
v

TABLE OF CONTENTS

Page

TITLE PAGE ...i

ABSTRACT ... ii

DEDICATION ... iii

ACKNOWLEDGMENTS ...iv

LIST OF TABLES .. viii

LIST OF FIGURES .. x

CHAPTER

 1. INTRODUCTION .. 1

 1.1 The Need for Air Quality Monitoring ... 1

 1.2 Air Quality Parameters ... 2

 2. DESIGN OF THE SENSOR SYSTEM .. 4

 2.1 Sensors and Components .. 4

 2.2 Integration of Sensors and Components ... 10

 3. BREADBOARD BASED DEMONSTRATION ... 11

 3.1 Individual Component Circuit Diagrams .. 11

 3.2 Breadboard Based Prototype Circuit .. 16

 4. SOFTWARE INTEGRATION AND TESTING.. 18

 4.1 Component Testing and Software Development 18

 4.1.1 Microcontroller Setup .. 18

 4.1.3 THP Sensor Setup .. 19

 4.1.4 VOC Setup ... 20

Table of Contents (Continued)

Page

2

human made chemicals that can be found in the manufacturing of paint, pharmaceuticals,

and refrigerants. VOCs can be emitted by normal activities around the house including

cooking, cleaning, and/or painting. CO2 can be found in the emissions from human

activities such as burning coal, oil, and gas. VOC and CO2 concentrations are higher

indoors and it is important that we can detect these harmful air pollutants to protect

ourselves and the environment. A summary of some of the affects poor air quality can be

seen in the Figure 1.1[12] below.

 Figure 1.1 Poor Air Quality Effects on the Human Body

1.2 Air Quality Parameters

When determining Air Quality, it is important to include the pollution levels of

other important human health factors such as temperature, humidity, and particulate

matter which is a mixture of solid particles and liquid droplets found in the air (i.e., dust,

dirt, soot, or smoke). The system requirements for our device include the ability to

3

measure CO2, VOCs, particulate matter of multiple different sizes, temperature, pressure,

and humidity. Air Quality ratings range from excellent, fine, moderate, poor, very poor,

and severe. For our system, we will be monitoring all these parameters and sending the

real time data which will fit within these ranges for consumer information. It is

recommended that the indoor air temperature should range from 73ºF to 79ºF in the

summer and 68ºF to 75ºF in the winter [2]. High humidity levels (greater than 60%) can

lead to mold growth and possibly dehydration which can be dangerous [3]. High CO2

and VOC levels can lead to lowered cognitive function, drowsiness, and lower activity

levels. Furthermore, prolonged CO2 concentrations above 1,000 ppm generally indicate

inadequate ventilation [4]. A table summarizing the various levels of indoor and outdoor

levels of the various parameters is given in Table 1.1. All these parameters and ranges are

directly used to determine the Air Quality and will give accurate and informative

information to the consumer.

Table 1.1 Air Quality Parameter Ranges

Parameter Outdoor Indoor (norm) Indoor (high) Dangerous

CO2 (ppm) [5] 250-350 350-1,000 1,000-5,000 >40,000

VOC (ppb) [5] 0-10 0-220 220-2200 >2200

Particulate Matter

(ug/m3) < PM2.5 [5]

<1 <12 20-60 >60

Particulate Matter

(ug/m3) <PM10 [5]

<1 <20 50-100 >100

Temperature (F) [6] 70-85 70-82 90-130 >130

4

CHAPTER TWO

SENSOR COMPONENT SELECTION

2.1 Sensors and Components

The components and sensors used in our system were selected based on their

sensitivity, selectivity, size, response time, and power consumption. For our system, we

have decided to use a Boron Particle LTE CAT-M1, SPS30 sensor, SGP30 sensor,

SCD30 sensor, BME280 sensor, XA1110 sensor as the microcontroller, particle matter

sensor, Volatile Organic Compound sensor, CO2 sensor, Temperature Pressure Humidity

sensor, and Global Position System sensor, respectively.

The Boron Particle is a develop kit that supports cellular networks and Bluetooth

LE (BLE). It is based on an ARM Cortex-M4F 32-Bit processor, Nordic nRF52840

which is the Bluetooth module and has a built-in battery connector and charging circuit

which allows for a Lithium Polymer (Li-Po) battery to be connected and power the

components and sensors within our system. Particle’s IoT connectivity services and

microcontrollers made this selection uncomplicated. Table 2.1 shows a some of the

Particle Boron key specifications that are related to our needs.

5

Table 2.1 Particle Boron Specifications

Microcontroller

Specification Particle

Controller Boron

Size (inches) 0.9x0.65x2.00

Weight 10 grams

Cost $59.37

Input Voltage 3.3-6.5 V

Digital Pins 20

Analog Inputs 6

Analog Outputs 6

PWM Outputs 8

UART Ports 3

SPI Ports 1

I2C Ports 2

JTAG Ports 1

Built-in Wi-Fi No

Built-in Cellular Yes

Built-in Bluetooth Yes

6

The Sensirion SCD30 (SCD30) is the Carbon Dioxide sensor in our system. It is a

nondispersive infrared sensor which means that it detects the decrease in transmitted

infrared light which is in proportion to the gas concentration. The CO2 particles absorb

infrared light and create vibrations for the sensor to detect. The black box component on

the breakout board is where the infrared light is constantly being sent and waits for CO2

particles to create the reaction described above. The SCD30 needs to be powered by a

3.3Volt-5Volt source and can use UART or I2C for communication. An overview of the

specification of the SCD30 are shown in Table 2.2.

Table 2.2 CO2 Sensor Specifications

Sensor

Sensor SCD30

Company Sensirion

Price $58

Voltage 3.3–5.5 V

Peak Current 75 mA

Lifetime 15 years

Range 400-10,000 ppm

Accuracy 30 ppm

Response Time 20 s

Interface UART / I2C

Dimensions (35x23) mm / (1.4x1.0) inches

Footprint 805mm2 / 1.25inches2

Other Qualities Measures temperature and humidity

The Sensirion SPS30 sensor is our particulate matter sensor. It is based on laser

scattering and Sensirion’s latest contamination-resistance technology. This sensor can

7

sense 4 different sizes ranging from PM1.0, PM2.5, PM4, and PM10, where the number

stands for the range in microns. The SPS30 needs a 5 Volt supply and can communicate

via I2C and UART. The SPS30 specifications can be seen in Table 2.3.

Table 2.3 SPS30 Specifications

Sensor

Sensor SPS30

Company Sensirion

Price $52

Voltage 4.5-5.5 V

Peak Current 80 mA

Lifetime >8 years

Particle Size 1, 2.5, 4, 10

Range (mass) 0-1000 g/m3

Range

(concentration)
0-3000 #/cm3

Accuracy 10

Response Time 5 s

Interface UART / I2C

Dimensions (41x41) mm / (1.6x1.6) inches

Height 12 mm / 0.5 inches

Other Qualities Mass and Concentration

 The SGP30 Sensor from Sensirion will detect the Volatile Organic Compounds

(VOCs). The SGP30 sensor is a standard hot-plate MOX sensor, this means it is

composed of a metal-oxide surface (often tin dioxide), a sensing chip that measures the

change in conductivity. The SGP30 requires a 1.62V-1.98Volt power supply and uses

I2C communication protocol. The SGP30 specifications can be seen in Table 2.4.

8

Table 2.4 SGP30 Specifications

Sensor

Sensor SGP30

Company Sensirion

Price $13.49

Voltage 1.62-1.98 V

Range 0-1000 ppm

Interface I2C

Dimensions 2.45 x 2.45 mm

Height 0.9 mm

We used the XA1110 module from GTOP as our GPS sensor for the device. The

XA1110 is supported by several GPS constellations, which means different Global

Position System architectures in space that operate in case one fails. This allows for

accurate and reliable tracking. It is powered by a 3.3 Volt source, has a connector to

connect an external antenna and uses I2C communication protocol. The XA1110

specifications can be seen in Table 2.5.

Table 2.5 XA1110 Specifications

GPS Sensor

Sensor XA1110

Company Sierra Wireless

Antenna Location Internal and/or External

9

Price $20.85

Voltage 3.3 V

Peak Current 20-35 mA (25 mA typical)

Sensitivity -165 dB

Interface UART or I2C

Dimensions 12.5 mm x 12.5 mm

Height 6.8 mm

Finally, the BME280 from Bosch will be used to detect Temperature, humidity,

and pressure. This IC uses common practices to sense the intended parameters. It is

small, robust, has a fast response time, and requires a low amount of power to operate.

BME280 specifications can be shown in Table 2.6.

Table 2.6 BME280 Sensor Specifications

BME280

Voltage 1.7-3.6 V

Peak Current < 800 A

Price $8

 Temperature Humidity Pressure

Range -40-185ºF 0-100 %RH 0.3-1.1 atm

Accuracy 1ºC / 1.8ºF 3 1.2x10-4 atm

Resolution 0.01ºC / 0.018ºF 0.008 1.776x10-6 atm

Response Time 1s
Dimensions 2.5 x 2.5 x 0.93 mm

Interface I2C / SPI

2.2 Integration of Sensors and Components

After selecting all components that will be fused together to sense the intended

parameters, a plan to test and design the overall system was devised. To do so, breakout

boards from trusted electronic suppliers, SPARKFUN and ADAFRUIT were acquired.

10

When prototyping IoT devices that fuse multiple sensors, using existing breakout boards

to create a breadboard-based circuit with all sensors is intelligent step to verify if all the

sensors chosen will/can work together. Breakout boards are individual printed circuit

boards that have the desired sensing Integrated Chips with their own corresponding

power regulating and communication circuits designed from the electronic suppliers, that

then allow the data transfer to your intended Microcontroller. The Particle Boron’s ability

to transfer data to and from a cloud service and ability to host over 100 different devises

on its Serial Communication Line and Serial Data lines make it a sound choice to test

with our 5 sensors/breakout boards and allow for additions in the future if intended.

11

CHAPTER THREE

BREADBOARD BASED CIRCUIT DESIGN

3.1 Individual Component Circuit Diagrams

 The next step in the design process was to acquire the necessary breakout boards

to create a circuit to be built on a standard bread board. This step is important because

different sensors and Serial Communication and Serial Data Lines require different

impedances and voltages to be able to communicate. Before creating the circuit design, it

is important to understand the overall process flow of our IoT device. Figure 3.1 shows

the process flow for our IoT device to execute.

Figure 3.1 System Block Diagram

12

To create the circuit for our system, we need to decide how all the breakout

boards will be powered and how they will communicate with our Microcontroller, the

Particle Boron. A communication protocol is a system of rules that allow for two or more

devices with communication systems to transfer information via the corresponding

physical quantity, in our case the data from the sensing mechanisms of each sensor. The

communication protocols supported by each sensor in our system can be seen in Table

3.1.

Table 3.1 Sensor Interface Protocols

Supported

Protocols

BME280

(ATM)

SCD30

(CO2)

SPS30

(PM)

SGP30

(VOC)

XA1110

(GPS)

UART ✓ ✓ ✓

SPI ✓

I2C ✓ ✓ ✓ ✓ ✓

The most common communication protocols that are in use today are Universal

Asynchronous Receiver Transmitter (UART), Serial Peripheral Interface (SPI), and Inter-

Integrated Circuit Communication(I2C). UART communication protocol has two data

lines, one that transmits data (TX) and one that receives data (RX) which can be seen as

digital I/O pins in microcontrollers. The TX and RX of the chosen microcontroller will

communicate to the desired sensor as shown in Figure 3.2 [9].

Figure 3.2 UART Communication Diagram

13

UART supports bi-directional, asynchronous, and serial data transmission. UART only

allows communication one way at a time and does not allow for multiple transmitting and

receiving systems. UART also does not allow more than 8 bits per message being sent

and is known for low data transmission speeds.[7] SPI communication has uses four

wires/ports to connect devices which are the MOSI/SDI (master-out-slave-in/serial-data-

in) pin, MISO/SDO (master-in-slave-out/serial-data-out) pin, SCLK (serial-clock) pin,

and SS/CS (slave-select/chip-select). SPI communication allows for multiple devices to

be connected to the master. The SPI communication has simple and inexpensive

hardware requiring two shift register which are simple logic circuits. SPI communication

between devices needs to be well established before integration because it does not allow

devices to communicate at the same time. Therefore, the chip select pin is needed for all

devices to establish which device communicates at a specific time. This increases the

communication speed and increase in number of pins used because of the dedication to

one slave device but can get problematic with multiple devices and switching between

peripherals [5]. Figure 3.3 [10] shows the basic SPI communication interface.

Figure 3.3 SPI communication diagram

14

 I2C is a bidirectional two-wire synchronous serial bus and requires only two wires Serial

Clock Line and Serial Data line to transmit information between devices on a bus. I2C

uses an address system which assign a unique address of 7-10 bits to the devices

connected to allow data transmission at the same time. Because of this architecture, I2C

is slower than SPI but allows for over 100 devices to be connected and communicate

simultaneously with just the two pins. The serial clock line synchronizes the data being

sent to which decides when the master or slave device is transmitting or receiving data.

This is done by the master sending a read or write command to the unique address of the

intended device which switches the SCL and SDA lines high or low [8]. Basic I2C

communication can be seen in Figure 3.4 [11] below.

Figure 3.4 I2C communication Diagram

Our IoT device has the 5 different sensors which all can communicate via I2C.

I2C has the advantage of requiring less pins, allows for all our devices to communicate

via the two pins SCL, SDA, and allows for flexibility in the future if we add more

devices. The slower communication speed will work fine with our implementation

15

because the data transfer will be quick enough to allow the consumer to react to any

severe air quality. For our IoT system design we have decided to use the I2C protocol.

 Tables with the pin descriptions for each breakout board used for prototyping and

testing the overall circuit were made to determine which wires would be connected to the

corresponding pin. Below are the pinout diagrams for each component and breakout

board used in our prototype system.

Figure 3.5 Particle Boron Pinout Diagram

16

Table 3.2 BME280 Breakout Board Pin Out Diagram

VIN 3.3V Input

3Vo 3.3V Output

GND Ground

SCK SPI/I2C clock

SDO Output data for SPI

SDI SPI/I2C data

CS Chip Select for SPI

Table 3.3 SGP30 Breakout Board Pinout Diagram

VIN 3.3V Input

1V8 1.8V Output

GND Ground

SCL SPI/I2C clock

SDA SPI/I2C data

Table 3.4 SPARKFUN GPS Breakout Board Pinout Diagram

3.3V 3.3V Input

GND Ground

SCL SPI/I2C clock

SDA SPI/I2C data

17

Table 3.5 SCD30 Pin Out Diagram

Table 3.6 SPS30 Pin Out Diagram

3.2 Initial Prototype Circuit

 When all the breakout boards were acquired, a breadboard-based circuit

was built using a standard breadboard and jumper wires. Some of the design requirements

that had to be experimented were the pull up resistors on the SCL and SDA lines for each

sensor/breakout board. The pullup resistors pull the specific SCL and SDA lines high

when it is not driven low by the open-drain interface. The value of the pullup resistor is

an important design consideration for I2C systems as an incorrect value can lead to the

18

sensor/breakout board to not communicate with the microcontroller. The pull up resistor

prevents the I2C pins of the microcontroller to be driven low. The level which the valid

logical low (Vol) can be read by input buffers of an IC determine the minimum pullup

resistance required for proper communication. This relationship can be shown in equation

1 from the pull up resistor datasheet.

 (1)

The maximum pullup resistance is limited by the bus capacitance (Cp) due to the specific

rise time of the IC within the desired system. If the pullup resistor is too high, then the

logical high level may not be reached to allow proper data transfer. The maximum rise

time of the IC is needed to determine the maximum pull up resistance. The response of an

RC circuit on the bus line can be used to determine the rise to be used for the pull up

resistance value. The following equations 2-6 show how to calculate the pull up

resistance value from the pull up resistor datasheet.

 (2)

 (3)

 (4)

19

 (5)

 (6)

With these equations and information from the technical datasheets from a sensor using

I2C protocol, you can determine the correct pull up resistor value. Once the correct pull

up resistor is identified, you must place it in parallel of the supply voltage of the intended

chip and the SCL and SDA line respectively as visualized in the following Figure 3.6,

where Vin is the input voltage, Rp is the pull up resistors, SCL is the serial clock and

SDA is the serial data. The more devices you add, you may need to add more resistors in

parallel or increase the values of the initial pull up resistors.

Figure 3.6 Pull up Resistor I2C Bus Topology

20

 For our initial breadboard based prototyped system, most breakout boards had a built-in

pull up resistor value to allow for proper communication. For the SPS30 Sensirion

sensor, 10Kohm pullup resistors were needed to allow for proper communication. Pull up

resistance values would need to be calculated again during our own electrical circuit and

printed circuit board design which will be discussed in later sections.

With all the necessary circuitry in place for the communication lines, the power

and ground were needed to be connected to all the breakout boards. The 3.3V out pin

from the Particle Boron is enough to power on all the devices within our IoT device. The

only additions needed for this circuit was a 5V Booster circuit to provide 5V to the

SPS30 sensor which requires a 5V input and a logic level shifter to shift the logical levels

of the SPS30 SDA and SCL lines back to 3.3V. Every microcontroller has a voltage

rating for their I2C communication lines. The Particle Boron logical high-level maxes out

at 3.3V volts. Any voltage rating higher than the Particle Boron’s specification, then there

is serious risk of permanent damage to the I2C lines. Every sensor I2C lines will output a

logical level high value with respect to its VIN voltage. In our system, the SPS30 sensor

needs the 5V to be powered but the normal logical level high of 5V would not meet the

requirements of our microcontroller. Therefore, the logic level shifter was included in the

circuit. The wiring diagram for the breadboard-based prototype circuit including all

connections between all sensors, GPS, and microcontroller is shown in Figure 3.3.

21

Figure 3.7 Breadboard Prototype Circuit Diagram

 After developing this circuit diagram, the system was tested on a breadboard to

ensure functionality which will be discussed in our next chapter. After our breadboard-

based prototype circuit was tested and proved to be operational, then we created our own

proprietary circuit designs including only the sensing ICs of each tested breakout board

circuit and our own passive components i.e., capacitors, resistors, transistor, connectors

etc. on EAGLECAD software. Following this, the design was then sent to the JLCPCB

Company for manufacturing.

about:blank
about:blank

22

CHAPTER FOUR

SOFTWARE INTEGRATION AND TESTING

4.1 Individual Component Testing and Software Development

 After designing the breadboard-based circuit, software integration for the entire

system needed to be performed. Particle uses an online software called Web IDE that

makes editing code, compiling, and flashing devices over the cellular network connection

seamless. All the sensors have Arduino C programming language-based libraries, but the

Particle IDE uses C++ programming language. This means changes in syntax from

existing libraries and the individual/full system codes that include the functions we will

be using for each sensor. Using the Particle IDE, we setup and tested functions for each

sensor to verify before designing a miniaturized printed circuit board that includes all the

sensors and a proprietary circuit design including passive and active components.

4.1.1 Microprocessor Setup

To setup the Boron Particle, we must register it with a particle account. To do

this, we needed a usb cable for power, and external antenna and an iOS Bluetooth

enabled device. The iOS device finds the Bluetooth connection to the Particle Boron to

find a unique data matrix from the microprocessor. Then the cellular connection is used

to link to the account used on the iOS device to the Particle Boron. To verify connection,

a simple LED blinking code was flashed onto the device to turn the onboard LED on and

off. This and all future software will have library inclusions, information definitions and

declarations, variable creation, setup function, and repeated loop function calling a

specific function/command from the included libraries. The libraries include code with

23

commands that could be used for sensors and actuators, communication protocol

functions, and memory structures. The information definitions and declarations are where

we label the variables to an air quality parameter for future use. The variable creation is

where we tell the code the name of the air quality parameter we are trying to read and its

data size and where we want it to be sent in the system. The setup function and repeated

loop is where we take the command from the library to find the air quality parameter and

send the value to the variable, we created to then be published to the particle dashboard

continuously. All sensors will use the following libraries shown below as they are

needed for basic math functions, particle functions, and I2C functions.

4.1.3 Temperature, Pressure, Humidity Sensor Setup

The top of this setup uses the library named “Adafruit_BME280.h”, which has the

necessary memory structures, communication protocol, and functions to initialize this

sensor. This line of code can be shown below:

All the remaining sensors will require a similar line of code for their respective libraries

which are pre-existing and created by our team. We then initialize the library by calling a

specific name within the library called bme as shown in the code below.

Now when we call commands from the library, we can just write bme.command, where

command can be the function we intend to use from the library. A connection bit was

24

created to determine if the sensor is connected and found by the microcontroller which is

shown below:

Every sensor will have this connection verification in their setup. Before creating a loop,

the variables used, and sizes of variables need to be stated in the code. For the BME THP

sensor, we declare the Humidity, Temperature, and Pressure and allow for 64 bits of data

for each, which is known as a double value. As stated previously, we will be using I2C

communication, to initialize this in the code we must use Wire.Begin(), determine a

communication rate with Serial.Begin(), then find the communication address. The

variable size, communication address, and communication speed can all be found in the

sensor documentation. In the setup function, the I2C interface address was initiated at

address 0x77. Once the setup has been created for our function, we need to write the

command to read the temperature, pressure, and humidity from our sensors. This line of

code looks like the following lines below:

