% Simulation Creator for Monte Carlo Latin Hypercube Fatigue Study % Makes a set number of simulated bridges for use in HCfatigueLHCRt.m % Sara Roberts % Graduate Student % Clemson University % sarar@g.clemson.edu % Date Created: June 2010 clear clc sims = 10000; I = linspace(1, sims, sims)'; L = 50; %ft (must also be changed in fatigue program) fpu = 270; %ksi (must also be changed in fatigue program) % Initial Diameter of Prestress Wires, Lognormal MUDps = 0.16682; %in VDps = 0.0125; SIGDps = MUDps*VDps; SIGLNDps = sqrt(log(VDps^2 + 1)); MULNDps = log(MUDps) - 0.5*SIGLNDps^2; a = unifrnd(0, 1, sims, 1); a1 = (I - 1)./sims + a./sims; Dps1 = logninv(a1, MULNDps, SIGLNDps); x = randperm(sims); Dps = zeros([sims 1]); for j = 1:sims Dps(j,1) = Dps1(x(j)); end % Beam Width, Normal MUb = 36 + 5/32; %in (see Table 4.1 for mean and coefficient of variation equations) Vb = 0.25*(36 + 5/32)^(-1); SIGb = MUb*Vb; a = unifrnd(0, 1, sims, 1); a1 = (I - 1)./sims + a./sims; b1 = norminv(a1, MUb, SIGb); x = randperm(sims); b = zeros([sims 1]); for j = 1:sims b(j,1) = b1(x(j)); end % Beam Depth Mud = 21; %in (see Table 4.1 for mean and coefficient of variation equations) Vd = 1/(4*21); SIGd = MUd*Vd; a = unifrnd(0,1,sims,1); a1 = (I - 1)./sims + a./sims; d1 = norminv(a1, MUd, SIGd); x = randperm(sims); d = zeros([sims 1]); for j = 1:sims d(j,1) = d1(x(j)); end % Compressive strength of concrete, Lognormal MUfc = 0.96*(1.205 + 0.108*1)*6; %ksi (6 refers to design strength of concrete in ksi) Vfc = 0.15; %(see Table 4.1 for mean and coefficient of variation equations) SIGfc = MUfc*Vfc; SIGLNfc = sqrt(log(Vfc^2 + 1)); MULNfc = log(MUfc) - 0.5*SIGLNfc^2; a = unifrnd(0, 1, sims, 1); a1 = (I - 1)./sims + a./sims; fc1 = logninv(a1, MULNfc, SIGLNfc); x = randperm(sims); fc = zeros([sims 1]); for j = 1:sims fc(j,1) = fc1(x(j)); end % Gross Area of Section Ag = b.*d - 2*pi*6^2; %in^2 (6 refers to the radius of the void) % Elastic Section Modulus for top & bottom S = b.*d.^2./6 - 2*pi*12^3/32; %in^3 (6 refers to the radius of the void) % Moment of Inertia of Hollow Core ybH = d./2; %Neutral Axis, in IgH = b.*d.^3./12 - 2*pi*6^4/4; %in^4 (6 refers to the radius of the void) % Weight of Concrete, Normal MUW = 150; %lb/ft^3 (see Table 4.1 for mean and coefficient of variation equations) VW = 0.10; SIGW = MUW*VW; a = unifrnd(0, 1, sims, 1); a1 = (I - 1)./sims + a./sims; w1 = norminv(a1, MUW, SIGW); x = randperm(sims); w = zeros([sims 1]); for j = 1:sims w(j,1) = w1(x(j)); end W = w./(1000*12^3); %kip/in^3 % Weight of section WS = W.*Ag; %kip/in % Dead Load Moment Md = WS.*(L*12)^2./8; %kip-in % Modular Ratio n = 28500000./(w.^1.5.*33.*sqrt(fc*1000)); % Prestress steel eccentricity, Normal MUe = 7.5 + 1/8; %in (see Table 4.1 for mean and coefficient of variation equations) Ve = (11/32)*(7.5 + 1/8)^(-1); SIGe = MUe*Ve; a = unifrnd(0,1,sims,1); a1 = (I - 1)./sims + a./sims; e1 = norminv(a1, MUe, SIGe); x = randperm(sims); e = zeros([sims 1]); for j = 1:sims e(j,1) = e1(x(j)); end % Elastic Section Modulus with respect to steel centroid Ss = IgH./e; % Concrete stress at cg of strands fcsi = (-0.75.*fpu.*18.*7.*pi.*(Dps./2).^2.*(1./Ag + e./Ss) + Md./Ss)*1000; %psi % Elastic Shortening loss Les = abs(n.*fcsi); %psi % Creep Loss Lc = abs(n.*2.0.*fcsi); %psi % Shrinkage Loss Ls = 8.2.*10.^(-6).*1.0.*28.5.*10.^6.*(1 - 0.06.*Ag./(2.*b + 2.*d))*(100 - 75); % Corrosion Parameters % Choose Environment Type % 1: Low corrosion; almost no deicing salt use, not near salt water % 2: Medium corrosion; moderate deicing salt use, near salt water without % direct spray Enviro = 2; % Corrosion Initiation Time (years) if Enviro == 1 MUT1 = 25; VT1 = 0.2; elseif Enviro == 2 MUT1 = 10; VT1 = 0.6; end SIGT1 = MUT1*VT1; SIGLNT1 = sqrt(log(VT1^2 + 1)); MULNT1 = log(MUT1) - 0.5*SIGLNT1^2; a = unifrnd(0, 1, sims, 1); a1 = (I - 1)./sims + a./sims; T11 = logninv(a1, MULNT1, SIGLNT1); X = randperm(sims); T1 = zeros([sims 1]); for j = 1:sims T1(j,1) = T11(x(j)); end % Rate of Corrosion (mil/yr) if Enviro == 1 MUrcorr = 0.5*.75; Vrcorr = 0.1; elseif Enviro == 2 MUrcorr = 3.0*.75; Vrcorr = 0.3; end SIGrcorr = MUrcorr*Vrcorr; SIGLNrcorr = sqrt(log(Vrcorr^2 + 1)); MULNrcorr = log(MUrcorr) - 0.5*SIGLNrcorr^2; a = unifrnd(0, 1, sims, 1); a1 = (I - 1)./sims + a./sims; rcorr1 = logninv(a1, MULNrcorr, SIGLNrcorr); x = randperm(sims); rcorr = zeros([sims 1]); for j = 1:sims rcorr(j,1) = rcorr1(x(j)); end % Shear Key Degradation Choice (1, 2, 3, 4 or 5) % 1: 1/3 load factor for lifetime (upper bound) % 2: Deteriorate from 1/3 to 1 in 50 million cycles (linear) % 3: Deteriorate from 1/3 to 1 in 35 million cycles (linear) % 4: Deteriorate from 1/3 to 1 in 20 million cycles (linear) % 5: 1 load factor for lifetime (lower bound) LPchoice = 5; % Writing Files xlswrite(['Sims', num2str(Enviro), num2str(LPchoice), '.xls'],... [Dps b d fc Ag S Md n e Ss Les Lc Ls T1 rcorr])