR 721. Emphasis is on the interpretation of human nutrition literature and the role of nutrition intervention programs in nutrient intake of selected population groups. Prerequisite: NUTR 721 or consent of instructor.

NUTR 801 TOPICAL PROBLEMS IN NUTRITION
1-3 cr. (1-3 and 0) F, S, SS
Topics not covered in other courses or by thesis research. Credit varies with problems selected.

NUTR 802 SPECIAL TOPICS IN NUTRITION
1-3 cr. (1-3 and 0) (Offered as needed)
Topics of special interest or contemporary subjects not examined in other courses.

NUTR 808 MONOGASTRIC NUTRITION
3 cr. (3 and 0) F
Basic concepts and current research related to nutrient requirement and metabolism of poultry, swine and other monogastric species. Prerequisite: NUTR 401/601, 451/651 or PS 451/651.

NUTR 809 RUMINANT NUTRITION
3 cr. (3 and 0) F
Microbiological, biochemical and physiological processes involved in the synthesis of amino acids, proteins and B-vitamins; relation of these processes to utilization of proteins, lipids, and fibrous and nonfibrous feed ingredients; properties and functions of nutrients, nonprotein nitrogen compounds and growth-promoting substances for dairy cattle, beef cattle and sheep. Prerequisite: NUTR 401/601 or permission of instructor.

NUTR 811 CARBOHYDRATE NUTRITION
2 cr. (2 and 0)
The dietary sources, chemistry, absorption/excretion and functions of carbohydrates; the aberrations of metabolism and possible role in the etiology of degenerative diseases. Prerequisites: BIOCH 623, 624 or equivalent; NUTR 601, 651 or equivalent; or permission of instructor.

NUTR 813 NUTRITION TECHNIQUES WITH LARGE ANIMALS
2 cr. (1 and 3) S
In vivo and in vitro methods for evaluating nutrient utilization in beef and dairy cattle, sheep, swine and horses. Prerequisite: Permission of instructor.

NUTR 814 NUTRITION TECHNIQUES WITH LABORATORY ANIMALS
2 cr. (1 and 3) F
Techniques of husbandry, handling and using laboratory animals for nutritional research. Prerequisite: Permission of instructor.

NUTR 815 LIPID NUTRITION
2 cr. (2 and 0)
Nutrition of lipids in higher animals emphasizing their source, digestion and absorption, metabolism, function, dietary needs and interrelationships. Prerequisites: BIOCH 623, 624 or equivalent; NUTR 601, 651 or equivalent; or permission of instructor.
NUTR 816 AMINO ACIDS AND PROTEIN NUTRITION
2 cr. (2 and 0) F (odd numbered years)
Nutrition of amino acids, nonprotein nitrogen and proteins related to
humans and domestic animals; essentiality, interrelationships and metabo-
lism of amino acids.

NUTR 817 MINERAL NUTRITION
2 cr. (2 and O)
The occurrence, chemistry, absorption/excretion, and general and specific
physiological functions of minerals. Prerequisites: BIOCH 623, 624 or equiva-
 lent; NUTR 601, 651 or equivalent; or permission of instructor.

NUTR 819 VITAMIN NUTRITION
2 cr. (2 and O)
Overview of the chemistry, metabolism, physiology, digestion, absorption and
excretion of the vitamins as applied to the nutrition of higher animals. Prerequi-
sites: BIOCH 623, 624 or equivalent; NUTR 601, 651 or equivalent; or permission
of instructor.

NUTR 851 NUTRITION SEMINAR I
1 cr. (1 and 0) F
Current research and developments in nutrition. Topics, selected by the
instructor and students, will come from student research and nutrition literature.

NUTR 852 NUTRITION SEMINAR II
1 cr. (1 and 0) S
Continuation of NUTR 851.

NUTR 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

NUTR 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

The following courses offered by the various departments represent possi-
ble electives for the student in nutrition. Descriptions for all 800-level courses
can be found under the respective department headings.

AN SC 805 NUTRITION OF MEAT ANIMALS
3 cr. (3 and 0)

BIOCH 606 PHYSIOLOGICAL CHEMISTRY
3 cr. (3 and 0)

BIOCH 608 PHYSIOLOGICAL CHEMISTRY LABORATORY
1 cr. (0 and 3)

BIOCH 815 LIPIDS AND BIOMEMBRANES
3 cr. (3 and 0)

BIOCH 817 CHEMISTRY AND METABOLISM OF HORMONES
3 cr. (3 and 0)

BIOCH 822 ENZYMES
3 cr. (3 and 0)
Graduate training in plant pathology is designed to aid students in understanding the principles and techniques used to diagnose plant problems, to engage in research involving causal agents and host-pathogen interactions, and to teach plant pathology. Facilities are available on campus and at four branch stations in South Carolina. Current research interest includes virology; nematology; diseases of ornamental, fruit, field crops and vegetables; epidemiology; physiological results of stress; and chemical control of causal agents.

Undergraduate study in a crop science or biology generally provides a good background for graduate work in plant pathology.

PL PA 611 PLANT DISEASE DIAGNOSIS I
2 cr. (1 and 2) SS (odd numbered years)

PL PA 612 PLANT DISEASE DIAGNOSIS II
2 cr. (1 and 2) SS (even numbered years)

PL PA 651 BACTERIAL PLANT PATHOGENS
3 cr. (2 and 3) S (odd numbered years)

PL PA 656 PLANT VIROLOGY
3 cr. (2 and 3) S (even numbered years)

PL PA 658 PLANT PARASITIC NEMATODES
3 cr. (2 and 3) F (odd numbered years)

PL PA 800 ADVANCED PLANT PATHOLOGY
3 cr. (3 and 0) F (odd numbered years)

Economic and social significance and history of plant pathology, host-parasite interactions (host defense mechanisms, mycotoxins, pathotoxins, mycoplasmas), ecology (mycorrhizae, pollution, soil-borne plant pathogens), and disease loss and appraisal. Selected pathogens used to illustrate concepts and principles; outside assignments introduce topics not covered in class. **Prerequisite:** PL PA 301.

PL PA 801 EPIDEMIOLOGY AND CONTROL OF PLANT DISEASES
3 cr. (3 and 0) S (even numbered years)

Epidemiology and control of plant diseases including practical and theoretical coverage of chemical, physical and biological means of plant disease control. **Prerequisites:** PL PA 301 and organic chemistry.

PL PA 803 FUNGAL PLANT PATHOGENS
3 cr. (1 and 6) S (odd numbered years)

Plant pathogenic fungi including recognition of fungus disease symptoms, isolation of fungi that cause diseases, cultural features of fungi, morphological...
characteristics, physiological reactions to environment, disease cycles, and management of pathogens and diseases. **Prerequisites:** BIOL 104 or equivalent, PL PA 301 and BOT 411/611.

PL PA 804 PHYSIOLOGICAL PLANT PATHOLOGY
3 cr. (3 and 0) F (even numbered years)
Interaction of pathogen and host in development of plant diseases; factors influencing infection; development of pathogen within host. **Prerequisites:** BOT 421/621, PL PA 301 and organic chemistry.

PL PA 805 SPECIAL PROBLEMS IN PLANT PATHOLOGY
Credit to be arranged. F, S, SS
Research not related to a thesis. **Prerequisites:** PL PA 411/611, 412/612 and permission of instructor.

PL PA 807 SEMINAR
1 cr. (1 and 0) F
Areas of plant pathology and plant physiology not covered by formal courses. Relevant literature will be reviewed, and material will be organized and presented by students.

PL PA 808 TECHNIQUES AND METHODS IN PLANT PATHOLOGY
1 cr. (0 and 3) F
Research techniques and methods. **Prerequisite:** PL PA 301 or concurrent registration in PL PA 301.

PL PA 809 PHYSIOLOGICAL TECHNIQUES IN PLANT PATHOLOGY
2 cr. (1 and 3) S (odd numbered years)
Techniques in separation science; qualitative and quantitative analysis of concern to students in plant pathology and plant physiology. **Prerequisite:** Organic chemistry or permission of instructor.

PL PA 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

PL PA 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

IPM 601 PRINCIPLES OF INTEGRATED PEST MANAGEMENT
3 cr. (2 and 3)

IPM 700 INTERNSHIP IN PLANT HEALTH
1-5 cr. (0 and 8-40)
Professional employment under competent supervision in an approved agency or organization dealing with the vocational or occupational aspects of plant health. During the internship, the student will submit weekly reports covering his or her experiences. A terminal report will also be required. Graded on a pass/fail basis. **Prerequisites:** Graduate student standing for at least one semester, IPM 401/601, and permission of Plant Health Curriculum Committee and instructor.

IPM 704 SEMINAR
1 cr. (1 and 0)
Students and faculty review current research and development topics in inte-
grated pest management. One or more presentations required. May be repeated for a maximum of two credits. **Prerequisite:** Permission of instructor.

PLANT PHYSIOLOGY

N. Dwight Camper, Program Coordinator, Department of Plant Pathology and Physiology

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Physiology</td>
<td>Ph.D.</td>
</tr>
</tbody>
</table>

The graduate program in plant physiology is interdisciplinary. Students may select courses and a major area of study from the departments of Agronomy and Soils, Horticulture, and Plant Pathology and Physiology in the College of Agricultural Sciences and the departments of Biological Sciences, (Botany and Biochemistry) in the College of Sciences. Dissertation projects are available in the Food Science Department.

The following courses offered by various departments represent possible electives for the student in plant physiology. Descriptions for all 800-level courses can be found under the respective department headings.

AGRON 690 SOIL ORGANISMS IN CROP PRODUCTION
3 cr. (2 and 3) F (even numbered years)

AGRON 801 CROP PHYSIOLOGY AND NUTRITION
3 cr. (3 and 0) F (odd numbered years)

AGRON 812 CROP ECOLOGY AND LAND USE
3 cr. (3 and 0) F (even numbered years)

AGRON 820 PESTICIDE RESIDUES IN THE ENVIRONMENT
3 cr. (3 and 0) S (odd numbered years)

AGRON 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

BOT 821 INORGANIC PLANT METABOLISM
4 cr. (3 and 3) F (odd numbered years)

BOT 822 ORGANIC PLANT METABOLISM
3 cr. (3 and 0) S (even numbered years)

BOT 823 PLANT GROWTH AND DEVELOPMENT
3 cr. (3 and 0) F (even numbered years)

BOT 824 MODE OF ACTION OF GROWTH SUBSTANCES
4 cr. (3 and 3) S (odd numbered years)

BOT 850 PLANT TISSUE AND CELL CULTURE
3 cr. (2 and 3) F (odd numbered years)

BOT 861 PLANT CELL BIOLOGY
3 cr. (3 and 0) F (even numbered years)

BOT 921 PLANT PHYSIOLOGY COLLOQUIUM
(HORT 921) 1 cr. (1 and 0)
BOT 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

HORT 802 RESEARCH SYSTEMS IN HORTICULTURE
3 cr. (2 and 3) F (even numbered years)

HORT 803 EXPERIMENTAL OLERICULTURE
3 cr. (3 and 0) F (even numbered years)

HORT 805 PHYSIOCHEMICAL PROCEDURES FOR DETERMINING
QUALITY IN HORTICULTURE CROPS
3 cr. (2 and 3) F (even numbered years)

HORT 806 POSTHARVEST PHYSIOLOGY AND HANDLING OF
HORTICULTURAL CROPS
3 cr. (3 and 0) S (even numbered years)

HORT 811 QUANTITATIVE EXPOSITION OF PLANT DEVELOPMENT
2 cr. (1 and 3) S (even numbered years)

HORT 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

PL PA 804 PHYSIOLOGICAL PLANT PATHOLOGY
3 cr. (3 and 0) F (even numbered years)

PL PA 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

PL PH 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

POULTRY SCIENCE
Bruce Glick, Head, Department of Poultry Science

Major Degrees
Animal and Food Industries M.S.
 Animal Physiology Ph.D.
 Nutrition M.S., Ph.D.
 Poultry Science M.Ag.

Graduate study in poultry science in the M.S. and M.Ag. programs may emphasize physiology, nutrition, management, products and processing, or diseases. At the Ph.D. level interdisciplinary study is available, but only in nutrition and physiology. Applicants with backgrounds in the basic biological sciences and all areas of animal agriculture are welcome.

PS 600 AVIAN PHYSIOLOGY
3 cr. (3 and 0) S (even numbered years)

PS 602 POULTRY MANAGEMENT
3 cr. (3 and 0) S (odd numbered years)

PS 603 POULTRY MANAGEMENT LAB
1 cr. (0 and 3) S (odd numbered years)
POULTRY SCIENCE

PS 605 SPECIAL TOPICS
 1.4 cr. (1-3 and 0-3)

PS 606 SPECIAL PROBLEMS
 1.3 cr. (0 and 3-9)

PS 651 POULTRY NUTRITION
 2 cr. (2 and 0) F (odd numbered years)

PS 653 POULTRY NUTRITION LABORATORY
 1 cr. (0 and 3) F (odd numbered years)

PS 654 LEAST COST FEED FORMULATION
 1 cr. (0 and 2) S (even numbered years)

PS 655 POULTRY PRODUCTS GRADING AND TECHNOLOGY
 3 cr. (2 and 3) S (odd numbered years)

PS 658 AVIAN MICROBIOLOGY AND PARASITOLOGY
 4 cr. (3 and 3) F (even numbered years)

PS 660 SEMINAR
 1 cr. (1 and 0)

PS 804 POULTRY PATHOLOGY
 3 cr. (1 and 6) S (odd numbered years)

Etiological agents, prophylaxis and treatment of poultry diseases. Laboratory work includes experiments in bacteriology, virology, protozoology and immunology procedures emphasizing isolation and identification of disease-producing agents. Prerequisite: PS 458/658 or permission of instructor.

PS 805 SEMINAR
 1 cr. (1 and 0)

Report on special topics or original research by students, staff and visiting speakers.

PS 891 MASTER'S THESIS RESEARCH
 Credit to be arranged.
The College of Architecture offers advanced degrees in the following areas of study:

- Architecture
- Building Science and Management
- City and Regional Planning
- Visual Arts

The college is comprised of the departments of Architectural Studies, Planning Studies, Visual Arts and History, and Building Science. All contribute to the preprofessional undergraduate design program, and all departments administer professional graduate programs leading to these degrees: Master of Architecture, Master of City and Regional and Planning, Master of Building Science and Management, and Master of Fine Arts. The Department of Building Science jointly administers the management concentration in the Master of Architecture program. Other cross-disciplinary activities consist of a dual degree program in architecture and planning, and participation by graduate students from all departments in the Genoa study program.

A vital component of graduate work in the College of Architecture is the Charles E. Daniel Center for Building Research and Urban Studies in Genoa, Italy. The Center, which is jointly sponsored by the College and the Clemson Architectural Foundation, is available to all qualified graduate students. Emphasis is placed on studies related to this historic port city and the art and architectural heritage of the Italian setting. Studio and classroom work is enriched by visiting scholars and critics and complemented by scheduled field trips, both in Italy and continental Europe.

Courses of study in the Daniel Center, while under the jurisdiction of the related departments of the College of Architecture, are administered and taught by the professors-in-residence. Studio work is the core of the Genoa program, whether in architecture, planning, visual arts or building science. All students undertake a history research project, conduct field studies and participate in a design seminar.

- CA GE 612 HISTORICAL RESEARCH 3 cr. (3 and 0)
- CA GE 626 DESIGN SEMINAR 3 cr. (3 and 0)
- CA GE 632 FIELD STUDIES 3 cr. (0 and 9)
- CA GE 642 BUILDING SCIENCE LABORATORY 1-9 cr. (0-3 and 3-18)
- CA GE 850 ARCHITECTURE STUDIO 3-6 cr. (0 and 9-18)

Architectural design studies in the context of the Genoa urban setting. May be substituted for CA AR 853 or 854 and for CA AR 857 with permission of advisor.
The master’s program in architecture requires students to develop proficiency in responding to contemporary architectural needs, while also searching beyond the immediate in exploration of new frontiers for the profession. This calls for a range of studies of both applied and theoretical nature. Major emphasis is on architectural design, accompanied in turn by courses in technology, theory and professional practice, as well as elective subjects. Studio design projects are both complex and comprehensive stressing social awareness and contextual fit, and they are responsive to all aspects of the architectural process. Practical experience is a requisite part of the overall program, which is concluded with a thesis involving both problem identification and resolution.

Admission to the master’s program is based on criteria intended to measure the student’s ability to respond effectively to the intellectual rigor and creative challenge integral to graduate architecture studies. This potential is evaluated on the basis of demonstrated academic proficiency (e.g., prior academic work and GRE general test scores), as well as the less measurable qualities of creativeness of mind, motivation of spirit and maturity of purpose. A personal interview is normally required of candidates whose application material has been favorably reviewed by the Admissions Committee. A post-baccalaureate program to remedy deficiencies in course work required for admission to the master’s program is available to otherwise qualified applicants. More detailed information concerning application procedures and requirements may be obtained by writing or calling the Department of Architectural Studies.

The duration of study required for the master’s degree is normally two academic years. Degree candidates will elect a concentration of study in architecture, architecture and health care, or architecture and management. The specific study plan of each student is determined in consultation with the major advisor and is intended to reflect individual educational objectives and career goals, while assuring a comprehensive development of professional competency. Requirements for the Master of Architecture degree include 45
credits of approved course work with a minimum average G.P.R. of 3.00, along with acceptance of a thesis of 15 hours. Candidates who have achieved the first professional degree, Bachelor of Architecture, may, under special circumstances, be admitted to the program. The degree requirements are 30 credits of course work and nine hours of thesis credit. All candidates for graduation are required to have 1,000 hours of experience in the office of a registered architect.

Concentration: Architecture

The basic graduate program in architecture affords the student an opportunity to pursue individual academic and career objectives, and permits the course of study to respond to contemporary issues and opportunities. The focus of learning is the design studio where the student is involved in a wide range of problem types, both of a theoretical and real-world nature. Advanced studies in technology, theory and professional practice complement design work, along with additional subjects determined in concert with the major advisor.

Although designated subjects in design and other professional studies constitute a major portion of work in this concentration, sufficient elective hours are available to develop a study plan with individual focus. The choice of thesis subject provides a further opportunity for personal growth.

Concentration: Architecture and Health Care

Graduate students in the architecture and health care concentration examine issues of programming, planning and design associated with a comprehensive approach to both physical and mental health care delivery systems. Studio work places emphasis on the integration of physical design systems with patient care techniques. Realistic design problems that regularly lead to built projects employ both educational and research systems. These studies are complemented by lectures and seminars that deal with various aspects of health care, hospital administration and the environment.

The architecture and health care concentration is demanding in the scope of its professional studies with most of the course work designated for specific subjects. The thesis, which would normally deal with a particular area of health care, may be project or research oriented.

Concentration: Architecture and Management

The combination of management studies with architecture provides graduate students with a greater understanding of the complex skills and knowledge required for managing contemporary architectural services. Studio work, focusing on the development of problem-solving competency and creativity, is augmented by special emphasis on new and emerging techniques of architectural practice. Designated studies in architecture and building science are supplemented by subjects taught in the College of Commerce and Industry. Students are advised that such courses usually have prerequisites that must be satisfied.
The concentration in architecture and management is similar in credit requirements to that of architecture. However, elective course choices are generally restricted to the areas of economics and management.

CA AR 624 PRODUCT DESIGN
3 cr. (0 and 9)

CA AR 625 ENERGY IN ARCHITECTURE
3 cr. (3 and 0)

CA AR 626 ARCHITECTURAL COLOR GRAPHICS
3 cr. (2 and 3)

CA AR 681 PROFESSIONAL PRACTICE
3 cr. (3 and 0)

CA AR 685 HEALTH CARE SYSTEMS
3 cr. (3 and 0)

CA AR 688 HEALTH CARE PROGRAMMING
3 cr. (3 and 0)

CA AR 801 ARCHITECTURE SEMINAR
3 cr. (3 and 0)

Exploration of contemporary issues in the architectural profession. Prerequisite: CA AR 481/681.

CA AR 802 PHENOMENOLOGY OF ARCHITECTURE
3 cr. (3 and 0)

Basic principles of phenomenological methods as they apply to the theoretical understanding of modern architecture. Emphasis is on selected writings of Heidegger, Harries and Norberg-Schulz. Prerequisite: CA AR 803.

CA AR 803 THEORIES OF ARCHITECTURE
3 cr. (3 and 0)

Evolution of architectural theories from Vitruvius to the present. Special emphasis on the writings of leading architects and theorists and the impact of these theories on architectural solutions. Prerequisite: Graduate status.

CA AR 804 SEMINAR IN MODERN MASTERS
3 cr. (3 and 0)

In-depth examination of one or more related groups of architects of the 20th century. Content would change from semester to semester (Kahn, Scarpa, Barrigan, Wright, Corbusier, etc.). Prerequisite: Graduate status.

CA AR 805 ARCHITECTURE AND THE CITY
3 cr. (3 and 0)

Seminar examining contemporary theories of urban design and the design of urban buildings; real and ideal visions of cities; their representation, archaeology and iconography (Rossi, Kries, Ungers, Venturi, Duane, etc.).

CA AR 853 ARCHITECTURE STUDIO
6 cr. (0 and 18)

Architectural design studies with emphasis on selected problem issues.

CA AR 854 ARCHITECTURE STUDIO
6 cr. (0 and 18)

Architectural design studies involving structured and situational problems.
ARCHITECTURE

Prerequisite: CA AR 853.

CA AR 857 ARCHITECTURE STUDIO
 6 cr. (0 and 18)
Architectural design studies dealing with comprehensive problem-solving situations. Prerequisite: CA AR 854.

CA AR 858 THESIS RESEARCH
 3 cr. (0 and 9)
Architectural predesign inventory and analysis for the thesis project. Prerequisite: CA AR 854.

CA AR 859 THESIS MANUSCRIPT
 3 cr. (0 and 9)
Architectural predesign synthesis of research for the thesis project. Prerequisite: CA AR 858.

CA AR 886 HEALTH CARE COMPONENTS
 3 cr. (3 and 0)
Components and service functions of physical and mental health care delivery systems and facilities.

CA AR 890 DIRECTED STUDIES
 1-5 cr. (1-5 and 0)
Special topics in architecture undertaken on an individual basis with faculty guidance. Prerequisite: Consent of advisor.

CA AR 891 THESIS PROJECT
 9 cr. (0 and 27)
Complex architectural project emphasizing design exploration and independent work. Prerequisites: CA AR 857 and 858.

BUILDING SCIENCE

Ralph E. Knowland, Head, Department of Building Science

Major Degree
Building Science M.B.S.M.
and Management

The Master of Building Science and Management degree program is designed to provide students with a high level of skill and understanding in the technical areas of construction project administration and control. Substantial emphasis is placed on advanced study in the field of business and in new and emerging techniques for construction project delivery systems and the administration of the construction firm.

Requirements for the M.B.S.M. degree include a minimum of 36 semester hours of graduate credit. Those students with a B.S. degree in building science or its equivalent will normally have completed all prerequisite courses and will be eligible to enroll in advanced courses, provided they have met all other admission requirements. Those with undergraduate degrees in design, architecture or engineering must complete certain prerequisite courses as approved by their advisory committee.
Admission Requirements

In addition to the completed graduate application form, three letters of recommendation, as well as test scores on the Graduate Record Examination (GRE) must be submitted. To be admitted, students must be accepted by the Graduate School and the Department of Building Science. Graduate School acceptance is based on performance in previous undergraduate studies and a satisfactory score on the GRE. Acceptance by the department is based on performance in undergraduate studies and the letters of recommendation.

CA BS 632 CONSTRUCTION MANAGEMENT V
3 cr. (3 and 0)

CA BS 661 CONSTRUCTION ECONOMIC SEMINAR
3 cr. (3 and 0)

CA BS 671 ARCHITECTURAL STRUCTURES I
3 cr. (3 and 0)

CA BS 672 ARCHITECTURAL STRUCTURES II
3 cr. (3 and 0)

CA BS 675 BUILDING EQUIPMENT AND SYSTEMS
3 cr. (3 and 0)

CA BS 676 DESIGN FOR NATURAL HAZARDS
3 cr. (3 and 0)

CA BS 852 CONSTRUCTION MANAGEMENT RESEARCH
3 cr. (0 and 9)

Detailed evaluation of the management and control methods used in the construction process. **Prerequisite:** Consent of advisor.

CA BS 854 BUILDING SYSTEMS RESEARCH
3 cr. (0 and 9)

Detailed evaluation of construction systems with in-depth analysis of their qualities and performance under varying conditions of use and location. **Prerequisite:** Consent of advisor.

CA BS 855 BUILDING ENVIRONMENTAL SYSTEMS SEMINAR
3 cr. (3 and 0)

Advanced study of building environment control systems. **Prerequisite:** Consent of advisor.

CA BS 881 PROFESSIONAL SEMINAR
3 cr. (3 and 0)

Detailed study of new and emerging methods for management of the construction or construction-related firm. **Prerequisite:** Consent of advisor.

CA BS 890 DIRECTED STUDIES
3-6 cr.

Comprehensive studies and research of special topics not covered in other courses. Emphasis is on field studies, research activities and current developments in building science. **Prerequisite:** Consent of instructor.
CA BS 891 MASTER’S THESIS
9 cr. (0 and 27)
With the approval of his/her advisory committee, the student will carry on inde-
pendent research and analysis. The thesis will be presented orally and in writing
and in strict compliance with the guidelines of the Graduate School.

CITY AND REGIONAL PLANNING
Jose R. Caban, Acting Head, Department of Planning Studies

Major
City and Regional Planning

Degree
M.C.R.P.

The two-year Master of City and Regional Planning program emphasizes
land development and financial planning. The standard core curriculum is
followed by concentrated studies in one of four areas: urban design and land
development, planning administration, small-city and rural planning, and
health and social services planning. Specialty concentrations can be tailored
to doctoral programs elsewhere. Students normally choose a concentration
for which their undergraduate background is best suited. No specific under-
graduate area of study is required; options are available for students with or
without a design background. The result is a rich cross section of students
with a variety of interests. The relatively small enrollment leads to intensive
faculty-student interaction. Ongoing public service and research projects
provide a real-world dimension to the program. Graduates are well equipped
for careers in private-sector planning and development, as well as public-
sector planning and administration.

The Overseas Center for Urban Studies in Genoa, Italy, is a unique support
element in the planning studies program. It provides the option of a one-
semester overseas study experience in an interdisciplinary program of plan-
ning studies, design and fine arts.

Admission Requirements:
1. A bachelor’s degree from an accredited college or university.
2. A satisfactory academic record in the last two years of undergradu-
ate work.
3. An on-campus interview is highly recommended.
4. Three letters of recommendation from undergraduate teachers,
employers or personal acquaintances.
5. Completion of the Graduate Record Examination.
6. Undergraduate prerequisites in statistics, economics and computer
science as follows:
Statistics—Demonstrated understanding of statistical inference and prob-
ability, including hypothesis testing, analysis of variance and regression
analysis. As a minimum, an approved three-credit course in statistics will
be required.
Economics—Undergraduate course work embodying the elements of
micro- and/or macroeconomics. As a minimum, the subject matter of econo-
mic principles is expected.

Computer Science—Undergraduate training and/or experience with
information-processing systems and languages.

Deficiencies in any of these areas may be remedied after enrollment in the
graduate program. Post-baccalaureate status may be recommended in
some cases.

Requirements for Degree Candidacy:
The two-year Master of City and Regional Planning degree requires a mini-
imum of 60 semester hours. Eleven courses, each of three semester hours of
credit, make up the core curriculum. Five approved courses of three semes-
ter hours of electives are required to complete an optional concentration. In
addition, each student is required to complete an internship (or equivalent)
and terminal project paper or thesis.

Requirements for Awarding of a Degree:
1. Thesis Option**
 (a) A minimum of 54 hours of course work with a B average in the stu-
dent’s prescribed professional curriculum including the thesis.
 (b) Satisfactory completion of a six-semester-hour planning thesis. Only
 those students who have been approved by the planning faculty and have
 performed satisfactorily on the written comprehensive examination will be
 permitted this option.
 (c) The final oral examination requires satisfactory answers to questions
 concerning the student’s thesis and concentration area.

2. Non-Thesis Option**
 (a) A minimum of 57 hours of course work with a B average in the stu-
dent’s prescribed professional curriculum.
 (b) Satisfactory completion of an approved three-semester-hour terminal
 paper. Students must perform satisfactorily on a written comprehensive
 examination covering the core planning courses before being permitted to
 write the terminal paper.
 (c) The final oral examination requires satisfactory answers to questions
 concerning the student’s terminal paper and concentration area.

CA PL 611 INTRODUCTION TO CITY AND REGIONAL PLANNING
 3 cr. (3 and 0)
CA PL 615 SMALL CITY AND RURAL PLANNING
 3 cr. (3 and 0)
CA PL 672 IMPLEMENTATION OF THE LOCAL PLANNING PROCESS
 3 cr. (3 and 0)
CA PL 673 GOVERNMENT AND PLANNING LAW
 3 cr. (3 and 0)

**Upon approval of the majority of the faculty, either a thesis or a terminal paper of up to
nine semester hours may be permitted with a corresponding reduction in the required
course work.
CA PL 683 SEMINAR ON PLANNING COMMUNICATION
3 cr. (3 and 0)

CA PL 812 CITY AND REGIONAL PLANNING THEORY
3 cr. (3 and 0)

Development of the planning practice and theories of planning process; major topics include historical evolution of planning practice in the U.S., social issues in planning, theories of planning and critiques of those theories, and ethical issues in planning practice. Prerequisite: Permission of instructor or department head.

CA PL 821 INTERGOVERNMENTAL RELATIONS IN THE PLANNING PROCESS
1-3 cr. (1-3 and 0)

Operations, structure and review procedures between local, state and multistate agencies and the federal government; techniques of regional delineation and areal problems in governmental planning operations. Prerequisite: Permission of instructor and department head.

CA PL 822 URBAN SYSTEMS AND DESIGN
3 cr. (3 and 0)

Analysis of the evolution of the physical patterns of cities through research in the historical development of urban form in Europe and America within the context of prevailing social, economic and political influences. Approaches to the analysis of contemporary cities through the study of 20th century planning theorists. Prerequisite: Permission of instructor or department head.

CA PL 823 SOCIAL POLICY PLANNING AND DELIVERY SYSTEMS
3 cr. (3 and 0)

Concepts of planning social service delivery systems: basic principles, role of the public sector (at national, state and local levels), components of delivery systems and methods for planning and evaluation. Prerequisite: Permission of instructor.

CA PL 831 PRINCIPLES OF SITE PLANNING AND DESIGN
3 cr. (3 and 0)

Introduction to site evaluation and project objective definition; site analysis techniques; methods of quantification; environmental and regulatory aspects; consideration of contextual guidelines in site planning and design.

CA PL 832 PROBLEMS IN SITE PLANNING
3 cr. (1 and 2)

Advanced site planning and design concepts studies developed through site projects, concentration on industrial, residential and recreational facilities, and emphasis on use-specific site analysis and generation of development alternatives. Prerequisite: CA PL 831.

CA PL 853 COMPARATIVE STUDIES IN PLANNING METHODS AND ANALYSIS
3 cr. (0 and 9)

Simulated office procedures with projects aimed at developing skills in the three main sectors of the planning process—survey, analysis and creative planning—emphasizing plans for physical development.
CA PL 854 PLANNING AND BUILT FORM STUDIES: STUDIO
3 cr. (0 and 9)
Students apply theoretical and substantive knowledge of analytic planning methods to real-life project situations. **Prerequisite:** Permission of instructor or department head.

CA PL 858 PRELIMINARY PLANNING THESIS
3 cr. (0 and 9)
Preliminary analysis of data to determine most advisable form of terminal presentation within thesis or non-thesis options for Master of City and Regional Planning degree. **Prerequisite:** Permission of faculty.

CA PL 859 PLANNING TERMINAL PROJECT
3 cr. (0 and 9)
Student selects, with approval of advisor, and conducts research on an individual planning problem of suitable scope. Oral, written and, where appropriate, visual presentation of thesis required. Student must enroll during final semester. **Prerequisite:** CA PL 858.

CA PL 862 CITIZEN PARTICIPATION IN PLANNING
3 cr. (3 and 0)
Methods and validity of citizen participation in city and regional planning process. **Prerequisite:** Permission of instructor.

CA PL 863 URBAN AND METROPOLITAN PLANNING STUDIES: STUDIO
3-6 cr. (0 and 9-18)
Projects pertaining to land use, transportation, urban design, public facilities, public services, capital improvement program, etc., accomplished through individual or small group activity under guidance of planning faculty.

CA PL 865 ADVANCED LAND USE AND BUILT FORM STUDIES: STUDIO
3-9 cr. (0 and 9-27)
Continuation of CA PL 863; may include terminal paper on one or more of items listed in CA PL 863.

CA PL 871 SEMINAR ON PLANNING AND MANAGEMENT OF CHANGE
3 cr. (3 and 0)
Potentials of planning and management approaches emphasizing relationship and integration among various implementing techniques and instruments, importance of public-private sector partnerships and potential impact of various policies and programs. New towns will be considered. **Prerequisites:** CA PL 672 and permission of instructor or department head.

CA PL 881 QUANTITATIVE METHODS FOR URBAN PLANNING AND POLICY
3 cr. (3 and 0)
Use of quantitative information for policy analysis in planning and related fields; topics covered include measurement construction, using descriptive and inferential statistics for policy development, and computer use in planning and related professions. **Prerequisite:** Permission of instructor or department head.

CA PL 882 SEMINAR IN MATHEMATICAL MODELING FOR URBAN AND REGIONAL PLANNING
3 cr. (3 and 0)
Mathematical models for analysis of urban systems; predictive and estimating
models; optimizing models; simulation; evaluation. Theoretical knowledge is applied to development of operational empirical models.

CA PL 883 TECHNIQUES FOR ANALYZING DEVELOPMENT IMPACTS
3 cr. (3 and 0)
Models and techniques for analyzing development impacts in urban areas and regions; economic, social, physical, energy and fiscal impact methods. Operational knowledge of these techniques will be developed. Prerequisites: CA PL 881, 865 and permission of instructor.

CA PL 884 PUBLIC SERVICES AND FACILITIES PLANNING
3 cr. (3 and 0)
Approaches, concepts and operations of public services and facilities; potential impact on various parts of the community and its inhabitants. Prerequisite: Permission of instructor.

CA PL 885 CITY AND REGIONAL FINANCIAL PLANNING
3 cr. (3 and 0)
Concepts and functions of budgetary processes—operating budget, capital improvement program and revenue sources—for local, regional, state and federal funding of public activities. Prerequisite: Permission of instructor or department head.

CA PL 889 SELECTED TOPICS IN PLANNING
3 cr. (3 and 0)
Topics emphasizing current literature and results of current research. May be repeated for credit. Prerequisite: Permission of instructor.

CA PL 890 DIRECTED STUDIES IN CITY AND REGIONAL PLANNING
1-5 cr. (0 and 1-5)
Student pursues individual professional interests under guidance of city and regional planning program graduate faculty.

CA PL 891 PLANNING THESIS
3-9 cr.
Student, working individually, programs a planning problem of appropriate scope and conducts research. Oral, written and, where appropriate, visual presentation of thesis required. Prerequisite: Permission of faculty.

CA PL 893 CITY AND REGIONAL PLANNING INTERNSHIP
6 cr. (0 and 6)
Twelve weeks of supervised professional employment in an approved planning office or agency. Monthly reports covering student’s experience required; graded on pass/fail basis. Prerequisite: Two semesters of city and regional planning or equivalent.

VISUAL ARTS
John T. Acorn, Head, Department of Visual Arts and History

Major
Visual Arts

Degree
M.F.A.

The Master of Fine Arts degree is the terminal degree within the areas of visual arts. The program offers maximum opportunity for a student to pursue
his or her individual direction within these areas. Interdisciplinary projects are encouraged within the department and the college. The primary goal of the program is the development of each student to a high degree of professional competence.

Admission Requirements:
The graduate program in visual arts leading to the Master of Fine Arts degree admits a limited number of talented and creative candidates on a competitive basis as follows:

1. Attainment of a bachelor’s degree from an accredited college or university with a major in visual arts, a liberal arts or science degree, or an undergraduate major in architecture or fine arts. Especially well-qualified persons may be accepted from other degree backgrounds.
2. Attainment of a satisfactory academic record in the last 60 major credit hours of undergraduate work.
3. A portfolio/documentation of candidate’s creative work in one or more of the following: ceramics, painting, sculpture, printmaking, graphic design, drawing, photography, multimedia. This portfolio, which may include slides, photographs, films, other documentation or the original work, will be reviewed by the Admissions Committee, composed of members of the faculty of the Department of Visual Arts and History. Upon acceptance of the past accomplishments of the candidate, a personal interview will be arranged.
4. Letters of recommendation are preferred from the following: former major professors, producing artists or personal acquaintances. Other letters of recommendation will be accepted.

Requirements for Degree Candidacy:

1. The prospective candidate must have a review of his or her work at the end of each semester. It will be determined at this time if the student should continue or whether additional study is required at either the undergraduate or graduate level.
2. Completion of 30 hours and a full-time residency during the second year of study.

Requirements for Awarding of a Degree:

1. A minimum of 45 credit hours with a B average or above in the student’s professional curriculum. Included in this are 33 hours of CA VA 600- and 800-level courses and 12 hours in history of art and architectural history.
2. Completion of a 15-credit-hour thesis culminating in satisfactory completion of a written documentary of the “thesis show” and an oral examination by the Graduate Committee.

CA VA 605 DRAWING
3 cr. (0 and 6)

*Major credit hours are those that relate directly to the student’s major (i.e., for architecture majors: architectural design, art and architectural history, building science, city and regional planning, visual arts, etc.)
CA VA 607 PAINTING
3 cr. (0 and 6)

CA VA 609 SCULPTURE
3 cr. (0 and 6)

CA VA 611 PRINTMAKING
3 cr. (0 and 6)

CA VA 613 PHOTOGRAPHY
3 cr. (0 and 6)

CA VA 615 GRAPHIC DESIGN
3 cr. (0 and 6)

CA VA 617 CERAMIC ARTS
3 cr. (0 and 6)

CA VA 690 DIRECTED STUDIES
1-5 cr. (0 and 2-10)

CA VA 850 VISUAL ARTS STUDIO
3 cr. (0 and 9)
Concentrated and advanced work in ceramics, drawing, painting, printmaking, sculpture, photography, graphic design or multimedia. Prerequisite: Permission of department head or instructor.

CA VA 851 VISUAL ARTS STUDIO
3-6 cr. (0 and 9)
Continuation of CA VA 850. May be repeated for maximum of six credits. Prerequisite: Permission of department head or instructor.

CA VA 870 VISUAL ARTS STUDIO
6 cr. (0 and 16)
Advanced theory; directed research in art criticism; applied work in ceramic arts, drawing, painting, sculpture, photography, graphic design or multimedia. Prerequisite: Permission of department head or instructor.

CA VA 871 VISUAL ARTS STUDIO
3-6 cr. (0 and 8-16)
Continuation of CA VA 870. May be repeated for maximum of six credits. Prerequisite: Permission of department head or instructor.

CA VA 880 VISUAL ARTS STUDIO
3-15 cr. (0 and 6-30)
Continuation of CA VA 871. May be repeated for maximum of 15 credits. Prerequisite: Permission of department head or instructor.

CA VA 891 MASTER'S RESEARCH
3-15 cr. (0 and 6-30)
May be repeated for maximum of 15 credits. Prerequisite: Permission of department head or instructor.

No degrees are offered in Architectural and Art History. Courses are offered to provide electives for students in other areas.

CA AH 603 HISTORY OF MODERN ARCHITECTURAL MOVEMENT
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA AH 604</td>
<td>CURRENT DIRECTIONS IN ARCHITECTURE</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 605</td>
<td>THE HISTORY OF PLANNING AND CITIES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 611</td>
<td>DIRECTED RESEARCH IN ART HISTORY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 612</td>
<td>DIRECTED RESEARCH IN ART HISTORY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 613</td>
<td>TWENTIETH CENTURY VISUAL ARTS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 617</td>
<td>STUDIES IN THE ART AND ARCHITECTURE OF THE ANCIENT WORLD I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 618</td>
<td>STUDIES IN THE ART AND ARCHITECTURE OF THE ANCIENT WORLD II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 619</td>
<td>STUDIES IN THE ART AND ARCHITECTURE OF THE EARLY MIDDLE AGES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 620</td>
<td>STUDIES IN THE ART AND ARCHITECTURE OF THE LATE MIDDLE AGES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 623</td>
<td>STUDIES IN THE ART AND ARCHITECTURE OF THE RENAISSANCE I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 624</td>
<td>STUDIES IN THE ART AND ARCHITECTURE OF THE RENAISSANCE II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 625</td>
<td>ARCHITECTURE OF THE TECHNOLOGICAL REVOLUTION: 1685-1865</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 627</td>
<td>EIGHTEENTH CENTURY VISUAL ARTS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 628</td>
<td>NINETEENTH CENTURY VISUAL ARTS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 629</td>
<td>STUDIES IN THE ART AND ARCHITECTURE OF INDIA AND THE FAR EAST I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CA AH 815</td>
<td>ART AND ARCHITECTURAL HISTORY SEMINAR I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Particular aspect of period of art/architectural history. **Prerequisite**: Permission of instructor.
CA AH 816 ART AND ARCHITECTURAL HISTORY SEMINAR II
3 cr. (3 and 0)
Continuation of CA AH 815.
COLLEGE OF COMMERCE AND INDUSTRY

ACCOUNTING
BUSINESS ADMINISTRATION
ECONOMICS
FINANCE
INDUSTRIAL MANAGEMENT
MANAGEMENT SCIENCE
MARKETING
TEXTILE AND POLYMER SCIENCE
TEXTILE CHEMISTRY
TEXTILE SCIENCE
The College of Commerce and Industry offers advanced degrees in the following areas of study:

- Accounting
- Applied Economics*
- Business Administration
- Economics
- Industrial Management
- Management Science**
- Textile and Polymer Science
- Textile Chemistry***
- Textile Science

Courses are also offered in finance and marketing to provide electives for students in other areas.

Graduate programs offered by the College of Commerce and Industry are designed to equip students for professional careers in business, industry, government and education.

ACCOUNTING

Jerry E. Trapnell, Head, School of Accountancy

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>M.P.Acc.</td>
</tr>
</tbody>
</table>

The School of Accountancy’s Master of Professional Accountancy degree program prepares students for professional accounting in industrial, commercial, governmental, financial or public accounting. The program requires 31 semester hours and is open to students with appropriate backgrounds. Both full- and part-time students may be accommodated; full-time students are able to complete the program in one calendar year. The program recognizes the rapid pace of change in accounting resulting from technological advances in the managing of data, the theory and practice of management, and increases in the volume and scope of authoritative pronouncements from the FASB, SEC and IRS.

Applicants should hold at least a bachelor’s degree from an institution whose scholastic rating is acceptable to the Graduate Admissions Committee of the School of Accountancy. Admission to the program is based on academic record and score on the Graduate Management Admission Test (GMAT). Letters of recommendation and relevant work experience may be considered also. Applicants should have completed a basic business core

*Jointly administered by the Department of Agricultural Economics and Rural Sociology and the Department of Economics. The Ph.D. degree is awarded by the College of Agricultural Sciences.

**Jointly administered by the Department of Management and the Department of Mathematical Sciences. The Ph.D. degree is awarded by the College of Commerce and Industry.

***The Ph.D. degree program is jointly administered by the School of Textiles and the Department of Chemistry. The Ph.D. in chemistry with a major in textile chemistry is awarded by the College of Sciences.
as well as the following accounting prerequisites: Intermediate Accounting (six semester hours), Cost Accounting (three semester hours), Tax (three semester hours) and Auditing (three semester hours). An undergraduate microcomputer applications course is strongly recommended.

ACCT 604 INDIVIDUAL TAXATION
3 cr. (3 and 0)

ACCT 610 BUDGETING AND EXECUTIVE CONTROL
3 cr. (3 and 0)

ACCT 630 GOVERNMENTAL AND INSTITUTIONAL ACCOUNTING
3 cr. (3 and 0)

ACCT 801 CONTEMPORARY FINANCIAL ACCOUNTING THEORY
3 cr. (3 and 0)

Development of accounting theory from its origin to the present; currently advocated pronouncements of professional accounting societies. **Prerequisite:** ACCT 302 or equivalent.

ACCT 802 ADVANCED AUDITING I
3 cr. (3 and 0)

Current publications and research in auditing with emphasis on theory. **Prerequisite:** ACCT 415 or equivalent.

ACCT 803 ACCOUNTING INFORMATION SYSTEMS
3 cr. (3 and 0)

Accounting systems including database concepts, systems design and evaluation, systems controls and systems implementation. **Prerequisite:** ACCT 302, 303 or equivalent.

ACCT 804 THE ENVIRONMENT OF ACCOUNTING
3 cr. (3 and 0)

Study of the professional, legislative, judicial and social environment in which the accounting profession operates. **Prerequisite:** ACCT 801 or permission of instructor.

ACCT 805 RESEARCH SEMINAR IN ACCOUNTING
1 cr. (1 and 0)

Latest developments in accounting; individual research in the student’s professional area of interest. **Prerequisite:** Permission of instructor.

ACCT 806 SEMINAR IN CURRENT ACCOUNTING PROBLEMS
3 cr. (3 and 0)

Examination of specialized aspects of financial accounting including business combinations, accounting and reporting practices of regulated and non-regulated industries, emerging practices and developments in financial accounting, fund accounting, and corporate reorganizations and liquidations. **Prerequisite:** ACCT 302 or equivalent.

ACCT 807 ADVANCED AUDITING II
3 cr. (3 and 0)

Application of auditing theory and standards to realistic problems faced by practicing auditors. Focus is on the solution of selected auditing problems. **Prerequisite:** ACCT 802 or permission of instructor.
ACCT 815 FEDERAL AND STATE INCOME TAXATION OF CORPORATIONS
3 cr. (3 and 0)
Tax principles and concepts involved in corporate-shareholder transactions, tax planning of corporations, Subchapter C and related provisions of the Internal Revenue Code. Prerequisite: ACCT 404, 405 or equivalent.

ACCT 816 TAXATION OF ESTATES, GIFTS AND FIDUCIARIES
3 cr. (3 and 0)
Federal estate and gift tax laws; federal income tax laws related to trusts and estates. Prerequisite: ACCT 404, 405 or equivalent.

ACCT 817 TAX PLANNING AND RESEARCH
3 cr. (3 and 0)
Tax research methodology as applied to the solution of routine and complex tax problems. Emphasis is on methodology of solution rather than a specific tax area. Tax planning will cover all phases of taxation—state, local, federal, income, gift, etc. Prerequisite: ACCT 404, 405 or equivalent.

ACCT 818 TAXATION OF PARTNERSHIPS
3 cr. (3 and 0)
Tax principles and concepts involved in partnership transactions, tax planning and tax shelters. Prerequisite: ACCT 404, 405 or equivalent.

ACCT 819 SPECIAL TOPICS IN TAXATION
3 cr. (3 and 0)
Specialized and contemporary topics in federal taxation and tax practice. Prerequisite: ACCT 404, 405 or equivalent.

ACCT 821 CONTROLLERSHIP
3 cr. (3 and 0)
Advanced internal accounting emphasizing accounting implications for management decision making. Prerequisite: ACCT 303, 307 or equivalent or permission of instructor.

ACCT 822 MANAGEMENT ACCOUNTING IN TEXTILES AND MANUFACTURING
3 cr. (3 and 0)
Techniques and problems related to accounting for products in manufacturing organizations with particular emphasis on textiles. Prerequisite: ACCT 821.

ACCT 823 MANAGEMENT ACCOUNTING IN FINANCIAL INSTITUTIONS
3 cr. (3 and 0)
Study of elements necessary for an accounting system designed to measure and control costs in the setting of a depository financial institution. Prerequisite: ACCT 821.

BUSINESS ADMINISTRATION
Arthur F. Belote, Director, Clemson-at-Furman*

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Administration</td>
<td>M.B.A.</td>
</tr>
</tbody>
</table>

*Correspondence should be addressed to Director, Clemson-at-Furman MBA Program, Furman University, Greenville, SC 29613.
The Master of Business Administration degree program is designed to enable individuals to study advanced concepts of business, industry and government operations. The program is intended for both the active manager or technical supervisor as well as the recent graduate who is interested in advanced study in the field of business. Classes in the program are offered in the evening on the Furman University campus in Greenville, S.C. Separate fee structures apply to this program. See page 25.

Requirements for the M.B.A. degree include 30 semester hours of graduate credit beyond the bachelor's degree. Certain prerequisite courses are required of all students. In most instances, individuals with an undergraduate business degree will have completed the necessary courses. Students who have completed the prerequisite courses may begin taking advanced courses during the fall, spring or summer sessions.

The following prerequisite courses, or their equivalents taken at another institution, are required of all students:
- Principles of Accounting and Control Systems
- Introduction to Statistics
- Principles of Economics
- Business Management and Organization
- Business Finance
- Legal Environment of Business
- Quantitative Methods

The advanced courses CF 802, 803, 804, 806, 807, 808, 809 and 810 are required of all candidates for the degree regardless of their academic background. Six credit hours of electives are also required and should be chosen from the remaining courses.

CF 801 RESEARCH AND COMMUNICATIONS 3 cr. (3 and 0)

The concept of systems, as related to the flow of communications, is examined as a means of improving the decision-making process. Library and field research is stressed.

CF 802 MANAGERIAL ECONOMICS 3 cr. (3 and 0)

An intensive study of the functioning of the market economy with emphasis on the role of prices in determining the allocation of resources, the functioning of the firm in the economy and forces governing the production of economic goods. Emphasis is on the use of economic analysis in managerial decision making. **Prerequisites:** Economic Principles and Basic Statistics.

CF 803 STATISTICAL ANALYSIS OF BUSINESS OPERATIONS 3 cr. (3 and 0)

An examination of the role of statistical inference in the decision making of business managers. Emphasis is on techniques and proper applications of modern statistical methods in business and on univariate and multivariate analysis including analysis of variance, regression and covariance. Other topics include
sample theory and design, basic experimental designs and time series analysis.

Prerequisite: Basic Statistics.

CF 804 MANAGERIAL ACCOUNTING AND INFORMATION SYSTEMS
3 cr. (3 and 0)
Preparation, analysis, interpretation and use of accounting information in the guidance and control of a business enterprise. Case material and problems are used. Prerequisites: Principles of Accounting and a demonstrated proficiency in basic finance.

CF 805 LEGAL AND SOCIAL ENVIRONMENT OF BUSINESS
3 cr. (3 and 0)
An examination of the interaction between business and the social, political and legal order. Through analysis of particular situations, attention is focused on the broad effects of the total environment on the administration of business enterprise.

CF 806 OPERATIONS MANAGEMENT
3 cr. (3 and 0)
Examines analytical methods as applied to business and industrial problems. Basic mathematical and statistical models useful to management decision making in the functions of production, marketing, finance and general management are developed. Emphasis is on the development and application of deterministic and probabilistic models to problems in forecasting, production scheduling, inventory, maintenance, queuing, plant location, product lines, line balancing, critical path methods and simulation. Prerequisites: CF 803 and a demonstrated proficiency in basic management.

CF 807 FINANCIAL MANAGEMENT (FIN 807)
3 cr. (3 and 0)
Examines the theory of financial management as it relates to the financial problems faced by business concerns. Concepts developed are used to assess the validity of emerging formalized techniques for improving decision making in the financial area. Topics include financial planning, short- and long-term fund raising, capital budgeting, the administration of working capital, recapitalization, listing of securities and reorganization. Case material and problems are used. Prerequisite: Principles of Accounting.

CF 808 MANAGERIAL PROBLEMS IN MARKETING
3 cr. (3 and 0)
Focuses on the major decisions facing marketing executives and top management in their attempt to harmonize the objectives and resources of the organization with the opportunities found in the marketplace; emphasizes recent theoretical developments in marketing and related disciplines and their application in management. Readings, case analysis and discussions are used. Prerequisite: A demonstrated proficiency in basic marketing principles.

CF 809 ORGANIZATION THEORY AND BEHAVIOR
3 cr. (3 and 0)
Assists the administrator in understanding and applying the principles of individual, group and intergroup behavior to the direction and control of human problems. The case study method is used to relate principles in the behavioral
sciences to the decision-making process. **Prerequisite:** A demonstrated proficiency in basic management principles.

CF 810 **MANAGERIAL POLICY**
3 cr. (3 and 0)

A study of decisions involved in the establishment of managerial policy. Problems, resources and alternative courses of action are analyzed and discussed relative to the selection of company objectives and the most feasible means for achieving company goals. The course integrates material and treats the coordination of the affairs of the firm as a whole. Case studies are emphasized. This course should be completed as the final course in the program.

CF 811 **INTERNATIONAL BUSINESS MANAGEMENT**
3 cr. (3 and 0)

A survey and analysis of economic, managerial and financial aspects of U.S. firms operating abroad, including the impact of U.S. and foreign government policies on management. Case studies of specific companies operating abroad are discussed. **Prerequisite:** Advanced standing.

CF 812 **FINANCIAL MARKETS AND INSTITUTIONS**
3 cr. (3 and 0)

An in-depth examination of the major American financial markets and the primary financial institutions participating in these markets. Emphasis is on decision making in each of the institutions in conjunction with a discussion of the constraints of a regulatory and tax nature as well as the economic environment and internal policies as they affect each institution.

CF 813 **INDUSTRIAL RELATIONS**
3 cr. (3 and 0)

Emphasizes the relationship between management and employees, as institutions and as individuals; examines the role of management and unions in society and the issues in labor-management relations. Topics include the issues and processes of collective bargaining, contract negotiation and administration, and dispute resolution; government regulation of labor relations is also examined.

CF 814 **DIRECTED RESEARCH IN QUANTITATIVE ANALYSIS**
3 cr. (3 and 0)

CF 815 **DIRECTED RESEARCH IN QUALITATIVE ANALYSIS**
3 cr. (3 and 0)

CF 816 **ECONOMICS OF PROPERTY RIGHTS**
3 cr. (3 and 0)

Examines the evolution and impact of various property rights institutions on individual behavior and the subsequent use of resources. Particular attention is paid to the importance of property rights structures in the organization of business and in managerial decision making. **Prerequisite:** CF 802 or equivalent.

CF 817 **BUSINESS FORECASTING TECHNIQUES AND APPLICATIONS**
3 cr. (3 and 0)

Provides a background in forecasting techniques and application of the techniques for developing and assessing forecasts. Topics covered include economic data sources, multiple regression and time series analysis, and the
interpretation of forecasts for management and other clients. **Prerequisite:** CF 802, 803 or equivalent.

CF 821 BUSINESS TAXATION
3 cr. (3 and 0)
Basic tax techniques and the conceptual foundation essential to management for implementing and making decisions affecting business policies, priorities and resources.

CF 822 CORPORATE FINANCIAL REPORTING
3 cr. (3 and 0)
Assesses the current state of financial reporting practices and requirements, the ways financial statements and data affect the economic system, and the significance of these practices to users of financial statements.

CF 823 INTERNATIONAL ACCOUNTING
3 cr. (3 and 0)
Focuses on technical and nontechnical issues in international accounting. Topics include the role of international bodies in developing standards, accounting issues dealing with exports and imports, and the role of accounting and MNCs in development.

CF 830 INVESTMENT MANAGEMENT
3 cr. (3 and 0)
Current techniques and strategies in the analysis of various investment alternatives. Portfolio management is considered with an introduction to options and future markets. **Prerequisites:** Principles of Accounting and a demonstrated proficiency in basic finance.

CF 831 COMPUTER-ASSISTED FINANCIAL MANAGEMENT
3 cr. (3 and 0)
The application of decision support systems to various financial management problems such as financial forecasting, capital budgeting, valuation, capital structure decisions, mergers and acquisitions, and leasing. Graphics, sensitivity analysis, simulation and statistical analysis are illustrated. An individual project is required. **Prerequisite:** CF 807.

CF 889 ORGANIZATION DESIGN AND THEORY
3 cr. (3 and 0)
Topics include structuring of organizations, external environment, goals and effectiveness, organizational change, power and politics, organization culture and other topics focusing on the total organization, as opposed to individual behavior in organizations.

CF 890 TOPICS IN STRATEGIC MANAGEMENT
3 cr. (3 and 0)
In-depth coverage of a variety of issues facing today's executive. Topics may vary with each offering. Current relevant literature is examined and discussed in a graduate seminar environment.
Applicants to the M.A. degree program must have completed at least 12 semester hours of undergraduate economics, including a course in intermediate price theory. A background in mathematics, including at least one course each in calculus and statistics, is also required. When necessary, the economic theory, mathematics and statistics courses may be taken at Clemson. The graduate program will include one course in econometrics or statistics and two courses in economic theory. Program concentrations in business economics and finance, environmental economics, government regulation, industrial organization and operations research have been designed for students interested in these areas.

Applicants to the Ph.D. program should have a strong background in economic theory and statistics. The program has required fields in these areas. Students choose two additional fields of concentration from those listed above and others supported by departments across the University.

ECon 603 DEVELOPMENT OF ECONOMIC THOUGHT
3 cr. (3 and 0)

ECon 604 COMPARATIVE ECONOMIC SYSTEMS
3 cr. (3 and 0)

ECon 607 NATIONAL INCOME AND EMPLOYMENT ANALYSIS
3 cr. (3 and 0) F, S

ECon 608 ARBITRATION
3 cr. (3 and 0)

ECon 609 MANAGERIAL ECONOMICS
(MGT 609) 3 cr. (3 and 0) F, S

ECon 610 ECONOMIC DEVELOPMENT
3 cr. (3 and 0)

ECon 611 INTRODUCTION TO ECONOMETRICS
(MA SC 611) 3 cr. (3 and 0)

ECon 612 INTERNATIONAL TRADE AND FINANCE
3 cr. (3 and 0) S

ECon 619 ECONOMICS OF DEFENSE
3 cr. (3 and 0)

ECon 620 PUBLIC SECTOR ECONOMICS
3 cr. (3 and 0)

ECon 621 URBAN ECONOMICS
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 622</td>
<td>MONETARY THEORY AND POLICY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>ECON 624</td>
<td>THE ORGANIZATION OF INDUSTRIES</td>
<td>3 cr.</td>
<td>(3 and 0) F</td>
</tr>
<tr>
<td>ECON 750</td>
<td>ECONOMIC CONCEPTS AND CLASSROOM APPLICATIONS FOR TEACHERS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Introduction to economic concepts, analysis and methods emphasizing microeconomics and the market system; development of approaches to teaching economic concepts in public schools. Not open to graduate students in the College of Commerce and Industry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 751</td>
<td>CURRENT ISSUES IN ECONOMICS FOR TEACHERS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Analysis of current economic policy issues such as inflation, regulation, protectionism and energy policy, emphasizing the presentation of these topics to secondary school students. Not open to graduate students in the College of Commerce and Industry. Prerequisite: ECON 200, 201 or 750.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 801</td>
<td>MICROECONOMIC THEORY</td>
<td>3 cr.</td>
<td>(3 and 0) F</td>
</tr>
<tr>
<td></td>
<td>Microeconomic theory and its use to analyze and predict the behavior of industries, firms and consumers under various market conditions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 802</td>
<td>ADVANCED ECONOMIC CONCEPTS AND APPLICATIONS I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Rigorous development of price theory under alternative product and resource market structures. Prerequisite: Permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 805</td>
<td>MACROECONOMIC THEORY</td>
<td>3 cr.</td>
<td>(3 and 0) S</td>
</tr>
<tr>
<td></td>
<td>Macroeconomic theory involving static and dynamic models and their use in analysis of economic problems and policies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 807</td>
<td>ECONOMETRIC METHODS I</td>
<td>(MA SC 807)</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Economic models expressed as systems of equations; problems of identification, parameter estimation, measurement errors and statistical inference; techniques of simulation, forecasting, model validation and interpretation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 808</td>
<td>ECONOMETRIC METHODS II</td>
<td>(MA SC 808)</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Continuation of ECON 807; current economic models and estimation procedures. Prerequisite: ECON 807.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 809</td>
<td>MATHEMATICAL ECONOMICS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Continuation of ECON 802; examination of current literature developing such topics as demand for capital, industrial structures, labor markets and monetary phenomena. Prerequisite: ECON 802.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 812</td>
<td>HISTORY OF ECONOMIC THOUGHT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Development of economic thought from early Greek thought to Keynesian</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ECONOMICS

Economics; writings of major economists such as Smith, Ricardo, Marx, Marshall and Keynes; development of major economic theories.

ECON 816 LABOR ECONOMICS
3 cr. (3 and 0)
Wage and employment theory; labor markets; labor history; current problems in labor and manpower economics.

ECON 817 PUBLIC EMPLOYEE LABOR RELATIONS
3 cr. (3 and 0)
Labor relations in public sector; analysis of employer-employee relationships in government institutions and factors affecting these relationships including potential role of public employee unions in decision-making process.

ECON 820 PUBLIC SECTOR ECONOMICS
3 cr. (3 and 0)
Impact of government on resource allocation, income distribution and stability; role of regulation; principles of taxation.

ECON 824 ORGANIZATION OF INDUSTRY
3 cr. (3 and 0)
The structure of markets and firms. Examination of the forces that determine the size of firms and the boundaries of markets. Emphasis on the behavior of firms, both singly and in concert, to exploit market positions.

ECON 825 ECONOMICS OF ENVIRONMENTAL QUALITY
3 cr. (3 and 0) F (even numbered years)
Pricing and distribution emphasizing effects upon economic welfare; goods allocated by government purchase for joint consumption and those distributed by rationing; alternate plans for allocating public goods. Prerequisite: ECON 314 or equivalent.

ECON 826 ECONOMIC THEORY OF GOVERNMENT REGULATION
3 cr. (3 and 0)
The scope of governmental regulation in the economy of the United States, its evolution and development. Emphasis on the application of the tools of economic analysis to the issues of regulated enterprise. Prerequisite: ECON 314 or equivalent.

ECON 827 ECONOMICS OF PROPERTY RIGHTS
3 cr. (3 and 0)
Analysis of the evolution and impact of various property rights institutions on individual behavior and the subsequent use of resources. Particular attention is given to the importance of property rights structures in the organization of business and in managerial decision making. Prerequisite: ECON 801.

ECON 831 SEMINAR IN URBAN DEVELOPMENT ECONOMICS
3 cr. (3 and 0)
Economic analysis of development of urban areas within system of cities; central place theory and general equilibrium models of interregional economic activity emphasizing central place systems, spatial interaction and stochastic processes; internal development of city focusing on housing and land use patterns, transportation and urban form.
ECON 840 INTERNATIONAL TRADE THEORY
3 cr. (3 and 0)
Theory of free trade from Ricardo to present; theory and application of optimal and second-best tariffs; recent empirical testing of trade and tariff theory. Prerequisites: ECON 314 and 802 or permission of instructor.

ECON 841 INTERNATIONAL FINANCE
3 cr. (3 and 0)
Financial economics of decision making in a multinational environment featuring autonomous governments and multiple currencies. Typical topics include examination of the macroeconomic problems of unemployment and inflation in an international economy, management of exchange rate risk, credit risk, political risk and taxation. Prerequisite: ECON 407 or equivalent.

ECON 850 MONETARY THEORY
3 cr. (3 and 0)
Economic analysis of money in our economy and effects of monetary policy on prices, interest rates, output and employment.

ECON 855 FINANCIAL ECONOMICS
3 cr. (3 and 0)
Review of the modern theory of corporate finance; basic theories of efficient markets, portfolio selection, capital asset pricing, option pricing and agency costs. Prerequisite: ECON 801 or permission of instructor.

ECON 888 DIRECTED READING IN ECONOMICS
1-3 cr. (1-3 and 0)
Directed reading and research in the student’s field of interest. May be repeated for up to three credit hours.

ECON 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

ECON 900 SEMINAR IN ADVANCED ECONOMIC THEORY
3 cr. (3 and 0) F (odd numbered years)
Selected topics that have been and are being discussed in scholarly journals.

ECON 901 PRICE THEORY
(AG EC 901) 3 cr. (3 and 0)
Neoclassical paradigm of market price and quantity. Rigorous consideration given to these topics: consumer behavior, the theory of the firm and market equilibrium, production and resource demands, and the supply of resources. Prerequisite: ECON 801 or equivalent.

ECON 902 PRODUCTION ECONOMICS PROBLEMS
(AG EC 902) 2 cr. (2 and 0) F
See AG EC 902 for description.

ECON 903 GENERAL EQUILIBRIUM AND WELFARE THEORY
(AG EC 903) 3 cr. (3 and 0)
See AG EC 903 for description.

ECON 904 SEMINAR IN RESOURCE ECONOMICS
(AG EC 904) 3 cr. (3 and 0) S
See AG EC 904 for description.
ECON 905 ADVANCED MACROECONOMIC ISSUES
(AG EC 905) 3 cr. (3 and 0)
Current unsettled issues in macroeconomic analysis. Topics include disequilibrium macro models, macro models of open economies, rational expectations and its critics, government stabilization policies and the controversy surrounding the concept of Ricardian equivalence. Prerequisite: ECON 805 or equivalent.

ECON 906 SEMINAR IN AREA ECONOMIC DEVELOPMENT
(AG EC 906) 3 cr. (3 and 0) F
See AG EC 906 for description.

ECON 907 AGRICULTURAL MARKETING PROBLEMS
(AG EC 907) 2 cr. (2 and 0) F
See AG EC 907 for description.

ECON 917 ADVANCED SEMINAR IN LABOR ECONOMICS
(AG EC 917) 3 cr. (3 and 0)
Follow-up to ECON 816. Course enables the student to bridge the gap between theory and modern empirical research in labor economics. Emphasis is on reading recent empirical research papers in labor economics to understand the techniques of modern research in labor economics. Prerequisite: ECON 816.

ECON 991 DOCTORAL DISSERTATION RESEARCH
(AG EC 991) Credit to be arranged.

FINANCE
Rodney H. Mabry, Head, Department of Finance
Advanced degrees are not awarded in finance. Courses are offered to provide required courses and electives for students in other areas.

FIN 602 ASSET MANAGEMENT
3 cr. (3 and 0)

FIN 605 PORTFOLIO MANAGEMENT AND THEORY
3 cr. (3 and 0)

FIN 606 STOCK OPTIONS AND FUTURES MARKETS
3 cr. (3 and 0)

FIN 607 REAL ESTATE INVESTMENT AND FINANCE
3 cr. (3 and 0)

FIN 610 RESEARCH IN FINANCE
1-3 cr. (1-3 and 0)

FIN 807 FINANCIAL MANAGEMENT
(CF 807) 3 cr. (3 and 0)
See CF 807 for description.

FIN 830 ADVANCED FINANCIAL MANAGEMENT
3 cr. (3 and 0)
Topics concern financial management in nonfinancial institutions. Case analy-
sis and computer-based financial management are used. Prerequisite: FIN 807, equivalent or consent of instructor.

INDUSTRIAL MANAGEMENT
Michael J. Stahl, Head, Department of Management

Major
Industrial Management

Degrees
M.S., Ph.D.

The objective of the M.S. program in industrial management is to prepare technically or quantitatively oriented college graduates for positions of major management responsibility in industry. The program is designed to broaden career opportunities in industrial, operations or engineering management for graduates of business, engineering, science and mathematics curricula.

Requirements for the M.S. degree include a minimum of 30 semester hours of graduate work beyond the bachelor’s degree. All students take a core curriculum of 24 hours in the areas of management science, statistical analysis, finance, operations management, human resources management, production and pricing analysis, management research methods and management policy. Electives must be selected from the disciplines of accounting, computer science, economics, engineering, finance, management, management science, marketing, mathematical science, science or statistics. A thesis or non-thesis option is allowed.

The Ph.D. program is designed to develop a high-level management scholar, one who is capable of applying the most advanced concepts and methods of analysis and research to industrial management problems. It also provides excellent preparation for a university teaching and research career.

The Ph.D. program is a balanced program of management theory, analytical technique and research methodology. Each student is expected to show competency in four areas of study: management, production and operations analysis, statistical analysis and research methodology. Each student must also complete a minimum of 12 semester credit hours in a specified area of concentration. Choice of an area of concentration and selection of courses within the area will be made in consultation with the students’ advisory committee.

MGT 602 PRODUCTION AND OPERATIONS MANAGEMENT I
3 cr. (3 and 0)

MGT 605 ECONOMICS OF TRANSPORTATION
3 cr. (3 and 0)

MGT 606 LOCATION ECONOMICS
3 cr. (3 and 0)

MGT 608 PRODUCTION AND OPERATIONS MANAGEMENT II
3 cr. (3 and 0)

MGT 609 MANAGERIAL ECONOMICS
(ECON 609) 3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 615</td>
<td>BUSINESS STRATEGY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MGT 616</td>
<td>MANAGEMENT OF HUMAN RESOURCES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MGT 617</td>
<td>LOGISTICS MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MGT 618</td>
<td>MANAGEMENT INFORMATION SYSTEMS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MGT 620</td>
<td>DEFENSE MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MGT 623</td>
<td>INTERNATIONAL BUSINESS MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MGT 624</td>
<td>INTERNATIONAL TRANSPORTATION AND LOGISTICS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MGT 625</td>
<td>COMPENSATION MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MGT 800</td>
<td>MANAGEMENT GAMING</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
</tbody>
</table>

Introduction to management game literature and practical application of management games as educational adjuncts. Student participation required in a comprehensive, computerized management simulation game. **Prerequisite:** Permission of instructor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 801</td>
<td>PRODUCTION AND PRICING ANALYSIS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Mathematical formulation of production and pricing theory as it applies to management decision making; analytical techniques of production and pricing analysis. **Prerequisite:** MGT 409/609 or permission of instructor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 802</td>
<td>FINANCE</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Analysis of financial condition of business firms as means of recognizing current and long-term financial needs; selection of most feasible actions necessary to secure best possible financing under varied circumstances.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 803</td>
<td>OPERATIONS MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Concepts and techniques of operation management. Topics include forecasting, aggregate planning, inventory management, scheduling and production control, project management and quality control. **Prerequisite:** MA SC 810 or equivalent.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 804</td>
<td>MANAGERIAL POLICY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Management policy making emphasizing determining objectives and developing sound policies for achieving them. Managerial Policy builds upon and integrates the other graduate courses; case method is used extensively; writ-
ten and oral presentation required. **Prerequisite:** MGT 802, 803 or permission of instructor.

MGT 805 ADVANCED QUALITY CONTROL
 3 cr. (3 and 0)
 Statistical techniques employed in complex quality control schemes including recent developments in statistical quality control. **Prerequisites:** MTH SC 301 and MGT 304 or equivalent.

MGT 807 COMPARATIVE MANAGEMENT THEORY
 3 cr. (3 and 0)
 Evolution of management theory up to and including contemporary theories; integration of early management thought with more recent contributions in scientific management, behavioral management and quantitative management. **Prerequisite:** Graduate standing.

MGT 810 MANAGEMENT AND THE LAW
 3 cr. (3 and 0)
 Legal environment in which managers operate; legal processes, institutions and machinery, and those areas in the substantive law, including both private law and governmental regulations, that affect various managerial functions. **Prerequisite:** LAW 322 or equivalent or permission of instructor.

MGT 811 ADVANCED MARKETING ANALYSIS
 3 cr. (3 and 0)
 Seminar in marketing, approaching topic from viewpoint of highest level management and emphasizing decision-making process in marketing. **Prerequisite:** MKT 450/650 or permission of instructor.

MGT 812 TRANSPORTATION PLANNING AND POLICY
 3 cr. (3 and 0)
 Transportation policy and planning in U.S. from 1789 to present; various transport modes with respect to economic efficiency and environmental effect; feasibility and likely results of substituting one mode for another in context of integrated transportation systems; future transportation systems and attendant problems and policies. **Prerequisite:** MGT 405/605 or permission of instructor.

MGT 813 BUSINESS RESEARCH
 3 cr. (3 and 0)
 Business research to support management decision making. Topics include information collection and analysis and report preparation and presentation. Requires the use of integrated microcomputer software for the preparation of student reports. **Prerequisites:** MA SC 814 and MGT 399 or equivalent.

MGT 815 PERSONNEL MANAGEMENT
 3 cr. (3 and 0)
 Examines various personnel management activities. Topics include recruitment, selection, training and development, performance appraisal, discipline, grievance handling, wage and salary administration, and employee benefit programs. **Prerequisite:** Graduate standing.

MGT 816 MANAGEMENT OF HUMAN RESOURCES
 3 cr. (3 and 0)
 Advanced consideration of theories and models as they apply to managing
individual and work group behavior in organizations. Topics include leadership, decision making, motivation, power, conflict, communication, job design and group processes. **Prerequisite:** MGT 416/616 or permission of instructor.

MGT 817 INFORMATION SYSTEMS DESIGN AND IMPLEMENTATION
3 cr. (3 and 0)
Issues in design and implementation of computer-based information systems from the management perspective. **Prerequisite:** Permission of instructor.

MGT 818 MANAGEMENT SUPPORT SYSTEMS
3 cr. (3 and 0)
Examination of computer-based management support systems.

MGT 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

MGT 903 RESEARCH ISSUES IN MATERIAL REQUIREMENTS PLANNING
3 cr. (3 and 0)
Current research issues and developments in material requirements planning (MRP). Emphasis is placed on empirical research dealing with the management of production activities in an MRP environment. **Prerequisite:** MGT 803 or permission of instructor.

MGT 904 SEMINAR IN CURRENT MANAGEMENT TOPICS
3 cr. (3 and 0)
Discussion of topics from current management literature. Emphasis is on research from scholarly journals. Topics vary in keeping with developments in the literature. May be repeated with different faculty for a maximum of six credit hours. **Prerequisite:** Permission of instructor.

MGT 905 RESEARCH METHODS
3 cr. (3 and 0)
Examination of research methods to support scholarly research and publication in management. Topics include theory building, hypothesis specification and testing, experimental design, measurement, sampling, research ethics and related issues. **Prerequisite:** MA SC 814 or equivalent. Enrollment restricted to doctoral students.

MGT 910 SEMINAR IN OPERATIONS MANAGEMENT
1-3 cr. (1-3 and 0)
New methodological developments, both analytical and philosophical, in operations management; development of theory of management science; converting management theory into practice while considering behavioral and economic aspects of the problem. **Prerequisite:** Permission of instructor.

MGT 911 SEMINAR IN DECISION THEORY
1-3 cr. (1-3 and 0)
Framework and methodology for management decision making in a statistical setting. **Prerequisite:** Permission of instructor.

MGT 912 SEMINAR IN FINANCIAL ANALYSIS
3 cr. (3 and 0)
Management of firm’s financial affairs in attempt to develop an optimal capital structure. **Prerequisite:** Permission of instructor.
MGT 913 MANAGEMENT SYSTEMS ANALYSIS
3 cr. (3 and 0)
Design, construction and analysis of stochastic simulation models for typical management decisions; design; input-output; variance reduction; applications; validation; implementation; optimum seeking techniques; designed experiments. Emphasis is on effect of model results on managerial policy decisions. **Prerequisite:** CP SC 150 or equivalent.

MGT 914 SEMINAR IN MARKETING MANAGEMENT
3 cr. (3 and 0)
Concepts and problems in marketing management. Theory readings, discussions and individual reports in selected areas required. **Prerequisite:** Permission of instructor.

MGT 915 SEMINAR IN BUSINESS-LEVEL STRATEGY
3 cr. (3 and 0)
Research dealing with how firms compete in a particular business. Key topics include strategic typologies, the strategic management process, strategic fit and organizational performance. **Prerequisites:** MGT 804 and permission of instructor.

MGT 916 DIRECTED READINGS IN MANAGEMENT
1-3 cr. (1-3 and 0)
Directed reading and research in the student's area of interest. May be repeated for a maximum of three credit hours. **Prerequisite:** Permission of instructor.

MGT 918 SEMINAR IN MANAGEMENT SUPPORT SYSTEMS
3 cr. (3 and 0)
Contemporary topics in decision-oriented information systems research; structure of the field, research methodologies and research opportunities. **Prerequisite:** MGT 818 or permission of instructor.

MGT 921 SEMINAR IN THE SCIENCE AND PRACTICE OF BUSINESS AND ECONOMIC MODELING
3 cr. (3 and 0)
Current literature used as a resource for studying and analyzing selected topics important in the design and development of simulation models. Students will both lead and participate in group discussions. **Prerequisite:** MGT 913 or equivalent.

MGT 950 SEMINAR IN CORPORATE-LEVEL STRATEGY
3 cr. (3 and 0)
Research dealing with the major corporate-level strategic issues: diversification (related and unrelated); strategic fit; mergers and acquisition; divestiture; joint ventures; strategic decision making; and financial models of the firm. **Prerequisite:** MGT 804.

MGT 952 SEMINAR IN STRATEGY IMPLEMENTATION
3 cr. (3 and 0)
Techniques and managerial tools employed by managers and executives in the process of achieving the organization's stated or implied objectives. Students are encouraged to investigate the factors that support or impede the strategic implementation process. **Prerequisite:** MGT 915.
MGT 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

H ADM 608 HOSPITAL AND HEALTH SERVICES ADMINISTRATION
3 cr. (3 and 0)

H ADM 610 HOSPITAL INTERNSHIP
3 cr. (0 and 9)

MANAGEMENT SCIENCE
Mark A. McKnew, Program Coordinator, Department of Management

Major
Management Science

Degree
Ph.D.

The departments of Management and Mathematical Sciences jointly offer and administer this program. Applicants should have a demonstrated aptitude for quantitative analysis and a primary interest in scientific management research and practice. The program is for persons interested in using and developing the growing array of statistical and quantitative techniques being used in decision making by the larger and more sophisticated American, foreign and multinational firms. Such techniques include probability models; statistical analysis; linear, nonlinear and dynamic programming; and decision theory.

The program structure blends courses in statistical theory, operations research, functional areas of management and economics to provide a balanced offering of advanced work in each field contributing to the degree.

MA SC 611 INTRODUCTION TO ECONOMETRICS
(ECON 611) 3 cr. (3 and 0)

MA SC 806 REGIONAL SCIENCE METHODS
3 cr. (3 and 0)

Regional growth theory, development and planning; role of resources and migration in regional development; definition of regions; concept of planning regions; objectives and measures of regional development. Prerequisite: Permission of instructor.

MA SC 807 ECONOMETRIC METHODS I
(ECON 807) 3 cr. (3 and 0)
See ECON 807 for description.

MA SC 808 ECONOMETRIC METHODS II
(ECON 808) 3 cr. (3 and 0) S
See ECON 808 for description.

MA SC 810 FOUNDATIONS OF MANAGEMENT SCIENCE
3 cr. (3 and 0)
Management science techniques and their application to management. Concepts covered include queuing models, problem formulation, simplex solution of linear programming problems, post-optimality analysis, transportation problems,
and branch and bound integer solution techniques. Models are applied to a wide range of managerial decisions.

MA SC 812 MANAGEMENT SCIENCE II
3 cr. (3 and 0)
Continuation of MA SC 810; dynamic, integer and nonlinear programming emphasizing applications of different types of mathematical programming to business and industrial problems. **Prerequisite:** MA SC 810 or permission of instructor.

MA SC 814 DESIGN OF EXPERIMENTS IN BUSINESS AND MANAGEMENT
3 cr. (3 and 0)
Design and analysis of experiments with a focus on business and industrial applications. Topics range from the analysis of single-factor experimental designs through factorial experiments, multiple comparisons and confounding. Problems arising in actual industrial environments are used to illustrate the application of the techniques and to introduce the student to major statistical software packages for the analysis of experimental data.

Management science students are required to take some of the following courses offered by various departments. Descriptions for all 800-level courses are listed under the respective department headings.

MGT 801 PRODUCTION AND PRICING ANALYSIS
3 cr. (3 and 0)

MGT 802 FINANCE
3 cr. (3 and 0)

MGT 803 OPERATIONS MANAGEMENT
3 cr. (3 and 0)

MGT 804 MANAGERIAL POLICY
3 cr. (3 and 0)

MGT 807 COMPARATIVE MANAGEMENT THEORY
3 cr. (3 and 0)

MGT 816 MANAGEMENT OF HUMAN RESOURCES
3 cr. (3 and 0)

MGT 910 SEMINAR IN OPERATIONS MANAGEMENT
1-3 cr. (1-3 and 0)

MGT 911 SEMINAR IN DECISION THEORY
1-3 cr. (1-3 and 0)

MGT 913 MANAGEMENT SYSTEMS ANALYSIS
3 cr. (3 and 0)

MTH SC 603 INTRODUCTION TO STATISTICAL THEORY
3 cr. (3 and 0)

MTH SC 606 SAMPLING THEORY AND METHODS
3 cr. (3 and 0)

MTH SC 641 INTRODUCTION TO STOCHASTIC MODELS
3 cr. (3 and 0)
MTH SC 800 PROBABILITY
3 cr. (3 and 0)

MTH SC 801 GENERAL LINEAR HYPOTHESIS I
3 cr. (3 and 0)

MTH SC 802 GENERAL LINEAR HYPOTHESIS II
3 cr. (3 and 0)

MTH SC 803 STOCHASTIC PROCESSES I
3 cr. (3 and 0)

MTH SC 805 DATA ANALYSIS
3 cr. (3 and 0)

MTH SC 809 TIME SERIES ANALYSIS, FORECASTING AND CONTROL
3 cr. (3 and 0)

MTH SC 810 MATHEMATICAL PROGRAMMING
3 cr. (3 and 0)

MTH SC 811 NONLINEAR PROGRAMMING
3 cr. (3 and 0)

MTH SC 813 ADVANCED LINEAR PROGRAMMING
3 cr. (3 and 0)

MTH SC 814 NETWORK FLOWS
3 cr. (3 and 0)

MTH SC 817 STOCHASTIC MODELS IN OPERATIONS RESEARCH I
3 cr. (3 and 0)

MTH SC 818 STOCHASTIC MODELS IN OPERATIONS RESEARCH II
3 cr. (3 and 0)

MTH SC 867 SYSTEMS AND SOFTWARE
3 cr. (3 and 0)

MTH SC 868 AN INTRODUCTION TO SCIENTIFIC COMPUTING
3 cr. (3 and 0)

MTH SC 907 MULTIVARIATE ANALYSIS
3 cr. (3 and 0)

MARKETING
Gerald L. Waddle, Head, Department of Marketing

Advanced degrees are not awarded in marketing. Courses are offered to provide electives for students in other areas.

MKT 602 CONSUMER BEHAVIOR
3 cr. (3 and 0)

MKT 622 MARKETING FOR SMALL BUSINESS
3 cr. (3 and 0)

MKT 623 MARKETING COMMUNICATIONS
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKT 624</td>
<td>SALES MANAGEMENT</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>MKT 625</td>
<td>RETAIL MANAGEMENT</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>MKT 626</td>
<td>INDUSTRIAL MARKETING</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>MKT 627</td>
<td>INTERNATIONAL MARKETING</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>MKT 631</td>
<td>MARKETING RESEARCH</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>MKT 632</td>
<td>QUANTITATIVE MARKETING ANALYSIS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>MKT 637</td>
<td>GLOBAL MARKETING STRATEGIES</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>MKT 650</td>
<td>MARKETING MANAGEMENT</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>MKT 695</td>
<td>SEMINAR IN MARKETING</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
</tbody>
</table>

TEXTILE AND POLYMER SCIENCE

Edward A. Vaughn, Director, School of Textiles

Qualification to pursue the degree is accomplished by obtaining a grade of A or B in at least three courses that are representative of the major areas of textile and polymer science or by standing special examinations in three courses. Courses currently considered representative are TEXT 821, Fiber Physics; TEXT 835, Textile Structures; TC 811, Polymer Science; TC 831, Physical Chemistry of Dyeing; or TC 821, Chemistry of Natural Polymers.

Other courses, tailored to the individual's objectives, will be selected by the student and his or her advisory committee. The student will normally take a minor in a selected field of science or engineering and will satisfy the requirements established by the minor department. This usually involves 12-24 credit hours in the minor field. A reading knowledge of one foreign language selected by the advisory committee is also required.

Admission to candidacy for the Ph.D. degree requires completion of written and oral comprehensive examinations. Each candidate must carry out an independent, original scientific investigation and formally report and defend the methodology, results, and conclusions.
TEXTILE CHEMISTRY
Edward A. Vaughn, Director, School of Textiles

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textile Chemistry</td>
<td>M.S.</td>
</tr>
</tbody>
</table>

Applicants must have a bachelor’s degree in textile chemistry, textile science, the physical or life sciences, engineering or a related discipline, and must have training in chemistry, physics and mathematics.

The student’s major area of study is normally fiber chemistry, polymer chemistry, the chemistry of dyeing and/or finishing of fibers and textiles, or the chemistry of composite systems. The minor area of study is usually chemistry, physics, engineering, life sciences or mathematics. Each candidate must complete an independent, scientific or technical investigation and formally report and defend the methodology, results and conclusions in a thesis.

TC 615 INTRODUCTION TO POLYMER SCIENCE AND ENGINEERING
3 cr. (3 and 0)

TC 616 CHEMICAL PREPARATION OF TEXTILES
3 cr. (2 and 3)

TC 657 DYEING AND FINISHING I
3 cr. (3 and 0)

TC 658 DYEING AND FINISHING II
3 cr. (3 and 0)

TC 659 DYEING AND FINISHING LABORATORY
1 cr. (0 and 3)

TC 675 CELLULOSE CHEMISTRY
2 cr. (2 and 0)

TC 811 POLYMER SCIENCE I
3 cr. (3 and 0)

Fundamentals of polymer chemistry. The chemistry and synthesis of monomers and polymers are discussed in relation to the thermodynamics, kinetics and mechanisms of polymerization reactions emphasizing fiber-forming polymers, plastics and composite matrix materials.

TC 812 POLYMER SCIENCE II
3 cr. (3 and 0)

The chemical structure and properties of polymers. Polymer solution properties, the viscoelastic state and the crystalline morphology of polymeric materials; the current theories for describing polymer thermal transitions, molecular weight and molecular weight distributions and transport phenomena in polymeric systems as well as interfacial phenomena.

TC 821 CHEMISTRY OF NATURAL POLYMERS I
3 cr. (3 and 0)

Chemistry of natural polymers emphasizing cellulose and fibrous proteins; monosaccharides; cellulose and related polysaccharides including degradation
and substitution reactions; globular and fibrous proteins in terms of structure, conformation and chemistry of constituent amino acids.

TC 831 PHYSICAL CHEMISTRY OF DYEING
3 cr. (3 and 0)
Fundamental properties of dye systems; kinetic and thermodynamic data used to correlate dye and fiber structure with proposed dyeing mechanisms; kinetics of diffusions in dyeing processes; theory of color and its use in dyeing operations. Prerequisite: TC 457/657.

TC 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

TEXTILE SCIENCE
Edward A. Vaughn, Director, School of Textiles

<table>
<thead>
<tr>
<th>Major</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textile Science</td>
<td>M.S.</td>
</tr>
</tbody>
</table>

Applicants must have a bachelor's degree in textile chemistry, textile science, the physical or life sciences, engineering or related disciplines.

A student's major area of study is usually fiber science, polymer science or textile technology. The minor area of study normally is the life or physical sciences, engineering, mathematics or management. Each student must complete an independent, scientific or technical investigation and formally report and defend the methodology, results and conclusions in a thesis.

TEXT 611 FABRIC DEVELOPMENT III
3 cr. (2 and 2)

TEXT 616 NONWOVEN STRUCTURES
3 cr. (2 and 2)

TEXT 620 ADVANCED COMPUTER APPLICATIONS IN TEXTILES
3 cr. (3 and 0)

TEXT 621 FIBER SCIENCE
3 cr. (2 and 2)

TEXT 622 PROPERTIES OF TEXTILE STRUCTURES
3 cr. (2 and 2)

TEXT 626 INSTRUMENTATION
3 cr. (3 and 0)

TEXT 640 COLOR SCIENCE
3 cr. (2 and 3)

TEXT 660 TEXTILE PROCESSES
3 cr. (3 and 0)

TEXT 672 TEXTILE INTERNATIONAL TRADE
3 cr. (3 and 0)
TEXT 701 APPLIED SCIENCE TECHNOLOGIES
3 cr. (2 and 4)
Theoretical concepts in chemistry and physics related to applied technologies via a study of selected processes and techniques used in polymer, fiber and textile industries today. Concepts developed in classroom will be translated into industrial applications by use of field trips, demonstrations and experimentation in the laboratory. Not open to students in the College of Commerce and Industry. Prerequisite: Permission of instructor.

TEXT 821 FIBER PHYSICS
3 cr. (3 and 0)
Fiber physical properties and their relationship to fiber structure; methods of investigating fiber structure and physical properties; theories of viscoelastic behavior and thermal properties, and models of fiber structure.

TEXT 830 TEXTILE PHYSICS
3 cr. (3 and 0)
Physical principles underlying manufacturing environments in which fibers, yarns and fabrics are produced. Physical and mathematical techniques are developed for the study and analysis of the textile plant environment, controls and energy requirements.

TEXT 835 TEXTILE STRUCTURES I
3 cr. (3 and 0)
Pioneering works relating fiber properties to yarn properties; yarn geometry, fiber arrangements in twisted yarns, extension and breakage of continuous filament yarns, deformation of staple fiber yarns.

TEXT 840 ADVANCED COLOR SCIENCE
3 cr. (2 and 3)
Application of modern instruments and computers to color matching and control of color in industrial environment.

TEXT 845 GEOTEXTILES AND GEOMEMBRANES IN ENGINEERING STRUCTURES
3 cr. (3 and 0)
Theory and practice of the application of textile materials used in civil engineering constructions, design methods and technological advances; fundamentals of soil mechanics and the manufacture of the textile material; testing and evaluation of the materials. Prerequisite: Consent of instructor.

TEXT 846 TEXTILE STRUCTURES II
3 cr. (3 and 0)
Recent advances in the theoretical and experimental studies on fabric structures, structural mechanics of woven, knitted and nonwoven fabrics; relationship between yarn geometry and fabric structure; design of industrial fabrics and laminated structures. Prerequisite: Consent of instructor.

TEXT 866 FIBER FORMATION
3 cr. (3 and 0)
Formation of fibers by wet, dry and melt spinning emphasizing rheology of solutions and melts, fiber structure, stretching and drawing processes; interrelationships of polymer properties and processes that determine fiber properties.
Comparisons among cotton, woolen and worsted processing systems with respect to suitability to fiber characteristics, processing of fiber blends, modern yarn production, non-woven fabrics and latest developments in textile machinery.

Topics not covered in other textile chemistry or textile science courses.

Credit to be arranged.

Credit to be arranged.
COLLEGE OF EDUCATION

James E. Matthews, Dean

The College of Education offers advanced degrees in the following areas of study:

- Administration and Supervision
- Counseling and Guidance Services
- Elementary Education
- Industrial Education
- Reading
- Secondary Education
- Special Education
- Vocational/Technical Education

The College of Education offers professional degree programs leading to the Master of Education, Master of Industrial Education, the Specialist in Education and the Doctor of Education.

The College of Agricultural Sciences and the College of Education cooperatively offer a Master of Agricultural Education program. However, the degree is awarded by the College of Agricultural Sciences. (See page 65).

The College of Education's programs provide a broad range of learning experiences and detailed study in the subject area. They are designed to prepare students for duties required in their areas of concentration, to encourage continuing professional development, and to enable students to meet standards recommended by agencies concerned with specific programs. The Specialist and Doctor of Education degrees prepare graduates for leadership positions in the profession.

The Master of Industrial Education program requires 30 semester hours, and the Master of Education program requires 36 semester hours. At least half the courses required for masters’ degrees must be numbered 700 or above.

The Specialist in Education degree program requires 30 semester hours beyond the master's degree. The Doctor of Education degree requires 80 semester hours of graduate credit beyond the bachelor’s degree, including an internship plus a dissertation. Additional requirements for each degree are listed by department or program.

ELEMEN TARY AND SECONDARY EDUCATION

Gordon W. Gray, Head, Department of Elementary and Secondary Education

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration and Supervision</td>
<td>M.Ed., Ed.S.</td>
</tr>
<tr>
<td>Counseling and Guidance Services</td>
<td>M.Ed.</td>
</tr>
<tr>
<td>Elementary Education</td>
<td>M.Ed.</td>
</tr>
<tr>
<td>Reading</td>
<td>M.Ed.</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>M.Ed.</td>
</tr>
<tr>
<td>Special Education</td>
<td>M.Ed.</td>
</tr>
</tbody>
</table>

Students seeking admission to the Master of Education degree programs with majors in administration and supervision, elementary education, special education, reading, counseling and guidance services (in the areas of ele-
lementary counseling or secondary counseling), and secondary education should have a valid professional teacher's certificate on the appropriate level. Those seeking admission to the counseling and guidance services program in the area of higher education counseling must have at least 15 hours in education, and those interested in vocational counseling must have at least 15 hours in psychology and/or sociology. Courses in human development and learning theory, with a grade of C or better, are also required for admission.

The Master of Education degree program requires at least 36 semester hours of graduate credit, regardless of the major.

A major in educational administration and supervision is offered to experienced teachers (at least one year) who wish to prepare as elementary school administrators, elementary school supervisors, secondary school administrators or secondary school supervisors. Courses are selected from four areas as prescribed by the Department of Elementary and Secondary Education.

A major in elementary education is offered to teachers who hold professional early childhood or elementary certificates. Courses may be selected from six areas as prescribed by the Department of Elementary and Secondary Education.

A major in counseling and guidance services is offered to those desiring to specialize in guidance counseling in the public schools, postsecondary schools or the vocational counseling field. Degree candidates are required to complete the following:

1. A minimum of 21 hours in the area of specialization.
2. Three to six hours in field training at the level of specialization.
3. Three to six hours in statistics, research techniques or in a field related to the area of specialization.

A major in reading is offered for reading specialists, consultants and/or supervisors. The 36 semester hours are prescribed by the Department of Elementary and Secondary Education.

A major in secondary education is offered to high school or prospective junior college teachers in the subject areas of English, history and government, mathematics and natural sciences. Candidates are required to complete at least 12 and not more than 18 hours in education and a minimum of 18 hours in the area of specialization.

A major in special education is offered to those desiring specialization in the areas of mental retardation, emotional handicaps and learning disabilities. Appropriate certification is a prerequisite for admission. Courses are prescribed by the Department of Elementary and Secondary Education.

The Educational Specialist degree program in school administration consists of 30 semester hours beyond the master’s degree that must be selected from five areas as prescribed by the Department of Elementary and Secondary Education. Admission requirements include a master’s degree and an administrator’s certificate.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 606</td>
<td>PHILOSOPHY, SCHOOLING AND EDUCATIONAL POLICY</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 614</td>
<td>RECREATION AND LEISURE FOR SPECIAL POPULATIONS (PRTM 614)</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 629</td>
<td>TEACHER AS MANAGER</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>ED 631</td>
<td>SPECIAL INSTITUTE COURSE: EARLY CHILDHOOD EDUCATION</td>
<td>1-3 cr. (1-3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 632</td>
<td>SPECIAL INSTITUTE COURSE: ELEMENTARY SCHOOL</td>
<td>1-3 cr. (1-3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 633</td>
<td>SPECIAL INSTITUTE COURSE: SECONDARY SCHOOL</td>
<td>1-3 cr. (1-3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 634</td>
<td>SPECIAL INSTITUTE COURSE FOR COMPARATIVE STUDIES IN EDUCATION</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 635</td>
<td>SPECIAL INSTITUTE COURSE: CURRICULUM</td>
<td>1-3 cr. (1-3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 636</td>
<td>SPECIAL INSTITUTE COURSE: SUPERVISION AND ADMINISTRATION</td>
<td>1-3 cr. (1-3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 669</td>
<td>CHARACTERISTICS OF CHILDREN WITH EMOTIONAL HANDICAPS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 670</td>
<td>CHARACTERISTICS OF CHILDREN WITH LEARNING DISABILITIES</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 671</td>
<td>THE EXCEPTIONAL CHILD</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 672</td>
<td>PSYCHOLOGY OF MENTAL RETARDATION</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 673</td>
<td>TEACHING THE MENTALLY RETARDED</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 674</td>
<td>EDUCATIONAL PROCEDURES FOR CHILDREN WITH EMOTIONAL HANDICAPS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 675</td>
<td>EDUCATIONAL PROCEDURES FOR CHILDREN WITH LEARNING DISABILITIES</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 676</td>
<td>PRACTICUM IN LEARNING DISABILITIES</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>ED 677</td>
<td>CHARACTERISTICS OF CHILDREN WHO ARE GIFTED</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
<td>Credits (Term 1 and Term 2)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>ED 678</td>
<td>PRACTICUM IN EMOTIONALLY HANDICAPPED</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>ED 679</td>
<td>PRACTICUM IN MENTALLY RETARDED</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>ED 680</td>
<td>EDUCATIONAL APPLICATIONS OF MICROCOMPUTERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AG ED 680)</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(COL ED 680)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(IN ED 680)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 682</td>
<td>ADVANCED EDUCATIONAL APPLICATIONS OF MICROCOMPUTERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AG ED 682)</td>
<td>3 cr. (2 and 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(COL ED 682)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(IN ED 682)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 690</td>
<td>STUDENT MANAGEMENT AND DISCIPLINE</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 697</td>
<td>AUDIO-VISUAL AIDS IN EDUCATION</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ED 705</td>
<td>FOUNDATIONS OF COUNSELING AND GUIDANCE SERVICES</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
</tbody>
</table>

Principles, procedures and policies of guidance programs in school and community settings.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits (Term 1 and Term 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 707</td>
<td>READING AND INDEPENDENT STUDY IN EDUCATION</td>
<td>1-3 cr. (1-3 and 0)</td>
</tr>
</tbody>
</table>

Individualized, in-depth study of a particular topic not offered in other courses. Reading, research and independent study are supervised by a faculty member. **Prerequisite:** Permission of instructor.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits (Term 1 and Term 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 720</td>
<td>SCHOOL PERSONNEL ADMINISTRATION</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>

School personnel selection, practices and problems. **Prerequisites:** One administration course and three other graduate courses in education.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits (Term 1 and Term 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 721</td>
<td>LEGAL PHASES OF SCHOOL ADMINISTRATION</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>

Legal principles involved in school administration and in court actions. **Prerequisites:** One administration course and three other graduate courses in education.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits (Term 1 and Term 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 723</td>
<td>FIELD EXPERIENCE IN ELEMENTARY ADMINISTRATION AND SUPERVISION</td>
<td>3 cr. (1 and 6)</td>
</tr>
</tbody>
</table>

Practicum with an experienced elementary administrator or supervisor.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits (Term 1 and Term 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 724</td>
<td>FIELD EXPERIENCE IN SECONDARY ADMINISTRATION AND SUPERVISION</td>
<td>3 cr. (1 and 6)</td>
</tr>
</tbody>
</table>

Practicum with an experienced secondary administrator or supervisor.
ED 725 PRACTICUM IN SCHOOL SYSTEM ADMINISTRATION AND SUPERVISION
3 cr. (1 and 6)
Practicum with an experienced school-system-level administrator or supervisor.

ED 740 CURRICULUM PLANNING FOR EARLY CHILDHOOD EDUCATION
3 cr. (3 and 0)
Introduction to early childhood education (ages five through eight); the nature of learning and its bearing upon curriculum; early childhood curriculum content. Prerequisite: Permission of instructor.

ED 741 INTRODUCTION TO PUPIL PERSONNEL SERVICES IN HIGHER EDUCATION
3 cr. (3 and 0)
Pupil personnel services offered by institutions of higher education.

ED 742 THE PSYCHOLOGY OF POSTSECONDARY POPULATIONS
3 cr. (3 and 0)
Developmental aspects of young adult age group and its relationship to post-secondary schools and training programs.

ED 759 FUNDAMENTALS OF BASIC READING
3 cr. (3 and 0)
Historical progression of the teaching of reading; current theories and reading practices; teaching basic reading skills.

ED 760 CURRICULUM DEVELOPMENT IN THE ELEMENTARY SCHOOL
3 cr. (3 and 0)
Curriculum planning practices in the elementary school.

ED 761 READING INSTRUCTION IN THE ELEMENTARY SCHOOL
3 cr. (3 and 0)
Knowledge and skills necessary for teaching reading to varied types of elementary school learners.

ED 762 READING DIAGNOSIS AND REMEDIATION
3 cr. (2 and 3)
Remedial methods and materials for teaching reading; use of diagnostic instruments and interpretation of test results. Student participates in laboratory/field experience and prepares case study with summary of diagnosis emphasizing remediation procedures. Prerequisite: Three semester hours in reading or permission of instructor.

ED 763 MIDDLE SCHOOL READING
3 cr. (3 and 0)
Techniques, materials and theories for teaching reading to middle school students emphasizing correlating reading skills into the content area. Prerequisite: Education major or permission of instructor.

ED 764 THE ROLE OF THE LIBRARY IN THE READING PROGRAM
3 cr. (3 and 0)
Prepares librarians to work with teachers and pupils, and prepares teachers to
work with librarians and pupils in the reading program. **Prerequisite:** Employment as a teacher or librarian and/or permission of instructor.

ED 765 SECONDARY SCHOOL CURRICULUM
3 cr. (3 and 0)
Principles, techniques and trends in secondary school curriculum development and evaluation.

ED 794 SCHOOL AND COMMUNITY RELATIONSHIPS
3 cr. (3 and 0)
Interdependence of school and community; identifying and defining societal expectations of schools and effect of these expectations on educational policy; impact of social, political, economic and demographic change on educational policy.

ED 798 TEACHING SECONDARY SCHOOL READING
3 cr. (3 and 0)
Methods and materials for secondary reading programs in the following areas: developmental, corrective, remedial, adapted, content area and recreational.

ED 801 SEMINAR IN HUMAN GROWTH AND DEVELOPMENT
3 cr. (3 and 0)
Theory and research in human development. **Prerequisite:** Six semester hours of psychology and/or educational psychology.

ED 802 HUMAN DEVELOPMENT: PSYCHOLOGY OF LEARNING
3 cr. (3 and 0)
Major theories of learning processes applied to human education. Student conducts experiments in learning theory. **Prerequisite:** Six semester hours of psychology and/or educational psychology.

ED 803 ADVANCED METHODS OF TEACHING IN THE SECONDARY SCHOOL
3 cr. (3 and 0)
Principles and practices involved in promoting effective learning in secondary schools.

ED 804 ADVANCED METHODS OF TEACHING IN THE ELEMENTARY SCHOOL
3 cr. (3 and 0)
Principles and practices involved in promoting effective learning in elementary schools; analysis and evaluation of educational media.

ED 805 THE TWO-YEAR COLLEGE
3 cr. (3 and 0)
Historical developments, functions, organization and administration of the two-year college.

ED 808 EDUCATIONAL TESTS AND MEASUREMENTS
3 cr. (3 and 0)
Construction, use and interpretation of subjective and standard tests; measurement applications.

ED 809 ANALYSIS OF THE INDIVIDUAL
3 cr. (3 and 0)
Experience in gathering, interpreting and utilizing data as it relates to the indi-
ELEMENTARY AND SECONDARY EDUCATION

individual. Especially significant to counselors. **Prerequisite:** ED 808.

ED 810 THEORIES AND TECHNIQUES OF COUNSELING
3 cr. (3 and 0)
Counseling theories and techniques. **Prerequisite:** ED 705 or permission of instructor.

ED 811 SCHOOL FINANCE
3 cr. (3 and 0)
School finance relative to programs, revenues and experience.

ED 812 THE COUNSELOR AS CONSULTANT
3 cr. (2 and 2)
Rationale, content and consultation process in school and nonschool settings; study of and practice in various consulting activities. **Prerequisite:** ED 810 or 817 or permission of instructor.

ED 813 EDUCATIONAL AND VOCATIONAL INFORMATION SERVICES AND PLACEMENT
3 cr. (3 and 0)
Gathering, interpreting and utilizing educational, social and occupational information; techniques used in placement, survey and follow-up.

ED 814 FIELD EXPERIENCES IN ELEMENTARY SCHOOL GUIDANCE
3 cr. (2 and 3)
Supervised field placement in an elementary school setting to provide the student with an opportunity to implement the roles of counselor, consultant and coordinator. **Prerequisites:** ED 810 and permission of instructor.

ED 815 FIELD EXPERIENCES IN SECONDARY SCHOOL GUIDANCE
3 cr. (2 and 3)
Supervised field placement in a secondary school setting. Emphasis is on the role and function of counselor. **Prerequisites:** ED 810 and permission of instructor.

ED 816 FIELD EXPERIENCES IN POSTSECONDARY SETTINGS
3 cr. (2 and 3)
Supervised field placement in a postsecondary school setting to provide the student with counseling and other personnel service experience. **Prerequisites:** ED 810 and permission of instructor.

ED 817 DEVELOPMENT OF COUNSELING SKILLS
3 cr. (3 and 0)
On-campus experience to help counselors develop communication skills through role-playing activities, audio and video taping, interviewing, lecture and discussion. **Prerequisite or Corequisite:** ED 810.

ED 818 FIELD PROBLEMS IN SCHOOL ADMINISTRATION AND SUPERVISION OF INSTRUCTION
3 cr. (2 and 3)
Application of research techniques and practices in solution of field problems in school administration and supervision.

ED 820 TEACHING LANGUAGE ARTS TO THE EXCEPTIONAL CHILD
3 cr. (3 and 0)
Various approaches to teaching listening, writing, reading and speaking skills to the exceptional child.
ED 821 ASSESSMENT OF THE EXCEPTIONAL CHILD
3 cr. (3 and 0)
Interpreting psychological reports, writing educational prescriptions, administering selected tests and designing informal tests. Prerequisites: ED 471/671 and sequence of ED 472/672 and 473/673; or ED 469/669 and 474/674; or ED 470/670 and 475/675; or permission of instructor.

ED 822 TEACHING MATHEMATICS TO THE EXCEPTIONAL CHILD
3 cr. (3 and 0)
Various approaches to teaching mathematics to the exceptional child.

ED 823 MAINSTREAMING THE HANDICAPPED
3 cr. (3 and 0)
Needs of the handicapped and instructional strategies for accommodating exceptional children in the mainstream. For regular classroom teachers and administrators. Prerequisite: Permission of instructor.

ED 824 SECONDARY CURRICULUM ADAPTATIONS FOR THE HANDICAPPED
3 cr. (3 and 0)
Designed for teachers of handicapped students in secondary schools; adaptation of curriculum and instruction to meet the needs of students with mild to moderate learning handicaps. Topics include text modification, study skills, curriculum design and mainstreaming. Prerequisite: ED 471/671 or permission of instructor.

ED 825 CAREER/VOCATIONAL EDUCATION FOR THE HANDICAPPED
3 cr. (3 and 0)
Designed for special education teachers at the secondary level to attain the necessary competency to assist the handicapped adolescent in preparing for the world of work. Prerequisite: ED 471/671 or permission of instructor.

ED 830 TECHNIQUES OF SUPERVISION—THE PUBLIC SCHOOLS
3 cr. (3 and 0)
Improving, coordinating and evaluating instruction; modern trends of supervisory practices.

ED 834 EDUCATIONAL EVALUATION
3 cr. (3 and 0)
Evaluation theory and design applied to classroom instruction and to evaluation procedures applicable to school center and district programs and projects.

ED 840 PROGRAM DEVELOPMENT AND IMPLEMENTATION IN EARLY CHILDHOOD EDUCATION
3 cr. (2 and 2)
Current issues in early childhood curriculum, their sources and the beliefs supporting them. Each student will design a modified curriculum for a specific content area and level. For graduate students with teaching experience. Prerequisites: ED 740 and 801, relevant teaching experience or permission of instructor.

ED 850 PUBLIC SCHOOL ADMINISTRATION
3 cr. (3 and 0)
Theoretical bases of school administration; organizational principles, patterns and practices in public schools; decision making; administration of programs
and services. **Prerequisite:** Three graduate education courses or permission of instructor.

ED 853
ADMINISTRATION AND SUPERVISION OF SPECIAL EDUCATION
3 cr. (3 and 0)
Administrative and supervisory practices in initiating, maintaining and expanding special education programs. Especially for principals, supervisors and directors of instruction. **Prerequisite:** ED 471/671 or permission of instructor.

ED 854
ADVANCED EDUCATIONAL LEADERSHIP: THEORY AND PRACTICE
3 cr. (3 and 0)
Accepted principles and theories of leadership as practiced in the institutional setting. **Prerequisites:** ED 850, 830 and 794 or permission of instructor.

ED 855
BUSINESS MANAGEMENT IN EDUCATION
3 cr. (2 and 3)
Fiscal management of individual schools and districts, including budgeting, purchasing and accounting for funds. **Prerequisites:** ED 850, 721 and 811 or permission of instructor.

ED 856
INTRODUCTION TO SCHOOL BUILDING PLANNING
3 cr. (2 and 2)
Planning of educational facilities from conception of need through utilization of facility. **Prerequisite:** ED 850 or equivalent.

ED 857
SELECTED TOPICS IN EDUCATIONAL ADMINISTRATION
1-3 cr. (1-3 and 0)
Current literature and results of current research. Topics vary from year to year. May be repeated for a maximum of six credits.

ED 861
ORGANIZATION AND SUPERVISION OF READING PROGRAMS
3 cr. (3 and 0)
Supervisory problems with planning reading programs; analysis of methods and materials of teaching; evaluation of reading programs. **Prerequisite:** ED 762.

ED 862
CLINICAL RESEARCH IN READING
3 cr. (3 and 0)
Reading research and literature. Original investigation in such problems as development of reading skills and attitudes, clinical procedures and techniques required. **Prerequisite:** ED 762.

ED 863
PRACTICUM IN READING
3 cr. (2 and 2)
Supervised practicum emphasizing diagnostic and remedial work with readers in public schools. **Prerequisites:** ED 762 and permission of instructor.

ED 864
SPECIAL PROBLEMS IN READING EDUCATION
3 cr. (1 and 4)
Individual study of a specific topic in reading. Student will be allowed to study a large diversity of topics. **Prerequisites:** ED 759 or 761; and ED 762, 808 and 862; or permission of instructor.

ED 865
ADVANCED DIAGNOSIS AND REMEDIATION IN READING
3 cr. (2 and 3)
Advanced diagnosis and remediation in reading; review of diagnostic instru-
ments and instructional materials. **Prerequisites**: ED 759 or 761 and 762 or permission of instructor.

ED 866 THE PSYCHOLOGY OF TEACHING READING
3 cr. (3 and 0)
Psychological basis of reading process; principles applied in teaching reading. **Prerequisite**: ED 759, 761 or permission of instructor.

ED 867 ADVANCED PRACTICUM IN READING
3 cr. (2 and 3)
Diagnosis and remediation testing; remediation. Extensive case studies with recommendation for the classroom teacher required. **Prerequisites**: ED 865 and permission of instructor.

ED 871 INTERPERSONAL AND GROUP RELATIONSHIPS
3 cr. (3 and 0)
Experience as a member of a group to aid the student in understanding group dynamics and the role of a group member as a participant and facilitator. Emphasis is on small group participation, communication skills and self-understanding.

ED 881 INDIVIDUAL TESTING I
3 cr. (3 and 0)
Interpretation of Wechsler scales with supervised practice in their administration. **Prerequisites**: ED 801, 802, 808, 809 and permission of instructor.

ED 882 PSYCHOEDUCATIONAL EVALUATOR INTERNSHIP I
3 cr. (0 and 6)
Designed to provide psychoeducational evaluators, school psychologists and counselors with supervised practical work in a school psychology setting. Students complete 300 hours of practical work with a certified school psychologist. **Prerequisite**: Open only to those seeking certification as a school psychologist or counselor.

ED 883 PSYCHOEDUCATIONAL EVALUATOR INTERNSHIP II
3 cr. (0 and 6)
Designed to provide psychoeducational evaluators, school psychologists and counselors with practical work in a school psychology setting. Students complete 300 hours of practical work with a certified school counselor. **Prerequisite**: Open only to those seeking certification as a school psychologist or counselor.

ED 884 SCHOOL PSYCHOLOGY
3 cr. (3 and 0)
Roles and function of the school psychologist, legal/ethical issues; planning and evaluating school psychology service delivery systems; specialized practice procedures to evaluate learning and behavior problems. **Prerequisites**: ED 801 or 802, and ED 808 or 809, and permission of instructor.

ED 885 INDIVIDUAL TESTING II
3 cr. (3 and 0)
Student is trained to administer and interpret individual tests to assess exceptional children. Tests studied extend beyond the basic historical battery of intelligence, achievement and learning modalities tests. Tests of recent development will be covered. **Prerequisite**: ED 881
ED 886 INDIVIDUAL TESTING III—PROJECTIVE TECHNIQUES WITH STUDENTS
3 cr. (3 and 0)
Student is trained to administer and interpret individually administered projective techniques to assess abnormal personality factors in students referred for possible placement in special education classes for the emotionally handicapped. Prerequisites: ED 881 and 885

ED 887 PSYCHOEDUCATIONAL INTERNSHIP III—PROJECTIVE TECHNIQUES
3 cr. (1 and 6)
Training and supervised field work in administering and interpreting projective techniques to assess personality and adjustment problems in referred emotionally handicapped students in schools; 400 hours of supervision required. Prerequisites: ED 881, 882, 883, 885 and 886.

ED 889 RESEARCH IN EDUCATION
(AG ED 889) 3cr. (3 and 0) F,S,SS
See AG ED 889 for description.

The following courses are applicable only to the Master of Education degree with emphasis in the specific subject areas. Complete descriptions are found in the sections for the College of Agricultural Sciences, the College of Commerce and Industry, the College of Liberal Arts and the College of Sciences.

English
Edward F. Olive, Advisor
ENGL 700 CHILDREN’S LITERATURE FOR TEACHERS
3 cr. (3 and 0)
ENGL 701 LITERATURE FOR TEACHERS
3 cr. (3 and 0)

History and Government
John W. Johnson, Advisor
HIST 700 UNITED STATES THROUGH THE CIVIL WAR
3 cr. (3 and 0)
HIST 710 UNITED STATES SINCE 1865
3 cr. (3 and 0)
HIST 720 SOUTHERN HISTORY
3 cr. (3 and 0)
HIST 760 BRITISH HISTORY
3 cr. (3 and 0)
HIST 770 EUROPE TO THE 18TH CENTURY
3 cr. (3 and 0)
HIST 775 EUROPE SINCE THE 18TH CENTURY
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits (Hours: 3 and 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 790</td>
<td>HISTORICAL AREA STUDIES</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ECON 750</td>
<td>ECONOMIC CONCEPTS AND CLASSROOM APPLICATIONS FOR TEACHERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ECON 751</td>
<td>CURRENT ISSUES IN ECONOMICS FOR TEACHERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John K. Luedeman, Advisor</td>
<td></td>
</tr>
<tr>
<td>MTH SC 701</td>
<td>NUMBER SYSTEMS FOR THE ELEMENTARY GRADES</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 702</td>
<td>NUMBER SYSTEMS FOR THE MIDDLE GRADES</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 703</td>
<td>MODERN MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS—GEOMETRY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 705</td>
<td>MODERN MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS—ALGEBRA, PROBABILITY AND STATISTICS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 710</td>
<td>ELEMENTARY CALCULUS FROM AN ADVANCED VIEWPOINT I</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 712</td>
<td>MODERN ALGEBRAIC CONCEPTS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 721</td>
<td>MATRIX ALGEBRA I</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 722</td>
<td>MATRIX ALGEBRA II</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 725</td>
<td>COMBINATORIAL MATHEMATICS FOR TEACHERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 730</td>
<td>MODERN GEOMETRY FOR TEACHERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 731</td>
<td>NON-EUCLIDEAN GEOMETRY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 732</td>
<td>PROJECTIVE GEOMETRY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 741</td>
<td>INTRODUCTION TO LINEAR PROGRAMMING WITH APPLICATIONS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 751</td>
<td>FUNDAMENTAL CONCEPTS OF CALCULUS I</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 771</td>
<td>NUMERICAL METHODS IN SECONDARY MATHEMATICS I</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>MTH SC 781</td>
<td>HISTORY OF MATHEMATICS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 783</td>
<td>THEORY OF NUMBERS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>MTH SC 791</td>
<td>MATHEMATICAL PROBLEMS IN THE CURRICULUM</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>

Natural Sciences

Thomas M. McInnis, Advisor

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 701</td>
<td>SOLAR SYSTEM ASTRONOMY FOR HIGH SCHOOL TEACHERS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ASTR 711</td>
<td>STELLAR ASTRONOMY FOR HIGH SCHOOL TEACHERS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>BIOL 700</td>
<td>CLASSICAL GENETICS</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>BIOL 701</td>
<td>THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM I</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>BIOL 702</td>
<td>ECOLOGY</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>BIOL 703</td>
<td>SURVEY OF THE KINGDOMS MONERA, PROTISTA AND FUNGI</td>
<td>1 cr. SS</td>
<td></td>
</tr>
<tr>
<td>BIOL 704</td>
<td>ANALYTICAL THINKING IN BIOLOGY</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>BIOL 705</td>
<td>PUBLIC HEALTH MICROBIOLOGY</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>BIOL 706</td>
<td>BASIC METHODS OF PRESERVING VERTEBRATES FOR TEACHING COLLECTIONS</td>
<td>1 cr. (1 and 0)</td>
<td></td>
</tr>
<tr>
<td>BIOL 707</td>
<td>PREPARATION OF PLANTS FOR PERMANENT TEACHING COLLECTIONS</td>
<td>1 cr. (1 and 0)</td>
<td></td>
</tr>
<tr>
<td>BIOL 708</td>
<td>FOOD MICROBIOLOGY</td>
<td>1 cr. (1 and 0)</td>
<td></td>
</tr>
<tr>
<td>BIOL 731</td>
<td>THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM II</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>BIOL 732</td>
<td>MICROECOSYSTEMS IN THE CLASSROOM</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>BIOL 733</td>
<td>THE BRAIN, NERVOUS SYSTEM AND SENSE ORGANS</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>BIOL 734</td>
<td>THE PHYSIOLOGY OF RESPIRATION</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>BIOL 761</td>
<td>THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM III</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Terms Available</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>BIOL 762</td>
<td>HUMAN GENETICS</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>BIOL 763</td>
<td>FUNDAMENTAL IMMUNOLOGY AND SEROLOGY IN PUBLIC HEALTH</td>
<td>1 cr.</td>
<td></td>
</tr>
<tr>
<td>BOT 701</td>
<td>EVOLUTIONARY BOTANY FOR TEACHERS</td>
<td>3 cr. (2 and 3) S, SS</td>
<td></td>
</tr>
<tr>
<td>BOT 702</td>
<td>MODERN BOTANICAL CONCEPTS FOR TEACHERS</td>
<td>3 cr. (3 and 0) F, SS</td>
<td></td>
</tr>
<tr>
<td>CH 700</td>
<td>PHYSICAL SCIENCE IN THE ELEMENTARY SCHOOL—CHEMISTRY</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>CH 701</td>
<td>REVIEW OF GENERAL CHEMISTRY</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>CH 702</td>
<td>CHEMISTRY FOR HIGH SCHOOL TEACHERS</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>CH 703</td>
<td>SPECIAL PROBLEMS IN CHEMISTRY FOR ELEMENTARY AND SECONDARY SCHOOL TEACHERS</td>
<td>3-6 cr. (2-6 and 6-0)</td>
<td></td>
</tr>
<tr>
<td>GEN 701</td>
<td>MODERN DEVELOPMENTS IN GENETICS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>GEOL 700</td>
<td>EARTH SCIENCE I: GEOLOGY FOR SCIENCE TEACHERS</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>GEOL 711</td>
<td>EARTH SCIENCE II: SPECIAL TOPICS IN GEOLOGY FOR SCIENCE TEACHERS</td>
<td>1 cr. (0 and 2)</td>
<td></td>
</tr>
<tr>
<td>NUTR 706</td>
<td>NUTRITION FOR TEACHERS</td>
<td>3 cr. (3 and 0) SS</td>
<td></td>
</tr>
<tr>
<td>PHYS 703</td>
<td>MODERN PHYSICS FOR HIGH SCHOOL TEACHERS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>PHYS 711</td>
<td>ORIGINS OF PHYSICAL SCIENCE</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>PHYS 716</td>
<td>EXPERIMENTAL PHYSICS FOR HIGH SCHOOL TEACHERS</td>
<td>4 cr. (2 and 4)</td>
<td></td>
</tr>
<tr>
<td>PHYS 723</td>
<td>WEATHER SCIENCE FOR SCIENCE TEACHERS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>ZOOL 701</td>
<td>MAN'S IMPACT ON ECOLOGY</td>
<td>3 cr. (3 and 0) SS</td>
<td></td>
</tr>
<tr>
<td>COL ED 680</td>
<td>EDUCATIONAL APPLICATIONS OF MICROCOMPUTERS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>(AG ED 680)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ED 680)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(IN ED 680)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Master of Industrial Education degree allows for specialization in five areas: industrial technology education, vocational-technical education, administration and supervision for the two-year college, human resources development (HRD) and graphic communications. Sufficient flexibility is permitted to structure each student’s plan of study to meet the objectives for any of the four areas of specialization listed above. The industrial technology area is designed to enhance competencies in teaching industrial technology, prevocational and career education. Those who want to improve their competency in teaching and administering vocational or technical subjects in secondary or postsecondary institutions will specialize in the vocational-technical area. The human resources development area is designed to prepare training directors, educational specialists, training coordinators and personnel for HRD occupations in industry. The program in administration and supervision for the two-year college is specifically designed for persons preparing for administrative or supervisory positions in the technical colleges. Graphic communications specialists pursue technical and professional study to enter careers in printing management, sales and technical teaching in postsecondary graphic communications programs.

In addition to the general requirements for admission to the Graduate School, departmental requirements for admission to each of the areas of specialization are as follows:

1. Industrial technology education applicants must hold or meet the minimum requirements for an industrial arts (or technology) teacher’s certificate.

2. Vocational/technical education applicants must hold or meet the minimum requirements for a trade and industrial teacher’s certificate, or show vocational or technical competence through training, work experience or proficiency test results.

3. The program in administration and supervision for the two-year college requires the applicant to show evidence of competency in a teaching area or to have a minimum of 24 semester hours of courses appropriate to the vocational or technical program to be administered or supervised.

4. The HRD program requires a minimum of 24 hours of undergraduate courses or work experience appropriate to the occupation or industrial specialty the applicant desires to enter.
5. Graphic communications specialists must have a technical background in one or more phases of graphic communications or complete a specified sequence of prerequisite courses.
Candidates for the Master of Industrial Education degree are required to complete the following:
1. Eighteen hours in subjects that contribute to the student's technical, administrative and/or supervisory competence.
2. Six hours in research or six hours in special problems.
3. Six to 12 hours must be taken outside the major department.

IN ED 604 ORGANIZATION OF INDUSTRIAL TRAINING MATERIALS
3 cr. (3 and 0)

IN ED 605 COURSE ORGANIZATION AND EVALUATION
3 cr. (3 and 0)

IN ED 607 ARCHITECTURAL DRAFTING FOR INDUSTRIAL EDUCATION
3 cr. (1 and 6)

IN ED 608 TRAINING PROGRAMS IN INDUSTRY II
3 cr. (3 and 0)

IN ED 610 SPECIAL INSTITUTE COURSE: TOPICS IN INDUSTRIAL EDUCATION
1-3 cr. (1-3 and 0)

IN ED 614 ELECTRONICS FOR TEACHERS
3 cr. (1 and 6)

IN ED 615 CONSTRUCTION PRACTICES
3 cr. (2 and 3)

IN ED 618 TECHNOLOGICAL CONCEPTS IN MANUFACTURING
3 cr. (2 and 3)

IN ED 622 HISTORY AND PHILOSOPHY OF INDUSTRIAL AND VOCATIONAL EDUCATION
3 cr. (3 and 0)

IN ED 624 SCHOOL SAFETY
3 cr. (3 and 0)

IN ED 625 TEACHING INDUSTRIAL SUBJECTS
3 cr. (3 and 0)

IN ED 632 ADVANCED WOODWORKING
2 cr. (1 and 3)

IN ED 635 ADVANCED INDUSTRIAL METALWORKING PRACTICES
3 cr. (2 and 3)

IN ED 638 ADVANCED MACHINING
3 cr. (1 and 6)

IN ED 642 COMPETENCY TESTING IN VOCATIONAL SUBJECTS
3 cr. (3 and 0)

IN ED 643 VOCATIONAL SPECIAL NEEDS EDUCATION
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN ED 652</td>
<td>ADVANCED PROJECTS</td>
<td>1-6 cr.</td>
<td></td>
</tr>
<tr>
<td>IN ED 660</td>
<td>INTRODUCTION TO CAREER EDUCATION</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>IN ED 664</td>
<td>STILL PICTURE PRODUCTION</td>
<td>3 cr.</td>
<td>(1 and 4)</td>
</tr>
<tr>
<td>IN ED 665</td>
<td>MOTION PICTURE PRODUCTION</td>
<td>3 cr.</td>
<td>(1 and 4)</td>
</tr>
<tr>
<td>IN ED 668</td>
<td>ADVANCED POWER TECHNOLOGY—FLUID</td>
<td>3 cr.</td>
<td>(2 and 2)</td>
</tr>
<tr>
<td>IN ED 670</td>
<td>INTERNAL COMBUSTION ENGINES</td>
<td>3 cr.</td>
<td>(2 and 3)</td>
</tr>
<tr>
<td>IN ED 680</td>
<td>EDUCATIONAL APPLICATIONS OF MICROCOMPUTERS (COL ED 680)</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>(AG ED 680)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ED 680)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN ED 682</td>
<td>ADVANCED EDUCATIONAL APPLICATIONS OF MICROCOMPUTERS (COL ED 682)</td>
<td>(AG ED 682)</td>
<td>3 cr. (2 and 2)</td>
</tr>
<tr>
<td></td>
<td>(ED 682)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN ED 696</td>
<td>PUBLIC RELATIONS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>IN ED 815</td>
<td>SEMINAR IN INDUSTRIAL EDUCATION</td>
<td>1 cr.</td>
<td>(1 and 0)</td>
</tr>
<tr>
<td></td>
<td>Students and faculty discuss and study new technological and professional advances. May be taken up to three times.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN ED 820</td>
<td>RECENT PROCESS DEVELOPMENTS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>New developments in production processes: ultrasonic and electrical discharge machining, high energy rate forming, precision casting methods, recent joining techniques.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN ED 840</td>
<td>SCHOOL SHOP DESIGN</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>All aspects of unit shops, general shops and comprehensive shops for schools offering vocational industrial subjects and industrial arts courses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN ED 845</td>
<td>NEEDS ASSESSMENT FOR EDUCATION AND INDUSTRY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Theory and practice of needs assessment activities in human resource development (HRD) programs; importance of the process to the identification of content/curricula topics and the overall training environment; specific methodologies used in the needs assessment process; supportive components of various program planning systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN ED 860</td>
<td>INSTRUCTIONAL MATERIALS DEVELOPMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Development and application of instructional materials and laboratory activi-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ties for training programs in education and industry; reinforcement of instructional training concepts and materials development procedures that are applied across human resource development (HRD) programs.

IN ED 861 ADMINISTRATION AND SUPERVISION OF VOCATIONAL EDUCATION
3 cr. (3 and 0)
Principles and practices of administering and supervising various types of schools and classes under federal vocational acts and state regulations.

IN ED 865 AMERICAN INDUSTRIES
3 cr. (3 and 0)
Concepts and principles of American industry and technology; identification of content of industrial technology courses taught in public schools. Fifteen plant visits supplement study of industrial organization, economics, management, production and products.

IN ED 889 RESEARCH IN EDUCATION
(ED 889) 3 cr. (3 and 0) F, S, SS
(AG ED 889)
See AG ED 889 for description.

IN ED 894 PROJECT RESEARCH
1-6 cr. (1-6 and 0)
Research related to departmental projects. Open only to students planning to pursue advanced graduate study. Joint use with IN ED 895; 896 not permitted for degree.

IN ED 895 SPECIAL PROBLEMS I
3 cr. (3 and 0)
Special problems in industrial education varying with interests, experiences and needs of students.

IN ED 896 SPECIAL PROBLEMS II
3 cr. (3 and 0)
Continuation of IN ED 895.

GC 606 PROBLEMS IN SPECIALTY PRINTING
4 cr. (2 and 6)

GC 640 ADVANCED LITHOGRAPHIC METHODS
4 cr. (2 and 4)

GC 644 CURRENT DEVELOPMENTS AND TRENDS IN GRAPHIC COMMUNICATIONS
3 cr. (2 and 3)

GC 648 PLANNING AND CONTROLLING PRINTING FUNCTIONS
3 cr. (3 and 0)

VOCATIONAL/TECHNICAL EDUCATION
D. Henry Pate, Jr., Program Coordinator, Department of Industrial Education

Major Vocational/Technical Education
Degree Ed.D.
The Doctor of Education degree in vocational and technical education prepares graduates for leadership positions in the profession. Curricula are designed for vocationally and technically oriented personnel in colleges, universities, public schools, industry and vocationally related agencies. Areas of specialization are available in the following fields:

- Administration—Technical colleges and public schools.
- Curriculum and Instruction—Technical colleges, industry and public schools. Emphasis is on curriculum development, materials and instructional technologies.
- Guidance—Technical colleges, public schools and vocational agencies.
- Teaching—Technical colleges and public schools. Teaching areas in most fields taught at Clemson University.

An applicant for the Ed.D. degree must hold bachelor’s and master’s degrees from approved colleges and must have completed a minimum of three years of successful experience appropriate to his or her proposed field of professional service. (This requirement may be waived for admission, but the applicant cannot become a candidate for the degree until the requirement is met.)

The Ed.D. program consists of graduate course work in vocational and technical foundations; statistics and research; advanced study and an internship in an appropriate field of professional service; and a dissertation.

VT ED 810 FOUNDATIONS OF VOCATIONAL AND TECHNICAL EDUCATION
3 cr. (3 and 0)

Evolution of vocational and technical education during the twentieth century and current trends; sociological, psychological and philosophical theories underlying current objectives; definition of broad parameters of the field.

VT ED 812 VOCATIONAL AND TECHNICAL PROGRAM FINANCE
3 cr. (3 and 0)

National, state and local legislation governing financial support of vocational/technical programs; development of budget, audit, and financial administrative plans and systems. Prerequisites: VT ED 810 and ED 811 or equivalent.

VT ED 833 CURRICULUM CONSTRUCTION IN VOCATIONAL AND TECHNICAL EDUCATION
3 cr. (3 and 0)

Students develop a specific course in a selected vocational and technical education area by specifying performance goals and building around these objectives. Prerequisite: AG ED 665 or IN ED 605 or equivalent.

VT ED 835 APPLICATION OF INSTRUCTIONAL TECHNOLOGY
3 cr. (3 and 0)

Developing and managing programs of instructional technologies for higher education, public schools and industrial training. Prerequisite: Basic course or experience in audiovisual media.

VT ED 850 PROGRAMS, CONCEPTS AND ISSUES IN VOCATIONAL AND TECHNICAL EDUCATION
3 cr. (3 and 0)

Current activities and debates in vocational and technical education; tradi-
VOCATIONAL/TECHNICAL EDUCATION

tional and innovative programs, career education, school finance, disadvantaged students, handicapped youth, sex equality and other specialized programs.

VT ED 861 ADMINISTRATION AND SUPERVISION IN VOCATIONAL AND TECHNICAL EDUCATION
3 cr. (3 and 0)

Principles and practices for administering and supervising vocational and technical schools and classes under federal vocational acts, state regulations and local policies. Prerequisite: VT ED 810 or permission of instructor.

VT ED 863 IN-SERVICE AND CONTINUING EDUCATION
3 cr. (3 and 0)

Information and skills for developing and administering in-service and continuing education programs. Prerequisite: Permission of instructor.

VT ED 876 COLLEGE TEACHING
3 cr. (3 and 0)

Instructional practices; curriculum; techniques of organizing and planning learning experiences; analysis of teaching strategies and systems.

VT ED 882 SEMINAR
1 cr. (1 and 0)

Current issues and problems and proposed research projects.

VT ED 893 ADVANCED RESEARCH DESIGN AND ANALYSIS
3 cr. (3 and 0)

Emphasis on the dissertation from the proposal to the fully developed outline of all chapters. Required of all doctoral candidates in the vocational/technical education program. Prerequisite: AG ED 889 or equivalent.

VT ED 980 INTERNSHIP IN VOCATIONAL/TECHNICAL EDUCATION
1-6 cr. (0 and 3-18)

Internship in which the student gains experience working in a chosen area of specialization in vocational/technical education. Field experience activities must be planned to build competence in the student’s field of specialization. Graded on a pass/fail basis. Prerequisite: Permission of the student’s major advisor.

VT ED 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.
COLLEGE OF ENGINEERING

ARGICULTURAL ENGINEERING
BIOENGINEERING
CERAMIC ENGINEERING
CHEMICAL ENGINEERING
CIVIL ENGINEERING
COMPUTER ENGINEERING
ELECTRICAL ENGINEERING
ENGINEERING MECHANICS
ENVIRONMENTAL SYSTEMS ENGINEERING
INDUSTRIAL ENGINEERING
MECHANICAL ENGINEERING
The College of Engineering offers advanced degrees in the following areas of study:

- Agricultural Engineering*
- Bioengineering
- Ceramic Engineering
- Chemical Engineering
- Civil Engineering
- Computer Engineering
- Electrical Engineering
- Engineering Mechanics
- Environmental Systems Engineering
- Industrial Engineering
- Mechanical Engineering

Degrees offered are the Master of Engineering, Master of Science and Doctor of Philosophy. Precise offerings in each area are found in the individual departmental or program descriptions.

The M.S. and Ph.D. programs serve for the most part full-time graduate students. Industrial Residency Programs leading to the Master of Science degree are also available in certain departments. A Master of Science degree with specialization in automated manufacturing systems engineering is also available through the departments of Mechanical Engineering, Electrical and Computer Engineering or Industrial Engineering. Financial aid in the form of full and partial fellowships and teaching and research assistantships are available. Financial aid packages in excess of $10,000 per calendar year are available to outstanding applicants. A broad and vigorous research program provides excellent thesis and dissertation research opportunities. Details on current research projects and special facilities are available from the various department heads.

The Master of Engineering program is open to individuals who have baccalaureate degrees from ABET-accredited engineering programs or their equivalents, have academic and professional records which indicate motivation for and the ability to complete additional professional study, and are accepted by the head of the department in which they plan to major and by the dean of the College of Engineering.

The college offers cooperative graduate programs with industry in which semesters of on-campus study are alternated with work assignments in industry.

AGRICULTURAL ENGINEERING
Richard O. Hegg, Head, Department of Agricultural Engineering

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Graduate programs in agricultural engineering are designed to prepare the

Jointly administered by the College of Engineering and the College of Agricultural Sciences. The degrees are awarded by the College of Engineering.
individual for leadership, creative accomplishment and continued professional learning, and to qualify the student to conduct independent scientific research.

Each degree program is planned individually to augment the student’s previous engineering and science background with adequate breadth in engineering and specialization in an area of agricultural engineering. Course work, in addition to agricultural engineering, consists of mathematics, physics, chemistry, statistics, and biological and engineering sciences.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG E 616</td>
<td>AGRICULTURAL MACHINERY DESIGN</td>
<td>3 cr. (2 and 3) S</td>
<td>S</td>
</tr>
<tr>
<td>AG E 622</td>
<td>SOIL AND WATER RESOURCES ENGINEERING II</td>
<td>3 cr. (2 and 3) S</td>
<td>S</td>
</tr>
<tr>
<td>AG E 631</td>
<td>AGRICULTURAL STRUCTURES AND ENVIRONMENTAL DESIGN</td>
<td>4 cr. (3 and 3) F</td>
<td>F</td>
</tr>
<tr>
<td>AG E 642</td>
<td>AGRICULTURAL PROCESS ENGINEERING</td>
<td>3 cr. (2 and 3) S</td>
<td>S</td>
</tr>
<tr>
<td>AG E 650</td>
<td>AGRICULTURAL ENGINEERING INSTRUMENTATION</td>
<td>3 cr. (2 and 3) S</td>
<td>S</td>
</tr>
<tr>
<td>AG E 651</td>
<td>NEWMAN SEMINAR AND LECTURE SERIES IN</td>
<td>1 cr. (0 and 2)</td>
<td>(ESE 651)</td>
</tr>
<tr>
<td></td>
<td>(FOR 651) NATURAL RESOURCES ENGINEERING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG E 665</td>
<td>ENGINEERING PROPERTIES OF BIOLOGICAL MATERIALS</td>
<td>2 cr. (1 and 3) S</td>
<td>S</td>
</tr>
<tr>
<td>AG E 781</td>
<td>SPECIAL PROBLEMS</td>
<td>1-3 cr. (1-3 and 0)</td>
<td>S</td>
</tr>
<tr>
<td>AG E 811</td>
<td>TILLAGE AND SOIL DYNAMICS</td>
<td>3 cr. (3 and 0)</td>
<td>S</td>
</tr>
<tr>
<td>AG E 822</td>
<td>WATER MOVEMENT IN SOILS</td>
<td>3 cr. (3 and 0)</td>
<td>S</td>
</tr>
<tr>
<td>AG E 865</td>
<td>HEAT AND MOISTURE TRANSFER IN BIOLOGICAL MATERIALS</td>
<td>3 cr. (3 and 0)</td>
<td>S</td>
</tr>
</tbody>
</table>

Student selects subject and conducts library, laboratory and/or field research; technical report documenting study required; may be repeated for maximum of six credits. For Master of Engineering degree candidates only.

Physical and dynamic properties of soil related to actions of tillage tools, tractive vehicles and plant growth and development; soil strength parameters; seedling environment and emergence; mechanics of tillage implements; soil compaction causes and effects; tractive efforts of wheel and track-type vehicles; off-the-road locomotion. **Prerequisite:** AG E 416/616 or equivalent.

Theory and principles of water movement in soils; theory and application of flow of water through soil in unsaturated and saturated states; flow nets and seepage forces; fundamentals of engineering design with respect to ground water problems and soil moisture relationships. **Prerequisite:** MTH SC 208 or equivalent.

Heat and moisture diffusion in biological materials; criteria for selecting proper
operational mathematics to solve certain boundary value problems; integral transforms of Laplace, Fourier and Hankel applied to various geometric configurations; influence of respiration heat and transpiration moisture production. **Prerequisite:** MTH SC 453/653 or 434/634 or permission of instructor.

AG E 871 SELECTED TOPICS IN AGRICULTURAL ENGINEERING
1-3 cr. (1-3 and 0)
Supervised, in-depth study of an area not covered in other courses. Performance measured by oral and written reports and/or by examination; may be repeated for a maximum of six credits.

AG E 882 SYSTEMS ENGINEERING
3 cr. (2 and 3)
Systems analysis methods applied to engineering of agricultural operations; activity network analysis, critical path method, PERT, linear programming, modeling, simulation, linear systems analysis, application of digital computation in analysis of complex systems.

AG E 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

AG E 901 SPECIAL PROBLEMS IN AGRICULTURAL ENGINEERING
3 cr. (3 and 0)
Library and/or laboratory research on one of the following subjects, depending on student's field of study or interests: power and machinery, soil and water resources, farm structures, electric power and processing, food engineering, forest engineering or waste management. Technical report required.

AG E 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

BIOENGINEERING
Andreas F. von Recum, Head, Department of Bioengineering

Major
Bioengineering

Degrees
M.S., Ph.D.

The bioengineering program is devoted to the application of engineering science, methods and techniques to problems ranging from basic biomedical research to applied health care delivery. The principle areas of concentration are biomaterials and biomechanics, and artificial intelligence. The traditionally strong emphasis in the areas of materials and mechanics is directed toward the development of materials and devices (including artificial organs) for surgical implantation. Artificial intelligence is applied to medical diagnostic problems and applied to assist in the design, evaluation and fabrication of custom implants. Heavy reliance is placed on considerable direct laboratory experience.

The faculty is augmented by eight adjunct medical faculty, and most research programs are conducted in collaboration with medical, clinical or research-oriented institutions. All students have some direct experience with an appropriate aspect of this medical involvement. A three-month clinical
Internship is available to all students through the Bioengineering Alliance of South Carolina. Students enrolling in this program usually have a strong background in the more traditional engineering disciplines. Some background in general biology and physiology is recommended but is not a prerequisite. Students with degrees in science may also be considered for admission if they can demonstrate proficiency in certain prescribed engineering courses.

Candidates are allowed wide flexibility in planning their programs but are encouraged to seek advice and direction from the faculty because of the rapid evolution of this emerging discipline. There is a thesis and a non-thesis degree option for the master's degree curriculum.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO E 601</td>
<td>COMPUTERS FOR BIOSCIENTISTS</td>
<td>1 cr.</td>
<td>(1 and 0)</td>
</tr>
<tr>
<td>BIO E 602</td>
<td>MEDICAL APPLICATIONS OF ENGINEERING SCIENCE</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>BIO E 615</td>
<td>DENTAL MATERIALS</td>
<td>2 cr.</td>
<td>(2 and 0)</td>
</tr>
<tr>
<td>BIO E 650</td>
<td>SPECIAL TOPICS IN BIOMEDICAL ENGINEERING</td>
<td>1-4 cr.</td>
<td></td>
</tr>
<tr>
<td>BIO E 800</td>
<td>SEMINAR IN BIOMEDICAL ENGINEERING RESEARCH</td>
<td>1 cr.</td>
<td>(1 and 0)</td>
</tr>
</tbody>
</table>

Special topics and original research in biomedical engineering. Credit may be earned for more than one semester.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO E 801</td>
<td>BIOMATERIALS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

In-depth study of structure and properties of the main classes of materials used in artificial organs and surgical implants. Metals, ceramics, polymers, composites and materials of biological origin. Mechanical properties, corrosion and design will be emphasized. **Prerequisites:** CR E 310 and permission of instructor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO E 802</td>
<td>COMPATIBILITY OF BIOMATERIALS</td>
<td>3 cr.</td>
<td>(1 and 6)</td>
</tr>
</tbody>
</table>

Techniques employed in determining compatibility of biomaterials with the physiological environment; optical microscopy, microradiography and ultraviolet fluorescence; normal histology of tissues, basic pathological reactions and tissue reactions to materials.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO E 803</td>
<td>POLYMERS AS BIOMATERIALS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Problems and accomplishments in bioengineering pertaining to utilization of polymeric materials; interactions caused by contact of such compositions with living systems; review of state of the art of this branch of biomaterials; presentation of outlook to an active research area.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO E 812</td>
<td>ORTHOPEDIC PATHOLOGY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
</tbody>
</table>

Gross, microscopic and radiographic study of bone growth and development,
trauma, inflammation; collagen diseases and osteoarthritis, metabolic diseases, circulatory disturbances, tumors and other miscellaneous disorders. **Prerequisite:** BIO E 802.

BIO E 820 **STRUCTURAL BIOMECHANICS**
3 cr. (3 and 0)
Mechanical functions of the human body treated as an engineering structure and of the devices used to assist and supplement these functions; movement of the musculoskeletal system; locomotion; gait, prehension; lifting; function of artificial limbs; orthopedic prostheses and braces; effect of vibration and impact on the body; mathematical and other models of the body. **Prerequisite:** Permission of instructor.

BIO E 823 **ARTIFICIAL CARDIAC ASSISTANCE AND REPLACEMENT**
2 cr. (2 and 0)
Medical and bioengineering aspects of artificial hearts and cardiac assist devices; physiology and pathological aspects of patients with need for such devices; history of artificial heart development; design aspects of current devices; state of the art in animal experiments and human preliminary trials. **Prerequisites:** BIO E 882 and ZOOL 459/659.

BIO E 847 **ELEMENTS OF BIOENGINEERING**
4 cr. (4 and 0)
Cardiovascular systems and regulation; physiology of blood, heart and organ blood flow; properties of blood as a fluid; fluid flow equations; turbulence; pulse propagation; respiration and control of breathing; gas exchange; heart-lung bypass devices; renal function and control; artificial kidney-devices; heat flow and temperature regulation; and mathematical models. **Prerequisite:** ZOOL 459/659.

BIO E 850 **SPECIAL TOPICS IN BIOMEDICAL ENGINEERING**
1-4 cr. (0-4 and 12-0)
Directed study of advanced topics in bioengineering intended to develop in-depth areas of particular student interest. Credit may be earned for more than one semester. **Prerequisite:** Permission of instructor.

BIO E 870 **BIOINSTRUMENTATION**
3 cr. (2 and 2)
Concepts and techniques of instrumentation in bioengineering emphasizing effects of instrumentation on the biological system under investigation; transducers and couplers; data conversion; conditioning and transmission; experimental problems in acute and chronic procedures with static and dynamic subjects.

BIO E 882 **EXPERIMENTAL SURGERY**
4 cr. (2 and 6)
All phases of experimental surgery including selection of animal models, preparation of animals for surgery, general and special surgical techniques, and basic and applied instrumentation. **Prerequisite:** ZOOL 459/659 or equivalent.

BIO E 890 **INTERNSHIP**
1-5 cr. (0 and 8-40)
Observation and assignment in a medical college, dental college, hospital,
veterinary clinic, dental clinic, health service or industrial department. Credit to be arranged. **Prerequisite:** Permission of department head.

BIO E 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

BIO E 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

The following courses offered by various departments represent possible electives for the student in bioengineering. Descriptions for all 800-level courses are listed under the respective department headings.

- **AN PH 801** ELECTRON MICROSCOPY OF BIOLOGICAL SPECIMENS
 3 cr. (1 and 6) F, S

- **BIOCH 606** PHYSIOLOGICAL CHEMISTRY
 3 cr. (3 and 0)

- **BIOCH 608** PHYSIOLOGICAL CHEMISTRY LABORATORY
 1 cr. (0 and 3)

- **BIOCH 623** PRINCIPLES OF BIOCHEMISTRY
 3 cr. (3 and 0)

- **E&CE 870** BIOSYSTEMS ANALYSIS
 3 cr. (3 and 0) F

- **MAT E 605** PHYSICAL METALLURGY
 3 cr. (3 and 0)

- **IE 860** DYNAMIC PROGRAMMING
 3 cr. (3 and 0)

- **BIO SC 661** CELL BIOLOGY
 4 cr. (3 and 3)

- **ZOOL 659** SYSTEMS PHYSIOLOGY
 4 cr. (3 and 3)

CERAMIC ENGINEERING

Gordon Lewis, Head, Department of Ceramic Engineering

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic Engineering</td>
<td>M.Eng., M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Enrollment is open to students with baccalaureate degrees in any branch of engineering and to those with degrees in chemistry or physics who have credit for certain prescribed courses in engineering.

Students may direct their programs toward traditional fields of ceramic engineering or toward multidisciplinary fields such as biomedical or materials engineering. The latter is an area of concentration within the ceramic engineering degree program and provides a multidisciplinary approach to the study of the relation between properties of materials and their structure and
composition. Emphasis is placed on the design of material components to be compatible with a variety of application environments. Courses in chemistry, physics and mathematics as well as engineering provide background for learning the behavior of materials. The study includes research into selected material topics in ceramics, metals or polymers with the preparation of a thesis as a major part of the program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR E 602</td>
<td>SOLID STATE CERAMICS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CR E 603</td>
<td>GLASSES</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CR E 604</td>
<td>CERAMIC COATINGS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CR E 610</td>
<td>ANALYTICAL PROCESSES</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>CR E 612</td>
<td>RAW MATERIAL PREPARATION</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CR E 616</td>
<td>ELECTRONIC CERAMICS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CR E 618</td>
<td>PROCESS CONTROL</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CR E 619</td>
<td>SCIENCE OF ENGINEERING MATERIALS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CR E 620</td>
<td>SCIENCE OF ENGINEERING MATERIALS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CR E 625</td>
<td>SPECIALIZED PROCESSING OF CERAMIC MATERIALS</td>
<td>3 cr. (2 and 2)</td>
</tr>
<tr>
<td>CR E 690</td>
<td>SPECIALIZED TOPICS IN CERAMIC ENGINEERING</td>
<td>1-3 cr. (0 and 0)</td>
</tr>
<tr>
<td>CR E 701</td>
<td>SPECIAL PROBLEMS</td>
<td>3 cr. (1-3 and 0)</td>
</tr>
</tbody>
</table>

Practical problems in ceramic engineering analysis or design. Students are assigned individual problems with topics varying from year to year in keeping with developments, interests and experience of students and instructor; may be repeated for additional credit.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR E 807</td>
<td>SPECIALIZED CERAMICS</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>

Student makes advanced study of one of the following: structural products, refractories, whitewares, abrasives, enamels, glass, cements or raw materials processing.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR E 809</td>
<td>HIGH-TEMPERATURE MATERIALS</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>
measurement of high temperatures; measurement of properties at high temperatures.

CR E 814 CERAMIC PHYSICAL PROCESSING
3 cr. (3 and 0)
Role of physical processing in determining structure and composition of products.

CR E 815 COLLOIDAL AND SURFACE SCIENCE
3 cr. (3 and 0)
Theory and application of colloidal and surface chemistry to ceramic materials and processes.

CR E 816 CONSTITUTION AND STRUCTURE OF GLASSES
3 cr. (3 and 0)
Modern concepts of glass structure and properties.

CR E 821 ANALYTICAL PROCEDURES AND EQUIPMENT I
3 cr. (2 and 3)
Theory and application of powder X-ray diffractometry, emission spectroscopy, electron microscopy and optical microscopy to ceramic problems.

CR E 822 ANALYTICAL PROCEDURES AND EQUIPMENT II
3 cr. (2 and 3)
Continuation of CR E 821.

CR E 824 MECHANICAL PROPERTIES OF CERAMIC MATERIALS
3 cr. (3 and 0)
Stress-strain-time relations in elasticity, plasticity and rupture showing effects of high and low temperature and structures.

CR E 825 MAGNETIC AND ELECTRICAL CERAMIC MATERIALS
3 cr. (3 and 0)
Application of magnetic and electrical theory to ceramic insulators, semiconductors, and ferroelectric and ferromagnetic products.

CR E 826 CERAMIC COATINGS
3 cr. (3 and 0)
Glassy and crystalline coatings emphasizing fundamentals of application, adhesion theories and development of required properties.

CR E 828 SOLID STATE CERAMIC SCIENCE
3 cr. (3 and 0)
Bonding and structure of crystalline materials as related to mechanical, thermal and chemical properties of solids.

CR E 832 CERAMIC REACTION THERMODYNAMICS
3 cr. (3 and 0)
Stability of ceramic materials is considered with respect to the processes of dissociation, crystallographic inversion, vaporization, oxidation-reduction and reaction with other materials. Prerequisite: Consent of instructor.

CR E 891 MASTER'S THESIS RESEARCH
Credit to be arranged.
CHEMICAL ENGINEERING

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering</td>
<td>M.Engr., M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Students may be accepted with backgrounds in chemistry, physics or branches of engineering other than chemical engineering. Special programs will be planned for nonchemical-engineering graduates.

Minors for doctoral students may be taken in chemistry, physics, mathematics, life science or other branches of engineering.

CH E 601 TRANSPORT PHENOMENA
3 cr. (3 and 0)

CH E 612 POLYMER ENGINEERING
3 cr. (3 and 0)

CH E 615 INTRODUCTION TO NUCLEAR ENGINEERING I
3 cr. (3 and 0)

CH E 624 INTRODUCTION TO INDUSTRIAL POLLUTION
3 cr. (3 and 0)

CH E 628 INTRODUCTION TO BIOCHEMICAL ENGINEERING
3 cr. (3 and 0)

CH E 630 CHEMICAL ENGINEERING THERMODYNAMICS
3 cr. (3 and 0)

CH E 650 CHEMICAL ENGINEERING KINETICS
3 cr. (3 and 0)

CH E 654 COMPUTER PROCESS CONTROL
3 cr. (3 and 0)

CH E 802 PROCESS DYNAMICS AND CONTROL
3 cr. (3 and 0)

Utilization of engineering principles in dynamic analysis and design of chemical processes, processing equipment and plants; systems dynamics; closed loop control and optimization. Prerequisites: CH E 353 and MTH SC 208 or permission of instructor.

CH E 803 ADVANCED TRANSPORT PHENOMENA
3 cr. (3 and 0)

Analysis of heat, mass and momentum transfer; derivation and application of the governing equations; solution of steady, unsteady-state and multidimensional problems in fluid flow, heat transfer and mass transfer.

CH E 804 CHEMICAL ENGINEERING THERMODYNAMICS
3 cr. (3 and 0)

Equilibria of physical and chemical systems; generalized properties of hydrocarbons; application of thermodynamic methods in equipment design.

CH E 805 CHEMICAL ENGINEERING KINETICS
3 cr. (3 and 0)

Kinetics of chemical reactions, particularly in design and operation of chemical reactors.

CH E 813 CHEMICAL ENGINEERING FINITE ELEMENT ANALYSIS
3 cr. (3 and 0)
Finite element techniques applied to the solution of the partial differential equations governing the flow of Newtonian and non-Newtonian fluids, heat transfer and mass transfer in the chemical process systems. **Prerequisite:** Permission of instructor.

CHE 814 APPLIED NUMERICAL METHODS IN PROCESS SIMULATION
3 cr. (3 and 0)
Numerical solution techniques as applied to chemical process systems; finite difference techniques for partial differential equations stressing applied numerical methods rather than theoretical numerical analysis; standard methods for ordinary differential equations reviewed. **Prerequisite:** Permission of instructor.

CHE 815 POLYMER ENGINEERING LABORATORY
3 cr. (2 and 3)
Techniques and fundamental principles of polymerization reactor design and processing operations. Laboratory experiments emphasize relation between synthesis and processing on the product properties using pilot-scale equipment. **Prerequisite:** Permission of instructor.

CHE 818 POLYMER PROCESSING
3 cr. (3 and 0)
Processing of polymeric materials; polymer flow characterization; extrusion; mixing; filtration; injection molding; fiber and film formation; physical science principles such as fluid flow, heat transfer, crystallization and rheology applied to polymer processing operations.

CHE 821 HEAT TRANSPORT
3 cr. (3 and 0)
Heat transport by conduction, convection and radiation.

CHE 822 MASS TRANSFER AND DIFFERENTIAL CONTACT OPERATIONS
3 cr. (3 and 0)
Diffusion theory in binary and multicomponent gas and liquid systems; HTU concept; design considerations in absorption and extraction.

CHE 823 MASS TRANSFER AND STAGEWISE CONTACT OPERATIONS
3 cr. (3 and 0)
Stagewise contact operations emphasizing distillation; vapor-liquid equilibria; integral and differential distillation; binary and multicomponent rectification; analytical methods; batch rectification; azeotropic and extractive distillation.

CHE 834 ADVANCED CHEMICAL ENGINEERING THERMODYNAMICS
3 cr. (3 and 0)
Classical and statistical thermodynamics applied to problems in chemical engineering with emphasis on modern methods of predicting thermophysical properties of gases and liquids. Students' and instructor's interests influence course content but usually include: fundamentals of applied statistical mechanics, molecular theory of dense fluids, descriptions of intermolecular forces, gas-liquid and liquid-liquid critical phenomena, theories of interfacial phenomena and adsorption, statistical mechanics of polymeric systems, statistical mechanics of polydisperse systems, computer simulation of fluids by Monte Carlo,
CHEMICAL ENGINEERING

molecular dynamics and stochastic dynamics methods. Prerequisite: CH E 804 or equivalent.

CH E 845 SELECTED TOPICS IN CHEMICAL ENGINEERING
3 cr. (3 and 0)
Topics not covered in other courses emphasizing current literature and results of current research. Topics vary from year to year to keep pace with developments; may be repeated for credit.

CH E 846 SELECTED TOPICS IN CHEMICAL ENGINEERING
3 cr. (3 and 0)
Topics not covered in other courses emphasizing current literature and results of current research. Topics vary from year to year to keep pace with developments; may be repeated for credit.

CH E 890 SPECIAL PROJECTS
1-6 cr.
Comprehensive analytical and/or experimental treatment of phenomena of current interest in chemical engineering emphasizing modern technological problems. May be repeated for maximum of six credits; graded on pass/fail basis. Prerequisites: Permission of instructor and department head.

CH E 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

CH E 895 CHEMICAL ENGINEERING GRADUATE SEMINAR
0 cr. (1 and 0)
Series of weekly, one-hour seminars given by students, faculty and guests on topics of current interest. Graded on a pass/fail basis.

CH E 945 SELECTED TOPICS IN CHEMICAL ENGINEERING
3 cr. (3 and 0)
Primarily a more comprehensive study of topics first covered in CH E 845 and 846.

CH E 946 SELECTED TOPICS IN CHEMICAL ENGINEERING
3 cr. (3 and 0)
Primarily a more comprehensive study of topics first covered in CH E 845 and 846.

CH E 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

CIVIL ENGINEERING
Russell H. Brown, Head, Department of Civil Engineering

Major Degrees
Civil Engineering M.Engr., M.S., Ph.D.

The Department of Civil Engineering offers programs of study in the specialty areas of construction, structures, traffic and transportation, water resources and geotechnical engineering. A program may also encompass
course work in several related interdisciplinary fields including environmental systems engineering and bioengineering.

Two options are offered for the M.S. degree. The non-thesis option requires 33 hours of course work and a written and oral exam. The thesis option requires 30 hours of course work, six of which are thesis research. Assistantships are not available to students selecting the non-thesis M.S. degree program. Students in the Ph.D., M.S. (thesis option) and M.Engr. degree programs are required to present a seminar.

Excellent facilities for graduate work are available, and each student's educational and research program can be arranged to suit his or her personal and professional goals.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (3 and 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 603</td>
<td>USE OF COMPUTERS IN STRUCTURAL ANALYSIS AND DESIGN</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CE 604</td>
<td>MASONRY STRUCTURAL DESIGN</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CE 605</td>
<td>STRUCTURAL SYSTEMS DESIGN</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CE 610</td>
<td>TRAFFIC ENGINEERING OPERATIONS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CE 612</td>
<td>URBAN TRANSPORTATION PLANNING</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CE 617</td>
<td>AIRPHOTO INTERPRETATION I</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>CE 619</td>
<td>GENERAL PHOTOGRAMMETRY</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>CE 622</td>
<td>HYDRAULICS AND HYDROLOGY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CE 623</td>
<td>APPLIED HYDROLOGY</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>CE 631</td>
<td>APPLIED SOIL MECHANICS</td>
<td>3 cr. (2 and 2)</td>
</tr>
<tr>
<td>CE 632</td>
<td>CONSTRUCTION PROJECT ADMINISTRATION</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CE 633</td>
<td>CONSTRUCTION PLANNING AND SCHEDULING</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CE 634</td>
<td>CONSTRUCTION ESTIMATING AND PROJECT CONTROL</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>CE 635</td>
<td>ENGINEERING PROJECT ANALYSIS</td>
<td>3 cr. (2 and 2)</td>
</tr>
<tr>
<td>CE 638</td>
<td>CONSTRUCTION SUPPORT OPERATIONS</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>
CE 639 CONSTRUCTION EQUIPMENT SELECTION AND MAINTENANCE 3 cr. (3 and 0)

CE 653 STRUCTURAL ANALYSIS II 3 cr. (3 and 0)

CE 662 COASTAL ENGINEERING I 3 cr. (3 and 0)

CE 664 PHYSICAL MODELS IN FLUID MECHANICS 3 cr. (2 and 2)

CE 680 WIND ENGINEERING 3 cr. (3 and 0)

CE 682 GROUNDWATER AND CONTAMINANT TRANSPORT (ESE 682) 3 cr. (3 and 0)

CE 801 MATRIX METHODS OF STRUCTURAL ANALYSIS 3 cr. (3 and 0)

Matrix methods of structural analysis; development of member stiffness and flexibility matrices; procedures used to employ matrix methods. Student writes and/or uses computer programs to analyze and design complex structures such as continuous span bridges, tall and low rise buildings, towers, arches and truss domes. **Prerequisite:** CE 453/653 or permission of instructor.

CE 802 PRESTRESSED CONCRETE ANALYSIS AND DESIGN 3 cr. (3 and 0)

Analysis and design of prestressed concrete beams, columns and slabs; loss of prestress; balanced design concept; cable layout; continuous spans; anchorage details. **Prerequisite:** CE 402.

CE 803 REINFORCED CONCRETE STRUCTURAL SYSTEMS 3 cr. (3 and 0)

Second course in design of reinforced concrete structures. Advanced concepts in analysis and design of beams, columns and slabs; effect of past and present research in formulation of reinforced concrete design codes; behavior and design of two-way floor systems. **Prerequisite:** CE 402.

CE 804 THEORY OF PLATES AND SHELLS 3 cr. (3 and 0)

Development of plate equations for thin rectangular, circular and continuous plates by classical methods; use of finite difference and finite element techniques for plate solutions; linear buckling theory of plates; membrane theory of shells for hyperbolic-paraboloids, shells of revolution, cylindrical tanks and folded plate structures. **Prerequisite:** CE 453/653 or permission of instructor.

CE 805 PLASTIC ANALYSIS AND DESIGN OF STEEL STRUCTURES 3 cr. (3 and 0)

Plastic analysis of unbraced and braced frameworks; moment-curvature relationships in the inelastic range; concept of yield hinge and theorems of limit analysis; statical and kinematical methods for calculating plastic collapse loads and displacements at incipient plastic collapse; design examples of multistory frames; plastic potential flow law, yield conditions and elastic-
plastic stress-strain relations. **Prerequisites:** CE 302 and CE 453/653 or permission of instructor.

CE 806 METAL COMPRESSION MEMBERS
3 cr. (3 and 0)

Theoretical behavior of compression members: struts, beams, beam-columns, plate girders and arches; theoretical predictions related to experimental results and to recognized design specifications for metals. **Prerequisite:** CE 453/653 or permission of instructor.

CE 807 NUMERICAL AND APPROXIMATE METHODS IN STRUCTURES
3 cr. (3 and 0)

Application of numerical methods to solutions of structural problems such as nonuniform beams, column and frame stability, beams on elastic foundations, and vibration of beams; approximate solutions through the use of Newmark’s method, as well as through numerical techniques adapted to the digital computer. **Prerequisite:** CE 453/653 or permission of instructor.

CE 808 FINITE ELEMENT METHODS IN ENGINEERING
3 cr. (3 and 0)

Basic concepts of finite element analysis; development of simple triangular, rectangular and quadrilateral elements in plane stress, plane strain and axisymmetric cases; plate bending; shell and three-dimensional elements; higher order elements and relative advantages and disadvantages of their use; applications of the method to problems of heat flow, seepage, dynamics and inelastic behavior. **Prerequisite:** CE 801 or permission of instructor.

CE 810 DYNAMIC ANALYSIS OF STRUCTURES
3 cr. (3 and 0)

Analysis and design of structures subjected to dynamic loading; response of lumped and distributed parameter systems of one or many degrees of freedom; approximate design methods; introduction to earthquake analysis and design. **Prerequisite:** CE 801 or permission of instructor.

CE 811 HIGHWAY GEOMETRIC DESIGN
3 cr. (2 and 3)

Geometric design of roadways, at-grade intersections and interchanges in accordance with conditions imposed by driver ability, vehicle performance, safety and economics. **Prerequisite:** CE 310/610.

CE 812 AIRPHOTO INTERPRETATION II
3 cr. (2 and 3)

Principles of airphoto interpretation applied to civil engineering project site selection and evaluation. Projects include highway alignment, airport site selection, industrial site evaluation and others. The application of radar imagery, infrared imagery, satellite imagery and space photographs are also covered.

CE 813 HIGHWAY AND AIRPORT PAVEMENT DESIGN
3 cr. (3 and 0)

Structural design of rigid and flexible pavements; design of bases and subbases; theory of stresses and application of plate bearing, triaxial and California
Bearing Ratio design methods to flexible pavements; Westergaard analysis for rigid pavements; pavement evaluation methods. **Prerequisite:** CE 330.

CE 814 TRAFFIC FLOW THEORY
3 cr. (3 and 0)

Qualitative and quantitative description of traffic flow; parameters used to characterize flow; procedures for adjusting parameters to optimize flow; solution of traffic flow problems by analogy and queuing theory. **Prerequisite:** CE 410/610.

CE 815 TRANSPORTATION SAFETY ENGINEERING
3 cr. (3 and 0)

Present methodology for conducting transportation accident studies; accident characteristics as related to operator, facility and mode; statistical applications to accident data; current trends and problems in transportation safety. **Prerequisite:** CE 310.

CE 816 HIGHWAY PLANNING
3 cr. (3 and 0)

Various aspects of highway planning: planning surveys, needs studies, impact studies, sufficiency ratings, highway finance, highway administration, and extensive treatment of economic evaluation of alternative highway projects by benefit cost ratio, annual cost, rate of return and investment return procedures.

CE 817 MASS TRANSIT PLANNING
3 cr. (3 and 0)

Mass transit planning; characteristics of modern mass transit systems; case studies of mass transit in selected cities; transit studies; marketing and financing mass transit; recent innovation in mass transit; current issues in mass transit planning; future developments in mass transit.

CE 818 AIRPORT PLANNING AND DESIGN
3 cr. (3 and 0)

Planning and design of airports and other air transportation facilities; characteristics of air transport; future role of air transport in overall transportation program.

CE 819 TRANSPORTATION RESEARCH
2-4 cr.

Independent investigation of problems in transportation engineering.

CE 822 AGGREGATES AND CONCRETES FOR CONSTRUCTION
3 cr. (3 and 0)

Identification and suitability of aggregates for construction; characteristics and properties of bituminous and portland cements and concretes. Design problems and field trip required. **Prerequisite:** CE 320.

CE 824 CONSTRUCTION AND PERFORMANCE OF CONCRETE
3 cr. (3 and 0)

Properties of concrete important to the optimum use of concrete as a construction material; includes material behavior, construction problems, construction practices and measures of concrete performance. **Prerequisite:** CE 320 or equivalent.
CE 830 ADVANCED SOIL MECHANICS
3 cr. (3 and 0)
Stresses in soils; plastic equilibrium of soil masses; failure conditions; earth pressures; analysis of flexible retaining wall bulkheads; solution of problem by elastic theory. **Prerequisite:** CE 330.

CE 831 FOUNDATION ENGINEERING
3 cr. (3 and 0)
Requirements for satisfactory foundations; theory and design of shallow foundations; pressure distribution beneath rigid and flexible shallow foundations; bearing capacity and settlement of deep foundations; foundation failures. **Prerequisite:** CE 830 or permission of instructor.

CE 832 RELIABILITY ANALYSIS AND DESIGN IN CIVIL ENGINEERING
3 cr. (3 and 0)
Review of elements of probabilistic methods; study of classical theory of structural reliability and of reliability-based design methods. A term project is required on reliability design in a relevant field of civil engineering. **Prerequisite:** Permission of instructor.

CE 835 CONSTRUCTION PROJECT MODELING AND CONTROL
3 cr. (3 and 0)
Planning the project from standpoint of constructibility and available resources; optimization of crew size, equipment size and operations; Kelvin modeling concept; linear programming; queuing theory; learning curve and uncertainty; simple modeling examples; organizational project control networks. **Prerequisites:** CE 433 and MTH SC 208 or equivalent.

CE 837 CONSTRUCTION SPECIFICATIONS AND CONTRACTS
3 cr. (3 and 0)
Elements of specifications delineating responsibilities of all involved parties and identifying courses of action during abnormal circumstances; necessary parts of a contract dealing with governmental regulations and institutional preferences, licenses, bonds, insurance and taxes. **Prerequisite:** CE 324 or equivalent.

CE 840 INDUSTRIAL CONSTRUCTION
3 cr. (3 and 0)
Activities involved in the planning, design, construction and start-up of large industrial construction projects; roles of regulatory agencies; comparison with heavy construction. **Prerequisite:** CE 324 or equivalent.

CE 846 FLOW IN OPEN CHANNELS
3 cr. (3 and 0)
Free surface flow problems; applications of digital computer; concepts of boundary layer theory; uniform and varied flow; hydraulic jump; design criteria for prismatic channels and transitions; some applications of unsteady flow. **Prerequisites:** Graduate standing and permission of instructor.

CE 852 ADVANCED FINITE ELEMENT ANALYSIS
(EM 852) 3 cr. (3 and 0)
See EM 852 for description.
CIVIL ENGINEERING

CE 860 ADVANCED FLUID MECHANICS
3 cr. (3 and 0)
Laminar and turbulent flows; boundary layer and free shear flows (jets, wakes, etc.); descriptions of velocity, shear stress and pressure measurements, and aerodynamic drag.

CE 861 MECHANICS OF SEDIMENT TRANSPORT
3 cr. (2 and 2)
Characterization of sediments; physical principles governing processes of aeolian, fluvial and estuarine sediment transport. Prerequisite: CE 423/623 or equivalent.

CE 862 HEAT TRANSFER AT WATER SURFACES
3 cr. (3 and 0)
Daily and annual heat transfer at air-water interface of rivers and lakes including calculation of heat rejection rates on artificially heated lakes, wind speed functions, bulk aerodynamic methods and Bowen ratio concepts; various techniques currently used to measure evaporation; effects of atmospheric stability on evaporation. Prerequisite: EM 320.

CE 863 COASTAL ENGINEERING II
3 cr. (3 and 0)
Study of littoral processes, coastal structures, port engineering and estuarial hydromechanics. In-depth consideration is given to littoral transport, port and harbor design, functional design of coastal structures and tidal dynamics in estuaries. Prerequisite: CE 462/662.

CE 865 HYDROLOGIC SYSTEMS ANALYSIS
3 cr. (3 and 0)
Hydrologic cycle as a hydrologic system; deterministic hydrology; all aspects of physical hydrology emphasizing balanced approach to groundwater hydrology and surface water hydrology; infiltration; soil moisture and evapotranspiration; probability analysis and system synthesis by convolution. Prerequisite: Permission of instructor.

CE 866 ADVANCED HYDROLOGIC SYSTEMS ANALYSIS
3 cr. (3 and 0)
Continuation of CE 865. Deterministic hydrology emphasizing parametric hydrology, system synthesis and correlation analysis; statistical hydrology; time series analysis; stochastic hydrology. Prerequisite: CE 865 or permission of instructor.

CE 871 COASTAL HYDRODYNAMICS
3 cr. (3 and 0)
Hydrodynamics applied to coastal waters; gravity wave theory; tidal wave phenomenon; oceanic turbulence; mathematical modeling of estuaries and bays. Prerequisite: EM 320.

CE 872 MARINE POLLUTION CONTROL
2 cr. (2 and 0)
Current technology and problems related to water quality management in marine environment; coastal and estuarine problems; submarine outfall systems; disposal of dredged material and wastewater sludges; thermal and oil pollution; water quality instrumentation, monitoring and surveillance in the marine environ-
ment; design of oceanographic surveys required for water quality control. **Prerequisites:** EM 320 and ESE 601 or equivalent.

CE 875
NUMERICAL MODELS IN HYDRAULICS
3 cr. (3 and 0)
Finite difference and finite element methods used to solve hydraulic engineering problems. Class assignments include the development of a finite difference model and the use of an existing finite element model to solve problems in coastal engineering and river mechanics. **Prerequisite:** CE 423/623.

CE 889
SPECIAL PROBLEMS I
1-3 cr.
Research design problems from field of structures, construction, soil mechanics, transportation, ocean and coastal engineering or materials engineering. Subject matter varies with interest and experience of student and instructor.

CE 890
SPECIAL PROBLEMS II
1-3 cr.
Research design problems from field of structures, construction, soil mechanics, transportation, ocean and coastal engineering, or materials engineering. Subject matter varies with interest and experience of student and instructor.

CE 891
MASTER’S THESIS RESEARCH
Credit to be arranged.

CE 893
SELECTED TOPICS IN CIVIL ENGINEERING
1-6 cr. (1-6 and 1-6)
Topics not covered in other courses. May be repeated for credit.

CE 991
DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

COMPUTER ENGINEERING

A. Wayne Bennett, Head, Department of Electrical and Computer Engineering

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
</tbody>
</table>

The computer engineering program is a combination of computer software, hardware, systems and applications. Enrollment is open to graduates in any branch of engineering, computer science or applied mathematics who have an appropriate engineering and/or science background.

E&CE 606
INTRODUCTION TO MICROELECTRONICS PROCESSING
3 cr. (3 and 0)

E&CE 607
VLSI RELIABILITY
3 cr. (3 and 0)

E&CE 614
ANALYSIS OF ROBOTIC SYSTEMS
3 cr. (3 and 0)

E&CE 617
SOFTWARE DESIGN
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>E&CE 618</td>
<td>POWER SYSTEM ANALYSIS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 619</td>
<td>ELECTRIC MACHINERY</td>
<td>3 cr. (3 and 0) F, S</td>
<td></td>
</tr>
<tr>
<td>E&CE 622</td>
<td>OPERATIONAL AMPLIFIER CIRCUITS</td>
<td>3 cr. (2 and 2) F, S</td>
<td></td>
</tr>
<tr>
<td>E&CE 623</td>
<td>POWER SYSTEM PROTECTION</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 625</td>
<td>MICROCOMPUTER INTERFACING</td>
<td>3 cr. (2 and 2) F, S</td>
<td></td>
</tr>
<tr>
<td>E&CE 626</td>
<td>DIGITAL COMPUTER DESIGN</td>
<td>3 cr. (3 and 0) S</td>
<td></td>
</tr>
<tr>
<td>E&CE 629</td>
<td>COMPUTER ORGANIZATION</td>
<td>3 cr. (3 and 0) F, S</td>
<td></td>
</tr>
<tr>
<td>E&CE 631</td>
<td>DIGITAL ELECTRONICS</td>
<td>3 cr. (2 and 2) F</td>
<td></td>
</tr>
<tr>
<td>E&CE 633</td>
<td>MICROCOMPUTER ROBOTS</td>
<td>3 cr. (1 and 4)</td>
<td></td>
</tr>
<tr>
<td>E&CE 635</td>
<td>OPTOELECTRONICS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 636</td>
<td>TRANSMISSION LINES AND MICROWAVE CIRCUITS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 638</td>
<td>COMPUTER COMMUNICATIONS</td>
<td>3 cr. (3 and 0) F</td>
<td></td>
</tr>
<tr>
<td>E&CE 639</td>
<td>FIBER OPTICS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 640</td>
<td>PERFORMANCE ANALYSIS OF LOCAL COMPUTER NETWORKS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 641</td>
<td>THEORY OF SEQUENTIAL MACHINES</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 646</td>
<td>ANTENNAS AND PROPAGATION</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 650</td>
<td>COMPUTER SYSTEM DESIGN PROJECT</td>
<td>2 cr. (0 and 4) F, S</td>
<td></td>
</tr>
<tr>
<td>E&CE 652</td>
<td>PROGRAMMING SYSTEMS</td>
<td>3 cr. (3 and 0) S</td>
<td></td>
</tr>
<tr>
<td>E&CE 654</td>
<td>PHYSIOLOGICAL CONTROL SYSTEMS</td>
<td>3 cr. (2 and 2)</td>
<td></td>
</tr>
<tr>
<td>E&CE 660</td>
<td>COMPUTER-AIDED ANALYSIS AND DESIGN</td>
<td>3 cr. (3 and 0) F</td>
<td></td>
</tr>
<tr>
<td>E&CE 663</td>
<td>MICROCOMPUTERS II</td>
<td>3 cr. (2 and 2) S</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>E&CE 667</td>
<td>INTRODUCTION TO DIGITAL SIGNAL PROCESSING</td>
<td>3 cr.</td>
<td>(3 and 0) F</td>
</tr>
<tr>
<td>E&CE 668</td>
<td>THE EMBEDDED MICROPROCESSOR</td>
<td>3 cr.</td>
<td>(2 and 2)</td>
</tr>
<tr>
<td>E&CE 671</td>
<td>MICROCOMPUTER APPLICATION IN MEDICAL INSTRUMENTATION</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>E&CE 692</td>
<td>SPECIAL PROBLEMS</td>
<td>1-3 cr.</td>
<td>(0 and 2)</td>
</tr>
<tr>
<td>E&CE 693</td>
<td>SELECTED TOPICS</td>
<td>1-3 cr.</td>
<td>(1-3 and 0)</td>
</tr>
<tr>
<td>E&CE 802</td>
<td>ELECTRIC MOTOR CONTROL</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>E&CE 811</td>
<td>INTEGRATED CIRCUIT DESIGN</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>E&CE 829</td>
<td>QUANTUM ELECTRONICS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>E&CE 838</td>
<td>SPECIAL TOPICS IN ELECTROMAGNETICS</td>
<td>1 cr.</td>
<td>(1 and 0)</td>
</tr>
<tr>
<td>E&CE 839</td>
<td>INTEGRAL EQUATIONS IN ELECTROMAGNETICS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>E&CE 841</td>
<td>DISTRIBUTED COMPUTING AND NETWORKS</td>
<td>3 cr.</td>
<td>(3 and 0) S</td>
</tr>
<tr>
<td></td>
<td>Control aspects of ac and dc motors; solid state and logic devices used in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>motor starting and control. The dynamics of the motors under control are</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>studied using computer modeling. Prerequisite: E&CE 419/619.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design concepts and factors influencing the choice of technology; fundamen-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tal MOS device design; silicon foundries, custom and semi-custom integrated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>circuits; computer-aided design software/hardware trends and future develop-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ments; the hands-on use of CAD tools to design MOS standard cells; systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>design, testing and packaging. Prerequisite: E&CE 321.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principles that govern quantum electronic devices and their theoretical appl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ications. Topics include quantum mechanics, field quantization, optical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>parametric effects, density matrix formalism, Rama effect and Brillouin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>scattering. Prerequisites: E&CE 341, PHYS 222 and E&CE 320.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to or expansion of methods of solving selected electromagnetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>problems with emphasis on Green's functions, equivalence principle, dynamic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>potential theory and Boundary value techniques. Prerequisites: E&CE 342 and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integral equation formulation in electromagnetics, solution techniques,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>moment methods and application to practical problems. Prerequisite: E&CE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>830 or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design oriented toward distributed computing and computing concepts; design</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>issues; implementation techniques; communication networks; analytical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
tools for system evaluation; data transmission principles; data concentration.
Prerequisite: E&CE 438/638.

E&CE 842 COMPUTER ARCHITECTURE
3 cr. (3 and 0) S

Fundamental issues that arise in the composition of logic elements into computer systems; design and analysis of processors, busses, memory hierarchies, communications controllers and associated software. **Prerequisite:** E&CE 429 or equivalent.

E&CE 843 COMPUTER GRAPHICS
3 cr. (3 and 0)

Concepts and structure of integrated graphics computer system design; operation of various graphical input and display devices; three-dimensional display concepts; structure of graphical display files; graphics programming languages. **Prerequisite:** Programming experience in FORTRAN, COBOL and other high-level languages.

E&CE 844 DIGITAL SIGNAL PROCESSING
3 cr. (3 and 0)

E&CE 845 COMPUTER SYSTEM DESIGN AND OPERATION
3 cr. (3 and 0)

Factors involved in design, acquisition and operation of a computer system; analysis methods; alternative computer systems; computer economics; performance evaluation; operational requirements. **Prerequisite:** Permission of instructor.

E&CE 846 DIGITAL PROCESSING OF SPEECH SIGNALS
3 cr. (3 and 0)

E&CE 847 DIGITAL IMAGE PROCESSING
3 cr. (3 and 0)

E&CE 850 COMPUTATION AND SIMULATION
3 cr. (3 and 0)

Computer modeling as related to engineering problems; matching problems and computers to obtain most effective solution.

E&CE 851 ADVANCED TOPICS IN COMPUTER ARCHITECTURE
3 cr. (3 and 0)

Analysis and design of multiprocessor and modular computer systems. Topics include recent developments in integration, fabrication and application of multiprocessor systems. **Prerequisite:** E&CE 842.

E&CE 852 SOFTWARE ENGINEERING
3 cr. (3 and 0) F

Design, construction verification and testing of large-scale computer software systems. Topics include software science, requirements writing, design graphics, the calculus of programs, verification proofs and symbolic execution. **Prerequisite:** Computer engineering major or permission of instructor.

Descriptions of these 800-level courses are listed under Electrical Engineering.
E&CE 853 COMPUTER DATA DISPLAYS
3 cr. (3 and 0)
Methods and hardware required for visually displaying computer output; cathode ray, discrete readout and large screen displays. **Prerequisite:** E&CE 429/629 or approval of instructor.

E&CE 855 ARTIFICIAL INTELLIGENCE
3 cr. (3 and 0)
Problem of creating intelligent behavior in machines, emphasizing computer-oriented approaches; models of cognitive processes, goal-seeking behavior, self-organizing systems, learning algorithms, game-playing machines, pattern recognition and heuristic programming; practical applications such as machine aids to human problem-solving and computer control of external manipulators; current developments.

E&CE 856 PATTERN RECOGNITION*
3 cr. (3 and 0)

E&CE 858 AUTOMATA THEORY
3 cr. (3 and 0)
Structure and capabilities of sequential machines; machine identification; regular expressions; linear machines; stochastic machines.

E&CE 890 ENGINEERING REPORT RESEARCH
Variable credit hours.
Research culminating in writing an engineering report to satisfy one of the non-thesis options for the Master of Science degree. The engineering report is similar to the thesis but requires only departmental approval. Graded on a pass/fail basis.

E&CE 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

E&CE 892 SPECIAL PROBLEMS IN ELECTRICAL AND COMPUTER ENGINEERING
1-3 cr. (1-3 and 0)
Term paper, special design or other problems in electrical and computer engineering approved by the instructor. Not to be used for investigation associated with the M.S. thesis or the engineering report. May be repeated for additional credit.

E&CE 893 SELECTED TOPICS IN ELECTRICAL AND COMPUTER ENGINEERING
1-3 cr. (1-3 and 0)
Topics not covered in other courses; current literature and results of current research. Topics vary from year to year in keeping with developments in the field; may be repeated for additional credit. **Prerequisite:** Permission of instructor.

*Descriptions of these 800-level courses are listed under Electrical Engineering.
ELECTRICAL ENGINEERING

A. Wayne Bennett, Head, Department of Electrical and Computer Engineering

Major
Electrical Engineering

Degrees
M.Eng., M.S., Ph.D.

Students in electrical engineering may direct their programs toward the fields of artificial intelligence, communications, computers, computer communications, controls, digital signal processing, electronics, image processing, power systems or robotics.

E&CE 603 ENERGY CONVERSION
3 cr. (3 and 0) F

E&CE 604 SEMICONDUCTOR DEVICES
3 cr. (3 and 0) S

E&CE 606 INTRODUCTION TO MICROELECTRONICS PROCESSING
3 cr. (3 and 0)

E&CE 607 VLSI RELIABILITY
3 cr. (3 and 0)

E&CE 610 INTRODUCTION TO DIGITAL CONTROL SYSTEMS
3 cr. (3 and 0) F, S

E&CE 611 ELECTRICAL SYSTEMS
1 cr. (0 and 2) F, S

E&CE 614 ANALYSIS OF ROBOTIC SYSTEMS
3 cr. (3 and 0)

E&CE 617 SOFTWARE DESIGN
3 cr. (3 and 0) F

E&CE 618 POWER SYSTEM ANALYSIS
3 cr. (3 and 0)

E&CE 619 ELECTRIC MACHINERY
3 cr. (3 and 0) F, S

E&CE 622 OPERATIONAL AMPLIFIER CIRCUITS
3 cr. (2 and 2) F, S

E&CE 623 POWER SYSTEM PROTECTION
3 cr. (3 and 0)

E&CE 625 MICROCOMPUTER INTERFACING
3 cr. (2 and 2) F, S

E&CE 626 DIGITAL COMPUTER DESIGN
3 cr. (3 and 0) S

E&CE 628 MODULATION AND NOISE
3 cr. (3 and 0) F

E&CE 629 COMPUTER ORGANIZATION
3 cr. (3 and 0) F, S
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>E&CE 630</td>
<td>DIGITAL COMMUNICATIONS</td>
<td>3 cr. (3 and 0)</td>
<td>S</td>
</tr>
<tr>
<td>E&CE 631</td>
<td>DIGITAL ELECTRONICS</td>
<td>3 cr. (2 and 2)</td>
<td>F</td>
</tr>
<tr>
<td>E&CE 632</td>
<td>INSTRUMENTATION</td>
<td>3 cr. (3 and 0)</td>
<td>F</td>
</tr>
<tr>
<td>E&CE 633</td>
<td>MICROCOMPUTER ROBOTS</td>
<td>3 cr. (1 and 4)</td>
<td></td>
</tr>
<tr>
<td>E&CE 634</td>
<td>POWER ELECTRONICS</td>
<td>3 cr. (3 and 0)</td>
<td>F</td>
</tr>
<tr>
<td>E&CE 635</td>
<td>OPTOELECTRONICS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 636</td>
<td>TRANSMISSION LINES AND MICROWAVE CIRCUITS</td>
<td>3 cr. (3 and 0)</td>
<td>F</td>
</tr>
<tr>
<td>E&CE 637</td>
<td>LASER TECHNOLOGY AND APPLICATIONS</td>
<td>3 cr. (3 and 0)</td>
<td>S</td>
</tr>
<tr>
<td>E&CE 638</td>
<td>COMPUTER COMMUNICATIONS</td>
<td>3 cr. (3 and 0)</td>
<td>F</td>
</tr>
<tr>
<td>E&CE 639</td>
<td>FIBER OPTICS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 640</td>
<td>PERFORMANCE ANALYSIS OF LOCAL COMPUTER NETWORKS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 641</td>
<td>THEORY OF SEQUENTIAL MACHINES</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 646</td>
<td>ANTENNAS AND PROPAGATION</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 650</td>
<td>COMPUTER SYSTEM DESIGN PROJECT</td>
<td>2 cr. (0 and 4)</td>
<td>F, S</td>
</tr>
<tr>
<td>E&CE 651</td>
<td>SYSTEM DESIGN PROJECT</td>
<td>2 cr. (0 and 4)</td>
<td>F, S</td>
</tr>
<tr>
<td>E&CE 652</td>
<td>PROGRAMMING SYSTEMS</td>
<td>3 cr. (3 and 0)</td>
<td>S</td>
</tr>
<tr>
<td>E&CE 654</td>
<td>PHYSIOLOGICAL CONTROL SYSTEMS</td>
<td>3 cr. (2 and 2)</td>
<td></td>
</tr>
<tr>
<td>E&CE 658</td>
<td>CIRCUIT DESIGN OF MODERN ANALOG FILTERS</td>
<td>3 cr. (3 and 0)</td>
<td></td>
</tr>
<tr>
<td>E&CE 659</td>
<td>INTEGRATED CIRCUIT DESIGN</td>
<td>3 cr. (3 and 0)</td>
<td>F</td>
</tr>
<tr>
<td>E&CE 660</td>
<td>COMPUTER-AIDED ANALYSIS AND DESIGN</td>
<td>3 cr. (3 and 0)</td>
<td>F</td>
</tr>
<tr>
<td>E&CE 663</td>
<td>MICROCOMPUTERS</td>
<td>3 cr. (2 and 2)</td>
<td>S</td>
</tr>
</tbody>
</table>
E&CE 667 INTRODUCTION TO DIGITAL SIGNAL PROCESSING
3 cr. (3 and 0) F

E&CE 668 THE EMBEDDED MICROPROCESSOR
3 cr. (2 and 2)

E&CE 671 MICROCOMPUTER APPLICATIONS IN MEDICAL INSTRUMENTATION
3 cr. (3 and 0)

E&CE 692 SPECIAL PROBLEMS
1-3 cr. (0 and 2)

E&CE 693 SELECTED TOPICS
1-3 cr. (1-3 and 0)

E&CE 701 MASTER OF ENGINEERING DESIGN PROJECT
1-3 cr. F, S

Practical problems in engineering analysis and design, culminating in the written report required for the Master of Engineering (M.Eng.) degree. Graded on a pass/fail basis.

E&CE 801 ANALYSIS OF LINEAR SYSTEMS
3 cr. (3 and 0) F

Foundations of linear system analysis; matrix algebra, linear graph theory and operational mathematics applied to formulation and solution of system equations in time and frequency domains.

E&CE 802 ELECTRIC MOTOR CONTROL
3 cr. (3 and 0)

Control aspects of ac and dc motors; solid state and logic devices used in motor starting and control. The dynamics of the motors under control are studied using computer modeling. **Prerequisite:** E&CE 419/619.

E&CE 803 LINEAR CONTROL THEORY AND DESIGN
3 cr. (3 and 0)

Analysis and design of continuous and discrete linear control systems; vector spaces, transformations, notation of a basis, transfer functions, state variable formulation, Cayley-Hamilton theorem, Jordan canonical forms, controllability, observability, adjacent systems, stability, multiple input-output systems, design techniques. **Prerequisite:** E&CE 410/610 or equivalent.

E&CE 804 METHODS OF APPLIED OPTIMIZATION AND OPTIMUM CONTROL
3 cr. (3 and 0)

Introduction to methods of optimizing systems with and without dynamics. Methods include linear programming, nonlinear programming, integer programming, gradient and variational calculus, minimum principle, principle of optimality and dynamic programming. **Corequisite:** MTH SC 653.

E&CE 805 METHODS OF STATE AND PARAMETER ESTIMATION OF STOCHASTIC SYSTEMS
3 cr. (3 and 0)

Introduction to state and parameter estimations of both linear and nonlinear continuous-time and discrete-time systems, including model identification: Kalman and Wiener filters, fixed-interval, fixed-point and fixed-lag smoothers,

E&CE 806 IDENTIFICATION IN CONTROL
3 cr. (3 and 0)
Design techniques in determining the input-output parameters of systems used in control: mathematical concepts, classical methods, regression and sequential estimation techniques, stochastic approximation, quasilinearization, invariant imbedding, gradient methods, delay model techniques in identification. Prerequisite: E&CE 805.

E&CE 807 POWER SYSTEM TECHNIQUES
3 cr. (3 and 0)
Electric power system operation; development of models of transmission line components and networks; computer methods for solving linear and nonlinear systems of network equations; operating problems in load flow, scheduling and economic dispatch. Prerequisite: Permission of instructor.

E&CE 808 SELF-ORGANIZING CONTROL
3 cr. (3 and 0)
Advanced topics in the theory and design methodologies associated with adaptive learning and intelligent control systems, including parameter-adaptive and performance-adaptive self-organizing control; algorithms: Jenkins-Roy, Farison, Tse-Athans, Lainiotis, McLaren and Tsypkin stability. Prerequisite: ECE 806.

E&CE 809 SEMICONDUCTOR MATERIALS
3 cr. (3 and 0)
Solids; crystalline state; energy band structure of semiconductors; effective mass approximation; impurity states; surface states; transport phenomenon; galvanomagnetic effects; electro-optical effects and magneto-optical effects. Prerequisite: ECE 404.

E&CE 811 INTEGRATED CIRCUIT DESIGN
3 cr. (3 and 0)
Design concepts and factors influencing the choice of technology; fundamental MOS device design; silicon foundries, custom and semi-custom integrated circuits; computer-aided design software/hardware trends and future developments; the hands-on use of CAD tools to design MOS standard cells; systems design, testing and packaging. Prerequisite: E&CE 321.

E&CE 817 POWER SYSTEM TRANSIENTS
3 cr. (3 and 0)
Power system transients; stability studies; fault analysis using bus impedance matrix; switching transients. Prerequisite: Permission of instructor.

E&CE 819 DETECTION AND ESTIMATION THEORY
3 cr. (3 and 0)
Theory of statistical testing of hypotheses applied to detection and estimation of communication signal parameters; detection of signals with random amplitude, phase and arrival time in noise; detection of single and multiple
ELECTRICAL ENGINEERING

observation; estimates and their properties; signal resolution. **Prerequisite:** E&CE 820.

E&CE 820 THEORY OF COMMUNICATIONS I
3 cr. (3 and 0)
Modern communications systems emphasizing modulation and methods of taking into account effects of noise on various systems. **Prerequisite:** E&CE 428/628 or equivalent.

E&CE 821 THEORY OF COMMUNICATIONS II
3 cr. (3 and 0)
Continuation of E&CE 820.

E&CE 822 INFORMATION THEORY
3 cr. (3 and 0)
Statistical problems encountered in information handling; relations of probability, information and coding theory; unified treatment of set theory, sample space, random variables, information measure and capacity applied to communication.

E&CE 823 INTEGRATED CIRCUIT TECHNOLOGY
3 cr. (3 and 0)
Physical and chemical principles underlying the major processing operations used in the fabrication of integrated circuit semiconductor devices, process simulation, diagnostic testing, and factors affecting device yield and reliability. **Prerequisite:** Permission of instructor.

E&CE 825 SOLID-STATE ELECTRONICS
3 cr. (3 and 0)
Modern physics approach to electrons in solids; elementary quantum mechanics; statistics; plasmas; band theory; application of these principles to modern amplifiers; e.g., the traveling-wave tube, tunnel diode, masers and parametric amplifiers.

E&CE 829 QUANTUM ELECTRONICS
3 cr. (3 and 0)
Principles that govern quantum electronic devices and their theoretical applications. Topics include quantum mechanics, field quantization, optical parametric effects, density matrix formalism, Rama effect and Brillouin scattering. **Prerequisites:** E&CE 341, PHYS 222 and E&CE 320.

E&CE 830 ELECTROMAGNETICS
3 cr. (3 and 0)
Vector analysis; electrostatics; electrostatic fields in material bodies; solution of boundary-value problems; stationary currents; static magnetic fields; magnetic fields in material bodies; quasi-stationary magnetic fields. **Prerequisite:** Permission of instructor.

E&CE 831 ADVANCED ELECTROMAGNETIC THEORY
3 cr. (3 and 0)
Advanced boundary-value problems in cylindrical and spherical coordinates, special functions, Sommerfeld integrals, Green's functions and integral equations. **Prerequisite:** E&CE 830.

E&CE 832 ELECTROMAGNETIC MEASUREMENTS
3 cr. (3 and 0)
A wide range of microwave devices presented from a measurements stand-
point; discussion of methods currently used to measure electromagnetic parameters in free space and within guides; consideration of measurement of static fields as well as modeling and approximation techniques. Prerequisite: Consent of instructor.

E&CE 833 INTEGRATED OPTICS AND BEAM WAVEGUIDES
3 cr. (3 and 0)
Theoretical principles that govern the operation of guided wave optical designs; guidance, modulation, filtration and radiation of light. Topics include dielectric waveguide theory; coupled mode formation; resonators and couplers; acousto-optic, electro-optic and magneto-optic effects. Prerequisites: E&CE 320, 341 and 830.

E&CE 834 ASYMPTOTIC METHODS AND DIFFRACTION THEORY
3 cr. (3 and 0)
Canonical diffraction problems for which exact solutions are available. An asymptotic reevaluation of these solutions in terms of incident, reflected and diffracted rays leads to Keller’s postulates for an extended theory or geometrical theory of diffraction. Diffraction from edges and curved surfaces is applied to scattering and antenna problems. Prerequisites: E&CE 830.

E&CE 836 MICROWAVE CIRCUITS AND SYSTEMS
3 cr. (3 and 0)
Application of the mathematics and physical principles of electromagnetic field theory and electrical circuit analysis to the geometries that are of interest in modern microwave engineering; transmission lines, waveguides, discontinuities, interconnection of multiports and periodic structures. Prerequisite: E&CE 436; Corequisite: E&CE 830.

E&CE 837 ADVANCED ANTENNA THEORY
3 cr. (3 and 0)
Study of the antenna as a radiating and receiving device; examination by classical and numerical techniques of the relations between structure and performance, gain and terminal conditions. Prerequisite: E&CE 446; Corequisite: E&CE 830.

E&CE 838 SPECIAL TOPICS IN ELECTROMAGNETICS
1 cr. (1 and 0)
Introduction to or expansion of methods of solving selected electromagnetic problems with emphasis on Green’s functions, equivalence principle, dynamic potential theory and Boundary value techniques. Prerequisites: E&CE 342 and permission of instructor.

E&CE 839 INTEGRAL EQUATIONS IN ELECTROMAGNETICS
3 cr. (3 and 0)
Integral equation formulation in electromagnetics, solution techniques, moment methods and application to practical problems. Prerequisite: E&CE 830 or permission of instructor.

E&CE 840 PHYSICS OF SEMICONDUCTOR DEVICES
3 cr. (3 and 0)
Semiconductor device physics emphasized rather than circuits; detailed analysis of the p-n junction, traps, surface states and conduction processes in devices; analysis and models of Schottky diode, MIS diode, MOSFET, charge
couples devices and solar cells; charge control concepts, transit time effects, surface-type devices and practical aspects of device process. Prerequisites: E&CE 404 and 406/606.

E&CE 841 DISTRIBUTED COMPUTING AND NETWORKS* 3 cr. (3 and 0) S

E&CE 842 COMPUTER ARCHITECTURE* 3 cr. (3 and 0) S

E&CE 843 COMPUTER GRAPHICS* 3 cr. (3 and 0)

E&CE 844 DIGITAL SIGNAL PROCESSING 3 cr. (3 and 0)

Digital filter design; discrete Hilbert transforms; discrete random signals; effects of finite register length in digital signal processing; homomorphic signal processing; power spectrum estimation; speech processing, radar and other applications. Prerequisite: E&CE 467/667.

E&CE 845 COMPUTER SYSTEM DESIGN AND OPERATION* 3 cr. (3 and 0)

E&CE 846 DIGITAL PROCESSING OF SPEECH SIGNALS 3 cr. (3 and 0)

Application of digital signal processing techniques to problems related to speech synthesis, recognition and communication; digital models and representations of speech wave forms; Fourier analysis; homomorphic processing; linear predictive coding; algorithms for recognizing isolated words and continuous speech; man-machine communications by voice. Prerequisite: E&CE 467/667.

E&CE 847 DIGITAL IMAGE PROCESSING 3 cr. (3 and 0)

Digital image fundamentals; comparison of image transforms including KL, Fourier, Walsh, Hadamard, cosine and slant; image data compression techniques; image enhancement algorithms; image restoration; image encoding process; image segmentation and description. Prerequisite: E&CE 467/667.

E&CE 850 COMPUTATION AND SIMULATION* 3 cr. (3 and 0)

E&CE 851 ADVANCED TOPICS IN COMPUTER ARCHITECTURE* 3 cr. (3 and 0)

E&CE 852 SOFTWARE ENGINEERING* 3 cr. (3 and 0) F

E&CE 853 COMPUTER DATA DISPLAYS* 3 cr. (3 and 0)

E&CE 855 ARTIFICIAL INTELLIGENCE* 3 cr. (3 and 0)

* Descriptions of these 800-level courses are listed under Computer Engineering.
E&CE 856 PATTERN RECOGNITION
3 cr. (3 and 0)
Several approaches to general pattern recognition problems with practical computer-oriented applications; feature extraction; classification algorithms; discriminant functions; learning schemes; statistical methods; information theoretic approaches; applications; current developments.

E&CE 857 CODING THEORY
3 cr. (3 and 0)
Principles of algebraic coding and its application to transmission of information over noisy communications channels; introduction to abstract algebra; code performance bounds; code representations; linear codes of the Hamming and Bose-Chandnuri types and burst-error correcting codes; problems of implementation and decoding. Prerequisite: E&CE 822.

E&CE 858 AUTOMATA THEORY*
3 cr. (3 and 0) S

E&CE 870 BIOSYSTEMS ANALYSIS
3 cr. (3 and 0) F
Classical and recent mathematical models of biological systems, particularly as they relate to modern systems theory and as they apply to humans; biomedical instrumentation; data collection and processing.

E&CE 890 ENGINEERING REPORT RESEARCH
Variable credit hours.
Research culminating in writing an engineering report to satisfy one of the non-thesis options for the Master of Science degree. The engineering report is similar to the thesis but requires only departmental approval. Graded on a pass/fail basis.

E&CE 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

E&CE 892 SPECIAL PROBLEMS IN ELECTRICAL AND COMPUTER ENGINEERING
1-3 cr. (1-3 and 0)
Term paper, special design or other problems in electrical and computer engineering approved by the instructor. Not to be used for investigation associated with the M.S. thesis or the engineering report. May be repeated for additional credit.

E&CE 893 SELECTED TOPICS IN ELECTRICAL AND COMPUTER ENGINEERING
1-3 cr. (1-3 and 0)
Topics not covered in other courses; current literature and results of current research. Topics vary from year to year in keeping with developments in the field; may be repeated for additional credit. Prerequisite: Permission of instructor.

E&CE 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

*Descriptions of these 800-level courses are listed under Computer Engineering.
ENGINEERING MECHANICS

Christian E. Przirembel, Head, Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Mechanics</td>
<td>M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Enrollment is open to students with baccalaureate or master's degrees in any branch of engineering and to those with degrees in physics or applied mathematics who have credit for certain prescribed courses in engineering.

General areas of concentration are solid mechanics, composite materials, numerical methods and dynamics. Some limitations are imposed on the selection of courses to reflect the particular concentration. The usual minor is mathematics. Suitable minor programs may also be arranged in physics, civil engineering or mechanical engineering.

EM 625 ADVANCED STRENGTH OF MATERIALS 3 cr. (3 and 0)
EM 630 MECHANICS OF COMPOSITE MATERIALS 3 cr. (3 and 0)
EM 650 MECHANICAL VIBRATIONS 3 cr. (3 and 0)
EM 670 EXPERIMENTAL STRESS ANALYSIS 3 cr. (2 and 3)
EM 829 ENERGY METHODS AND VARIATIONAL PRINCIPLES 3 cr. (3 and 0)

Application of variational principles in solid mechanics problems; virtual work; Castigliano's theorems on deflection and rotation; stationary potential energy; energy stability criterion; Hamilton's principle. **Prerequisite:** EM 831 or permission of instructor.

EM 831 THEORY OF ELASTICITY I 3 cr. (3 and 0)
Theory of stress and deformation for continuous media; linear stress-strain relations for elastic material; two-dimensional problems including Airy stress function, polynomial solutions, plane stress and plane strain in rectangular and polar coordinates, torsion and bending of prismatic bars and thermal stresses. **Prerequisites:** EM 304 and MTH SC 208.

EM 832 THEORY OF ELASTICITY II 3 cr. (3 and 0)
Continuation of EM 831 including topics from either three-dimensional problems associated with an infinite elastic medium, elastic half-space, contact stresses, symmetrically loaded sphere and circular cylinder, or complex variable methods in plane elasticity, stress concentrations problems, singular stresses and fracture, and composite materials. **Prerequisites:** EM 831 and PHYS 812.

EM 834 PRINCIPLES OF STRUCTURAL STABILITY 3 cr. (3 and 0)
Practical criteria for analysis of conservative and nonconservative systems'
ENVIRONMENTAL SYSTEMS ENGINEERING

stability; methods of adjacent equilibrium, initial imperfections, total potential energy and vibration as applied to practical problems. **Prerequisite:** EM 831.

EM 845 INTERMEDIATE DYNAMICS
3 cr. (3 and 0)
Kinematics and dynamics of particles and rigid bodies, Lagrange and Hamilton's formulation of mechanics; two-body central force problem; rendezvous of two bodies in a central force field; rotation of rigid bodies about a fixed point in space; vector analysis and matrix methods as aids in mathematical analysis. **Prerequisite:** EM 202 or permission of instructor.

EM 852 ADVANCED FINITE ELEMENT ANALYSIS
(CE 852) 3 cr. (3 and 0)
Application of variational and weighted residuals methods; nonlinear analysis, steady-state and time-dependent problems; application of commercial finite element codes; advanced computational procedures. **Prerequisite:** ME 418/618, CE 808 or equivalent, or permission of instructor.

EM 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

EM 893 SELECTED TOPICS IN ENGINEERING MECHANICS
1-6 cr. (1-6 and 0)
Topics not covered in other courses. May be repeated for credit.

EM 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

ENVIRONMENTAL SYSTEMS ENGINEERING
Thomas M. Keinath, Head, Department of Environmental Systems Engineering

Major
Environmental Systems Engineering

Degrees
M.Engr., M.S., Ph.D.

Environmental systems engineering is concerned with the engineering aspects of the control of man's environment. Emphasis is placed on applying basic principles of the sciences through research and design to environmental engineering problems.

The M.Engr. and M.S. programs are designed to build on the student's previous engineering or science background. Students with a baccalaureate degree in any branch of engineering, as well as chemistry, physics and biology majors with a strong mathematical background, may be admitted to the program. Students usually elect to specialize in one of eight areas: (1) water and wastewater treatment systems, (2) hazardous waste treatment systems, (3) hazardous waste management, (4) air pollution control, (5) environmental biology, (6) environmental chemistry, (7) environmental management systems and (8) nuclear environmental engineering. Master's degree candidates must complete 27 hours of course work and six hours of research culminating in the presentation of a satisfactory thesis for M.S. candidates or a special problem report for M.Engr. candidates.
The Ph.D. program is directed toward providing the student with a comprehensive background in the fundamental aspects of environmental engineering. The major field of study is generally interdisciplinary in nature, consisting of course work in several areas of engineering and the basic sciences. Each student’s research program is tailored to suit his or her personal and professional goals. Qualifying, comprehensive and final examinations are required. No foreign language is required.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESE 601</td>
<td>ENVIRONMENTAL ENGINEERING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>ESE 602</td>
<td>WATER AND WASTE TREATMENT SYSTEMS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>ESE 610</td>
<td>ENVIRONMENTAL RADIATION PROTECTION</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>ESE 611</td>
<td>ENVIRONMENTAL RADIATION PROTECTION LABORATORY I</td>
<td>1 cr.</td>
<td>(0 and 3)</td>
</tr>
<tr>
<td>ESE 630</td>
<td>AIR POLLUTION ENGINEERING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>ESE 651</td>
<td>NEWMAN SEMINAR AND LECTURE SERIES IN NATURAL RESOURCES ENGINEERING</td>
<td>1 cr.</td>
<td>(0 and 2)</td>
</tr>
<tr>
<td>ESE 670</td>
<td>WATER RESOURCES ENGINEERING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>ESE 682</td>
<td>GROUNDWATER AND CONTAMINANT TRANSPORT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>ESE 685</td>
<td>HAZARDOUS WASTE MANAGEMENT</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>ESE 701</td>
<td>SPECIAL PROBLEMS</td>
<td>1-6 cr.</td>
<td>(1-6 and 0)</td>
</tr>
<tr>
<td></td>
<td>Environmental engineering problems selected to meet the interests and experience of student and instructor. Formal report required; restricted to Master of Engineering students; graded on pass/fail basis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESE 802</td>
<td>ENVIRONMENTAL ENGINEERING PRINCIPLES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Fundamental principles required for simulation and modeling of environmental engineering phenomena. Topics include mass transfer, reactor kinetics, simulation techniques and applications to various natural and engineered systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESE 803</td>
<td>PHYSICOCHEMICAL OPERATIONS IN WATER AND WASTEWATER TREATMENT SYSTEMS</td>
<td>4 cr.</td>
<td>(4 and 0)</td>
</tr>
<tr>
<td></td>
<td>Principles of physicochemical operations used in water and wastewater treatment. Includes sedimentation, filtration, mixing, gas transfer, adsorption, ion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
exchange, evaporation, drying, coagulation, precipitation and oxidation. Prerequisites: ESE 802 and 843.

ESE 804 BIOCHEMICAL OPERATIONS IN WASTEWATER TREATMENT SYSTEMS
3 cr. (3 and 0)
Principles of biochemical operations used in wastewater treatment. Includes modeling of ideal biochemical reactors and design criteria for aerated lagoons, activated sludge, trickling filters, rotating biological contactors, nitrification, denitrification and digestion. Prerequisites: ESE 802 and 851.

ESE 805 LABORATORY IN WATER AND WASTEWATER TREATMENT OPERATIONS
2 cr. (0 and 6)
Laboratory exercises in selected water and wastewater treatment operations, including sedimentation, filtration, adsorption, coagulation, softening, aeration, activated sludge, aerobic digestion and anaerobic digestion. Corequisites: ESE 803 and 804.

ESE 806 INTEGRATED DESIGN OF WATER AND WASTEWATER TREATMENT SYSTEMS
4 cr. (4 and 0)
Integration of unit operations into complex systems for treatment of industrial/domestic water and wastewater, contaminated groundwater, landfill leachate and toxic liquid wastes. The team approach is employed in the design of one integrated system for either water/wastewater or a hazardous/toxic waste. Prerequisites: ESE 803 and 804.

ESE 809 INDUSTRIAL WASTEWATER TREATMENT
3 cr. (3 and 0)
Industrial wastewater management and the application of liquid treatment processes to the solution of specific industrial wastewater problems. Case studies of industrial wastewater treatment strategies. Prerequisites: ESE 803 and 804.

ESE 812 ENVIRONMENTAL NUCLEAR ENGINEERING
3 cr. (3 and 0)
Environmental aspects of nuclear technology emphasizing nuclear reactors and the nuclear fuel cycle; environmental transport of radioactive materials; radioactive effluents from nuclear power plants; nuclear power plant safety; environmental aspects of fuel cycle activities; waste management. Prerequisites: ESE 610 and permission of instructor.

ESE 813 ENVIRONMENTAL RADIATION PROTECTION LABORATORY II
1 cr. (0 and 3)
Continuation of ESE 611; advanced experiments in radiation detection, radiation protection, health physics and environmental monitoring. Prerequisites: ESE 611 and permission of instructor.

ESE 831 AIR QUALITY MONITORING
3 cr. (2 and 3)
Principles of ambient and source measurements of air pollutants and siting of
air pollution monitors. Laboratory exercises include source testing and ambient air analysis. **Prerequisite:** Permission of instructor.

ESE 832 AIR POLLUTION METEOROLOGY
3 cr. (3 and 0)
Applications of meteorology to air pollution; micrometeorology; plume rise modeling; atmospheric diffusion; deposition and washout of pollutants; air chemistry; applications of diffusion modeling to air quality planning. **Prerequisite:** Permission of instructor.

ESE 833 AIR POLLUTION CONTROL SYSTEMS
3 cr. (3 and 0)
Principles and design of air pollution control equipment including mechanical collectors, electrostatic precipitators, baghouse filters, wet scrubbers, adsorbers and incinerators. **Prerequisite:** ESE 430/630 or permission of instructor.

ESE 843 ENVIRONMENTAL ENGINEERING CHEMISTRY I
3 cr. (3 and 0)
Principles of chemical kinetics and thermodynamics applied to fundamental understanding of aqueous environmental samples including natural waters, wastewaters and treated waters; factors controlling chemical concentrations, acid-base equilibria, solubility equilibria, complex formation, electrochemistry, adsorption phenomena. **Prerequisites:** CHEM 101 and 102 or equivalent.

ESE 844 ENVIRONMENTAL ENGINEERING CHEMISTRY LABORATORY I
2 cr. (1 and 3)
Laboratory exercises in common analytical methods used for environmental samples with emphasis on waters and wastewaters. Lectures provide background and theory for the lab sessions and cover selection and evaluation of parameters and methods, interpretation of data and quality assurance in sample collection and analysis. **Prerequisite:** Two semesters of general chemistry.

ESE 847 ADVANCED TOPICS IN ENVIRONMENTAL ENGINEERING CHEMISTRY
3 cr. (3 and 0)
Advanced principles and methods in environmental engineering chemistry with applications to both natural and treatment systems; current investigative and study techniques. Topics include the nature, fluxes and controlling processes of chemical species and radionuclides in environmental systems. **Prerequisite:** ESE 843 or equivalent.

ESE 849 ENVIRONMENTAL ENGINEERING CHEMISTRY LABORATORY II
2 cr. (0 and 6)
Theory and applications of instrumental methods of analysis as applied to measurements for environmental control; spectroscopy and spectrophotometric techniques; electrochemical analyses; chromatographic methods of analysis; light scattering and electrophoretic measurements.

ESE 850 STREAM AND ESTUARINE ANALYSIS
3 cr. (3 and 0)
Physical, chemical and biological processes and relationships which exist in streams and estuaries; estuarine environment; free-flowing streams; mecha-
nisms which describe transport of conservative and nonconservative materials through estuarine systems; the estuary as a resource and techniques for its management.

ESE 851 BIOLOGICAL PRINCIPLES OF ENVIRONMENTAL ENGINEERING
3 cr. (3 and 0)
Basic principles of biology and biochemistry as applied to problems of environmental control and wastewater treatment. Kinetic and energetic aspects are emphasized.

ESE 852 ECOLOGICAL MODELS
3 cr. (2 and 3)
Systems analysis applied to ecology; construction of models which predict ecological consequences of stresses to the environment; frequency response analysis, energy models, information flow and transfer functions for population interactions. Prerequisites: A course in ecology and in computer programming or permission of instructor.

ESE 856 POLLUTION OF THE AQUATIC ENVIRONMENT
3 cr. (3 and 0)
Effects of domestic and industrial water pollution on the physical, chemical and biological characteristics of natural waters; associated environmental determinants of human disease, toxicology and epidemiology of chronic disease.

ESE 857 POLLUTION OF THE AQUATIC ENVIRONMENT LABORATORY
1 cr. (0 and 3)
Field and laboratory investigations into physical, chemical and biological effects resulting from pollution of the aquatic environment.

ESE 861 ENVIRONMENTAL SYSTEMS ENGINEERING SEMINAR
1 cr. (1 and 0)
Current advances and research developments in various areas of environmental engineering. Off-campus speakers, students and faculty participate; graded on pass/fail basis.

ESE 862 ENVIRONMENTAL QUALITY CASE STUDY
1 cr. (0 and 3)
An in-depth analysis and investigation of a significant current or recent situation affecting or involving some facet of environmental quality. Study will be conducted by a team of students and will result in a comprehensive position paper which integrates the pertinent social, political and economic considerations in the case with the technical aspects.

ESE 875 WATER RESOURCES PLANNING
3 cr. (3 and 0)
Water and environmental planning emphasizing factors underlying planning processes; historical treatment of water resources development; changing objectives and goals from national and local standpoints; current legislation and guidelines for planning and economic analyses; evolving policy issues; political and institutional dimensions; roles of Congress, executive agencies and interest groups in environmental planning and implementation.
ESE 876 WATER RESOURCES SYSTEMS
3 cr. (3 and 0)
Current mathematical modeling, optimization and simulation techniques applied to design of various water resources systems including environmental control systems, hydrologic systems and integrated multipurpose systems. Specific techniques utilized are linear programming, dynamic programming, Monte Carlo simulation, queuing theory and Markov processes.

ESE 880 ENVIRONMENTAL RISK ASSESSMENT
3 cr. (3 and 0)
Methodology of quantitative risk assessment, including identification and quantification of the source term, calculation of environmental transport and estimation of health effects. Applications involve various classes of contaminants in atmospheric and aquatic environmental pathways. Prerequisites: MTH SC 208 and graduate-level standing in engineering or science.

ESE 881 SPECIAL PROBLEMS
1-4 cr.
Problems selected to meet interests and experience of student and instructor.

ESE 883 SELECTED TOPICS IN ENVIRONMENTAL ENGINEERING
1-4 cr.
A comprehensive study of a topic in environmental engineering not covered in another course. Topics will vary to keep pace with current developments. May be taken concurrently with ESE 884 which (if offered) would be a different topic.

ESE 884 SELECTED TOPICS IN ENVIRONMENTAL ENGINEERING
1-4 cr.
A comprehensive study of a topic in environmental engineering not covered in another course. Topics will vary to keep pace with current developments. May be taken concurrently with ESE 883 which (if offered) would be a different topic.

ESE 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

ESE 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

INDUSTRIAL ENGINEERING
Robert P. Davis, Head, Department of Industrial Engineering

Major Degrees
Industrial Engineering M.S., Ph.D.

Industrial engineering is concerned with the design, improvement and installation of integrated systems of people, materials and equipment. It draws upon specialized knowledge and skill in mathematical, physical and social sciences, together with the principles and methods of engineering analysis and design, to specify, predict and evaluate the results obtained from such systems.

An important feature of the graduate industrial engineering program is the flexibility to tailor plans of study to individual student interests and needs.
Students may also concentrate their studies in a particular problem area, such as manufacturing systems facilities planning and material handling, quality control and reliability, energy production/distribution, human-computer systems, information/communication systems, decision support systems, computer-based control and construction management.

If the student chooses, he or she may devise a plan of study that combines industrial engineering core courses with courses from other departments in the College of Engineering and the University. The primary purpose of such a plan is to permit optimum use of the total University resources to provide the best possible preparation for a professional career in industrial engineering.

Students with a bachelor's degree in engineering or physical sciences may be accepted. Those with other backgrounds may be accepted or may be required to successfully complete certain prerequisite courses before formal entrance into the program.

A student has the option to either pursue an M.S. with a thesis, requiring a minimum of 24 hours of course work, a six-hour thesis and three hours of seminar, or the student may pursue an M.S. without a thesis, requiring a minimum of 30 hours of course work, a three-hour project and three hours of seminar. The prescribed hours of course work are agreed upon by the student and his or her committee and are in addition to any needed to make up undergraduate deficiencies.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits (3 and 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 652</td>
<td>RELIABILITY ENGINEERING</td>
<td>3 cr.</td>
</tr>
<tr>
<td>IE 666</td>
<td>PRODUCTION SYSTEMS ENGINEERING</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>IE 673</td>
<td>MICROCOMPUTER APPLICATIONS IN INDUSTRIAL ENGINEERING</td>
<td>3 cr. (2 and 3)</td>
</tr>
<tr>
<td>IE 680</td>
<td>METHODS OF OPERATIONS RESEARCH I</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IE 681</td>
<td>METHODS OF OPERATIONS RESEARCH II</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IE 682</td>
<td>SYSTEMS MODELING</td>
<td>3 cr.</td>
</tr>
<tr>
<td>IE 684</td>
<td>ENGINEERING ECONOMIC ANALYSIS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IE 685</td>
<td>INDUSTRIAL SYSTEMS ENGINEERING</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IE 686</td>
<td>PRODUCTION PLANNING AND CONTROL</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>IE 688</td>
<td>HUMAN FACTORS ENGINEERING</td>
<td>3 cr. (2 and 3)</td>
</tr>
</tbody>
</table>
IE 703 ENGINEERING PROJECT OPERATIONS
3 cr. (3 and 0)
Project organization and planning; project engineering; decision-making process; patterns of leadership; project financial analysis; time-cost-performance trade-offs and sensitivity analysis; project scheduling and control techniques; project documentation; communication; communication skills. **Prerequisite:** B.S. degree in engineering.

IE 803 ENGINEERING OPTIMIZATION AND APPLICATIONS
3 cr. (3 and 0)
Nonlinear programming; search methods; dynamic programming and discrete optimization; quadratic programming; linearization; direct search; gradient methods; penalty functions; recursive optimization; implicit enumeration. **Prerequisite:** Multivariate calculus or permission of instructor.

IE 807 DISCRETE SYSTEMS SIMULATION
3 cr. (3 and 0)
Discrete and Monte Carlo simulation used to model and study stochastic operational systems; simulation languages GPSS V, SLAM and/or SIMAN. **Prerequisite:** Introductory statistics or permission of instructor.

IE 808 CONTINUOUS SYSTEMS SIMULATION
3 cr. (3 and 0)
Continuous systems simulation and feedback-type simulation models and their use in analyzing engineering, business, governmental and military systems; concept of industrial dynamics; simulation languages SIMAN, SLAM and/or DYNAMO. **Prerequisite:** IE 807 or permission of instructor.

IE 860 DYNAMIC PROGRAMMING
3 cr. (3 and 0)
Theory and methodology of dynamic programming; Bellman’s principle of optimality; Mitten’s sufficiency conditions; recursive optimization of serial and non-serial multistage systems; optimization of discrete and continuous systems through decomposition. Emphasis is placed on special aspects of problem formulation. **Prerequisites:** IE 680 and multivariate calculus or permission of instructor.

IE 861 NONLINEAR PROGRAMMING AND METHODS OF SEARCH
3 cr. (3 and 0)
Methods for nonlinear, continuous problems; classical optimization; separable programming; quadratic programming; geometric programming; gradient methods; feasible directions; accelerating adaptive direct search methods. **Prerequisites:** IE 680 and multivariate calculus or permission of instructor.

IE 865 FACILITY PLANNING AND MATERIAL HANDLING
3 cr. (3 and 0)
Planning and design of production facilities with emphasis on material handling and automated manufacturing systems. Quantitative approaches to equipment design and evaluation of system performance. **Prerequisites:** IE 480/680 and IE 486/686.

IE 873 COMPUTER-AIDED MANUFACTURING
3 cr. (2 and 3)
Process planning; group technology; materials planning and control systems;
automated manufacturing systems planning and control. **Prerequisite:** IE 482/682.

IE 880 ADVANCED METHODS OF OPERATIONS RESEARCH
3 cr. (3 and 0)
Methods and applications in discrete optimization; integer and mixed integer programming; Boolean minimization; network optimization; permutation methods; implicit enumeration; surrogate and aggregate constraints. **Prerequisite:** IE 681 or permission of instructor.

IE 884 ADVANCED ENGINEERING ECONOMIC ANALYSIS
3 cr. (3 and 0)
Engineering economic analysis for engineering research, development and construction projects emphasizing detailed treatment of tax effects, methods for determining discount rates, proper use of economic criteria in various decision environments (certainty vs. uncertainty, single vs multiple project selections, etc.). **Prerequisite:** IE 484/684 or permission of instructor.

IE 885 DESIGN AND ANALYSIS OF SIMULATION MODELS
3 cr. (3 and 0)
Design and validation of operations research-type simulation models; statistical analysis of input and output data of these models. **Prerequisites:** IE 807 and MGT SC 814 or permission of instructor.

IE 886 OPERATIONS RESEARCH IN PRODUCTION CONTROL I
3 cr. (3 and 0)
Latest techniques in scientific inventory management, scheduling and forecasting; operations research; statistics; computer methods; case studies. **Prerequisites:** IE 680 and multivariate calculus or permission of instructor.

IE 888 APPLIED QUEUING THEORY AND MARKOV PROCESSES
3 cr. (3 and 0)
Analysis of single and multiple channel queues using mathematical queuing theory; Markov processes including rewards, value and policy iteration techniques. **Prerequisites:** IE 680 and multivariate calculus or permission of instructor.

IE 890 SPECIAL PROBLEMS IN INDUSTRIAL ENGINEERING
1-3 cr. (1-3 and 0)
Principles and methods of industrial engineering applied to analysis of a current interest problem. May be repeated for additional credit. **Prerequisite:** Permission of instructor.

IE 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

IE 893 SELECTED TOPICS IN INDUSTRIAL ENGINEERING
1-3 cr. (1-3 and 0)
Selected topics in industrial engineering emphasizing new developments in systems science, systems analysis and operations research. May be repeated for additional credit. **Prerequisite:** Permission of instructor.

IE 895 INDUSTRIAL ENGINEERING SEMINAR
1 cr. (1 and 0)
Series of weekly, one-hour seminars given by students, faculty and guests on topics of current interest. Graded on pass/fail basis.
INDUSTRIAL ENGINEERING

IE 907 PRODUCTION SYSTEMS SIMULATION
3 cr. (2 and 3)
Simulation modeling of production systems with emphasis on significant design and control issues in automated manufacturing. Prerequisite: IE 807.

IE 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

MECHANICAL ENGINEERING

Christian E. Przirembel, Head, Department of Mechanical Engineering

Major Degrees
Mechanical Engineering M.Eng., M.S., Ph.D.

Students will be accepted for the Master of Engineering degree program with undergraduate degrees in mechanical engineering (or equivalent) from ABET-accredited programs. Enrollment in the M.S. and Ph.D. programs is open to those students with degrees in physics, applied mathematics or any branch of engineering.

Programs may be selected with concentrations in mechanical and manufacturing systems design (CAD/CAM, kinematics and dynamics, materials, robotics and vibrations) or thermal/fluid sciences (fluid mechanics, heat transfer, thermodynamics and energy systems).

ME 604 CONTROL SYSTEMS DESIGN
3 cr. (3 and 0)

ME 607 APPLIED HEAT TRANSFER
3 cr. (3 and 0)

ME 608 NUMERICAL METHODS IN ENGINEERING ANALYSIS
3 cr. (3 and 0)

ME 610 FRACTURE AND FATIGUE CONTROL IN ENGINEERING STRUCTURES
3 cr. (3 and 0)

ME 611 GAS POWER SYSTEMS
3 cr. (3 and 0)

ME 618 FINITE ELEMENT ANALYSIS OF MECHANICAL ENGINEERING SYSTEMS
3 cr. (3 and 0)

ME 620 ENERGY SOURCES AND THEIR UTILIZATION
3 cr. (3 and 0)

ME 622 DESIGN OF GAS TURBINES
3 cr. (3 and 0)

ME 623 INTRODUCTION TO AERODYNAMICS
3 cr. (3 and 0)

ME 625 KINEMATICS AND DYNAMICS OF MACHINERY II
3 cr. (3 and 0)
ME 629 THERMAL ENVIRONMENTAL CONTROL
3 cr. (3 and 0)

ME 630 FLUID POWER—HYDRAULICS
3 cr. (3 and 0)

ME 652 SAFETY ENGINEERING
3 cr. (3 and 0)

ME 653 DYNAMIC PERFORMANCE OF VEHICLES
3 cr. (3 and 0)

ME 654 DESIGN OF MACHINE ELEMENTS
3 cr. (3 and 0)

ME 655 DESIGN FOR COMPUTER-AUTOMATED MANUFACTURING
3 cr. (3 and 0)

ME 656 DESIGN AND APPLICATION OF INDUSTRIAL ROBOTS
3 cr. (3 and 0)

ME 659 MATERIALS SELECTION IN DESIGN
3 cr. (3 and 0)

ME 693 SELECTED TOPICS IN MECHANICAL ENGINEERING
1-6 cr.

ME 701 APPLICATIONS OF ENGINEERING ANALYSIS
3 cr. (3 and 0)

Derivation of conservation and describing equations; initial and boundary conditions for engineering problems; lumped and distributed parameter models; review and application of analytical and numerical solutions to engineering problems.

ME 801 FOUNDATIONS OF FLUID MECHANICS
3 cr. (3 and 0)

Derivations of basic equations for multidimensional flow fields; analytical techniques for solving problems in laminar viscous flow and laminar inviscid flow; theories of similitude. Prerequisites: Graduate standing and permission of instructor.

ME 807 MECHANICAL SYSTEMS I
3 cr. (3 and 0)

Integration and application of selected topics from strength of materials, elasticity, kinematics and dynamics; nature of stress and strain in engineering materials; computer synthesis and analysis of planar linkages; rigid body dynamics applied to engineering systems; energy techniques. Prerequisites: EM 304 and ME 405

ME 810 MACROSCOPIC THERMODYNAMICS
3 cr. (3 and 0)

First, second and third laws of thermodynamics with engineering applications; thermodynamic property relations; chemical equilibrium. Prerequisite: ME 312 or equivalent.

ME 811 GAS DYNAMICS
3 cr. (3 and 0)

Concepts from thermodynamics, one-dimensional gas dynamics, one-
MECHANICAL ENGINEERING

dimensional wave motion, normal and oblique shocks; flow in ducts and wind tunnels; two-dimensional equation of motion; small perturbation theory. Prerequisite: EM 320 or equivalent.

ME 812 EXPERIMENTAL METHODS IN THERMAL SCIENCE
3 cr. (2 and 2)
Theories of measurements and instrumentation and techniques for measuring temperature, pressure and velocity on a practical graduate engineering level; mathematical presentation of data, uncertainty analysis, data acquisition techniques, and theory and state-of-the-art measuring systems.

ME 814 CONCEPTS OF TURBULENT FLOW
3 cr. (3 and 0)
Concepts of fluid turbulence; turbulent transport mechanisms, dynamics of turbulence and experimental techniques pertinent to existing theories. Topics address classification of shear flows and their prediction methods. Prerequisite: ME 801.

ME 815 STATISTICAL THERMODYNAMICS I
(PHYS 815) 3 cr. (3 and 0)
See PHYS 815 for description.

ME 816 ENERGY CONVERSION
3 cr. (3 and 0)
Nonconventional methods of energy conversion emphasizing power aspects; solar thermal, solar photovoltaic, fusion, magneto-hydrodynamics, thermoelectrics, thermonics and fuel cells. Prerequisite: Graduate standing.

ME 817 COMBUSTION THEORY
3 cr. (3 and 0)
Study of combustion theory and fundamentals, particularly in fluid flow situations; review of turbulent flame empirical results in combustion systems. Prerequisites: ME 801 and 810.

ME 819 COMPUTATIONAL METHODS IN THERMAL SCIENCES
3 cr. (3 and 0)
Numerical techniques as applied to the solution of fluid flow and heat transfer problems. Emphasis is primarily on the use of finite difference methods. Prerequisite: Graduate standing.

ME 820 MODERN CONTROL ENGINEERING
3 cr. (3 and 0)
Mathematical modeling of engineering systems using differential and difference state equations; state variable time solutions using analytic and computer-aided analysis techniques; state control principles of controllability, observability, stability and performance specification; trade-offs between state variable and transfer function techniques. Prerequisite: An undergraduate controls course or permission of instructor.

ME 821 ADVANCED CONTROL ENGINEERING
3 cr. (3 and 0)
Concepts in multivariable, nonlinear, stochastic and optimal control engineering; design and analysis considerations related to physical machines and
processes; mathematical methods as needed. **Prerequisite:** An undergraduate controls course or permission of instructor.

ME 822 COMPUTER CONTROL OF AUTOMATED MACHINES
3 cr. (3 and 0)

Concepts for control of automated manufacturing machines, cells and processes; logic and switching control; programmable controllers; supervisory hierarchical and expert control systems concepts for manufacturing; closed-loop direct digital control design, including sampling, stability and response of discrete system models; design and application of computer control algorithms; computer requirements; sensors and signal conversion. **Prerequisite:** ME 820 or permission of instructor.

ME 830 CONDUCTION HEAT TRANSFER
3 cr. (3 and 0)

Analytical and numerical solutions of conduction heat transfer problems; steady one- and two-dimensional systems; extended surfaces; transient solutions; numerical solutions; transform methods. **Prerequisites:** ME 304 or equivalent and graduate school enrollment.

ME 831 CONVECTIVE HEAT TRANSFER
3 cr. (3 and 0)

Derivation of continuity, momentum and energy equations for boundary layer flow; solutions for confined and external flow regimes in laminar and turbulent flow. **Prerequisites:** ME 304, 801 and MTH SC 208.

ME 832 RADIATIVE HEAT TRANSFER
3 cr. (3 and 0)

Radiation properties; enclosure theory; radiation exchange between solid bodies; radiation exchange in the presence of absorbing, transmitting and emitting media; combined radiation, conduction and convection exchange. **Prerequisites:** ME 304 or equivalent and permission of instructor.

ME 833 HEAT TRANSFER WITH CHANGE OF PHASE
3 cr. (3 and 0)

Nucleate boiling in a pool; film boiling in a pool; forced nucleate boiling; forced film boiling; effect of impurities on boiling phenomena; dropwise condensation; filmwise condensation; effect of noncondensable gases on condensation; boiling and condensing processes in systems. **Prerequisites:** ME 304 or equivalent and permission of instructor.

ME 841 ADVANCED MECHANICAL ENGINEERING DESIGN I
3 cr. (3 and 0)

Design projects selected from industry or government are addressed by a graduate student/faculty design team. Students are required to create and structure a problem solution, the solution being a preliminary design study encompassing analysis, synthesis, evaluation, economic cost/benefit considerations and engineering project organization. **Prerequisite:** Graduate standing or permission of instructor.

ME 842 ADVANCED MECHANICAL ENGINEERING DESIGN II
3 cr. (3 and 0)

Case study method of individual design problems and projects. Cases used as basis for problem formulation, problem analysis, design theory exemplifica-
MECHANICAL ENGINEERING

tion and for class discussion and evaluation. Principles of mechanical and engineering sciences introduced and utilized as required for case considerations. **Prerequisite:** ME 306 or equivalent or permission of instructor.

ME 843 NONLINEAR DYNAMICS OF MECHANICAL SYSTEMS
3 cr. (3 and 0)
Behavior of nonlinear mechanical systems analyzed with numerical, graphical and analytical methods; emphasis on understanding nonlinear effects and methods of analysis. **Prerequisite:** Graduate standing and/or permission of instructor.

ME 844 RANDOM VIBRATION: THEORY AND MEASUREMENT
3 cr. (3 and 0)
Analysis and measurement of random phenomena. Topics include description of random phenomena (probability theory, response of systems to random phenomena and digital signal processing theory); use of spectrum analyzer and other digital signal recording instruments. **Prerequisites:** ME 302 or MTH SC 208 and permission of instructor.

ME 845 VIBRATION OF CONTINUOUS MEDIA
3 cr. (3 and 0)
Fundamental principles of generation, propagation, absorption, reflection and scattering of vibrational wave in solids and fluids; free forced oscillation of flexible strings, bars, membranes and plates; theory of wave motion in liquids and gases. **Prerequisite:** Permission of instructor.

ME 851 TRIBIOLOGY
3 cr. (3 and 0)
Friction and wear processes are addressed from both microscopic and macroscopic viewpoints; study of the behavior of metallic components in tribosystems commonly associated with engineering machine design, also other classes of materials, especially those associated with antifriction or antiwear coating systems. **Prerequisites:** Graduate standing and permission of instructor.

ME 890 ENGINEERING PROJECT
1-3 cr. (0 and 3-9)
Comprehensive analytical and/or experimental treatment of phenomena of current interest in mechanical engineering emphasizing modern technological problems. May be repeated for a maximum of nine credits.

ME 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

ME 893 SELECTED TOPICS IN MECHANICAL ENGINEERING
1-6 cr. (1-6 and 0)
Topics not covered in other courses. May be repeated for credit.

ME 930 ADVANCED TOPICS IN HEAT TRANSFER
1-6 cr. (1-6 and 0)
Topics not covered in other courses. May be repeated for a maximum of six credits.

ME 931 ADVANCED TOPICS IN FLUID MECHANICS
3 cr. (3 and 0)
MECHANICAL ENGINEERING

Topics not covered in other courses. May be repeated for a maximum of six credits.

ME 932 ADVANCED TOPICS IN THERMODYNAMICS
3 cr. (3 and 0)
Topics not covered in other courses. May be repeated for a maximum of six credits.

ME 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

EG 612 INTERACTIVE COMPUTER GRAPHICS
3 cr. (3 and 0)

EG 690 SPECIAL TOPICS IN ENGINEERING GRAPHICS
1-3 cr.

MAT E 605 PHYSICAL METALLURGY
3 cr. (3 and 0)

MAT E 620 INTRODUCTION TO MECHANICAL METALLURGY
3 cr. (3 and 0)

MAT E 622 INTRODUCTION TO CHEMICAL METALLURGY
3 cr. (3 and 0)

MAT E 624 INTRODUCTION TO EXTRACTIVE METALLURGY
3 cr. (3 and 0)

MAT E 650 SPECIAL TOPICS IN MATERIALS ENGINEERING
1-4 cr.

MAT E 661 NONFEROUS METALLURGY
3 cr. (3 and 0)

MAT E 662 FERROUS METALLURGY
3 cr. (2 and 3)

MAT E 663 METALLURGY OF WELDING AND NONDESTRUCTIVE TESTING
3 cr. (2 and 3)

MAT E 664 INDUSTRIAL CORROSION OF METALS
3 cr. (3 and 0)

MAT E 665 INTRODUCTION TO PLASTICS
3 cr. (3 and 0)

MAT E 800 SEMINAR IN MATERIALS RESEARCH
1 cr. (1 and 0)
Presentation and discussion of special topics and original research in materials engineering. Credit may be earned for more than one semester.

MAT E 820 DEFORMATION MECHANISMS IN SOLIDS
3 cr. (3 and 0)
Dislocation theory of solids; mechanisms of plastic deformation in single crystals and polycrystalline aggregates of metals and nonmetals; ductile and brittle fractures; fatigue, creep and stress corrosion cracking of metals. Prerequisite: MAT E 461/661 or equivalent.
MAT E 822 CHEMICAL METALLURGY
3 cr. (3 and 0)
Applications of chemical thermodynamics to metallic systems including gas-
metal reactions, metallic solutions, phase equilibria and diffusion. Prerequisite:
A course in thermodynamics.

MAT E 824 EXTRACTIVE METALLURGY
3 cr. (3 and 0)
Materials and processes used in extraction of metals from ores emphasizing
theory and practice: pyrometallurgy, oxidation-reduction reactions, smelting and
refining processes, hydrometallurgy and electrometallurgy. Prerequisite: A
course in thermodynamics or physical chemistry.
The College of Forest and Recreation Resources offers advanced degrees in the following areas of study:

Forestry

- Forestry

Parks, Recreation and Tourism Management

The Master of Science and Doctor of Philosophy degrees are offered in forestry and in parks, recreation and tourism management. The college also offers two professional degrees, the Master of Forestry and the Master of Parks, Recreation and Tourism Management.

The College of Forest and Recreation Resources is concerned with the management, use and stewardship of our forest resources and with improving the quality of life through rewarding use of leisure. These two general areas of study offer broad opportunities in the management of our forests and our recreation resources for their maximum service to present and future generations.

FORESTRY

Michael A. Taras, Head, Department of Forestry

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forestry</td>
<td>M.For., M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Enrollment in the Master of Forestry and Master of Science programs is open to students having baccalaureate degrees in forestry, wood utilization or disciplines related to these fields. A master's degree, preferably in some forestry discipline, is required for enrollment in the Ph.D. program. The candidate may be required to satisfy undergraduate deficiencies before being admitted to full status.

A formal thesis is required for the M.S. and the Ph.D. degrees. For the M.For., a non-thesis degree, a minimum of 36 semester hours of graduate course work must be completed with at least 18 of the required hours coming from courses numbered 700 or above.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 602</td>
<td>Forest Mensuration</td>
<td>3 cr.</td>
<td>(2 and 1) S</td>
</tr>
<tr>
<td>FOR 603</td>
<td>Forest Soils Seminar</td>
<td>1 cr.</td>
<td>(1 and 0) S</td>
</tr>
<tr>
<td>FOR 604</td>
<td>Forest Economics</td>
<td>3 cr.</td>
<td>(3 and 0) S</td>
</tr>
<tr>
<td>FOR 605</td>
<td>Forest Influences</td>
<td>2 cr.</td>
<td>(2 and 0)</td>
</tr>
<tr>
<td>FOR 606</td>
<td>Wood and Wood Fiber Identification</td>
<td>2 cr.</td>
<td>(1 and 3) S</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits (Hrs)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>FOR 607</td>
<td>FOREST OPERATIONS</td>
<td>3 cr. (2 and 1) S</td>
<td></td>
</tr>
<tr>
<td>FOR 608</td>
<td>AERIAL PHOTOGRAPHS IN FORESTRY</td>
<td>3 cr. (2 and 3) F</td>
<td></td>
</tr>
<tr>
<td>FOR 609</td>
<td>MULTIPLE-USE FORESTRY</td>
<td>2 cr. (2 and 0) S</td>
<td></td>
</tr>
<tr>
<td>FOR 610</td>
<td>SILVICULTURE</td>
<td>4 cr. (3 and 3) S</td>
<td></td>
</tr>
<tr>
<td>FOR 611</td>
<td>HARVESTING FOREST PRODUCTS</td>
<td>3 cr. (2 and 3) S</td>
<td></td>
</tr>
<tr>
<td>FOR 612</td>
<td>FOREST PROTECTION</td>
<td>2 cr. (2 and 0) S</td>
<td></td>
</tr>
<tr>
<td>FOR 613</td>
<td>INTEGRATED FOREST PEST MANAGEMENT</td>
<td>4 cr. (3 and 3)</td>
<td></td>
</tr>
<tr>
<td>FOR 614</td>
<td>FOREST MANAGEMENT PLANS</td>
<td>2 cr. (2 and 0)</td>
<td></td>
</tr>
<tr>
<td>FOR 615</td>
<td>FOREST WILDLIFE HABITAT MANAGEMENT</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>FOR 616</td>
<td>FOREST POLICY AND ADMINISTRATION</td>
<td>2 cr. (2 and 0) S</td>
<td></td>
</tr>
<tr>
<td>FOR 617</td>
<td>FOREST MANAGEMENT AND REGULATION</td>
<td>3 cr. (3 and 0) F</td>
<td></td>
</tr>
<tr>
<td>FOR 618</td>
<td>FOREST VALUATION</td>
<td>3 cr. (3 and 0) S</td>
<td></td>
</tr>
<tr>
<td>FOR 620</td>
<td>FOREST PRODUCTS</td>
<td>3 cr. (2 and 3) F</td>
<td></td>
</tr>
<tr>
<td>FOR 621</td>
<td>BIOLOGY AND SILVICULTURE OF HARDWOOD FORESTS</td>
<td>2 cr. (1 and 2)</td>
<td></td>
</tr>
<tr>
<td>FOR 623</td>
<td>LECTURES IN FORESTRY</td>
<td>2 cr. (2 and 0)</td>
<td></td>
</tr>
<tr>
<td>FOR 624</td>
<td>FOREST GENETICS AND TREE BREEDING</td>
<td>3 cr. (3 and 0) S</td>
<td></td>
</tr>
<tr>
<td>FOR 629</td>
<td>WOOD DESIGN</td>
<td>3 cr. (2 and 3) F</td>
<td></td>
</tr>
<tr>
<td>FOR 630</td>
<td>COMPOSITE WOOD MATERIALS</td>
<td>3 cr. (2 and 3)</td>
<td></td>
</tr>
<tr>
<td>FOR 631</td>
<td>RECREATION RESOURCE PLANNING IN FOREST MANAGEMENT</td>
<td>3 cr. (3 and 0) F</td>
<td></td>
</tr>
<tr>
<td>FOR 632</td>
<td>FOREST SITE CAPABILITY</td>
<td>2 cr. (2 and 0)</td>
<td></td>
</tr>
</tbody>
</table>
FOR 634 FOREIGN WOODS AND THEIR PROPERTIES
 2 cr. (1 and 3)

FOR 635 PARK AND FOREST STRUCTURES
 2 cr. (2 and 0)

FOR 636 WOOD AS AN ENERGY SOURCE
 2 cr. (2 and 0)

FOR 651 NEWMAN SEMINAR AND LECTURE SERIES IN
 (AG E 651) NATURAL RESOURCES ENGINEERING
 (ESE 651) 1 cr. (0 and 2)

FOR 707 SPECIAL PROBLEMS IN FORESTRY
 1-3 cr. (1-3 and 0) F, S, SS
 Directed individual study of a special problem in an applied field of forestry.
 Written report of study results required.

FOR 801 DATA PROCESSING IN FORESTRY PROBLEMS
 3 cr. (2 and 3) F, S
 Illustration, analysis and discussion of specific approaches used in forestry
 problems for handling, arranging and analyzing large volumes of field data and
 for presentation in concise, meaningful form. Prerequisite: CP SC 205 or permis-
 sion of instructor.

FOR 802 ADVANCED MENSURATION
 3 cr. (2 and 3) S (even numbered years)
 Continuation of FOR 602 emphasizing specialized sampling techniques and
 statistical methods often required only in forestry; compilation of timber volume
 tables; forest survey problems. Prerequisites: EX ST 301 and FOR 302/602 or permis-
 sion of instructor.

FOR 803 PHOTO INTERPRETATION
 3 cr. (2 and 3) S (odd numbered years)
 Current methodology in aerial photo interpretation techniques; flight plans;
 taking and processing aerial photographs; using aerial photographs in timber
 inventories and cruising. Prerequisites: EX ST 301 and FOR 308/608 or permis-
 sion of instructor.

FOR 804 ADVANCED FOREST ECONOMICS
 3 cr. (2 and 3) S (odd numbered years)
 Examination, discussion and application of economic principles to forestry
 problems in use of land, labor and capital; use of theory in problems of resource
 allocation and efficiency in forest management. Prerequisites: FOR 304/604
 and 418/618 or permission of instructor.

FOR 805 ADVANCED SILVICULTURE I—FOREST SOILS
 3 cr. (3 and 0) F (even numbered years)
 Effects of soil on tree growth; kinds, extent and quality of sites; individual soil
 characteristics such as nutrients, moisture, structure and physiography will be
 related to tree growth and site productivity; site manipulation by physical, chemi-
 cal and biological methods. Prerequisite: Permission of instructor.
FOR 806 ADVANCED SILVICULTURE II—FOREST TREE GROWTH AND DEVELOPMENT
3 cr. (3 and 0) F (odd numbered years)
Growth and development of economically important forest tree species; structure, function, phenology and wood formation related under forest stand conditions; manipulation of forest tree growth by cultural practice; examination of current research in growth and culture of forest trees and stands. Prerequisite: BOT 421/621 or permission of instructor.

FOR 807 SPECIAL PROBLEMS IN FORESTRY
Credit to be arranged. F, S, SS
Special problems in forestry research methods that do not directly pertain to the candidate’s thesis.

FOR 808 SEMINAR
1 cr. (1 and 0) F, S
Discussions of research and current developments in forestry. Students and staff participate; may be taken up to two semesters for credit, graded on a pass/fail basis.

FOR 809 PRODUCTS BIODETERIORATION
2 cr. (1 and 3)
Detailed investigation of the role of microorganisms in reducing the strength, aesthetics and value of products in service. Emphasis is on deterioration of wood.

FOR 825 WOOD CHEMISTRY
3 cr. (2 and 1)
Chemical composition of wood and related lignocellulosic substances and the chemistry of individual wood components; chemical reactions and applications of cellulose, hemicelluloses, lignin and extractives.

FOR 891 MASTER’S THESIS RESEARCH
Credit to be arranged. F, S, SS

FOR 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

PARKS, RECREATION AND TOURISM MANAGEMENT
Herbert Brantley, Head, Department of Parks, Recreation and Tourism Management

Major Degrees
Parks, Recreation M.P.R.T.M., M.S., Ph.D.
and Tourism Management

These programs are designed for persons who wish to increase their competence in research or management of leisure services. Flexibility permits individual development in professional interest areas such as park planning, therapeutic recreation, outdoor/environmental interpretation, travel and tourism management, or administration of recreation, park or tourism systems.

A minimum of 36 semester hours is required for the masters’ degrees. Each candidate completes an original, independent project to meet degree requirements.
Applicants whose academic records do not meet full admission requirements for the M.P.R.T.M. degree may be considered if successful work experience in a recreation position can be demonstrated. Students from nonrecreation disciplines are required to develop background knowledge of recreation through undergraduate course work. All applicants must submit scores from the Graduate Record Examination.

- **PRTM 600** SUPERVISION OF RECREATION PERSONNEL: PATTERNS AND PROCESSES
 3 cr. (3 and 0)

- **PRTM 601** WORLD GEOGRAPHY OF RECREATION AND PARKS
 3 cr. (3 and 0)

- **PRTM 602** CAMPUS RECREATION
 3 cr. (3 and 0)

- **PRTM 611** THERAPEUTIC RECREATION FOR SELECTED POPULATIONS
 3 cr. (2 and 3)

- **PRTM 612** THERAPEUTIC RECREATION AND MENTAL HEALTH
 3 cr. (3 and 0)

- **PRTM 613** THERAPEUTIC RECREATION FOR PHYSICALLY DISABLED
 3 cr. (2 and 3)

- **PRTM 614** RECREATION AND LEISURE FOR SPECIAL POPULATIONS
 (ED 614) 3 cr. (3 and 0)

- **PRTM 621** RECREATION FINANCIAL RESOURCE MANAGEMENT
 3 cr. (3 and 0)

- **PRTM 631** METHODS OF ENVIRONMENTAL INTERPRETATION
 3 cr. (2 and 3)

- **PRTM 632** HISTORIC SITE INTERPRETATION
 3 cr. (3 and 0)

- **PRTM 633** INTRODUCTION TO MUSEOLOGY
 3 cr. (2 and 3)

- **PRTM 641** COMMERCIAL RECREATION
 3 cr. (3 and 0)

- **PRTM 643** RESORTS IN NATIONAL AND INTERNATIONAL TOURISM
 3 cr. (3 and 0)

- **PRTM 644** TOUR PLANNING AND OPERATIONS
 3 cr. (3 and 0)

- **PRTM 645** CONFERENCE/CONVENTION PLANNING AND MANAGEMENT
 3 cr. (3 and 0)

- **PRTM 646** COMMUNITY TOURISM DEVELOPMENT
 3 cr. (3 and 0)

- **PRTM 647** PERSPECTIVES ON INTERNATIONAL TRAVEL
 3 cr. (3 and 0)
PRTM 702 GROUP PROCESSES IN LEISURE SERVICE
3 cr. (3 and 0)
Improvement in human relations skills, knowledge of interpersonal needs and problems of individuals and groups; students gain understanding of how others affect them and how they affect others and become more effective professional recreators and park administrators, supervisors, interpreters and educators.

PRTM 703 SEMINAR IN RECREATION AND PARK ADMINISTRATION
3 cr. (3 and 0)
Case problems relating to administration of a park, recreation or tourism agency.

PRTM 704 COMPREHENSIVE RECREATION PLANNING
3 cr. (3 and 0)
Comprehensive recreation planning theories and practices at federal, state and local levels. Selected case study projects are undertaken in cooperation with other university departments and governmental agencies.

PRTM 705 INTERNSHIP
1-3 cr. (0 and 9+)
Field placement in an approved agency under qualified supervision. Graded on a pass/fail basis. Prerequisite: PRTM student or consent of instructor.

PRTM 706 COMPUTER-ASSISTED ADMINISTRATION IN LEISURE SERVICES
3 cr. (2 and 3)
Decision-making and administrative techniques featuring the use of the microcomputer and related software to resolve administrative problems in the field of leisure services.

PRTM 707 PRINCIPLES OF ENVIRONMENTAL INTERPRETATION
3 cr. (3 and 0)
Methods of providing learning experiences in the out-of-doors, focusing on meaning, scope and values of interpretation.

PRTM 708 SELECTED TOPICS
1-3 cr. (1-3 and 0)
Topics in recreation, leisure and tourism. Students study an area not covered in other courses. A written report of findings is required. Permission of the supervising faculty is required before registration. May be repeated for a maximum of three credits.

PRTM 709 SPECIAL PROBLEMS
1-3 cr. (1-3 and 0)
Directed, individual comprehensive investigation of a special problem to use knowledge gained in formal courses, provide experience and training in research, and prepare for professional goals. Topics vary in areas of interest or experience of student and instructor. Report of findings required.

PRTM 710 CURRENT ISSUES IN RECREATION
1 cr. (1 and 0)
Current topics seminar emphasizing student preparation, organization and communication of material and ideas not covered in formal courses. May be repeated for a maximum of three semester hours of credit.
PRTM 801 PHILOSOPHICAL FOUNDATIONS OF RECREATION AND PARK ADMINISTRATION
3 cr. (3 and 0)
Current theories and philosophies in recreation as they are influenced by and have influence on leisure and the changing environment in America. Student develops his or her own professional philosophy of recreation and leisure.

PRTM 805 RECREATIONAL ASPECTS OF WATER RESOURCES
3 cr. (3 and 0)
Relationship of recreation to water; history and legislative background; governmental involvement; current research related to planning, pollution and demand; future policy decisions.

PRTM 806 URBAN RECREATION ANALYSIS
3 cr. (3 and 0)
Interrelationship of social, political and economic factors in providing public or private recreation services in urban areas.

PRTM 811 RESEARCH AND EVALUATION IN RECREATION
3 cr. (3 and 0)
Principles, methods and strategies for planning, designing, evaluating and applying studies of recreation. Prerequisite: A graduate-level statistics course or consent of instructor.

PRTM 812 LEISURE SERVICES FOR THE ELDERLY
3 cr. (3 and 0)
The elderly and role of leisure services in later life; needs of community-based and institutionalized elderly; service delivery systems to meet these needs.

PRTM 815 THERAPEUTIC RECREATION AND ACTIVITY THERAPY ADMINISTRATION
3 cr. (3 and 0)
Service delivery structures; interdisciplinary relationships; consultation methods; in-service training; funding sources; service evaluation in therapeutic recreation and activity therapy programs.

PRTM 820 RECREATION RESOURCE POLICY ISSUES AND PROCESSES
3 cr. (3 and 0)
Outdoor recreation policy-formation structures and processes are surveyed through case studies involving past and current public policy issues.

PRTM 840 TOURISM POLICY
3 cr. (3 and 0)
Investigation of tourism policy formulation, implementation and impact encompassing the national, state and local levels. Prerequisite: PRTM 342 or equivalent or permission of instructor.

PRTM 841 SEMINAR IN EXPOSITION MANAGEMENT
3 cr. (3 and 0)
Students gain an understanding of the theory, concepts and practices necessary to assume positions with world fairs, agricultural fairs and arenas, trade shows, national and world trade centers, or consumer and industrial exhibitions.
PRTM 891 THESIS RESEARCH
Credit to be arranged.

PRTM 910 RESEARCH SEMINAR
1 cr. (1 and 0)
Current research developments in PRTM and presentation of research proj-
ects. May be taken for credit for two semesters. Graded on a pass/fail basis.

PRTM 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.
COLLEGE OF LIBERAL ARTS

ENGLISH
HISTORY
LANGUAGES
POLITICAL SCIENCE
PSYCHOLOGY
SOCIOLOGY
COLLEGE OF LIBERAL ARTS

The College of Liberal Arts offers advanced degrees in the following areas of study:

- English
- History

Graduate courses are also offered in languages, political science, psychology, and sociology to provide electives for students in other areas.

ENGLISH

Hallman B. Bryant, Program Coordinator, Department of English

Major Degree

English M.A.

An applicant for the M.A. degree in English must present at least 12 semester credits of undergraduate English courses beyond the sophomore level; for the M.Ed. degree in secondary education with emphasis in English, an applicant must present at least nine. Entrance credits should include one course each above the sophomore level in Shakespeare and in English and American literature; students deficient in these may seek provisional admission.

M.A. students complete 25 semester credits of approved graduate courses and write a thesis, which may be developed with the approval of the Graduate Committee, from any interest area covered by the M.A. program. The non-thesis option requires 37 credits. All English M.A. students must demonstrate a reading knowledge of an approved foreign language.

At the core of the M.A. program is a 10-hour requirement, including ENGL 800 and one course from each of the following groups:

I. British literature: ENGL 805, 808, 811, 814 or an appropriate 831;
II. American literature: ENGL 820, 823 or an appropriate 831;
III. Language and composition: ENGL 685 (required of graduate teaching assistants), 801, 802, 832, 835, 837 or an appropriate 831.

M.Ed. students in secondary education with emphasis in English complete a total of 37 graduate credits, including ENGL 685 and 800, with a minimum of 12 and a maximum of 18 credits taken in the College of Education.

Candidates for these M.A. and M.Ed. degrees must also demonstrate proficiency in composition and pass a comprehensive oral examination.

ENGL 600 THE ENGLISH LANGUAGE
3 cr. (3 and 0)

ENGL 601 GRAMMAR SURVEY
3 cr. (3 and 0)

ENGL 602 SYNTAX
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 603</td>
<td>THE CLASSICS IN TRANSLATION</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 604</td>
<td>CLASSICAL DRAMA</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 605</td>
<td>STUDIES IN ENGLISH LITERATURE TO 1700</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 606</td>
<td>STUDIES IN ENGLISH LITERATURE SINCE 1700</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 607</td>
<td>THE MEDIEVAL PERIOD</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 608</td>
<td>CHAUCER</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 609</td>
<td>THE EARLIER ENGLISH RENAISSANCE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 610</td>
<td>DRAMA OF ENGLISH RENAISSANCE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 611</td>
<td>SHAKESPEARE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 612</td>
<td>STUDIES IN SHAKESPEARE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 613</td>
<td>THE LATER ENGLISH RENAISSANCE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 614</td>
<td>MILTON</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 615</td>
<td>THE RESTORATION AND EIGHTEENTH CENTURY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 616</td>
<td>THE ROMANTIC PERIOD</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 617</td>
<td>THE VICTORIAN PERIOD</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 618</td>
<td>THE ENGLISH NOVEL</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 622</td>
<td>STUDIES IN AMERICAN LITERATURE I</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 623</td>
<td>STUDIES IN AMERICAN LITERATURE II</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 624</td>
<td>STUDIES IN AMERICAN LITERATURE III</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 625</td>
<td>THE AMERICAN NOVEL</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>ENGL 626</td>
<td>SOUTHERN LITERATURE</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>
ENGLISH

ENGL 630 MODERN DRAMA
 3 cr. (3 and 0)

ENGL 631 MODERN POETRY
 3 cr. (3 and 0)

ENGL 632 MODERN FICTION
 3 cr. (3 and 0)

ENGL 635 LITERARY CRITICISM
 3 cr. (3 and 0)

ENGL 637 DIRECTED STUDIES
 1-3 cr. (1-3 and 0)

ENGL 645 FICTION WORKSHOP
 3 cr. (3 and 0)

ENGL 646 POETRY WORKSHOP
 3 cr. (3 and 0)

ENGL 647 PLAYWRITING WORKSHOP
 3 cr. (3 and 0)

ENGL 655 AMERICAN HUMOR
 3 cr. (3 and 0)

ENGL 685 COMPOSITION FOR TEACHERS
 3 cr. (3 and 0)

ENGL 690 ADVANCED TECHNICAL AND BUSINESS WRITING
 3 cr. (3 and 0)

ENGL 691 CLASSICAL RHETORIC
 3 cr. (3 and 0)

ENGL 692 MODERN RHETORIC
 3 cr. (3 and 0)

ENGL 700 CHILDREN’S LITERATURE FOR TEACHERS
 3 cr. (3 and 0)
 Literature for grades preschool through junior high.

ENGL 701 LITERATURE FOR TEACHERS
 3 cr. (3 and 0)
 Literary studies of special interest to secondary school teachers.

ENGL 800 INTRODUCTION TO RESEARCH
 1 cr. (1 and 0)
 Literary history and research; use of libraries and bibliographical tools; exposition of scholarship. Required of all candidates for the degrees Master of Arts and Master of Education with a concentration in secondary education, English.

ENGL 801 TOPICS IN COMPOSITION AND RHETORIC
 3 cr. (3 and 0)
 Principal theories and practices in modern grammar, rhetoric, stylistics and semantics related to teaching composition.
ENGL 802 TOPICS IN LITERARY GENRES
3 cr. (3 and 0)
Principal literary genres.

ENGL 805 TOPICS IN MEDIEVAL LITERATURE
3 cr. (3 and 0)
Principal works in verse and prose from c. 1100-1500.

ENGL 808 TOPICS IN RENAISSANCE AND RESTORATION LITERATURE
3 cr. (3 and 0)
Principal works in verse and prose from c. 1500-1700.

ENGL 811 TOPICS IN NEOCLASSIC AND ROMANTIC LITERATURE
3 cr. (3 and 0)
Principal works in verse and prose from c. 1700-1832.

ENGL 814 TOPICS IN VICTORIAN AND MODERN BRITISH LITERATURE
3 cr. (3 and 0)
Principal works in verse and prose from c. 1832 to present.

ENGL 820 TOPICS IN AMERICAN LITERATURE TO 1865
3 cr. (3 and 0)
Significant authors; works in poetry and prose; literary-intellectual movements such as puritanism, the enlightenment, romanticism and transcendentalism from c. 1607 to 1865.

ENGL 823 TOPICS IN AMERICAN LITERATURE SINCE 1865
3 cr. (3 and 0)
Significant authors; works in poetry and prose; literary-intellectual movements such as realism, naturalism, modernism and postmodernism from 1865 to the present.

ENGL 831 SPECIAL TOPICS
3 cr. (3 and 0)
Topics not covered in other courses.

ENGL 832 TOPICS IN SCIENTIFIC, TECHNICAL AND BUSINESS WRITING
3 cr. (3 and 0)
Seminar courses in such areas as professional editing and publishing, writing for government and industry, teaching technical writing, and writing for journals, magazines and newspapers.

ENGL 835 TOPICS IN LITERARY CRITICISM
3 cr. (3 and 0)
Principal statements of literary critics from the classical era to the present.

ENGL 837 TOPICS IN LINGUISTICS
3 cr. (3 and 0)
Concepts of traditional and modern grammarians; development of English language.

ENGL 840 DIRECTED STUDIES
3 cr. (3 and 0)
Tutorial work in linguistics or American, British or European literature not offered in other courses. Prerequisite: Permission of director of graduate studies.
ENGL 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

HISTORY
Theda Perdue, Program Director, Department of History

Major
History

Degree
M.A.

The M.A. in history requires 30 credits in courses numbered 600 or above that must be divided as follows: (1) a minimum of 12 credits in courses numbered between 800 and 890; (2) a minimum of 12 elective credits in graduate courses selected with the approval of the director of the graduate program in history; (3) a minimum of six credits in graduate thesis research. Additionally, the student must write a thesis acceptable to the department and must demonstrate reading knowledge of a foreign language. A final examination, which may be written or oral or a combination of the two forms, is required of all candidates.

Students holding an assistantship in the Department of History who receive a grade lower than B in any graduate course may have their assistantships terminated.

HIST 600 STUDIES IN UNITED STATES HISTORY
3 cr. (3 and 0)

HIST 640 STUDIES IN LATIN AMERICAN HISTORY
3 cr. (3 and 0)

HIST 650 STUDIES IN ANCIENT HISTORY
3 cr. (3 and 0)

HIST 660 STUDIES IN BRITISH HISTORY
3 cr. (3 and 0)

HIST 670 STUDIES IN EARLY EUROPEAN HISTORY
3 cr. (3 and 0)

HIST 671 STUDIES IN MODERN EUROPEAN HISTORY
3 cr. (3 and 0)

HIST 692 STUDIES IN DIPLOMATIC HISTORY
3 cr. (3 and 0)

HIST 693 STUDIES IN SOCIAL HISTORY
3 cr. (3 and 0)

HIST 694 STUDIES IN COMPARATIVE HISTORY
3 cr. (3 and 0)

HIST 695 STUDIES IN THE HISTORY OF IDEAS
3 cr. (3 and 0)

HIST 696 STUDIES IN LEGAL HISTORY
3 cr. (3 and 0)
HIST 697 STUDIES IN THE HISTORY OF SCIENCE AND TECHNOLOGY
3 cr. (3 and 0)

HIST 700 UNITED STATES THROUGH THE CIVIL WAR
3 cr. (3 and 0)

Problems in United States history through 1865 with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.

HIST 710 UNITED STATES SINCE 1865
3 cr. (3 and 0)

Problems in United States history since 1865 with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.

HIST 720 SOUTHERN HISTORY
3 cr. (3 and 0)

Problems in Southern history with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.

HIST 760 BRITISH HISTORY
3 cr. (3 and 0)

Problems in the history of Great Britain and the British Empire with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.

HIST 770 EUROPE TO THE 18TH CENTURY
3 cr. (3 and 0)

Problems in European history to 1700 with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.

HIST 775 EUROPE SINCE THE 18TH CENTURY
3 cr. (3 and 0)

Problems in European history since 1700 with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.

HIST 790 HISTORICAL AREA STUDIES
3 cr. (3 and 0)

Problems in the history of Africa, Asia, Latin America or the Middle East with attention given to bibliography and teaching methods. Primarily for Master of Education candidates, but open to all graduate students; may be repeated with permission of graduate program director.

HIST 800 SEMINAR IN UNITED STATES HISTORY
3 cr. (3 and 0)

Training in historical research and writing. May be repeated for credit with approval of graduate program director.
HISTORY

HIST 860 SEMINAR IN BRITISH HISTORY
3 cr. (3 and 0)
Training in historical research and writing. May be repeated for credit with approval of graduate program director.

HIST 870 SEMINAR IN EUROPEAN HISTORY
3 cr. (3 and 0)
Training in historical research and writing. May be repeated for credit with approval of graduate program director.

HIST 880 SPECIAL TOPICS IN HISTORY
3 cr. (3 and 0)
Training in historical research and writing. May be repeated for credit with approval of graduate program director.

HIST 885 INDEPENDENT STUDY
3 cr. (3 and 0)
Critical study of a historical topic, selected according to needs of student and with approval of graduate program director.

HIST 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

HIST 892 ARCHIVAL MANAGEMENT: AN INTRODUCTION
3 cr. (3 and 0)
Introduction to basic concepts of archival theory and management.

HIST 893 PRACTICUM IN ARCHIVAL MANAGEMENT
3 cr. (0 and 9)
Provides hands-on experience in the operations of an archival program, including acquisitions, arrangements, descriptions, conservation and reference service. Prerequisite: HIST 892 or consent of instructor.

PHIL 601 STUDIES IN THE HISTORY OF PHILOSOPHY
3 cr. (3 and 0)

PHIL 602 TOPICS IN PHILOSOPHY
3 cr. (3 and 0)

REL 601 STUDIES IN BIBLICAL LITERATURE
3 cr. (3 and 0)

REL 602 STUDIES IN RELIGION
3 cr. (3 and 0)

LANGUAGES

Judith M. Melton, Head, Department of Languages
Advanced degrees are not awarded in languages. Courses are offered to provide electives for students in other areas.

FR 699 SELECTED TOPICS IN FRENCH LITERATURE
3 cr. (3 and 0)

GER 698 INDEPENDENT STUDY
1-3 cr. (1-3 and 0)
SPAN 699 SPANISH LITERATURE, LANGUAGE AND CULTURE
3 cr. (3 and 0)

Two special courses are offered in French and German for graduate students preparing for the language examination:

FR 151 FRENCH FOR GRADUATE STUDENTS
3 cr. (3 and 0)

GER 151 GERMAN FOR GRADUATE STUDENTS
3 cr. (3 and 0)

POLITICAL SCIENCE
Charles W. Dunn, Head, Department of Political Science

Advanced degrees are not awarded in political science. Courses are offered to provide electives for students in other areas.

POL SC 609 DIRECTED STUDY IN AMERICAN INSTITUTIONS
3 cr. (3 and 0)

POL SC 622 PUBLIC POLICY ANALYSIS
3 cr. (3 and 0)

POL SC 623 MUNICIPAL ADMINISTRATION
3 cr. (3 and 0)

POL SC 624 ADMINISTRATIVE LAW
3 cr. (3 and 0)

POL SC 625 GRANTS AND THE GOVERNMENTAL BUDGETARY PROCESS
3 cr. (3 and 0)

POL SC 627 GOVERNMENT PERSONNEL ADMINISTRATION
3 cr. (3 and 0)

POL SC 628 AMERICAN DEFENSE POLICY ANALYSIS
3 cr. (3 and 0)

POL SC 632 AMERICAN CONSTITUTIONAL LAW I
3 cr. (3 and 0)

POL SC 633 AMERICAN CONSTITUTIONAL LAW II
3 cr. (3 and 0)

POL SC 642 POLITICAL PARTIES AND POLITICS
3 cr. (3 and 0)

POL SC 662 PEACE AND ORDER IN INTERNATIONAL RELATIONS
3 cr. (3 and 0)

PSYCHOLOGY
Eugene H. Galluscio, Head, Department of Psychology

Advanced degrees are not awarded in psychology. Courses are offered to provide electives for students in other areas.
PSYCHOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 615</td>
<td>SYSTEMS AND THEORIES OF PSYCHOLOGY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PSYCH 624</td>
<td>PHYSIOLOGICAL PSYCHOLOGY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PSYCH 625</td>
<td>PHYSIOLOGICAL PSYCHOLOGY LABORATORY</td>
<td>1 cr. (0 and 3)</td>
</tr>
<tr>
<td>PSYCH 635</td>
<td>HUMAN FACTORS PSYCHOLOGY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PSYCH 659</td>
<td>GROUP DYNAMICS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PSYCH 670</td>
<td>THEORIES OF PERSONALITY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PSYCH 680</td>
<td>HEALTH PSYCHOLOGY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PSYCH 683</td>
<td>ABNORMAL PSYCHOLOGY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>PSYCH 699</td>
<td>SEMINAR TOPICS IN CURRENT PSYCHOLOGY</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>

SOCIOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC 601</td>
<td>HUMAN ECOLOGY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>SOC 603</td>
<td>METHODS OF SOCIAL RESEARCH II</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>(RS 603)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC 604</td>
<td>SOCIOLOGICAL THEORY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>SOC 630</td>
<td>SOCIOLOGY OF ORGANIZATIONS</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>SOC 633</td>
<td>DEVELOPING SOCIETIES</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>SOC 640</td>
<td>LEISURE, THE MASS MEDIA AND CULTURE</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>SOC 641</td>
<td>SOCIOLOGY OF SPORT</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>SOC 659</td>
<td>THE COMMUNITY</td>
<td>3 cr. (3 and 0)</td>
</tr>
<tr>
<td>SOC 671</td>
<td>DEMOGRAPHY</td>
<td>3 cr. (3 and 0)</td>
</tr>
</tbody>
</table>

Advanced degrees are not awarded in sociology. Courses are offered to provide a minor for students majoring in other areas.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (3 and 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC 680</td>
<td>MEDICAL SOCIOLOGY</td>
<td>3 cr.</td>
</tr>
<tr>
<td>SOC 681</td>
<td>SOCIOLOGY OF AGING</td>
<td>3 cr.</td>
</tr>
<tr>
<td>SOC 690</td>
<td>REHABILITATION SYSTEMS</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>
The graduate program in nursing is based on the belief that nursing is a responsible, searching, transactional relationship considering man along the continuum of human development and within the context of humanism. The program develops self-directive, critically-thinking scholars prepared to participate with peers in their own and other disciplines.

Graduate education in nursing at Clemson University is postulated on the belief that development and testing of theoretical knowledge is the foundation for the discipline of nursing science. Theoretical knowledge in nursing requires the base of learning, understanding, insights and professional values acquired in the undergraduate nursing major.

Specialization within nursing is introduced at the master's level at which time the practitioner demonstrates expertise in caring for individuals and families in a variety of environmental settings and at various stages of human development. Graduate-level nursing education may provide opportunities to develop understanding of the teaching-learning process. Graduates may also provide leadership in nursing through the management of nursing services in health care agencies.

The dynamic forces brought to bear on family and community life require that graduate education in nursing provides opportunities for collaborative involvement in health promotion with the consumer public and other professionals. Thus, an education milieu that supports scientific and liberal study, interdisciplinary collaboration and involvement with the consumer public provides for educational experiences needed to practice humanistic nursing in rural settings.

Admission Requirements

In addition to meeting University admission requirements, students applying for admission to this program should be graduates of baccalaureate programs accredited by the National League for Nursing. Under unusual circumstances, this requirement may be waived by the dean of the College of Nursing. The applicants must also be licensed to practice professional nursing in the state(s) in which they do their clinical practice and carry nurse's liability insurance. Opportunity to do clinical practice in sites outside the Clemson area and/or South Carolina is subject to availability of appropriate faculty.

The Program

The Master of Science degree program in nursing prepares students for a

NOTE: The college reserves the right to limit enrollment of students in any course and not to offer a clinical option if enrollment is insufficient.
leadership role in family health nursing with emphasis on one of the following developmental levels: maternal-infant, child health, adult, gerontologic nursing, and rehabilitative nursing. Students are also prepared to conduct research, and those who select the nursing education option are prepared to be teachers of nursing. This program also provides the student with a foundation for continuing graduate study leading to a doctoral degree in nursing.

The family health nurse provides nursing care and education to families in health agencies and as an independent practitioner of nursing in collaboration with other professionals. Clients and families are seen primarily in homes, community agencies, clinics, family practice centers, physicians’ offices or hospitals. The College of Nursing Center provides a site for assessment of clients, nursing interventions and referrals. Supporting courses cover content such as the family, community, nursing role and process, structure of the health care system and research. Courses in the humanities and social and biological sciences are selected in accordance with student’s needs.

Students who select the nursing education option are prepared to teach nursing in classroom and clinical settings. Students who select the nursing management option are prepared to manage nursing-care services offered by health care delivery agencies. In addition, students are prepared to function in curriculum development and as a role model within any family health nursing setting.

Normally, 42 semester credit hours are required for awarding the Master of Science degree. Each student’s advisory committee, formed during the first semester of the program, determines the curriculum required of the student. This curriculum may be greater or less than the 42 semester credit hours. However, in all cases, the University’s minimum 30-hour requirement, inclusive of six semester credit hours devoted to the thesis, must be met.

NURS 801 FAMILY HEALTH NURSING
3 cr. (1 and 6)
Application of the nursing process and humanistic nursing; selected theoretical approaches to family care. The focuses of care in the family are the promotion of wellness, treatment of illness and enhancement of healthful behavior in families; includes the longitudinal analysis of care of selected families.

NURS 804 NURSING THEORY
3 cr. (3 and 0)
Definition of theory and processes used to develop theory; selected models of nursing are presented and evaluated to determine if they classify as theories and their relevance to family health nursing.

NURS 807 CLINICAL NURSING RESEARCH
3 cr. (3 and 0)
Research methodology emphasizing research in clinical nursing; ethics in research with human subjects; selected original research papers and other topics and activities related to developments in nursing. Research activity does not include thesis advisement.
NURS 812 THE DYNAMICS OF COMMUNITY HEALTH 3 cr. (3 and 0)
Relation of family health to community; epidemiological appraisal of community health; significance of process in planning and decision making; values guiding use and availability of health resources.

NURS 815 THE PROMOTION AND MAINTENANCE OF FAMILY HEALTH 3 cr. (1 and 6)
Incorporation of longitudinal analysis of study of families selected in NURS 801; continuity and coordination of health care; collaboration among professionals; continuing expansion of concepts of care; emerging systems of health maintenance. Prerequisites: NURS 801, 804 and 812.

NURS 825 THEORIES AND MODELS OF NURSING MANAGEMENT 3 cr. (3 and 0)
Identification, analysis and synthesis of theories of management, organization and administration applicable to the middle and executive levels of nursing management. Prerequisites: NURS 804, 807 and 815.

NURS 826 MANAGEMENT OF NURSING SERVICES 3 cr. (2 and 3)
Builds on NURS 825; involves the application of theories to specific management processes. A clinical practicum in nursing management, at the middle or executive level, in selected health care agencies permits the use and evaluation of a conceptual model of nursing management. Prerequisite: NURS 825.

NURS 827 FOUNDATIONS OF NURSING EDUCATION 3 cr. (3 and 0)
Philosophies and theories of teaching and learning that influence the development of nursing education in institutions of higher learning; influences of experimentalism and existentialism on the educational process. Prerequisites: NURS 801, 804, 812, 815 or completion of a master's degree in nursing.

NURS 828 THE COLLEGE TEACHER OF NURSING 3 cr. (2 and 3)
Roles and responsibilities of the nurse-teacher in collegiate nursing programs; curriculum development and evaluation; use of teaching methods, materials and clinical laboratory. Prerequisite: NURS 827.

NURS 831 ADULT NURSING I 6 cr. (3 and 9)
Advanced concepts related to humanistic nursing care of young adults; current research related to common health problems of the young adult; role of nurse as primary care provider and family advocate. Clinical laboratory practice selected from acute, ambulatory and community settings. Prerequisites: NURS 801, 804, 812 and 815.

NURS 832 ADULT NURSING II 6 cr. (3 and 9)
Advanced concepts related to humanistic nursing care of middle-aged adults; current research related to common health problems of middle-aged adults; role of nurse as primary care provider and family advocate. Clinical laboratory prac-
Practice selected from acute, ambulatory and community settings. **Prerequisite:** NURS 831.

NURS 833 REHABILITATIVE NURSING I
6 cr. (3 and 9)
Advanced concepts, principles and theories basic to humanistic practice of professional rehabilitative nursing; repatterning as an integral part of the human development process. Clinical laboratory practice selected from rehabilitation, ambulatory and community settings. **Prerequisites:** NURS 801, 804, 812 and 815.

NURS 834 REHABILITATIVE NURSING II
6 cr. (3 and 9)
Advanced body of knowledge concerned with neuromuscular and skeletal function common to normal human development and also seen in neuromuscular and skeletal injury; utilization of current research to propose innovative approaches for positive repatterning of long-term health alterations; maximizing role of professional nurse as member of interdisciplinary health team. **Prerequisite:** NURS 833.

NURS 835 CHILD HEALTH NURSING I
6 cr. (3 and 9)
Analysis of physiological, psychosocial and developmental theories, research, concepts and issues that form the basis for humanistic nursing practice with families who have healthy children within the developmental levels from birth through adolescence; emphasis is on the role of the child health nurse specialist in health promotion and maintenance. A variety of clinical settings are used for the development of assessment and intervention skills. **Prerequisites:** NURS 801, 804, 807, 812 and 815.

NURS 836 CHILD HEALTH NURSING II
6 cr. (3 and 9)
Analysis of advanced principles, concepts, theories and issues underlying nursing intervention with families of children with health deviations; use of research findings in clinical practice is stressed. Emphasis is on the role of the child health nurse specialist in providing care for children who are ill or disabled. **Prerequisite:** NURS 835.

NURS 837 MATERNAL-INFANT HEALTH NURSING I
6 cr. (3 and 9)
Critical overview of theory, research and issues in the care of expanding families; role of the nurse as direct care giver and advocate in helping families to deal with physical, psychosocial and other changes in this area. Clinical laboratory practice is selected from acute, ambulatory and community settings. **Prerequisites:** NURS 801, 804, 812 and 815.

NURS 838 MATERNAL-INFANT HEALTH NURSING II
6 cr. (3 and 9)
Continuation of NURS 837; emphasis on the care of families at high risk of complications in physical and psychosocial development. Clinical laboratory is selected from acute, ambulatory and community settings. **Prerequisite:** NURS 837.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 840</td>
<td>GERONTOIC NURSING I</td>
<td>6 cr.</td>
<td>NURS 801, 804, 812 and 815.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Research, knowledge, concepts and issues basic to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>advanced practice of humanistic gerontological</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nursing; theories of environment and change related</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to the aging; phenomenon of human aging as reflected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>by changes in elders' patterns of living. Clinical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>laboratory practice selected from a variety of geron-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tological settings. Prerequisites: NURS 801, 804, 812</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and 815.</td>
</tr>
<tr>
<td>NURS 841</td>
<td>GERONTOIC NURSING II</td>
<td>6 cr.</td>
<td>NURS 840.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Continuation of NURS 840, building on review of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>phenomena of aging research; theories relevant to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>humanistic gerontological nursing practice by fam-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ily nurse specialist. Clinical laboratory practice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>selected from a variety of gerontological settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prerequisite: NURS 840.</td>
</tr>
<tr>
<td>NURS 879</td>
<td>SPECIAL TOPICS IN NURSING</td>
<td>1-3 cr.</td>
<td>Permission of instructor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In-depth study of selected topics such as therapeu-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tic communication, legal and ethical issues in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nursing and health care, and political process in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>health. Prerequisite: NURS 840.</td>
</tr>
<tr>
<td>NURS 889</td>
<td>SPECIAL PROBLEMS IN NURSING</td>
<td>1-6 cr.</td>
<td>NURS 801, 804, 807 and permission of instructor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Problems selected to meet special and individualized</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>interests of students.</td>
</tr>
<tr>
<td>NURS 891</td>
<td>MASTER'S THESIS RESEARCH</td>
<td>Credit</td>
<td>Permission of instructor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Research activities related to thesis; minimum of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>six hours required. Prerequisites: NURS 801, 804, 807</td>
</tr>
</tbody>
</table>
COLLEGE OF SCIENCES

BIOCHEMISTRY
BIOLOGICAL SCIENCES
BIOLOGY
BOTANY
CHEMISTRY
COMPUTER SCIENCE
EARTH SCIENCE
MATHEMATICAL SCIENCES
MICROBIOLOGY
PHYSICS
ZOOLOGY
The College of Sciences offers advanced degrees in the following areas of study:

- Biochemistry
- Botany
- Chemistry
- Computer Science
- Mathematical Sciences
- Microbiology
- Physics
- Zoology

Degrees offered are the Master of Science degree in biochemistry, botany, chemistry, computer science, mathematics, microbiology, physics and zoology, and the Doctor of Philosophy degree in biochemistry, chemistry, computer science, mathematics, microbiology, physics and zoology.

A graduate program leading to the Ph.D. with major emphasis in botany is available through an interdepartmental plant physiology program. In addition, the Ph.D. in management science is awarded jointly with the departments of Management and Mathematical Sciences. Graduate courses are offered in earth science to provide a minor for students in other areas of science. Graduate courses in biology and astronomy provide electives for students in other areas.

All graduate programs offered in this college emphasize a broad academic foundation in the disciplinary area combined with intensive study and research in a specific area culminating in a departmental report, thesis or dissertation.

Although the college does not award any professional graduate degrees, courses specifically designed for professional-level graduate work are available in almost all departments with special attention paid to secondary-level public school teachers who wish to take a major concentration in the sciences while pursuing a professional degree in education.

BIOCHEMISTRY

Gary L. Powell, Program Coordinator, Department of Biological Sciences

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td>M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Enrollment in the biochemistry program is open to students with baccalaureate degrees in agricultural, biological or physical sciences, or engineering. Entering students must have satisfactory academic records in mathematical, physical and biological sciences. Students with deficiencies may be admitted but will be required to correct these deficiencies during the first year.

Attendance and participation in departmental seminars is mandatory for all graduate students.

Retiring in 1987.
Biochemistry 625, 626, 631 and 632 (eight total credit hours) constitute the core of the biochemistry program. All students are expected to complete these courses if they have not had their equivalents at another accredited institution.

In addition to core courses, the M.S. degree requires a minimum of 16 credit hours of course work. Twelve of the 16 credits must be in 800-level courses. At least eight of these 800-level credits (including BIOCH 851) must be in biochemistry courses. Two of the following three courses are required: BIOCH 820, 822 and 831. A minimum of six semester hours of M.S. research (BIOCH 891), culminating in a thesis, is required.

The Ph.D degree, in addition to core courses, requires a minimum of 27 credit hours of course work with 15 credits in 800-level biochemistry courses and 12 credits in an approved minor area. BIOCH 820, 822 and 831 are required of all Ph.D. students. In addition, one course must be selected from the following: BIOCH 815, 824 and 819. Of the 35 required hours, a minimum of 18 hours must be 800-level courses. Successful completion of written and oral comprehensive exams (after three semesters in residence) will admit the student to candidacy for the Ph.D. degree.

BIOCH 820 PHYSIOLOGICAL CHEMISTRY 3 cr. (3 and 0)
BIOCH 822 PHYSIOLOGICAL CHEMISTRY LABORATORY 1 cr. (0 and 3)
BIOCH 831 A PHYSICAL APPROACH TO BIOCHEMISTRY 3 cr. (3 and 0)
BIOCH 832 BIOCHEMISTRY OF METABOLISM 3 cr. (3 and 0)
BIOCH 841 MOLECULAR BIOLOGY 3 cr. (3 and 0)
BIOCH 851 LIPIDS AND BIOMEMBRANES 3 cr. (3 and 0)

Physical and chemical techniques for analysis of biological materials. Emphasis is on instrumentation. Prerequisites: BIOCH 431/631 and 425/625; or 423/623 and 425/625; or 406/606 and 408/608; or permission of instructor.
tion, structure, function and biosynthesis of biomembranes. **Prerequisites:** BIOCH 431/631 or 423/623, and 424/624 or permission of instructor.

BIOCH 817 CHEMISTRY AND METABOLISM OF HORMONES
3 cr. (3 and 0)
Isolation, assay and chemistry of the various hormones; hormonal control of metabolism and body functions; endocrinopathies of hormone imbalance. **Prerequisites:** BIOCH 431/631 or 423/623, and 424/624 or permission of instructor.

BIOCH 819 REGULATION OF INTERMEDIARY METABOLISM
3 cr. (3 and 0)
Dynamic processes of intermediary metabolism emphasizing control of catabolism and anabolism in both plants and animals. Subject matter will be covered in lectures, discussions and guided reading of original, current and classical literature. **Prerequisites:** BIOCH 431/631 or 423/623, and 424/624 or permission of instructor.

BIOCH 820 NUCLEIC ACIDS AND PROTEIN BIOSYNTHESIS
3 cr. (3 and 0)
Isolation, composition, structure, maturation and functions of nucleic acids; mechanisms of protein synthesis. Students review recent papers in literature, file reports and write a potential experimental research proposal. **Prerequisites:** BIOCH 431/631 or 423/623, and 424/624 or permission of instructor.

BIOCH 821 PROTEINS
3 cr. (3 and 0)
Isolation, composition, structure and properties of proteins; methods of isolation, analysis and characterization; properties of "unusual" protein systems. **Prerequisite:** BIOCH 431/631 or 423/623 or permission of instructor.

BIOCH 822 ENZYMES
3 cr. (3 and 0)
Kinetics, mechanisms of action, inhibitions and general properties of enzymes. **Prerequisite:** BIOCH 431/631 or 423/623.

BIOCH 824 CELLULAR REGULATION AT THE MOLECULAR LEVEL
3 cr. (3 and 0)
Cellular regulation at translational and transcriptional level. Students present recent papers from literature and write a research proposal. **Prerequisite:** BIOCH 820 or permission of instructor.

BIOCH 825 NEUROCHEMISTRY
3 cr. (3 and 0)
Morphological basis of neurochemistry; function of neural membranes; synaptic functions; brain metabolism; physiological integration of brain structure and function; related topics in medical and behavioral neurochemistry; experimental approaches; current and classical papers from neurochemical literature. **Prerequisite:** BIOCH 424/624.

BIOCH 831 PHYSICAL BIOCHEMISTRY
3 cr. (3 and 0)
Description and theory of physical methods and instrumentation used in analysis of biological macromolecules. **Prerequisites:** BIOCH 431/631 or 423/623, and one semester of physical chemistry or permission of instructor.
BIOCH 851 BIOCHEMISTRY SEMINAR
1 cr. (1 and 0)
Students review current topics in biochemistry.

BIOCH 871 ADVANCED TOPICS
1-3 cr. (1-3 and 0)
Course offerings include bioenergetics, metabolic control mechanisms, biochemistry of unusual systems and current advances in more traditional areas. Topic to be discussed each semester will be announced prior to registration.
Prerequisite: Permission of instructor.

BIOCH 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

BIOCH 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

BIOLOGICAL SCIENCES
Carl W. Helms, Head, Department of Biological Sciences
Advanced degrees are not awarded in biological sciences as a major. These courses are taught by faculty in the Department of Biological Sciences and supplement courses in botany and zoology.

BIO SC 635 PRINCIPLES OF EVOLUTION
4 cr. (4 and 0)

BIO SC 641 ECOLOGY
4 cr. (3 and 3)

BIO SC 642 BIOGEOGRAPHY
3 cr. (3 and 0)

BIO SC 643 AQUATIC ECOLOGY
4 cr. (3 and 3)

BIO SC 652 ANATOMY AND MORPHOLOGY OF VASCULAR PLANTS
4 cr. (3 and 3)

BIO SC 661 CELL BIOLOGY
4 cr. (3 and 3)

BIO SC 683 REGULATORY BIOLOGY I
4 cr. (3 and 3)

BIO SC 684 REGULATORY BIOLOGY II
4 cr. (3 and 3)

BIO SC 685 BIOLOGICAL ASSESSMENT OF AQUATIC ENVIRONMENTS
4 cr. (3 and 3)

BIOLOGY
Doris R. Helms, Director, Biology Program
Advanced degrees are not awarded in biology as a major. These courses
are taught by faculty in the life sciences and are offered for elementary and secondary education majors.

BIOL 700 CLASSICAL GENETICS
1 cr.
Classical principles of genetics including Mendelian genetics, chromosomal theory of inheritance, gene interactions and population genetics. Restricted to elementary and secondary school teachers.

BIOL 701 THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM I
1 cr.
Introduction to theory and practice of instructional uses of microcomputers and computer terminals in the biology classroom; use and construction of programs designed to teach biology through use of drill and practice, tutorial, simulation and gaming techniques. Restricted to elementary and secondary school teachers.

BIOL 702 ECOLOGY
1 cr.
Theories, principles and examples describing interactions of individuals, populations and communities with their environment; emphasis and examples come from human situations. Restricted to elementary and secondary school teachers.

BIOL 703 SURVEY OF THE KINGDOMS MONERA, PROTISTA AND FUNGI
1 cr. SS
Distribution, classification, morphology and economic importance of bacteria, blue-green algae, eucaryotic algae, protozoans, fungi, lichens and viruses. Laboratory investigations applicable for use in classroom. Restricted to elementary and secondary school teachers.

BIOL 704 ANALYTICAL THINKING IN BIOLOGY
1 cr.
Role of analysis and critical thinking in biology as a science; rationale and theories which provide a basis for this teaching approach. Learning experiences, with modification, applicable at high school level. Restricted to elementary and secondary school teachers.

BIOL 705 PUBLIC HEALTH MICROBIOLOGY
1 cr.
Microbiologist’s role in maintenance of public health including food inspection, sewage and water treatment, vaccination programs, air quality control and epidemiology at state and federal levels. Restricted to elementary and secondary school teachers.

BIOL 706 BASIC METHODS OF PRESERVING VERTEBRATES FOR TEACHING COLLECTIONS
1 cr. (1 and 0)

BIOL 707 PREPARATION OF PLANTS FOR PERMANENT TEACHING COLLECTIONS
1 cr. (1 and 0)
History and principles of herbarium collections (vascular plants, bryophytes,
fungi, lichens, algae, fruit and seeds). Includes methods used by major herbaria for preserving various plant collections and inexpensive methods for small teaching collections. Restricted to elementary and secondary school teachers.

BIOL 708 FOOD MICROBIOLOGY
1 cr. (1 and 0)
Factors that influence the survival and growth of microbes in foods, methods of enumeration, food fermentations; food spoilage and foodborne illness. Microbiological specifications for foods and aspects of control of product quality and safety are also discussed. Restricted to elementary and secondary school teachers.

BIOL 709 MICROTECHNIQUES
1 cr.
Principles and practical applications of light microscopy and microtechnique; basic histology, staining and repair of the light microscope with limited instruction in the techniques of transmission and scanning electron microscopy. Lab provides experience in the use of materials and equipment necessary for light microscopy.

BIOL 710 SPECIAL INSTITUTE COURSE: SELECTED TOPICS IN BIOLOGY
1-6 cr. (0-6 and 0-18)
Study of one of more topics organized according to institute needs. The lecture and laboratory will emphasize the incorporation of the new or updated subject matter into classroom instruction. Restricted to elementary and secondary school teachers.

BIOL 731 THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM II
1 cr.
Intermediate-level continuation of BIOL 701. Restricted to elementary and secondary school teachers.

BIOL 732 MICROECOSYSTEMS IN THE CLASSROOM
1 cr.
Theory and techniques for establishing and maintaining fresh-water aquaria, salt-water aquaria, earthworm microecosystems, research aquatic microecosystems and terraria in the laboratory; microecosystems used to illustrate ecological principles in the laboratory. Restricted to elementary and secondary school teachers. Prerequisite: BIOL 702 or permission of instructor.

BIOL 733 THE BRAIN, NERVOUS SYSTEM AND SENSE ORGANS
1 cr.
Structural and functional approach to the nervous system and sense organs, mainly of vertebrates; understanding sought at molecular, cellular, tissue and gross anatomy levels. Laboratory practice includes dissection, physiological and histological studies and exercises using students as experimental subjects. Restricted to elementary and secondary school teachers.

BIOL 734 THE PHYSIOLOGY OF RESPIRATION
1 cr.
Human respiration including anatomy, mechanics, gas transport and control of respiration; recent advances in high altitude and underwater breathing, artificial
blood substitutes and liquid breathing. Restricted to elementary and secondary school teachers.

BIOL 761 THE MICROCOMPUTER IN THE BIOLOGY CURRICULUM III
1 cr.
Advanced-level continuation of BIOL 731. Restricted to elementary and secondary school teachers.

BIOL 762 HUMAN GENETICS
1 cr.
Genetic principles as they relate to human inheritance, emphasizing patterns of human inheritance and their implication in society. Student project required. Restricted to elementary and secondary school teachers.

BIOL 763 FUNDAMENTAL IMMUNOLOGY & SEROLOGY IN PUBLIC HEALTH
1 cr.
Antigens and antigenicity, production and characterization of antibody, antigen-antibody reactions, cell-mediated immune response. Restricted to elementary and secondary school teachers.

BIOL 764 MODERN MOLECULAR GENETICS
1 cr.
Survey of molecular genetics and its recent advances. Topics include nucleic acid structure and function, transcription, translation, replication, processing, regulation and recombinant DNA.

BOTANY
Thomas M. McInnis, Program Coordinator, Department of Biological Sciences

Major
Botany
Plant Physiology

Degrees
M.S.
Ph.D.

Candidates for graduate work in botany or plant physiology should have a strong undergraduate background in the biological and physical sciences, especially botany and chemistry. Undergraduate curricula which may provide this background are botany, biology or chemistry, or one of the agricultural plant sciences such as agronomy, forestry or horticulture.

All candidates for the Master of Science degree must complete 24 semester hours of course work and six hours of research and must present and defend a thesis based on original research. Research topics are generally selected from one of the following areas: taxonomy/biosystematics, cytology, development, ecology, mycology, phycology or physiology.

In addition to the Master of Science degree in botany, the department participates in an interdepartmental program awarding the Doctor of Philosophy degree with a major in plant physiology. This program offers considerable opportunity for doctoral research in botany. It is described under Plant Physiology in the College of Agricultural Sciences.
BOT 611 INTRODUCTORY MYCOLOGY
4 cr. (3 and 3) F (even numbered years)

BOT 613 PHYCOLOGY
4 cr. (3 and 3) S (odd numbered years)

BOT 621 PLANT PHYSIOLOGY
4 cr. (3 and 3) F, S, SS

BOT 631 INTRODUCTORY PLANT TAXONOMY
4 cr. (3 and 3) F, SS

BOT 635 EVOLUTION OF PLANT SPECIES
3 cr. (3 and 0) S (odd numbered years)

BOT 656 PLANT MICROTECHNIQUE
2 cr. (0 and 6) S (even numbered years)

BOT 701 EVOLUTIONARY BOTANY FOR TEACHERS
3 cr. (2 and 3) S, SS
Survey of plant kingdom emphasizing evolutionary relationships of plant divisions based primarily on morphology; non-vascular plants; vascular plants. Restricted to students in secondary education.

BOT 702 MODERN BOTANICAL CONCEPTS FOR TEACHERS
3 cr. (3 and 0) F, SS
Topics stressing functional processes in plants: physiology, ecology, genetics and evolution. Restricted to students in secondary education.

BOT 805 SPECIAL PROBLEMS IN BOTANY
Credit to be arranged.
Research in botany or plant physiology not related to a thesis. Prerequisite: Permission of instructor.

BOT 807 SEMINAR
1 cr. (1 and 0) F, S
Areas of botanical sciences not covered in other courses. Student reviews literature, organizes and presents material; may be taken for credit only twice.

BOT 813 SPECIAL TOPICS IN MYCOLOGY
2-4 cr. (0-2 and 0-6) S
Literature and current developments in a major group of fungi. Topics vary each semester and may include broader fields of mycological research such as fungal ecology and systematics. May be repeated for credit. Prerequisite: Permission of instructor.

BOT 815 PHYCOLOGY COLLOQUIUM
1-3 cr. (1-3 and 0) F (odd numbered years)
Phenomena associated with algae. Discussion topics, taken from current scientific literature, present to students a forum for criticizing research, conceiving new ideas for research, developing research outlines and proposals, and incorporating knowledge gained from phycology into a more inclusive understanding of physical and biological systems. Prerequisite: BOT 413/613 or permission of instructor.
BOT 821 INORGANIC PLANT METABOLISM
4 cr. (3 and 3) F (odd numbered years)
Plant, soil, water and nutrient relations; permeability; uptake and translocation; transpiration; mineral nutrition. Prerequisite: BOT 421/621 or permission of instructor.

BOT 822 ORGANIC PLANT METABOLISM
3 cr. (3 and 0) S (even numbered years)
Respiration and photosynthesis; synthesis, translocation, storage, transformation and degradation of organic materials, fats, carbohydrates, proteins, pigments and nucleic acids. Prerequisite: BOT 421/621, general biochemistry or permission of instructor.

BOT 823 PLANT GROWTH AND DEVELOPMENT
3 cr. (3 and 0) F (even numbered years)
Vegetative and reproductive growth and development from seed to maturity, flowering, fruiting and senescence; natural and synthetic growth regulators; morphogenesis. Prerequisite: BOT 421/621, organic chemistry or permission of instructor.

BOT 824 MODE OF ACTION OF GROWTH SUBSTANCES
4 cr. (3 and 3) S (odd numbered years)
Physiology and biochemistry of both natural and synthetic growth regulators, hormones, growth retardants, herbicides and other inhibitors; methodology and mechanism of action. Prerequisites: BOT 421/621 and general biochemistry, or BOT 822 or permission of instructor.

BOT 831 ADVANCED PLANT TAXONOMY
4 cr. (3 and 3) S (even numbered years)
Principles of plant classification; relationships and characteristics of major groups of vascular plants. Student collects and identifies spring flora of area. Prerequisite: BOT 431/631 or permission of instructor.

BOT 832 SPECIAL TOPICS IN PLANT SYSTEMATICS
1-4 cr. (1-3 and 0-3) S
Special topics in classical and experimental approaches to plant systematics. May be repeated for credit. Prerequisite: BOT 431/631 or permission of instructor.

BOT 837 EVOLUTION OF ANGIOSPERMS
3 cr. (3 and 0) F (even numbered years)
An advanced study of the phylogeny of the angiosperms. Topics include the current hypothesis of angiosperm origin, the probable nature of the earliest angiosperms, evolutionary trends in morphological specialization, the origin of monocots, adaptations for pollination and the coevolution of plants and animals. Prerequisites: 431/631, 435/635 or consent of instructor.

BOT 841 THE BIOLOGY OF AQUATIC VASCULAR PLANTS
3 cr. (2 and 3) S (odd numbered years)
Salient features of the aquatic environment relative to aquatic vascular plants and structural adaptations of the vegetative and reproductive organs of water plants; life histories of important aquatic plant families, their biological character-
istics, ecological interactions and distribution. **Prerequisites:** BOT 431/631, ZOOL 410/610 or permission of instructor.

BOT 842 PHYSIOLOGICAL PLANT ECOLOGY
3 cr. (3 and 0) F (odd numbered years)

Interactions between individual plants and their environment; plant adaptations in relation to influences of environmental factors upon gas exchange by plants, plant nutrient relations, plant water relations, and reproduction and establishment of plants. **Prerequisites:** BOT 421/621 and BIO SC 441/641 or permission of instructor.

BOT 843 PHYSIOLOGICAL PLANT ECOLOGY LABORATORY
1 cr. (0 and 3) F (odd numbered years)

Methods and measurements used in physiological plant ecology research; equipment theory and hands-on work with equipment to measure photosynthesis, plant water status and other biological and environmental parameters. **Corequisite:** Enrollment in BOT 842.

BOT 845 SPECIAL TOPICS IN PLANT ECOLOGY
1-4 cr. (1-3 and 0-3) S

Methods in vegetation analysis; ecological instrumentation; unique vegetation systems; other topics and advances in plant ecology. Applicable for all graduate students in ecology; may be repeated for credit. **Prerequisite:** BIO SC 441/641 or permission of instructor.

BOT 846 PLANT ECOLOGY
4 cr. (3 and 3) F

Detailed study of the effects of environmental factors upon plants and the influence of plants upon the environment. Identification and analysis of interrelated biotic and physical factors that affect the structure, distribution and dynamics of individual plants, plant populations and ecosystems. **Prerequisite:** BIO SC 441/641 or consent of instructor.

BOT 850 PLANT TISSUE AND CELL CULTURE
3 cr. (2 and 3) S (odd numbered years)

Consideration of methods and principles of plant tissue and cell culture: cloning, embryogenesis, protoplast fusion, plant regeneration, potential of plant genetic engineering. **Prerequisite:** Introductory plant physiology or permission of instructor.

BOT 851 PLANT ANATOMY
3 cr. (2 and 3) F

Study of the origin, development and comparative structures of tissues, systems and organs of higher plants. **Prerequisite:** BIO SC 452/652 or consent of instructor.

BOT 861 PLANT CELL BIOLOGY
3 cr. (3 and 0) F (even numbered years)

Structure, development and activities of plant cells; ultrastructural organization uniquely associated with dynamics of cellular growth and development in plants. **Prerequisite:** BOT 421/621 or permission of instructor.

BOT 891 MASTER’S THESIS RESEARCH

Credit to be arranged.
BOTANY

BOT 921 PLANT PHYSIOLOGY COLLOQUIUM
(HORT 921) 1 cr. (1 and 0)
Topics from current plant physiology literature give students a forum for criticalizing research, conceiving new research ideas, developing research outlines and proposals, and integrating knowledge from various subdisciplines of plant physiology. May be repeated for credit. Prerequisite: BOT 421/621 or permission of instructor.

BOT 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

CHEMISTRY
Darryl D. DesMarteau, Head, Department of Chemistry

<table>
<thead>
<tr>
<th>Major</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Degree concentrations are offered in analytical, inorganic, organic and physical chemistry. Research areas also include bio-organic chemistry, polymer chemistry and chemical physics. A Ph.D. degree in chemistry with a concentration in textile chemistry is offered jointly with the School of Textiles.

Students in either degree program must present satisfactory research seminars and must complete, or have completed, a computer science course equivalent to Clemson University's CP SC 110. In some instances, the computer science course requirement may be waived for candidates for the M.S. degree who have satisfactorily completed undergraduate courses in French, German or Russian. Students in the Ph.D. program must pass a language requirement in French, German or Russian.

Master of Science degree candidates must complete 24 hours of course work and six hours of research culminating in a satisfactory thesis.

The primary requirement for the Ph.D. degree is the performance of original research leading to a dissertation. Doctor of Philosophy degree candidates must qualify to pursue the Ph.D. degree by completing a core of four courses with at least a B average during the first two years of study. The core courses are taken in four areas: one in organic, one in physical and two selected from analytical, inorganic and biochemistry. Qualification requirements may also be satisfied by examination.

Admission to candidacy for the Ph.D. degree requires completion of either a cumulative or a comprehensive examination in the area of concentration. The examination, the type of which depends upon the area selected by the student, may be followed by an oral presentation before a faculty committee.

CH 602 INORGANIC CHEMISTRY
3 cr. (3 and 0)

CH 611 INSTRUMENTAL ANALYSIS
4 cr. (2 and 6)

CH 621 ADVANCED ORGANIC CHEMISTRY
3 cr. (3 and 0)
CH 627 ORGANIC SPECTROSCOPY 3 cr. (2 and 3)
CH 631 PHYSICAL CHEMISTRY 3 cr. (3 and 0)
CH 632 PHYSICAL CHEMISTRY 3 cr. (3 and 0)
CH 635 SPECTROSCOPY AND MOLECULAR STRUCTURE 3 cr. (3 and 0)
CH 639 PHYSICAL CHEMISTRY LABORATORY 1 cr. (0 and 3)
CH 640 PHYSICAL CHEMISTRY LABORATORY 1 cr. (0 and 3)
CH 654 CHEMICAL SYNTHESIS 3 cr. (1 and 6)
CH 691 INTRODUCTION TO RADIOCHEMISTRY 3 cr. (2 and 3)
CH 700 PHYSICAL SCIENCE IN ELEMENTARY SCHOOL—CHEMISTRY 3 cr. (2 and 3)

Basic chemical principles and their applications to everyday life; selecting, carrying out and discussing short, safe, inexpensive experiments to illustrate the principles. Restricted to graduate students in elementary education; graduate students in secondary education may take this course by special permission of instructor.

CH 701 REVIEW OF GENERAL CHEMISTRY 3 cr. (3 and 0)

Basic principles encountered in a general chemistry course; explanation of observed facts in terms of modern atomic and molecular structure. Restricted to graduate students in elementary and secondary education.

CH 702 CHEMISTRY FOR HIGH SCHOOL TEACHERS 3 cr. (2 and 3)

Modern chemical topics selected to meet needs of students; fundamental concepts in organic, bio-organic and physical chemistry. Laboratory provides experience in performance and interpretation of illustrative experiments. Restricted to graduate students in secondary education.

CH 703 SPECIAL PROBLEMS IN CHEMISTRY FOR ELEMENTARY AND SECONDARY SCHOOL TEACHERS 3-6 cr. (2-6 and 6-0)

Directed, individual study in designing experiments and teaching materials or an in-depth study of one or more advanced topics. Seminars used as teaching and evaluation procedure; student completes project which can be used in his or her teaching situation. Restricted to graduate students in elementary and secondary education; may be repeated for additional credit.

CH 804 FUNDAMENTAL PRINCIPLES OF INORGANIC CHEMISTRY 3 cr. (3 and 0)
Fundamental principles of modern inorganic chemistry showing their relationship to other areas of chemistry.

CH 805 THEORETICAL INORGANIC CHEMISTRY
3 cr. (3 and 0)
Application of group theory to structure and properties of inorganic molecules. Prerequisite: CH 435/635 and 804 or permission of instructor.

CH 806 PHYSICAL METHODS IN INORGANIC CHEMISTRY
3 cr. (3 and 0)
Theory and application of infrared, Raman, visible, ultraviolet, NMR, ESR, NQR, Mossbauer and mass spectrometry to inorganic chemistry. Prerequisite: CH 804 or permission of instructor.

CH 807 CHEMISTRY OF THE TRANSITION ELEMENTS
3 cr. (3 and 0)
Structure, spectroscopy and reactivity of transition metals and their compounds. Prerequisite: CH 804 or permission of instructor.

CH 808 CHEMISTRY OF THE NONMETALLIC ELEMENTS
3 cr. (3 and 0)
Development and application of a bonding model for descriptive inorganic chemistry of boron, carbon, silicon, nitrogen, phosphorus, oxygen and sulfur. Prerequisite: CH 804 or permission of instructor.

CH 811 ANALYTICAL CHEMISTRY
3 cr. (3 and 0)
Graduate-level review of modern analytical chemistry; literature, sampling, quality control/assurance, chemometrics and the use of modern analytical methods are stressed. The course is team-taught by the analytical faculty.

CH 812 CHEMICAL SPECTROSCOPIC METHODS
3 cr. (2 and 3)
Emission and absorption spectroscopy, chemical microscopy, X-ray diffraction and fluorescence techniques in analytical chemistry; theory and operation of instruments.

CH 814 ELECTROANALYTICAL CHEMISTRY
3 cr. (2 and 3)
Theory and practical application of modern electrochemistry applied to analytical chemistry.

CH 816 SEPARATION SCIENCE
3 cr. (3 and 0)
Fundamental thermodynamic and kinetic concepts of separation and practical aspects of current separation techniques used in analytical chemistry.

CH 821 ORGANIC CHEMISTRY I
3 cr. (3 and 0)
Theoretical concepts of organic chemistry, stereochemistry and mechanisms of organic reactions. Prerequisite: CH 421/621 or satisfactory performance on the organic chemistry placement examination.

CH 822 ORGANIC CHEMISTRY II
3 cr. (3 and 0)
Continuation of CH 821; mechanisms of organic reactions including
photochemistry and Woodward-Hoffman rules; modern synthetic organic chemistry. **Prerequisite:** CH 821 or permission of instructor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 824</td>
<td>FUNDAMENTAL PRINCIPLES OF POLYMER CHEMISTRY</td>
<td>3 cr.</td>
<td>CH 821 or permission of instructor.</td>
</tr>
<tr>
<td>CH 825</td>
<td>CHEMISTRY OF HETEROCYCLIC COMPOUNDS</td>
<td>3 cr.</td>
<td>CH 821 and/or CH 822 or permission of instructor.</td>
</tr>
<tr>
<td>CH 830</td>
<td>FUNDAMENTALS OF PHYSICAL CHEMISTRY</td>
<td>3 cr.</td>
<td>permission of instructor.</td>
</tr>
<tr>
<td>CH 831</td>
<td>CHEMICAL THERMODYNAMICS</td>
<td>3 cr.</td>
<td>CH 331/631 or equivalent.</td>
</tr>
<tr>
<td>CH 834</td>
<td>STATISTICAL THERMODYNAMICS</td>
<td>3 cr.</td>
<td>CH 831</td>
</tr>
<tr>
<td>CH 835</td>
<td>CHEMICAL KINETICS</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>CH 837</td>
<td>QUANTUM CHEMISTRY</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>CH 840</td>
<td>TECHNIQUES OF EXPERIMENTAL CHEMISTRY</td>
<td>3 cr.</td>
<td></td>
</tr>
<tr>
<td>CH 851</td>
<td>SEMINAR</td>
<td>1-2 cr.</td>
<td></td>
</tr>
</tbody>
</table>
Students and faculty review current topics in chemistry. May be taken more than one semester.

CH 861 PRINCIPLES OF BIOCHEMISTRY
3 cr. (3 and 0)
Rigorous, quantitative treatment of properties of biological molecules using modern techniques of organic, physical and analytical chemistry to study structural relationships and biological activity. Prerequisites: Satisfactory performance on placement examinations in organic and physical chemistry.

CH 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

CH 900 ADVANCED TOPICS IN INORGANIC CHEMISTRY
1-4 cr. (1-4 and 0)
Metal-metal bonding; homogeneous catalysis; photochemistry; bioinorganic chemistry. Topics vary with interests of students; may be taken for additional credit.

CH 910 SPECIAL TOPICS IN ANALYTICAL CHEMISTRY
1-4 cr. (1-4 and 0)
New techniques and their applications in analytical chemistry; laser methods; data acquisition processing; electronics, instrument/computer interfacing; field methods of sampling and analysis. Topics vary with interest of students. May be repeated for additional credit.

CH 920 ADVANCED TOPICS IN ORGANIC CHEMISTRY
1-4 cr. (1-4 and 0)
Heterocyclic compounds; stereochemistry; natural products; organometallic chemistry; photochemistry. Topics vary with interests of students; may be taken for additional credit.

CH 930 ADVANCED TOPICS IN PHYSICAL CHEMISTRY
1-4 cr. (1-4 and 0)
Special problems in molecular spectroscopy, molecular orbital treatments, applications of group theory to chemical structure, irreversible thermodynamics and special topics in statistical mechanics. Topics vary with interest of students; may be taken for additional credit.

CH 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

COMPUTER SCIENCE
A. Joe Turner, Jr., Head, Department of Computer Science

Major Degrees
Computer Science M.S., Ph.D.

The following are required for unconditional admission to graduate study in computer science:
1. The ability to design, code, test and document computer programs written in a high-level programming language. (This implies programming
experience considerably beyond that obtained in most beginning program-
mapping courses.)

2. Basic mathematics including calculus, elementary probability and sta-
tistics, and discrete mathematics or logic.

3. Intermediate-level computer science, including computer organiza-
tion and data representation, machine and assembly language program-
ming, data structures, file organization and processing, and pro-
gramming systems.

An applicant with minimal deficiencies may be admitted provisionally,
while one with several deficiencies may be required to satisfactorily com-
plete prerequisite work as a post-baccalaureate student prior to admission
as a graduate student.

A candidate for the M.S. degreee must satisfactorily complete an
approved program of at least 30 graduate hours. At the discretion of the stu-
dent's advisory committee, a thesis or non-thesis option is available. Six
hours of research credit may be counted toward the degree requirements
with the thesis option. Students may take up to six hours of approved
courses in areas outside the department. A scholarly paper or thesis must be
prepared and presented by all M.S. degree candidates. Both thesis and non-
thesis degree candidates must pass a final comprehensive examination. All
students must demonstrate proficiency in computer organization, operating
systems and systems programming, database systems, programming lan-
guages and compilers, theory of computation and software engineering to
receive the M.S. degree in computer science.

Although there are no formal course requirements for the Ph.D. degree, a
typical program would require two to four years of effort beyond the M.S.
degree and include an additional 12 hours of study in computer science.
Each candidate is required to pass a qualifying examination, a comprehen-
sive examination and the defense of the candidate's dissertation.

CP SC 622 INTRODUCTION TO OPERATING SYSTEMS
3 cr. (3 and 0)

CP SC 623 IMPLEMENTATION OF OPERATING SYSTEMS
3 cr. (2 and 2)

CP SC 628 DESIGN AND IMPLEMENTATION OF PROGRAMMING
LANGUAGES
3 cr. (3 and 0)

CP SC 629 TRANSLATION OF PROGRAMMING LANGUAGES
3 cr. (3 and 0)

CP SC 630 COMPUTER PERFORMANCE EVALUATION
3 cr. (3 and 0)

CP SC 635 MICROPRESSUING
3 cr. (3 and 0)

CP SC 650 THEORY OF COMPUTATION
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP SC 662</td>
<td>DATABASE MANAGEMENT SYSTEMS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CP SC 663</td>
<td>ON-LINE SYSTEMS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CP SC 664</td>
<td>INTRODUCTION TO COMPUTER ARCHITECTURE</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CP SC 671</td>
<td>SYSTEMS ANALYSIS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CP SC 672</td>
<td>SOFTWARE DEVELOPMENT METHODOLOGY</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CP SC 680</td>
<td>FUNDAMENTALS OF COMPUTER SCIENCE</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CP SC 681</td>
<td>SPECIAL TOPICS IN COMPUTER SCIENCE</td>
<td>1-3 cr.</td>
<td>(1-3 and 0)</td>
</tr>
<tr>
<td>CP SC 740</td>
<td>COMPUTER SCIENCE FOR HIGH SCHOOL TEACHERS I</td>
<td>3 cr.</td>
<td>(2 and 2)</td>
</tr>
<tr>
<td></td>
<td>Introduction to modern problem solving and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>programming methods for high school teachers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topics include algorithm development, software</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>life cycle concepts, system hardware and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>software components and an introduction to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>programming in PASCAL. Restricted to graduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>students and in-service teachers in secondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>education. Prerequisite: Introductory computer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>programming.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP SC 741</td>
<td>COMPUTER SCIENCE FOR HIGH SCHOOL TEACHERS II</td>
<td>3 cr.</td>
<td>(2 and 2)</td>
</tr>
<tr>
<td></td>
<td>Continuation of CP SC 740. Problem solving and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>programming techniques are considered in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>greater depth. Elementary data structures are</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>introduced. Restricted to graduate students and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in-service teachers in secondary education.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: CP SC 740 or equivalent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP SC 810</td>
<td>INTRODUCTION TO ARTIFICIAL INTELLIGENCE</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>CP SC 820</td>
<td>PARALLEL ARCHITECTURES, LANGUAGES AND ALGORITHMS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Parallel processing issues; vector and pipeline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>processors; arrays of processing elements;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>associative processor; data flow computers;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>networks of processors; survey of parallel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>programming languages; design and implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of parallel algorithms; future trends. Prerequisite:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP SC 864 or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP SC 823</td>
<td>OPERATING SYSTEMS DESIGN</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>Analytic, simulation and conceptual models of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>operating systems and their application to the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>design and implementation of actual systems;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kernel design and its implementation in systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>such as MULTICS and UNIX; models of con-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
current processes, processor scheduling and memory management. Prerequisites: MTH SC 301/601 and CP SC 423/623.

CP SC 824 ADVANCED OPERATING SYSTEMS
3 cr. (3 and 0)
Recent trends in system design and implementation; operating system structures to support reliable secure systems; verification techniques; fault tolerant systems; operating system considerations for closely coupled multiprocessor systems; network operating systems. Prerequisite: CP SC 623 or permission of instructor.

CP SC 825 SOFTWARE SYSTEMS FOR DATA COMMUNICATIONS
3 cr. (3 and 0)
Structure of software systems supporting communication between physical devices having diverse data-processing, data-input and data-output capabilities; characterization of data communications software in terms of unified network architectures consisting of several functional layers; evaluation of several existing network architectures. Prerequisite: CP SC 622 or permission of instructor.

CP SC 827 INTRODUCTION TO FORMAL LANGUAGES
3 cr. (3 and 0)
Review of the Chomsky hierarchy of languages and their machine equivalents; context-free languages; context-sensitive languages; type-0 languages and recursive functions; abstract families of languages; regulated rewriting systems; array grammars; complexity considerations. Prerequisite: CP SC 650 or equivalent.

CP SC 828 THEORY OF PROGRAMMING LANGUAGES
3 cr. (3 and 0)
Syntax and semantics of programming languages; finite state and pushdown processors; context-free models of syntax; parsing algorithms and semantic models. Prerequisite: CP SC 428/628 or equivalent.

CP SC 830 SYSTEMS MODELING
3 cr. (3 and 0)
Fundamental concepts and techniques used in the stochastic modeling of computer and computer-based communication systems. Applications will include hardware configuration design, software performance evaluation and reliability estimation of fault-tolerant systems. Prerequisites: CP SC 630 and MTH SC 400 or MTH SC 800, or consent of instructor.

CP SC 838 ADVANCED DATA STRUCTURES
3 cr. (3 and 0)
Search trees; data structures for sets; index structures for databases; data abstraction and automation implementation; implicit data structures; storage compaction of lists; data structures for decision trees; data structures in areas such as computer graphics, artificial intelligence, picture processing and simulation. Prerequisite: Permission of instructor.

CP SC 840 DESIGN AND ANALYSIS OF ALGORITHMS
3 cr. (3 and 0)
Basic techniques for design and analysis of algorithms; models and techniques for obtaining upper and lower time and space bounds; time/space
trade-offs; inherently difficult problems. **Prerequisite:** MTH SC 419/619 or E&CE 352 or equivalents.

CP SC 862 DATABASE MANAGEMENT SYSTEM DESIGN
3 cr. (3 and 0)

Concepts and structures for design and implementation of a DBMS; theoretical foundations for query systems; data modeling and information representation; user interface and internal system design considerations; system performance modeling and measurement; topics from the literature. **Prerequisites:** CP SC 340 and 462/662.

CP SC 864 COMPUTER ARCHITECTURE
3 cr. (3 and 0)

Computer architecture and structures from the classical Von Neumann machines to state-of-the-art computer organizations. Nonconventional architectures such as array, pipeline, associative, dataflow, reduction and tree machines are discussed.

CP SC 872 SOFTWARE DESIGN AND PROGRAMMING METHODOLOGY
3 cr. (3 and 0)

Software planning; requirements specification methodologies; design methodologies; design tools. **Prerequisite:** CP SC 672 or equivalent.

CP SC 873 SOFTWARE VERIFICATION, VALIDATION AND MEASUREMENT
3 cr. (3 and 0)

Proofs of correctness; test planning; static dynamic testing; symbolic execution; automated testing; verification and validation over the software life cycle; software metrics; software maintenance. **Prerequisite:** CP SC 672 or equivalent.

CP SC 881 SPECIAL TOPICS
1-3 cr. (1-3 and 0)

Advanced topics from current problems of interest in computer science; topics vary from semester to semester. May be repeated for credit. **Prerequisite:** Permission of instructor.

CP SC 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

CP SC 981 SEMINAR IN COMPUTER SCIENCE
1-3 cr. (1-3 and 0)

Topics of current research interest. May be repeated for credit.

CP SC 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

EARTH SCIENCE

Richard D. Warner, Acting Head, Department of Earth Science

Advanced degrees are not awarded in earth science. Courses are offered as a minor or as interdisciplinary support for students in other areas.

GEOL 600 ENVIRONMENTAL GEOLOGY
3 cr. (3 and 0)

GEOL 602 STRUCTURAL GEOLOGY
3 cr. (2 and 2)
GEOL 603 INVERTEBRATE PALEONTOLOGY 3 cr. (2 and 3)

GEOL 604 ECONOMIC GEOLOGY 3 cr. (3 and 0)

GEOL 605 GEOMORPHOLOGY 4 cr. (3 and 3)

GEOL 606 MINERALOGY 3 cr. (2 and 3)

GEOL 607 QUATERNARY GEOLOGY 3 cr. (2 and 2)

GEOL 608 GEOHYDROLOGY 3 cr. (3 and 0)

GEOL 609 PETROLOGY 3 cr. (2 and 3)

GEOL 610 OPTICAL MINERALOGY 3 cr. (1 and 5)

GEOL 611 RESEARCH PROBLEMS 1-3 cr. (0 and 3-9)

GEOL 613 STRATIGRAPHY AND SEDIMENTATION 3 cr. (2 and 2)

GEOL 700 EARTH SCIENCE I: GEOLOGY FOR SCIENCE TEACHERS 3 cr. (2 and 3)

Physical geology for secondary school teachers of earth science and physical sciences: materials of earth's crust, processes of formation and change, geologic features of earth. Field trips provide observation of materials, operating processes and results of processes in nature. Restricted to secondary school teachers.

GEOL 711 EARTH SCIENCE II: SPECIAL TOPICS IN GEOLOGY FOR SCIENCE TEACHERS 1 cr. (0 and 2)

Earth science topics suitable for elementary and secondary school programs in a teaching laboratory format. Grade is based on final oral and/or written report. May be repeated for credit. Corequisite: GEOL 101, 700 or permission of instructor.

MATHEMATICAL SCIENCES
John D. Fulton, Head, Department of Mathematical Sciences

Major Degrees
Mathematical Sciences M.S., Ph.D.

Entering students are expected to have a background in linear algebra, differential equations, a computer language and statistics.

Students seeking the master's degree may choose a thesis or non-thesis option. Either prior to or during the program, the following general distribution
requirements must be met: advanced calculus, modern algebra, probability and a subsequent applied statistics course, mathematical programming, an additional course in statistics or operations research, a scientific computing course, a discrete computing course, two core courses beyond advanced calculus and modern algebra.

In addition, six courses (to be approved by the advisory committee) must be selected from or complement one of the following specialty areas: algebra/combinatorics, analysis, computational mathematics, operations research, probability and statistics. A student's program shall contain courses which emphasize the modeling process. Modeling courses outside the Department of Mathematical Sciences are especially encouraged.

A minimum of 37 graduate hours is required for the master's degree. Students in the non-thesis option are required to complete a one credit hour project course.

Students are admitted to candidacy for the Ph.D. degree upon the successful completion of a qualifying examination.

The departments of Management and Mathematical Sciences jointly offer and administer a Ph.D. program in management science. It is described under Management Science in the College of Commerce and Industry.

MTH SC 600 THEORY OF PROBABILITY
3 cr. (3 and 0)

MTH SC 601 STATISTICAL METHODOLOGY
3 cr. (3 and 0)

MTH SC 603 INTRODUCTION TO STATISTICAL THEORY
3 cr. (3 and 0)

MTH SC 605 STATISTICAL THEORY AND METHODS II
3 cr. (3 and 0)

MTH SC 606 SAMPLING THEORY AND METHODS
3 cr. (3 and 0)

MTH SC 607 REGRESSION AND TIME SERIES ANALYSIS
3 cr. (3 and 0)

MTH SC 608 TOPICS IN GEOMETRY
3 cr. (3 and 0)

MTH SC 609 STATISTICAL THEORY AND METHODS III
3 cr. (3 and 0)

MTH SC 612 INTRODUCTION TO MODERN ALGEBRA
3 cr. (3 and 0)

MTH SC 619 DISCRETE MATHEMATICAL STRUCTURES I
3 cr. (3 and 0)

MTH SC 620 DISCRETE MATHEMATICAL STRUCTURES II
3 cr. (3 and 0)

MTH SC 634 ADVANCED ENGINEERING MATHEMATICS
3 cr. (3 and 0)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH SC 635</td>
<td>COMPLEX VARIABLES</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MTH SC 640</td>
<td>LINEAR PROGRAMMING</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MTH SC 641</td>
<td>INTRODUCTION TO STOCHASTIC MODELS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MTH SC 653</td>
<td>ADVANCED CALCULUS I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MTH SC 654</td>
<td>ADVANCED CALCULUS II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MTH SC 657</td>
<td>APPLIED MATHEMATICS I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MTH SC 658</td>
<td>APPLIED MATHEMATICS II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MTH SC 660</td>
<td>INTRODUCTION TO NUMERICAL ANALYSIS I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MTH SC 661</td>
<td>INTRODUCTION TO NUMERICAL ANALYSIS II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MTH SC 663</td>
<td>MATHEMATICAL ANALYSIS I</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MTH SC 664</td>
<td>MATHEMATICAL ANALYSIS II</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td>MTH SC 700</td>
<td>MATHEMATICAL COMPUTER APPLICATIONS</td>
<td>3 cr.</td>
<td>(3 and 0)</td>
</tr>
<tr>
<td></td>
<td>FOR ELEMENTARY TEACHERS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use of readily available software as tools in the elementary mathematics curriculum. The LOGO language is used in a discovery approach to geometry. Spreadsheets are employed to facilitate the organization and statistical processing of classroom data; word processing is integrated with spreadsheets applied to mathematics problem sets, examinations and parental reports.

MTH SC 701 NUMBER SYSTEMS FOR THE ELEMENTARY GRADES
3 cr. (3 and 0)

Sets and cardinal numbers; development of base 10 number system; other ancient and modern number systems including other number bases; formation of mathematical sentences; arithmetic properties of whole numbers; primes and composites; fractions and decimals. Restricted to graduate students in elementary and secondary education.

MTH SC 702 NUMBER SYSTEMS FOR THE MIDDLE GRADES
3 cr. (3 and 0)

Integers; rational numbers; properties and operations of the real number system; logic; relations, functions and graphs; calculators. Restricted to graduate students in elementary and secondary education.
MTH SC 703 MODERN MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS — GEOMETRY
3 cr. (3 and 0)
Concepts of geometry; informal geometry; measurement of geometric figures; metric measurements; deductive geometry; functions in geometry; coordinate and vector geometry. Open to all graduate students in education except those majoring in secondary education.

MTH SC 705 MODERN MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS — ALGEBRA, PROBABILITY & STATISTICS
3 cr. (3 and 0)
Fundamentals of elementary algebra, elementary probability and descriptive statistics. Open to all graduate students in education except those majoring in secondary education.

MTH SC 707 MATHEMATICS FOR MIDDLE SCHOOL TEACHERS—ALGEBRA
3 cr. (3 and 0)
Algebraic concepts appropriate to the teaching of middle-school mathematics: elementary number theory; the rational, real and complex number systems; polynomials and rational expressions; linear and quadratic equations and inequalities. May not be included in the degree programs for mathematics education majors.

MTH SC 709 MATHEMATICS FOR MIDDLE SCHOOL TEACHERS—GEOMETRY
3 cr. (3 and 0)
Geometric concepts appropriate to the teaching of middle-school mathematics: lines and planes, angles and triangles, congruence and similarity, circles and spheres, area and volume. May not be included in the degree programs for mathematics education majors.

MTH SC 710 ELEMENTARY CALCULUS FROM AN ADVANCED VIEWPOINT I
3 cr. (3 and 0)
Origins of calculus; limits of sequences and functions; the derivative; maxima and minima: continuous functions; composite and inverse functions; calculus of special functions; area and the integral. Intended for high school calculus teachers. May not be included in the degree program for mathematics education majors. Prerequisite: MTH SC 108 or its equivalent.

MTH SC 711 ELEMENTARY CALCULUS FROM AN ADVANCED VIEWPOINT II
3 cr. (3 and 0)
Techniques of integration, applications of integrals, sequences, series and elementary differential equations. May be not used in the degree program for mathematics education majors. Prerequisite: MTH SC 710 or consent of instructor.

MTH SC 712 MODERN ALGEBRAIC CONCEPTS
3 cr. (3 and 0)
Development of axioms and fundamental concepts of some modern algebraic structures such as groups, rings and fields; applications to the familiar number systems. Restricted to graduate students in secondary education.
MTH SC 715 ORDINARY DIFFERENTIAL EQUATIONS WITH APPLICATIONS
3 cr. (3 and 0)
Introduction to the study of ordinary differential equations and their application to physical, biological and social science problems. Topics include first and second order differential equations and their applications. Prerequisite: Knowledge of elementary calculus or permission of instructor.

MTH SC 719 DISCRETE MATHEMATICS
3 cr. (3 and 0)
A survey of discrete mathematics emphasizing applications to computer science; propositions and logic; Boolean Algebra and switching circuits; recursion and induction; relations and partially ordered sets, graphs and trees.

MTH SC 721 MATRIX ALGEBRA I
3 cr. (3 and 0)
Matrices and systems of equations; determinants; vector spaces and linear transformations; eigenvalues. Restricted to graduate students in secondary education.

MTH SC 722 MATRIX ALGEBRA II
3 cr. (3 and 0)
Continuation of MTH SC 721: linear transformations, similarity, polynomials and polynomial matrices, and matrix analysis. Restricted to graduate students in secondary education.

MTH SC 723 APPLICATIONS OF LINEAR AND MODERN ALGEBRA
3 cr. (3 and 0)
Various applied problems whose solutions rely on techniques and results of linear and modern algebra. Problems are selected from such areas as economics, forest management, genetics, population growth, transportation networks, cryptography, satellite communications, electronic switching, circuits, chemistry, physics, sociology and others. Prerequisites: MTH SC 712, MTH SC 721 or equivalent, or permission of instructor.

MTH SC 725 COMBINATORIAL MATHEMATICS FOR TEACHERS
3 cr. (3 and 0)
Permutations; combinations; generating functions; recurrence relations; principle of inclusion-exclusion; partitions; Latin squares; block designs; finite geometries; graphs; codes; Polya’s theorem; recreational mathematics. Restricted to graduate students in secondary education.

MTH SC 727 ANALYSIS CONCEPTS FOR TEACHERS I
3 cr. (3 and 0)
Elementary functions, differential calculus and integral calculus; enrichment material and a theoretical perspective of calculus. Restricted to teachers who hold a current teaching certificate in secondary mathematics. Completion of this course satisfies the special certification requirements for AB-calculus teachers in South Carolina.

MTH SC 728 ANALYSIS CONCEPTS FOR TEACHERS II
3 cr. (3 and 0)
Continuation of MTH SC 727. Enrichment material and a theoretical perspective on vector functions, sequences, series and elementary differential equations. Restricted to teachers who hold a current teaching certificate in sec-
ondary education. Completion of this course satisfies certification for BC-calculus teachers in South Carolina.

MTH SC 730 MODERN GEOMETRY FOR TEACHERS
3 cr. (3 and 0)
Concepts of Euclidean geometry reviewed and extended by means of coordinates, vectors, matrices and conic sections. Restricted to graduate students in secondary education.

MTH SC 731 NON-EUCLIDEAN GEOMETRY
3 cr. (3 and 0)
Euclid’s fifth postulate; discovery of non-Euclidean geometry; hyperbolic plane geometry. Restricted to graduate students in secondary education.

MTH SC 732 PROJECTIVE GEOMETRY
3 cr. (3 and 0)
Analytic and synthetic development of properties of projective geometry and its subgeometries, ranging from affine to Euclidean geometry. Restricted to graduate students in secondary education.

MTH SC 741 INTRODUCTION TO LINEAR PROGRAMMING WITH APPLICATIONS
3 cr. (3 and 0)
Development of mathematical theory of simplex algorithm; survey of mathematical background required including matrix algebra, systems of linear equations and vector spaces; problem formulation emphasized. Restricted to graduate students in secondary education.

MTH SC 751 FUNDAMENTAL CONCEPTS OF CALCULUS I
3 cr. (3 and 0)
Set theory; real number system; functions and relations; metric sets and limits; continuity and differentiation; integration. Restricted to graduate students in secondary education. Prerequisite: One year of undergraduate calculus.

MTH SC 761 PROBABILITY AND STATISTICS FOR TEACHERS
3 cr. (3 and 0)
Probability; conditional probability; descriptive statistics; random variables; probability functions; binomial distribution; normal distribution; sampling; estimation; decision making. Restricted to graduate students in secondary education.

MTH SC 771 NUMERICAL METHODS IN SECONDARY MATHEMATICS I
3 cr. (3 and 0)
Update of traditional techniques for teaching high school mathematics through introduction of computer methods for investigation of processes and reinforcement of concepts; development of programs requiring participants to "invent" algorithms to solve problems in typical high school mathematics course; use of general purpose programming language; methods of teaching this language to high school students. Restricted to graduate students in secondary education.

MTH SC 772 NUMERICAL METHODS IN SECONDARY SCHOOL MATHEMATICS II
3 cr. (3 and 0)
Computational mathematical topics are covered and implemented on a micro-
MATHEMATICAL SCIENCES

computer: series approximation; area under a curve; Monte-Carlo simulation; zeros of a function; Euclidean algorithm; amortization and compound interest; mean and standard deviation. Enrollment restricted to graduate students in secondary education. **Prerequisite:** MTH SC 771 or permission of instructor.

MTH SC 781 HISTORY OF MATHEMATICS
3 cr. (3 and 0)
Development of mathematics beginning with ancient numeration systems, continuing through origins of geometry and irrational numbers in classical and Alexandrian Greek periods and extending through development of calculus; Cantor's set theory; controversy over Euclid's fifth postulate; completeness of real numbers; mathematics of the infinite and its applications; origins of probability and statistics, abstract algebra, topology, computing machines and mathematical logic. Restricted to graduate students in education. **Prerequisite:** One year of calculus at the college level.

MTH SC 783 THEORY OF NUMBERS
3 cr. (3 and 0)
Properties of integers, divisors and prime numbers; fundamental properties of congruence; polynomial and primitive roots; quadratic residues. Restricted to graduate students in secondary education. **Prerequisite:** One year of calculus at the college level.

MTH SC 791 MATHEMATICAL PROBLEMS IN THE CURRICULUM
3 cr. (3 and 0)
Mathematical problems in curriculum of elementary or secondary school. Restricted to graduate students in elementary or secondary education.

MTH SC 800 PROBABILITY
3 cr. (3 and 0)
Basic probability theory with emphasis on results and techniques useful in operations research and statistics. Topics include axiomatic probability, advanced combinatorial probability, conditional informative expectation, functions of random variables, moment generating functions, distribution theory and limit theorems. **Prerequisite:** MTH SC 206.

MTH SC 801 GENERAL LINEAR HYPOTHESIS I
3 cr. (3 and 0)
Least-square estimates; Gauss-Markov theorem; confidence ellipsoids and confidence intervals for estimable functions; tests of hypotheses; one-two and higher-way layouts; analysis of variance for other models. **Prerequisites:** MTH SC 403/603 and 311.

MTH SC 802 GENERAL LINEAR HYPOTHESIS II
3 cr. (3 and 0)
Continuation of MTH SC 801.

MTH SC 803 STOCHASTIC PROCESSES I
3 cr. (3 and 0)
Theory and analysis of time series; recurrent events; Markov chains; random walks; renewal theory; application to communication theory; operations research. **Prerequisite:** MTH SC 400/600 or 800.
MTH SC 804 STOCHASTIC PROCESSES II
3 cr. (3 and 0)
Continuation of MTH SC 803: renewal theory, branching processes, Brownian motion, queuing theory, Markov decision processes, semi-Markov processes, point processes, applications to statistics and others. **Prerequisite:** MTH SC 803.

MTH SC 805 DATA ANALYSIS
3 cr. (3 and 0)
Methodology in analysis of statistical data emphasizing applications to real problems using computer-oriented techniques: computer plots, transformations, criteria for selecting variables, error analysis, multiple and stepwise regression, analysis of residuals, model building in time series and ANOVA problems, jackknife and random subsampling, multidimensional scaling, clustering. **Prerequisites:** MTH SC 301 and 400/600, or MTH SC 401 and 800.

MTH SC 806 NONPARAMETRIC STATISTICS
3 cr. (3 and 0)
Order statistics; tolerance limits; rank-order statistics; Kolmogorov-Smirnov one-sample statistics; Chi-square goodness-of-fit test; two-sample problem; linear rank statistics; asymptotic relative efficiency. **Prerequisite:** MTH SC 400/600 or 800.

MTH SC 807 APPLIED MULTIVARIATE ANALYSIS
3 cr. (3 and 0)
Applied multivariate analysis: computer plots of multivariate observations; multidimensional scaling; multivariate tests of means, covariances and equality of distributions; univariate and multivariate regressions and their comparisons; MANOVA; principle components analysis; factor analysis; analytic rotations; canonical correlations. **Prerequisites:** MTH SC 403/603 and 805 or permission of instructor.

MTH SC 808 RELIABILITY AND LIFE TESTING
3 cr. (3 and 0)
Probability models and statistical methods relevant to parametric and nonparametric analysis of reliability and life testing data. **Prerequisites:** MTH SC 400 and 401 or equivalent.

MTH SC 809 TIME SERIES ANALYSIS, FORECASTING AND CONTROL
3 cr. (3 and 0)
Modeling and forecasting random processes; autocorrelation functions and spectral densities; model identification, estimation and diagnostic checking; transfer function models; feedforward and feedback control schemes. **Prerequisites:** MTH SC 400/600 and 405/605, or MTH SC 800 and 405/605, or equivalent.

MTH SC 810 MATHEMATICAL PROGRAMMING
3 cr. (3 and 0)
Formulation and solution of linear programming models; mathematical development of the simplex method; revised simplex method; duality; sensitivity analysis; parametric programming, implementation, software packages. **Prerequisite:** MTH SC 311.
MTH SC 811 NONLINEAR PROGRAMMING
3 cr. (3 and 0)
Theoretical development of nonlinear optimization with applications; classical optimization; convex and concave functions; separable programming; quadratic programming; gradient methods. Prerequisites: MTH SC 440/640 and 453/653.

MTH SC 812 DISCRETE OPTIMIZATION
3 cr. (3 and 0)
Principal methods used in integer programming and discrete optimization. Topics include branch and bound, implicit enumeration, cutting planes, group knapsack, Lagrangian relaxation, surrogate constraints, heuristics (performance analysis), separation/branching strategies and polynomial time algorithms for specific problems on special structures. Prerequisite: MTH SC 810 or equivalent.

MTH SC 813 ADVANCED LINEAR PROGRAMMING
3 cr. (3 and 0)
Development of linear programming theory using inequality systems, convex cones, polyhedra and duality; solution algorithms and computational considerations for large scale and special structured problems using techniques of upper bounded variables, decomposition, partitioning and column generation; game theory; nonlinear representations and other methods such as ellipsoid and Karmarkan. Prerequisites: MTH SC 440/640, 810 or equivalent.

MTH SC 814 NETWORK FLOWS
3 cr. (3 and 0)
Max-flow/min-cut theorem; combinatorial applications; minimum cost flow problems (transportation, shortest path, transshipment); solution algorithms (including the out-of-kilter); implementation and computational considerations. Prerequisites: MTH SC 440/640, 810 or equivalent.

MTH SC 815 DATA STRUCTURES
3 cr. (3 and 0)
Representation and transformation of information; formal description of processes and data structures; tree and list structures; push-down stacks; string and formula manipulation; hashing techniques; interrelation between data structure and program structure; storage allocation methods. Prerequisites: Computational maturity and permission of instructor.

MTH SC 816 GRAPH ALGORITHMS
3 cr. (3 and 0)
Design, analysis and implementation of algorithms and data structures associated with the solution of problems formulated as networks and graphs; applications to graph theory, combinatorial optimization and network programming. Prerequisites: MTH SC 640, 810, 863, 854 or permission of instructor.

MTH SC 817 STOCHASTIC MODELS IN OPERATIONS RESEARCH I
3 cr. (3 and 0)
Stochastic control; structure of sequential decision processes; stochastic inventory models; recursive computation of optimal policies; discrete parameter finite Markov decision processes; various optimality criteria; computation by policy improvement and other methods; existence of optimal stationary policies;
stopping-rule problems; examples from financial management, maintenance and reliability, search, queuing and shortest path. **Prerequisite:** MTH SC 803.

MTH SC 818 STOCHASTIC MODELS IN OPERATIONS RESEARCH II
3 cr. (3 and 0)
Introduction to queuing theory: Markovian queues, repairman problems, queues with an embedded Markov structure, the queue GI/G/1, queues with a large number of servers, decision making in queues; introduction to reliability theory; failure distributions; stochastic models for complex systems; maintenance and replacement policies; reliability properties of multicomponent structures. **Prerequisite:** MTH SC 817.

MTH SC 821 LINEAR ANALYSIS
3 cr. (3 and 0)
Normed spaces; Hilbert spaces, Banach spaces, linear functionals, linear operators, orthogonal systems. **Prerequisites:** MTH SC 454/654 or MTH SC 453 and 853.

MTH SC 822 MEASURE AND INTEGRATION
3 cr. (3 and 0)
Rings and algebras of sets, inner and outer measures; measurability and additivity, examples on the line and in space, Lebesque integration, types of convergence, Lebesque spaces; integration and differentiation, product measure, Fubini theorem. **Prerequisite:** MTH SC 454/654.

MTH SC 823 COMPLEX ANALYSIS I
3 cr. (3 and 0)
Topological concepts; complex integration; local and global properties of analytic functions; power series; representation theorems; calculus of residues. Designed for non-engineering majors. **Prerequisite:** MTH SC 464/664.

MTH SC 824 COMPLEX ANALYSIS II
3 cr. (3 and 0)
Continuation of MTH SC 823 including introductory topological analysis.

MTH SC 825 INTRODUCTION TO DYNAMICAL SYSTEMS THEORY
3 cr. (3 and 0)
Techniques of analysis of dynamical systems. Topics include sensitivity analysis, linear systems, stability and control. The theory of differential and difference equations is emphasized. **Prerequisites:** MTH SC 454/654 and 311, or MTH SC 453 and 853.

MTH SC 826 PARTIAL DIFFERENTIAL EQUATIONS
3 cr. (3 and 0)
First-order equations: elliptic, hyperbolic and parabolic. Second-order equations: existence and uniqueness results, maximum principles, finite difference and Hilbert Space methods. **Prerequisite:** MTH SC 821 or permission of instructor.

MTH SC 831 FOURIER SERIES
3 cr. (3 and 0)
Fourier series with applications to solution of boundary value problems in partial differential equations of physics and engineering; introduction to Bessel functions and Legendre polynomials. **Prerequisite:** MTH SC 464/664.
MTH SC 837 CALCULUS OF VARIATIONS AND OPTIMAL CONTROL
3 cr. (3 and 0)
Fundamental theory of the calculus of variations; variable end points; the parametric problem; the isoperimetric problem; constraint inequalities. Introduction to the theory of optimal control; connections with the calculus of variations; geometric concepts. Prerequisite: MTH SC 453/653 or 463/663.

MTH SC 841 APPLIED MATHEMATICS I
3 cr. (3 and 0)
Derivation of equations from conservation laws, dimensional analysis, scaling and simplification. Methods such as steepest descent, stationary phase, perturbation series, boundary layer theory, WKB theory, multiple-scale analysis and ray theory applied to problems in diffusion processes, wave propagation, fluid dynamics and mechanics. Prerequisites: MTH SC 208 and 453/653 or MTH SC463/663.

MTH SC 842 APPLIED MATHEMATICS II
3 cr. (3 and 0)
Continuation of MTH SC 841.

MTH SC 850 COMPUTATIONAL PROBLEMS IN DISCRETE STRUCTURES
3 cr. (3 and 0)
Digital representation and application of basic discrete structures; sets; relations; graphs; digraphs; automata; unary algebras; computational analog of product structure in each case. Prerequisites: Computational maturity and permission of instructor.

MTH SC 851 ABSTRACT ALGEBRA I
3 cr. (3 and 0)
Survey of some basic algebraic structures: groups, rings and fields. Topics include permutation groups, Sylow theorems, finite abelian groups, polynomial domains, factorization theory and elementary field theory.

MTH SC 852 ABSTRACT ALGEBRA II
3 cr. (3 and 0)
A continuation of MTH SC 851 including selected topics from ring theory and field theory.

MTH SC 853 MATRIX ANALYSIS
3 cr. (3 and 0)
Topics in matrix analysis that support an applied curriculum: similarity and eigenvalues; Hermitian and normal matrices; canonical forms; norms; eigenvalue localizations; singular value decompositions; definite matrices. Prerequisite: MTH SC 311, 453 or 463.

MTH SC 854 THEORY OF GRAPHS
3 cr. (3 and 0)
Connectedness; path problems; trees; matching theorems; directed graphs; fundamental numbers of the theory of graphs; groups and graphs. Prerequisite: Permission of instructor.

MTH SC 855 COMBINATORIAL ANALYSIS
3 cr. (3 and 0)
Combinations; permutations; permutations with restricted position; Polya's theorem; principle of inclusion and exclusion; partitions; recurrence relations;
generating functions; Mobius inversion; enumeration techniques; Ramsey numbers; finite projective and affine geometrics; Latin rectangles; orthogonal arrays; block designs; error detecting and error correcting codes. **Prerequisite:** MTH SC 311.

MTH SC 856 APPLICABLE ALGEBRA
3 cr. (3 and 0)

Applied algebraic ideas in lattice theory and Boolean Algebra; finite-state sequential machines; group theory as applied to network complexity and combinatorial enumeration; algebraic coding theory. Topics vary with background and interests of students. **Prerequisites:** MTH SC 851 and 853 or permission of instructor.

MTH SC 861 ADVANCED NUMERICAL ANALYSIS I
3 cr. (3 and 0)

Interpolation and approximation; numerical quadrature; numerical solution of functional differential equations; integral equations and overdetermined linear systems; eigenvalue problems; approximation using splines. **Prerequisites:** MTH SC 453 and MTH SC 460.

MTH SC 862 ADVANCED NUMERICAL ANALYSIS II
3 cr. (3 and 0)

Continuation of MTH SC 861.

MTH SC 863 DIGITAL MODELS I
3 cr. (3 and 0)

Experimental mathematics; pseudo-stochastic processes; analytical and algebraic formulations of time-independent simulation; continuous-time simulation and discrete-time simulation; digital optimization; Fibonacci search; ravine search; gradient methods; current research in digital analysis. **Prerequisites:** MTH SC 311, 453/653 and digital computer experience.

MTH SC 864 DIGITAL MODELS II
3 cr. (3 and 0)

Continuation of MTH SC 863.

MTH SC 867 SYSTEMS AND SOFTWARE
3 cr. (3 and 0)

Systems organization and software design of the IBM 3081-K; working knowledge of machine organization; basic assembler language, operating systems overview; program support facilities; job control language; data management; library management; interactive system concepts. **Prerequisites:** CP SC 205 and MTH SC 311 or 419/619.

MTH SC 868 AN INTRODUCTION TO SCIENTIFIC COMPUTING
3 cr. (3 and 0)

Floating point models, conditioning and numerical stability, numerical linear algebra, integration, systems of ordinary differential equations and zero finding. Emphasis will be placed on the use of existing scientific software. **Prerequisites:** MTH SC 208, 311 and CP SC 110.

MTH SC 881 MATHEMATICAL STATISTICS
3 cr. (3 and 0)

Fundamental concepts of sufficiency, hypothesis testing and estimation; robust estimation; resampling (jackknife, bootstrap, etc.) methods; asymptotic
theory; two-stage and sequential sampling problems; ranking and selection procedures. **Prerequisite:** MTH SC 403/603 or equivalent.

MTH SC 882 MONTE CARLO METHODS
3 cr. (3 and 0)
Random number generators, discrete and continuous random variate generation and approximations, random vector generation, Monte Carlo integration, variance reduction techniques. **Prerequisites:** MTH SC 800 and 603.

MTH SC 885 ADVANCED DATA ANALYSIS
3 cr. (3 and 0)
Continuation of MTH SC 805 covering alternatives to ordinary least squares, influence and diagnostic considerations, robustness, special statistical computation methods. **Prerequisites:** MTH SC 800, 603.

MTH SC 891 MASTER’S THESIS RESEARCH
Credit to be arranged.

MTH SC 892 MASTER’S PROJECT COURSE
1 cr. (0 and 1)
For students in the non-thesis option of the Master of Science degree in the mathematical sciences. Successful completion includes a presentation of the master’s project to the student’s advisory committee and acceptance of the paper by the committee.

MTH SC 901 PROBABILITY THEORY I
3 cr. (3 and 0)
Axiomatic theory of probability; distribution functions; expectation; cartesian product of infinitely many probability spaces and the Kolmogorov consistency theorem; models of convergence; weak and strong laws of large numbers. **Prerequisites:** MTH SC 400/600 and 822, or MTH SC 800 and 822, or permission of instructor.

MTH SC 902 PROBABILITY THEORY II
3 cr. (3 and 0)
Continuation of MTH SC 901: characteristic functions, infinitely divisible distributions, central limit theorems, laws of large numbers, conditioning and limit properties of sums of dependent random variables, conditioning, martingales. **Prerequisite:** MTH SC 901.

MTH SC 907 MULTIVARIATE ANALYSIS
3 cr. (3 and 0)
Multivariate normal distribution; Wishart distribution; Hotelling's T^2 distribution; estimation of parameters; test of hypotheses on vector means and covariance matrices. **Prerequisite:** MTH SC 802.

MTH SC 920 INTRODUCTION TO HARMONIC ANALYSIS
3 cr. (3 and 0)
Trigonometric functions and series; summability methods; convergence and summability of Fourier series; Fourier integrals; Fourier transforms; Banach algebra $L^1(R)$ and ideals in L^1. **Prerequisites:** MTH SC 822 and 824.

MTH SC 927 FUNCTIONAL ANALYSIS I
3 cr. (3 and 0)
Linear operators on specific spaces, spectral theory, semigroups of operators
and the Hille-Yosida theorem, applications of linear spaces and operators, convexity. **Prerequisite:** MTH SC 821.

MTH SC 928 FUNCTIONAL ANALYSIS II
3 cr. (3 and 0)
Continuation of MTH SC 927.

MTH SC 954 ADVANCED GRAPH THEORY
3 cr. (3 and 0)
Continuation of MTH SC 854. Covers topics not covered in 854, including the four color theorem, domination numbers, Ramsey theory, graph isomorphism, embeddings, algebraic graph theory and tournaments. Research papers are also examined. **Prerequisite:** MTH SC 854 or permission of instructor.

MTH SC 981 SPECIAL TOPICS IN MATHEMATICAL STATISTICS
1-3 cr. (1-3 and 0)
Advanced topics in mathematical statistics from current problems of interest.

MTH SC 982 SPECIAL TOPICS IN ANALYSIS
1-3 cr. (1-3 and 0)
Advanced analysis topics from current problems of interest.

MTH SC 983 SPECIAL TOPICS IN COMPUTATIONAL ANALYSIS
3 cr. (3 and 0)
Advanced topics in computational mathematics and numerical analysis from current problems of interest.

MTH SC 984 SPECIAL TOPICS IN APPLIED MATHEMATICS
1-3 cr. (1-3 and 0)
Advanced topics in applied mathematics from current problems of interest.

MTH SC 985 SPECIAL TOPICS IN ALGEBRA
1-3 cr. (1-3 and 0)
Advanced topics in algebra from current problems of interest.

MTH SC 986 SPECIAL TOPICS IN CONVEXITY
1-3 cr. (1-3 and 0)
Advanced topics in convexity from current problems of interest.

MTH SC 987 SPECIAL TOPICS IN NUMERICAL PROCESSES
1-3 cr. (1-3 and 0)
Advanced topics in numerical processes from current problems of interest.

MTH SC 988 SPECIAL TOPICS IN OPERATIONS RESEARCH
1-3 cr. (1-3 and 0)
Advanced topics in operations research from current problems of interest.

MTH SC 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

MICROBIOLOGY
Malcolm J. B. Paynter, Head, Department of Microbiology

Major Microbiology
Degrees M.S., Ph.D.

Graduate work in microbiology requires sound undergraduate training in the biological and physical sciences. This training may be received in an undergraduate program in biology (botany, microbiology or zoology), chemistry or in one of the agricultural sciences. Undergraduate work in
bacteriology or microbiology is desirable but not necessary.

All students will complete a curriculum which will assure a sound knowledge of the basic areas of microbiology including at least three of the following: bacterial physiology and metabolism, pathogenic microbiology, virology, immunology, microbial genetics, and applied and environmental microbiology. The program is selected by the student with the guidance and approval of an advisory committee. Each candidate must present and defend a thesis based upon original research.

Research disciplines include pathogenic, food, environmental and marine microbiology; microbial ecology; bacterial and plant virology; molecular biology; microbial genetics; genetic engineering; microbial physiology and metabolism; and anaerobic microbiology.

MICRO 600 PUBLIC HEALTH MICROBIOLOGY
3 cr. (3 and 0) S

MICRO 601 ADVANCED BACTERIOLOGY
4 cr. (2 and 6) F

MICRO 603 MARINE MICROBIOLOGY
3 cr. (2 and 3)

MICRO 605 GENERAL MICROBIOLOGY
4 cr. (3 and 3) F, S, SS

MICRO 607 FOOD AND DAIRY MICROBIOLOGY
4 cr. (3 and 3)

MICRO 610 SOIL MICROBIOLOGY
3 cr. (2 and 3) S (even numbered years)

MICRO 611 PATHOGENIC BACTERIOLOGY
4 cr. (3 and 3) S

MICRO 612 BACTERIAL PHYSIOLOGY
4 cr. (3 and 3) S

MICRO 613 INDUSTRIAL MICROBIOLOGY
3 cr. (2 and 3) F

MICRO 614 BASIC IMMUNOLOGY
3 cr. (2 and 3) F

MICRO 615 MICROBIAL GENETICS
4 cr. (3 and 3) F

MICRO 616 INTRODUCTORY VIROLOGY
3 cr. (3 and 0) S

MICRO 617 MOLECULAR MECHANISMS OF CARCINOGENESIS AND AGING
3 cr. (3 and 0)

MICRO 802 BACTERIOLOGICAL TECHNIC
4 cr. (2 and 6) F

Analytical and experimental procedures used in bacteriology including tech-
MICROBIOLOGY

Techniques for studying bacterial cytology, physiology and metabolism. Designed to give students experience in more advanced methods of investigation.

MICRO 803 SPECIAL PROBLEMS IN MICROBIOLOGY
Credit to be arranged.

Research not related to a thesis.

MICRO 804 CURRENT TOPICS IN MICROBIOLOGY
1 cr. (1 and 0)
Evaluation of current research literature in various areas of microbiology; critical evaluation of specific publications in terms of their merit. Required of all microbiology graduate students; may be repeated for credit.

MICRO 806 PATHOGENESIS AND INFECTIOUS DISEASE
3 cr. (3 and 0)
Medically important host-parasite relationships at the cellular and subcellular levels with emphasis on bacterial and viral infections in man. Prerequisite: MICRO 411/611 or permission of instructor.

MICRO 807 SEMINAR
1 cr. (1 and 0)
Topics not covered in other courses. Students review literature, organize and present material; may be taken twice for credit.

MICRO 810 RECOMBINANT DNA AND GENETIC ENGINEERING IN MICROBES
4 cr. (2 and 6)
Principles and applications of recombinant DNA technology including recombinant DNA techniques, restriction endonucleases, DNA modifying enzymes, cloning vectors, gene isolation techniques and molecular cloning techniques. Prerequisites: MICRO 305/605; BIOCH 423/623 and 424/624 or concurrent registration in BIOCH 424/624, MTH SC 206; or permission of instructor.

MICRO 811 BACTERIAL CYTOLOGY AND PHYSIOLOGY
4 cr. (4 and 0) S (odd numbered years)
Structure, chemistry and physiology of the various bacterial cell components; physiology of bacterial growth and reproduction in batch, continuous and synchronous cultures; economy of the bacterial cell including endogenous metabolism and maintenance requirements; physiology of bacterial death; regulation of enzyme and nucleic acids syntheses. Prerequisites: MICRO 305/605; BIOCH 423/623 and 424/624 or concurrent registration in BIOCH 424/624; MTH SC 206; or permission of instructor.

MICRO 812 BACTERIAL METABOLISM
3 cr. (3 and 0) S (even numbered years)
Various biochemical pathways occurring in bacterial cells; fermentations of carbohydrates and related compounds and of nitrogenous organic compounds; anaerobic and aerobic respiration, including electron transport systems and oxidative phosphorylation; bacterial photosynthesis; nitrogen fixation; biosyntheses of amino acids, purines, pyrimidines, lipids, proteins, nucleic acids and polysaccharides. Prerequisites: MICRO 305/605; BIOCH 423/623 and 424/624 or concurrent registration in BIOCH 424/624; MTH SC 206; or permission of instructor.
MICRO 815 ADVANCED MICROBIAL GENETICS
3 cr. (3 and 0)
Current developments in microbial genetics; integration of genetics and bio-
chemistry; analysis of genetic fine structure in microorganisms; nature of
bacterial variation and expression of mutations; population dynamics;
physiochemical mechanisms of heredity; regulation of gene action in microorga-
nisms; physiology and genetics of virulent and lysogenic bacteriophages.
Prerequisite: MICRO 415/615.

MICRO 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

MICRO 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

PHYSICS
Carlton W. Ulbrich, Acting Head, Department of Physics and Astronomy

Major Degrees
Physics M.S., Ph.D.

Graduate studies in physics and astronomy may be pursued by well-
prepared students in the physical and mathematical sciences or
engineering. As the basic physical science, physics offers intellectual oppor-
tunities of an unparalleled nature. Theoretical, experimental or computer-
simulated studies of the physical universe, ranging from the macroscopic
studies of cosmology to the microscopic world of quanta are available.

All graduate student progress will be evaluated at the beginning of fall and
spring semesters by the Graduate Evaluation Committee. This committee
will report its recommendations to the faculty, who, in turn, will advise the
department head concerning students' performances. The recommenda-
tion of the faculty may be: (1) satisfactory progress toward the Ph.D.
qualifying examination; (2) advancement beyond the master's degree
unlikely; (3) unsatisfactory progress toward any graduate degree. The
department head will consider continuance of the student based, in part, on
these recommendations.

Students beginning graduate studies in physics and astronomy usually
enter the M.S. program. After two semesters, well-prepared students will be
ready to begin a research program. This program most often culminates in a
thesis, although a non-thesis option is available. A final oral examination on
the general area of study and thesis defense is required for those electing the
thesis option. In the non-thesis option, 36 credit hours are required, including
six credit hours of Physics 890, Directed Activities in Applied Physics. A writ-
ten report must be submitted on the directed studies. A final oral examination
on the general area and directed activities completes the requirements for
the non-thesis option. A program leading to the M.S. degree in physics with a
concentration in health physics is available. Six credits of health physics or
biophysics and nine credits of courses in biology, biochemistry or chemistry are required in this option.

Study for the Ph.D. degree begins with the general qualifying examination. A sufficiently high score on this examination may make it possible for a student to bypass the master’s degree. An oral examination on the general research area is given within six months after completion of the written qualifying examination. At least three weeks prior to the convocation at which the student expects to receive the Ph.D. degree, a final oral examination on the dissertation must be completed.

PHYS 617 INTRODUCTION TO BIOPHYSICS I
3 cr. (3 and 0)

PHYS 618 INTRODUCTION TO BIOPHYSICS II
3 cr. (3 and 0)

PHYS 620 ATMOSPHERIC PHYSICS
3 cr. (3 and 0)

PHYS 621 MECHANICS I
3 cr. (3 and 0)

PHYS 622 MECHANICS II
3 cr. (3 and 0)

PHYS 625 EXPERIMENTAL PHYSICS I
3 cr. (1 and 4)

PHYS 626 EXPERIMENTAL PHYSICS II
3 cr. (1 and 4)

PHYS 627 INSTRUMENTATION IN EXPERIMENTAL PHYSICS
3 cr. (2 and 2)

PHYS 632 OPTICS
3 cr. (3 and 0)

PHYS 642 ELECTROMAGNETIC THEORY
3 cr. (3 and 0)

PHYS 646 SOLID STATE PHYSICS
3 cr. (3 and 0)

PHYS 652 NUCLEAR AND PARTICLE PHYSICS
3 cr. (3 and 0)

PHYS 655 QUANTUM PHYSICS I
3 cr. (3 and 0)

PHYS 656 QUANTUM PHYSICS II
3 cr. (3 and 0)

PHYS 657 BASIC HEALTH AND RADIOLOGICAL PHYSICS I
3 cr. (3 and 0)

PHYS 658 BASIC HEALTH AND RADIOLOGICAL PHYSICS II
3 cr. (3 and 0)
PHYS 660 CONTEMPORARY PHYSICS FOR HIGH SCHOOL TEACHERS
3 cr. (3 and 0)

PHYS 665 THERMODYNAMICS AND STATISTICAL MECHANICS
3 cr. (3 and 0)

PHYS 673 X-RAY CRYSTALLOGRAPHY
3 cr. (2 and 3)

PHYS 675 SPECIAL TOPICS IN PHYSICS
1-3 cr. (0-3 and 0-9)

PHYS 703 MODERN PHYSICS FOR HIGH SCHOOL TEACHERS
3 cr. (3 and 0)
Rutherford model of the atom; molecular description of matter, nuclear forces; radioactivity; special relativity. Restricted to students in elementary and secondary education.

PHYS 711 ORIGINS OF PHYSICAL SCIENCE
3 cr. (3 and 0)
Historical development of concepts in physical science emphasizing the alternative and perhaps conflicting explanations of physical phenomena which led to our present understanding. Examples drawn from physics and astronomy. Restricted to students in elementary and secondary education.

PHYS 716 EXPERIMENTAL PHYSICS FOR HIGH SCHOOL TEACHERS
4 cr. (2 and 4)
Experimental techniques employed in determination of fundamental quantities in classical and modern physics; experiments suitable for classroom demonstration broaden the concepts of physics. Restricted to students in elementary and secondary education.

PHYS 720 EARTH SCIENCE III: METEOROLOGY AND OCEANOGRAPHY FOR SCIENCE TEACHERS
3 cr. (3 and 0)
Physical processes governing the motions of the earth's atmosphere and oceans. Special topics include descriptions of experiments well suited for classroom use at the junior and senior high school level.

PHYS 721 EARTH SCIENCE IV: SPECIAL TOPICS IN METEOROLOGY FOR SCIENCE TEACHERS
1 cr. (0 and 2)
Approved topics in meteorology in a field or laboratory environment. Topics would not normally be covered in a formal course but may be an extension of a course. Corequisite: PHYS 720, 723 or permission of instructor.

PHYS 723 WEATHER SCIENCE FOR SCIENCE TEACHERS
3 cr. (3 and 0)
Meteorological phenomena emphasizing non-mathematical descriptions of atmospheric physics principles: solar and terrestrial radiation, adiabatic processes and cloud formation, local severe storms, global circulation patterns, air mass motions and fronts. Restricted to students in elementary and secondary education.
PHYS 731 PHYSICS FOR AP TEACHERS
3 cr. (2 and 2)
Prepares teachers to teach advanced placement physics. Problem-solving skills and related instructional strategies are emphasized. A lecture and problem-solving session format is used. Prerequisite: Permission of instructor.

PHYS 775 TOPICS IN PHYSICS FOR TEACHERS
1-3 cr. (0-3 and 0-6)
Topics in mechanics, electricity and magnetism or modern physics determined by the educational needs of the students. The course may be taken for a maximum of nine credits. Restricted to students in elementary and secondary education. Prerequisite: Permission of instructor.

PHYS 811 METHODS OF THEORETICAL PHYSICS I
3 cr. (3 and 0)
Analytical methods and techniques used in theoretical physics: vector and tensor analysis as applied to physical problems, use of matrices and groups in classical and quantum mechanics, complex variables and partial differential equations of physics.

PHYS 812 METHODS OF THEORETICAL PHYSICS II
3 cr. (3 and 0)
Continuation of PHYS 811: use of integral transforms, integral equations, special functions, calculus of variations and numerical approximations in solutions of physical problems.

PHYS 815 STATISTICAL THERMODYNAMICS I
(ME 815) 3 cr. (3 and 0)
Fundamental principles of kinetic theory and quantum statistical mechanics; Boltzmann statistics, Fermi-Dirac statistics and Bose-Einstein statistics. Prerequisite: A course in thermodynamics or permission of instructor.

PHYS 816 STATISTICAL THERMODYNAMICS II
3 cr. (3 and 0)
Generalized ensemble theory and fluctuations; applications to solids, liquids, gases and blackbody radiation. Prerequisite: PHYS 815.

PHYS 817 ADVANCED STATISTICAL MECHANICS
3 cr. (3 and 0)
Current topics in statistical mechanics: phase transitions and critical phenomena. Prerequisite: PHYS 816.

PHYS 821 CLASSICAL MECHANICS I
3 cr. (3 and 0)
Dynamics of particles; variational principles and Lagrange's equations; two-body central force problems; dynamics of rigid bodies. Matrix formulations freely used.

PHYS 822 CLASSICAL MECHANICS II
3 cr. (3 and 0)
Special relativity in classical mechanics; Hamilton's equations; canonical transformations; Hamilton-Jacobi theory; small oscillations.
PHYS 841 ELECTRODYNAMICS I
3 cr. (3 and 0)
Field theory of electromagnetism; Maxwell's equations and their application to study of electromagnetic wave production and propagation; wave optics and theories of interference and diffraction.

PHYS 842 ELECTRODYNAMICS II
3 cr. (3 and 0)
Production and propagation of electromagnetic waves beginning with use of Maxwell's equations; wave guides; diffraction phenomenon; boundary effects; theory of electrons and microscopic phenomena.

PHYS 845 SOLID STATE PHYSICS I
3 cr. (3 and 0)
Physical properties of crystalline solids; crystalline state determination by diffraction methods; theories of specific heat; properties of metallic lattices and alloys; lattice energy and ferroelectrics.

PHYS 846 SOLID STATE PHYSICS II
3 cr. (3 and 0)
Continuation of PHYS 845: electronic properties of solids, band theory of solids, physics of semiconductors, theories of magnetism and magnetic resonance phenomena.

PHYS 875 SEMINAR IN CONTEMPORARY PHYSICS
1-3 cr. (1-3 and 0)
Students and interested faculty study areas of physics currently being extensively investigated.

PHYS 890 DIRECTED ACTIVITIES IN APPLIED PHYSICS
1-6 cr.
Training and work on practical problems. Activities are supervised by department faculty or by appropriate adjunct professor; written description of student's activities must be submitted to course supervisor at completion of activity. Maximum credit limits are six credit hours in a semester and three credit hours in a single summer session; graded on a pass/fail basis.

PHYS 891 MASTER'S THESIS RESEARCH
Credit to be arranged.

PHYS 951 QUANTUM MECHANICS I
3 cr. (3 and 0)
Review of wave mechanics; operator algebra and theory of representation; approximate methods for stationary problems; theory of scattering applied to atomic and nuclear problems.

PHYS 952 QUANTUM MECHANICS II
3 cr. (3 and 0)
Continuation of PHYS 951: time dependent perturbations, radiation absorption and emmission, relativistic quantum mechanics, introduction to quantum electrodynamics.

PHYS 966 RELATIVITY
3 cr. (3 and 0)
Special and general theory of relativity including tensor calculus, Lorentz
transformation and three experimental tests of general theory: (1) planetary
motion and advance of perihelion of Mercury, (2) bending of light rays in gravita-
tional fields and (3) gravitational shift of spectral lines.

PHYS 971 ADVANCED QUANTUM THEORY I
3 cr. (3 and 0)

Development of quantum theory as encountered in systems with an infinite
number of degrees of freedom and in systems where relativistic effects are
important; advanced scattering theory; quantization of relativistic field theories;
development of covariant forms of perturbation theory; other timely subjects. *Prerequisite: PHYS 951 or permission of instructor.*

PHYS 972 ADVANCED QUANTUM THEORY II
3 cr. (3 and 0)

Continuation of PHYS 971: application of relativistic quantum field theory
to various electromagnetic processes; need for renormalization of quantum
field theories and its implementation. *Prerequisite: PHYS 971 or permission
of instructor.*

PHYS 991 DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.

Astronomy

Students may specialize in astronomy or astrophysics, although their M.S. or
Ph.D. degree will be awarded in physics.

ASTR 601 STELLAR ATMOSPHERES
3 cr. (3 and 0)

ASTR 602 STELLAR INTERIORS AND EVOLUTION
3 cr. (3 and 0)

ASTR 603 GALACTIC STRUCTURES
3 cr. (3 and 0)

ASTR 610 COSMOLOGY
3 cr. (3 and 0)

ASTR 612 PRACTICAL ASTRONOMY
3 cr. (3 and 0)

ASTR 701 SOLAR SYSTEM ASTRONOMY FOR HIGH SCHOOL TEACHERS
3 cr. (3 and 0)

A lecture and observation course introducing concepts and descriptions
basic to modern astronomy. The solar system is surveyed with fundamental
physical principles introduced as needed. Planetarium demonstrations and
observing sessions are included. Restricted to students in elementary and sec-
ondary education.

ASTR 711 STELLAR ASTRONOMY FOR HIGH SCHOOL TEACHERS
3 cr. (3 and 0)

Lecture and observation course covering stellar and galactic astronomy,
energy sources and other topics of current interest. Planetarium programs and
observing sessions are included. Restricted to students in elementary and sec-
ondary education.
ASTR 730 EARTH SCIENCE V: ASTRONOMY FOR SCIENCE TEACHERS
3 cr. (3 and 0)
Astronomy with emphasis on the solar system and related phenomena. Topics include the major planets, the sun, comets and meteor showers, evolution of the solar system, celestial motions, time, constellations, structure of the Milky Way and elementary cosmology. Restricted to students in elementary and secondary education.

ASTR 731 EARTH SCIENCE VI: SPECIAL TOPICS IN ASTRONOMY
1 cr. (0 and 2)
Approved topics in astronomy to supplement the lecture course ASTR 730. Course is primarily a laboratory/observation course. Restricted to students in elementary and secondary education. Corequisite: ASTR 730 or permission of instructor.

ASTR 732 ASTRONOMY FOR EARTH SCIENCE TEACHERS
3 cr. (3 and 0)
Extra-solar system astronomy including motions of stars, stellar classification, the Hertzsprung-Russell diagram, evolution of stars, extra-galactic astronomy and cosmology. Restricted to students in elementary and secondary education.

ASTR 875 SEMINAR IN CONTEMPORARY ASTRONOMY
1-3 cr. (1-3 and 0)
Students and faculty study areas of astronomy of current interest.

ZOOLOGY
James M. Colacino, Program Coordinator, Department of Biological Sciences

Major Degrees
Zoology M.S., Ph.D.

Students seeking the master's degree may select either a thesis or non-thesis option. Requirements for the thesis option include 24 semester hours of course work, six hours of research, an acceptable thesis and satisfactory performance in a final oral examination. Requirements for the non-thesis option include 36 semester hours of course work and satisfactory performance in a final comprehensive examination.

Requirements for the Ph.D. degree include written and oral comprehensive examinations, research, a dissertation and satisfactory performance in a final oral defense. Although there is no required course work for the doctorate beyond 18 semester hours of research, breadth and depth of preparation in the life sciences will be expected of each candidate.

ZOOL 603 PROTOZOOLOGY
3 cr. (3 and 0) S

ZOOL 604 PROTOZOOLOGY LABORATORY
1 cr. (0 and 3)

ZOOL 605 ANIMAL HISTOLOGY
4 cr. (3 and 3)
ZOOL 609 MODERN BIOLOGICAL INSTRUMENTATION
3 cr. (2 and 3)

ZOOL 610 LIMNOLOGY
4 cr. (3 and 3) F

ZOOL 615 INTRODUCTION TO MATHEMATICAL ECOLOGY
3 cr. (3 and 0)

ZOOL 621 SEMINAR IN INVERTEBRATE ZOOLOGY
4 cr. (3 and 3)

ZOOL 630 INTRODUCTION TO POPULATION GENETICS
3 cr. (3 and 0)

ZOOL 650 COMPARATIVE VERTEBRATE EMBRYOLOGY
4 cr. (3 and 3)

ZOOL 656 MEDICAL AND VETERINARY PARASITOLOGY
4 cr. (3 and 3) F

ZOOL 657 COMPARATIVE PHYSIOLOGY
4 cr. (3 and 3)

ZOOL 659 SYSTEMS PHYSIOLOGY
4 cr. (3 and 3)

ZOOL 662 HERPETOLOGY
3 cr. (2 and 3) F

ZOOL 663 ICHTHYOLOGY
3 cr. (2 and 3) S

ZOOL 664 MAMMALOGY
3 cr. (2 and 3) F

ZOOL 665ORNITHOLOGY
4 cr. (3 and 3)

ZOOL 670 ANIMAL BEHAVIOR
3 cr. (3 and 0)

ZOOL 671 ANIMAL BEHAVIOR LABORATORY
1 cr. (0 and 3)

ZOOL 675 VERTEBRATE ENDOCRINOLOGY
3 cr. (3 and 0)

ZOOL 676 EXPERIMENTAL VERTEBRATE ENDOCRINOLOGY
2 cr. (0 and 6)

ZOOL 680 ANALYSIS OF DEVELOPMENT
3 cr. (3 and 0)

ZOOL 701 MAN’S IMPACT ON ECOLOGY
3 cr. (3 and 0) SS

Fundamental relationship of man to his environment as it developed from pre-historic time to present; current overpopulation and pollution. Restricted to graduate students in secondary education.
ZOOLOGY

ZOO 803 POPULATION DYNAMICS
4 cr. (2 and 6) S (even numbered years)
Fundamental mechanisms basic to regulation of natural animal populations. Laboratory research project in population dynamics complements theory.

ZOO 810 BEHAVIORAL ECOLOGY
3 cr. (3 and 0) F (odd numbered years)
Behavior of animals and the ecological context in which various behaviors are shown; empirical and theoretical aspects of behavioral ecology at individual, population and community levels. Prerequisites: BIO SC 441/641 and ZOOL 470/670 or permission of instructor.

ZOO 812 SEMINAR
1 cr. (1 and 0) F, S, SS
Current literature on zoology.

ZOO 815 PHYSIOLOGICAL ECOLOGY
4 cr. (3 and 3) F (even numbered years)
Physiological and biochemical adaptations of invertebrates and vertebrates toward various natural environmental parameters. Field trips acquaint students with natural macro- and microenvironments of individual species. Field measurements of parameters of the environment will be undertaken, and laboratory studies will furnish detailed knowledge of various physiological adaptations to these parameters.

ZOO 816 ADVANCED ECOSYSTEM ANALYSIS I
4 cr. (3 and 3)
Description and analysis of ecological systems; biogeochemical, physicochemical and ecological principles emphasizing fundamental unity of ecosystems and their abiotic environment. Laboratory focuses on application of theory to actual field and laboratory research problems. Prerequisites: MTH SC 210 and 405/605; BIO SC 441/641 or BOT 846; ZOOL 415/615, or permission of instructor.

ZOO 817 ADVANCED ECOSYSTEM ANALYSIS II
4 cr. (3 and 3)
Thermodynamic principles that permit the persistence of ecosystems in time and space are examined based upon specific descriptions developed in ZOOL 816. Laboratory focuses on application of these stability theories to actual field and laboratory research problems. Prerequisite: ZOOL 816.

ZOO 818 COMMUNITY ECOLOGY
4 cr. (3 and 3)
Structure and function of ecological communities emphasizing description of natural communities and evolutionary rules by which they are organized. Laboratory applies theory to field problems. Prerequisites: MTH SC 108 and 405/605, BIO SC 441/641 or BOT 846; or permission of instructor.

ZOO 835 INTERPRETIVE ELECTRON MICROSCOPY
3 cr. (3 and 0)
Cell structure as viewed through the electron microscope. Characteristic structural features of cells from various tissues and from various organisms at dif-
ferent phylogenetic levels will be stressed. **Prerequisite:** AN PH 801 or ZOOL 405/605 or permission of instructor.

ZOOL 852 **PRINCIPLES AND METHODS OF SYSTEMATIC ZOOLOGY**
2 cr. (2 and 0) F

Problems confronting taxonomists in zoological sciences and conventional practices developed to handle them.

ZOOL 861 **SPECIAL TOPICS**
1-4 cr. (1-4 and 0)

Current areas of active research interest in zoological sciences.

ZOOL 863 **SPECIAL PROBLEMS**
1-4 cr. F, S, SS

Research not related to thesis. **Prerequisite:** Permission of instructor.

ZOOL 865 **ADVANCED ORNITHOLOGY**
3 cr. (3 and 0)

Orders and families of birds; fossils; zoogeography; anatomy; physiology; behavior; ecology. **Prerequisite:** ZOOL 465/665 or permission of instructor.

ZOOL 881 **METHODS IN DEVELOPMENTAL BIOLOGY**
2 cr. (0 and 6)

Observations and experiments conducted on an individual basis will involve a variety of developmental systems, various techniques used to study development and critical interpretation of results. **Prerequisites:** ZOOL 480/680 or equivalent and permission of instructor.

ZOOL 883 **SPECIAL TOPICS IN EVOLUTIONARY BIOLOGY**
1-4 cr. (1-3 and 0-3)

Recent advances in evolutionary biology and other topics of select interest to graduate students in the biological sciences. May be repeated for credit. **Prerequisite:** Permission of instructor.

ZOOL 884 **SPECIAL TOPICS IN PHYSIOLOGY**
1-4 cr. (1-3 and 0-3)

Recent advances in physiology and other topics of select interest to graduate students in the biological sciences. May be repeated for credit. **Prerequisite:** Permission of instructor.

ZOOL 885 **SPECIAL TOPICS IN ECOLOGY**
1-4 cr. (1-3 and 0-3)

Recent advances in ecology and other topics of select interest to graduate students in the biological sciences. May be repeated for credit. **Prerequisite:** Permission of instructor.

ZOOL 886 **SPECIAL TOPICS IN ANIMAL BEHAVIOR**
1-4 cr. (1-3 and 0-3)

Recent advances in animal behavior and other topics of select interest to graduate students in the biological sciences. May be repeated for credit. **Prerequisite:** Permission of instructor.

ZOOL 887 **SPECIAL TOPICS IN CELLULAR AND DEVELOPMENTAL BIOLOGY**
1-4 cr. (1-3 and 0-3)

Recent advances in cellular and developmental biology and other topics of
select interest to graduate students in the biological sciences. May be repeated for credit. **Prerequisite:** Permission of instructor.

ZOOLOGY 888
SPECIAL TOPICS IN ORGANISIMAL BIOLOGY
1-4 cr. (1-3 and 0-3)
Recent advances in organismal biology and other topics of select interest to graduate students in the biological sciences. May be repeated for credit. **Prerequisite:** Permission of instructor.

ZOOLOGY 891
MASTER'S THESIS RESEARCH
Credit to be arranged.

ZOOLOGY 991
DOCTORAL DISSERTATION RESEARCH
Credit to be arranged.
INDEX

Absentia, Study in
Master's, 52
Ph.D., 53

Academic Dishonesty, Policy, 16
Academic Grievances, Graduate
Student, 13
Academic Records, Permanent, 43
Academic Regulations, 43
Academic Research, 48
Academic Standards, 43
Academic Work, Assessment of
Previous, 35
Accounting, 114
Administration, Graduate School
11
Administration and Supervision, 141
Admission as Non-Degree Student, 37
Admission as Post-Baccalaureate
Student, 38
Admission Classifications, 37
Admission Procedures and
Requirements, 33
New Applicants, 34
Conditional Acceptance, 35
Applicants Presently Enrolled in
the Graduate School, 35
Readmission, 36
Admission to Candidacy for Degree, 42
Admission to Degree Program, 37
Advisor, Major, 41
Advisory Committee, 41
Agricultural Economics, 60
Agricultural Education, 65
Agricultural Engineering, 162
Agricultural Mechanization, 68
Agricultural Sciences, College of, 59
Agronomy, 69
Animal and Food Industries, 71
Animal Physiology, 72
Animal Science, 75
Appeals Provisions, 13
Application for Diploma, 42
Applied Economics, 76
Appointments, Graduate, 29
Aquaculture, Fisheries and Wildlife
Biology, 76
Architecture, 99
Architecture, College of, 97
Art and Architectural History, 110
Assistantships, Departmental Graduate,
29
Assistantships, Graduate Resident, 30
Astronomy, 278
Athletic Tickets, 26
Auditing, 26, 46
Biochemistry, 238
Bioengineering, 164
Biological Sciences, 241
Biology, 241
Board of Trustees, 10
Botany, 244
Building Science, 102
Business Administration, 116
Calendar, Clemson University, 7
Candidacy for a Graduate Degree, 42
Ceramic Engineering, 167
Certification, Teacher, 40
Change of Degree Program, 35
Checklist on Graduate School
Procedures, 2
Chemical Engineering, 169
Chemistry, 248
City and Regional Planning, 104
Civil Engineering, 172
Clemson University, 10
Commerce and Industry, College of, 113
Commission on Graduate Studies
and Research, 12
Community and Rural Development, 64
Comprehensive Examination before
Admission to Ph.D. Candidacy, 55
Computer Engineering, 179
Computing Facilities, DCIT, 18
Computer Science, 252
Concert Tickets, 26
Conditional Acceptance, 35
Continuous Enrollment, 45
Cooperative Education Program, 32
Correspondence Directory, inside
back cover
Counseling and Guidance Services, 141
Course Listings Explanation, 56
Course Work Required
Master's, 51
Ph.D., 52
Credit Loads, Maximum, 46
Dairy Science, 78
Deadline Dates, 2, 24, 33
Deans, Academic and Administrative, 11
Degree Requirements, 50
Departmental Graduate
Assistantships, 29
Diploma, Application for, 42
Dishonesty, Academic Policy on, 16
Dissertations, 48, (Also see Theses and
Dissertations.)
Doctor of Education
Degree Requirements, 56
Doctor of Philosophy Degree
Requirements, 52
INDEX

Duplication of Higher Degrees, 36
Earth Science, 256
Economics, 121
Education, College of, 139
Electrical Engineering, 184
Electron Microscope Facility, 19
Electronic and Photographic Services, 20
Elementary Education, 141
Employees' Eligibility for Graduate Study, 39
Employment Restrictions, 32
Employment, Student, 29, 31
Engineering, College of, 161
Engineering Mechanics, 192
English, 220
Enrollment in Graduate Courses, 39
Clemson University Senior, 39
Continuous, 45
Pass-Fail Basis, 46
Restrictions, 40
Teacher Certification, 40
Transient Graduate Students, 39
University Employees, 39
Entomology, 79
Environmental Science, 81
Environmental Systems Engineering, 193
Equal Opportunity Statement, inside front cover
Examinations, Final
Courses, 44
Master's, 52
Ph.D., 56
Examinations, Comprehensive before Admission to Candidacy, 55
Executive Officers and Deans, 11
Expenses, 24
Experimental Statistics, 81
Experimental Statistics Unit, 19
Explanation of Course Listings, 56
Fees, 24
Graduate Assistants, 25
Graduate Students, 24
Staff Members and Faculty, 25
Fees, Establishment of, 28
Fees, Past Due, 28
Fee, Refund of, 27
Fees, Settlement of, 27
Fellowships, 30
Filing Graduate Degree Curriculum, 42
Final Doctoral Oral Examination, 56
Final Examination Courses, 44
Master's, 52
Ph.D., 56
Finance, 125
Financial Assistance, 29
Fiscal Policy, 27
Food Science, 82
Food Service, 21
Food Technology, 84
Foreign Language Requirement Master's, 51
Ph.D., 55
Foreign Students, 23
Forestry, 210
Forest and Recreation Resources, College of, 209
Genetics, 84
Geology, 256
Graduate Appointments, 29
Graduate Assistantships, 29
Graduate Curriculum Committee, 12
Graduate Expenses, 24
Graduate Degree Curriculum, Filing of, 42
Graduate Programs and Course Offerings, 50
Graduate Resident Assistantships, 30
Graduate School, 12
Graduate Student Association, 13
Graduation Fees, 26
GS 799, 44
Handicapped Students, 22
Health Services, 22
History, 224
Horticulture, 85
Housing, 20
Hospital Administration, 131
Incomplete Graduate Course Work, 44
Industrial Education, 154
Industrial Engineering, 198
Industrial Management, 126
Integrated Pest Management, 92
International Services Office, 23
International Students, 21, 23
Languages, 226
Language Requirement Master's, 51
Ph.D., 55
Liberal Arts, College of, 219
Libraries, 17
Loans, 32
Major Advisor, 41
INDEX

Management, Industrial, 126
Management Science, 131
Marketing, 133
Married Student Housing, 21
Master's Degree Requirements, 50
Mathematical Sciences, 257
Mechanical Engineering, 202
Medical Requirement, 36
Microbiology, 270
Non-Degree Student, 37
Nursing, College of, 231
Nutrition, 88
Off-Campus Housing, 21
Off-Campus Research
 Master's, 52
 Ph.D., 53
Parks, Recreation and Tourism Management, 213
Past Due Accounts, 28
Physics, 273
Plant Pathology, 92
Plant Physiology, 94
Political Science, 227
Post-Baccalaureate Student, 38
Poultry Science, 95
Psychology, 227
Publication Policy, Theses and Dissertation, 49
Purpose of Catalog, inside front cover
Reading, 141
Readmission, 36
Regulations, General Graduate School, 40
Requirements for Degree, 50
 Master's, 50
 Specialist in Education, 52
 Doctor of Philosophy, 52
 Doctor of Education, 56
Research, Academic, 48
Research Facilities, 19
Residence Halls, 20
Residency Requirements
 Master's, 50
 Ph.D., 53
Sciences, College of, 237
Secondary Education, 141
Seniors, Enrollment in Graduate Courses, 39
Settlement of University Fees, 27
Single Student Housing, 20
Sociology, 228
Special Education, 141
Specialist in Education
 Degree Requirement, 52
Study in Absentia
 Master's, 52
 Ph.D., 53
Student Employment, 29
Student Responsibility, inside front cover
Student Services, 20
Teacher Certification, 40
Textile and Polymer Science, 134
Textile Chemistry, 135
Textile Science, 136
Theses and Dissertations, 48
 Abstract, 48
 Binding Fee, 48
 Guidelines for Preparation of, 48
 Restrictions on use of, 49
Time Limits
 Master's, 50
 Ph.D., 55
Traineeships, 30
Transfer Credit, Acceptance of, 47
Transient Student, 39
Tuition, 24
University Employees
 Fees, 25
 Enrollment, 39
University Government and Administration, 10
Visiting Scholars, 21, 23, 24
Visual Arts, 108
Vocational/Technical Education, 157
Withdrawal from Courses, 45
Zoology, 279
DIRECTORY FOR CORRESPONDENCE

Mailing Address
Clemson University, Clemson, South Carolina 29634

University Switchboard
(803) 656-3311.

Affirmative Action
Address the Director of the Office of Human Resources, telephone (803) 656-3181, zip: 29634-5004.

Assistantships
Address the head of the department of proposed major.

Graduate Study
Address the Dean of the Graduate School, telephone (803) 656-3195, zip: 29634-5120.

Housing
Address the Housing Office, telephone (803) 656-2295, zip: 29634-4075.

International Student Affairs
Address the International Services Office, telephone (803) 656-2457, zip: 29634-0109.

Public School Teachers Information
Agricultural Education, telephone (803) 656-3300, zip: 29634-0356.
Industrial Education, telephone (803) 656-3447, zip: 29634-0711.
Off-Campus Courses—Office of Educational Services, telephone (803) 656-2497, zip: 29634-0713.

Registration and Class Schedules
Address the Registrar, telephone (803) 656-2171, zip: 29634-4019.

Transcripts
Address the Registrar, telephone (803) 656-2171, zip: 29634-4019.

University Research
Address the Director of University Research, telephone (803) 656-2375, zip: 29634-5107.

Veterans Affairs
Address the Registrar, telephone (803) 656-2171, zip: 29634-4019.

The business and administrative offices of the University are open 8 a.m. to 4:30 p.m. Monday through Friday for 12 months of the year except for official University holidays.