
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

8-2022

Optimal First Order Methods for Reducing Gradient Norm in Optimal First Order Methods for Reducing Gradient Norm in

Unconstrained Convex Smooth Optimization Unconstrained Convex Smooth Optimization

Yunheng Jiang
yunhenj@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

 Part of the Other Applied Mathematics Commons

Recommended Citation Recommended Citation
Jiang, Yunheng, "Optimal First Order Methods for Reducing Gradient Norm in Unconstrained Convex
Smooth Optimization" (2022). All Theses. 3860.
https://tigerprints.clemson.edu/all_theses/3860

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/122?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3860?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3860&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Optimal first order methods for reducing gradient norm
in unconstrained convex smooth optimization

A Master’s Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mathematical Sciences

Operations Research

by

Yunheng Jiang

August 2022

Accepted by:

Dr. Yuyuan Ouyang, Committee Chair

Dr. Boshi Yang

Dr. Cheng Guo

Abstract

In this thesis, we focus on convergence performance of first-order methods to compute an

ϵ-approximate solution of minimizing convex smooth function f at the N -th iteration.

In our introduction of the above research question, we first introduce the gradient descent

method with constant step size h = 1/L. The gradient descent method has a O(L2∥x0−x∗∥2/ϵ) con-

vergence with respect to ∥∇f(xN)∥2. Next we introduce Nesterov’s accelerated gradient method,

which has an O(L∥x0 − x∗∥
√

1/ϵ) complexity in terms of ∥∇f(xN)∥2. The convergence perfor-

mance of Nesterov’s accelerated gradient method is much better than that of the gradient descent

method but still not optimal. We also briefly introduce some other first order methods in the lit-

erature to compute an ϵ-approximate solution of minimizing convex smooth function f , including a

monotone convergence accelerated gradient method and a perturbed gradient method in [8]. They

have O(L2/3∥x0 − x∗∥2/3/ϵ1/3) and O((
√

L∥x0 − x∗∥/ϵ1/4) ln(1 + 2L∥x0 − x∗∥/
√
ϵ)) complexities

respectively. Those results are better than that of Nesterov’s accelerated gradient method, but the

convergence performance of first order methods can still be better.

Our main focus is to design a first order method for reducing the gradient norm of the ob-

jective function. Our research is closely related to [4], in which a first order method is proposed with

complexity of order O(
√

L(f(x0)− f(x∗))/
√
ϵ). This method is studied through the performance

enhancement program (PEP) originated from [2]. In [9] it is pointed out that by combining the

accelerated gradient method and the method in [4] into a two-phase optimal gradient method, one

is actually able to obtain an optimal O(
√

L∥x0 − x∗∥/ϵ1/4) complexity.

Our new result in this thesis is a different set of parameters from [4] that also achieves

the O(
√
L(f(x0)− f(x∗))/

√
ϵ) convergence with respect to ∥∇f(xN)∥2. Combining with Nesterov’s

accelerated gradient method, we are able to derive an O(
√
L∥x0 − x∗∥/ϵ1/4) complexity, which is

optimal among first-order methods, by the two-phase optimal gradient method.

ii

Contents

Title Page . i

Abstract . ii

1 Introduction . 1
1.1 Properties of convex smooth functions . 2
1.2 The gradient descent method . 4
1.3 Nesterov’s accelerated gradient method . 6
1.4 Other methods in the literature . 11

2 Optimal gradient methods for minimizing gradient norm 13
2.1 First-order method convergence analysis through PEP 14
2.2 First-order methods based on special cases of PEP 20
2.3 Two-phase optimal gradient methods for minimizing gradient norm 28
2.4 Conclusion . 30

iii

Chapter 1

Introduction

The problem of interest in this thesis is the following unconstrained optimization problem

of convex smooth functions:

min
x∈Rn

f(x), (1.1)

where f is convex, continuously differentiable, and its gradient ∇f is Lipschitz continuous with

constant L. We use notation f ∈ F
1,1
L (Rn) to denote such functions.1 Our goal is to compute

an approximate solution with accuracy threshold ϵ. Note that there are several different possible

definitions of ϵ-approximate solutions. In our research, we define an ϵ-approximate solution as a

solution x that satisfies

∥∇f(x)∥2 ≤ ϵ.

Here and throughout this thesis, ∥ · ∥ denotes the Euclidean norm. To emphasize that the above

definition requires that the gradient norm ∥∇f(x)∥ is smaller than the threshold ϵ, in the sequel,

we sometimes refer to the above definition as “ϵ-approximate solution with small gradient norm”.

Clearly, if ϵ = 0, then x is a stationary point of problem (1.1) and hence an optimal solution due to

the convexity of f .

There has been several possible methods for solving problem (1.1). Our focus is on first-

order methods that relies on objective function value and gradient evaluations. Such methods are

1The notation F
1,1
L (Rn) follows from the book [8]. Such functions are also known as convex smooth functions.

Here F stands for the set of convex functions; the subscript ”1, 1” denotes that f is continuously differentiable and its
gradient is Lipschitz continuous; the subscript L denotes the Lipschitz constant of L.

1

commonly used when the accuracy threshold ϵ is modest to relative large and the dimension n is

large. In such cases, higher order methods (Newton’s method, etc.) requires more computational

time per iteration and becomes less appealing.

Our chapter is organized as follows. In Section 1.1, we describe several key properties of

convex smooth functions that we utilize throughout this thesis. In Sections 1.2 and 1.3 we describe

two possible methods for solving problem (1.1) and discuss their convergence properties. In Section

1.4, we provide a literature review on other first-order methods for solving problem (1.1).

1.1 Properties of convex smooth functions

In this section, we describe several commonly known properties of convex smooth functions

f ∈ F
1,1
L (Rn). Some properties are utilized in many convergence analysis performed throughout this

thesis. The proofs of all the results below are commonly known in convex optimization textbooks

(see, e.g., [8]) and are skipped.

Lemma 1.1.1. For any function f ∈ F
1,1
L (Rn) and any x, y ∈ Rn, we have

1

L
∥∇f(x)−∇f(y)∥2 ≤ ⟨∇f(x)−∇f(y), x− y⟩.

Specially, with y = x∗ we have

1

L
||∇f(x)||2 ≤ ⟨∇f(x), x− x∗⟩. (1.2)

The lemma above states that the inner product of gradient difference ∇f(x) −∇f(y) and

point difference x−y is lower bounded by the squared gradient norm difference ∥∇f(x)−∇f(y)∥2/L.

Note that the special case (1.2) of the above lemma has an important implication. Specifically, for

any differentiable convex function f , the following property holds for its minimizer x∗:

0 ≤ ⟨∇f(x), x− x∗⟩.

The above relationship is indeed an optimality condition for convex and differentiable functions.

The property (1.2) states that for convex smooth functions, its optimality condition can be stronger

2

than the above equation with an extra gradient norm.

Lemma 1.1.2. Let f be an arbitrary function s.t. f ∈ F
1,1
L (Rn), ∀x, y ∈ Rn,

0 ≤ f(x)− f(y)− ⟨∇f(y), x− y⟩ ≤ L

2
||x− y||2. (1.3)

Especially, when we let y = x∗, since ∇f(x∗) = 0, we have

f(x)− f(x∗) ≤ L

2
||x− x∗||2. (1.4)

Similar to Lemma 1.1.1, the above lemma states that convex smooth functions have a

stronger condition than that of convex differentiable functions. Specifically, for convex differential

function f we know that 0 ≤ f(x)−f(y)−⟨∇f(y), x−y⟩, namely, f(x) is lower bounded by a linear

approximation at y. Lemma 1.1.2 reveals that f is not only lower bounded the aforementioned

linear approximation, but also upper bounded by a quadratic function. Indeed, for convex smooth

functions we can also further strengthen its lower bound from linear approximations, as stated in

the lemma below.

Lemma 1.1.3. Let f be an arbitrary function s.t. f ∈ F
1,1
L (Rn), ∀x, y ∈ Rn,

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ 1

2L
||∇f(x)−∇f(y)||2.

Especially, when we let y = x∗, since ∇f(x∗) = 0, we have

1

2L
||∇f(x)||2 ≤ f(x)− f(x∗). (1.5)

Lemmas 1.1.1, 1.1.2 and 1.1.3 are the fundamental properties of f ∈ F
1,1
L (X) that play

important roles in convex smooth optimization analysis. Throughout this thesis we need them to

derive convergence analysis of several first-order methods.

3

1.2 The gradient descent method

The most common first-order method for solving problem (1.1) is the gradient descent

method. It is based on a straightforward observation that for any differentiable function, its nega-

tive gradient at a point is the direction along which the function decreases the fastest locally at such

a point. We describe the gradient descent method and analyze its convergence performance in this

section. The gradient descent algorithm is listed below.

Algorithm 1 The gradient descent method

Require: Initial point x0 ∈ Rn, h > 0
for i = 0, 1, . . . , N do

xi+1 = xi − h∇f(xi) (1.6)

end for

For f ∈ F
1,1
L (Rn), we first derive a convergence result in terms of f(xN) − f(x∗). The

derivation is based on the analysis of the relationship between f(xi) − x∗ and f(xi−1) − x∗, as

detailed in the proof of the following proposition.

Proposition 1.2.1. Let f be a function in the function class F1,1
L (Rn) and {xi}Ni=0 be the iterations

of the gradient descent method applied to minimize f . If we have 0 < h < 1/2L, then for any N ≥ 0

f(xN)− f(x∗) ≤ 2(f(x0)− f(x∗))∥x0 − x∗∥2

2∥x0 − x∗∥2 +Nh(2− Lh)(f(x0)− f(x∗))
. (1.7)

Proof. First, by the definition of xi (1.6) in the description of Algorithm 1, the relationship (1.2) in

Lemma 1.1.1, and noting that ∇f(x∗) = 0, we have

∥xi+1 − x∗∥2 =∥xi − x∗ − h∇f(xi)∥2

=∥xi − x∗∥2 − 2h⟨∇f(xi), xi − x∗⟩+ h2∥∇f(xi)∥2

≤∥xi − x∗∥2 − h

(
2

L
− h

)
∥∇f(xi)∥2.

4

Thus for any i, we have ∥xi+1 − x∗∥ ≤ ∥xi − x∗∥. Consequently, we can observe that ∥xi − x∗∥ ≤

∥x0 − x∗∥.

Next, by Lemma 1.1.2 and the description of xi (1.6) in the gradient descent algorithm, we

have

f(xi+1) ≤f(xi) + ⟨∇f(xi), xi+1 − xi⟩+
L

2
||xi+1 − xi||2

=f(xi)− h

(
1− L

2
h

)
∥∇f(xi)∥2.

(1.8)

Since the function f is convex differentiable, recalling our previous observation that ∥xi − x∗∥ ≤

∥x0 − x∗∥, we know that

f(xi)− f(x∗) ≤ ⟨∇f(xi), xi − x∗⟩ ≤ ∥∇f(xi)∥ · ∥xi − x∗∥ ≤ ∥∇f(xi)∥ · ∥x0 − x∗∥.

Thus by (1.8), we obtain

f(xi+1) ≤f(xi)− h

(
1− L

2
h

)
(f(xi)− f(x∗))2

∥x0 − x∗∥2
,

i.e.

f(xi+1)− f(x∗) ≤f(xi)− f(x∗)− h

(
1− L

2
h

)
(f(xi)− f(x∗))2

∥x0 − x∗∥2
.

Dividing (f(xi)− f(x∗)) (f(xi+1)− f(x∗)) on both sides, we have

1

f(xi+1)− f(x∗)
≥ 1

f(xi)− f(x∗)
+

h(1− L
2 h)

∥x0 − x∗∥2
· f(xi)− f(x∗)

f(xi+1)− f(x∗)

≥ 1

f(xi)− f(x∗)
+

h(1− L
2 h)

∥x0 − x∗∥2
.

Summing the inequalities above from k = 0, ..., N − 1, we have

1

f(xN)− f(x∗)
≥ 1

f(x0)− f(x∗)
+N ·

h(1− L
2 h)

∥x0 − x∗∥2
.

The above result implies (1.7) immediately.

In the convergence property above, the right-hand side of the result (1.7) is dependent on

5

the stepsize h. Theoretically, the best choice of stepsize h is the one such that h(1− (L/2)h) in the

denominator of the right-hand side is maximized, i.e., when h = 1/L. The convergence result when

h = 1/L is described in the theorem below.

Theorem 1.2.1. Let f be a function in function class F1,1
L (Rn) and {xi}Ni=0 be the iterations of the

gradient descent method. If the stepsize is chosen to h = 1/L, then for any N ≥ 0 we have

f(xN)− f(x∗) ≤ 2L||x0 − x∗||2

N + 4
and ∥∇f(xN)∥2 ≤ 4L2∥x0 − x∗∥2

N + 4
. (1.9)

Proof. The first result in (1.9) follows directly from Proposition 1.2.1 (with stepsize h = 1/L).

Moreover, noting from the relationship (1.5) in Lemma 1.1.3 that ∥∇f(x)∥2 ≤ 2L(f(x)− f(x∗)), we

conclude the second result in (1.9).

By the result (1.9) in the above theorem, in order to make sure that the iterate xN is an

ϵ-approximate solution to problem (1.1), i.e., ∥∇f(xN)∥2 ≤ ϵ, it suffices to run N iterations of the

gradient descent method with

N ≥ 4L2∥x0 − x∗∥2

ϵ
. (1.10)

Namely, the iteration complexity of the gradient descent method for computing an ϵ-approximate

solution with small gradient norm is of order O(4L2/ϵ). Note that the above convergence rate can be

further improved. Indeed, Nesterov introduced in [7] (see also [8]) an accelerated gradient method

that has better convergence properties than that of the gradient descent method. In the following

section we introduce Nesterov’s method and analyze its convergence.

1.3 Nesterov’s accelerated gradient method

The first version of Nesterov’s accelerated gradient method appears in [7]. After the work

in [7], there are several extensions and modifications proposed in the literature (see, e.g., [8, 6]). In

this section our description of Nesterov’s method in Algorithm 2 is based [5] under the Euclidean

6

setting. Note that [5] covers a more general treatment of Nesterov’s method with non-Euclidean

prox functions; however, this is out of the scope of this thesis.

Algorithm 2 Nesterov’s accelerated gradient method

Require: Initial point x0 ∈ Rn, qi ∈ [0, 1], γi ≥ 0, αi ∈ [0, 1]
Set x0 = x0.
for i = 1, . . . , N do

Compute

xi =(1− qi)xi−1 + qixi−1

xi =argmin
x∈R

{γi⟨∇f(xi), x⟩+ ∥xi−1 − x∥22}

xi =(1− αi)xi−1 + αixi

end for
Output approximate solution xN .

Here, {(xi, xi, xi)}Ni=0 ∈ Rn × Rn × Rn are the iterates generated by Nesterov’s accelerated

gradient method. Specially, the notation xi denotes the iterates at which gradient of f is computed.

Here the underline is since any gradient evaluation ∇f(xi) proves a linear approximation lower

bound f(xi) + ⟨∇f(xi), x− xi⟩ of the function f(x). The notation xi denotes the iterates at which

we perform gradient-descent-like updates. The notation xi denotes the outputs of the approximate

solutions of the algorithm. Here the overline is since f(xi) ≥ f(x∗) is an overestimate of the optimal

objective function value. We can immediately observe that if αi = 1 and γi = h for i = 0, . . . , N −1,

Algorithm 2 is identical to Algorithm 1. In the following proposition, we prove that the certain

choices of algorithm parameters qi, αi and γi can lead us to a relationship between the i-th and

(i− 1)-th iterates of Algorithm 2.

Proposition 1.3.1. Let f be a function such that f ∈ F
1,1
L (Rn) and {(xi, xi, xi)}Ni=0 ∈ Rn×Rn×Rn

be the iterates generated by Nesterov’s accelerated gradient method in Algorithm 2 to minimize f . If

parameters qi, αi and γi satisfy the following relationships:

αi ≥ qi, (1.11)

L(αi − qi)

1− qi
≤ 0, (1.12)

Lqi(1− αi)

1− qi
≤ 1

γi
, i = 1, ..., N, (1.13)

7

then for any x ∈ Rn, we obtain

f(xi)− f(x) +
αi

γi
∥xi − x∥2 ≤ (1− αi)[f(xi−1)− f(x)] +

αi

γi
∥xi−1 − x∥2. (1.14)

Proof. First, by the definitions of xi, xi and xi in Algorithm 2, we have

xi − xi =(qi − αi)xi−1 + αixi − qixi−1

=αi

[
xi −

αi − qi
αi(1− qi)

xi −
qi(1− αi)

αi(1− qi)
xi−1

]
=αi

[
(

αi − qi
αi(1− qi)

+
qi(1− αi)

αi(1− qi)
)xi −

αi − qi
αi(1− qi)

xi −
qi(1− αi)

αi(1− qi)
xi−1

]
=αi

[
αi − qi

αi(1− qi)
(xi − xi) +

qi(1− αi)

αi(1− qi)
(xi − xi−1)

]
.

Thus by the relationship αi ≥ qi of αi and qi in (1.11) and the convexity of norms, we obtain

∥xi − xi∥2 ≤ αi

[
αi − qi
1− qi

∥xi − xi∥2 +
qi(1− αi)

1− qi
∥xi − xi−1∥2

]
. (1.15)

Next, by property (1.3) in Lemma 1.1.2, the relationship xi = (1−αi)xi−1+αixi described

in Algorithm 2, the convexity of f , inequalities (1.15), (1.12) and (1.13) above, we are able to derive

that

f(xi) ≤f(xi) + ⟨∇f(xi), xi − xi⟩+
L

2
∥xi − xi∥2

=(1− αi) [f(xi) + ⟨∇f(xi), xi−1 − xi⟩] + αi [f(xi) + ⟨∇f(xi), xi − xi⟩] +
L

2
∥xi − xi∥2

≤(1− αi)f(xi−1)

+ αi

[
f(xi) + ⟨∇f(xi), xi − xi⟩+

L(αi − qi)

2(1− qi)
∥xi − xi∥2 +

Lqi(1− αi)

2(1− qi)
∥xi − xi−1∥2

]
≤(1− αi)f(xi−1) + αi

[
f(xi) + ⟨∇f(xi), xi − xi⟩+

1

γi
∥xi − xi−1∥2

]
.

In the above derivation, we first use (1.3) in the first inequality. Then we use the relationship that

xi = (1−αi)xi−1 +αixi in the first equality. Next we use the convexity of f and relationship (1.15)

in the second inequality. Finally we use (1.12) and (1.13) in the last inequality.

Finally, by the optimality condition of xi in its definition in Algorithm 2, we have that for

8

all x ∈ Rn,

γi⟨∇f(xi), xi⟩+ ∥xi−1 − xi∥22 ≤ γi⟨∇f(xi), x⟩+ ∥xi−1 − x∥22.

Hence combining with the fact that ∥xi−1 − xi∥2 ≥ ∥xi−1 − x∥2 − ∥xi − x∥2 and the convexity of f ,

we conclude that

f(xi) ≤(1− αi)f(xi−1) + αi [f(xi) + ⟨∇f(xi), x− xi⟩] +
αi

γi
∥xi−1 − x∥2 − αi

γt
∥xi − x∥2

≤(1− αi)f(xi−1) + αif(x) +
αi

γi
∥xi−1 − x∥2 − αi

γi
∥xi − x∥2.

In the above proposition, we prove that when the parameters satisfy (1.11), (1.12) and

(1.13), we obtain a recursive relationship between the i-th and (i − 1)-th iterates of Nesterov’s

gradient method (1.14). Consequently, we show in the following proposition that by induction it is

now possible to expand the aforementioned relationship to one that is between the N -th and the

initial iterates.

Proposition 1.3.2. Let f be a function such that f ∈ F
1,1
L (Rn) and {(xi, xi, xi)}Ni=0 ∈ Rn×Rn×Rn

be the iterates generated by Nesterov’s accelerated gradient method to minimize f . If αi = qi,

Lαi ≤ 1/γi and γi(1− αi)/αi ≤ γi−1/αi−1 for all i = 1, ..., N , then it holds that

f(xN)− f(x∗) +
αN

γN
∥xN − x∗∥22 ≤ αN (1− α1)γ1

γNα1
[f(x0)− f(x∗)] +

αN

γN
∥x0 − x∗∥22. (1.16)

Proof. It is straightforward to verify that assumptions (1.11)–(1.13) holds and hence we can use

Proposition 1.3.1 to conclude that

f(xi)− f(x∗) +
αi

γi
∥xi − x∗∥22 ≤ (1− αi)[f(xi−1)− f(x∗)] +

αi

γi
∥xi−1 − x∗∥22.

9

Applying relationship γi(1− αi)/αi ≤ γi−1/αi−1 to the above result, we have

γi
αi

[f(xi)− f(x∗)] + ∥xi − x∗∥22 ≤ (1− αi)γi
αi

[f(xi−1)− f(x∗)] + ∥xi−1 − x∗∥22

≤ γi−1

αi−1
[f(xi−1)− f(x∗)] + ∥xi−1 − x∗∥22.

Repeating the above relationship inductively for N times, we are able to derive that

γN
αN

[f(xN)− f(x∗)] + ∥xN − x∗∥22 ≤ (1− α1)γ1
α1

[f(x0)− f(x∗)] + ∥x0 − x∗∥22

and conclude (1.16).

With help from the above result, we are now ready to analyze the convergence properties

of Algorithm 2.

Theorem 1.3.1. Let f be a function that belongs to function class F1,1
L (Rn), and {(xi, xi, xi)}Ni=0 ∈

Rn × Rn × Rn be the iterates generated by Nesterov’s accelerated gradient method with parameters

αi = qi = 2/(i+ 1), γi = i/(2L), we obtain

f(xN)− f(x∗) ≤ 4L

N(N + 1)
∥x0 − x∗∥22 and ∥∇f(xN)∥2 ≤ 8L2

N(N + 1)
∥x0 − x∗∥22. (1.17)

Proof. By the choices of αi, qi, and γi we have that αi/γi = 4L/(i(i+ 1)) and it is easy to verify

that assumptions of Proposition 1.3.2 hold. Thus by Proposition 1.3.2, we obtain

f(xN)− f(x∗) ≤ 4L

N(N + 1)
(∥x0 − x∗∥22 − ∥xN − x∗∥22) ≤

4L

N(N + 1)
∥x0 − x∗∥22.

In addition, noting from the relationship (1.5) in Lemma 1.1.3 that ∥∇f(x)∥2 ≤ 2L(f(x)− f(x∗)),

we conclude the second result in (1.17).

According to the results (1.17) in the above theorem, in order to make sure that the iterate

xN of Algorithm 2 is an ϵ-approximate solution to problem (1.1), i.e., ∥∇f(xN)∥2 ≤ ϵ, it suffice to

10

set the total number of iterations N to

N ≥
√

8L2∥x0 − x∗∥2
ϵ

. (1.18)

Thus the iteration complexity of the accelerated gradient method for computing an ϵ-approximate

solution with small gradient norm is of order O(L/
√
ϵ). Comparing the above complexity to that of

the gradient descent method in (1.10), we can observe that Nesterov’s method significantly improves

the convergence properties comparing to that of the gradient descent method.

1.4 Other methods in the literature

In addition to the gradient descent method in Algorithm 1 and Nesterov’s accelerated gra-

dient method in Algorithm 2, there also exists other first order methods in the literature that are

able to compute an ϵ-approximate solution to problem (1.1) with small gradient norm. Some of the

existing methods have better convergence properties than that of Algorithms 1 and 2.

In [8], a monotone convergence accelerated gradient method is proposed that is able to

compute an ϵ-solution with at most O(L2/3∥x0 − x∗∥2/3/ϵ1/3) iterations. However, the convergence

property of such method is different from that of Algorithms 1 and 2, since its convergence result is

with respect to the best possible iterate, i.e.,

min
i=0,...,N

∥∇f(xi)∥2 ≤ O

(
L2∥x0 − x∗∥2

N3

)
, (1.19)

where {xi}Ni=0 is the sequence of iterates produced by the algorithm. The above convergence is

different from that of Algorithms 1 and 2 which are with respect to last iterate or weighted average

of iterates. A similar convergence result is also discovered in [3].

By perturbing the objective function of problem (1.1) to fδ(x) := f(x)+(δ/2)∥x−x0∥2 and

minimizing the perturbed function fδ instead, in [8] one other first order method is described that

computes an ϵ-solution of problem (1.1) with at most

O

(√
L∥x0 − x∗∥

ϵ1/4
ln(1 + 2L∥x0 − x∗∥/

√
ϵ)

)
(1.20)

iterations. Similar to the discussion above, the complexity is also concerning the best possible

11

iterate. So far, there has not yet been any proposed modification of such method that eliminates

the ln(1 + 2L∥x0 − x∗∥/
√
ϵ) term in the complexity.

In [4], a new first order method is proposed which computes an ϵ-solution of problem (1.1)

with at most O(
√
L(f(x0)− f(x∗))/ϵ) iterations. Note that such convergence result contains a

(f(x0) − f(x∗)) term rather than a ∥x0 − x∗∥2 term as seen in all the previously discussed com-

plexity results. Recalling the relation f(x) − f(x∗) ≤ (L/2)∥x − x∗∥2 in (1.4) of Lemma 1.1.1, we

observe that an O(
√

L(f(x0)− f(x∗))/ϵ) complexity implies an O(
√
L2∥x0 − x∗∥2/ϵ) complexity,

although the converse is not necessarily true. It should be pointed out that the analysis of [4] is

based on a semidefinite programming analysis framework originated from [2], known as the per-

formance enhancement program (PEP). The PEP-type analysis is significantly different from our

previously discussed analysis of gradient descent and accelerated gradient methods. A simplified

analysis that shares some analogy with that of gradient descent and accelerated gradient methods

is developed in [1]. It should also be noted that although the O(
√
L(f(x0)− f(x∗))/ϵ) complexity

of [4] seems to be in the same O(1/
√
ϵ) order as the accelerated gradient method complexity (1.18)

and worse than the previously mentioned results (1.19) and (1.20), in [9] it is pointed out that by

combining the accelerated gradient method and the method in [4], one is actually able to obtain a

best O(
√

L∥x0 − x∗∥/ϵ1/4) complexity.

The understanding of the aforementioned new first order method and its convergence anal-

ysis [4, 1, 9] is the main topic of this thesis, as detailed in the following chapter. Specifically, we

review and summarize the results in [4, 1, 9]. We also propose a new set of parameters that achieves

the same O(
√

L∥x0 − x∗∥/ϵ1/4) complexity as the results in [4].

12

Chapter 2

Optimal gradient methods for

minimizing gradient norm

In this chapter, we use the performance enhancement program (PEP) framework described

in [4] to design gradient method for solving unconstrained optimization problems of form (1.1),

namely,

min
x∈Rn

f(x). (2.1)

Recall that we assume that f is convex and smooth, i.e., f ∈ F
1,1
L (Rn). Our goal is to compute an

ϵ-approximate solution x ∈ Rn such that ∥∇f(x)∥2 ≤ ϵ. We first describe in Section 2.1 the general

algorithm and its convergence analysis. Then in Section 2.2 we describe the algorithm proposed in

[4] and its convergence analysis, and we propose a new set of parameters that is different from [4]

with the same gradient evaluation complexity. Finally, in Section 2.3, we show that by combining

our analysis and the comment made in [9], it is possible to compute an approximate solution x such

that ∥∇f(x)∥2 ≤ ϵ within O(
√
L∥x0 − x∗∥/ϵ1/4) number of iterations starting from initial point x0.

13

2.1 First-order method convergence analysis through PEP

Performance estimation problem (PEP) is an efficient convergence analyses method for

optimization problems. Given a certain class of objective function, such as convex smooth functions,

PEP guarantees convergence to even the worst case complexity by adjusting the parameter of an

algorithm. The algorithm in [4] is built on the PEP framework originally developed in [2]. For any

unconstrained optimization problem of form (2.1), the PEP framework starts by assuming that each

iteration xi is built within the linear span of gradients of previous iterations, namely,

xi ∈ x0 + span{∇f(x0),∇f(x1), . . . ,∇f(xi)}. (2.2)

The above linear span construction covers many existing first-order algorithms, e.g., the gradient

descent and accelerated gradient method, described in the previous chapter in Algorithms 1 and 2

respectively. Based on the above linear span description, the generic form of an algorithm studied

in the PEP framework can be described in Algorithm 3.

Algorithm 3 Generic algorithm description in the PEP framework for solving unconstrained opti-
mization problem (2.1)

Require: Initial point x0 ∈ Rn, maximum number of iterations N
for i = 1, . . . , N do

Compute

gi−1 = ∇f(xi−1)

xi = xi−1 −
1

L

i−1∑
k=0

hi,kgk (2.3)

end for
Output approximate solution xN .

A few remarks are in place for the above algorithm. First, by induction on equation (2.3)

we can easily observe that xi is in the linear span of gradients of previous iterations, i.e., (2.2)

holds. Conversely, we can also observe that for any algorithm whose iterates satisfy the linear span

relationship (2.2), it can always be described in the form of Algorithm 3. Second, for different

iteration number i, the coefficients hi,k for gradients gk are different. Finally, gradient descent

method with h = 1/L described in Algorithm 1 is a special case of the PEP description above with

hi,k = 0 for all k = 0, ..., i − 2, and hi,i−1 = 1. Note that the accelerated gradient method in

Algorithm 2 is also a special case of the above PEP description, although the coefficients hi,k are

14

more complicated than that of the gradient descent method.

In order to perform convergence analysis of the generic form algorithm in Algorithm 3, we

apply several properties of convex smooth functions at the algorithm’s iterates. Specifically, applying

Lemma 1.1.3 we have the following relationships:

f(xi)− f(xj)− ⟨∇f(xj), xi − xj⟩ ≥
1

2L
||∇f(xi)−∇f(xj)||2, i, j = 1, ..., N (2.4)

f(xi)− f(x∗) ≥ 1

2L
||∇f(xi)||2, i = 0, ..., N (2.5)

Note that in (2.5) we use the fact that ∇f(x∗) = 0. All the analysis performed throughout this

chapter is based on the above three relationships. We demonstrate that by combining the above

inequalities (2.4) and (2.5), we above to derive a bound of form

∥∇f(xN)∥2 ≤ ΓN∥x0 − x∗∥2,

where ΓN is a constant that depends on the maximum number of iterations N . The convergence

property of Algorithm 3 is described explicitly through the estimate of ΓN .

Throughout the convergence analysis, we frequently utilize the following technical lemma

on changing the order of double summands.

Lemma 2.1.1. For any nonnegative integer m,n, α such that m ≤ n, we have

n∑
i=m

n+α∑
j=i+α

bi,j =

n+α∑
j=m+α

j−α∑
i=m

bi,j .

Here bi,j’s are any numbers indexed by i and j.

Proof.

n∑
i=m

n+α∑
j=i+α

bi,j =

n∑
i=m

n+α∑
j=m+α

1m≤i≤j−α≤nbi,j =

n+α∑
j=m+α

j−α∑
i=m

bi,j

For Algorithm 3, after combining inequalities (2.4) and (2.5) described and substituting the

15

description of iterates, we obtain the following lemma concerning Algorithm 3.

Lemma 2.1.2. For any nonnegative constants denoted by A = (aij) ∈ R(N+1)×(N+1)
+ , c ∈ RN+1

+ ,

r ∈ R+, we have the following property concerning the iterates of Algorithm 3:

Q(G) + r||gN ||2 ≤
N∑
i=0

 N∑
j=0

(aij − aji) + ci

 (f(xi)− f(x∗)). (2.6)

Here Q(G) is a quadratic form of gradients G := (g0, g1, . . . , gN) ∈ Rn×(N+1).

Proof. Combine inequalities (2.4) and (2.5), we have

0 ≤
N∑
i=0

N∑
j=0

aij

(
f(xi)− f(xj)− ⟨gj , xi − xj⟩ −

1

2L
∥gi − gj∥2

)

+

N∑
i=0

ci

(
f(xi)− f(x∗)− 1

2L
∥gi∥2

)
.

By combining terms in the above relationship, we obtain

N∑
i=0

N∑
j=0

aij

(
⟨gj , xi − xj⟩+

1

2L
∥gi − gj∥2

)
+

1

2L

N∑
i=0

ci∥gi∥2

≤
N∑
j=0

N∑
i=0

aijf(xi)−
N∑
i=0

N∑
j=0

aijf(xj)−
N∑
i=0

cif(x
∗) +

N∑
i=0

cif(xi)

=

N∑
i=0

 N∑
j=0

(aij − aji) + ci

 (f(xi)− f(x∗)).

(2.7)

We make some observations concerning iterates xi and xj in the above result. For all j ≥ i,

summing equation (2.3) from i, i+ 1, . . . to j we have

xj = xi−1 −
1

L

j∑
l=i

l−1∑
k=0

hl,kgk = xi−1 −
1

L

j−1∑
k=0

j∑
l=1

hl,kgk11≤i≤l≤j10≤k≤l−1≤j−1

= xi−1 −
1

L

j−1∑
k=0

j∑
l=max{i,k+1}

hl,kgk.

16

Therefore,

xj =xi −
1

L

j−1∑
k=0

j∑
l=max{i+1,k+1}

hl,kgk, ∀j ≥ i, (2.8)

xi =xj −
1

L

i−1∑
k=0

i∑
l=max{j+1,k+1}

hl,kgk, ∀i ≥ j, (2.9)

xi =x0 −
1

L

i−1∑
k=0

i∑
l=k+1

hl,kgk,∀i = 1, ..., N. (2.10)

Applying observations (2.8), (2.9), and (2.10) above to (2.7) and combining terms, we conclude

(2.6).

A few remarks are in place of the above lemma. First, in the result (2.6) we define a

quadratic form Q(G). This is a quadratic form concerning all the gradients g0, . . . , gN computed by

Algorithm 3. Second, in the statement of the above lemma we did not specify the exact expression

of the quadratic form Q(G). Indeed, by applying (2.8) through (2.10) to (2.7) and isolating all the

quadratic forms concerning gradients g0, . . . , gN , we can observe that Q(G) has the following form:

Q(G) :=
1

L

N−1∑
i=0

N∑
j=i+1

aij

〈
gj ,

j−1∑
k=0

j∑
l=max{i+1,k+1}

hl,kgk

〉

− 1

L

N∑
i=1

i−1∑
j=0

aij

〈
gj ,

i−1∑
k=0

i∑
l=max{j+1,k+1}

hl,kgk

〉

+

N∑
i=0

N∑
j=0

aij

(
1

2L
||gi||2 −

1

L
⟨gi, gj⟩+

1

2L
||gj ||2

)
+

1

2L

N∑
i=0

ci||gi||2 − r||gN ||2.

(2.11)

Third, observe that if Q(G) is a positive-semidefinite quadratic form with respect to any vectors

g0, . . . , gN , then by (2.6) we have immediately that

r||gN ||2 ≤
N∑
i=0

 N∑
j=0

(aij − aji) + ci

 (f(xi)− f(x∗)). (2.12)

The above relationship leads directly to our convergence property of interest. For example, we have

the following immediate corollary:

Corollary 2.1.1. In the result of Lemma 2.1.2, if Q(G) is a positive-semidefinite quadratic form

17

with respect to any vectors g0, . . . , gN and the constants A and c satisfy

N∑
j=0

(aij − aji) + ci = 0, ∀i = 1, ..., N, (2.13)

then we have the following convergence property for Algorithm 3:

r||gN ||2 ≤ ΓN (f(x0)− f(x∗)), where ΓN :=

N∑
j=0

(a0j − aj0) + c0.

Proof. By (2.12) and
∑N

j=0(aij − aji) + ci = 0, for i = 1, ..., N , we obtain

r||gN ||2 ≤

 N∑
j=0

(a0j − aj0) + c0

 (f(x0)− f(x∗)).

By the above corollary, if the parameters hi,k’s and the constants A, c and r are chosen

properly, then the convergence of Algorithm 3 is dependent on ΓN/r. As long as we can estimate

the rate of ΓN/r, we obtain the convergence property of Algorithm 3.

So far in all the statements of results we assume that Q(G) is a positive-semidefinite

quadratic form. Indeed, since any quadratic form can be described by Q(G) = Tr(SGG⊤) where

S ∈ R(N+1)×(N+1) is a symmetric matrix, to prove positive-semidefiniteness of Q(G) it suffices to

prove that S is a positive-semidefinite matrix. In the following proposition we describe the entries

of S explicitly.

Proposition 2.1.1. In the statement of Lemma 2.1.2, the quadratic form Q(G) can be described by

Q(G) = Tr(SGG⊤) =

N∑
i=0

Sii||gi||2 +
N∑
j=1

j−1∑
k=0

Sj,k⟨gj , gk⟩,

18

where the entries of the symmetric matrix S ∈ R(N+1)×(N+1) are the following:

Sii =
1

2L

ci + N∑
j=0
j ̸=i

(aij + aji)− 2

N∑
j=i+1

aji(

j∑
l=i+1

hl,i)

 , ∀i = 1, . . . , N

SNN =
1

2L

cN +

N−1∑
j=0

(aNj + ajN)

− r

Sj,k =
1

2L

−ajk − akj +

j−1∑
i=0

aij

j∑
l=max{i+1,k+1}

hl,k − (

N∑
i=j+1

(aij(

i∑
l=j+1

hl,k) + aik(

i∑
l=j+1

hl,j)))

 ,

∀j = 1, ..., N, k = 0, ..., j − 1

(2.14)

Proof. Applying Lemma 2.1.1 to (2.11) we have two results. First,

1

L

N−1∑
i=0

N∑
j=i+1

aij

〈
gj ,

j−1∑
k=0

j∑
l=max{i+1,k+1}

hl,kgk

〉
=
1

L

N−1∑
i=0

N∑
j=i+1

j−1∑
k=0

j∑
l=max{i+1,k+1}

aijhl,k⟨gj , gk⟩

=
1

L

N∑
j=1

j−1∑
i=0

j−1∑
k=0

j∑
l=max{i+1,k+1}

aijhl,k⟨gj , gk⟩

=
1

L

N∑
j=1

j−1∑
k=0

j−1∑
i=0

aij

j∑
l=max{i+1,k+1}

hl,k⟨gj , gk⟩.

(2.15)

In the above derivation we apply Lemma 2.1.1 three consecutive times. Second, by a similar con-

secutive application of Lemma 2.1.1, we also have

− 1

L

N∑
i=1

i−1∑
j=0

aij

〈
gj ,

i−1∑
k=0

i∑
l=max{j+1,k+1}

hl,kgk

〉

=− 1

L

N∑
i=2

i−1∑
j=i

j−1∑
k=0

i∑
l=j+1

aijhl,k⟨gj , gk⟩ −
1

L

N∑
i=1

i−2∑
j=0

i−1∑
k=j+1

i∑
l=k+1

aijhl,k⟨gj , gk⟩

− 1

L

N∑
i=1

i−1∑
j=0

i∑
l=j+1

aijhl,j ||gj ||2

=− 1

L

N−1∑
j=1

j−1∑
k=0

N∑
i=j+1

aij

i∑
l=j+1

hl,k⟨gj , gk⟩ −
1

L

N−1∑
j=1

j−1∑
k=0

N∑
i=j+1

i∑
l=j+1

aikhl,j⟨gk, gj⟩

− 1

L

N−1∑
i=0

N∑
j=i+1

aji

j∑
l=i+1

hl,i||gi||2

(2.16)

19

Reading coefficients of ∥gi∥2 and ⟨gj , gk⟩ from (2.11) and noting the above results (2.15) and (2.16),

we conclude the description of S in (2.14) immediately.

Our results in Lemma 2.1.2, Corollary 2.1.1, and Proposition 2.1.1 allows us to study the

convergence of Algorithm 3 by finding nonnegative constants A, b, c, d, and r such that the matrix S

defined in (2.14) is positive-semidefinite. For bookkeeping purpose, we summarize the convergence

analysis concept in the following theorem.

Theorem 2.1.1. Suppose that nonnegative constants denoted by A = (aij) ∈ R(N+1)×(N+1)
+ , c ∈

RN+1
+ , and r ∈ R+ are chosen such that (2.13) holds. Then we have the following property concerning

the iterates of Algorithm 3:

Tr(SGG⊤) + r||gN ||2 ≤ ΓN (f(x0)− f(x∗)), where ΓN :=

N∑
j=0

(a0j − aj0) + c0.

where S is defined in (2.14) in Proposition 2.1.1.

Proof. Immediate from Lemma 2.1.2, Corollary 2.1.1, and Proposition 2.1.1.

By Theorem 2.1.1 above, in order to design efficient algorithms in the form described by

Algorithm 3, it suffices to find algorithm parameters hi,k and constants A, b, c, d, and r such that

the matrix S described in (2.14) is positive-semidefinite. In the following section, we describe a few

choices of algorithm parameters hi,k and constants A, c, and r that yield efficient algorithms for

computing approximate solutions of problem (2.1) with small gradient norms.

2.2 First-order methods based on special cases of PEP

We start with the description of parameter and constant choice in [4] that achieves an

O(
√

(f(x0)− f(x∗))/ε) complexity for computing an ϵ-solution with small gradient norm. Note

that in [4] there is no discussion on the rationale behind the choice of parameters and constants.

However, we show later through the proof of Theorem 2.2.1 that their parameters are chosen so that

the all the entries of S except SNN are all 0. Motivated by their parameter and constant choice,

we propose later in this section a new choice of parameters with the same O(
√

(f(x0)− f(x∗))/ε)

complexity.

20

The analysis performed in this section is relatively technical and detail oriented. Therefore,

before delving deeply into the technical details, here we briefly describe the main ingredients behind

the analysis throughout this section. Note that according to Theorem 2.1.1, our goal becomes finding

proper parameters {hi,k} and constants A and c to obtain an upper bound of ∥∇f(xN)∥2 of the form

∥∇f(xN)∥2 ≤ ΓN (f(x0)− f(x∗)). Such goal is equivalent to finding {hi,k}, A and c such that S is

positive semi-definite, and that
∑N

j=0(aij − aji) + ci = 0 for any i = 1, . . . , N . While determining

positive semi-definiteness is not necessarily straightforward, in the special case when S is diagonal

it becomes trivial to determine its positive semi-definiteness. As we show in the sequel, the result in

[4] yields a simple diagonal S with only one nonzero entry. Following such concept of constructing

simple diagonal S, we are able to derive a new set of parameters that enjoys the same order of

complexity as the method in [4].

Inspired by the analysis in [4], we first introduce a specialized setup of parameters {hi,k}

and constants A and c of Algorithm 3.

Proposition 2.2.1. Let f be a function such that f ∈ F
1,1
L (Rn) and {xi}Ni=0 be the iterations of

Algorithm 3 applied to minimize f . Suppose that a′i, αi and βi are positive constants such that

a′i ≥ a′i−1 for all i = 1, . . . , N , and that the parameters {hi,k} in Algorithm 3 are set to

hik =


1 + (αi − αi+1)(βk+1 − βk), i = 1, ..., N, k = i− 1

(αi − αi+1)(βk+1 − βk), i = 2, ..., N, k = 0, ..., i− 2.

(2.17)

Let G = (g0,gN) ∈ R(n)×(N+1) be the matrix consisting of all gradients involved in Algorithm 3,

then r = (1/L)a′N derives the fastest convergence and we have the following convergence property of

Algorithm 3:

Tr(SG⊤G) +
1

L
a′N ||gN ||2 ≤ 2a′0(f(x0)− f(x∗)), (2.18)

21

where S = {Si,k} ∈ R(N+1)×(N+1) is a symmetric matrix whose entries are

Sii =
1

2L
(2a′i − 2(a′i+1 − 2a′i)(βi+1 − βi)(αi+1 − αN+1)), i = 0, ..., N − 1;

SNN = 0;

Sjk =
1

2L
(a′j(αj − αj+1)(βk+1 − βk)− (a′j+1 − a′j)(αj+1 − αN+1)(βk+1 − βk)

− (a′k+1 − a′k)(αj+1 − αN+1)(βj+1 − βj)− (a′k+1 − a′k)), j = 1, ..., N, k = 0, ..., j − 1.

(2.19)

Proof. Let us set constants A and c to be the following:

ci =


0, i = 1, . . . , N − 1

a′0, i = 0 or N,

ajk =


a′i, j = i− 1, k = i, i = 1, ..., N

a′i − a′i−1, j = N, k = i− 1, i = 1, ..., N

0 otherwise

(2.20)

It is easy to verify that the conditions for Theorem 2.1.1 holds. Moreover, applying the choices of

hi,k in (2.17) and constants A and c in (2.20) to the entries of S described in (2.14), we obtain Sii

for i = 0, ..., N − 1 and Sjk for j = 1, ..., N , k = 0, ..., j− 1 in (2.19), and SNN = (1/L)a′N − r. Also,

since we want our algorithm to converge as fast as possible, we would like the constant r to be as

large as possible. Thus we define r = (1/L)a′N , so that SN,N = 0. And hence (2.18) and (2.19) are

derived.

With the help of the above proposition, we are now ready to describe the convergence

properties of the first-order method described in [4]. We start with the following proposition.

Proposition 2.2.2. Let f be a function such that f ∈ F
1,1
L (Rn) and {xi}Ni=0 be the iterations of

Algorithm 3 applied to minimize f . Suppose that the parameters {hi,k} in Algorithm 3 are set to

hik =


1 + (θ4i − θ4i+1)(1/θ

2
k+1 − 1/θ2k), i = 1, ..., N, k = i− 1;

(θ4i − θ4i+1)(1/θ
2
k+1 − 1/θ2k), i = 2, ..., N, k = 0, ..., i− 2,

(2.21)

where θN+1 = 0 and θi = (1 +
√
1 + 4θ2i+1)/2 for i = 0, ..., N , we have the following convergence

22

property of Algorithm 3:

1

L
a′N ||gN ||2 ≤ 2a′0(f(x0)− f(x∗)). (2.22)

Proof. In Proposition 2.2.1, let us set r = (1/L)a′N and

αi := θ4i , i = 1, ..., N + 1;

βi :=
1

θ2i
, i = 0, ..., N ;

a′i :=
1

θ2i
, i = 0, ..., N, where

θi :=


0, i = N + 1;

1+
√

1+4θ2
i+1

2 , i = 0, ..., N.

(2.23)

Here we observe that the sequence {θi}N+1
i=0 defined in (2.23) satisfies the following relationships:

θ2i = θ2i+1 + θi, i = 0, ..., N − 1,

θ20 = θ2N +

N∑
i=0

θi.
(2.24)

By the parameter and constant settings in (2.23) and applying relationships (2.24), the entries of S

in (2.19) are simplified as follows:

Sii =
1

2L

(
2
1

θ2i
− 2

(
1

θ2i+1

− 1

θ2i

)2

(θ4i+1 − θ4N+1)

)
= 0, i = 0, ..., N − 1;

SNN = 0;

Sjk =
1

2L

(
1

θ2j
(θ4j − θ4j+1)

(
1

θ2k+1

− 1

θ2k

)
−

(
1

θ2j+1

− 1

θ2j

)
(θ4j+1 − 0)

(
1

θ2k+1

− 1

θ2k

))
= 0,

∀j = 1, ..., N, k = 0, ..., j − 1.

In summary, we have S = 0, and hence Tr(SG⊤G) = 0. Thus by (2.18), we obtain (2.22).

By the above proposition, it suffices to estimate bounds of aN and a0 to derive the conver-

gence bound of the method proposed in [4]. We describe the convergence property in the following

23

theorem.

Theorem 2.2.1. Let f be a function such that f ∈ F
1,1
L (Rn) and {xi}Ni=0 be the iterations of Algo-

rithm 3 to minimize f . The algorithm proposed in [4] has a O
(√

(f(x0)− f(x∗))/ϵ
)
convergence

with parameters {hi,k} defined by (2.21) in Proposition 2.2.2. Specifically, we have

||gN ||2 ≤ 4
√
5L

(N + 1)(N + 2
√
5)

(f(x0)− f(x∗)) (2.25)

Proof. Since θi = (1 +
√
1 + 4θ2i+1)/2, we observe immediately that θi ≥ θi+1 and θi ≥ 1. Using

such observations and applying (2.24) we have that for all i = 0, ..., N − 2,

θi − θi+1 =
1

2
(
√
1 + 4θ2i+1 −

√
1 + 4θ2i+2)

=
2θi+1√

1 + 4θ2i+1 +
√

1 + 4θ2i+2

≥ 2θi+1

2
√
1 + 4θ2i+1

≥ θi+1√
5θ2i+1

=
1√
5
.

Thus we have θi ≥ θN + (N − i)/
√
5. Here by the definition of θi we have θN = 1, and hence

N∑
i=0

θi ≥
N∑
i=0

(
θN +

(N − i)√
5

)
= N +

N(N + 1)

2
√
5

and

θ20 = θ2N +

N∑
i=0

θi ≥ 1 +N +
N(N + 1)

2
√
5

= (N + 1)

(
1 +

N

2
√
5

)
.

Recalling the definitions of {a′i}Ni=0 in (2.23) we have an upper bound of a′0:

a′0 =
1

θ20
≤ 1

(N + 1)(1 + N
2
√
5
)
=

2
√
5

(N + 1)(N + 2
√
5)

.

Also note that a′N = 1/θ2N = 1. Thus by (2.22), we conclude (2.25).

It should be noted that in Theorem 2.2.1, the convergence result has constant f(x0)−f(x∗)

at the right hand side rather than ∥x0 −x∗∥2 as seen previously in Sections 1.2 and 1.3. Clearly, we

can simply use the property of convex smooth function (1.4), i.e., f(x) − f(x∗) ≤ (L/2)||x − x∗||2,

24

to obtain that

||gN ||2 ≤ 2
√
5L2

(N + 1)(N + 2
√
5)

∥x0 − x∗∥2.

In other words, we obtain an O
(
L∥x0 − x∗∥

√
1/ϵ
)
complexity for solving problem (2.1) with small

gradient norm square ∥gN∥2.

Comparing the above complexity result with that discussed previously in Sections 1.2,

1.3, 1.4, we observe that the above complexity result matches that of the accelerated gradient

method in (1.18), but is worse than that of (1.19) and (1.20). However, we show later in the

following section that the above analysis actually leads to the optimal complexity in the order of

O(
√

L∥x0 − x∗∥/ϵ1/4).

However, before moving to the optimal complexity bound analysis, we would like to conclude

this section by addressing a small issue in the above result. Here, the parameter choice hi,k depends

on a sequence {θi}N+1
i=0 , but the exact dependence of hi,k with respect to iteration count i and

maximum number of iteration N is not very clear. This is because the sequence {θi}N+1
i=0 is only

defined recursively backwards from θN+1 = 0. It would be more preferable if we are able to develop

parameter choice hi,k that has explicit dependence in i and N .

In order to develop a different set of parameters hi,k from [4], we make the following ob-

servation on the choice of matrix S in the above analysis. Note that the parameters are chosen

intentionally to make sure that S = 0. However, note that the crucial idea behind the proof is to

make sure that S is positive-semidefinite. Therefore, we do not necessarily need to enforce that

S is a zero matrix. Rather, as long as S is diagonal, it is already easy to determine its positive-

semidefiniteness. In the following proposition, we study possible necessary condition for S to be

diagonal and positive-semidefiniteness.

Proposition 2.2.3. For constants a′i, αi and βi in Proposition 2.2.1, if they satisfy the following

conditions:

1. {a′i}Ni=0 is a non-negative monotone increasing sequence;

2. There exist some ξ ∈ R+, such that

βk+1 − βk = ξ(a′k+1 − a′k) and a′i+1 − a′i =
1

2αi+1

[
a′i(αi − αi+1)−

1

ξ

]
. (2.26)

25

3. There exists non-negative monotone decreasing sequence {αi}N+1
i=1 with αN+1 = 0 such that

1

ξ(
√
αi +

√
αi+1)2

≤ a′i ≤
1

ξ(
√
αi −

√
αi+1)2

, i = 0, .., N − 1. (2.27)

Then setting r = 1
La

′
N as in Proposition 2.2.1, the matrix S in the result (2.18) of Proposition 2.2.1

is positive semi-definite.

Proof. As discussed before, we would like S to a diagonal matrix. Hence, we need to prove that

all off-diagonal entries of S are 0. In order for this to happen, by the description of entries of S in

(2.19), the relationship that Sjk = 0 for all j = 1, ..., N and k = 0, ..., j − 1 is equivalent to

βk+1 − βk

a′k+1 − a′k
=

1 + (αj+1 − αN+1)(βj+1 − βj)

a′j(αj − αj+1)− (a′j+1 − a′j)(αj+1 − αN+1)
, k = 0, ..., j − 1,∀j.

Noting that αN+1 = 0, the above is equivalent to

βk+1 − βk = ξ(a′k+1 − a′k) where ξ satisfies ξ =
1 + αj+1ξ(a

′
j+1 − a′j)

a′j(αj − αj+1)− (a′j+1 − a′j)αj+1
, ∀j.

The second relationship concerning ξ is equivalent to

a′i+1 − a′i =
1

2αi+1

[
a′i(αi − αi+1)−

1

ξ

]
.

Therefore, the condition (2.26) guarantees that S is zero off-diagonal entries.

Let us now move our focus to the diagonal entries of S. By (2.19) and (2.26), we have that

SNN = 0 and also that for i = 0, ..., N − 1

Sii =
1

2L
(2a′i − 2ξ(a′i+1 − 2a′i)

2(αi+1 − αN+1))

=− ξ

2αi+1

[
a′2i (αi − αi+1)

2 − 2

ξ
a′i(αi + αi+1) +

1

ξ2

]
.

In order to have Sii ≥ 0, the quadratic term within the brackets should be non-positive, which is

equivalent to (2.27).

The above proposition describes possible conditions for S to be a diagonal and positive-

semidefinite matrix. Therefore, it suffices to find proper parameters ξ, ai and αi that satisfies the

26

conditions of the above proposition. Actually, for ξ simply set to 1, we can find a specific set of

parameters that meets the requirement of Proposition 2.2.3 and we introduce them in the following

theorem.

Theorem 2.2.2. Let f be a function such that f ∈ F
1,1
L (Rn) and {xi}Ni=0 be the iterations of

Algorithm 3 applied to minimize f . Suppose that the parameters {hi,k} in Algorithm 3 are set to

hik =


1 +

2(N − i+ 1)(N − i+ 2)(N − i+ 3)

(N − k + 1)(N − k + 2)(N − k + 3)
, i = 1, ..., N, k = i− 1;

2(N − i+ 1)(N − i+ 2)(N − i+ 3)

(N − k + 1)(N − k + 2)(N − k + 3)
, i = 2, ..., N, k = 0, ..., i− 2,

(2.28)

then the algorithm has a O
(√

L(f(x0)− f(x∗))/ϵ
)
complexity. Specifically, we have

||gN ||2 ≤ 6L

(N + 2)(N + 3)
(f(x0)− f(x∗)). (2.29)

Proof. Let us set constants to ξ = 1, r = (1/L)a′N , αN+1 = 0, a′N = 1,

a′i =
6

(N − i+ 2)(N − i+ 3)
, and

αi =
1

24
(N − i+ 1)(N − i+ 2)(N − i+ 3)(N − i+ 4).

(2.30)

We can verify that the above constants satisfy the conditions of Proposition 2.2.3. According to

(2.30), we can immediately see that {αi}N+1
i=1 and {a′i}Ni=0 are non-negative monotone decreasing

and increasing respectively. Also, for all N ≥ 1 and i = 0, ..., N − 1, (2.27) is satisfied too. Thus by

Proposition 2.2.3, S is positive semi-definite. Now by (2.17) in Proposition 2.2.1, we obtain

1

L
a′N ||gN ||2 ≤ 2a′0(f(x0)− f(x∗)). (2.31)

Applying the values of α′
N and α′

0 in (2.30) to (2.31), we directly obtain the convergence result

(2.29). Consequently, Algorithm 3 has a O
(√

L(f(x0)− f(x∗))/ϵ
)
complexity.

We have several remarks regarding the convergence result above. First, our method with

parameters hik defined in (2.28) has the same O
(√

L(f(x0)− f(x∗))/ϵ
)
complexity as that of [4]

described in Theorem 2.2.1. The difference is that our method has hik explicitly expressed by

27

i, k, and N while the method in [4] relies on a recursively defined sequence {θk}N+1
k=0 . Second,

although it seems that our method with parameters hik defined in (2.28), method presented in [4]

and Nesterov’s accelerated gradient method all have an O
(√

1/ϵ
)
complexity, our result above and

the result in [4] depends on (f(x0)− f(x∗)). As shown in the following section, a result in [9] states

that combining either of these two methods with Nesterov’s accelerated gradient method, we have

an optimal O(
√
L∥x0 − x∗∥/ϵ1/4) complexity for solving problem (2.1) with small gradient norm.

2.3 Two-phase optimal gradient methods for minimizing gra-

dient norm

In this section, we demonstrate that combining either method described in the previous sec-

tion with Nesterov’s accelerated gradient method, one could derive an optimal O(
√
L∥x0 − x∗∥/ϵ1/4)

complexity. Such result of combination of method in [4] and Nesterov’s accelerated gradient method

is previously commented in a remark in [9], although such comment is not the focus of [9]. We apply

the same technique to the gradient method with our new parameters in (2.28). Specifically, Consider

the an algorithm with two phases. In phase one we perform N/2 iterations of Nesterov’s accelerated

gradient method with parameters defined in Proposition 1.3.2. In phase two, we continue with N/2

iterations of Algorithm 3. The details of the two-phase algorithm is described in Algorithm 4.

Note that with parameters hik defined be (2.21), Algorithm 4 is the procedure mentioned

in [9]. In the following theorem, we introduce the convergence analysis of Algorithm 4 with our

parameters hik defined in (2.28).

Theorem 2.3.1. Suppose that the maximum number of iterations N is a pre-specified even num-

ber. Let f be a convex smooth function such that f ∈ F
1,1
L (Rn) and {xi}N/2

i=0 and {xi}Ni=N/2+1

be iterates of Algorithm 4 with parameters hik defined in (2.28). Then Algorithm 4 achieves an

O(
√

L∥x0 − x∗∥/ϵ1/4) complexity. Specifically,

∥gN∥2 ≤ 96L2

N(N + 2)2(N + 3)
∥x0 − x∗∥22. (2.32)

Proof. In phase one, we iterate N/2 steps of Nesterov’s accelerated gradient method. By complexity

28

Algorithm 4 Two-phase optimal gradient methods

Require: Initial point x0 ∈ Rn, γi ≥ 0, αi ∈ [0, 1], N a even number,
Set x0 = x0.
for i = 1, . . . , N

2 do
Compute

xi =
i− 1

i+ 1
xi−1 +

2

i+ 1
xi−1

xi =argmin
x∈Rn

{
i

2L
⟨∇f(xi), x⟩+ ∥xi−1 − x∥22

}
xi =

i− 1

i+ 1
xi−1 +

2

i+ 1
xi

end for
Set xN/2 = xN/2.
for i = N/2 + 1, . . . , N do

Compute

gi−1 = ∇f(xi−1)

xi = xi−1 −
1

L

i−1∑
k=0

hi,kgk

end for
Output approximate solution xN .

bound (1.17),

f(xN/2)− f(x∗) ≤ 16L

N(N + 2)
∥x0 − x∗∥22. (2.33)

Then in phase two we start from xN/2 and iterate N/2 steps of Algorithm 3 with hik defined in

(2.28). By complexity bound (2.29), we have

||gN ||2 ≤ 6L

(N + 2)(N + 3)
(f(xN/2)− f(x∗)). (2.34)

Combining (2.33) and (2.34), we conclude that

||gN ||2 ≤ 96L2

N(N + 2)2(N + 3)
∥x0 − x∗∥22.

In other words, an O(
√

L∥x0 − x∗∥/ϵ1/4) complexity is obtained.

29

According to the result (2.32) in the above theorem, in order to make sure that the iterate

xN of the combined algorithm is an ϵ-approximate solution to problem (1.1), i.e., ∥∇f(xN)∥2 ≤ ϵ,

it suffice to set the total number of iterations N to

N ≥ O

(√
L∥x0 − x∗∥

ϵ1/4

)
. (2.35)

Indeed, the complexity result above could not be improved to any better order, for the following

reason. By [8], for any first-order method for minimizing convex smooth functions in the class

F
1,1
L (Rn) that produces iterates {xi}Ni=1 ∈ Rn (where N ≤ (n − 2)/2), it is known that there is a

lower complexity bound with respect to function value difference f(xN) − f(x∗). Specifically, we

have

f(xN)− f(x∗) ≥ 3L∥x0 − x∗∥2

32(N + 1)2
. (2.36)

Since f is convex smooth, we have f(xN)− f(x∗) ≤ ⟨∇f(xN), xN − x∗⟩ and hence

(f(xN)− f(x∗))2 ≤ ∥∇f(xN)∥2 · ∥xN − x∗∥2. (2.37)

Combining (2.36) and (2.37), we can immediately observe that if there exists any first-order method

whose complexity for computing approximate solutions with small gradient norm is better than

(2.35) (with respect to the order of ϵ), then such algorithm produces approximate solutions with

small objective function difference f(xN) − f(x∗) better than the lower complexity bound, leading

to a contradiction.

2.4 Conclusion

We discuss convergence performance of first-order methods to compute an ϵ-approximate

solution for minimizing convex smooth function f at the N -th iteration with small gradient norm.

As background introduction and literature review, we first show that the gradient descent

method with constant step size h = 1/L has a O(L2∥x0 − x∗∥2/ϵ) convergence with respect to

∥∇f(xN)∥2. The convergence performance of the gradient descent method is not good enough. Next

we introduc Nesterov’s accelerated gradient method, which gives a O(L∥x0−x∗∥
√

1/ϵ) convergence

30

with respect to ∥∇f(xN)∥2. The convergence performance of Nesterov’s accelerated gradient method

is much better than gradient descent method, but it can still be better. And then we briefly

introduce some other first-order methods in literature such as a monotone convergence accelerated

gradient method with O(L2/3∥x0 − x∗∥2/3/ϵ1/3) complexity and a perturbed gradient method with

a O((
√
L∥x0 − x∗∥/ϵ1/4) ln(1 + 2L∥x0 − x∗∥/

√
ϵ)) complexity. Those convergence performance is

better than Nesterov’s accelerated gradient method, but still not the best.

Our focus is on optimal first-order method for computing solutions with small gradient

norm. In [4], a first-order method with a O(
√
L(f(x0)− f(x∗))/

√
ϵ) convergence is proposed. An

extension is suggested in [9]: combining the accelerated gradient method and the method in [4],

we obtain the best O(
√
L/ϵ1/4) complexity. Inspired by the above procedure, we propose an op-

timal gradient method for minimizing gradient norm. We find a set of parameters that allow an

O(
√

L(f(x0)− f(x∗))/
√
ϵ) convergence in terms of ∥∇f(xN)∥2. Hence, combining with Nesterov’s

accelerated gradient method, we are able to obtain the optimal O(
√
L∥x0 − x∗∥/ϵ1/4) complexity.

Note that Algorithm 2.32 requires a pre-specified maximum number of iteration N . An

interesting future direction is to design a method that relaxes such requirement.

31

Bibliography

[1] Jelena Diakonikolas and Puqian Wang. Potential function-based framework for making the
gradients small in convex and min-max optimization. arXiv preprint arXiv:2101.12101, 2021.

[2] Yoel Drori and Marc Teboulle. Performance of first-order methods for smooth convex minimiza-
tion: a novel approach. Mathematical Programming, 145(1):451–482, 2014.

[3] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[4] Donghwan Kim and Jeffrey A Fessler. Optimizing the efficiency of first-order methods for decreas-
ing the gradient of smooth convex functions. Journal of optimization theory and applications,
188(1):192–219, 2021.

[5] Guanghui Lan. First-order and stochastic optimization methods for machine learning. Springer,
2020.

[6] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming,
103(1):127–152, 2005.

[7] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2). In Doklady an ussr, volume 269, pages 543–547, 1983.

[8] Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

[9] Yurii Nesterov, Alexander Gasnikov, Sergey Guminov, and Pavel Dvurechensky. Primal–dual
accelerated gradient methods with small-dimensional relaxation oracle. Optimization Methods
and Software, 36(4):773–810, 2021.

32

	Optimal First Order Methods for Reducing Gradient Norm in Unconstrained Convex Smooth Optimization
	Recommended Citation

	Title Page
	Abstract
	Introduction
	Properties of convex smooth functions
	The gradient descent method
	Nesterov's accelerated gradient method
	Other methods in the literature

	Optimal gradient methods for minimizing gradient norm
	First-order method convergence analysis through PEP
	First-order methods based on special cases of PEP
	Two-phase optimal gradient methods for minimizing gradient norm
	Conclusion

