

ANALYZING THE EFFECTS OF REGULATED STREAMFLOW ON THE HYDROLOGY OF CONGAREE NATIONAL PARK

Paul Conrads, Toby Feaster, Larry Harrelson, and Ed Roehl

SC Water Resources Conference

Charleston, SC

October 15, 2008

Background

South Carolina Environmental Conference 2008

Question?

What effect has the controlled flows from Lake Murray had on the gage heights and ground-water levels of the Congaree National

Park?

hat are the effects on:
Peak flows
Daily river stages
GW levels

Congaree River at Columbia, S.C. Station 02169500

Annual Peak Flows

Is this really due to regulation?

Figure 8. Flood frequency for Congaree River at Columbia, S.C.

Available Data

Historical data at 7 Surface-water sites back to the 1900s

Contemporary network of 13 GW wells and 3 SW sites

Peak Flows Analysis Broad River, GA

Congaree and Broad Rivers, SC

Effect of Saluda Dam on Peak Flows

Analysis of Daily River Stages and Ground-water Levels

Filling of Lake Murray – 1930

~3 years of data prior to dam construction

Modeling Approach

Prediction Models Pre-Dam Model 75-year "no Dam" Saluda $Q_{pred1} = F_1[Chappells Q]$ hydrograph Congaree River Model Congaree $GH_{(pred2)} = F_2[$ Saluda Q + Broad Q]Congaree Ground-water Models Congaree $GW_{(pred3)} = F_3[$ Congaree GH]**Generation of 75-year Synthetic GH Hydrographs** Congaree GH with and without Dam Congaree GH = F₂[Saluda Q + Broad Q] Congaree GW with and without Dam Congaree GW= F₃[Congaree GH]

Compare Dam and No Dam Hydrographs

(1930-2005)

Saluda River Pre-Dam Model **Measured and Simulated**

Broad River

Lake Murray

02161000

National Park

Congaree Gage Height Model Measured and Simulated

02167000

Lake Murray

Broad River

Columbia

02161000

Dam Removal

75-yr Hydrographs for

Dam and NoDam

Dam and No Dam Frequency Distribution

Dam and NoDam Duration hydrographs

Analysis of Ground-Water Effects

- USGS maintained a continuous ground-water network from 2003 to 2005
- Cluster analysis to group wells with similar behaviors
- Compute time delays (tau) and moving window averages (MWA)
- Trained ANN models for 8 wells
 - Input Gage height station 02169625 (tau, MWA)
 - Output Ground-water elevation at well
- Simulate 75-year "Dam" and "No Dam" hydrographs

GW Modeling Approach

- Cluster on dynamic response
 - K-means
- **Generate cross-correlation matrix**
 - Cluster on Pearson's or R²
- **Determine optimal number of classes**
 - > Inflection point of decreasing RMSE

GW Response by Group

Model Approach

- Input time series river gage heights
- One time series decomposed into multiple input signals
 - Improve correlation of signals
 - Moving window average (MWA)
 - Time delay
 - >Time derivatives
 - > Seasonal variables
- Make sure input signals aren't correlated (R² < 0.3)

Final Model: RIC-341

 $R^2 = 0.85$

<u>Variable</u>

MONTH
GHA38(001)
GHA3DI5
GHA10DI5

numerical value for month of the year 38-day MWA of gage height lagged 1-day 5-day change in 3-day MWA of gage height 15-day change in 10-day MWA of gage height

Model Statistics

Group	Well	Data R ²	Model R ²	RMSE, ft	PME
1	RIC-701	0.96	0.97	0.49	3.4%
	RIC-699	0.93	0.98	0.49	3.6%
	RIC-700	0.81	0.96	0.52	3.3%
2	RIC-703	0.60	0.80	0.85	6.7%
	RIC-342	0.54	0.82	0.58	7.4%
	RIC-704	0.49	0.85	1.13	9.3%
3	RIC-341	0.39	0.85	0.74	7.4%
	RIC-702	0.38	0.80	1.14	9.2%

Statistics for testing datasets
Data R² is correlation with river input

Model Application Review

Prediction Models Pre-Dam Model 75-year "no Dam" Saluda $Q_{pred1} = F_1[Chappells Q]$ hydrograph Congaree River Model Congaree $GH_{(pred2)} = F_2[$ Saluda Q + Broad Q]Congaree Ground-water Models Congaree $GW_{(pred3)} = F_3[$ Congaree GH]**Generation of 75-year Synthetic GH Hydrographs** Congaree GH with and without Dam Congaree GH = F₂[Saluda Q + Broad Q] Congaree GW with and without Dam Congaree GW= F₃[Congaree GH]

Compare Dam and No Dam Hydrographs

(1930-2005)

Ground-water – Dam and No DAM

RIC-701

50th percentile

△ Max: – 1.2 ft

△ Medium: 0.2 ft

△ Min: 1.1 ft

△ Range: -2.4 ft

50th Percentile for all Wells

- Slight increase in median values
- •Larger decrease in 25th and 75th and range

Summary

- Demonstrated how historical databases can be utilized to answer contemporary questions.
- Operation of the Saluda Dam has had less effect on annual peak flows than previously reported.
- Operation of Saluda Dam has changed the magnitude and duration of gage heights and ground-water levels
- Effect of the Dam may be greater on the surficial ground-water levels than frequency of flooding of the Park

Questions

Available online pconrads@usgs.gov

