
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

5-2023

Advancements in Fluid Simulation Through Enhanced Advancements in Fluid Simulation Through Enhanced

Conservation Schemes Conservation Schemes

Sean Ingimarson
singima@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

 Part of the Numerical Analysis and Computation Commons, and the Partial Differential Equations

Commons

Recommended Citation Recommended Citation
Ingimarson, Sean, "Advancements in Fluid Simulation Through Enhanced Conservation Schemes" (2023).
All Dissertations. 3315.
https://tigerprints.clemson.edu/all_dissertations/3315

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/3315?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Advancements in fluid simulation through enhanced
conservation schemes

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mathematics

by

Sean Ingimarson

May 2023

Accepted by:

Dr. Leo Rebholz, Committee Chair

Dr. Timo Heister, Committee Co-Chair

Dr. Hyesuk Lee

Dr. Qingshan Chen

Abstract

To better understand and solve problems involving the natural phenomenon of fluid and air flows,

one must understand the Navier-Stokes equations. Branching several different fields including engineering,

chemistry, physics, etc., these are among the most important equations in mathematics. However, these

equations do not have analytic solutions save for trivial solutions. Hence researchers have striven to make

advancements in varieties of numerical models and simulations. With many variations of numerical models

of the Navier-Stokes equations, many lose important physical meaningfulness. In particular, many finite

element schemes do not conserve energy, momentum, or angular momentum. In this thesis, we will study

new methods in solving the Navier-Stokes equations using models which have enhanced conservation qualities,

in particular, the energy, momentum, and angular momentum conserving (EMAC) scheme.

The EMAC scheme has gained popularity in the mathematics community over the past few years

as a desirable method to model fluid flow. It has been proven to conserve energy, momentum, angular

momentum, helicity, and others. EMAC has also been shown to perform better and maintain accuracy over

long periods of time compared to other schemes. We investigate a fully discrete error analysis of EMAC

and SKEW. We show that a problematic dependency on the Reynolds number is present in the analysis

for SKEW, but not in EMAC under certain conditions. To further explore this concept, we include some

numerical experiments designed to highlight these differences in the error analysis. Additionally, we include

other projection methods to measure performance.

Following this, we introduce a new EMAC variant which applies a differential spatial filter to the

EMAC scheme, named EMAC-Reg. Standard models, including EMAC, require especially fine meshes with

high Reynold’s numbers. This is problematic because the linear systems for 3D flows will be far too large

and take an extraordinary amount of time to compute. EMAC-Reg not only performs better on a coarser

mesh, but maintains conservation properties as well.

ii

Another topic in fluid flow computing that has been gaining recognition is reduced order models. This

method uses experimental data to create new models of reduced computational complexity. We introduce

the concept of consistency between a full order and a reduced order model, i.e., using the same numerical

scheme for the full order and reduced order model. For inconsistency, one could use SKEW in the full order

model and then EMAC for the reduced order model. We explore the repercussions of having inconsistency

between these two models analytically and experimentally.

To obtain a proper linear system from the Navier-Stokes equations, we must solve the nonlinear

problem first. We will explore a method used to reduce iteration counts of nonlinear problems, known as

Anderson acceleration. We will discuss how we implemented this using the finite element library deal.II [5],

measure the iteration counts and time, and compare against Newton and Picard iterations.

iii

Contents

Title Page . i

Abstract . ii

List of Tables . vi

List of Figures . vii

1 Introduction . 1
1.1 Navier-Stokes equations . 2

1.1.1 Reynolds number . 3
1.1.2 NSE conservation laws . 4

1.1.2.1 Energy . 4
1.1.2.2 Momentum . 5
1.1.2.3 Angular momentum . 5

1.2 Conservation issues with standard schemes . 6
1.3 Filtered equations and LES models . 8
1.4 Reduced Order Models . 10
1.5 Anderson acceleration . 11
1.6 Structure of dissertation . 13

2 Notation and preliminaries . 14
2.1 Vector identities and trilinear forms . 16
2.2 True solutions and fully-discretized formulations using SKEW and EMAC 17
2.3 Notation for the discrete time method . 19
2.4 Reduced order model construction . 19

3 An improved analysis for EMAC over longer time intervals 22
3.1 Analysis with H2(Ω) regularity assumption on un+1 . 22
3.2 Analysis with H3(Ω) assumed velocity regularity . 30
3.3 Numerical tests . 35

3.3.1 Planar Lattice Flow . 36
3.3.2 Gresho problem . 38
3.3.3 Contaminant Flow Analysis . 42

4 EMAC-Reg . 46
4.1 The EMAC-Reg scheme and its analysis . 47

4.1.1 Stability and well-posedness . 47
4.1.2 Conservation of energy, momentum, and angular momentum 50
4.1.3 Error analysis . 53

4.2 Numerical experiments . 60
4.2.1 Convergence rate test for a problem with analytical solution 61

iv

4.2.2 Gresho problem . 62
4.2.3 2D Channel flow over a step . 65
4.2.4 2D Kelvin-Helmholtz . 67

5 FOM-ROM inconsistency . 70
5.1 Analysis of FOM-ROM inconsistency . 70
5.2 Numerical Tests . 75

5.2.1 Channel flow around a cylinder . 75
5.2.1.1 Comparison of ROMs using EMAC-FEM as FOM 77
5.2.1.2 Comparison of ROMs using CONV-FEM as FOM 77
5.2.1.3 Convergence of ROM to FOM depends on FOM-ROM consistency 78

6 Anderson Acceleration in deal.II . 80
6.1 Step-57 Anderson acceleration implementation . 81

6.1.1 Picard implementation . 81
6.1.2 Anderson acceleration implementation . 82
6.1.3 Numerical Results . 83

6.2 Newton comparison and Higher Re experiments . 86
6.3 KINSOL implementation to step-57 . 89

7 Conclusion and future projects . 92
7.1 Future work . 93

Appendices . 94
A Momentum/angular momentum conservation of NS-α and Leray-α formulations 95

A.1 NS-α . 95
A.2 Leray-α . 96

B Link to code . 98

Bibliography . 99

v

List of Tables

4.1 Spatial convergence results for both u and w for EMAC-Reg 62
4.2 Temporal convergence results for both u and w for EMAC-Reg 62
4.3 Convergence results for decreasing values of h and ∆t for u and w for EMAC-Reg 62

6.1 Iteration count (left) and computation time (right) with the H1
0 norm applied to the AA

minimization step where m = 0 is Picard. 84
6.2 Iteration count (left) and computation time in seconds (right) with the L2 norm applied to

the AA minimization step . 85
6.3 Iteration count (left) and computation time in seconds (right) with the `2 norm applied to

the AA minimization step. 85
6.4 Time in seconds spent on AA. 86
6.5 Iteration count for our AA algorithm on a 128× 128 mesh. 88
6.6 Computation time using KINSOL. 90

vi

List of Figures

3.1 Shown above is the initial velocity u0 for planar lattice flow. 37
3.2 Plots of the solution of each formulation at time t = 5 . 38
3.3 Shown above L2 error for each formulation vs. time for the planar lattice vortex problem. . . 38
3.4 Initial velocity for the Gresho problem. 40
3.5 Numerical results of SKEW coupled, SKEW-BE-PROJ, RotProjB-SKEW, EMAC coupled,

EMAC-BE-PROJ, RotProjB-EMAC (from left to right, respectively) at times t = 1, 2, 3, 4
(top to bottom). 40

3.6 L2 error, energy, momentum, and angular momentum plots of SKEW, EMAC, SKEW-BE-
PROJ, EMAC-BE-PROJ, RotProjB-SKEW, and RotProjB-EMAC. 41

3.7 Satellite image of the rivers in Pittsburgh, PA (left) and mesh outline used in computation
(right). 42

3.8 Reference velocity (left) and contaminant flow (right) at time t = 15. 43
3.9 Velocity at times t = 3, 9, and 15 for EMAC (left) versus SKEW (right). 44
3.10 Contaminant flow at times t = 3, 9, and 15 for EMAC (left) versus SKEW (right). 45

4.1 Speed contours of the true solution of the Gresho problem at all times. 63
4.2 Velocity contours of our schemes at times t = .5, 1.0, and 4.0. 64
4.3 Plots of time versus L2 error, energy, momentum and angular momentum 65
4.4 Shown above are speed contours of our 4 different schemes’ solution plotted at times t=20

and t=40 with SKEW on a fine mesh as reference . 66
4.5 Shown above are the vorticity contours for the reference solution (left), EMAC (middle), and

EMAC-Reg (right) with mesh size 256 for the reference and 48 for EMAC and EMAC-Reg,
at times t =1, 2, 3, 4, 5, 6, 10, for Re=1000. Note the EMAC-Reg formulation used α = h

3 . . 68

5.1 The domain for the channel flow past a cylinder numerical experiment. 76
5.2 The mesh used for the FEM computations for channel flow past a cylinder numerical experi-

ment. 76
5.3 Shown above are results of ROM simulations built from EMAC-FEM as the FOM, using

EMAC-ROM, SKEW-ROM, and CONV-ROM with 13 modes. 77
5.4 Shown above are results of ROM simulations built from CONV-FEM as the FOM, using

EMAC-ROM, SKEW-ROM, and CONV-ROM with 13 modes. 77
5.5 Shown above are results of ROM simulations built from EMAC-FEM as the FOM, and (top)

EMAC-ROM and (bottom) SKEW-ROM with N=9, 13, and 16 modes. 79

6.1 Computation time (seconds) comparison between AA implementation and Newton with line
search on a 64 × 64 mesh. 87

6.2 Computation time (seconds) comparison between AA implementation and Newton with line
search with continuation step of 500 for Re on a 128 × 128 mesh. 88

vii

Chapter 1

Introduction

The importance of accurately and efficiently computing fluid flow phenomena cannot be understated

and has exceptionally far reach in many fields. It is useful for pipe and channel flow simulation, car and

airplane design, weather prediction, blood flow simulation, ocean currents, astrophysics, and much more. It

is also a field with many unanswered questions and room for significant computational improvement.

Despite its importance, it is not practical to physically simulate benchmark fluid flow problems.

Consider an experiment where we push water from one end of a channel to the other, with a cylinder placed

as an obstruction to the water. One may think that this is a simple task at first, however there is a great

deal of engineering that must go into creating this setting [1]. The volume of water that is pushed must be

very precise and the velocity needs to be carefully monitored. The machines required for this would also be

rather expensive. Another example is an acoustic wind tunnel [50], which is very expensive to make, is not

commonly accessible by most academic researchers, and can have trouble simulating many practical flows.

For these reasons, it motivates us to seek cheaper and more opportune methods of understanding

fluid flow. Performing numerical simulations is a great solution to this issue. Having software capable of

computing solutions to such problems grants more researchers access to knowledge of fluid flow phenomena,

among other areas as well.

Over the last few decades, many advancements have been made in fluid flow computation. Re-

searchers have translated well established theory of physical phenomenon into robust numerical methods

for problem solving, e.g., finite element and finite volume methods. Many of these methods, however, do

1

not maintain conservation of physical properties such as energy or momentum. Losing numerical conser-

vation of physically conserved properties leads to physical inaccuracies, directly translating into numerical

inaccuracies.

In this dissertation, we focus on the Navier-Stokes equations, the equations which determine incom-

pressible fluid flow. We will study the finite element analysis of this equation and create a new physical

quantity conserving method method that maintains accuracy. We will also study established quantity con-

serving methods and how they perform against others. To that end, we will provide several error analyses

and numerical experiments. We will introduce new concepts of mixing model types with reduced order mod-

els and show implications of poorly chosen combinations. Finally, we integrate a technique of accelerating

the fixed point scheme into well-known software.

1.1 Navier-Stokes equations

We study the equations that govern the evolution of incompressible Newtonian fluid flow, which is

modeled by the Navier-Stokes equations (NSE). We let u be the fluid velocity, p the fluid pressure, ν the

viscosity, and f the external force. The NSE read as follows:

ut + u · ∇u− ν∆u+∇p = f,

∇ · u = 0.

(1.1)

The first equation in (1.1) is the momentum equation and the second is the incompressibility constraint (also

known as the conservation of mass equation). This system is what is widely used to simulate most Newtonian

fluids including water, ethanol, oil, and air (velocity below 220 m.p.h.). Analytically solving nonlinear partial

differential equations (PDEs) with several terms is impractical. Moreover, the theory behind the NSE remains

incomplete even in the simplest mathematical case of periodic boundary conditions: it is unknown if there

exist strong solutions in three dimensions. It was shown that weak solutions exist, but there is yet to be a

result about uniqueness. This is a very famous problem, in fact it is one of the Millenium Prize Problems

[30]. Thus, finding analytical solutions to the NSE seems far out of reach.

Another major issue pertains to the Reynolds number (Re), the ratio of inertial forces to viscous

2

forces, which is defined by

Re =
inertial forces

viscous forces
=
UL

ν
.

Here, U is a characteristic flow speed of the fluid (such as the average), L is a characteristic length scale,

and ν is the kinematic viscosity. For large values of Re we must have a very fine mesh to obtain an accurate

solution, which can be very computationally expensive. Kolmogorov shows in [58, 59, 57, 33] in 1941, that

the smallest active scales in a flow are O(Re−3/4). This implies that fully resolving 3D flows require mesh

widths to be ∆x = ∆y = ∆z = O(Re−3/4), which means the total number of meshpoints must be O(Re9/4).

Industry often simulates flows with Reynolds numbers that are routinely Re = 106 (for a compact car at 60

mph [61]) but often higher, and so it becomes evident that such simulations can be very computationally

costly. In some cases, it is not even possible since needing to solve the resulting linear systems at each time

step requires both vast computational resources and the ability to wait for weeks or more for a simulation

to finish.

Despite the incompleteness of the theory and the computational shortcomings, there have been

major advancements in improving long-term accuracy of NSE simulations. In particular, we will be focusing

on an alternative discrete formulation of the NSE. As it stands, the NSE conserves quantities such as kinetic

energy, linear momentum, and angular momentum. However, in the discrete setting, we are not guaranteed

conservation of these quantities because of the weak enforcement of the divergence free condition. Without

such conservation, a model will be physically inaccurate and the numerical results will be impaired. The

formulations we study provide multiple appropriate conservation laws in the discrete setting as well as apply

spatial filters to improve accuracy on coarser meshes. This will relax requirements on mesh resolution from

high values of Re.

1.1.1 Reynolds number

As mentioned above, the Reynolds number is classically defined as the ratio of the inertial forces and

the viscous forces. One could also redefine the Reynolds number in terms of the dynamic viscosity, µ = ρν,

where ρ is the fluid density. The Reynolds number can even be defined using several different parameters,

but we will use this definition.

The Reynolds number, named after Osbourne Reynolds, was originally formulated by George Stokes

in 1851 [86], although not named as such until Arnold Sommerfeld coined it [84]. The Reynolds number is

3

useful for predicting the behavior of fluids because it gives insight on the viscosity of the fluid and velocity

of the flow. Smaller Reynolds numbers are associated with laminar flow, while higher Reynolds number are

associated with turbulent flow. We mainly use moderate Reynolds numbers, such as Re = 600 and 1000.

1.1.2 NSE conservation laws

With zero viscosity and no external forcing (ν = 0, f = 0), we obtain energy (E = 1
2

∫
Ω
|u|2 dx),

momentum (M =
∫

Ω
u dx), and angular momentum (AM =

∫
Ω

(u× x) dx) conservation in the NSE. We use

the standard L2(Ω) norm ||·|| and inner product (·, ·) . We now show this to be true on the continuous level

assuming that u = 0 on a strip along ∂Ω.

1.1.2.1 Energy

We define energy as E = 1
2 (u, u) = 1

2

∫
Ω
|u|2 dx. In order to recover this term from the NSE, we

multiply the momentum equation by u, integrate, and apply Stokes theorem. This gives

(ut, u) + (u · ∇u, u) + (∇p, u) + ν ||∇u||2 = (f, u) .

For the pressure term, we integrate by parts and apply the divergence theorem to get

(∇p, u) = − (p,∇ · u) −
∫
∂Ω

p(u · n) dx.

By the conservation of mass equation, the first term on the right hand side is zero. Additionally, our

assumption that u vanishes on the boundary gives us that the other term on the right hand side is zero,

hence (∇p, u) = 0. Then for the nonlinear term, we have

(u · ∇u, u) = −1

2
((∇ · u)u, u) = 0.

Our assumption of ν = 0 and f = 0 now leaves us with

(ut, u) = 0.

4

A simple identity now provides

1

2

d

dt
||u||2 = 0,

which is the desired result.

1.1.2.2 Momentum

For momentum conservation, we multiply the unit vector ei, where i = 1, 2, 3, to the NSE momentum

equation and integrate. Then using Stokes theorem, we get

(ut, ei) + (u · ∇u, ei) + (∇p, ei) + ν (∇u,∇ei) = (f, ei) .

For the nonlinear term, we use a common trilinear term identity,

(u · ∇u, ei) = − (u · ∇ei, u) − ((∇ · u)u, ei) = 0.

The first term on the right hand side disappears because ∇ei = 0 and the second term disappears due to

the conservation of mass equation. Then (∇p, ei) = (p,∇ · ei) = 0 (using the divergence theorem and the

fact that p = 0 on ∂Ω). This leaves us with

d

dt

∫
Ω

u dx = 0,

which is exactly momentum conservation.

1.1.2.3 Angular momentum

Define φi = x × ei with i = 1, 2, 3. Now multiply the NSE by φi, integrate over Ω, and use Stokes

theorem to get

(ut, φi) + (u · ∇u, φi) − (p,∇ · φi) + ν (∇u,∇φi) = (f, φi) .

For the trilinear term, we use a similar technique as for momentum conservation,

(u · ∇u, φi) = − (u · ∇φi, u) − ((∇ · u)u, φi) .

5

The second term on the right hand side is zero by the conservation of mass equation, so we must investigate

the first term, specifically ∇φi. It can be easily verified that ∇φi is skew-symmetric for i = 1, 2, 3, which

gives

(u · ∇φi, u) = 0.

Then for the pressure term, we have that ∇ · φi = 0 for i = 1, 2, 3. Using ν = 0 and f = 0 leaves us

with

0 = (ut, φi) =

∫
Ω

ut · (~x× ei),

and so d
dt

∫
Ω

(u× ~x) · ei = 0 for i = 1, 2, 3.

1.2 Conservation issues with standard schemes

The standard FEM discretization scheme for the NSE is not the most robust model in many scenarios.

This might be a strange claim, but when we discretize models, we lose important relations needed for

conservation. For example, the standard convective scheme loses energy conservation upon discretization.

This is a direct result from losing the strong definition of incompressibility, which will be explored in more

detail. In this section, we provide some standard semi-discrete FEM schemes for the NSE and discuss

conservation issues.

We define the following formulations of the NSE:

Find (uh, ph) ∈ (Xh, Qh) such that for every (vh, qh) ∈ (Xh, Qh),

Convective formulation (CONV):

((uh)t, vh) + (uh · ∇uh, vh) − (p,∇ · vh) + ν (∇uh,∇vh) = (f, vh) ,

(∇ · uh, vh) = 0.

6

Skew-symmetric formulation (SKEW):

((uh)t, vh) + (uh · ∇uh, vh) +
1

2
((∇ · uh)uh, vh) − (p,∇ · vh) + ν (∇uh,∇vh) = (f, vh) ,

(∇ · uh, vh) = 0.

These formulations have been utilized for several decades [89] and have had thousands of numerical

tests performed using them. Additionally, the analysis done for them is very refined. However, these

formulations lack important quantity conservation. We have shown previously that the strong form of

the NSE conserves energy, momentum, and angular momentum, but that is not necessarily true when we

discretize [19]. This is mainly due to the fact that we are not guaranteed ∇ · uh = 0 except in very special

circumstances such as using Scott-Vogelius or other divergence-free element pairs. Without this assumption,

neither CONV or SKEW conserve all three of these quantities.

To address this issue of discretizations not preserving important physical balances, the EMAC scheme

was developed for the NSE in [19], we define it here:

Find (uh, ph) ∈ (Xh, Qh) such that for every (vh, qh) ∈ (Xh, Qh), Energy, momentum, and angular momen-

tum conserving formulation (EMAC):

((uh)t, vh) + (2D(uh)uh, vh) + ((∇ · uh)uh, vh) − (p,∇ · vh) + ν (∇uh,∇vh) = (f, vh) ,

(∇ · uh, vh) = 0.

This formulation conserves energy, momentum, and angular momentum by design even when the

divergence constraint is not strongly enforced (which is the typical case with finite element and finite differ-

ence methods). It is the first such scheme to conserve these quantities in typical finite element discretizations

where the divergence constraint is weakly enforced. We note that if newly developed pointwise divergence-

free finite elements are used, e.g. [6, 98, 29, 43, 42], then the numerical velocity found with EMAC will

be the same as recovered from more traditional formulations such as CONV and SKEW, and all of them

will conserve energy, momentum, and angular momentum. However, the development of these strongly

divergence-free methods is still quite new. It typically requires non-standard meshing and elements and is

not yet included into major finite element software packages such as deal.II [5].

Although EMAC has been analyzed and tested [51, 53, 52, 68, 20, 10, 64], it has not been given

7

nearly as much treatment as more well-known formulations. We believe it critical to further extend our

knowledge of EMAC theoretically and computationally. It has been shown that the semi-discretization in

time using Crank-Nicolson timestepping of EMAC has second order convergence as well as a much stronger

bound than SKEW with respect to Re [68]. We take this one step further and give an error analysis for the

full discretization.

1.3 Filtered equations and LES models

We mention previously that computing with standard models can require extremely fine meshes. To

address this problem, many models have been developed that approximate the NSE, but can be solved on

much coarser meshes than the NSE requires. Some common examples are k−ε type models [71], Smagorinsky

type models [83, 9], and our interest herein is a model that fits in the class of Large Eddy Simulation (LES)

models [9, 63, 76, 27]. LES models aim to accurately estimate the large scales of the flow and model the

effect of small scales on the large scales. Hence the goal of LES is not pointwise accurate solutions, but

instead solutions that agree with NSE on general or averaged flow behavior. Regularization models are

our particular interest herein, and these are LES models that use filtering/averaging operations applied to

the NSE to reduce the complexity of the system by eliminating finer scales and steepening the slope of the

energy cascade at scales smaller than can be resolved on a given mesh. NS-α and Leray-α (and their many

variants), for example, are popular regularization models that have been extensively studied in recent years.

They are found to have many desirable mathematical properties (e.g. well-posedness, fidelity to various

physical balances [31, 32, 74, 23, 36, 63, 25, 95]) and be successful in simulating high Reynolds number and

turbulent flows [48, 23, 37, 21, 22, 75, 26, 11].

Despite the attractive analytical properties that regularization models enjoy, many of these properties

can be lost in a discretization, in particular the balances of physical quantities. In fact, this is also true for

discretizations of the NSE, which after being discretized generally lose the exact balances of most (if not all)

of energy, momentum, angular momentum, helicity, and others. The situation for discretized regularization

models is worse, since the modeling process already removes or alters some important physical balances,

and then the discretization process exacerbates the problem. Of course, in any model of the NSE one must

sacrifice some physical accuracy, since one is no longer solving the NSE. However, the goal for simulations

should be to maintain as much physical accuracy as possible, so that solutions are physically meaningful and

can be confidently used as surrogates for the true physical model.

8

One of our goals is to extend the EMAC technology to a regularization model for the NSE. The

model that we discretize takes the form

ut + w · ∇w +∇p− ν∆u = f, (1.2)

−α2∆w + w = u, (1.3)

∇ · w = 0. (1.4)

Here, (1.3) uses a fourth order approximation to the Gaussian filter with filtering radius α. Under periodic

boundary conditions, ∇ · w = 0 =⇒ ∇ · u = 0 since the filter operation commutes with the divergence

operator. Also for smooth solutions to (1.2)-(1.4), we may apply the divergence operator to (1.3) and recover

∇ · u = 0. For weak solutions that are not strong, if one wishes to enforce additionally that ∇ · u = 0, then

one may add a Lagrange multiplier (i.e. pressure) term to (1.3); however, we assume throughout that strong

solutions to (1.2)-(1.4) exist under the assumption of homogeneous Dirichlet boundary conditions for u and

w. The following formulations are examples of utilizing this spatial filter after discretization.

Find (uh, ph, wh, λh) ∈ (Xh, Qh, Xh, Qh) such that for every (vh, qh, χh, rh),

NS-α formulation

((uh)t, vh) + (uh × wh, vh) − (p,∇ · vh) + ν (∇uh,∇vh) = (f, vh) ,

(∇ · uh, vh) = 0,

(λh,∇ · χh) + α2 (∇wh,∇χh) + (wh, χh) = (uh, χh) ,

(∇ · wh, rh) = 0.

Leray-α formulation

((uh)t, vh) + (wh × uh, vh) − (p,∇ · vh) + ν (∇uh,∇vh) = (f, vh) ,

(∇ · uh, vh) = 0,

(λh,∇ · χh) + α2 (∇wh,∇χh) + (wh, χh) = (uh, χh) ,

(∇ · wh, rh) = 0.

The specific formulation for the regularization model (1.2)-(1.4) is chosen so that it fits the form of

a model that the nonlinearity formulation 2D(w)w+ (∇ ·w)w (which is identical to w · ∇w when ∇ ·w = 0,

9

up to a potential term) will preserve energy, momentum, and angular momentum when ∇ ·w 6= 0. We note

that the nonlinear forms w · ∇u (i.e. that of Leray-α) or (∇× u)× w (i.e. that of NS-α) need not preserve

each of energy, momentum, and angular momentum when pointwise divergence free for velocities and/or

filtered velocities (see appendix A). In other words, (1.2)-(1.4) is the α regularization model that naturally

fits the EMAC framework.

Herein, we study and test discretizations of (1.2)-(1.4) as well as show that it conserves energy,

momentum, and angular momentum; we denote it as the Energy, Momentum, and Angular Momentum

conserving regularization formulation (EMAC-Reg). We formally define this scheme in Chapter 4, followed

by showing it is stable, well-posed, the aforementioned quantities are conserved, and is optimally accurate.

Following this, we will give an error analysis of the fully discrete EMAC formulation.

1.4 Reduced Order Models

Reduced order models (ROMs) are computational models whose computational complexity is magni-

tudes lower than that of a standard full order model (FOM) obtained from a standard numerical discretization

method. As mentioned above, full numerical FEM schemes have a high computational cost. ROMs are con-

structed with computational data that has already been calculated, so it cuts out excessive computation

time. One could classify or group ROMs in a myriad of ways:

Nonintrusive ROMs: Examples include machine learning ROMS [2] and sparse identification of

nonlinear dynamics [15].

Intrusive ROMs: Examples include Galerkin ROMs (G-ROMs) and Petrov-Galerkin ROMs (PG-

ROMs) [17]. More specifically, examples of G-ROMs include the proper orthogonal decomposition (POD)

[49] and reduced basis method (RBS) [45].

Using one type of ROM has advantages and disadvantages over using another. Intrusive ROMs

require more details about the data than nonintrusive ROMs, so they are not as simple to implement.

Alternatively, if one were to prioritize the framework on which the ROM is built, then the intrusive ROM

is more advantageous. Particularly, the G-ROM is constructed on the standard Galerkin framework. This

allows us to prove fundamental properties such as stability, consistency, and convergence (proven in [60, 82,

56] for POD and [45] for RBS).

We will address questions on the mathematical foundations for G-ROMs. Mainly: If we construct

10

both FOMs and ROMs on a Galerkin foundation, should we use the same discretization scheme? Which

will yield more accurate ROMs? We will investigate these questions with our new definition for FOM-ROM

consistency.

Definition 1 (FOM-ROM Consistency). A ROM is FOM consistent if it uses the same computational model

and the same numerical discretization (e.g., spatial discretization, time discretization, and nonlinearity and

pressure treatment) as the FOM.

In Chapter 5, we show the analytical implications of a ROM being FOM-ROM inconsistent. We

will test models that are FOM-ROM consistent and those that are FOM-ROM inconsistent and compare

common quantities found in benchmark numerical tests.

1.5 Anderson acceleration

Anderson acceleration (AA) is a strategy which speeds up convergence of fixed point iterations, an

idea originally manufactured by D.G. Anderson in 1965 [4]. It has been useful in several different disciplines

such as flow problems [66, 70, 35], radiation diffusion and nuclear physics [3, 92], machine learning [34],

linear solves [72, 73], convex optimization [67], and robotics [69]. In its original work, AA was applied to

nonlinear integral equations that stem from research in the kinetic theory of gases. However, it was in [93]

where AA was put in the spotlight and started to pick up in the mathematics community. This is relevant

to this thesis because nonlinear solvers are needed to solve the nonlinear problems herein. Of course, AA is

useful far beyond these PDEs.

Starting with standard fixed point theory, we start with establishing the nonlinear contractive op-

erator.

Definition 2. For a normed space X and norm ||·||X , g : X → X is a contractive operator with contraction

ratio r ∈ (0, 1) if

||g(x)− g(y)||X ≤ r ||x− y||X , for all x, y ∈ X.

It is known that if g is a contractive operator following definition 2, there exists a unique u∗ ∈ X

such that g(u∗) = u∗. Then we have the actual definition for the fixed point iteration.

11

Algorithm 3 (Fixed point iteration). Given space X and contractive function g,

Step 0: Choose x0 ∈ X.

Step 1: For k = 1, 2, . . .

xk+1 = g(xk).

With this we can establish the AA algorithm. The algorithm that we provide is generalized, and we

will choose a specific function for g and X later in the paper. However, for this definition we must assume

that X is a Hilbert space.

Algorithm 4 (Anderson acceleration). Let X be a Hilbert space and g : X → X be a contractive function.

The Anderson acceleration with depth m is as follows:

Step 0: Choose u0 ∈ X.

Step 1: Find ũ1 ∈ X such that ũ1 = g(u0). Set u1 = ũ1.

Step k: For k = 1, 2, . . .

a.) Find ũk+1 = g(uk).

b.) Solve the minimization problem for
{
αk+1
j

}k
k−m

min∑k
j=k−m αk+1

j =1

∣∣∣∣∣∣
∣∣∣∣∣∣

k∑
j=k−m

αk+1
j (ũj+1 − uj)

∣∣∣∣∣∣
∣∣∣∣∣∣
X

.

c.) Set uk+1 =
∑k
j=k−m α

k+1
j ũj+1.

The convergence of AA has been widely studied [28, 91, 85, 97]. It was shown in [28] that convergence

is improved for fixed point methods that converge linearly. However, it shows that applying AA slows down

convergence for fixed point methods that converge quadratically, e.g., Newton iterations, in agreement with

numerical tests in the literature. We will show various results of applying AA to different problems in

deal.II [5] later. deal.II is an open source finite element library for C++ which is maintained by authors at

Oak Ridge National Laboratory, Colorado State University, Clemson University, and others. We will apply

different implementations of AA, i.e., an AA code we created and applied to the deal.II tutorial step-57 and

another from nonlinear solver library KINSol [88].

12

1.6 Structure of dissertation

We focus on showing a fully discretized error analysis of EMAC as well as introducing the EMAC-Reg

formulation and demonstrating its strengths on coarser meshes. In Chapter 2 we will provide the necessary

notation and preliminary information used in further chapters. In Chapter 3 we study the convergence

of SKEW and EMAC with Crank-Nicolson timestepping with different assumptions on the smoothness of

velocity. In Chapter 4 we introduce a semi-discretized EMAC-Reg formulation and show that it is a well-

posed problem. Additionally, we show that it conserves energy, momentum, and angular momentum just

as EMAC does. We also give numerical experiments which compare EMAC-Reg to other formulations on

a coarse mesh. Chapter 5 contains an error analysis on a FOM-ROM inconsistent system and numerical

results to reinforce the theory. With Chapter 6, we show results from various implementations of Anderson

acceleration in deal.II. While this last Chapter may seem somewhat disjoint, EMAC requires solving nonlinear

problems at each time step in order to maintain conservation properties [20]. Hence methods such as AA

are needed for efficient EMAC simulations.

13

Chapter 2

Notation and preliminaries

We consider a convex polygonal domain Ω ⊂ Rd, d = 2, 3. Denote the L2(Ω) inner product and

norm on Ω by (·, ·) and ‖ · ‖, respectively, and we note all other norms will be labeled with subscripts. The

natural velocity and pressure spaces are

X =
{
v ∈ H1(Ω)d, v|∂Ω = 0

}
, Q =

{
q ∈ L2(Ω),

∫
Ω

qdx = 0

}
.

Let V denote the divergence-free subspace of X, V := {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q}. We also define the

dual of X and its norm,

X ′ = H−1(Ω), ||f ||X′ = sup
v∈X′

(f, v)

||v||X
,

for any f ∈ L2(Ω).

We further consider subspaces Xh ⊂ X, Qh ⊂ Q to be finite element velocity and pressure spaces

corresponding to a conforming triangulation Th of Ω, where h is the global mesh-size. For Th we assume the

minimal angle condition if h varies. Define the discretely divergence-free subspace of Xh by

Vh := {vh ∈ Xh, (∇ · vh, qh) = 0 ∀qh ∈ Qh}.

Most common finite element (FE) discretizations of the NSE and related systems enforce the divergence

constraint ∇ · uh = 0 weakly (and thus Vh 6⊂ V except in special cases) and use Taylor-Hood (Pk, Pk+1)

14

elements [61].

Define the operator Ah by: Given φ ∈ H1(Ω), Ahφ ∈ Vh solves

(Ahφ, vh) = − (∇φ,∇vh) (2.1)

for all vh ∈ Vh.

We denote ISth as the discrete Stokes projection operator [80], which is defined by: Given φ ∈ V ,

find ISth φ ∈ Vh satisfying

(∇ISth φ,∇vh) = (∇φ,∇vh), ∀vh ∈ Vh. (2.2)

Following [80], we assume Xh = X ∩ Pk(Th) and Qh = Q ∩ Pk−1(Th), with Pk being the set of degree k ≥ 2

piecewise polynomials over triangles. Additionally, we assume that these spaces satisfy the infsup condition

[38]. We make use of the following approximation properties [14]:

inf
v∈Xh

||u− v||L2 ≤ Chk+1 ||u||k+1 ,

inf
v∈Xh

||u− v||H1 ≤ Chk ||u||k+1 ,

inf
r∈Qh

||p− r||L2 ≤ Chs+1 ||p||s+1 ,

(2.3)

where u ∈ Hk+1(Ω) and p ∈ Hs+1(Ω). Additionally, the approximation properties of the Stokes projection

operator in L2 and H1 norms follow from the interpolation properties of the finite element spaces [38]:

∣∣∣∣∇ISth φ
∣∣∣∣
Lr ≤ C ||∇φ||Lr , r ∈ [2,∞]. (2.4)

The analysis we show later utilizes a discrete Gronwall inequality [46, 61], given by the following

lemma.

Lemma 5. Let ∆t, H, and an, bn, cn, γn (for integers n ≥ 0) be nonnegative numbers such that

al + ∆t

l∑
n=0

bn ≤ ∆t

l∑
n=0

γn an + ∆t

l∑
n=0

cn + H for l ≥ 0 . (2.5)

15

Suppose that ∆t γn < 1, for all n. Then,

al + ∆t

l∑
n=0

bn ≤ exp

(
∆t

l∑
n=0

γn
(1−∆t γn)

){
∆t

l∑
n=0

cn + H

}
for l ≥ 0 .

In particular, we will be using the next version of the Gronwall inequality. It’s given as a remark to

Lemma 5.1 in [46] and is as follows:

Lemma 6. Let ∆t, H, and an, bn, cn, dn (for integers n ≥ 0) be finite nonnegative numbers such that

al + ∆t

l∑
n=0

bn ≤ ∆t

l−1∑
n=0

dnan + ∆t

l∑
n=0

cn +H for l ≥ 1.

Then, for ∆t > 0

al + ∆t

l∑
n=0

bn ≤ exp

(
∆t

l−1∑
n=0

dn

)(
∆t

l∑
n=0

cn +H

)
for l ≥ 1.

2.1 Vector identities and trilinear forms

The EMAC formulation uses the identity

(u · ∇)u = 2D(u)u− 1

2
∇|u|2, (2.6)

where u is a sufficiently smooth gradient field and D(u) = 1
2 (∇u + (∇u)T) is the symmetric part of the

gradient. This identity splits the inertia term into the acceleration driven by 2D(u) and potential term that

is absorbed by redefined pressure (defined in Theorem 3.4). Based on (2.6) the trilinear form for EMAC

(Galerkin) formulation is defined by

c(u, v, w) = 2(D(u)v, w) + ((∇ · u)v, w).

We also define the nonlinear term for SKEW,

b∗(u, v, w) = (u · ∇v, w) +
1

2
((∇ · u)v, w) .

16

Herein, we assume u, v, w ∈ X (no divergence free condition is assumed for any of u, v, w). The trilinear

form c was developed for EMAC in [19] as a consistent weak representation of the NSE nonlinearity that

preserves energy, momentum, and angular momentum. To accommodate for the change in nonlinear term,

we redefine the pressure term,

P = p− 1

2
|u|2.

We will also be utilizing these identities,

(u · ∇v, w) = − (u · ∇w, v) − ((∇ · u)v, w) , (2.7)

(u · ∇w,w) = −1

2
((∇ · u)w,w) , (2.8)

(u · ∇v, w) = ((∇v)u,w) =
(
(∇v)Tw, u

)
. (2.9)

2.2 True solutions and fully-discretized formulations using SKEW

and EMAC

We define the the true solution of the NSE at time tn+1 using the SKEW nonlinear term, denoted

b∗. Assume u is sufficiently smooth and homogeneous Dirichlet boundary conditions. The true solution u

and p at time tn+1 satisfy,

(
ut(t

n+1), vh
)

+ b∗(u(tn+1), u(tn+1), vh) + ν
(
∇u(tn+1),∇vh

)
−
(
p(tn+1),∇ · vh

)
=
(
f(tn+1), vh

)
, (2.10)(

∇ · u(tn+1), qh
)

= 0. (2.11)

We will also define the true solution of the NSE using the EMAC formulation. The true solution u and P

satisfies

(
ut(t

n+1), vh
)

+ c(u(tn+1), u(tn+1), vh) + ν
(
∇u(tn+1),∇vh

)
−
(
P (tn+1),∇ · vh

)
=
(
f(tn+1), vh

)
, (2.12)(

∇ · u(tn+1), qh
)

= 0. (2.13)

17

Here we define the fully discretized formulations using Crank-Nicolson time-stepping with CONV,

SKEW, and EMAC nonlinear terms, first we will define CONV. Let tn+ 1
2 = tn+1+tn

2 , then find (un+1
h , pn+1

h) ∈

(Xh, Qh)× (0, T] satisfying for all (vh, qh) ∈ (Xh, Qh),

(
un+1
h − unh

∆t
, vh

)
+ b(u

n+ 1
2

h , u
n+ 1

2

h , vh) + ν
(
∇un+ 1

2

h ,∇vh
)

−
(
p
n+ 1

2

h ,∇ · vh
)

=
(
fn+ 1

2 , vh

)
, (2.14)(

∇ · un+ 1
2

h , qh

)
= 0. (2.15)

Now we define SKEW. Let tn+ 1
2 = tn+1+tn

2 , then find (un+1
h , pn+1

h) ∈ (Xh, Qh)× (0, T] satisfying for

all (vh, qh) ∈ (Xh, Qh),

(
un+1
h − unh

∆t
, vh

)
+ b∗(u

n+ 1
2

h , u
n+ 1

2

h , vh) + ν
(
∇un+ 1

2

h ,∇vh
)

−
(
p
n+ 1

2

h ,∇ · vh
)

=
(
fn+ 1

2 , vh

)
, (2.16)(

∇ · un+ 1
2

h , qh

)
= 0. (2.17)

Now we have the EMAC formulation with Crank-Nicolson time-stepping: Find (un+1
h , Pn+1

h) ∈

(Xh, Qh)× (0, T] satisfying for all (vh, qh) ∈ (Xh, Qh),

(
un+1
h − unh

∆t
, vh

)
+ c(u

n+ 1
2

h , u
n+ 1

2

h , vh) + ν
(
∇un+ 1

2

h ,∇vh
)

−
(
P
n+ 1

2

h ,∇ · vh
)

=
(
fn+ 1

2 , vh

)
, (2.18)(

∇ · un+ 1
2

h , qh

)
= 0. (2.19)

There exists extensive literature on the accuracy of (2.14)-(2.15), see e.g., [68, 61, 90], which proves

the following for (Xh, Qh) = (Pk, Pk−1) Taylor-Hood elements if the SKEW or EMAC forms are used. For

a sufficiently smooth NSE solution and sufficiently small step size,

∣∣∣∣u(T)− uMh
∣∣∣∣2 + ν∆t

M∑
n=1

||∇(u(tn)− unh)||2 ≤ C(∆t2 + h2k). (2.20)

18

If BDF2 timestepping is used, then the ∆t2 becomes a ∆t4, and for EMAC the constant on the right

hand side does not explicitly depend on Re, while it does for SKEW and other forms [68].

2.3 Notation for the discrete time method

For functions v(x, t) and 1 ≤ p ≤ ∞, we define

|||v|||∞,k = max
0≤n≤M

||vn||k ,
∣∣∣∣∣∣v1/2

∣∣∣∣∣∣
∞,k = max

1≤n≤M

∣∣∣∣∣∣vn−1/2
∣∣∣∣∣∣
k
,

|||v|||p,k =

(
M∑
n=0

||vn||pk ∆t

) 1
p

,
∣∣∣∣∣∣v1/2

∣∣∣∣∣∣
p,k

=

(
M∑
n=0

∣∣∣∣∣∣vn−1/2
∣∣∣∣∣∣p
k

∆t

) 1
p

.

The error analyses requires such norms that are analogous to the continuous time norms that we are familiar

with.

2.4 Reduced order model construction

To create our G-ROM, we start with the snapshot matrix, the matrix which contains the data from

the FOM computation. Consider the solution to the fully discretized NSE to our FOM model (2.16)-(2.17).

Let uh(t) =

[
uh(t) ph(t)

]T
be our finite element solution at time t. We construct a matrix whose columns

are the coefficient vectors at certain timesteps,

U =

[
uh(t1) uh(t2) . . . uh(tn)

]
,

where n is the number of timesteps. We perform a proper orthogonal decomposition on U using the L2 inner

product, giving the new orthogonal matrix

Φ =

[
ϕ1 ϕ2 . . . ϕn

]
,

where ϕi is the ith eigenvector of UTU . We will use the vectors of Φ to construct our ROM basis [49]. We

consider the first r vectors of Φ, the span of this is our new ROM basis, namely

Vr = span {ϕ1, ϕ2, . . . , ϕr} .

19

The value we choose for r typically depends on the size of the eigenvalues of UTU . The size of

the eigenvalues is proportional to how impactful that basis function is on the velocity. Hence practitioners

usually set r equal to the rank of eigenvalue that is the first to be a certain scale smaller than the largest

eigenvalue. So if λr is the first eigenvalue such that λr ≤ 10−6λ1 is true, then r is the dimension of our ROM

space.

The next step in the G-ROM construction is the Galerkin step itself, which one can easily guess is

very similar to a standard NSE Galerkin scheme such as (2.16)-(2.17). We simply replace uh with wr ∈ Vr

and project the entire equation from there onto Vr. We also note that the pressure term will vanish because

functions in Vr satisfy the weak condition of mass conservation. Hence, our new G-ROM scheme is as follows:

Given w0
r ∈ Vr, find wn+1

r ∈ Vr that satisfies

(
wn+1
r − wnr

∆t
, vr

)
+ b∗(w

n+ 1
2

r , w
n+ 1

2
r , vr) + ν

(
∇wn+ 1

2
r ,∇vr

)
=
(
fn+ 1

2 , vr

)
, (2.21)

for all vr ∈ Vr. The SKEW nonlinear form in (2.21) can take on any nonlinear form we have mentioned.

To better understand the construction of equation (2.21), we note that wn+1
r is a linear combination

of our ROM basis elements, namely

wn+1
r =

r∑
j=1

αjϕj .

If one were to construct a stiffness matrix S =
(
∇wn+1

r ,∇vr
)

, the basic finite element theory gives Si,j =

(ϕi, ϕj) . The main difference between S and a stiffness matrix constructed using standard Galerkin FEM

is that S will be dense. The basis elements of Vr are functions that are nonzero over all of Ω, rather than

locally nonzero like FEM basis elements. Applying this to the nonlinear term gives

b∗(wn+1
r , wn+1

r , vr) =

r∑
j=1

r∑
i=1

αiβjb
∗(ϕi, ϕj , vr).

Here, we get a rank 3 tensor, NLi,j,k = b∗(ϕi, ϕj , ϕk). Similar to S, NL is a dense rank 3 tensor. If we

choose r = 9 for example, we are doing 81 inner products for S and 729 inner products for NL. Although

the linear solve at the end is much smaller, the matrix assembly is still rather expensive.

20

It can also be shown that the POD projection error satisfies the following equality [82]:

1

M + 1

M∑
j=0

∣∣∣∣∣
∣∣∣∣∣∇
(
uh(·, tj)−

r∑
i=1

(uh(·, tj), ψi(·))ψi(·)

)∣∣∣∣∣
∣∣∣∣∣
2

=

d∑
k=r+1

||∇ψk||2 λk, (2.22)

where d is the rank of the snapshot matrix, A, and λk is the eigenvalue corresponding to the ROM basis

function ψk.

21

Chapter 3

An improved analysis for EMAC over

longer time intervals

In this chapter, we will give and compare the Crank-Nicolson discretized schemes SKEW (2.16)-

(2.17) and EMAC (2.18)-(2.19).

We will perform 2 analyses for both formulations assuming un+1 ∈ H2(Ω) or H3(Ω). The error

analysis for SKEW is well-documented and considered classic [61]. When we apply the higher restriction of

requiring un+1 ∈ H3(Ω), the Gronwall constant of our error term relies less heavily on Re, and in the EMAC

case, independent of Re.

3.1 Analysis with H2(Ω) regularity assumption on un+1

Theorem 7. Let (un+1
h , pn+1

h) solve (2.16)-(2.17) and (un+1, pn+1) solve (2.10)-(2.11) be a NSE solution with

un+1
t ∈ X ′, un+1 ∈ H2(Ω), and pn+1 ∈ H1(Ω), for 0 ≤ n ≤ M . Denote en = un − unh, ηn = un − ISth (un),

and φnh = ISth (un)− unh.

(i) Then for all 0 ≤ n ≤M , the following holds for SKEW

∣∣∣∣eM ∣∣∣∣2 + ν∆t

M−1∑
n=0

∣∣∣∣∣∣∇en+ 1
2

∣∣∣∣∣∣2 ≤ exp

(
C∆t

M−1∑
n=0

(
ν−3

∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣4 +
3

2

))
F (∆t, h; p)

+ Cν(∆t)4 |||∇utt|||22,0 + Cνh2k |||u|||2,k+1 ,

22

where

F (∆t, h; p) =Cν−1h2k+1
(
|||u|||44,k+1 + |||∇u|||44,0

)
+ Cν−1h2k

(
|||u|||44,k+1 + ν−1

(
||uh||2 + ν−1 |||f |||22,X′

))
+ Cν−1

(
h2s+2

∣∣∣∣∣∣∣∣∣p 1
2

∣∣∣∣∣∣∣∣∣2
2,s+1

+ (∆t)4 |||ptt|||22,0

)
+ Ch2k+2 |||ut|||22,k+1 + C∆th2k+2 ||utt||L2(0,T ;Hk+1)

+ C(∆t)4(|||uttt|||22,0 + ν−1 |||ptt|||22,0 + |||ftt|||22,0 + ν |||∇utt|||22,0

+ ν−1 |||∇utt|||44,0 + ν−1 |||∇u|||44,0 + ν−1
∣∣∣∣∣∣∇u1/2

∣∣∣∣∣∣4
4,0

)

(ii) Then for all 0 ≤ n ≤M , the following holds for EMAC,

∣∣∣∣eM ∣∣∣∣2 + ν∆t

M−1∑
n=0

∣∣∣∣∣∣∇en+ 1
2

∣∣∣∣∣∣2 ≤ exp

(
C∆t

M−1∑
n=0

(
ν−1

∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣2
L3

+
3

2

))
F (∆t, h;P)

+ Cν(∆t)4 |||∇utt|||22,0 + Cνh2k |||u|||2,2 ,

Proof. In order to properly give an error analysis, we need to match terms, so we will add the following

terms to both sides of (2.16):

(
un+1 − un

∆t
, vh

)
, b∗(un+ 1

2 , un+ 1
2 , vh), ν

(
∇un+ 1

2 ,∇vh
)
, −

(
pn+ 1

2 ,∇ · vh
)
.

We will also add and subtract
(
fn+ 1

2 , vh

)
to the right hand side.

Applying this to (2.10) gives us

1

∆t

(
un+1 − un, vh

)
+ b∗(un+ 1

2 , un+ 1
2 , vh) + ν

(
∇un+ 1

2 ,∇vh
)
−
(
pn+ 1

2 ,∇ · vh
)

=
(
fn+ 1

2 , vh

)
+ τ(un, pn; vh),

(3.1)

23

where

τ(un, pn; vh) =

(
un+1 − un

∆t
− ut(tn+ 1

2), vh

)
+ ν

(
∇un+ 1

2 −∇u(tn+ 1
2),∇vh

)
+ b∗(un+ 1

2 , un+ 1
2 , vh)− b∗(u(tn+ 1

2), u(tn+ 1
2), vh)

−
(
pn+ 1

2 − p(tn+ 1
2),∇ · vh

)
+
(
f(tn+ 1

2)− fn+ 1
2 , vh

)
.

Subtract (2.16) from (3.1) to get

1

∆t

(
en+1 − en, vh

)
+ b∗(un+ 1

2 , un+ 1
2 , vh)− b∗(un+ 1

2

h , u
n+ 1

2

h , vh) + ν
(
∇en+ 1

2 ,∇vh
)

−
(
pn+ 1

2 − qh,∇ · vh
)

= τ(un, pn; vh).

(3.2)

Note that qh ∈ Vh, hence (qh,∇ · vh) = 0, which is why we may add that in (3.2). We now consider the

Stokes operator (add reference and definition earlier) such that ηn = un − ISth (un) and φnh = ISth (un)− unh,

which gives en = ηn + φnh. Apply this to (3.2), set vh = φ
n+ 1

2

h , and rearrange to get

(
φn+1
h − φnh, φ

n+ 1
2

h

)
+ ν∆t

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2
=−∆t

(
b∗(un+ 1

2 , un+ 1
2 , φ

n+ 1
2

h)− b∗(un+ 1
2

h , u
n+ 1

2

h , φ
n+ 1

2

h)
)
−
(
ηn+1 − ηn, φn+ 1

2

h

)
+ ∆t

(
pn+ 1

2 − qh,∇ · φ
n+ 1

2

h

)
+ ∆tτ(un, pn;φ

n+ 1
2

h).

Note that
(
∇ηn+1,∇φn+1

h

)
= 0 by us choosing ISth (u) as our function in Vh to add and subtract in en+1.

We may expand the first term on the left hand side, giving

(
φn+1
h − φnh, φ

n+ 1
2

h

)
=

1

2

(∣∣∣∣φn+1
h

∣∣∣∣2 − ||φnh||2) .
Applying this gives us the equation

1

2

(∣∣∣∣φn+1
h

∣∣∣∣2 − ||φnh||2)+ ν∆t
∣∣∣∣∣∣∇φn+ 1

2

h

∣∣∣∣∣∣2
=−∆t

(
b∗(un+ 1

2 , un+ 1
2 , φ

n+ 1
2

h)− b∗(un+ 1
2

h , u
n+ 1

2

h , φ
n+ 1

2

h)
)
−
(
ηn+1 − ηn, φn+ 1

2

h

)
+ ∆t

(
pn+ 1

2 − qh,∇ · φ
n+ 1

2

h

)
+ ∆tτ(un, pn;φ

n+ 1
2

h).

(3.3)

Step 1: Bounds for terms in (3.3).

24

We first try and find bounds for the nonlinear terms in (3.3). We first rearrange them to get

b∗(un+ 1
2 , un+ 1

2 , φ
n+ 1

2

h)− b∗(un+ 1
2

h , u
n+ 1

2

h , φ
n+ 1

2

h)

=b∗(ηn+ 1
2 , un+ 1

2 , φ
n+ 1

2

h) + b∗(φ
n+ 1

2

h , un+ 1
2 , φ

n+ 1
2

h) + b∗(u
n+ 1

2

h , ηn+ 1
2 , φ

n+ 1
2

h).

We now work to bound each of these terms on the right hand side. For each term, we use a standard trilinear

term inequality and Young’s inequality,

b∗(ηn+ 1
2 , un+ 1

2 , φ
n+ 1

2

h) ≤ C
∣∣∣∣∣∣ηn+ 1

2

∣∣∣∣∣∣ 12 ∣∣∣∣∣∣∇ηn+ 1
2

∣∣∣∣∣∣ 12 ∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣ ∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣
≤ ν

14

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2 + Cν−1
∣∣∣∣∣∣ηn+ 1

2

∣∣∣∣∣∣ ∣∣∣∣∣∣∇ηn+ 1
2

∣∣∣∣∣∣ ∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣2 .
For the second term we have,

b∗(φ
n+ 1

2

h , un+ 1
2 , φ

n+ 1
2

h) ≤ C
∣∣∣∣∣∣φn+ 1

2

h

∣∣∣∣∣∣ 12 ∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣ 12 ∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣ ∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣
≤ ν

14

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2 + Cν−3
∣∣∣∣∣∣φn+ 1

2

h

∣∣∣∣∣∣2 ∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣4 .
Finally for the third term, we get

b∗(u
n+ 1

2

h , ηn+ 1
2 , φ

n+ 1
2

h) ≤ C
∣∣∣∣∣∣un+ 1

2

h

∣∣∣∣∣∣ 12 ∣∣∣∣∣∣∇un+ 1
2

h

∣∣∣∣∣∣ 12 ∣∣∣∣∣∣∇ηn+ 1
2

∣∣∣∣∣∣ ∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣
≤ ν

14

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2 + Cν−1
∣∣∣∣∣∣un+ 1

2

h

∣∣∣∣∣∣ ∣∣∣∣∣∣∇un+ 1
2

h

∣∣∣∣∣∣ ∣∣∣∣∣∣∇ηn+ 1
2

∣∣∣∣∣∣2 .
Following eq (4.14) from [18], we get the following bound

1

∆t

(
ηn+1 − ηn, φn+ 1

2

h

)
≤
∣∣∣∣ηn+1

t

∣∣∣∣2 +

∫ tn+1

tn
||ηtt||2 dt+

1

2

∣∣∣∣∣∣φn+ 1
2

h

∣∣∣∣∣∣2 .
Then for the pressure term we use the Cauchy Schwarz and Young’s inequality,

∣∣∣ (pn+ 1
2 − qh,∇ · φ

n+ 1
2

h

) ∣∣∣ ≤ C ∣∣∣∣∣∣pn+ 1
2 − qh

∣∣∣∣∣∣ ∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣
≤ ν

14

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2 + Cν−1
∣∣∣∣∣∣pn+ 1

2 − qh
∣∣∣∣∣∣2 .

25

Now we combine all of these bounds into (3.3) and get

1

2

∣∣∣∣φMh ∣∣∣∣2 + ν∆t

M−1∑
n=0

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣
≤Cν−3∆t

M−1∑
n=0

∣∣∣∣∣∣φn+ 1
2

h

∣∣∣∣∣∣2 ∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣4 +
4ν

14
∆t

M−1∑
n=0

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2
+ Cν−1∆t

M−1∑
n=0

∣∣∣∣∣∣ηn+ 1
2

∣∣∣∣∣∣ ∣∣∣∣∣∣∇ηn+ 1
2

∣∣∣∣∣∣ ∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣2
+ Cν−1∆t

M−1∑
n=0

∣∣∣∣∣∣un+ 1
2

h

∣∣∣∣∣∣ ∣∣∣∣∣∣∇un+ 1
2

h

∣∣∣∣∣∣ ∣∣∣∣∣∣∇ηn+ 1
2

∣∣∣∣∣∣2
+ ∆t

M−1∑
n=0

∣∣∣∣ηn+1
t

∣∣∣∣2 + ||ηtt||2L2(0,T ;L2) +
∆t

2

M−1∑
n=0

∣∣∣∣∣∣φn+ 1
2

h

∣∣∣∣∣∣2
+ Cν−1∆t

M−1∑
n=0

∣∣∣∣∣∣pn+ 1
2 − qh

∣∣∣∣∣∣2 + ∆t

M−1∑
n=0

C|τ(un, pn;φ
n+ 1

2

h)|.

(3.4)

Step 2: Bounds for terms in (3.4).

The second and third term are bounded by expanding out the midpoint terms and applying Young’s

inequality, specific details can be found in [61].

Cν−1∆t

M−1∑
n=0

∣∣∣∣∣∣ηn+ 1
2

∣∣∣∣∣∣ ∣∣∣∣∣∣∇ηn+ 1
2

∣∣∣∣∣∣ ∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣2 ≤ Cν−1h2k+1
(
|||u|||44,k+1 + |||∇u|||44,0

)
,

Cν−1∆t

M−1∑
n=0

∣∣∣∣∣∣un+ 1
2

h

∣∣∣∣∣∣ ∣∣∣∣∣∣∇un+ 1
2

h

∣∣∣∣∣∣ ∣∣∣∣∣∣∇ηn+ 1
2

∣∣∣∣∣∣2
≤ Cν−1h2k

(
|||u|||44,k+1 + ν−1

(
||uh||2 + ν−1 |||f |||22,X′

))
.

For the pressure term, we get

Cν−1∆t

M−1∑
n=0

∣∣∣∣∣∣pn+ 1
2 − qh

∣∣∣∣∣∣2 ≤ Cν−1

(
h2s+2

∣∣∣∣∣∣∣∣∣p 1
2

∣∣∣∣∣∣∣∣∣2
2,s+1

+ (∆t)4 |||ptt|||22,0

)
.

For the time derivative term, we apply the approximation result (2.3)

∆t

M−1∑
n=0

∣∣∣∣ηn+1
t

∣∣∣∣2 ≤ Ch2k+2 |||ut|||22,k+1 .

26

For the final term, we get

∆t ||ηtt||2L2(0,T ;L2) ≤ C∆th2k+2 ||utt||2L2(0,T ;Hk+1) .

Combining all of the previous bounds gives us

∣∣∣∣φMh ∣∣∣∣2 + ν∆t

M−1∑
n=0

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2
≤C∆t

M−1∑
n=0

(
ν−3

∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣4 +
1

2

) ∣∣∣∣∣∣φn+ 1
2

h

∣∣∣∣∣∣2 +
4ν

14
∆t

M−1∑
n=0

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2
+ Cν−1h2k+1

(
|||u|||44,k+1 + |||∇u|||44,0

)
+ Cν−1h2k

(
|||u|||44,k+1 + ν−1

(
||uh||2 + ν−1 |||f |||22,X′

))
+ Cν−1

(
h2s+2

∣∣∣∣∣∣p 1
2

∣∣∣∣∣∣2
2,s+1

+ (∆t)4 |||ptt|||22,0

)
+ Ch2k+2 |||ut|||22,k+1

+ C∆th2k+2 ||utt||L2(0,T ;Hk+1) + ∆t

M−1∑
n=0

C|τ(un, pn;φ
n+ 1

2

h)|.

(3.5)

Step 3: Bounds for τ .

Now to handle each of the terms in τ(un, pn;φ
n+ 1

2

h). For the first term, we use Cauchy-Schwarz and

Young’s inequality along with a known Taylor series result

(
un+1 − un

∆t
− ut(tn+ 1

2), φ
n+ 1

2

h

)
≤ 1

2

∣∣∣∣∣∣φn+ 1
2

h

∣∣∣∣∣∣+
1

2

∣∣∣∣∣∣∣∣un+1 − un

∆t
− ut(tn+ 1

2)

∣∣∣∣∣∣∣∣2
≤ 1

2

∣∣∣∣φn+1
h

∣∣∣∣2 +
1

2
||φnh||

2
+

1

2

(∆t)3

1280

∫ tn+1

tn
||uttt||2 dt.

For the pressure term, we get

(
pn+ 1

2 − p(tn+ 1
2),∇ · φn+ 1

2

h

)
≤ ν

14

∣∣∣∣∣∣∇φn+ 1
2

∣∣∣∣∣∣2 + Cν−1
∣∣∣∣∣∣pn+ 1

2 − p(tn+ 1
2)
∣∣∣∣∣∣2

≤ ν

14

∣∣∣∣∣∣∇φn+ 1
2

∣∣∣∣∣∣2 + Cν−1 (∆t)3

48

∫ tn+1

tn
||ptt||2 dt.

27

For the forcing function, we have

(
f(tn+ 1

2)− fn+ 1
2 , φ

n+ 1
2

h

)
≤ 1

2

∣∣∣∣∣∣φn+ 1
2

h

∣∣∣∣∣∣2 +
1

2

∣∣∣∣∣∣f(tn+ 1
2)− fn+ 1

2

∣∣∣∣∣∣2
≤ 1

2

∣∣∣∣φn+1
h

∣∣∣∣2 +
1

2
||φnh||

2
+

(∆t)3

48

∫ tn+1

tn
||ftt||2 dt.

Through similar technique, we get

(
∇un+ 1

2 −∇u(tn+ 1
2),∇φn+ 1

2

h

)
≤ ν

14

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2 + Cν
∣∣∣∣∣∣∇un+ 1

2 −∇u(tn+ 1
2)
∣∣∣∣∣∣2

≤ ν

14

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2 + Cν
(∆t)3

48

∫ tn+1

tn
||∇utt||2 dt.

Now to find a bound for the nonlinear terms,

b∗(un+ 1
2 , un+ 1

2 , φ
n+ 1

2

h)− b∗(u(tn+ 1
2), u(tn+ 1

2), φ
n+ 1

2

h)

=b∗(un+ 1
2 − u(tn+ 1

2), un+ 1
2 , φ

n+ 1
2

h)− b∗(u(tn+ 1
2), un+ 1

2 − u(tn+ 1
2), φ

n+ 1
2

h)

≤C
∣∣∣∣∣∣∇(un+ 1

2 − u(tn+ 1
2)
)∣∣∣∣∣∣ ∣∣∣∣∣∣∇φn+ 1

2

h

∣∣∣∣∣∣ (∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣+
∣∣∣∣∣∣∇u(tn+ 1

2)
∣∣∣∣∣∣) .

Then apply Young’s inequality and the estimate on the first quantity on the right hand side,

≤Cν−1

(∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣2 +
∣∣∣∣∣∣∇u(tn+ 1

2)
∣∣∣∣∣∣2) (∆t)3

48

∫ tn+1

tn
||∇utt||2 dt+

ν

14

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2
≤Cν−1(∆t)3

(∫ tn+1

tn

∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣4 +
∣∣∣∣∣∣∇u(tn+ 1

2)
∣∣∣∣∣∣4 + ||∇utt||4 dt

)
+

ν

14

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2
≤Cν−1(∆t)4

(∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣4 +
∣∣∣∣∣∣∇u(tn+ 1

2)
∣∣∣∣∣∣4)+ Cν−1(∆t)3

∫ tn+1

tn
||∇utt||4 dt+

ν

14

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2 .
Now we can combine the previous five estimates and add them together to get

∆t

M−1∑
n=0

|τ(un, pn; vh)| ≤ C∆t

M∑
n=0

||φnh||
2

+
3ν

14
∆t

M−1∑
n=0

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2
+ C(∆t)4(|||uttt|||22,0 + ν−1 |||ptt|||22,0 + |||ftt|||22,0 + ν |||∇utt|||22,0

+ ν−1 |||∇utt|||44,0 + ν−1 |||∇u|||44,0 + ν−1
∣∣∣∣∣∣∇u1/2

∣∣∣∣∣∣4
4,0

).

(3.6)

28

Finally, use (3.6) in (3.5) and combine terms to get

∣∣∣∣φMh ∣∣∣∣2 + ν∆t

M−1∑
n=0

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2
≤C∆t

M−1∑
n=0

(
ν−3

∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣4 +
3

2

) ∣∣∣∣∣∣φn+ 1
2

h

∣∣∣∣∣∣2
+ Cν−1h2k+1

(
|||u|||44,k+1 + |||∇u|||44,0

)
+ Cν−1h2k

(
|||u|||44,k+1 + ν−1

(
||uh||2 + ν−1 |||f |||22,X′

))
+ Cν−1

(
h2s+2

∣∣∣∣∣∣∣∣∣p 1
2

∣∣∣∣∣∣∣∣∣2
2,s+1

+ (∆t)4 |||ptt|||22,0

)
+ Ch2k+2 |||ut|||22,k+1 + C∆th2k+2 ||utt||L2(0,T ;Hk+1)

+ C(∆t)4(|||uttt|||22,0 + ν−1 |||ptt|||22,0 + |||ftt|||22,0 + ν |||∇utt|||22,0

+ ν−1 |||∇utt|||44,0 + ν−1 |||∇u|||44,0 + ν−1
∣∣∣∣∣∣∇u1/2

∣∣∣∣∣∣4
4,0

).

(3.7)

Here we set

F (∆t, h; p) =Cν−1h2k+1
(
|||u|||44,k+1 + |||∇u|||44,0

)
+ Cν−1h2k

(
|||u|||44,k+1 + ν−1

(
||uh||2 + ν−1 |||f |||22,X′

))
+ Cν−1

(
h2s+2

∣∣∣∣∣∣∣∣∣p 1
2

∣∣∣∣∣∣∣∣∣2
2,s+1

+ (∆t)4 |||ptt|||22,0

)
+ Ch2k+2 |||ut|||22,k+1 + C∆th2k+2 ||utt||L2(0,T ;Hk+1)

+ C(∆t)4(|||uttt|||22,0 + ν−1 |||ptt|||22,0 + |||ftt|||22,0 + ν |||∇utt|||22,0

+ ν−1 |||∇utt|||44,0 + ν−1 |||∇u|||44,0 + ν−1
∣∣∣∣∣∣∇u1/2

∣∣∣∣∣∣4
4,0

)

and apply Lemma 6 to (3.7) to get

∣∣∣∣φMh ∣∣∣∣2 + ν∆t

M−1∑
n=0

∣∣∣∣∣∣∇φn+ 1
2

h

∣∣∣∣∣∣2 ≤ exp

(
C∆t

M−1∑
n=0

(
ν−3

∣∣∣∣∣∣∇un+ 1
2

∣∣∣∣∣∣4 +
3

2

))
F (∆t, h; p).

Using the triangle inequality from here gives us the desired result.

Proving part (ii) of this theorem is nearly identical to the proof for part (i). The only differences

are the nonlinear terms, however the nonlinear terms in τ(un, pn;φ
n+ 1

2

h) can be bounded identically to how

29

0 1 2 3 4 5 6 7 8 9 10
t

0.565

0.5655

0.566

0.5665

0.567

0.5675

En
er

gy
FOM: EMAC-FEM
ROM:EMAC/EMAC N=9
ROM:EMAC/EMAC N=13
ROM:EMAC/EMAC N=16

9.2 9.4 9.6 9.8 10
t

2.5

3

3.5

D
ra

g

FOM: EMAC-FEM
ROM:EMAC/EMAC N=9
ROM:EMAC/EMAC N=13
ROM:EMAC/EMAC N=16

Figure 5.5: Shown above are results of ROM simulations built from EMAC-FEM as the FOM, and (top)
EMAC-ROM and (bottom) SKEW-ROM with N=9, 13, and 16 modes.

79

Chapter 6

Anderson Acceleration in deal.II

In this chapter, we will implement methods of AA in the finite element library deal.II and compare

it against Newton and Picard iterations using iteration count and computation time. What motivates this

section is that we must perform a nonlinear solve at each timestep for EMAC (among other formulations)

so it is critical to have an efficient nonlinear solver.

A standard method for solving the nonlinear problem is a Newton iteration. This is an obvious choice

because it has quadratic convergence and is easy to implement if we can calculate derivatives. However, for

larger Re, it is more challenging to find an appropriate initial guess. What many programs do to find a nice

initial guess is a continuation method [94]. If Re > 1000 for the deal.II example tutorial step-57, the steady

Navier-Stokes equations (SNSE) is solved using Newton with line search with Re = 1000. The solution is

used as an initial guess for the same problem with Re = 3000. Re is increased by an increment of 2000 each

iteration until the target Re is reached.

As one can imagine, this method will take a lot of time for large Re, so we would like to implement

something better. Picard iterations with AA is precisely what we need. Picard iterations do not require

a close initial guess, so we will not need to iterate through values of Re. Although, because of the linear

convergence, we can expect low Re simulations to be slower with this method. However we will see that this

method is preferable for high Re. Appendix B contains a link to the author’s github profile which contains

the programs used for the experiments in this chapter.

80

6.1 Step-57 Anderson acceleration implementation

6.1.1 Picard implementation

In this section we will discuss our implementation of AA in deal.II. We adjusted the step-57 tutorial

program to run Picard iteration with Anderson acceleration steps (instead of Newton iterations). We begin

by defining the steady Navier Stokes Equations:

−ν∆u+ (u · ∇)u+∇p = f,

−∇ · u = 0,

(6.1)

where the variables and constants are defined the same as (1.1).

We also define the Picard iteration. Suppose we wish to solve the nonlinear problem

L(w) = f,

where L is some nonlinear differential operator and w is the solution. We rewrite this L(w) such that

L(w) = G(w)w,

where G is some differential operator. Then, we are left with the algorithm:

Algorithm 19 (Picard iteration). For some differential operator G,

Step 1: Choose w0 (usually can be 0).

Step 2: For k = 1, 2, . . .

Solve G(wk)wk+1 = f .

In general with nonlinear solvers, we solve for wk+1 using the following equation:

wk+1 = wk + δwk,

where δwk is our “update” and added to the previous iteration. Substituting wk+1 into Algorithm 19, we

81

get

G(wk)(wk + δwk) = f

⇒G(wk)wk +G(wk)δwk = f

⇒G(wk)δwk = f −G(wk)wk. (6.2)

Now equation 1 of (6.1) to the left hand side of (6.2),

G(uk)δuk = −ν∆δuk + uk · ∇δuk +∇δpk,

where uk and pk are the kth iteration of u and p. This gives our final Picard iteration system

−ν∆δuk + uk · ∇δuk +∇δpk = f −G(uk)uk,

−∇ · δuk = ∇ · uk.

6.1.2 Anderson acceleration implementation

Now that we have established the Picard implementation, recall Algorithm 4. The first step is to

perform the standard fixed point method, then the goal for the second step is to minimize

min∑k
j=k−m αk+1

j =1

∣∣∣∣∣∣
∣∣∣∣∣∣

k∑
j=k−m

αk+1
j (ũj+1 − uj)

∣∣∣∣∣∣
∣∣∣∣∣∣
X

,

where u =

[
u p

]T
. Notice that we can rewrite the quantity inside the norm into a matrix-vector product

Fα where F = {ũj+1 − uj}kj=k−m and α = {αj}mj=k−m. We may rewrite this system to an (m + 1) × m

linear system to include the
∑k
j=k−m α

k
j=k−m = 1 constraint. Let {Fi}kj=k−m be the columns of F , the new

system is

min

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

Fk−m . . . Fk−1 Fk

1 . . . 1 1




αk+1
k−m
...

αk+1
k−1

αk+1
k


−



0

...

0

1



∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
X

.

82

However, this is an overdetermined system and most likely will not precisely give
∑k
j=k−m α

k+1
j = 1.

So we will rewrite the problem,

min∑k
j=k−m αk+1

j =1
||Fα||2X = min∑k

j=k−m αk+1
j =1

∣∣∣∣Fk−mαk+1
k−m + · · ·+ Fk−1α

k+1
k−1 + Fkα

k+1
k

∣∣∣∣2
X

= min
α

∣∣∣∣∣∣
∣∣∣∣∣∣Fk−mαk+1

k−m + · · ·+ Fk−1α
k+1
k−1 + Fk

1−
k−1∑

j=k−m

αk+1
j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

X

= min
α

∣∣∣∣(Fk−m − Fk)αk+1
k−m + · · ·+ (Fk−1 − Fk)αk+1

k−1 + Fk
∣∣∣∣2
X

= min
α̂

∣∣∣∣∣∣F̂ α̂+ Fk

∣∣∣∣∣∣2
X
,

where {Fj − Fk}k−1
j=k−m are the columns of F̂ and

{
αk+1
j

}k−1

j=k−m are the entries of α̂. This can be seen as a

standard least squares problem with the X norm. We solve this in deal.II using the normal equations, i.e.,

α̂ = −(F̂TMF̂)−1F̂TMFk, (6.3)

where M is the matrix given from the norm X. M is the stiffness matrix in H1
0 , the mass matrix in L2, and

the identity matrix in `2. After we solve for α̂, we need only solve for αk+1
k , which is a trivial computation.

Analysis in [70] uses the H1
0 norm, but it is unclear if this is needed instead of the less expensive `2 norm.

The computation of (6.3) is the most costly part of the AA implementation because of the building

of F̂TMF̂ . As k increases, F̂ increases width, which makes building F̂TMF̂ more costly. F̂TMF̂ is a small

matrix of size k×k where k will likely not realistically exceed 20. We note that
{
F̂TMF̂

}k
i,j=1

= (F̂Tj M)F̂i,

which is a matrix-vector product and a dot product for each entry. F̂TMFk is two matrix-vector products,

and since F̂TMF̂ is small, we use an invert function. In total, we perform k matrix-vector products and k2

dot products. We must also store 2k vectors for the F̂TM computation. In the case where we use the `2

norm, we skip the F̂TM calculation and perform a dot product F̂T F̂ , thus avoiding k matrix-vector product

for the entire α̂ calculation and we do not need to store any additional vectors.

6.1.3 Numerical Results

In the previous section, we discussed the AA implementation in deal.II, and so the next step is to

integrate it into one of its tutorial programs. Step-57 is a standard benchmark problem where we solve the

steady NSE with adaptive refinement. The focus of the tutorial is show the rate of convergence of Newton

iterations with line search and the effect of changing values of Re has on it. Here, we substitute the Newton

83

iteration with line search [40] with a Picard iteration with Anderson acceleration.

Note that (6.3) uses the matrix associated with the norm of the operator. In fact, [70] contains

analysis using the standard H1
0 norm for the NSE with Picard iteration. To calculate α̂ using the `2 norm

is the fastest, however that is not the norm which the literature has shown in its analysis.

We provide tables which include the number of iterations until convergence with a tolerance of

10−13 along with the time in seconds for the entire computation of the program. We also include a table

that includes time spent on the AA phase. We ran using Re = 1, 10, 100, 1000, 2500 and m = 0, 1, 2, 10.

These tables will be grouped by which norm was used to perform the minimization step, so we will have a

table for each of the H1
0 norm, L2 norm, and `2 norm. This was run on a 64×64 mesh with 37507 DoFs and

Taylor-Hood (Q2, Q1) elements. GMRES was used to solve the linear system with a block preconditioner

using Schur complement. Grad-div stabilization was used with γ = 1.

Iterations m = 0 m = 1 m = 2 m = 10

Re = 1 4 4 4 4

Re = 10 6 6 6 7

Re = 100 14 14 13 16

Re = 1000 37 32 29 22

Re = 2500 51 43 39 28

Time m = 0 m = 1 m = 2 m = 10

Re = 1 4.8 4.8 4.8 4.8

Re = 10 5.4 5.4 5.4 6.2

Re = 100 9.7 9.8 9.1 11.0

Re = 1000 23.4 20.4 18.7 14.8

Re = 2500 32.1 27.4 25.3 19.0

Table 6.1: Iteration count (left) and computation time in seconds (right) with the H1
0 norm applied to the

AA minimization step where m = 0 is Picard.

We notice the AA being particularly helpful for Re ≥ 1000, where setting m = 10 lets it converge

in 15-20 iterations less than normal Picard without AA (m = 0). Something to note is that when m = 10

with Re = 100, we get the longest convergence at 16 iterations, where m = 0, 1, 2 are 14 iterations or less. It

seems that applying low values for m help more with lower values for Re, and higher m is helpful for higher

Re.

The same could be said about the computation time. For Re ≤ 100, we have that m = 2 give the

best results for both time (although the difference is not too momentous). Applying m = 10 has the highest

computation time for Re = 100, which is because it takes more iterations. Then with Re = 2500, we see

that m = 10 is completed in 19 seconds, where Picard takes 32.1 seconds.

84

Iterations m = 0 m = 1 m = 2 m = 10

Re = 1 4 4 4 4

Re = 10 6 6 6 7

Re = 100 14 14 13 16

Re = 1000 37 30 27 22

Re = 2500 51 44 37 27

Time m = 0 m = 1 m = 2 m = 10

Re = 1 4.9 4.9 4.7 4.7

Re = 10 5.4 5.4 5.4 6.2

Re = 100 9.7 9.7 9.1 11.1

Re = 1000 23.2 19.3 17.5 14.7

Re = 2500 31.8 27.8 23.8 18.0

Table 6.2: Iteration count (left) and computation time in seconds (right) with the L2 norm applied to the
AA minimization step

There is a substantial difference in iteration count for Re ≥ 1000. In particular, using AA with

m = 1, 2 for Re = 1000 converges in two fewer iterations than using the H1
0 norm. We also have fewer

iterations for m = 2, 10 for Re = 2500, however iteration count for m = 1 has increased from 43 with the

H1
0 norm to 44 with the L2 norm.

We see similar computation times with L2 than H1
0 . Similar comments can be made here, where

m = 2 gave the better computation time for Re ≤ 100 and m = 10 gave the best results for Re ≥ 1000.

Iterations m = 0 m = 1 m = 2 m = 10

Re = 1 4 4 4 4

Re = 10 6 6 6 7

Re = 100 14 14 13 16

Re = 1000 37 30 27 21

Re = 2500 51 44 37 27

Time m = 0 m = 1 m = 2 m = 10

Re = 1 4.7 4.9 4.7 4.7

Re = 10 5.3 5.3 5.3 6.0

Re = 100 9.6 9.6 8.9 10.8

Re = 1000 23.1 19.1 17.7 14.1

Re = 2500 32.4 27.9 23.8 18.0

Table 6.3: Iteration count (left) and computation time in seconds (right) with the `2 norm applied to the
AA minimization step.

We see minor improvement with the `2 norm. The iteration count is nearly identical to the L2 norm

save for one experiment. We expect to have a better computation time with the `2 norm because M = I.

We only see an improvement of one experiment where Re = 1000 with m = 10 converges in 21 iterations

rather than 22 iterations with the L2 norm.

Similar comments can be made how the computation time is affected for Re ≥ 1000. We see that

`2 with Re = 1000 we have an improvement of computation time for all but when m = 2 (m = 0 can be

85

ignored because it does not include the AA step). To understand the minor improvement in computation

time in Figure 6.3, we will include one more table which includes the computation time in seconds of the

AA step.

H1
0 norm L2 norm `2 norm

AA times m = 1 m = 2 m = 10 m = 1 m = 2 m = 10 m = 1 m = 2 m = 10

Re = 1 0.01 0.01 0.02 0.01 0.01 0.02 0.00 0.00 0.01

Re = 10 0.01 0.02 0.05 0.01 0.02 0.05 0.00 0.01 0.02

Re = 100 0.04 0.05 0.22 0.04 0.05 0.23 0.02 0.01 0.06

Re = 1000 0.08 0.11 0.35 0.08 0.10 0.35 0.02 0.03 0.09

Re = 2500 0.11 0.15 0.48 0.11 0.14 0.44 0.03 0.04 0.03

Table 6.4: Time in seconds spent on AA.

The H1
0 norm and the L2 norm provide similar results. This is expected because the k matrix-vector

products using the mass and stiffness matrix will take a very similar amount of time to compute. Hence we

do not need to comment on the differences between these two norms.

As we increase Re, we see an expected increase in the time spent in AA among each experiment

because the iteration count is increasing. However for H1
0 and L2, we notice a larger increase in time from

m = 1 to m = 10. This is expected because of the F̂TMF̂ calculation. In other words this is the result

from doing one matrix-vector product and one dot product (k = 1) to 10 matrix-vector products and 100

dot products (k = 10).

Here we see the strength of the `2 norm over the other two. In the most extreme case, Re = 2500

and m = 10, we see the time spent in AA is 0.03 seconds, which is a major improvement over the 0.48 we

see with H1
0 . Based on this, it is clear that the `2 is the most advantageous matrix norm to compute with.

6.2 Newton comparison and Higher Re experiments

Our motivation for implementing AA in deal.II is to have a faster nonlinear solver than what is

available. Here we will compare results received from step-57 and compare it to what we get with our AA

implementation. For this first experiment, we will be comparing our results in the previous section with the

`2 norm with the built-in Newton iterations in step-57. The setup for the problem is the same as the previous

86

experiment, i.e., 64 × 64 mesh with 37507 DoFs. We also modify the continuation method for Newton to

converge with a finer mesh. We do one continuation step for every increase by 500 in Re, so with Re = 2500,

we do 5 continuation steps.

Figure 6.1: Computation time (seconds) comparison between AA implementation and Newton with line
search on a 64 × 64 mesh.

In Figure 6.1, Newton has a steady increase in computation time as Re increases. A Newton solve

is performed every iteration in the continuation method, which takes a consistent amount of time, hence the

somewhat linear behavior of Newton. Newton outperforms both Picard and AA consistently until Re = 2500.

It is here where AA with m = 10 is the only method that is an improvement over Newton.

Our next experiment is solving with much higher Re on a 128 × 128 mesh, which is required with

the higher Re. Below is a table containing the computation times for our algorithm and the algorithm given

by step-57. It should be noted that running this simulation with Re > 8000 is less physically meaningful

because this solution is no longer stationary [7]. We feel that this does not take away from our goal of

showing how AA is an improvement over Newton with high Re.

87

Figure 6.2: Computation time (seconds) comparison between AA implementation and Newton with line
search with continuation step of 500 for Re on a 128 × 128 mesh.

According to Figure 6.2, AA with m = 1 was consistently the worst option for this experiment. In

fact as Re increases, the gap between computation time of other methods and AA with m = 1 increases as

well. Continuing from Figure 6.1, AA with m = 10 has the fastest computation time for all values of Re.

We also include a table of iteration counts for this experiment (excluding Newton).

Iterations m = 1 m = 2 m = 10

Re = 5000 57 49 38

Re = 7500 70 51 43

Re = 10000 94 66 50

Re = 15000 153 110 72

Re = 20000 196 141 89

Table 6.5: Iteration count for our AA algorithm on a 128× 128 mesh.

The results shown in Table 6.5 are consistent with what we have seen so far with tables 6.1-6.3.

With Re ≥ 10000, increasing m from 1 to 10 has cut the iteration count in half.

88

6.3 KINSOL implementation to step-57

KINSOL is a solver for nonlinear algebraic systems developed by Lawrence Livermore National

Laboratory which includes Newton, Picard, and fixed point solvers with AA options. KINSOL is a sub-

code of SUNDIALS [47], which is as its namesake defines a “SUite of Nonlinear and DIfferential/ALgebraic

equation Solvers”. Other codes under the umbrella of SUNDIALS include: CVODE, which solves initial

value problems for ODE systems, ARKODE, which solves initial value ODE problems with Runge-Kutta

methods, IDA, which solves initial value problems for differential-algebraic systems, and more.

The integration of SUNDIALS is a more recent addition in deal.II. The tutorial program step-77 was

written by Wolfgang Bangerth within the last couple years and it has yet to see thorough experimentation

in deal.II. In this section we will integrate the KINSOL nonlinear solver into step-57 and compare results to

Sections 6.1 and 6.2.

The implementation for KINSOL is straightforward if one is familiar with how deal.II handles linear

system assembly. Take this code block from the assembly() function from step-57:

for (unsigned int i = 0 ; i < d o f s p e r c e l l ; ++i)

{

i f (assemble matr ix)

{

for (unsigned int j = 0 ; j < d o f s p e r c e l l ; ++j)

{

l o c a l ma t r i x (i , j) +=

(v i s c o s i t y *

s c a l a r p r oduc t (grad ph i u [j] , g rad ph i u [i]) +

p r e s e n t v e l o c i t y g r a d i e n t s [q] * phi u [j] * phi u [i] +

grad ph i u [j] * p r e s e n t v e l o c i t y v a l u e s [q] *

phi u [i] =

d iv ph i u [i] * phi p [j] = phi p [i] * d iv ph i u [j] +

gamma * d iv ph i u [j] * d iv ph i u [i] +

phi p [i] * phi p [j]) *

f e v a l u e s .JxW(q) ;

}

}

double p r e s e n t v e l o c i t y d i v e r g e n c e =

t ra c e (p r e s e n t v e l o c i t y g r a d i e n t s [q]) ;

l o c a l r h s (i) +=

89

(= v i s c o s i t y * s c a l a r p r oduc t (p r e s e n t v e l o c i t y g r a d i e n t s [q] ,

g rad ph i u [i]) =

p r e s e n t v e l o c i t y g r a d i e n t s [q] * p r e s e n t v e l o c i t y v a l u e s [q] *

phi u [i] +

p r e s e n t p r e s s u r e v a l u e s [q] * d iv ph i u [i] +

p r e s e n t v e l o c i t y d i v e r g e n c e * phi p [i] =

gamma * p r e s e n t v e l o c i t y d i v e r g e n c e * d iv ph i u [i]) *

f e v a l u e s .JxW(q) ;

}

Here we calculate the system matrix and the system right hand side vector in the same loop. KINSOL

uses lambda functions in C++ to define specific functions. Our problem that we are solving requires four

functions:

� reinit_vector(), vector re-initialization.

� residual(), calculating the right hand side vector, f −G(uk)uk in our case.

� setup_jacobian(), compute the system matrix.

� solve_with_jacobian(), main linear solver function.

KINSOL requires we compute the system matrix and the residual in separate functions, so we simply need

to separate the local_matrix(i,j) and local_rhs(i) calculations to different functions. Aside from small

differences like this, the program is very similar and follows the same logic.

We run a similar experiment to that of Sections 6.1-6.2. We are computing on a 64× 64 grid with

Taylor-Hood (Q2, Q1) elements. We solve the linear system using GMRES with a block preconditioner using

Schur complement. We use an initial guess of the zero vector, similar to the algorithm we implemented in

section 6.1. Below is a table of computation time.

Computation time Line Search Picard AA: m = 1 AA: m = 2 AA: m = 10

Re = 1 3.9 3.6 3.6 3.6 3.6

Re = 10 5.0 4.5 4.5 4.5 4.5

Re = 100 7.5 8.4 8.4 8.4 7.9

Re = 1000 35.2 20.8 20.2 17.0 14.1

Re = 2500 - 32.1 28.8 24.7 19.1

Table 6.6: Computation time using KINSOL.

90

Including every experiment we have done to this point, KINSOL gives the best results for Re ≤ 100.

In Figure 6.3, we have computation times of our algorithm using the `2 norm. For Re = 100, we have our

fastest convergence of AA with m = 2 at 8.9 seconds. KINSOL gives us our slowest convergence of 8.4

seconds (Picard, AA with m = 1, 2) and applying AA with m = 10 gives our fastest result at 7.9 seconds,

nearly 3 seconds faster than the same experiment with our algorithm.

For Re ≥ 1000, our algorithm gives us favorable results for AA. For Re = 1000 and m = 1, our

algorithm gives a computation time of 19.1 seconds where KINSOL gives 20.2 seconds. With m = 2, KINSOL

is faster with 17.0 seconds, then with m = 10 the computation times are the same. Re = 2500 is where our

algorithm performed the best where AA was faster in each experiment. For m = 1, 2, our algorithm was 0.9

seconds faster and for m− 10 our algorithm was 1.1 seconds faster.

Among all nonlinear solvers studied in this chapter, KINSOL has given us the fastest convergence

for Re ≤ 100 including the line search algorithm in step-57. If one were to solve the nonlinear problem for

the SNSE (and the NSE by extension), it would be optimal to use KINSOL for flows with low Re. When Re

increases, KINSOL and our implementation have more similar convergence times. The deciding factor for

using another package or using our algorithm seems to come down to how the code is written or whether one

wants to download the SUNDIALS package. Using KINSOL requires one to rewrite the structure of standard

deal.II code designed from the example programs. With our algorithm, we write two extra functions and

change a couple lines in the assembly. Based on these reasons and our results, the optimal choice would

come down to user preference.

91

Chapter 7

Conclusion and future projects

In this dissertation, we introduced a new energy, momentum, and angular momentum conserving

scheme with a spatial filter, EMAC-Reg. We have proven that it is a stable, well-posed scheme and pro-

vided an error analysis. To show EMAC-Reg’s strengths, we compared it to other numerical schemes on

coarser meshes. In every case, we have that EMAC-Reg is a stronger model with coarser meshes. This is

advantageous for large scale computing and 3D domains, where the linear systems become colossal.

We have also introduced the idea of FOM-ROM consistency between models. We provided an error

analysis under the assumption that a FOM-ROM pair is inconsistent. The preeminent result is the existence

of an extra error term, which would not be found in a standard FOM-ROM consistent system. It is for this

reason that we conclude that having FOM-ROM inconsistency is an overall destructive quality. We have

provided a numerical experiment that reinforce this claim.

In the following chapter, we provided fully discrete error analyses for SKEW and EMAC. In par-

ticular, we highlighted the fact that under certain conditions for EMAC, the Gronwall constant does not

depend on Re. This is helpful because the error bound will grow exponentially for larger values of Re. We

provided several numerical experiments which include projection methods for comparison and found that

EMAC consistently outperformed its competitors.

Finally, we have included an implementation of Anderson acceleration into the software library

deal.II, which was based on the example program step-57. We provided specific details on how the optimiza-

tion step is performed and how we integrated different matrix norms into the computation. We provided

92

several numerical results with details on iteration count and computation time. We compared our imple-

mentation to the base program step-57, which uses Newton iteration with linesearch. Finally, we compared

our results to the nonlinear solver KINSOL. Here, we discovered KINSOL is best applied for problems with

lower Re, but the results are comparable to our algorithm for higher Re. The optimal method of solving the

nonlinear problem comes down to user preference on code design.

7.1 Future work

A future direction to take EMAC-Reg is large scale computing and 3D FEM implementation. The

motivation for using EMAC-Reg is that 3D computing can require unrealistically (with modern computers)

fine meshes, which is where EMAC-Reg can be very helpful. There has been extensive study on the behavior

of CONV and SKEW (and EMAC to an extent), and to show the utility of EMAC-Reg on a coarser 3D

mesh would yield useful results.

We need not only limit future direction to EMAC-Reg, any combination of topics on this dissertation

can be applied to different multiphysics problems, e.g., Boussinesq approximation. It is worth studying the

application of ROM models and EMAC-Reg in other settings to understand and compare how these models

compare to already known and established methods.

Expanding the capabilities of nonlinear solvers in deal.II is also an interesting direction. We have

shown the strengths of applying Anderson acceleration to problems over other methods in Chapter 6. We

discussed the strengths of some nonlinear solve methods over others, e.g., KINSOL is stronger with low Re

and the algorithm we developed has better convergence for large Re. It would be a nice addition to deal.II

to implement a nonlinear solver class that uses different solvers and methods depending on the problem

parameters.

93

Appendices

94

Appendix A Momentum/angular momentum conservation of NS-

α and Leray-α formulations

Here we show that the NS-α and Leray-α formulations do not conserve momentum or angular

momentum if ∇·u 6= 0 and ∇·w 6= 0 where w represents the filtered velocity ū. Further note u = Fw where

F = −α2∆I + I.

A.1 NS-α

Recall the nonlinear term of the NS-α formulation is

ut + (∇× u)× w +∇p− ν∆u = f. (1)

Test (1) with ei for i = 1, 2, 3. After applying the space-time divergence theorem and rearranging some we

get

(ut, ei) + ((∇× u)× w, ei) + ν (∇u,∇ei) = (f, ei) . (2)

Assuming ν = f = 0, (2) simplifies into

d

dt
(u, ei) + ((∇× u)× w, ei) = 0.

If the nonlinear term is equal to zero, then we will have momentum conservation. We now check this:

((∇× u)× w, ei) = (∇× (w × ei), u)

= ((∇ · ei)w, u) − ((∇ · w)ei, u) + (ei · ∇w, u) − (w · ∇ei, u) ,

where the above two equalities come from vector identities. Also note that because ei is a vector of scalars,

((∇ · ei)w, u) = (w · ∇ei, u) = 0. This leaves us with

((∇× u)× w, ei) = − ((∇ · w)ei, u) + (ei · ∇w, u) ,

which we cannot conclude is zero, hence we cannot say that the NS-α formulation preserves momentum.

95

For angular momentum, we test (1) with φi and the algebra works out similar to momentum,

((∇× u)× w, φi) = ((∇ · φi)w, u) − ((∇ · w)φi, u) + (φi · ∇w, u) − (w · ∇φi, u) .

Since ∇ · φi = 0 for i = 1, 2, 3, we have

((∇ · φi)w, u) = 0.

Also recall using (4.15) in Theorem 11, we have

(w · ∇φi, u) = 0.

This gives us

((∇× u)× w, φi) = − ((∇ · w)φi, u) + (φi · ∇w, u) .

Much like with momentum, we cannot conclude that this quantity is zero, and we expect it is not zero.

A.2 Leray-α

Recall the nonlinear term of the Leray-α formulation is

ut + w · ∇u+∇p− ν∆u = f. (3)

We test (3) with ei for i = 1, 2, 3 and integrate. Similar to (2)

(ut, ei) + (w · ∇u, ei) + ν (∇u,∇ei) = (f, ei) . (4)

Assuming ν = f = 0, (4) simplifies to

d

dt
(u, ei) + (w · ∇u, ei) = 0.

96

If the nonlinear term is equal to zero, then we will have momentum conservation. Using (2.7) on the nonlinear

term we get

(w · ∇u, ei) = − (w · ∇ei, u) − ((∇ · w)u, ei)

= − ((∇ · w)u, ei) ,

which is not zero when ∇ · w 6= 0. Hence momentum is not necessarily conserved.

For angular momentum we test (3) with φi for i = 1, 2, 3 and it simplifies to

d

dt
(u, φi) + (w · ∇u, φi) = 0.

Now similarly to the momentum proof, we have for the nonlinear term

(w · ∇u, φi) = − (w · ∇φi, u) − ((∇ · w)u, φi)

= − ((∇ · w)u, φi) ,

where the first term disappears by applying (4.15) similarly to Theorem 11 (and the angular momentum

proof for NS-α in Appendix A.1). Thus the nonlinear term does not vanish, so angular momentum is not

conserved.

97

Appendix B Link to code

Our implementation of Anderson acceleration and our implementation of KINSOL to step-57 of

deal.II can be found with the following link

https://github.com/singima/Grad_Research/tree/main/Dissertation_Programs

98

https://github.com/singima/Grad_Research/tree/main/Dissertation_Programs

Bibliography

[1] S. A. Huyer A. M. Dropkin and C. Henoch. Combined Experimental/Numerical Development of Propul-
sor Evaluation Capability. Journal of Fluids Engineering, 133(8), 09 2011. 081105.

[2] S. E. Ahmed, S. Pawar, O. San, A. Rasheed, T. Iliescu, and B. R. Noack. On closures for reduced order
models—a spectrum of first-principle to machine-learned avenues. Physics of Fluids, 33(9):091301, 2021.

[3] H. An, X. Jia, and H. F. Walker. Anderson acceleration and application to the three-temperature energy
equations. Journal of Computational Physics, 347:1–19, 2017.

[4] D. G. Anderson. Iterative procedures for nonlinear integral equations. Journal of the ACM (JACM),
12(4):547–560, 1965.

[5] D. Arndt, W. Bangerth, M. Feder, M. Fehling, R. Gassmöller, T. Heister, L. Heltai, M. Kronbichler,
M. Maier, P. Munch, et al. The deal.II library, version 9.4. Journal of Numerical Mathematics, 30(3):231–
246, 2022.

[6] D. Arnold and J. Qin. Quadratic velocity/linear pressure Stokes elements. In R. Vichnevetsky,
D. Knight, and G. Richter, editors, Advances in Computer Methods for Partial Differential Equations
VII, pages 28–34. IMACS, 1992.

[7] W. Bangerth and R. Rannacher. Adaptive finite element techniques for the acoustic wave equation.
Journal of Computational Acoustics, 9(02):575–591, 2001.

[8] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An ‘empirical interpolation’ method: appli-
cation to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Math-
ematique, 339(9):667–672, 2004.

[9] L.C. Berselli, T. Iliescu, and W.J. Layton. Mathematics of large eddy simulation of turbulent flows.
Scientific Computation. Springer-Verlag, Berlin, 2006.

[10] A. Both, O. Lehmkuhl, D. Mira, and M. Ortega. Low-dissipation finite element strategy for low mach
number reacting flows. Computers & Fluids, 200:104436, 2020.

[11] A. Bowers, T.-Y. Kim, M. Neda, L. Rebholz, and E. Fried. The Leray-αβ-deconvolution model: energy
analysis and numerical algorithms. Applied Mathematical Modelling, 37(3):1225–1241, 2013.

[12] J. Bramble, J. Pasciak, and O. Steinbach. On the stability of the L2 projection in H1(Ω). Math. Comp.,
71:147–156, 2002.

[13] S. Breckling, M. Neda, and F. Pahlevani. A sensitivity study of the Navier–Stokes-α model. Computers
& Mathematics with Applications, 75(2):666–689, 2018.

[14] S. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer-Verlag,
1994.

99

[15] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse identi-
fication of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):3932–
3937, 2016.

[16] A. Caiazzo, T. Iliescu, V. John, and S. Schyschlowa. A numerical investigation of velocity–pressure
reduced order models for incompressible flows. Journal of Computational Physics, 259:598–616, 2014.

[17] K. Carlberg, C. Bou-Mosleh, and C. Farhat. Efficient non-linear model reduction via a least-squares
Petrov–Galerkin projection and compressive tensor approximations. International Journal for numerical
methods in engineering, 86(2):155–181, 2011.

[18] M. Case, V. Ervin, A. Linke, and L. Rebholz. A connection between Scott-Vogelius elements and
grad-div stabilization. SIAM Journal on Numerical Analysis, 49(4):1461–1481, 2011.

[19] S. Charnyi, T. Heister, M. Olshanskii, and L. Rebholz. On conservation laws of Navier-Stokes Galerkin
discretizations. Journal of Computational Physics, 337:289–308, 2017.

[20] S. Charnyi, T. Heister, M. Olshanskii, and L. Rebholz. Efficient discretizations for the EMAC for-
mulation of the incompressible Navier-Stokes equations. Applied Numerical Mathematics, 141:220–233,
2019.

[21] S. Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi, and S. Wynne. The Camassa–Holm equations as a
closure model for turbulent channel and pipe flow. Physical Review Letters, 81:5338–5341, 1998.

[22] S. Chen, C. Foias, E. Olson, E.S. Titi, and W. Wynne. The Camassa–Holm equations and turbulence.
Physica D, 133:49–65, 1999.

[23] A. Cheskidov, D. Holm, E. Olson, and E.S. Titi. On a Leray-α model of turbulence. Proceedings of The
Royal Society A, 461:629–649, 2005.

[24] A. J. Chorin. Numerical solution for the Navier-Stokes equations. Math. Comp., 22:745–762, 1968.

[25] J. Connors. Convergence analysis and computational testing of the finite element discretization of the
Navier–Stokes α model. Numerical Methods for Partial Differential Equations, 26(6):1328–1350, 2010.

[26] V. Cuff, A. Dunca, C. Manica, and L. Rebholz. The reduced order NS-α model for incompressible flow:
theory, numerical analysis and benchmark testing. ESAIM: Mathematical Modelling and Numerical
Analysis, 49(3):641–662, 2015.

[27] A. Dunca and Y. Epshteyn. On the Stolz-Adams deconvolution model for the large-eddy simulation of
turbulent flows. SIAM J. Math. Anal., 37(6):1890–1902, 2005.

[28] C. Evans, S. Pollock, L. G. Rebholz, and M. Xiao. A proof that Anderson acceleration improves the
convergence rate in linearly converging fixed-point methods (but not in those converging quadratically).
SIAM Journal on Numerical Analysis, 58(1):788–810, 2020.

[29] J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the steady Navier–
Stokes equations. Mathematical Models and Methods in Applied Sciences, 23(08):1421–1478, 2013.

[30] C. L. Fefferman. Existence and smoothness of the Navier-Stokes equation. The millennium prize
problems, 57(67):22, 2006.

[31] C. Foias, D.D. Holm, and E.S. Titi. The Navier–Stokes-α model of fluid turbulence. Physica D, 152:505–
519, 2001.

[32] C. Foias, D.D. Holm, and E.S. Titi. The three dimensional viscous Camassa–Holm equations, and their
relation to the Navier–Stokes equations and turbulence theory. Journal of Dynamics and Differential
Equations, 14:1–35, 2002.

[33] U. Frisch. Turbulence. Cambridge University Press, 1995.

100

[34] M. Geist and B. Scherrer. Anderson acceleration for reinforcement learning. arXiv preprint
arXiv:1809.09501, 2018.

[35] P. G. Geredeli, L. G. Rebholz, D. Vargun, and A. Zytoon. Improved convergence of the Arrow–Hurwicz
iteration for the Navier–Stokes equation via grad–div stabilization and Anderson acceleration. Journal
of Computational and Applied Mathematics, 422:114920, 2023.

[36] B.J. Geurts and D. Holm. Regularization modeling for large eddy simulation. Physics of Fluids, 15:L13,
2003.

[37] B.J. Geurts and D. Holm. Leray and LANS-α modeling of turbulent mixing. Journal of Turbulence,
7:1–33, 2006.

[38] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations : theory and algo-
rithms. Springer-Verlag, 1986.

[39] P. Gresho. On the theory of semi-implicit projection methods for viscous incompressible flow and its
implementation via finite-element method that also introduces a nearly consistent mass matrix: Part 2:
Applications. Int. J. Numer. Methods Fluids, 11:621?659, 1990.

[40] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for newton’s method.
SIAM journal on Numerical Analysis, 23(4):707–716, 1986.

[41] J. Guermond, P. Minev, and J. Shen. An overview of projection methods for incompressible flows.
Computer Methods in Applied Mechanics and Engineering, 195:6011–6045, 2006.

[42] J. Guzman and M. Neilan. Conforming and divergence-free Stokes elements in three dimensions. IMA
Journal of Numerical Analysis, 34(4):1489–1508, 2014.

[43] J. Guzman and M. Neilan. Conforming and divergence-free Stokes elements on general triangular
meshes. Mathematics of Computation, 83:15–36, 2014.

[44] F. Hecht. New development in FreeFem++. Journal of Numerical Mathematics, 20(3-4):251–266, 2012.

[45] J. S. Hesthaven, G. Rozza, B. Stamm, et al. Certified reduced basis methods for parametrized partial
differential equations, volume 590. Springer, 2016.

[46] J. Heywood and R. Rannacher. Finite element approximation of the nonstationary Navier-Stokes prob-
lem. Part IV: Error analysis for the second order time discretization. SIAM J. Numer. Anal., 2:353–384,
1990.

[47] A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Woodward. Sundials: Suite
of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software
(TOMS), 31(3):363–396, 2005.

[48] D. Holm and B.T. Nadiga. Modeling mesoscale turbulence in the barotropic double-gyre circulation.
Journal of Physical Oceanography, 33:2355–2365, 2003.

[49] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, coherent structures, dynamical
systems and symmetry. Cambridge university press, 2012.

[50] S. A. Huyer. Application of a maneuvering propulsor technology to undersea vehicles. Journal of Fluids
Engineering, 136(1), 10 2013. 011103.

[51] S. Ingimarson. An energy, momentum, and angular momentum conserving scheme for a regularization
model of incompressible flow. Journal of Numerical Mathematics, 30(1):1–22, 2022.

[52] S. Ingimarson, M. Neda, L. G. Rebholz, J. Reyes, and A. Vu. Improved long time accuracy for projection
methods for Navier-Stokes equations using EMAC formulation. International Journal of Numerical
Analysis and Modeling, 20(2):176–198, 2023.

101

[53] S. Ingimarson, L. Rebholz, and T. Iliescu. Full and reduced order model consistency of the nonlinear-
ity discretization in incompressible flows. Computer Methods in Applied Mechanics and Engineering,
401:115620, 2022.

[54] V. John. Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder.
International Journal for Numerical Methods in Fluids, 44:777–788, 2004.

[55] V. John, A. Linke, C. Merdon, M. Neilan, and L. G. Rebholz. On the divergence constraint in mixed
finite element methods for incompressible flows. SIAM Rev., 59(3):492–544, 2017.

[56] B. Koc, S. Rubino, M. Schneier, J. Singler, and T. Iliescu. On optimal pointwise in time error bounds
and difference quotients for the proper orthogonal decomposition. SIAM Journal on Numerical Analysis,
59(4):2163–2196, 2021.

[57] A.N. Kolmogorov. Dissipation of energy in isotropic turbulence. Dokl. Akad. Nauk. SSSR, 32:19–21,
1941.

[58] A.N. Kolmogorov. The local structure of turbulence in incompressible viscous fluids at very large
Reynolds numbers. Dokl. Akad. Nauk. SSSR, 30:299–303, 1941.

[59] A.N. Kolmogorov. On the degeneration of isotropic turbulence in an incompressible viscous fluids. Dokl.
Akad. Nauk. SSSR, 31:538–541, 1941.

[60] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for parabolic problems.
Numerische mathematik, 90(1):117–148, 2001.

[61] W. Layton. Introduction to the Numerical Analysis of Incompressible Viscous Flows. SIAM, 2008.

[62] W. Layton, C. Manica, M. Neda, and L. Rebholz. Numerical analysis and computational testing of
a high accuracy Leray-deconvolution model of turbulence. Numerical Methods for Partial Differential
Equations, 24(2):555–582, 2008.

[63] W. Layton and L. Rebholz. Approximate Deconvolution Models of Turbulence: Analysis, Phenomenology
and Numerical Analysis. Springer-Verlag, 2012.

[64] O. Lehmkuhl, G. Houzeaux, H. Owen, G. Chrysokentis, and I. Rodŕıguez. A low-dissipation finite
element scheme for scale resolving simulations of turbulent flows. Journal of Computational Physics,
390:51–65, 2019.

[65] R. Liska and B. Wendroff. Comparison of several difference schemes on 1D and 2D test problems for
the Euler equations. SIAM Journal on Scientific Computing, 25:995–1017, 2003.

[66] P.A. Lott, H.F. Walker, C.S. Woodward, and U.M. Yang. An accelerated Picard method for nonlinear
systems related to variably saturated flow. Advances in Water Resources, 38:92–101, 2012.

[67] V. Mai and M. Johansson. Anderson acceleration of proximal gradient methods. In International
Conference on Machine Learning, pages 6620–6629. PMLR, 2020.

[68] M. Olshanskii and L. Rebholz. Longer time accuracy for incompressible Navier-Stokes simulations with
the EMAC formulation. Computer Methods in Applied Mechanics and Engineering, 372:113369, 2020.

[69] A. L. Pavlov, G. W. V. Ovchinnikov, D. Derbyshev, D. Tsetserukou, and I. V. Oseledets. AA-ICP:
Iterative closest point with Anderson acceleration. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 3407–3412. IEEE, 2018.

[70] S. Pollock, L. G. Rebholz, and M. Xiao. Anderson-accelerated convergence of Picard iterations for
incompressible navier–stokes equations. SIAM Journal on Numerical Analysis, 57(2):615–637, 2019.

[71] S. Pope. Turbulent Flows. Cambridge University Press, 2000.

102

[72] F. A. Potra and H. Engler. A characterization of the behavior of the Anderson acceleration on linear
problems. linear Algebra and its Applications, 438(3):1002–1011, 2013.

[73] P. P. Pratapa, P. Suryanarayana, and J. E. Pask. Anderson acceleration of the Jacobi iterative method:
An efficient alternative to Krylov methods for large, sparse linear systems. Journal of Computational
Physics, 306:43–54, 2016.

[74] L. Rebholz. Conservation laws of turbulence models. Journal of Mathematical Analysis and Applications,
326(1):33–45, 2007.

[75] L. Rebholz, T.-Y. Kim, and Y.-L. Byon. On an accurate α model for coarse mesh turbulent channel
flow simulation. Applied Mathematical Modelling, 43:139–154, 2017.

[76] T. C. Rebollo and R. Lewandowski. Mathematical and numerical foundations of turbulence models and
applications. Springer, 2014.

[77] M. Schäfer and S. Turek. The benchmark problem ‘flow around a cylinder’ flow simulation with high per-
formance computers II. in E.H. Hirschel (Ed.), Notes on Numerical Fluid Mechanics, 52, Braunschweig,
Vieweg:547–566, 1996.

[78] P. Schroeder, V. John, P. Lederer, C. Lehrenfeld, G. Lube, and J. Schoberl. On reference solutions
and the sensitivity of the 2D Kelvin-Helmholtz instability problem. Computers and Mathematics with
Applications, 77(4):1010–1028, 2019.

[79] P. Schroeder, C. Lehrenfeld, A. Linke, and G. Lube. Towards computable flows and robust estimates
for inf-sup stable FEM applied to the time dependent incompressible Navier-Stokes equations. SeMA,
75:629–653, 2018.

[80] P. Schroeder and G. Lube. Pressure-robust analysis of divergence-free and conforming FEM for evolu-
tionary incompressible Navier-Stokes flows. Journal of Numerical Mathematics, 25(4):249–276, 2017.

[81] P. W. Schroeder and G. Lube. Divergence-free H (div)-fem for time-dependent incompressible flows with
applications to high Reynolds number vortex dynamics. Journal of Scientific Computing, 75(2):830–858,
2018.

[82] J. R. Singler. New POD error expressions, error bounds, and asymptotic results for reduced order
models of parabolic PDEs. SIAM Journal on Numerical Analysis, 52(2):852–876, 2014.

[83] J. S. Smagorinsky. General circulation experiments with the primitive equations. Mon. Weather Rev.,
91:99–164, 1963.

[84] A. Sommerfeld. Ein beitrag zur hydrodynamischen erklaerung der turbulenten fluessigkeitsbewegungen.
1909.

[85] H. Sterck and Y. He. On the asymptotic linear convergence speed of Anderson acceleration, Nesterov
acceleration, and nonlinear GMRES. SIAM Journal on Scientific Computing, 43(5):S21–S46, 2021.

[86] G. Stokes et al. On the effect of the internal friction of fluids on the motion of pendulums. 1851.

[87] S. Ray T. Tezduyar, S. Mittal and R. Shih. Incompressible flow computations with stabilized bilinear
and linear equal order interpolation velocity-pressure elements. Computer Methods in Applied Mechanics
and Engineering, 95:221–242, 1992.

[88] A. G. Taylor and A. C. Hindmarsh. User documentation for KINSOL, a nonlinear solver for sequential
and parallel computers. Rapport technique UCRL-ID-131185, Lawrence Livermore National Laboratory,
page 6, 1998.

[89] R. Temam. Sur la stabilité et la convergence de la méthode des pas fractionnaires. Annali di Matematica
pura ed applicata, 79(1):191–379, 1968.

[90] R. Temam. Navier-Stokes equations. Elsevier, North-Holland, 1991.

103

[91] A. Toth and C. T. Kelley. Convergence analysis for Anderson acceleration. SIAM Journal on Numerical
Analysis, 53(2):805–819, 2015.

[92] A. Toth, C.T. Kelley, S. R. Slattery, S. P. Hamilton, K. T. Clarno, and R.P.P. Pawlowski. Analysis
of Anderson acceleration on a simplified neutronics/thermal hydraulics system. Technical report, Oak
Ridge National Lab.(ORNL), Oak Ridge, TN (United States). Consortium for . . . , 2015.

[93] H. F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM Journal on Numerical
Analysis, 49(4):1715–1735, 2011.

[94] T. Wu. A study of convergence on the newton-homotopy continuation method. Applied Mathematics
and Computation, 168(2):1169–1174, 2005.

[95] X. Xie, D. Wells, Z. Wang, and T. Iliescu. Numerical analysis of the Leray reduced order model. Journal
of Computational and Applied Mathematics, 328:12–29, 2018.

[96] M. Yano. Discontinuous galerkin reduced basis empirical quadrature procedure for model reduction
of parametrized nonlinear conservation laws. Advances in Computational Mathematics, 45:2287–2320,
2019.

[97] J. Zhang, B. O’Donoghue, and S. Boyd. Globally convergent type-I Anderson acceleration for nonsmooth
fixed-point iterations. SIAM Journal on Optimization, 30(4):3170–3197, 2020.

[98] S. Zhang. A new family of stable mixed finite elements for the 3D Stokes equations. Mathematics of
Computation, 74:543–554, 2005.

104

