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human made chemicals that can be found in the manufacturing of paint, pharmaceuticals, 

and refrigerants. VOCs can be emitted by normal activities around the house including 

cooking, cleaning, and/or painting. CO2 can be found in the emissions from human 

activities such as burning coal, oil, and gas. VOC and CO2 concentrations are higher 

indoors and it is important that we can detect these harmful air pollutants to protect 

ourselves and the environment. A summary of some of the affects poor air quality can be 

seen in the Figure 1.1[12] below. 

                        

                 Figure 1.1 Poor Air Quality Effects on the Human Body 

1.2 Air Quality Parameters  

When determining Air Quality, it is important to include the pollution levels of 

other important human health factors such as temperature, humidity, and particulate 

matter which is a mixture of solid particles and liquid droplets found in the air (i.e., dust, 

dirt, soot, or smoke).  The system requirements for our device include the ability to 
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measure CO2, VOCs, particulate matter of multiple different sizes, temperature, pressure, 

and humidity.  Air Quality ratings range from excellent, fine, moderate, poor, very poor, 

and severe. For our system, we will be monitoring all these parameters and sending the 

real time data which will fit within these ranges for consumer information. It is 

recommended that the indoor air temperature should range from 73ºF to 79ºF in the 

summer and 68ºF to 75ºF in the winter [2].  High humidity levels (greater than 60%) can 

lead to mold growth and possibly dehydration which can be dangerous [3].  High CO2 

and VOC levels can lead to lowered cognitive function, drowsiness, and lower activity 

levels.  Furthermore, prolonged CO2 concentrations above 1,000 ppm generally indicate 

inadequate ventilation [4]. A table summarizing the various levels of indoor and outdoor 

levels of the various parameters is given in Table 1.1. All these parameters and ranges are 

directly used to determine the Air Quality and will give accurate and informative 

information to the consumer. 

Table 1.1 Air Quality Parameter Ranges 

Parameter Outdoor Indoor (norm) Indoor (high) Dangerous 

CO2 (ppm) [5] 250-350 350-1,000 1,000-5,000 >40,000 

VOC (ppb) [5] 0-10 0-220 220-2200 >2200 

Particulate Matter 

(ug/m3) < PM2.5 [5] 

<1 <12 20-60 >60 

Particulate Matter 

(ug/m3) <PM10 [5] 

<1 <20 50-100 >100 

Temperature (F) [6] 70-85 70-82 90-130 >130  
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CHAPTER TWO 

SENSOR COMPONENT SELECTION 

 

2.1 Sensors and Components 

The components and sensors used in our system were selected based on their 

sensitivity, selectivity, size, response time, and power consumption. For our system, we 

have decided to use a Boron Particle LTE CAT-M1, SPS30 sensor, SGP30 sensor, 

SCD30 sensor, BME280 sensor, XA1110 sensor as the microcontroller, particle matter 

sensor, Volatile Organic Compound sensor, CO2 sensor, Temperature Pressure Humidity 

sensor, and Global Position System sensor, respectively.  

The Boron Particle is a develop kit that supports cellular networks and Bluetooth 

LE (BLE). It is based on an ARM Cortex-M4F 32-Bit processor, Nordic nRF52840 

which is the Bluetooth module and has a built-in battery connector and charging circuit 

which allows for a Lithium Polymer (Li-Po) battery to be connected and power the 

components and sensors within our system. Particle’s IoT connectivity services and 

microcontrollers made this selection uncomplicated.  Table 2.1 shows a some of the 

Particle Boron key specifications that are related to our needs.  

 

 

 

 

 

 



5 

Table 2.1 Particle Boron Specifications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Microcontroller 

 

Specification Particle 

Controller Boron 

Size (inches) 0.9x0.65x2.00 

Weight 10 grams 

Cost $59.37 

Input Voltage 3.3-6.5 V 

Digital Pins 20 

Analog Inputs 6 

Analog Outputs 6 

PWM Outputs 8 

UART Ports 3 

SPI Ports 1 

I2C Ports 2 

JTAG Ports 1 

Built-in Wi-Fi No 

Built-in Cellular Yes 

Built-in Bluetooth Yes 
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The Sensirion SCD30 (SCD30) is the Carbon Dioxide sensor in our system. It is a 

nondispersive infrared sensor which means that it detects the decrease in transmitted 

infrared light which is in proportion to the gas concentration. The CO2 particles absorb 

infrared light and create vibrations for the sensor to detect. The black box component on 

the breakout board is where the infrared light is constantly being sent and waits for CO2 

particles to create the reaction described above. The SCD30 needs to be powered by a 

3.3Volt-5Volt source and can use UART or I2C for communication.  An overview of the 

specification of the SCD30 are shown in Table 2.2.   

Table 2.2 CO2 Sensor Specifications 

Sensor 

 

Sensor SCD30 

Company Sensirion 

Price $58 

Voltage 3.3–5.5 V 

Peak Current 75 mA 

Lifetime 15 years 

Range 400-10,000 ppm 

Accuracy 30 ppm 

Response Time 20 s 

Interface UART / I2C 

Dimensions (35x23) mm / (1.4x1.0) inches 

Footprint 805mm2 / 1.25inches2 

Other Qualities Measures temperature and humidity 

 

The Sensirion SPS30 sensor is our particulate matter sensor. It is based on laser 

scattering and Sensirion’s latest contamination-resistance technology. This sensor can 
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sense 4 different sizes ranging from PM1.0, PM2.5, PM4, and PM10, where the number 

stands for the range in microns. The SPS30 needs a 5 Volt supply and can communicate 

via I2C and UART. The SPS30 specifications can be seen in Table 2.3.  

Table 2.3 SPS30 Specifications 

Sensor 

 

Sensor SPS30 

Company Sensirion 

Price $52 

Voltage 4.5-5.5 V 

Peak Current 80 mA 

Lifetime >8 years 

Particle Size 1, 2.5, 4, 10 

Range (mass) 0-1000 g/m3 

Range 

(concentration) 
0-3000 #/cm3 

Accuracy 10 

Response Time 5 s 

Interface UART / I2C 

Dimensions (41x41) mm / (1.6x1.6) inches 

Height 12 mm / 0.5 inches 

Other Qualities Mass and Concentration 

 

 The SGP30 Sensor from Sensirion will detect the Volatile Organic Compounds 

(VOCs). The SGP30 sensor is a standard hot-plate MOX sensor, this means it is 

composed of a metal-oxide surface (often tin dioxide), a sensing chip that measures the 

change in conductivity. The SGP30 requires a 1.62V-1.98Volt power supply and uses 

I2C communication protocol.   The SGP30 specifications can be seen in Table 2.4. 
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Table 2.4 SGP30 Specifications 

Sensor 

 

Sensor SGP30 

Company Sensirion 

Price $13.49 

Voltage 1.62-1.98 V 

Range 0-1000 ppm 

Interface I2C 

Dimensions 2.45 x 2.45 mm 

Height 0.9 mm 

 

We used the XA1110 module from GTOP as our GPS sensor for the device. The 

XA1110 is supported by several GPS constellations, which means different Global 

Position System architectures in space that operate in case one fails. This allows for 

accurate and reliable tracking. It is powered by a 3.3 Volt source, has a connector to 

connect an external antenna and uses I2C communication protocol. The XA1110 

specifications can be seen in Table 2.5.   

Table 2.5 XA1110 Specifications 

GPS Sensor 

 

Sensor XA1110 

Company Sierra Wireless 

Antenna Location Internal and/or External 
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Price $20.85 

Voltage 3.3 V 

Peak Current 20-35 mA (25 mA typical) 

Sensitivity -165 dB 

Interface UART or I2C 

Dimensions 12.5 mm x 12.5 mm 

Height 6.8 mm 

 

Finally, the BME280 from Bosch will be used to detect Temperature, humidity, 

and pressure. This IC uses common practices to sense the intended parameters. It is 

small, robust, has a fast response time, and requires a low amount of power to operate. 

BME280 specifications can be shown in Table 2.6. 

Table 2.6 BME280 Sensor Specifications 

BME280       

 

Voltage 1.7-3.6 V 

Peak Current < 800 A 

Price $8 

 Temperature Humidity Pressure 

Range -40-185ºF 0-100 %RH 0.3-1.1 atm 

Accuracy 1ºC / 1.8ºF 3 1.2x10-4 atm 

Resolution 0.01ºC / 0.018ºF 0.008 1.776x10-6 atm 

Response Time 1s 
Dimensions 2.5 x 2.5 x 0.93 mm  

Interface I2C / SPI 

 

2.2 Integration of Sensors and Components  

After selecting all components that will be fused together to sense the intended 

parameters, a plan to test and design the overall system was devised. To do so, breakout 

boards from trusted electronic suppliers, SPARKFUN and ADAFRUIT were acquired. 
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When prototyping IoT devices that fuse multiple sensors, using existing breakout boards 

to create a breadboard-based circuit with all sensors is intelligent step to verify if all the 

sensors chosen will/can work together. Breakout boards are individual printed circuit 

boards that have the desired sensing Integrated Chips with their own corresponding 

power regulating and communication circuits designed from the electronic suppliers, that 

then allow the data transfer to your intended Microcontroller. The Particle Boron’s ability 

to transfer data to and from a cloud service and ability to host over 100 different devises 

on its Serial Communication Line and Serial Data lines make it a sound choice to test 

with our 5 sensors/breakout boards and allow for additions in the future if intended. 
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CHAPTER THREE 

BREADBOARD BASED CIRCUIT DESIGN 

 

3.1 Individual Component Circuit Diagrams 

 The next step in the design process was to acquire the necessary breakout boards 

to create a circuit to be built on a standard bread board. This step is important because 

different sensors and Serial Communication and Serial Data Lines require different 

impedances and voltages to be able to communicate.  Before creating the circuit design, it 

is important to understand the overall process flow of our IoT device.  Figure 3.1 shows 

the process flow for our IoT device to execute.

 

Figure 3.1 System Block Diagram 
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To create the circuit for our system, we need to decide how all the breakout 

boards will be powered and how they will communicate with our Microcontroller, the 

Particle Boron. A communication protocol is a system of rules that allow for two or more 

devices with communication systems to transfer information via the corresponding 

physical quantity, in our case the data from the sensing mechanisms of each sensor. The 

communication protocols supported by each sensor in our system can be seen in Table 

3.1. 

Table 3.1 Sensor Interface Protocols 

Supported 

Protocols 

BME280 

(ATM) 

SCD30 

(CO2) 

SPS30 

(PM) 

SGP30 

(VOC) 

XA1110 

(GPS) 

UART  ✓ ✓  ✓ 

SPI ✓     

I2C ✓ ✓ ✓ ✓ ✓ 

 

The most common communication protocols that are in use today are Universal 

Asynchronous Receiver Transmitter (UART), Serial Peripheral Interface (SPI), and Inter-

Integrated Circuit Communication(I2C). UART communication protocol has two data 

lines, one that transmits data (TX) and one that receives data (RX) which can be seen as 

digital I/O pins in microcontrollers. The TX and RX of the chosen microcontroller will 

communicate to the desired sensor as shown in Figure 3.2 [9]. 

 

Figure 3.2 UART Communication Diagram 
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UART supports bi-directional, asynchronous, and serial data transmission. UART only 

allows communication one way at a time and does not allow for multiple transmitting and 

receiving systems. UART also does not allow more than 8 bits per message being sent 

and is known for low data transmission speeds.[7] SPI communication has  uses four 

wires/ports to connect devices which are the MOSI/SDI (master-out-slave-in/serial-data-

in) pin, MISO/SDO (master-in-slave-out/serial-data-out) pin, SCLK (serial-clock) pin, 

and SS/CS (slave-select/chip-select). SPI communication allows for multiple devices to 

be connected to the master. The SPI communication has simple and inexpensive 

hardware requiring two shift register which are simple logic circuits. SPI communication 

between devices needs to be well established before integration because it does not allow 

devices to communicate at the same time. Therefore, the chip select pin is needed for all 

devices to establish which device communicates at a specific time. This increases the 

communication speed and increase in number of pins used because of the dedication to 

one slave device but can get problematic with multiple devices and switching between 

peripherals [5]. Figure 3.3 [10] shows the basic SPI communication interface. 

 

Figure 3.3 SPI communication diagram 
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 I2C is a bidirectional two-wire synchronous serial bus and requires only two wires Serial 

Clock Line and Serial Data line to transmit information between devices on a bus. I2C 

uses an address system which assign a unique address of 7-10 bits to the devices 

connected to allow data transmission at the same time. Because of this architecture, I2C 

is slower than SPI but allows for over 100 devices to be connected and communicate 

simultaneously with just the two pins. The serial clock line synchronizes the data being 

sent to which decides when the master or slave device is transmitting or receiving data. 

This is done by the master sending a read or write command to the unique address of the 

intended device which switches the SCL and SDA lines high or low [8].  Basic I2C 

communication can be seen in Figure 3.4 [11] below. 

 

Figure 3.4 I2C communication Diagram 

Our IoT device has the 5 different sensors which all can communicate via I2C. 

I2C has the advantage of requiring less pins, allows for all our devices to communicate 

via the two pins SCL, SDA, and allows for flexibility in the future if we add more 

devices. The slower communication speed will work fine with our implementation 
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because the data transfer will be quick enough to allow the consumer to react to any 

severe air quality. For our IoT system design we have decided to use the I2C protocol. 

 Tables with the pin descriptions for each breakout board used for prototyping and 

testing the overall circuit were made to determine which wires would be connected to the 

corresponding pin. Below are the pinout diagrams for each component and breakout 

board used in our prototype system. 

 

Figure 3.5 Particle Boron Pinout Diagram 
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Table 3.2 BME280 Breakout Board Pin Out Diagram 

 

VIN 3.3V Input 

3Vo 3.3V Output 

GND Ground 

SCK SPI/I2C clock 

SDO Output data for SPI 

SDI SPI/I2C data  

CS Chip Select for SPI 

 

Table 3.3 SGP30 Breakout Board Pinout Diagram 

 

VIN 3.3V Input 

1V8 1.8V Output 

GND Ground 

SCL SPI/I2C clock 

SDA SPI/I2C data 

 

 

Table 3.4 SPARKFUN GPS Breakout Board Pinout Diagram 

 

3.3V 3.3V Input 

GND Ground 

SCL SPI/I2C clock 

SDA SPI/I2C data 
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Table 3.5 SCD30 Pin Out Diagram 

 
 

Table 3.6 SPS30 Pin Out Diagram 

 
 

 

3.2 Initial Prototype Circuit 

 

 When all the breakout boards were acquired, a breadboard-based circuit 

was built using a standard breadboard and jumper wires. Some of the design requirements 

that had to be experimented were the pull up resistors on the SCL and SDA lines for each 

sensor/breakout board. The pullup resistors pull the specific SCL and SDA lines high 

when it is not driven low by the open-drain interface. The value of the pullup resistor is 

an important design consideration for I2C systems as an incorrect value can lead to the 
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sensor/breakout board to not communicate with the microcontroller. The pull up resistor 

prevents the I2C pins of the microcontroller to be driven low. The level which the valid 

logical low (Vol) can be read by input buffers of an IC determine the minimum pullup 

resistance required for proper communication. This relationship can be shown in equation 

1 from the pull up resistor datasheet. 

                            (1) 

 

The maximum pullup resistance is limited by the bus capacitance (Cp) due to the specific 

rise time of the IC within the desired system. If the pullup resistor is too high, then the 

logical high level may not be reached to allow proper data transfer. The maximum rise 

time of the IC is needed to determine the maximum pull up resistance. The response of an 

RC circuit on the bus line can be used to determine the rise to be used for the pull up 

resistance value. The following equations 2-6 show how to calculate the pull up 

resistance value from the pull up resistor datasheet. 

                                                                                                       (2) 

                                                                              (3) 

                                                                              (4) 
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                                                                                         (5) 

                                                                                                (6) 

With these equations and information from the technical datasheets from a sensor using 

I2C protocol, you can determine the correct pull up resistor value. Once the correct pull 

up resistor is identified, you must place it in parallel of the supply voltage of the intended 

chip and the SCL and SDA line respectively as visualized in the following Figure 3.6, 

where Vin is the input voltage, Rp is the pull up resistors, SCL is the serial clock and 

SDA is the serial data. The more devices you add, you may need to add more resistors in 

parallel or increase the values of the initial pull up resistors.  

 

Figure 3.6 Pull up Resistor I2C Bus Topology 
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 For our initial breadboard based prototyped system, most breakout boards had a built-in 

pull up resistor value to allow for proper communication. For the SPS30 Sensirion 

sensor, 10Kohm pullup resistors were needed to allow for proper communication. Pull up 

resistance values would need to be calculated again during our own electrical circuit and 

printed circuit board design which will be discussed in later sections.  

With all the necessary circuitry in place for the communication lines, the power 

and ground were needed to be connected to all the breakout boards. The 3.3V out pin 

from the Particle Boron is enough to power on all the devices within our IoT device. The 

only additions needed for this circuit was a 5V Booster circuit to provide 5V to the 

SPS30 sensor which requires a 5V input and a logic level shifter to shift the logical levels 

of the SPS30 SDA and SCL lines back to 3.3V. Every microcontroller has a voltage 

rating for their I2C communication lines. The Particle Boron logical high-level maxes out 

at 3.3V volts. Any voltage rating higher than the Particle Boron’s specification, then there 

is serious risk of permanent damage to the I2C lines. Every sensor I2C lines will output a 

logical level high value with respect to its VIN voltage. In our system, the SPS30 sensor 

needs the 5V to be powered but the normal logical level high of 5V would not meet the 

requirements of our microcontroller. Therefore, the logic level shifter was included in the 

circuit. The wiring diagram for the breadboard-based prototype circuit including all 

connections between all sensors, GPS, and microcontroller is shown in Figure 3.3. 
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Figure 3.7 Breadboard Prototype Circuit Diagram 

 After developing this circuit diagram, the system was tested on a breadboard to 

ensure functionality which will be discussed in our next chapter.  After our breadboard-

based prototype circuit was tested and proved to be operational, then we created our own 

proprietary circuit designs including only the sensing ICs of each tested breakout board 

circuit and our own passive components i.e., capacitors, resistors, transistor, connectors 

etc.  on EAGLECAD software.  Following this, the design was then sent to the JLCPCB 

Company for manufacturing. 

about:blank
about:blank
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CHAPTER FOUR 

SOFTWARE INTEGRATION AND TESTING 

4.1 Individual Component Testing and Software Development 

 After designing the breadboard-based circuit, software integration for the entire 

system needed to be performed. Particle uses an online software called Web IDE that 

makes editing code, compiling, and flashing devices over the cellular network connection 

seamless. All the sensors have Arduino C programming language-based libraries, but the 

Particle IDE uses C++ programming language. This means changes in syntax from 

existing libraries and the individual/full system codes that include the functions we will 

be using for each sensor. Using the Particle IDE, we setup and tested functions for each 

sensor to verify before designing a miniaturized printed circuit board that includes all the 

sensors and a proprietary circuit design including passive and active components. 

4.1.1 Microprocessor Setup 

To setup the Boron Particle, we must register it with a particle account. To do 

this, we needed a usb cable for power, and external antenna and an iOS Bluetooth 

enabled device. The iOS device finds the Bluetooth connection to the Particle Boron to 

find a unique data matrix from the microprocessor. Then the cellular connection is used 

to link to the account used on the iOS device to the Particle Boron. To verify connection, 

a simple LED blinking code was flashed onto the device to turn the onboard LED on and 

off.   This and all future software will have library inclusions, information definitions and 

declarations, variable creation, setup function, and repeated loop function calling a 

specific function/command from the included libraries. The libraries include code with 
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commands that could be used for sensors and actuators, communication protocol 

functions, and memory structures. The information definitions and declarations are where 

we label the variables to an air quality parameter for future use. The variable creation is 

where we tell the code the name of the air quality parameter we are trying to read and its 

data size and where we want it to be sent in the system. The setup function and repeated 

loop is where we take the command from the library to find the air quality parameter and 

send the value to the variable, we created to then be published to the particle dashboard 

continuously.  All sensors will use the following libraries shown below as they are 

needed for basic math functions, particle functions, and I2C functions. 

 

4.1.3 Temperature, Pressure, Humidity Sensor Setup 

The top of this setup uses the library named “Adafruit_BME280.h”, which has the 

necessary memory structures, communication protocol, and functions to initialize this 

sensor. This line of code can be shown below: 

 

All the remaining sensors will require a similar line of code for their respective libraries 

which are pre-existing and created by our team. We then initialize the library by calling a 

specific name within the library called bme as shown in the code below. 

 

Now when we call commands from the library, we can just write bme.command, where 

command can be the function we intend to use from the library.  A connection bit was 
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created to determine if the sensor is connected and found by the microcontroller which is 

shown below: 

 

 

Every sensor will have this connection verification in their setup. Before creating a loop, 

the variables used, and sizes of variables need to be stated in the code. For the BME THP 

sensor, we declare the Humidity, Temperature, and Pressure and allow for 64 bits of data 

for each, which is known as a double value. As stated previously, we will be using I2C 

communication, to initialize this in the code we must use Wire.Begin(), determine a 

communication rate with Serial.Begin(), then find the communication address. The 

variable size, communication address, and communication speed can all be found in the 

sensor documentation. In the setup function, the I2C interface address was initiated at 

address 0x77. Once the setup has been created for our function, we need to write the 

command to read the temperature, pressure, and humidity from our sensors. This line of 

code looks like the following lines below:  

 

 


