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ABSTRACT 

 

 

The field of transportation engineering has an opportunity to positively impact the 

medical community, specifically the clinicians who evaluate, train, and rehabilitate at-risk 

drivers. Driving Rehabilitation Specialists (DRSs) have an essential role in making roads 

safer for medically-at-risk drivers, their passengers, and other road users. DRSs conduct 

on-road driving evaluations, which are considered the gold standard to make fitness-to-

drive decisions due to their high face validity. Most DRSs use a fixed route, meaning the 

exact same route is used to evaluate each client. When a DRS develops a fixed route, that 

clinician identifies characteristics of the roadway they think are most important (e.g., 

signalized intersections, unprotected left-turns, protected left-turns). While transportation 

engineers are trained to know that the combination of static (e.g., roadway type, median, 

presence of lighting) and dynamic (e.g., traffic density, traffic speed, weather) conditions 

together define the complexity of a driving environment, transportation engineers have not 

previously developed materials specifically for DRSs. On the other hand, clinicians do not 

receive specialized training on these engineering topics and, as a result, do not have the 

skill set or tools to quantify and measure critical aspects of the roadway context in which 

the on-road evaluation is conducted.  

This dissertation sought to create a methodology to measure the contextual 

complexity of the driving environment considering the roadway’s static and dynamic 

characteristics with the long-term goal of providing DRSs the tools to design and evaluate 

routes using tools similar to those available to transportation engineers. This study utilized 

comprehensive open-source data collected by Waymo autonomous vehicles that allow for 
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the development of models to estimate the roadway environment’s complexity considering 

both static and dynamic traffic characteristics. An unsupervised machine learning 

technique using clustering algorithms was used to measure and classify the driving 

environment’s dynamic characteristics (e.g., vehicle, pedestrians, bicycles) into 

appropriate risk categories to develop a dynamic complexity model. A static complexity 

model was developed utilizing safety performance models and critical variables identified 

in the American Association of State Highway and Transportation Officials (AASHTO) 

Highway Safety Manual (HSM). The dynamic and static complexity models were then 

combined to build an absolute complexity model that provides a comprehensive and 

quantitative evaluation of the roadways. The knowledge and insights gained from the 

models developed to quantify static, dynamic, and absolute complexity is foundational 

work that would enable development of the tools for DRSs to evaluate their routes to ensure 

the most critical roadway components from the transportation engineering perspective are 

considered in evaluation of driving context. This process is anticipated to revolutionize the 

process in which on-road driving assessments are designed and evaluated by the clinicians 

who assess medically at-risk drivers.  
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CHAPTER ONE 

 

   INTRODUCTION 

 

 

This research study develops and assesses a methodology to assist Driving 

Rehabilitation Specialists (DRSs) to understand and estimate the complexity of routes used 

for on-road driving evaluations for medically-at-risk1 drivers considering both static2 (e.g., 

lane-width, functional class, parking, etc.) and dynamic3 (e.g., vehicle density, proximity,  

traffic speed, etc.) variables. A DRS is a professional who plans, develops, coordinates, 

and implements driving services for medically-at-risk individuals. These professionals are 

typically allied health personnel, driving instructors, and others who have specialized in 

this area and have received continuing education in this field. These professionals play an 

essential role in making roads safer for medically-at-risk drivers, their passengers, and 

other road users. A referral to a DRS for a driver with a medical risk can be made by 

physicians, eye doctors, occupational therapists, family members, the DMV, etc. Driver 

training for a medically-at-risk client is a service provided by a DRS and is often custom-

designed after a thorough driving evaluation. A driving assessment consists of clinical and 

behind-the-wheel assessments or on-road assessments. The on-road assessment evaluates 

safe driving capabilities by assigning various driving-related tasks at pre-specified 

 
1 A medically-at-risk driver is a person with a medical condition that may deter completion of daily tasks 

using traditional methods. Risk types include physical impairments, such as an amputation, cerebral palsy, 

Parkinson’s disease, a spinal cord injury, or a stroke; sensory impairments, such as poor vision or hearing 

loss/deafness; cognitive impairments, such as dementia, Autism Spectrum Disorder, or a traumatic brain 

injury; and psychiatric conditions, such as schizophrenia and or severe anxiety disorders.  
2 Static variables are conditions that remain constant. For example, lane width, speed limit, shoulder width, 

parking type, etc. are examples of static variables.  
3 Dynamic variables that are conditions that fluctuate. For example, traffic density, the proximity of vehicles, 

platoon speed, etc., are examples of dynamic variables.  
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locations on a driving route. DRS investigate their client's driving capabilities by 

monitoring performance on each driving-related task (i.e., maintaining safe following 

distance, negotiating lane changes, making left turns at unsignalized and signalized 

intersections, and managing speed) to determine if an individual is fit to drive.  

From an engineering perspective, the ability to demonstrate safe driving 

capabilities to a sufficient degree on a given driving task depends upon the complexity of 

the driving context. However, no single tool, material, or resource exists that will aid DRSs 

in determining the roadway context in which the driving task is assessed. Measuring the 

driving context's complexity may help DRSs from different geographic locations design 

comparable standardized routes for on-road evaluation. Using the methodology presented 

in this research, DRSs will be able to empirically determine the driving complexity of a 

road based upon the following factors that define the roadway environment: 

●   Static characteristics of the roadway are based on roadway geometry (i.e., lane 

width, shoulder width, and the number of lanes) as well as contextual factors (i.e., 

roadside hazards, level of business development, type of area (rural or urban), etc.) 

●  Dynamic characteristics of the roadway reflect the mix of traffic (i.e., pedestrians, 

bicycles, and vehicles) and the traffic density, proximity, and speed. 

The static contextual complexity metrics were derived from the contents of the 

American Association of State Highway and Transportation Officials (AASHTO) 

Highway Safety Manual (National Research Council et al., 2010), which transportation 

https://www.zotero.org/google-docs/?xVb68q
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engineers predominantly use to assess the safety of the roadway environment. Contributory 

effects of each roadway element to the overall safety were evaluated using their respective 

crash modification factors (CMFs). This material was condensed and tailored to the needs 

of DRSs. The dynamic contextual complexity was estimated using unsupervised machine 

learning techniques to categorize driving scenes by varying levels of complexity. The 

proposed Contextual Risk Factor (CCF) model combines the driving environment's static 

and dynamic variables and classifies the complexity into a graduated risk scale that ranges 

from high-risk to low-risk. Using the CCF model, DRSs will be able to assign a numerical 

rating to a road segment or intersection and categorize it appropriately depending upon the 

relevant conditions of the road that define it. Such a capability will help establish common 

standards for DRSs to design fixed routes of comparable complexity across various 

locations in the United States. While transferability of the model beyond the U.S. is 

possible, the Highway Safety Manual is specific to U.S. conditions and may not capture 

the variety and safety of roadway design elements in other countries.  

Background 

In the United States, the screenings of medically at-risk drivers are conducted by Driving 

Rehabilitation Specialists (DRSs). DRSs are often occupational therapists with a 

background in health care or driver education who have completed additional training and 

education in driver rehabilitation. DRSs assess a broad spectrum of clients, ranging from 

young, novice drivers to older, experienced drivers suffering from functional limitations 

that may affect their ability to drive safely. Typically, evaluations of medically at-risk 
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clients include both an in-clinic assessment (also referred to as pre-road or off-road 

evaluation) and an on-road assessment (Di Stefano & Macdonald, 2010). The in-clinic 

evaluation includes a clinical assessment of an individual's visual, perceptual, cognitive, 

and physical skills necessary for driving.  

The DRSs conduct on-road assessment on either a standard, fixed route or a non-

standard, variable route. A standard, fixed-route is a pre-planned route with pre-specified 

instructions to the driver and is designed by DRSs to assess a driver's capabilities at pre-

specified locations on the route. The route planning and design process is currently carried 

out to incorporate various roadway features. Non-standard, variable routes are local routes 

used by DRSs who travel to the client's location or can be used for clients who drive in a 

limited capacity or environment. Following the on-road evaluation, if the DRS determines 

that the person cannot drive safely, further training to develop skill and competency is 

offered, or the person is reported to the state Department of Motor Vehicles  (DMV) for 

revocation of the driving license (Janke & Eberhard, 1998).  

Motivation 

The on-road assessment is considered the gold standard due to its high face validity 

and widespread use by practicing DRSs (Shechtman, O et al., 2010). DRSs assess their 

clients' specific driving skills (i.e., visual scanning, gap acceptance, driver planning of the 

travel route to a destination, etc.) by assigning various driving tasks and activities at critical 

locations on a fixed or variable route designed by the DRS.  

https://www.zotero.org/google-docs/?1kkpxN
https://www.zotero.org/google-docs/?K0nLuK
https://www.zotero.org/google-docs/?ILtIHh
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In a study conducted by Di Stefano & Macdonald (2010), 55 clinicians practicing 

driving rehabilitation were interviewed. Among clinicians interviewed, there was a high 

level of agreement (84%) on the need to improve the reliability and validity of the on-road 

procedures. Most participants indicated that the on-road evaluation should include a 

standard set of driving-related tasks. However, the difficulty of these driving-related tasks 

is influenced by the roadway environment's characteristics4. According to the authors, the 

extent to which standardization can be achieved is limited by the varying roadway 

conditions where assessments are conducted (Di Stefano & Macdonald, 2010). Dickerson 

(2013) surveyed 227 North American DRSs to determine the various assessment tools used 

for in-clinic and on-road assessments. The study found that at least 40 different in-clinic 

assessments were listed as the top five choices for making fitness-to-drive decisions, thus 

illustrating the diversity of assessment techniques across different clinics. The on-road 

assessment was considered by far to be the primary component in decision-making 

(Dickerson, 2013). Another study by Di Stefano & Macdonald, (2012), involving 

interviews with 22 DRSs, revealed that the outcome of the on-road test is influenced by the 

different traffic levels and associated road and environmental conditions. The ability of a 

driver to display adequate driving skills for an on-road evaluation depends upon the 

complexity of the driving environment (Pellerito, 2006; Schultheis et al., 2001). This, in 

turn, has an impact on the validity of any on-road assessment process, whether for novice 

or medically at-risk drivers. The need for all road tests to be sufficiently consistent and 

 
4 Roadway environment is the current condition of the road which includes the physical conditions (i.e., 

single lane/multi-lane road, lane width, shoulder width, speed limit, intersection type) and variable 

conditions of traffic (i.e., low density/high density traffic, pedestrian traffic). 

https://www.zotero.org/google-docs/?iZddxV
https://www.zotero.org/google-docs/?6cYmzi
https://www.zotero.org/google-docs/?43GlZ6
https://www.zotero.org/google-docs/?43GlZ6
https://www.zotero.org/google-docs/?6EsfK6
https://www.zotero.org/google-docs/?9WzjSh
https://www.zotero.org/google-docs/?MyaXvw
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challenging was determined by DRSs as a primary concern and is widely acknowledged in 

the literature (Di Stefano & Macdonald, 2012; Kay et al., 2008). 

The roadway environment in which the driving assessment is conducted influences an 

individual's driving behavior. Specifically, the roadway environment impacts both the 

driver’s perceptual and cognitive resources as well as their ability to coordinate motor 

responses under realistic time pressures. This is important because these aspects of driver 

competency are critical to road safety (Di Stefano & Macdonald, 2012). 

Research studies have also revealed inconsistencies in the inclusion of desirable 

roadway test features in DRSs’ routes (Stefano & Macdonald, 2006). The Victorian 

Occupational Therapy Professional Group and the Licensing Authority in Australia have 

established guidelines related to on and off-road driving assessments. The guidelines list 

compulsory and desirable features that need to be included while planning a fixed route. 

Australian researchers (Di Stefano & Macdonald, 2012) surveyed occupational therapy 

driver assessors (similar to DRS in the USA) to determine the list of compulsory route 

features that DRSs should use when designing a fixed route. Table 1.1 shows the list of 

mandatory route features and the number of DRSs practicing in urban and rural areas who 

mentioned each feature. 

 

 

 

https://www.zotero.org/google-docs/?5AL91O
https://www.zotero.org/google-docs/?zY75uA
https://www.zotero.org/google-docs/?M5rQUO
https://www.zotero.org/google-docs/?Cu5raw
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Table 1.1. Frequency of DRSs Using Compulsory Route Features (Source: Di Stefano & 

Macdonald, 2012).  

 
 

The route features specified in guidelines as 

compulsory 

Percent of 

urban DRSs 

(n=15) 

Percent of 

regional/rural 

DRSs (n=7) 

Drive along following the road with the following features: 

Single lane road with centerline 100 100 

Multi-laned road 100 100 

Crossing (pedestrian/children/railway) 93.33 100 

Strip shopping center 93.33 85.71 

Single lane road with no center line 86.67 71.43 

Negotiate intersection (straight through or turn) in the following context: 

Intersection with parked cars occluding the view 100 100 

Intersection controlled with a yield sign 100 100 

Intersection controlled with a stop sign 100 100 

T-intersection 100 100 

Roundabout 100 100 

Intersection controlled by traffic lights 100 85.71 

Perform other driving tasks or maneuvers: 

Quiet drive through low-density area/familiarization 

opportunity 100 100 

Lane change to the left 100 100 

Lane change to the right 100 100 

Parking: 90 deg/angle, or reverse 100 100 

Vary required vehicle speed 100 100 

Lane change when instructed, and as required, e.g., to go 

around parked cars 93.33 85.71 

Locate a street sign 33.33 28.57 

Types of environmental conditions: 

Low-density traffic 100 100 

https://www.zotero.org/google-docs/?LC4y0L
https://www.zotero.org/google-docs/?LC4y0L
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High-density traffic 100 100 

Road with visual distractions, e.g. traffic, pedestrians, 

scenery 100 100 

Distraction, e.g. intentional general discussion/answering 

questions in the vehicle to create a distraction 73.33 100 

 

  

The authors found high compliance with compulsory route features by DRSs 

practicing in rural and urban areas yet saw very low compliance with desirable features in 

their routes. About 48% of the desirable features were absent from the standard routes used. 

Table 1.2 shows the frequency of DRSs using desirable features when designing fixed 

routes, for rural and urban DRSs. 

 

Table 1.2. Frequency of DRSs Using Desirable Route Features (Source: Di Stefano & 

Macdonald, 2012) 

 

The route features specified in guidelines 

as 'desirable' 

Percent of 

urban DRSs 

(n=15) 

Percent of 

regional/rural 

DRSs (n=7) 

Speed zone changes 100 100 

Merging/slip lane 86.67 100 

Road marking information, e.g. exit arrows 73.33 85.71 

Speed humps 86.67 57.14 

Curved/highly cambered road 80 57.14 

One way street 53.33 85.71 

Freeway/highway (70+km/hour speed limit) 46.67 42.86 

100 km/hour speed limit 46.67 42.86 

Trams 46.67 14.29 

No entry street 13.33 57.14 

https://usc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fclemson-my.sharepoint.com%2Fpersonal%2Fvbendig_clemson_edu%2F_vti_bin%2Fwopi.ashx%2Ffiles%2Fc96a2b96524f4b0dbd7544e0844cbc16&wdenableroaming=1&mscc=0&wdodb=1&hid=B3C6D49F-90AF-C000-38AD-06B9C95295E1&wdorigin=Sharing&jsapi=1&jsapiver=v1&newsession=1&corrid=c6ecf774-6f80-4f1a-8843-26df1df6777e&usid=c6ecf774-6f80-4f1a-8843-26df1df6777e&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Medium&ctp=LeastProtected#_ENREF_4
https://usc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fclemson-my.sharepoint.com%2Fpersonal%2Fvbendig_clemson_edu%2F_vti_bin%2Fwopi.ashx%2Ffiles%2Fc96a2b96524f4b0dbd7544e0844cbc16&wdenableroaming=1&mscc=0&wdodb=1&hid=B3C6D49F-90AF-C000-38AD-06B9C95295E1&wdorigin=Sharing&jsapi=1&jsapiver=v1&newsession=1&corrid=c6ecf774-6f80-4f1a-8843-26df1df6777e&usid=c6ecf774-6f80-4f1a-8843-26df1df6777e&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Medium&ctp=LeastProtected#_ENREF_4
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Road dips (blind vertical curves) 20 42.86 

Narrow bridges (one car at a time) 6.67 14.29 

Unsealed roads/Gravel (specified for rural 

areas) 0 0 

Negotiate intersection (straight through or turn) in the following contexts: 

Traffic lights with a turning arrow 100 85.71 

Non-uniform intersection 86.67 57.14 

Multi-laned roundabout 66.67 42.86 

Perform other driving tasks or maneuvers: 

Locate and negotiate a car park 86.67 57.14 

Turning onto a high-speed road 80 57.14 

The navigational task, return to entry point 

form within a shopping center car park 60 57.14 

U turn 46.67 42.86 

Simulated emergency braking 13.33 28.57 

Overtaking 13.33 28.57 

Types of environmental conditions: 

Underground car park 20 14.29 

 

 

Some of the route features mentioned in Table 1.2 are encountered routinely by 

drivers during normal driving. For example, it is typical for a driver to confront a road with 

a 60 mph (100 kmph) speed limit in ordinary driving activity. Yet, only 45% of DRSs 

reported incorporating roads with higher speeds in their route. This is important because 

failing to include these features in fixed routes may decrease the utility of the assessment, 

weakening the authenticity of the evaluation.          



 

10 

 

Designing a fixed route using a checklist provides a mechanism for DRSs to assess 

specific driving skills in the presence of crucial roadway features. However, the difficulty 

of operating through a given road stretch is not governed by individual roadway features; 

instead, a myriad of road factors, traffic, and surroundings, collectively influence the 

complexity of the driving environment. For example, consider two roadway scenarios: 

scenario A (see Figure 1.1) and scenario B (see Figure 1.2). 

 

  

  

Figure 1.1. Scenario A, a road with low traffic, a median divider, and no driveways.   
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Figure 1.2. Scenario B, a road with a high traffic volume, left-turn traffic, and driveways.   

The amount of information that needs to be processed for a driver to navigate safely on 

both of these roads is very different. In scenario A the driver does not need to worry about 

turning vehicles or vehicles coming out of a driveway. There is a median divider separating 

the traffic in opposite directions. The level of traffic is low, so the cars are distributed far 

from each other on the road, and there are no vulnerable road users (i.e., no pedestrians or 

bicyclists) present. However, in scenario B, the driver needs to keep track of other vehicles 

in the left turn lanes that are waiting to make turns. In addition, the driver needs to observe 

if there are any vehicles in the driveways waiting to make turns. The driver must keep track 

of the cars, and judge the course of action from surrounding information. The traffic level 

is high, meaning the vehicles are closely spaced. In addition, the area is busy with many 

commercial establishments. The driver must discern crucial information amidst all the 

clutter to make driving-related decisions.  
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There is a significant difference in the cognitive load on the driver in both scenarios. 

The first scenario requires a lower cognitive load on the driver when compared to the 

second roadway scenario. Thus, the amount and type of information that needs to be 

processed are partially determined by the characteristics of the roadway environment. As 

such, DRSs must understand the roadway context in which the on-road assessment is 

conducted. Diverse elements of the roadway context collectively influence the range of 

skills, knowledge, and functional abilities that need to be used. However, guidance on 

considering the interdependencies of roadway features and their influence on driving 

behavior have not been identified in extensive literature searches. 

1.2  Problem Statement  

Driving Rehabilitation Specialists in the United States use fixed and/or variable routes to 

evaluate the driving competencies of medically at-risk drivers; however, DRSs may be 

unaware of the circumstances that form the roadway environment for a driving evaluation. 

As mentioned previously, the complexity of the driving environment is governed by the 

roadway geometry, traffic volumes, and the roadside environment. 

         While Transportation Engineers know that the combination of roadway geometry, 

operations, and associated environmental conditions together define the complexity of a 

driving environment, DRSs are not trained on these engineering topics and as a result, do 

not have the skill set or tools to quantify and measure critical aspects of the roadway context 

in which the on-road evaluation is conducted. Several researchers have emphasized the 

importance of establishing guidelines and standards in designing fixed routes to enhance 

the consistency and validity of on-road driving evaluation procedures (Di Stefano & 
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Macdonald, 2010; Di Stefano & Macdonald, 2012; Korner-Bitensky, Bitensky, Sofer, 

Man-Son-Hing, & Gelinas, 2006); however, there are no materials or guidelines currently 

available to help DRSs design routes of comparable complexities across different locations 

in the United States. 

When one’s driver's license status is impacted by the outcomes of the in-clinic and on-road 

assessments, ensuring the on-road evaluation is reliable and valid is essential for medically 

at-risk drivers. Thus, it is vital to provide DRSs with the knowledge, skills, and ability to 

design on-road routes to be consistent in driving complexity (i.e., geometric, operational, 

and environmental features).  

1.3 Goals and Objectives 

This research aims to establish guidelines for developing common standards to design 

fixed routes for on-road evaluations for at-risk drivers. The guidance is based on a 

thorough understanding of the driving context -- the circumstances that form the setting 

for a driving evaluation (i.e., operational, geometric, and environmental) and in 

quantitative terms that can be fully understood and assessed by a non-technical DRSs.  

The research objectives to support this goal are as follows: 

1. To develop a dynamic complexity model to measure dynamic complexity and 

categorize each scene appropriately from high to low risk.  

2. To develop a static risk model to measure static risk and categorize each scene 

appropriately from high to low risk.  

https://usc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fclemson-my.sharepoint.com%2Fpersonal%2Fvbendig_clemson_edu%2F_vti_bin%2Fwopi.ashx%2Ffiles%2Fc96a2b96524f4b0dbd7544e0844cbc16&wdenableroaming=1&mscc=0&wdodb=1&hid=B3C6D49F-90AF-C000-38AD-06B9C95295E1&wdorigin=Sharing&jsapi=1&jsapiver=v1&newsession=1&corrid=c6ecf774-6f80-4f1a-8843-26df1df6777e&usid=c6ecf774-6f80-4f1a-8843-26df1df6777e&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Medium&ctp=LeastProtected#_ENREF_4
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3. To build an absolute contextual complexity model combining results from 

dynamic complexity and static risk models to measure and categorize total 

complexity of the scene from high to low risk.   

4. Develop metrics to measure and classify dynamic complexity, static risk, and 

absolute complexity of the drivng environment.  

 

1.3  Expected Research Contributions  

The outcome of this research is expected to make the following contributions: 

1. Develop a methodology to measure the dynamic and static risk of the driving 

environment. 

2. Develop static risk and dynamic complexity metrics along with a rating system 

for DRSs to measure and score the total contextual complexity of the entire route. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

 

Approximately 60 million people in the United States have a medical condition that affects 

their ability to drive safely (Warren & Smalley, 2014). With 10,000 baby boomers turning 

65 years of age every day (Center for Disease Control and Prevention, 2020), there is an 

ever-increasing need for healthcare professionals, primarily occupational therapists, to 

screen and comprehensively evaluate individuals who are potentially at-risk drivers (Di 

Stefano & Macdonald, 2003; McGwin et al., 2000). Due to this surge in the need to assess, 

evaluate and rehabilitate medically at-risk drivers, there is an increased onus on the 

specialists who address driving to have research-based best practices to enhance the 

validity and reliability of on-road driving evaluations. 

Aside from occupational therapy, DRSs may also have backgrounds in kinesiotherapy, 

driver education, or other related fields. A DRS plans, develops, coordinates, and 

implements driving services for individuals with disabilities (Association for Driver 

Rehabilitation Specialists, 2022). Additionally, a DRS evaluates their client's driving skills, 

recommends rehabilitation as needed, and suggests vehicle and route modifications (e.g., 

avoiding driving at night) to enable a person to resume or continue driving or in some 

instances, recommends the individual no longer drives. Many DRSs gain experience, 

complete additional training and take a national certification exam offered by the 

Association for Driving Rehabilitation Specialists (ADED) to become Certified Driving 

https://www.zotero.org/google-docs/?uxFgzl
https://www.zotero.org/google-docs/?Y5UM30
https://www.zotero.org/google-docs/?broken=HWECWy
https://www.zotero.org/google-docs/?broken=HWECWy
https://www.zotero.org/google-docs/?broken=HWECWy
https://www.zotero.org/google-docs/?broken=lEbBsA
https://www.zotero.org/google-docs/?broken=lEbBsA
https://www.zotero.org/google-docs/?broken=lEbBsA
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Rehabilitation Specialists (CDRS) (Association for Driver Rehabilitation Specialists, 

2022). 

The two most common reasons why DRSs evaluate driving performance are to determine 

whether the client meets acceptable competency requirements (e.g., whether he or she 

would be likely to pass a standard license test at the state Department of Motor Vehicles) 

and to identify impairment-related deficiencies in driving performance to develop a 

remediation program (Stefano & Macdonald, 2006). A DRS’s driving assessment 

objectives are somewhat different from those of entry-level license testing, although both 

have a paramount concern with road safety. The majority of DRSs’ clients are not novice 

drivers. Most DRSs’ clients are experienced drivers with visual, physical, and/or cognitive 

impairments that may negatively impact their ability to drive safely, such as dementia, 

stroke, arthritis, low vision, limb amputations, neuromuscular disorders, spinal cord 

injuries, cardiovascular diseases, and other causes of functional deficits (Association for 

Driver Rehabilitation Specialists, 2019).  One of the primary aims of DRSs is to identify 

and assess how an individual's health, disability, or age-related impairments impact their 

ability to drive safely (Ashman et al., 1994). In addition to these impairment-related 

assessment topics, there are also safety-related requirements to determine whether the 

driver demonstrates sufficient competence in executing various driving maneuvers in a 

wide range of road traffic conditions. This outcome justifies a driver's ability to obtain a 

full or a restricted driver's license (Di Stefano & Macdonald, 2012; Shechtman, et al., 2010; 

Stutts & Wilkins, 2003).  

https://www.zotero.org/google-docs/?broken=lEbBsA
https://www.zotero.org/google-docs/?broken=lEbBsA
https://www.zotero.org/google-docs/?broken=uvcW5C
https://www.zotero.org/google-docs/?broken=uvcW5C
https://www.zotero.org/google-docs/?bQJjB6
https://www.zotero.org/google-docs/?bQJjB6
https://www.zotero.org/google-docs/?broken=1PwtMZ
https://www.zotero.org/google-docs/?broken=1PwtMZ
https://www.zotero.org/google-docs/?broken=UUM2FF
https://www.zotero.org/google-docs/?broken=UUM2FF
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The ability to drive safely changes by the driving environment’s contextual complexity. 

The driving context consists of static components (i.e., roadway type, speed limit, road 

width, presence of median, etc.) and fast-changing dynamic components such as moving 

objects (i.e., vehicles, pedestrians, bicyclists, etc.). Weather and other externalities also 

influence the contextual risk of the driving environment. Researchers define all the visual 

cues and information that a driver must process to operate a vehicle as visual demand. 

Visual demand encompasses both the static and dynamic content (Dewar & Olson, 2002). 

Human factors experts generally believe that crashes increase when the visual demand rises 

(Dewar & Olson, 2002). Research studies documented more crashes on roads with heavy 

traffic or complicated roadway geometric configurations, both of which pertain to dynamic 

and static constituents of the driving ecosystem (Shinar et al., 1977). DRSs have 

inexplicably considered the complexity of the driving environment in the design of their 

on-road evaluation route based upon their experience and knowledge of the geographic 

region.    

The literature review summarizes what is known about planning practices and 

challenges facing the design of fixed routes for on-road evaluations. Further discussion is 

divided into seven sections. Sections 2.1 and 2.2 discuss the two main components of the 

assessment procedure used by DRSs (i.e., the in-clinic and on-road evaluation) to 

determine a client’s ability to drive safely. Section 2.3 discusses current route planning and 

design practices used in the field of driving rehabilitation. Section 2.4 presents the issues 

related to the reliability and validity of the current route design practices and discusses the 

importance of considering the roadway context. Section 2.5 describes attributes of the 

https://www.zotero.org/google-docs/?8I5jky
https://www.zotero.org/google-docs/?yTChTG
https://www.zotero.org/google-docs/?ZxLxjT
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roadway environment and its influence on the driving context and driver behavior. Section 

2.6 discusses the visual demand and cognitive load research as well as its impact on driving 

complexity. Section 2.7 summarizes the literature about route planning and design 

practices of DRSs’ routes and highlights the importance of DRSs having the ability to 

empirically determine the complexity of roadway environment features in which on-road 

driving tasks are assessed. 

  

2.1 In-Clinic Evaluation  

The in-clinic evaluation assesses a client’s fundamental performance areas that are 

considered crucial to driving a vehicle. The word “clinical” refers to the frequent practice 

of administering tests or assessments in a clinical setting. The clinical evaluation serves a 

variety of purposes, including helping DRSs to   

● determine the client’s ability to meet state-mandated criteria (e.g., visual acuity) 

by the driver licensing agency for maintaining and securing a driver’s license;  

● identify a client’s strengths and weaknesses related to driving activities (e.g., 

transferring into the vehicle and stowing a mobility aid) and motor skills;  

● identify the need for initiating referrals to other specialists (e.g., 

neuropsychologists, low-vision specialists, mobility and seating specialists) ; 

● determine the client’s need for adaptive driving equipment; and 

● identify compensatory strategies for driving or alternatives to driving that enable 

community mobility (Radloff, 2014). 

https://www.zotero.org/google-docs/?ObmBwd
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The predictive value of the in-clinic evaluation is still an ongoing effort to develop 

evaluation protocols that are both reliable and valid. There is no single consensus among 

DRSs as to which clinical test can most effectively predict driver readiness; however, there 

are numerous assessments used by DRSs .  

 

  

 

Dickerson (2013) surveyed 184 DRSs in the United States to determine which tools 

they valued. Participants were asked to list their top five assessment tools. The study results 

indicated that 40 different assessments comprised the top five for making fitness-to-drive 

decisions, illustrating the discord in tools clinicians use. When the author compared the 

results with a survey done in 2006, the data suggested that the tools used in driver 

rehabilitation practice in 2013 had not changed significantly.     

Another study by Korner-Bitensky et al. (2006) found inconsistency in the duration 

of the in-clinic assessment. Out of 114 DRSs, 37% indicated the average in-clinic 

evaluation length between 30 to 60 minutes, and 61% reported greater than 60 minutes. 

When asked about typical in-clinic assessments, 85% of DRSs said performing a visual 

evaluation, 86% assessed visual perception, 84% assessed motor functioning, and 84% 

assessed cognition (Korner-Bitensky et al., 2006). 

Although there are inconsistencies in the selection of tests, the data collected during 

the in-clinic evaluations allow DRSs to determine if a client possesses sufficient skill for 

the on-road assessment. This research will focus only on the on-road assessment.  

  

https://www.zotero.org/google-docs/?WuZpTe
https://www.zotero.org/google-docs/?QBd5q7
https://www.zotero.org/google-docs/?h4AS95
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2.2 On-Road Assessment 

Typically, on-road evaluations are conducted after the in-clinic evaluation. Although 

the number and types of clinical assessments vary, they can be limited in their capacity to 

predict an individual’s complex multidimensional on-road driving abilities (Janke & 

Eberhard, 1998). Relatively simple driving-related tasks, such as starting the car and 

entering a traffic stream in a quiet traffic environment, require coordination of perceptual, 

cognitive, and motor skills. Multiple skills are needed to adequately perform tasks such as 

problem-solving, reasoning, judgment, planning, perceptual-cognitive, and motor 

operations (Cushman, 1996). Due to its comprehensive nature, the on-road evaluation is 

seen as the “gold standard” evaluation of driving ability (Di Stefano & Lovell, 2006; Di 

Stefano & Macdonald, 2010, 2012; Justiss et al., 2006; Kay et al., 2008; Siegrist, 1999).       

An on-road driving evaluation is conducted using a specialized vehicle that includes a 

passenger brake and extra mirrors, as well as other necessary adaptations that may be 

needed for a given client’s physical accommodations (i.e., hand controls, left foot gas 

pedal, pedal extensions, turn signal extensions, key extensions, steering column extensions, 

etc.) An on-road evaluation includes assessing the client’s ingress/egress; mobility aid 

management (e.g., ability to transport and store a walker); vehicle control; adherence to 

traffic rules and regulations; environmental awareness and interpretation; and consistent 

use of compensatory strategies for any visual, cognitive, physical and/or behavioral 

impairments (Stefano & Macdonald, 2006). Clients are typically instructed to drive on a 

pre-determined standardized route and asked to perform different driving-related tasks 

https://www.zotero.org/google-docs/?hjkMyd
https://www.zotero.org/google-docs/?hjkMyd
https://www.zotero.org/google-docs/?fFUR9e
https://www.zotero.org/google-docs/?BlgVNG
https://www.zotero.org/google-docs/?BlgVNG
https://www.zotero.org/google-docs/?VGsYM3
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(e.g., left and right turns at the intersections, lane changes, etc.) to a certain level of 

performance to demonstrate competency. 

 Research has confirmed that the on-road assessment has high face validity in 

determining safe driving capabilities (Shechtman, O et al., 2010). Many practicing DRSs 

in the United States routinely use established routes to evaluate their client's driving 

performance. Rather than a variable course, a fixed route allows DRSs to make 

comparisons across clients since the same route is used for all clients.  

  

2.3 Route Planning and Design Practice 

The premise of the on-road evaluation for medically at-risk drivers is similar to the 

concept of the license test for novice drivers (Stav, 2004). However, the test for medically 

at-risk drivers is different in its nature and approach than the entry-level license test due to 

the differences in evaluation goals and driver characteristics. Siegrist (1999) explains that 

entry-level tests are used with driving candidates for three main reasons:  

● maintain safety standards by ensuring that the driver can demonstrate specific 

competencies consistently;  

● apply a procedure to all applicants that are fair and efficient, and 

● influence the nature of the practice and formal training undertaken by the 

applicant.  

Consistent with the aims described above regarding the initial license testing, only a 

“minimum set of competencies is required. The novice car driver may not be required to 

perform at the same level as an experienced driver” (Siegrist, 1999). Therefore, the 

https://www.zotero.org/google-docs/?Qr2hlB
https://www.zotero.org/google-docs/?Qr2hlB
https://www.zotero.org/google-docs/?Qr2hlB
https://www.zotero.org/google-docs/?RTQc8M
https://www.zotero.org/google-docs/?EidcYD
https://www.zotero.org/google-docs/?w7YP8N
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modified structure of the basic skills assessed with medically at-risk drivers is essential and 

substantiated by researchers (Dobbs et al., 1998; Janke & Eberhard, 1998).  

One basic framework for an on-road test is the Washington University Road Test 

(WURT) (Hunt et al., 1997). The WURT is a performance-based assessment route 

developed from a study to assess older drivers with dementia, specifically Alzheimer’s.  

The on-road test was designed to distribute performance difficulty evenly across the 

assessment. It consisted of a six-mile (9.6 km) course with urban two-, four- and six-lane 

streets that provided various road and traffic conditions. These conditions were selected to 

enable the detection of driving behaviors associated with crashes in the elderly (Hunt et al., 

1997). A commercial driving instructor and a researcher accompanied each participant 

during the on-road evaluation.  

The introductory element of the WURT includes DRS (seated in the front passenger 

seat), leading the participant to a large empty area such as a parking lot for familiarization 

with the test vehicle (a standard model automatic transmission with a dual brake pedal for 

the driving instructor). The open space provides a non-demanding environment for the 

client and a chance for the evaluator to assess the client’s basic vehicle operation and 

positioning skills before progressing to a more risky, open context. This initial 

familiarization period in a parking lot is a crucial component of WURT since the client is 

completing the evaluation in a different vehicle from their own and who are often highly 

anxious.   

Then, the WURT proceeds from a parking lot to a quiet street with little traffic (e.g., a 

residential area with a low-speed limit). The test progressively gets more challenging for 

https://www.zotero.org/google-docs/?z8bhPc
https://www.zotero.org/google-docs/?ZCggtw
https://www.zotero.org/google-docs/?ss7sEJ
https://www.zotero.org/google-docs/?ss7sEJ
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the driver with an increase in the difficulty of the route’s environment, including higher 

speeds, more traffic and other types of road users, and more complex maneuvers. At the 

end of the test, one of the three global safety ratings is assigned: 

● safe behavior, unlikely to result in a crash; 

● marginal/small to moderate risk of a crash; or 

● unsafe/substantial risk of a collision (Hunt et al., 1997).  

 

Using the graduated difficulty framework of WURT allows the DRS to do the 

following:  

● perform preliminary checks and prerequisite tasks, such as adjusting seating, 

mirrors, and any adaptive devices;  

● determine the adequacy of basic vehicle handling skills in a safe environment; 

● assess whether the driver can follow instructions; and 

● develop some rapport with the driver (Messinger-Rapport, 2002).  

  

Using the framework of the WURT, the next step in the route planning and design process 

incorporated frequencies of some roadway features and driving tasks/activities. The Center 

for Biomedical Engineering Rehabilitation Science at Louisiana Tech University provides 

one such checklist, as shown in Table 2.1 (Center for Biomedical Engineer Rehabilitation 

Science, 2016). 

  

 

https://www.zotero.org/google-docs/?ZCggtw
https://www.zotero.org/google-docs/?LmqDlz
https://www.zotero.org/google-docs/?EuorDy
https://www.zotero.org/google-docs/?EuorDy
https://www.zotero.org/google-docs/?EuorDy
https://www.zotero.org/google-docs/?EuorDy
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Table 2.1. Route Planning Checklist (Center for Biomedical Engineer Rehabilitation 

Science, 2016) 

  

ACTIVITY CONDITIONS FREQUENCY   

  

2-lane - 2-lane (uncontrolled low 

traffic) Two each   

  

2-lane - 2-lane (uncontrolled high 

traffic) Two each   

  

2-lane - 4-lane (Stop sign low 

traffic) Two each   

  

4-lane - 4-lane (Stop sign high 

traffic) Two each   

Turns: Left 

& Traffic light (low traffic) Two each   

right 

Traffic light w/ turn on red (low 

traffic) One each   

  

Traffic light w/turn on red (high 

traffic) One each   

  

Traffic light w/turn on red 

(restricted view) One   

  T-intersection (uncontrolled) One   

  T-intersection (stop-controlled) One   

Right turns 

Yield sign (with turn lane) One   

Yield sign (without turn lane) One 

  

    

Lane 

changes       

Left and 

right 

Multiple lane streets Two each   

Left Two each 

  

turn lanes 

  

Right One each 

  

    

  Center Two each   

  Uphill-along curb One   

Parking 

Downhill-along curb One   

Parallel (between vehicles) One 

  

    

  

Parking log-angle or 

perpendicular One   

https://www.zotero.org/google-docs/?EuorDy
https://www.zotero.org/google-docs/?EuorDy
https://www.zotero.org/google-docs/?EuorDy
https://www.zotero.org/google-docs/?EuorDy
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Entering or 

merging Limited access roadway One   

Exiting or 

diverging Limited access roadway One   

  School zone One   

  Railroad crossing (controlled) One   

  Railroad crossing (uncontrolled) One   

  Bridge One   

Speed 

control Increase 10 mph One   

  Increase 20 mph One   

  Decrease 10 mph One   

  Decrease 20 mph One   

  

Deceleration-exiting limited 

access One   

Backing 

Straight line One   

Right turn One 

  

    

  Passing parked vehicles – right Two   

Vehicle 

position 

Passing parked vehicles – left Two   

Left lane ends One 

  

    

  Right lane ends One   

Vehicle 

control Stop sign Two   
 

The route planning checklist is shown in  

Table 2.1 includes driving-related activities (i.e., making a left or right turn) that 

need to be included in a particular roadway condition (i.e., at a traffic light with no right 

turn on red). The items provided in the checklist are included in the fixed route to assess 

specific driving skills such as visual scanning, gap acceptance, driver planning of the travel 

route, etc., within each given driving context. A traffic light with no right turn on red is a 

static contextual variable that affects the driving complexity. Furthermore, different traffic 
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levels considered by DRSs in route planning to make left or right turns address recognizing 

dynamic contextual elements.  

Another catalog is provided by the Association for Driver Rehabilitation Specialists 

(ADED), a non-profit organization that provides education and support for professionals 

working in driving rehabilitation (Pellerito, 2006). The ADED education committee offers 

coursework that provides guidelines and instruction on designing a standard fixed route. 

According to the course materials, the DRSs should consider all types of roads in their 

surrounding region to include vast possibilities of different traffic scenarios while 

developing their standard fixed route. In addition, the ADED guidelines recommend the 

extent of the course should not exceed approximately 25 square miles. However, there can 

be an exception for a DRS practicing in a rural area. The course material also provides the 

following checklist of traffic densities and essential components while designing the fixed 

route (Table 2.2 and Table 2.3).   

  

Table 2.2. Description of Different Traffic Density Descriptions Provided in ADED 

Route Planning Course Material (Pellerito, 2006). 

 

TRAFFIC DENSITY CONDITION DESCRIPTION 

Low 

Fewer than three vehicles per minute; 

one lane of travel in both directions, 

usually residential area 

Medium 

Three to ten cars per minute; streets 

with signalized intersections and one or 

two travel lanes in both directions 

High 

eleven or more vehicles traveling in the 

direction of travel; a minimum of two 

travel lanes in both directions 
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Table 2.3. Route Planning Checklist Provided in ADED Course Material (Pellerito, 

2006).   

ACTIVITY CONDITIONS 

Turns: left and 

right 

Single lane approach to single lane approach (controlled 

and uncontrolled)  

Two-lane approach to two-lane approach 

Two-lane approach to four-lane approach 

Four-lane approach to two-lane approach 

Four-lane approach to four-lane approach 

Lane changes: left 

and right 

Two-lanes to four (single direction) lanes with 45-55 

mph speed limit 

Stops and starts 

Stop controlled intersection 

Signalized intersection 

Intersection with poor visibility 

High-density intersection 

Speed reduction or 

modulation 

Uneven road, bridge, railroad crossing, etc. 

School zones 

Speed bumps 

Gravel to pavement transition (or paved roads that may 

have loose gravel or sand) 

Merge and yield Interstate or expressway 

Backing Backing straight and right turn 

Passing Passing parked vehicles 

Mid-block crossing 
Entering controlled and uncontrolled mid-block crossing 

Leaving controlled and uncontrolled mid-block crossing 

Negotiate 

intersections 

T-intersection 

Four-way intersection  

Intersection with straight through 

Blind intersection (intersections with visual blockages 

usually found in residential areas)  

Driving through 

congested areas Chaotic parking lots (Walmart, or a shopping mall, etc.) 
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The checklist provided by ADED includes components from the entry-level driving 

test (i.e., changing lanes, negotiating intersections, backing straight, making a three-point 

turn, and driving in school zones). It is interesting to note that the checklist includes both 

static and dynamic components of the roadway environment that influence the contextual 

complexity. For example, the list in Table 2.2 recognizes traffic density as an essential 

component for DRSs to consider in their route design. Nonetheless, the framework 

provided to gauge traffic density (i.e., low density if there are fewer than three vehicles 

observed per minute, medium density if there are three to ten vehicles per minute, and high 

density if there are more than eleven vehicles observed per minute) is ambiguous and 

difficult to quantify with certainty. For example, the range used to count cars to classify 

appropriate density categories is unclear.  

Research studies have shown that traffic demand varies with the time of the day, 

functional classification of the road, and the area type (Roess et al., 2004). However, the 

ADED course materials for route design do not provide any information to accommodate 

these factors. In the absence of such information, categorization of a particular road stretch 

as low, medium, or high traffic density very much depends upon the time the specific DRS 

collected the data, therefore introducing additional variability.  

     Another component included in the checklist that correlates to the contextual 

complexity of the driving environment is the intersection density.  While the ADED course 

material encourages DRSs to incorporate a stop and start at a poor visibility and a high-

density intersection in the route, it does not include any information on what characteristics 

of an intersection would constitute a high density or poor visibility intersection. Few 

https://www.zotero.org/google-docs/?me8fd8
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components included in the checklist (i.e., left and right turns at controlled and 

uncontrolled intersections) indicate that DRSs might consider the complexity of the driving 

environment in their route planning. The current knowledge base in driving rehabilitation 

lacks the needed resources that would allow DRSs to considering many of the important 

roadway components and their inter-dependencies in estimating the complexity of the 

driving context. This research study aims to fill this gap by developing metrics to quantify 

static and dynamic scene complexity from a driver’s perspective.   

  

2.4 Reliability and Validity of an On-Road Assessment 

Reliability and validity are crucial for any test. A valid and reliable test produces 

consistent outcomes and does not vary significantly between different testing conditions. 

In an article discussing the evaluation of medically impaired drivers, “On-road evaluations 

have been regarded as a direct measure of driving abilities. Unfortunately, these 

evaluations often lack reliability and objectivity” (Galski et al., 1990). Improving the 

standards of professional practice have been a topic of discussion and research amongst 

DRSs. While efforts have been made to improve the reliability and validity of on-road 

evaluations through the development of a standard rating procedure, considering the 

features of the roadway environment to determine the complexity of the driving context is 

needed.  Considering the driving context is essential due to the nature of the road traffic 

environment and required driving maneuvers for a particular route the types of errors likely 

to occur  are important to consider (Schultheis et al., 2001). For example, a route having 

intersections with a dedicated left-turn lane with a protected left turn signal will reduce the 

opportunities for right-of-way errors. If there are no multi-lane sections of the road, there 

https://www.zotero.org/google-docs/?9mSVr4
https://www.zotero.org/google-docs/?Xvl8YS
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will be fewer possibilities for drivers to perform poorly when lane-keeping or passing 

(Pellerito, 2006).  

The route’s driving context is the primary determinant of overall task difficulty. For 

example, suppose a particular course presents elementary conditions (e.g., low traffic and 

simple maneuvers); in that case, drivers whose functional abilities differ substantially from 

each other may all perform equally well (Pellerito, 2006). Similarly, if a route is 

challenging, a group of drivers with generally poor, but differing abilities may all perform 

poorly. In such cases, inappropriate route selection results in an evaluation lacking 

sensitivity. The route designed and planned for a medically at-risk driver must consist of a 

range of segments and intersections with appropriate complexity for typical drivers. When 

the central purpose of an evaluation is to identify the effect of an impairment, a lack of 

sensitivity can be a significant disadvantage because it will make it more challenging to 

quantify a driver’s progress during their rehabilitation process (Korner-Bitensky et al., 

2006).  

To improve the reliability of the on-road assessment, many DRSs are using standard 

fixed routes with specific driving-related tasks designed for their clients at predetermined 

locations. Korner-Bitensky et al. (2006) surveyed 114 DRSs from the United States and 

Canada who had on-road driving evaluation experience. Results showed that 78% of the 

DRSs used a standard driving route to evaluate their clients. Yet, there was variation in the 

elements of the on-road assessments amongst the DRSs. The variations were 

https://www.zotero.org/google-docs/?HZyAfD
https://www.zotero.org/google-docs/?lPlBe7
https://www.zotero.org/google-docs/?sJAwII
https://www.zotero.org/google-docs/?sJAwII
https://www.zotero.org/google-docs/?ZiIhCj
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predominantly related to the roadway context (i.e., traffic level, highway functional class5, 

area type). For example, many respondents (55%) reported not using the freeway element 

at all in their on-road assessment (Korner-Bitensky et al., 2006). This variability in the 

inclusion or exclusion of roadway elements is likely due to the lack of widely accepted 

standards related to route requirements by the DRSs.  

Many research studies related to improving the reliability and validity of on-road 

driving assessments have stressed the need to define core requirements of roadway 

elements and the need for standardization (Di Stefano & Macdonald, 2012; Hunt, et al., 

1997; Kay, et al., 2008; Korner-Bitensky, et al., 2006; Stav, 2004; Unsworth, 2007).  In a 

study conducted by Di Stefano and Macdonald (2012), DRSs were asked to develop a list 

of desirable numbers of specific route features in a standard route. Table 1.2 shows the 

frequencies of 'desirable' route features in standard courses, separately for DRSs from 

urban and rural areas. The authors found differences in the opinions of desirable route 

features between urban and rural settings.  In addition, there was variability within the 

groups of urban and rural DRSs regarding their views of desirable route features. This is 

of some concern because a few of the driving maneuvers and roadway features listed in 

Table 1.2 are quite demanding and are routinely encountered by many drivers, such as 100 

km/hr (60 mph) speed zones and overtaking maneuvers. Routes without these features may 

be insufficiently complex to test a client’s ability to drive safely in common driving 

conditions.  

 
5 The U.S. DOT’s Federal Highway Administration (FHWA) classifies our Nation’s urban and rural 

roadways by road function. Each function class is based on the type of service the road provides to the 

motoring public, and the designation is used for data and planning purposes.  

https://www.zotero.org/google-docs/?JudjjS
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One argument that can be made is that the geographical conditions restrain the inclusion 

of certain roadway contextual features. This is especially true with the DRSs practicing in 

rural areas. It may be difficult to locate specific roadway features such as heavy traffic 

conditions or areas with significant driving distractions (i.e., driveways, advertising 

signage, closely spaced intersections). Furthermore, some DRSs may find certain roadway 

features, such as the number of driveways on a stretch of road, unnecessary to include, or 

they may have a skewed perception of safety related to specific roadway features. Because 

DRSs and Transportation Engineering are two very different professions, it may be argued 

that DRSs may not necessarily know why they should consider particular attributes of 

roadways while planning the fixed routes. However, there are no studies to support this 

hypothesis.  

 The outcome of this research project aids in improving the quality and consistency 

of on-road evaluations. Quantifying dynamic and static complexity to measure total scene 

complexity will benefit driver evaluation, training, and rehabilitation efforts. This will 

allow DRSs to evaluate driving tasks in an empirically quantifiable driving context. 

  

2.6. Cognitive Load to Measure Contextual Complexity 

 Everyday routine trips expose drivers to massive amounts of input that is either 

static (i.e., roadway configuration and traffic control devices) or dynamic (i.e., movement 

of surrounding vehicles and other vulnerable road users) (Olson, 1996). An important 

concept related to driver information processing is one’s useful field of view (UFOV). The 

UFOV is defined as “the total visual field from which target characteristics can be acquired 

https://www.zotero.org/google-docs/?o4AM1s
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when the head and eye movements are excluded"; and the extent of the UFOV differs 

between drivers, depending on how well they select and process relevant information from 

the environment (Dewar & Olson, 2002). While drivers may scan the whole driving 

environment, the focus is typically the view in front of them, the UFOV. Researchers define 

all the information that a driver must process to operate a vehicle as the visual demand, 

including traffic on the road, roadway environment, information in the vehicle, etc. (Dewar 

& Olson, 2002). Human factors experts generally believe that when the visual demand 

increases, the risk of traffic crashes increases (Dewar & Olson, 2002). Prior research 

determined that more crashes occur on roads with heavy traffic or complicated geometric 

configurations (Shinar et al., 1977). Abdel-Aty and Radwan (2000) modeled crash 

occurrence and involvement to find that heavy traffic increases the likelihood of crashes. 

One reason for crashes increasing with traffic complexity or object-density is that the 

driver's cognitive load increases. It is believed that one’s cognitive load plays a vital role 

in performing complex tasks (Paas et al., 2003), such as driving. In addition, variability in 

dynamic inputs, such as speed, adds another level of complexity that the driver must 

process. Researchers (Schultheis et al., 2001) have determined that crash rates increase as 

the speed variations between the driver and other traffic increase, especially at higher 

traffic volumes. Yet, methods to incorporate complexity into risk assessments are not 

currently available. 

Complicating matters, UFOV decreases for numerous reasons including vehicle 

speed, traffic congestion, rain, increasing age, and additional high-demand tasks (Dewar & 

Olson, 2002; Rogé et al., 2004). Researchers estimated that when drivers are traveling at 

https://www.zotero.org/google-docs/?HtSHoL
https://www.zotero.org/google-docs/?4pDMQJ
https://www.zotero.org/google-docs/?4pDMQJ
https://www.zotero.org/google-docs/?WqBOFO
https://www.zotero.org/google-docs/?wavR8r
https://www.zotero.org/google-docs/?LjoLUf
https://www.zotero.org/google-docs/?UgWAJb
https://www.zotero.org/google-docs/?k4oKhy
https://www.zotero.org/google-docs/?k4oKhy
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30 mph, they can see targets in a visual field of 150 degrees; however, when speed is 

doubled (60 mph), drivers can only see targets in half of the visual field (approximately 75 

degrees) (Dewar & Olson, 2002). As speeds increase, the distance required to perceive 

hazards and react appropriately increases because drivers need to look further down the 

road for objects in one’s potential collision zone, this is referred to as the stopping sight 

distance or SSD (AASHTO, 2018). As the UFOV narrows with speed, it expands in length 

due to increased SSD. Research also reveals that the UFOV decreases when the quantity 

of information to be processed in the driver's peripheral field increases (Monty & Senders, 

1976), meaning that when the level of object density is high and the road scene is complex. 

As prior research suggests, specific combinations of static and dynamic parameters 

increase the likelihood of crash occurrence due to increased complexity. This dissertation 

adopts the UFOV recommendation from Dewar and Olson’s (2002) and uses it to build 

and measure dynamic contextual complexity within driver’s control/view and compare it 

to the complexity of the entire driving scene.  

 

2.6 Summary  

Driver rehabilitation is an industry that needs to grow due to an increase in the older 

driver population which increases the number of medically at-risk drivers. DRSs play a 

vital role in evaluating clients' physical and functional deficiencies and then rehabilitating 

those individuals to become safe drivers as appropriate. At the same time, the field of 

driving rehabilitation is developing and there is a need for DRSs to exhibit best practices.  

The tests conducted in the in-clinic evaluation typically supplement the on-road 

https://www.zotero.org/google-docs/?3lxdlu
https://www.zotero.org/google-docs/?vXs4jG
https://www.zotero.org/google-docs/?CiXXA2
https://www.zotero.org/google-docs/?CiXXA2
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assessment. The on-road assessment is considered the “gold standard” in driving 

rehabilitation and is widely used to make fitness-to-drive decisions. 

  

 The Washington University Road Test (WURT) enables DRSs to incorporate a 

driving test route with a steadily increasing task difficulty approach (Hunt et al., 1997). 

Starting from a low risk, uncomplicated driving environment (i.e., empty parking lot) and 

gradually progressing into higher activity driving environments that increase the utilization 

of the driver's perceptual and cognitive resources. Using this approach, the driver can first 

get accustomed to the evaluator’s vehicle and others in the vehicle prior to completing 

more complex driving tasks. Using WURT’s framework, DRSs can design their fixed 

driving route by incorporating frequencies of roadway features and driving maneuvers 

provided by route planning checklists, such as those offered by the Center for Biomedical 

Engineering Rehabilitation Science and the ADED coursework (Hunt et al., 1997; Center 

for Biomedical Engineer Rehabilitation Science, 2016). Although the items in such lists 

include features of the road environment that influence its complexity, the specialists in the 

field of driver rehabilitation currently lack the resources to incorporate the driving context 

into these routes. 

 Previous research studies have stressed the importance of improving the reliability and 

validity of the on-road assessment. Considering the driving context within which the skills 

are assessed can enhance both the validity and reliability, as this context can directly 

influence the client’s driving behavior and skills demonstrated during fixed on-road routes. 

In the field of Traffic Engineering, the driving context is the primary determinant of overall 

https://usc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fclemson-my.sharepoint.com%2Fpersonal%2Fvbendig_clemson_edu%2F_vti_bin%2Fwopi.ashx%2Ffiles%2Fc96a2b96524f4b0dbd7544e0844cbc16&wdenableroaming=1&mscc=0&wdodb=1&hid=00000000-0000-0000-0000-000000000000&wdorigin=Sharing&jsapi=1&jsapiver=v1&newsession=1&corrid=530574c4-b38b-4a1b-bfde-c1e8b1571d90&usid=530574c4-b38b-4a1b-bfde-c1e8b1571d90&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Medium&ctp=LeastProtected#_ENREF_14
https://www.zotero.org/google-docs/?ZCggtw
https://www.zotero.org/google-docs/?EuorDy
https://www.zotero.org/google-docs/?EuorDy
https://www.zotero.org/google-docs/?EuorDy
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task difficulty. Previous studies in Australia noted the importance of quantifying the 

roadway context of the fixed route (Di Stefano et al., 2010, 2012; Korner-Bitensky et al., 

2006).  

This dissertation developed metrics to measure static and dynamic scene 

complexity from a driver’s perspective using speed, density, and proximity of the objects 

around the vehicle to account for dynamic complexity and the roadway geometric 

characteristics listed in AASHTO’s Highway Safety Manual for static complexity. A 

statistical model was developed to estimate absolute contextual complexity to classify its 

contextual risk appropriately. The output is a matrix that classifies the driving 

environment’s complexity into graduated risk categories from low to high. 

This study used open-source LiDAR and video data collected by Waymo 

autonomous vehicles to estimate static and dynamic complexity frame by frame. The 

LiDAR data provided rich real-world activity information around the car, including 

stationary and non-stationary objects such as vehicles, pedestrians, and signs. The video 

data provided the knowledge of the static variables included in the AASHTO’s Highway 

Safety manual. This study considered the speed, density, and proximity of the objects in 

the entire driving environment and within the driver’s cone of vision to develop a measure 

of the driving environment’s complexity.  
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CHAPTER THREE 

METHODS 

 

3.1. Introduction   

This dissertation sought to create a methodology to measure the contextual 

complexity of the driving environment considering the roadway’s static and dynamic 

characteristics. This model will assist DRSs in evaluating and potentially rehabilitating 

medically-at-risk drivers who use on-road assessments as a primary tool to assess safe 

driving capabilities. The study utilized comprehensive open-source data collected by 

Waymo autonomous vehicles to build models to estimate the road environment’s 

complexity considering static and dynamic traffic conditions. This chapter details the 

methods designed to achieve the goals and objects of this dissertation.  

The method section of this document is divided into three parts to achieve the 

dissertation’s goals and objectives. Figure 3.1 shows a framework with the principal 

components in this chapter. 
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Figure 3.1. Methodology Flow Chart.  

The phases and their objectives are listed below:  

● Phase I - Dynamic complexity model: The tasks outlined in this phase focused on 

developing a dynamic complexity model that measures and classifies the driving 

environment into appropriate clusters considering non-stationary (i.e., vehicles, 

pedestrians, bicycles) objects. This phase dive deep into the rich elements of the 

Waymo AV open data source and how it was utilized to understand the dynamic 

complexity.  

● Phase II - Static Risk Model: The tasks in this phase were targeted towards 

developing a model to measure the static risk of the driving environment using the 

critical variables identified in the AASHTO’s Highway Safety Manual. A 
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sensitivity analysis was completed to determine each variable’s importance prior to 

categorizing them into different risk zones.  

● Phase III - Absolute contextual complexity Model: This step combined the models 

developed in phases one and two (i.e., the dynamic and static models) to build a 

model that assessed the absolute complexity of the driving environment. 

Additionally, a few select trips by the Waymo AV were used as case studies to 

demonstrate the estimation of absolute contextual complexity. The Waymo trips 

were divided into individual segments and intersections, and the total contextual 

complexity (i.e., static and dynamic) was estimated.  

Detailed descriptions of each phase and the associated relevant task descriptions are 

provided in sections 3.2, 3.3, and 3.4.  

 

3.2. Phase I - Dynamic Complexity Model, 

The advent of autonomous vehicle open datasets has created new opportunities to 

measure dynamic complexity to incorporate dynamic interaction metrics into complexity 

estimates and safety assessments. Several AV datasets have been published in recent years; 

however, the open dataset published by Waymo in 2019 is by far the largest, richest, and 

most diverse self-driving dataset released for research. Phase I of the methodology 

capitalizes on this open-source autonomous vehicle dataset obtained from the Waymo AV 

program to build the dynamic complexity model.  
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3.2.1. Data Source:  

The raw dataset consists of high-quality LiDAR and video data obtained from 

multiple sensors mounted on Waymo autonomous vehicles. Figure 3.2 shows a picture of 

the Waymo AV with its sensor layout and the relative coordinate systems. The system used 

five Lidar sensors and five high-resolution pinhole cameras (Sun et al., 2020).  

 

 

 

Figure 3.2. Sensor layout and coordinate system of Waymo autonomous vehicle (Sun et 

al., 2020).  

 

The coordinate system moves with the vehicle. The LiDAR dataset included 3D bounding 

boxes with object type annotations manually checked for accuracy by trained labelers, see 

Figure 3.3 (Sun et al., 2020). The tracked object types include vehicles, pedestrians, 

bicyclists, and traffic signs. Additionally, vehicle speed vectors in 3-dimensional space for 

https://www.zotero.org/google-docs/?YWPzWf
https://www.zotero.org/google-docs/?YWPzWf
https://www.zotero.org/google-docs/?YWPzWf
https://www.zotero.org/google-docs/?YWPzWf
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each frame were provided. The data were collected in San Francisco, Phoenix, and 

Mountain View, see Figure 3.4 (Sun et al., 2020).  

 

Figure 3.3. LiDAR 3D bounding box example, Yellow = vehicle, Red=Pedestrian, 

Blue=sign, Pink = cyclist (Waymo Open Dataset Available for Autonomous Vehicle 

Researchers, 2019)  
 

 

          San Francisco                             Mountain View                                  Phoenix 

Figure 3.4, Waymo self-driving car data collection areas (Sun et al., 2020).  

Figure 3.5 shows the workflow with the main tasks and their associated sub-tasks 

carried out in this phase. Work associated with each task is discussed. 

https://www.zotero.org/google-docs/?YWPzWf
https://www.zotero.org/google-docs/?0cXhSA
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Figure 3.5. Method Flowchart - Dynamic Contextual Complexity 
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3.2.2. Extract Transform Load LiDAR Data  

A total of 798 scenes of perception data, each spanning 20 seconds at 10 Hz/second (i.e., 

~200 LiDAR frames), were analyzed during this phase. All scenes were stored in a Google 

cloud bucket in a TensorFlow file format. The files were downloaded, and the raw LiDAR 

data were extracted. The raw data contains a segment context, LiDAR images, and LiDAR 

labels. The LiDAR point-cloud data reference each object with x, y, and z coordinates in a 

three-dimensional space with respect to the autonomous vehicle as to the origin. The 

distance of the objects and their angle from the autonomous vehicle is estimated from x, y, 

and z coordinates. Vehicle speed for each frame was obtained from the segment context 

metadata. The driving context assessment was limited to lower speeds (<40 mph) due to 

the limited range of LiDAR technology, which has a published maximum range of 250 

feet, though extended distances were contained in the datasets (Waymo Open Dataset 

Available for Autonomous Vehicle Researchers, 2019). 

3.2.3. Feature Engineering and Transformation:  

The total number of objects in each LiDAR frame and its proximity to the driver was 

estimated as a measure of scene complexity. From the literature review an important 

concept related to the driver information processing is the useful field of view (UFOV) 

(Dewar & Olson, 2002). As speeds increase, the distance required to perceive hazards and 

react appropriately increases because drivers need to look further down the road for objects 

in the potential collision zone or the the stopping sight distance (SSD) (AASHTO, 2018). 

The vehicle's speed was used to derive SSD and select an appropriate UFOV. The SSD and 

https://www.zotero.org/google-docs/?3lxdlu
https://www.zotero.org/google-docs/?tnqx5V
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UFOV were then used to construct a 3-dimensional filter cone, the cone of vision (COV), 

to identify any objects that fall within that cone.  
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Figure 3.6. LiDAR point-cloud, SSD, UFOV, and COV representation with object types. 
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Figure 3.6 provides a pictorial representation of the SSD, UFOV, and COV in the 

LiDAR point cloud. The orange dots represent the LiDAR points. The red car in the center 

is a representation of the autonomous vehicle. The blue bounding boxes with the label “c” 

are the locations of detected cars. The pink bounding boxes with the label “p” represent the 

location of the pedestrians. The green bounding boxes with label “s” represent the location 

of the traffic signs. The white dotted line in the center represents the direction of travel of 

the autonomous vehicle. The UFOV is the angle “a” between the orange lines that extends 

from the red car. The SSD is a distance that extends from the red car to a distance “d.” 

COV is the 3-dimensional volume of space constructed from SSD & UFOV represented 

by the blue boundary. Objects that fall within this COV were identified for each frame, 

along with the total objects in the scene. In Figure 3.6, there are a total of 9 objects in the 

entire scene (five cars, two pedestrians, and two signs) and only four objects within COV 

(two cars and two pedestrians). 

COV is a function of SSD and UFOV. Thus, to determine the COV for each frame, 

the SSD and UFOV were first computed. The SSD of the vehicle for each frame was 

calculated using the relationship in Equation 1. A standard driver’s reaction time of 2.5 

(Roess et.al., 2004) seconds and a flat grade (i.e., grade = 0%) were assumed in all SSD 

estimations. UFOV shares an exponential relationship with speed. Following Dewar and 

Olson (2002), the UFOV is 160 degrees at zero speed, which reduces to 150 degrees at 30 

mph speed and further scales down to 75 degrees at 60 mph speed. UFOV was computed 

using linear interpolation for all fractional speeds that fall in-between the speed ranges 

mentioned above (i.e., 0 mph, 30 mph, and 60 mph) within each scene. The COV boundary 
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was calculated within the LiDAR point cloud using SSD & COV values. Objects that fall 

within the COV boundary were summarized along with the total objects in the scene. 

𝑆𝑆𝐷 = 1.47𝑠𝑡 +
𝑠2

30∗
𝑎

𝑔

                          Equation 3.1  

Where, 

SSD = Total stopping sight distance for the vehicles (feet) 

s = speed of the vehicle (mph) 

t = standard reaction time of the driver (2.5 seconds) 

a = standard deceleration rate (11.2 ft/s2) 

g = acceleration due to gravity (32.2 ft/s2) 

 

3.2.4. Contextual Complexity Factor Model 

From the literature review, the key variables that measure visual-clutter and 

cognitive load are the density of the objects and their proximity to the vehicle. As the 

number of objects in the driving environment increases, the amount of information that 

needs to be processed by the driver also increases, increasing the driver’s cognitive load. 

Near objects present a greater risk to the driver compared to distant objects. A Contextual 

Complexity Factor (CCF) was estimated for each frame to measure these two important 

parameters using Equation 3.2. 

𝐶𝑅𝐹 =  ∑ (
1

𝑜𝑏𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)  -  Equation 3.2 

Where,  
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𝑜𝑏𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  = distance of the object from the autonomous vehicle (feet) 

Inverse distance assignments were weighted in descending order, with near objects 

getting higher weights and farther objects getting lower weights. The summation of these 

inverse distances accounted for the total number of objects in the scene, i.e., object density. 

The scene CCF was estimated for each frame considering all the objects. Additionally, the 

CCF was estimated from the COV filter in each frame. Statistical quartiles for the total 

sample size were calculated for the whole scene CCF and CCF within the COV. An 

individual frame was categorized as high if the CCF > 75th percentile, medium if CCF was 

within the inter-quartile range (between 25th percentile and 75th percentile), and low if 

CCF was less than the 25th percentile, respectively. All the frames were assigned a high, 

medium, or low category based on the scene CCF's respective quartile range.  

 

3.2.5. Unsupervised clustering analysis 

The complexity of multiple variable analysis required a more sophisticated 

approach for analysis. Thus, unsupervised clustering analysis was carried out to identify 

natural clusters and identify acceptable boundaries that are impossible with dividing the 

entire sample size into quartiles. Thus, to overcome this design deficiency and to obtain 

accurate boundaries, clustering analysis was performed on the processed AV data to 

overcome this design deficiency to get precise boundaries. Specifically, k-means clustering 

and hierarchical clustering were used to analyze the data. These clustering methodologies 

have been used for various pattern recognition modeling such as traffic condition 
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recognition, driver classification, and air pollution hotspot recognition, among others 

(Montazeri-Gh & Fotouhi, 2011); (Govender & Sivakumar, 2020).  Table 3.1 provides a 

brief description of these algorithms.  

 

Table 3.1. K-Means and Hierarchical Clustering techniques. 

Clustering Method Description Cluster Representation 

K-means 

clustering 

(Kanungo et 

al., 2002) 

A simple and effective method in 

classifying the data into a certain number 

of clusters. The number of clusters is 

determined by the value "k.” Each point is 

assigned to the nearest cluster. Different 

cluster numbers (K) can be applied to 

classify the scene complexity accurately 

and choose an optimal number of groups. 

K-means clustering is used to rank high 

crime areas and identify spam emails. 

 
(Chen, 2022) 

Hierarchical 

clustering 

(Murtagh & 

Contreras, 

2017) 

Build a clustering tree by grouping data 

points closest to each other and further 

grouping those clusters creating a 

hierarchy. Hierarchical clustering does not 

need the specification of several clusters. 

The number of clusters that best fit the 

data can be chosen by visualizing the tree. 
 

(Chauhan, 2019) 

 

3.2.6. Results Interpretation 

The k-means and hierarchical clustering techniques were analyzed and compared. This 

task involved reviewing these results and comparisons and selecting the best fit model. 

The task consisted of generating visuals of clustering results, recognizing the clustering 

patterns, and concluding on a choice model. A multi-dimensional clusters visualization 

tool was created to better visualize and understand the clusters' boundary division.  

https://www.zotero.org/google-docs/?N2zIkk
https://www.zotero.org/google-docs/?2vfx0V
https://www.zotero.org/google-docs/?ksbmuN
https://www.zotero.org/google-docs/?ksbmuN
https://www.zotero.org/google-docs/?zD4qKy
https://www.zotero.org/google-docs/?lmkuP0
https://www.zotero.org/google-docs/?lmkuP0
https://www.zotero.org/google-docs/?lmkuP0
https://www.zotero.org/google-docs/?fLQlnX
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3.2.7. Dynamic Complexity Factor Rating 

This step involved identifying the optimal number of cluster classes and classifying each 

LiDAR scene into the appropriate category. Additionally, a list of the most influential 

variables affecting dynamic complexity and their cluster ranges was identified. The 

results from the multi-dimensional cluster visuals were converted into a two-dimensional 

table with ranges defined for each cluster variable to classify a dynamic environment into 

appropriate complexity categories for use by the DRSs.  

 

3.3 Phase II: Static Risk Model 

The second phase of the project, consisted of tasks to meet the second objective, which 

was to develop a rating procedure to categorize a road segment into appropriate levels, 

depending upon the relative safety of the driving environment (predominantly related to 

characteristics of the infrastructure design such as lane widths, presence of lighting, etc.). 

Figure 3.7 shows the workflow with main tasks and their associated sub-tasks performed 

in this phase.  
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Figure 3.7. Method Flowchart - Static Contextual Risk 

 

3.3.1. Identify static variables 

In this step, all the safety performance model variables listed in the highway safety manual 

for urban and suburban arterials were identified for sensitivity analysis. Table 3.2 lists all 

these variables.  
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Table 3.2.  Variables considered for sesitivity analysis (National Research Council et al., 

2010) 

 

Sl. 

No. 

Segment Intersection 

1 Roadway Type  Intersection Type  

2 Length of Segment Lighting 

3 Type of on-street parking Number of approaches with left-turn 

lanes 

4 The proportion of curb length with on-

street parking 

Number of approaches with right-turn 

lanes 

5 Median width Number of approaches with left-turn 

signal phasing 

6 Lighting Type of left-turn signal phasing for 

approach 1 

7 Auto speed enforcement Type of left-turn signal phasing for 

approach 2 

8 Major commercial driveways Type of left-turn signal phasing for 

approach 3 

9 Minor commercial driveways Type of left-turn signal phasing for 

approach 4 

10 Major industrial / institutional 

driveways 

Number of approaches with Right Turn 

On Red (RTOR) prohibited 

11 Major residential driveways Intersection red light cameras 

12 Minor residential driveways Sum of all pedestrian crossing volumes 

for signalized intersection 

13 Other driveways Maximum number of lanes crossed by 

pedestrian 

14 Speed category Number of bus stops within 1000 ft of 

intersection 
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15 Roadside fixed object density Schools within 1000 ft of the 

intersection 

16 Offset to roadside fixed objects Number of alcohol sale establishments 

within 1000 ft of the intersection 

 

3.3.2. Sensitivity Analysis 

Sensitivity analysis is a technique used to determine how different values of an 

independent variable will impact a particular dependent variable under a given set of 

assumptions (Frey & Patil, 2002). A sensitivity analysis is carried out to understand the 

importance of attributes for each data category. The analysis outcome can help determine 

the most influential features, which also helps estimate weights.  

Several methods exist for sensitivity analysis (i.e., mathematical, statistical, and 

graphical methods). Mathematical models demonstrate output sensitivity to the range of 

variation in input. Nominal Range Sensitivity Analysis (NRSA) and Differential 

Sensitivity Analysis (DSA) are examples of such sensitivity analysis methods (Frey & 

Patil, 2002). The graphical method demonstrates the sensitivity analysis through graphs, 

charts, etc. The graphical format is the most common, and shows how variations of inputs 

affect the outputs. Examples of this method include scatter plots and Conditional 

Sensitivity Analysis (Frey & Patil, 2002). A statistical method can be used for stochastic 

models which involve running the simulation based on the chosen input which comes from 

a probability distribution. Examples of statistical analysis methods include Sample and 

Rank Correlation Coefficients, Regression Analysis, Rank Regression, Analysis of 

Variance, Classification, and Regression. A disadvantage of the statistical approach is that 

https://www.zotero.org/google-docs/?n9w0jg
https://www.zotero.org/google-docs/?n9w0jg
https://www.zotero.org/google-docs/?n9w0jg
https://www.zotero.org/google-docs/?jqmo4t
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it requires large amounts of data to run the model to achieve satisfactory results. 

Unfortunately, the location-anonymity of the Waymo dataset does not allow for the 

collection of the static data with an adequate sample size. As such, a statistical method did 

not serve as an appropriate method for the intended purposes of this task.  

Mathematical models can predict the essential variables with reasonable accuracy. 

The NRSA method was selected for use. The NRSA assesses the effect of varying the value 

of only one model input through its possible range while fixing all other inputs at their 

base-case value of nominal values (Frey & Patil, 2002). Thus, the model's sensitivity can 

be defined by different output values due to the change of inputs for that particular 

parameter. This method is beneficial whenever the inputs of the deterministic model consist 

of plausible values. The formula for this method is provided in Equation 3.3.  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑂𝑢𝑡𝑝𝑢𝑡𝑀𝑎𝑥 𝑖𝑛𝑝𝑢𝑡  − 𝑂𝑢𝑡𝑝𝑢𝑡𝑀𝑖𝑛 𝑖𝑛𝑝𝑢𝑡

𝑂𝑢𝑡𝑝𝑢𝑡𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑖𝑛𝑝𝑢𝑡
                                    Equation 3.3 

Where  

𝑂𝑢𝑡𝑝𝑢𝑡𝑀𝑎𝑥 𝑖𝑛𝑝𝑢𝑡 = output of maximum value for input 

𝑂𝑢𝑡𝑝𝑢𝑡𝑀𝑖𝑛 𝑖𝑛𝑝𝑢𝑡= output for minimum value for input 

𝑂𝑢𝑡𝑝𝑢𝑡𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑖𝑛𝑝𝑢𝑡= output of nominal or base-case of the input 

The result of this analysis supported the definition of appropriate ranges of CMFs for each 

risk level (i.e., high, medium, and low-risk levels) and aided in building an accurate risk 

assessment matrix. 

https://www.zotero.org/google-docs/?n9w0jg
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3.3.3. Static Risk Factor Rating 

The context in which a driver needs to perform a driving-related task can vary (i.e., 

high risk, medium risk, or low risk), depending upon the characteristics of the environment.   

After applying the proper weighting factor from the sensitivity analysis, individual 

roadway characteristics were categorized into risk groups. The corresponding class defined 

the context of the risk category in which the highest numbers of roadway components were 

classified (i.e., high, medium, or low).   

 

3.4. Phase III: Absolute Contextual Complexity  

The project’s third phase assembled the results obtained from the dynamic contextual 

complexity from phase one along with the static contextual complexity from phase two to 

construct an absolute contextual complexity. Since no data sources existed which provided 

both the static and dynamic features, this research used clues from the Waymo data to 

georeference a small test population of the dynamic data to develop an absolute contextual 

complexity metric to be classified and then compared. Figure 3.8 shows the workflow 

including the main tasks and their associated sub-tasks performed during this phase.  
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Figure 3.8. Method Flow-Chart - Absolute Contextual Complexity Model Building 

Process 

 

 

3.4.1. Geolocate Waymo Trips 

Waymo's open-source data did not include the location of the autonomous vehicle. Due to 

privacy concerns, location data was excluded from the dataset.  However, location data is 

essential to obtain static characteristics of the driving scene to estimate Static Contextual 

Complexity. Furthermore, it is critical to retrieve crash data for validation tests which are 

linked to specific locations (“Crash Experience Check,” see Figure 3.8).  An indirect 

method was used to identify the location of the Waymo trip using wayfinding and 

landmarks. The subsequent steps used to obtain location data are listed below:  

 

● Step 1: Identify points of interest (POI): The video of the Waymo trip segments 

were scanned for any POI information. Examples of the POI included street names, 

hospitals, restaurants, etc., that could be searched and located on a Google map. 
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Figure 3.9 shows an example of POI information from video footage of an actual 

Waymo trip. The POI is the street name sign, “Grant O Farrel”, in San Francisco.  

 

Figure 3.9. POI information from video footage.  

● Step 2: Geolocate POI on Google Maps: The location of the POI was found on 

Google maps and recorded. Figure 3.10 shows the location of  “Grant O Farrel 

Street” on Google maps.  
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Figure 3.10. Location of “Grant O Farrel” on Google maps.  

● Step 3: Verify location using Google street view: After locating the POI, Google 

Street View was used to match the scene with the Waymo video footage. Figure 

3.11 shows a side-by-side verification of “Grant O Farrell Street” which was 

identified in the video footage and linked to the Google street view.  

 

 

Figure 3.11. Google Street View and Waymo video footage verification.  
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● Step 4: Geo-locate and trace the path: When the Waymo video and Google Street 

View footage were identical, the course of the trip was geo-mapped using  

Geographical Information Systems (GIS) software (e.g., QGIS). Figure 3.12 below 

shows an example of a Waymo path geo-coded in QGIS software.  

 

Figure 3.12, Path of a Waymo Trip 

The open-source dataset consisted of AV data in three locations, namely, San Francisco, 

Mountain View, and Phoenix. San Francisco was the only city with publicly available 

historical crash data out of these three cities. As a result, data analysis efforts focused on 

San Francisco. A total of nine trip locations were identified and traced using the steps 

outlined above. Figure 3.13 shows the locations of the vehicle paths within the boundary 

of San Francisco County.  
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Figure 3.13, Locations of Waymo Trips in San Francisco City.  

3.4.2. Measure and Classification of Static Variables 

After a trip’s location and its path were identified, the path was fragmented into individual 

intersections and segments. These intersections and segments were analyzed independently 

by measuring the critical variables (listed in Table 3.2) and classifying them into the 

appropriate risk categories. This procedure was carried out for all nine trips mapped in 

Figure 3.13. Table 3.3a, 3.3b, and 3.3c are associated with trips on Market Street (between 

3rd Street and Grant O’Farrel street) (Figure 3.12). The trip encompasses two intersections 

and one segment, respectively. Table 3.3a lists the variables, measurements/values, and 

their risk category for the segment component of the trip.  
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Table 3.3a, Static variables and their risk on the Market Street segment (between 3rd street 

and Grant O'Farrell Street).  

SEGMENTID segment-4641822195449131669_380_000_400_000_with_camera_labels 

Market Street  Risk 

Roadway Type 4U Medium 

Length (miles) 0.078 NA 

Parking Type Parallel Commercial High 

Parking Length 0.078 High 

Median Width (ft) 10 High 

Lighting Present Present Low 

Auto Speed 

Enforcement Not Present High 

SEGMENT RISK  HIGH 

 

 

The risk category with the highest frequency of variables will ultimately be the category 

for the entire segment/intersection. For the segment presented in Table 3.3a, 4 out of 6 

variables were classified as high-risk. Therefore, the segment was categorized into “high-

risk.” Similarly, the intersection at Market Street and 3rd Street (Table 3.3b) and Market 

Street and Grant O’Farrel Street were classified as “high-risk” intersections since the 

majority of the variables were classified as “high”.  
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Table 3.3b, Static variables and their risk at the intersection of Market Street and 3rd Street.  

Intersection: Market St and 3rd St Risk 

Lighting Present Low 

# Approaches with a left-turn lane 0 High 

# Approaches with a right-turn lane 0 High 

# Approaches with a left-turn phasing 0 High 

Type of Signal Phasing Permissive High 

Approaches RTOR Prohibited 0 High 

Bus-stops Near Intersection 2 Medium/High 

Schools Near Intersection None Low 

# Alcohol Establishments 12 High 

INTERSECTION RISK  HIGH 
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Table 3.3c, Static variables and their risk for at the intersection of Market Street and 

O’Farrel Street.  

Intersection: Market St @ O'Farrel Street risk 

Lighting Present Low 

# approaches with a left-turn lane 1 Medium 

# approaches with a right-turn lane 0 High 

# approaches with a left-turn phasing 0 High 

Type of Signal Phasing Permissive High 

Approaches RTOR Prohibited 0 High 

Bus-stops near intersection 2 Medium 

Schools Near Intersection None Low 

# Alcohol establishments 12 High 

INTERSECTION RISK  HIGH 

 

  

The absolute static risk of the trip was determined by categories with a maximum frequency 

of segments and intersections. Both intersections and segments were classified as high-risk 

for Market Street between 3rd Street and Grant O’Farrel. Therefore, the absolute static risk  

of the trip is high, indicating the static environment is risky (Table 3.3d).  

Table 3.3d, Absolute static risk of the trip.  

Trip ID segment-4641822195449131669_380_000_400_000_with_camera_labels 

Market Street High 

Market St and 3rd St High 

Market St and Grant 

O Farrel St High 

Absolute Static Risk High 
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3.4.3. Measure and Classify Dynamic Variables 

To measure and classify a segment’s dynamic complexity, the model developed in phase-

1 of this methodology was applied to the trip under consideration. The result of the model 

determined the dynamic complexity of the segment. For the example trip under 

consideration in Figure 3.12, which is on Market Street (3rd Street and Grant O’Farrel 

Street) in downtown San Francisco, the model results are shown in Figure 3.14 below.  

 

Figure 3.14, Dynamic complexity of trip on Market Street (between 3rd street and Grand 

O’Farrel Street).  

The figure shows 200 point clusters (one point for each LiDAR data frame) categorized 

into High and Medium complexity. The trip started as a medium complexity trip and 

transitioned into a high-complexity trip and remained there. The greatest number of points 

were classified as high-complexity; therefore, the dynamic complexity of this trip was high.  
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3.4.4. Absolute Contextual Complexity 

Absolute contextual complexity is the combination of static and dynamic contextual 

complexity. The results of the total static risk and dynamic complexity from the previous 

steps were used to determine the total complexity of the trip. For example, the trip on 

Market Street (between 3rd Street and Grant O'Farrell Street) in San Francisco, the static 

and dynamic complexity was ‘high’; therefore, the method classified the absolute 

complexity of the entire trip as ‘high.’  

 

Table 3.4, Absolute contextual complexity 

Trip Location  Static Risk Dynamic 

Complexity 

Absolute 

Complexity 

Market Street (Between 3rd & Grant 

O’Farrel Street) 

High High High 

 

3.4.5. Crash Experience Check 

In this step, the historical crash data was extracted, and it was correlated with the absolute 

contextual complexity for validation of the method. A public repository of San Francisco 

county crash data was downloaded. Figure 3.15 shows a map of all the crash data locations 

for the county of San Francisco.  
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Figure 3.15. Crash data for San Francisco County 
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CHAPTER FOUR 

 

ANALYSIS AND RESULTS 
 

 

This research study focused on developing a methodology to assist DRSs in 

understanding and estimating the complexity of the routes used for on-road driving 

evaluations for medically-at-risk drivers considering both static and dynamic 

characteristics of the roadway environment.  The study utilized the autonomous vehicle 

dataset released by Waymo to build the driving environment’s static and dynamic 

complexity models. This chapter discusses the analysis process and the results while using 

a similar structure as the preceding methodology chapter.  

This chapter has been divided into four phases to achieve the study’s goals and 

objectives. Figure 4.1 shows the framework highlighting the four stages.  

 

Figure 4.1. Analysis chapter flow-chart 
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The phases and their objectives are reiterated below:  

1. Phase I – The Dynamic Complexity Model: focuses on the analysis of the results 

which allows for the dynamic model to estimate contextual complexity.  

2. Phase II – The Static Risk Model: This phase describes the sensitivity analysis of 

the variables outlined in AASHTO’s Highway Safety Manual (National Research 

Council et al., 2010) to determine the most critical variables. This phase discusses 

the risk ranges for each variable which lead to tables for the guidance manual.  

3. Phase III - Absolute Contextual Complexity Model: This step is the culmination of 

the work from the previous two phases. This section discusses results from the 

model implementation on a sample of segments from the AV trip repository to 

determine the total contextual complexity.   

4.1. Dynamic Complexity Model:  

The discussion in this section is divided into two parts:  

1. The first part presents the analysis and results of the model development using a 

statistical approach (i.e., Section 3.2.4 Contextual Complexity Factor Model from 

Chapter 3).  

2. The second part explains the analysis and results of the model development using 

an unsupervised clustering approach (i.e., Section 3.2.7 Dynamic Complexity 

Factor Rating from Chapter 3). 

 

https://www.zotero.org/google-docs/?xVb68q
https://www.zotero.org/google-docs/?xVb68q
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4.1.1. Statistical Modeling Approach 

A total of 798 trips of perception data, comprised a total of 158,090 LiDAR point cloud 

frames, were analyzed to develop the contextual complexity factor (CCF) model to 

measure dynamic complexity. Table 4.1 provides a list of all the variables available after 

processing the raw AV data. The first column of Table 4.1 includes the variable’s name, 

the second column describes the variable, and the third column provides information on 

the variables derived from one or more combinations of raw variables.  

 

Table 4.1. Variables extracted after processing the AV data 

 
 

 

Figure 4.2 provides statistical distributions of the sample size for all the critical variables 

used to develop the CCF model. The maximum accurate range of the long-range LiDAR 
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mounted on the vehicle was 250 feet, corresponding with a maximum safe operating speed 

of 35 mph based on human SSD requirements. Objects beyond that range were less likely 

to be detected or classified. Thus, frames with vehicle speeds exceeding 35 mph were 

excluded from the analysis (approximately 13% of the total frames). Additionally, there 

were a substantial number of frames where the vehicle was not moving (zero speed) due to 

the urban and ultra-urban settings along with stop-and-go traffic operations. The SSD and 

the COV were also zero, which skewed the sample towards zero. Thus, frames with speeds 

less than 0.1 mph were excluded from the analysis. After clipping the frames with speeds 

greater than 35 mph and less than 0.1 mph, the sample size was reduced to 108,369 frames 

(68.54% of the total possible frames). Figure 4.3 shows the distribution of the critical 

attributes for 68.54% of the data after the trimming process was used in the CCF model 

building.  
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             Velocity (mph)                             SSD(feet)                              COV(degrees)                          Total Objects                Total Objects within COV  

Figure 4.2. Statistical distributions of critical variables before the clipping.  

 

 
               Velocity (mph)                             SSD(feet)                              COV(degrees)                          Total Objects                Total Objects within COV 
 

Figure 4.3. Statistical distributions of critical variables after the clipping the frames with speeds greater than 35 mph and less 

than 0.1 mph. 
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From the literature review, the key variables when measuring visual-clutter and cognitive 

load are the density of the objects and their proximity to the vehicle. As the number of 

objects in the driving environment increases, the amount of information that needs to be 

processed by the driver also increases, thus increasing the driver’s cognitive load. Further, 

near objects present a greater risk to the driver than more distant objects. To measure these 

two important parameters, a CCF was estimated for each frame using Equation 4.1. 

CCF = Σ(1/objdistance)          - Equation 4.1 

Where objdistance = distance of the object from the autonomous vehicle (feet) 

 

The inverse distance assignments allowed scene elements to be weighted in 

descending order, with near objects receiving higher weights and more distant objects 

having lower weights. This accounted for the limited reaction time associated with objects 

that are nearer to the driver’s vehicle. The summation of these inverse distance assignments 

for objects in the driving environment accounted for the total number of objects in the 

scene, i.e., object density. The scene CCF was estimated for each frame considering all the 

objects. Additionally, CCF was estimated for the COV filter in each frame. This provided 

an estimate of complexity within the driver's COV. Statistical quartiles for the total sample 

were estimated for the entire scene CCF and for CCF within the COV. A frame was 

categorized as high if the CCF > 75th percentile, medium if CCF was in inter-quartile-

range between 25th percentile & 75th percentile, and low if CCF was less than 25th 
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percentile, respectively. All the frames were assigned a high, medium, or low category 

based on the scene CCF's respective quartile range.  

The analysis provided a frame-by-frame comparison of contextual complexity based upon 

the density of objects and their proximity to the autonomous vehicle as represented by the 

CCF. All trips were categorized as high, medium, or low-complexity trips based upon the 

statistical mode of the trip's CRF category.  

Figure 4.4 provides an example of three such trips categorized as low, medium, and 

high-contextual complexity trips. The figure consists of a 2x3 matrix of complexity plots. 

Each column contains two graphs of an individual trip. The left column is for a low-

complexity trip, the middle column is for a medium- complexity trip, and the right column 

is for a high-risk trip. The x-axis represents time in seconds. The y-axis describes the CRFs. 

The top row illustrates CCF for the entire scene, and the bottom row displays CCF within 

the COV. The corresponding video of each of these trips is provided in the respective 

hyperlinks (High link.link; Medium link.link; Low link.link).  

https://drive.google.com/file/d/1AHWzueTL9Ppsxe_C8La9phkr21HpHAcb/view?usp=sharing
https://drive.google.com/file/d/1IpHJwWWMS0cKSubzvrnP5avk9PW4GscV/view?usp=sharing
https://drive.google.com/file/d/1IpHJwWWMS0cKSubzvrnP5avk9PW4GscV/view?usp=sharing
https://drive.google.com/file/d/1PA1yrszUcM5TpNREmb0RJoA_0IKh7m2X/view?usp=sharing
https://drive.google.com/file/d/1PA1yrszUcM5TpNREmb0RJoA_0IKh7m2X/view?usp=sharing


 

74 

 

 

 

Figure 4.4. CCF plots for high, medium, and low-complexity trips (velocity >0.1 mph and <= 35mph) 
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The upper right plot in Figure 4.4 shows a high-complexity trip on a 2-lane urban 

road in an ultra-urban area. The trip predominantly consisted of a high density of objects 

close to the vehicle. The trip started with a medium-complexity context for 3 seconds and 

transitioned into a high-complexity context for the remainder of the trip. After 3 seconds, 

the vehicle entered an intersection with many vehicles, pedestrians, and bicyclists, thus 

elevating the CCF. After traversing the intersection, the vehicle entered another 2-lane 

urban road with curbside parking, moving vehicles and pedestrians nearby, maintaining an 

elevated CCF. The bottom right plot shows the resulting CCF within the driver's COV. The 

CCF within the driver's COV (bottom right plot in Figure 4.4 and the overall CCF of the 

scene (top right plot in Figure 4.4) vary greatly. This is because many objects fall within 

the driver's COV at the start of the trip as the vehicle traversed the intersection, making it 

high complexity for the driver. The contextual complexity in the driver's COV later 

diminished to a medium and then a low complexity as the vehicle decelerated and came to 

a standstill (between 15-17 seconds). 

The medium-complexity trip (middle top and bottom plots in Figure 4.4 consisted 

of an urban multi-lane highway with a center two-way-left-turn lane. At the start of the 

trip, there were a few objects in the scene, making it a low-complexity environment. At the 

2-second mark, pedestrians and bicyclists prepared to cross the road and were detected, 

which elevated the complexity gradually to medium as the vehicle advanced. This trend is 

noticeable in the top middle plot. The corresponding CCF within the driver’s COV also 

intensified to a high-complexity, which is represented in the bottom middle plot. 
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The low-complexity trip was comprised of vehicles driving on a local neighborhood 

road with no moving vehicles, pedestrians, or bicyclists. The entire scene complexity 

remained low for a significant part of the trip. On the contrary, the CCF within the COV 

remained at medium complexity throughout the trip except at the beginning when the 

vehicle accelerated from standing still. 

Based on the visual inspection of the trips, the three examples (high, medium, and 

low) accurately characterized the contextual complexity of the driving environment. Table 

4.2 below provides the ranges for all critical variables to classify into appropriate 

complexity categories.  

Table 4.2., Critical variables and their complexity class ranges.  

Dynamic Variables High Medium Low 

Velocity (mph) 0-40 0-66 0-67 

Object Density 44-282 8-64 0-53 

Object Distance (feet) 89-196 38-143 0-337 

 

The statistical modeling approach satisfactorily represents the contextual 

complexity of the driving environment. However, one impediment of the methodology is 

that the quartiles do not paint the picture with sufficient granularity. It can be seen from 

Table 4.2 that the variables overlap between different complexity classes. To overcome 

this, a machine learning approach using an unsupervised clustering method was tested, 

which is discussed in the next section.  
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4.1.2. Machine Learning Approach 

This section explains the approach using an unsupervised clustering analysis to build a 

model to classify complexity accurately. Specifically, k-means were used for clustering 

and hierarchical clustering algorithms to building the model.  

 

Figure 4.5 and 4.6 show the statistical distribution of the critical variables chosen for 

modeling. Figure 4.5 provides the histograms of the variables, while Figure 4.6 

demonstrates the density of the data points.  
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Figure 4.5, Histogram of different attributes from Waymo Autonomous Vehicle Data 
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Figure 4.6, Density plots of different attributes from the AV data  
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It is evident from the density plots in Figure 4.6 that the data for different variables are not 

uniformly represented. For example, velocity, stopping sight distance, and object density 

are skewed towards the left (i.e., more samples are available). This is because a substantial 

number of frames included vehicles at a standstill when the data were collected in urban 

and ultra-urban settings with stop-and-go traffic. The SSD and COV were also zero at zero 

speed, which resulted in oversampling. In the statistical approach, this data was clipped to 

eliminate the bias. However, in the machinel learning approach a consolidation technique 

was applied which is explained further. 

 

Most machine learning algorithms developed for classification were designed to 

assume an equal number of samples for each class. Using highly skewed or imbalanced 

data results in poor classification performance models (Krawczyk, 2016). This is true for 

k-means and hierarchical clustering algorithms used for clustering model. The skew can be 

mitigated in two ways:  

1. Undersampling of the over-represented class 

2. Oversampling of the under-represented class 

 

An undersampling approach was considered for these analyses. The LiDAR frames 

are represented as a factor of time, i.e., the point cloud was collected at a frequency of 10 

Hz/Second. Thus, every trip of 20 seconds has 200 frames of LiDAR point cloud data. 

Since substantial LiDAR frames were collected at a very low or zero speed, a logical 

https://www.zotero.org/google-docs/?h7RF6C
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solution was to aggregate the data by distance. An aggregation distance of 10, 20, and 30 

feet were considered for normalizing the data.  

 

Figure 4.7 shows the normality plots for the variable velocity at different 

aggregation distances. The red line that extends diagonally on the chart is a theoretical 

normal curve plot. The thick blue dots below the theoretical normal curve (see the red-line) 

represents the normal curve of the Waymo data. The top left plot exhibits the normality 

plot for unaggregated data (i.e., 0 feet aggregation). The top right plot represents 10 feet 

aggregation, the bottom left displays 20 feet aggregation, and the bottom right shows 30 

feet aggregation. It is evident from the graphs that the raw data has a lot of frames clustered 

at a velocity of zero. At 10 feet aggregation, this improves, and more points move towards 

the theoretical normal curve. Further, this condition improves at both 20- and 30- feet 

aggregation, and the sample more closely resembles a normal curve. Subsequent 

consolidations did not improve the normality of the dataset. Thus, a consolidation distance 

of 30 feet was selected for use for the model development. 



 

82 

 

 
Figure 4.7. Normality plots for different aggregate distances 
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Figure 4.8. Density plots for different aggregation distances 
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Figure 4.8 demonstrates density curves at different levels of data consolidation. The 

aggregation reduced the number of zero velocity frames from the analysis while 

simultaneously increasing the number of high-velocity frames. There is a noticeable 

change in the data distribution between the unaltered dataset (i.e., 0 feet consolidation) and 

30 feet consolidation. Although the density distribution of the dataset looks less than the 

ideal curve characteristic of a normal curve, the data is closer to representing data between 

all the classes.  

 

Identifying optimal aggregation distance is crucial for model development. Excess 

consolidation reduces the sample size significantly, rendering it insignificant for model 

development. On the other hand, insufficient consolidation retains the bias in the data, 

resulting in poor model performance. Figure 4.9 shows the plot of the sample size at 

different consolidation distances. Table 4.3 represents the same in tabular format. It can be 

observed that as the consolidation distance increases, the sample size reduces. At 30 feet 

aggregation, the sample size is 11003 frames. Further consolidation did not yield any 

improvement in the distribution of the samples. Thus,  consolidation of 30 feet and sample 

size of 11003 was considered for building the unsupervised clustering model. 
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Table 4.3. Data size at different aggregation distances 

Aggregation Distance Sample Size 

0 158090 

10 29964 

20 15851 

30 11003 

 

4.1.2.1. Feature selection 

The variables that we use to train the machine learning models greatly influence the 

performance of the models. Irrelevant or partially relevant features can negatively impact 

model performance. The author performed principal component analysis (PCA) to identify 

the most important variables. Figure 4.10 and Table 4.4. below present the variables and 

their explained variance.    

Figure 4.9. Data size at different aggregation distances 
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Table 4.4. PCA analysis results 

Attributes Explained variance 

velocity 0.8818025176 

obj_density_video 0.0047732978 

obj_density_lidar 0.0034133763 

mean_proximity 0.0011882991 

inv_dist_sum 0.0002242688 

objs_within_ssdcov 0.0000621344 

inv_dist_sum_within_ssdcov 0.0000029339 

dist_trav 0.0000023591 

cum_dist 0.0000017586 

weather_rain 0.0000009873 

weather_sunny 0.0000001214 

location_other 0.0000001191 

location_phoenix 0.0000000364 

 

Based upon the PCA analysis, the top 5 most critical variables are listed below in 

decreasing order of importance:  

1. velocity: velocity of the vehicle 

2. obj_density_video: total number of objects captured in the video camera 

3. obj_density_lidar: total number of objects captured in the lidar point cloud 

4. mean_proximity: mean distance of all the objects from the vehicle 

5. objects_within_COV: total number of objects captured within the COV
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Figure 4.10. Principal Component Analysis Results 
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While PCA analysis identified the most important variables, it is also essential to identify 

the interaction between the variables. Table 4.5. shows the Pearson correlation coefficients 

between the variables. Green cells indicate a high positive correlation, and red cells indicate 

a high negative correlation. The variable “velocity” is highly correlated with variables 

“obj_density_lidar” and “obj_density_video.”  Velocity and total objects in LiDAR are 

negatively correlated, indicating that the total number of objects decreases as the velocity 

increases. On the other hand, “velocity” is positively correlated with “mean_proximity,” 

indicating an increase in vehicle speed also increases the proximity of the surrounding 

vehicles. The proximity and density of the objects are weakly correlated.  

 

Table 4.5. Correlation coefficients of variables 

Pearson_Correlation

_Coeff velocity 

obj_density_

video 

obj_density

_lidar 

mean_pr

oximity objects_within_COV 

velocity 1 -0.2687 -0.4119 0.4139 0.5682 

obj_density_video -0.2687 1 0.8036 0.0053 0.0689 

obj_density_lidar -0.4119 0.8036 1 -0.1196 0.0927 

mean_proximity 0.4139 0.0053 -0.1196 1 0.2134 

 

From PCA and correlation results following variables are selected for clustering analysis:  

1. velocity: This is the single most important variable with the highest variance that 

can be quantified and explained. Velocity also shows excellent interaction between 

other important variables (i.e., object density and proximity) 

2. obj_density_lidar: Although PCA analysis ranked this variable below 

“obj_density_video,” it shows superior correlation with velocity (Table 4.5). 
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Adopting the above variable will produce better model results because of its 

enhanced interaction.  

3. mean_proximity: proximity to the nearest object is ranked fourth in the priority list 

captured from PCA analysis. It also demonstrates a significant correlation with the 

key variable “velocity.  

 

Based on the inferences mentioned above, the author considered “velocity”, 

“object_density_lidar,” and “mean_proximity” to build the clustering model.  

 

4.1.2.2. Clustering Analysis 

Identifying an optimal number of clusters is essential for building a clustering model. 

However, for the intended audience of this research, i.e., DRSs, the author wanted to know 

how the clustering model would segregate the trips at different cluster values. The author 

used the elbow method to identify an ideal number of clusters through the distortion plots. 

The distortion is the sum of squares of points from cluster centers. It decreases with 

increasing clusters and becomes zero when the number of clusters equals the number of 

points.  

Figure 4.11 shows the elbow line plot between cluster centers (x-axis) and the distortion 

(y-axis). The cluster centers range from a minimum of two to a maximum of 14 clusters. 
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Ideal Cluster Range 

Figure 4.11. Distortion Plots from Clustering Analysis 
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The Elbow method indicates an optimal number of clusters for the model. It is generally 

identified at locations with an abrupt change in the slope of the line. The first abrupt change 

is observed at cluster 3; however, the distortion is still very high, indicating more separation 

possibility. Next, the difference is observed at clusters four, five, and six, after which the 

slope changes are barely noticeable. Anything less than four does not capture all the distinct 

grouping due to high distortion. Everything above six leads to too many groups and does 

not produce a notable reduction in distortion. Thus, the author considers an ideal cluster 

modeling spectrum ranges between four and five. Appendix A lists all 3D mesh plots for 

different cluster centers.  

 

As emphasized earlier, the intended application of this research is to build a suitable and 

sufficient method for the DRS community to categorize contextual complexity. Despite the 

ideal cluster spectrum range of four to six, the author considered adopting results with three 

clusters. A value of three is also simple to categorize as High, Medium, and Low 

complexity categories.   

 

Figure 4.12 below shows clustering results for k-means and hierarchical clustering methods 

for three cluster centers. The cluster groups are labeled zero, one, and two. Velocity is on 

the x-axis, object density is on the y-axis, and mean proximity is on the z-axis. Figure 4.13 

compares cluster distribution between k-means and hierarchical clustering. 
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Figure 4.12. K-means Vs. Hierarchical Clustering  
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Figure 4.13. K-means vs. Hierarchical clustering - distribution of points 

 

The Rand index was estimated to measure the similarity between k-means and hierarchical 

clustering models. Rand Index is a ratio of the number of pairs in agreement to the total 

number of pairs between two clusters and is represented by equation 4.1. Table 4.6 shows 

the Rand index comparison.  

 

𝑅𝐼 =  
𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑎𝑖𝑟𝑠 𝑖𝑛 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑖𝑟𝑠
  Equation 4.1  
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Table 4.6. Rand Index for k-means and hierarchical clustering.  

Rand Index K-Means Hierarchical 

K-Means 1 0.7486 

Hierarchical 0.7486 1 

 

From Figures 4.12 and 4.13, it is evident that k-means and hierarchical clustering results 

look identical. The k-means clustering boundaries look continuous and fluid compared to 

the hierarchical clustering boundaries. The edges are sharp and wrinkled in the case of 

hierarchical clustering (Figure 4.12). From Figure 4.13, the number of points in each cluster 

grouping is indistinguishable, with marginal differences for clusters zero and one. The Rand 

index for k-means and hierarchical is 0.7486, which shows considerable resemblance. Since 

the models are identical, choosing either one of them would be acceptable. The author looked 

into the literature to identify any methodological nuances that would assist in selecting a model. 

Hierarchical clustering does not work as well as k-means clustering when the shape of the 

clusters is hyperspherical, i.e., circle in 2-dimension or a sphere in 3-dimension. The data we 

are using for modeling is not spherical in the structure; thus, the k-means clustering model has 

a superficial edge over the hierarchical clustering model, even though technically both are 

similar. Therefore the author chooses to consider the k-means clustering model to determine 

ranges for dynamic complexity determination.  
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4.1.2.3. Cluster Centers and Corresponding Dynamic Complexity  

Understanding the parameters of the cluster grouping is essential for assigning a contextual 

complexity. The author chose three cluster center models because it will be easier to 

categorize into three distinct categories: high, medium, and low complexity. The k-means 

clustering model in Figure 4.12  displays three groups with labels zero, one, and two. 

Velocity is represented on the x-axis, object density on the y-axis, and proximity on the z-

axis. Table 4.7. shows the cluster characteristics and their corresponding complexity rank. 

Cluster groups and the interpretation behind the assignment of complexity rank are 

elucidated below:  

 

● Cluster zero: cluster group zero includes locations with low velocity and low 

density of objects compared to the other two groups. Cluster zero is also relatively 

safe due to the low density of objects and low speeds. In other words, these are 

areas with less traffic and speed. Due to these characteristics, cluster zero represents 

a low complexity environment.  

● Cluster one: cluster group one includes locations with relatively high velocity, low-

medium object density, and low-to-high proximity of objects. The areas classified 

in this group are more complex compared to cluster group zero. Hence, cluster one 

represents a “medium-complexity” environment.  

● Cluster two: cluster group two includes areas with high object density and 

proximity. Broadly these locations have increased traffic which is tightly packed. 

They might represent locations in central business districts with increased activity. 
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Compared to the other two groupings, these locations present a relatively 

complicated driving context. Thus, cluster two represents areas with a “high-

complexity” environment.  

 

Table 4.7. Cluster group characteristics and their complexity rank 

Cluster Group 

Characteristics 
Complexity 

Rank 
Velocity Object Density Object Proximity 

0 low-to-medium low-to-medium low-to-medium Low 

1 medium-to-high low-to-medium medium-to-high Medium 

2 low-to-medium medium-to-high medium-to-high High 

 

4.1.2.4. Dynamic ranges of attributes for complexity categorization 

Adopting the results from the clustering analysis, the author further built the complexity 

ranges for the attributes (i.e., velocity, object density, and object proximity). Table 4.8 

shows the computation of complexity ranges for each variable to categorize into low, 

medium, and high. Table 4.9 shows only the complexity ranges without other statics used 

for calculation.  
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Table 4.8. Attributes and their dynamic complexity ranges 

 

Attributes 
Dynamic Complexity 

Low Medium High 

Velocity (mph) 

mean 6.1 18.98 16.55 

std 11.07 9.02 8.76 

mean-2*std 0 1 0 

mean+2*std 28 37 34 

Object count 

mean 27.09 34.78 114.12 

std 19.41 18 37.32 

mean-2*std 0 0 39 

mean+2*std 66 71 189 

Object Proximity 

(feet) 

mean 168.72 136.63 148.16 

std 20.27 17.5 16.81 

mean-2*std 128.18 101.63 114.54 

mean+2*std 209.26 171.63 181.78 

 
 

Table 4.9. Dynamic complexity ranges for attributes.   

Dynamic 

Complexity Velocity (mph) Object count  

Object Proximity 

(feet) 

Low 0-28 0-37 0-34 

Medium 0-66 0-71 39-189 

High 128-209 101-172 115-182 

 

Velocity and object count are comparably easy to collect by DRSs; however, object 

proximity is virtually impossible to measure manually. Velocity can be obtained from the 
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vehicle's dashboard, which will be the vehicle's true speed. The DRSs can also obtain the 

object count relatively easily by counting the number of objects on their testing route.   
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4.2. Static Risk Model 

The author analyzed all the critical variables listed in the Highway Safety Manual for urban 

and suburban highways. Tables 4.10 to 4.15 list all the variables for the roadway segments. 

Tables 4.16 to 4.23 shows groups of variables for intersections and their risk classification. 

Within each table, there are five columns. The first column catalogs the variable and its 

assortments. The “Max” and “Min” columns consist of estimated annual crash rates. The 

“Difference” column represents the range in the annual crash rate. Higher the value, the 

greater the sensitivity and risk. The last column, “Risk,” exhibits the risk designations for 

the different variations of the attribute type.  

 

The author chose high, medium, and low category levels to represent the risk. The 

statistical quartiles obtained from the “Difference” column define the risk boundaries. 

Static variables below the 25th percentile are “low” risk, above 75th percentile are “high” 

risk, and everything in the inter-quartile range are classified as “medium” risk.  

 

The DRSs can refer to these tables and the risk boundaries to categorize the static variables 

of their routes.  
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Table 4.10. Static risk of a road type.   

Roadway Type 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

2 lane Undivided 7.86 0.20 7.66 LOW 

3 lane with Center Turn Lane 8.31 0.38 7.93 LOW 

4 lane undivided 10.24 0.55 9.69 MEDIUM 

4 lane divided 13.59 0.69 12.90 MEDIUM 

5 lane with Center Turn Lane 20.85 1.42 19.43 HIGH 

 

Table 4.11. Static risk of an on-street parking type.  

On-Street Parking 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

None 0.00 0.00 0.00 LOW 

Parallel (Residential) 5.16 4.69 0.47 LOW 

Parallel (Commercial) 8.01 4.69 3.32 MEDIUM 

Angle (Residential) 12.07 4.69 7.38 MEDIUM 

Angle (Commercial) 18.79 4.69 14.10 HIGH 

 

Table 4.12. Static risk of roadway lighting.  

Lighting 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

Not Present 4.69 4.69 0.00 High 

Present 4.30 4.69 0.39 LOW 
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Table 4.13. Static risk of fixed object distance from the roadway.  

Fixed Object Offset (feet) 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

30 4.69 4.69 0.00 LOW 

25 4.69 4.69 0.00 LOW 

20 4.71 4.69 0.02 MEDIUM 

15 4.75 4.69 0.06 MEDIUM 

10 4.82 4.69 0.13 HIGH 

5 4.98 4.69 0.29 HIGH 

 

Table 4.14. Static risk of median width 

Median Width (Feet) 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

0 3.60 3.60 0.00 HIGH 

10 3.63 3.60 0.04 HIGH 

15 3.60 3.60 0.00 HIGH 

20 3.56 3.60 -0.04 MEDIUM 

30 3.52 3.60 -0.07 MEDIUM 

40 3.49 3.60 -0.11 MEDIUM 

50 3.45 3.60 -0.14 MEDIUM 

60 3.42 3.60 -0.18 MEDIUM 

70 3.38 3.60 -0.22 MEDIUM 

80 3.34 3.60 -0.25 LOW 

90 3.34 3.60 -0.25 LOW 

100 3.31 3.60 -0.29 LOW 

 

 

Table 4.15. Static risk of auto speed enforcement.  

Auto Speed Enforcement 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

Not Present 4.67 4.67 0 HIGH 

Present 4.45 4.67 0.215 LOW 
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Table 4.16. Static risk of intersection type. 

Intersection Type 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

3 approach Signalized 11.31 0.56 10.75 MEDIUM 

3 approach Stop Control 8.47 0.30 8.17 MEDIUM 

4 approach Stop Control 7.21 0.69 6.53 LOW 

4 approach Signalized 23.58 1.36 22.22 HIGH 

 

Table 4.17. Static risk of intersection lighting.  

Intersection Lighting 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

Not Present 9.99 9.99 0.00 HIGH 

Present 10.98 9.99 0.99 LOW 

 

Table 4.18. Left turn lanes and their static risk. 

Approaches with Left Turn Lanes 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

0 10.98 7.25 3.73 HIGH 

1 9.88 7.25 2.64 MEDIUM 

2 8.89 7.25 1.65 MEDIUM 

3 8.02 7.25 0.77 LOW 

4 7.25 7.25 0.00 LOW 

 

Table 4.19. Right turn lanes and their static risk. 

Approaches with Right Turn Lanes 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

0 10.98 9.33 1.65 HIGH 

1 10.54 9.33 1.22 MEDIUM 

2 10.12 9.33 0.79 MEDIUM 

3 9.71 9.33 0.39 LOW 

4 9.33 9.33 0.00 LOW 
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Table 4.20. Left turn signal phasing and their static risk. 

Approaches with Left Turn Signal 

Phasing 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

0 10.98 10.76 0.22 HIGH 

1 10.98 10.76 0.22 HIGH 

2 10.87 10.76 0.11 HIGH 

3 10.76 10.76 0.00 LOW 

4 10.76 10.76 0.00 LOW 

 

 

Table 4.21. Signal phasing type and their static risk.  

TYPE OF SIGNAL PHASING 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

Permissive 11.09 10.43 0.67 HIGH 

Protected 10.43 10.43 0.00 LOW 

Protected/Permissive 10.98 10.43 0.56 MEDIUM 

Permissive/Protected 10.98 10.43 0.56 MEDIUM 

 

 

Table 4.22. Approaches with right-turn-on-red (RTOR) restrictions and their risk.  

Approaches with RTOR Prohibited 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

0 10.98 10.13 0.85 HIGH 

1 10.76 10.13 0.63 MEDIUM 

2 10.55 10.13 0.42 MEDIUM 

3 10.33 10.13 0.21 LOW 

4 10.13 10.13 0.00 LOW 
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Table 4.23. Risk of intersections with/without red-light running cameras 

Intersection Redlight Running 

Cameras 

Max 

(crashes/yr) 

Min 

(crashes/yr) 

Difference 

(crashes/yr) Risk 

Not Present 10.98 10.98 0 HIGH 

Present 11.11 10.98 0.13 LOW 

 

 

Table 4.24 and 4.25 below display the results of sensitivity analysis of all the significant 

variables listed in the Highway Safety Manual for urban and suburban roadways. The variables 

are ranked based upon the sensitivity weights. The roadway segment type, on-street parking, 

and lighting are the top three most important variables for urban and suburban roadways (Table 

4.24).  Intersection type, presence of lighting, and the number of approaches with left-turn 

lanes are the three most important variables that define the risk of urban/suburban intersections 

(Table 4.25).  

 

Table 4.24.Sensitivity of roadway segment variables and their importance rank 

Segment Attributes Max Sensitivity Weights Rank 

Road Type 19.4320 0.5598 1 

Type of on-Street Parking 14.1000 0.4062 2 

Lighting 0.3880 0.0112 3 

Fixed object density 0.2870 0.0083 4 

Median 0.2880 0.0083 6 

Auto Speed Enforcement 0.2150 0.0062 5 
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Table 4.25. Sensitivity of intersection variables and their importance rank.  

Intersection Attributes Max Sensitivity Weights Rank 

Intersection Type 22.2200 0.7801 1 

Lighting -0.9900 -0.0348 4 

# Approachs with LT Lane 3.7330 0.1311 2 

# Approaches with Right Turn Lane 1.6540 0.0581 3 

# Approaches with Left Turn Phasing 0.2190 0.0077 6 

Types of Signal Phasing 0.6660 0.0234 6 

Approaches with RTOR Prohibited 0.8530 0.0299 5 

Intersection Redlight Cameras 0.1270 0.0045 8 

 

The priority list in Table 4.24 and 4.25 will serve as a tie-breaker when the frequency of risk 

for a segment/intersection is similar. For example, when the risk of  a given 

intersection/segment is a stalemate with an equal number of variables in high and low 

categories, the risk classification of the most important variables will be used to determine. .  

 

4.3. Absolute complexity Analysis 

Absolute complexity is the composite of both static risk and dynamic complexity. About 

nine trips were chosen to determine the absolute complexity. The absolute contextual 

complexity of each trip that includes static risk and dynamic complexity combined is 

further discussed. A video link of an actual Waymo trip along with object bounding boxes 

and total counts is included in the description of each trip. Appendix B includes tables for 

each trip’s sstatic risk analysis. This section provides concluding plots and tables derived 

from this detailed analysis.  
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4.3.1. Market St (Between 3rd and O’ Farrel)  

Market street is one of the busiest locations in the central business districts of San Francisco 

city. Figure 4.14 shows the location of the trip on Market Street that extends from 3rd street 

to O’Farrel street. The corresponding link to the video footage of the actual Waymo trip is 

provided in the hyperlink here.  

 

Figure 4.14. Trip location of Market St (Between 3rd and O’ Farrel), San Francisco, CA.  

 

This trip is carried out on an urban multilane undivided highway with a shared bus lane 

and a light rail track. It is evident/ from the video that there are plenty of pedestrians and 

bicycles in the vehicle's vicinity. Figure 4.15 shows the dynamic complexity plot for this 

https://drive.google.com/file/d/1yBNE7_0ROM8UBhmuMRol-AbZzhRe9Wh0/view?usp=sharing


 

107 

 

trip in addition to the graphs on the variation of density, proximity and velocity. The section 

was consistently rated “high” at every tenth of a second, indicating a busy driving context. 

additional graphs on the variation of density, proximity, and velocity for this trip.  

 

Figure 4.15. The dynamic complexity of trip on Market St (Between 3rd and O’ Farrel), 

San Francisco, CA.  
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This trip passes through two intersections on each end of the trip and a segment in-

between. Table 4.26 presents the static risk results of the trip. Both the intersections and 

the segment were categorized as “high.” Table B.1 to B.3 in Appendix B presents a detailed 

analysis of this trip's components (i.e., segments and intersections).  

 

Table 4.26. Static risk of trip on Market St (Between 3rd and O’ Farrel), San Francisco, 

CA.  

TRIP 1: Market Street (Between 3rd & O'Farrel Street) 

Segment/Intersection Name High Medium Low Static Risk 

Market Street 3 2 1 High 

Market Street @ 3rd Street 7 0 1 High 

Market Street @ O'Farrel 

Street 5 2 1 High 

Absolute Static risk 15 4 3 High 

 

Since the dynamic complexity and static risk were both categorized as “high” the absolute 

complexity of this trip is “high”.  

 

4.3.2. Market St (Between 16th and 17th Street)  

This trip is on another section of the busy Market street between 16th and 17th Streets in 

the central business districts of San Francisco city. Figure 4.16 shows the location of the 

trip. The corresponding link to the video footage of the Waymo trip is included in the 

hyperlink here. The trip starts at Market Street and 16th Street intersection, traverses on an 

urban multilane-divided highway, and ends at Market Street and 17th Street.  

https://drive.google.com/file/d/1_FYBncoF1mJrqGH7_ij0Bfc1FfaOJoG7/view?usp=sharing
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Figure 4.16. Trip location of Market St (Between 16th and 17th), San Francisco, CA.  

 

Figure 4.17 presents the dynamic complexity plot. The entire trip is designated as a low 

dynamic complexity trip as it remains in that class for the entire length.  
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Figure 4.17. The dynamic complexity of the trip on Market St (Between 16th and 17th 

Street), San Francisco, CA. 

 

On the other hand, the absolute static risk of the trip is classified as “high.” The trip 

traverses through two intersections (Market Street @ 16th Street and Market Street @ 17th 
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Street) and a segment in-between (Market Street). Table 4.27 lists the static risk results of 

the trip. Both the intersections and the segment are classified as “high” risk.  

 

Table 4.27. Static risk of trip on Market St (Between 16th and 17th Street), San 

Francisco, CA.  

TRIP 2: Market Street (Between 16th & 17th) 

Segment/Intersection Name High Medium Low Static Risk 

Market Street 4 1 1 High 

Market Street @ 16th Street 6 1 1 High 

Market Street @ 17th Street 4 1 3 High 

Absolute Static Risk 14 3 5 High 

 

The dynamic complexity of this trip is “low”. The static risk is “high”. Thus, the absolute 

complexity of this trip is earmarked as “medium.”  

 

4.3.3. Mission Street (between 22nd and 23rd Street)  

This trip is on Mission Street between 22nd and 23rd Streets in the central business districts 

of San Francisco city. Figure 4.17 shows the location of the trip. The corresponding link to 

the video footage of the Waymo trip is included in the hyperlink here. The trip starts in the 

middle of Mission Street and ends at the 23rd Street intersection.  Mission street is an urban 

two-lane undivided road with a dedicated bus lane.  

 

 

https://drive.google.com/file/d/1Zsyv-KmxdlWNVmdoyqW0wRQA7hDCDz77/view?usp=sharing
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Figure 4.18. Trip location of Mission Street (between 22nd and 23rd Street), San 

Francisco, CA.  

 

Figure 4.19 presents the dynamic complexity plot. The entire trip is designated as a high 

dynamic complexity as it remains in that class for the entire length.  
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Figure 4.19. The dynamic complexity of trip on Mission Street (between 22nd and 23rd 

Street), San Francisco, CA. 

 

This trip consists of one intersection and a segment. Table 4.28 presents the static risk 

results of the trip. The intersection and the segment were categorized as a ‘high” risk. 
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Table B.7 and B.8 in Appendix B presents a detailed analysis of this trip’s components 

(i.e., segments and intersections).  

 

Table 4.28. Static risk of trip on Market St (Between 16th and 17th Street), San 

Francisco, CA. 

TRIP 3: Mission St (Between 22nd & 23rd) 

Segment/Intersection Name High Medium Low Static Risk 

Mission Street 3 1 2 High 

Mission St @ 23rd St 5 1 2 High 

Absolute Static Risk 8 2 4 High 

 

The dynamic complexity and static risk were both categorized a “high.” Thus, the 

absolute complexity of this trip is also designated as a “high.”  

4.3.4. Folsom Street (between 3rd & Mabini Street)  

This trip is on Folsom Street between 3rd and Mabini Streets in the central business 

districts of San Francisco city. Figure 4.20 shows the location of the trip. The 

corresponding link to the video footage of the Waymo trip is included in the 

hyperlink here. The trip starts at Mabini Street and Folsom Street intersection, 

traverses on an urban multilane highway, and ends at Folsom Street and 3rd Street 

intersection.  

 

 

 

https://drive.google.com/file/d/1XfP-KK_f-Y3YuY6fBFujVh8V3spviHuH/view?usp=sharing
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Figure 4.20. Trip location of Folsom Street (between 3rd & Mabini Street), San 

Francisco,  

 

Figure 4.21 presents the dynamic complexity plot. The trip starts with a low 

complexity environment for the first second, then shifts into a high complexity 

environment.  
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Figure 4.21. The dynamic complexity of the trip on Folsom Street (between 3rd & 

Mabini Street), San Francisco, CA. 

 

This trip consists of two intersections (Folsom Street @ 3rd Street and Folsom Street @ 

Mabini Street) and a segment. Table 4.29 presents the static risk results of the trip. The 

Folsom Street segment was classified to be a “high-risk.” Folsom Street and 3rd Street 
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intersection was categorized as a “high-risk” intersection. However, the other intersection 

of Folsom and Mabini Street was designated to be “low-risk.”  Table B.9 to B.11 in 

Appendix B presents a detailed analysis of this trip’s components (i.e., segments and 

intersections).  

 

Table 4.29. Static risk of trip on Folsom Street (between 3rd & Mabini Street), San 

Francisco, CA. 

TRIP 4: Folsom St (Between 3rd st & Mabini St) 

Segment/Intersection Name High Medium Low Static Risk 

Folsom Street 3 1 2 HIGH 

Folsom Street @ 3rd Street 5 0 3 HIGH 

Folsom Street @ Mabini Street 2 1 5 LOW 

Absolute Static Risk 10 2 10 HIGH 

 

4.3.5. 26th street (between Guerrero St & Valencia Street)  

This trip is on 26th Street between Guerrero Street and Valencia Street in San 

Francisco city. Figure 4.22 shows the location of the trip. The corresponding link to the 

video footage of the Waymo trip is included in the hyperlink here. The trip starts at the 

intersection of 26th and Valencia Stree and ends at 26th and Guerrero Street. The 26th 

Street segment is a multilane-divided highway facility.  

 

https://drive.google.com/file/d/1cBQF9QWi59MvO-LJhJG6YFXyb2q_Lvtj/view?usp=sharing
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Figure 4.22. Trip location of 26th street (between Guerrero St & Valencia Street) , San 

Francisco, CA. 

Figure 4.23 presents the dynamic complexity plot. Approximately half of the trip 

at the beginning till the 11-second point is classified as a low-complexity and rest of the 

trip switches into a “high” complexity environment. Since the trip splits between the low 

and high categories, the dynamic complexity is designated to be the average, i.e., 

“medium” complexity.  
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Figure 4.23.  The dynamic complexity of the trip on 26th street (between Guerrero St & 

Valencia Street), San Francisco, CA. 

 

This trip consists of two intersections and a segment. Table 4.30 presents the static risk 

results of the trip. The segment (26th Street)and an intersection (26th Street and San Jose 

Avenue) were categorized as “medium” risk. The intersection of 26th Street and Guerrero 
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Street intersection was classified into a “high” risk category. Table B.11 to B.13 in 

Appendix B presents a detailed analysis of this trip’s components (i.e., segments and 

intersections). The absolute static risk of this trip was categorized as “medium-risk” as two 

out of three static components were recognized in that category.  

 

Table 4.30. Static risk of trip on 26th street (between Guerrero St & Valencia Street), San 

Francisco, CA.  

TRIP 5: 26th St (Between Guerrero St & Valencia St) 

Segment/Intersection Name High Medium Low Static Risk 

26th Street 2 3 1 MEDIUM 

26th st @ Guerrero St 6 1 1 HIGH 

26th St @ San Jose Ave 2 2 0 MEDIUM 

Absolute Static Risk 10 6 2 MEDIUM 

 

The absolute complexity of this trip is “medium” as both dynamic complexity and 

static risk belong to that category.  

 

4.3.6. 19th Street (Between Yukon and Seward Street) 

This trip is on 19th Street between Yukon Street and Seward Street in a residential 

neighborhood in San Francisco city. Figure 4.24 shows the location of the trip. The 

corresponding link to the video footage of the Waymo trip is included in the hyperlink 
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here.

 

Figure 4.24. Trip location of 19th Street (Between Yukon and Seward Street), San 

Francisco, CA. 

 

Figure 4.25 presents the dynamic complexity plot. The entire trip is designated as 

low dynamic complexity as it remains in that class for the entire length.  

 

https://drive.google.com/file/d/1rF31GG7uterhy9phFiZ-5swqRVw3Ut1S/view?usp=sharing
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Figure 4.25. The dynamic complexity of trip on 19th Street (Between Yukon and Seward 

Street), San Francisco, CA. 

 

This trip consists of one intersection and a segment. Table 4.31 presents the static risk 

results of the trip. The intersections were categorized as “low-risk,” while the segment was 



 

123 

 

designated as “medium-risk.”  Table B.14 to B.16 in Appendix B presents a detailed 

analysis of this trip’s components (i.e., segments and intersections). 

 

Table 4.31. Static risk of trip on19th Street (Between Yukon and Seward Street), San 

Francisco, CA.  

TRIP 6: 19th St (Between Yukon St & Seward St) 

Segment/Intersection Name High Medium Low Static Risk 

19th Street 2 2 2 MEDIUM 

19th Street @ Yukon Street 2 0 2 LOW 

19th Street @ Seward Street 2 0 2 LOW 

Absolute Static Risk 6 2 6 LOW/MEDIUM 

 

The absolute complexity of this trip is “Low” as both dynamic and static were 

categorized into that category.  

 

4.3.7. Glenbrook Avenue (between Palo Alto Avenue and Mountain Spring Road) 

Glenbrook Avenue is  a two-lane local neighborhood road. This trip stretches   

between Palo Alto Avenue and Mountain Spring Road in San Francisco city. Figure 4.26 

shows the location of the trip. The corresponding link to the video footage of the Waymo 

trip is included in the hyperlink here.  

https://drive.google.com/file/d/1i5-qD7nXE52JfU3YB4LV9RsDMoIWVwS1/view?usp=sharing
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Figure 4.26. Trip location of Glenbrook Avenue (between Palo Alto Avenue and 

Mountain Spring Road), San Francisco, CA. 

 

Figure 4.27 presents the dynamic complexity plot. The trip traverses in a relatively 

low-complexity environment and switches to a medium-complexity at 16 seconds into the 

trip. The dynamic complexity of this trip is “low” as the majority of the trip time is used in 

that category.  
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Figure 4.27. The dynamic complexity of trip on Glenbrook Avenue (between Palo Alto 

Avenue and Mountain Spring Road), San Francisco, CA. 

 

This trip consists of two intersections and a segment. Table 4.32 presents the static risk 

results of the trip. Both intersection and the segment are classified as a “low-risk”.  Table 
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B.17 and B.18 in Appendix B presents a detailed analysis of this trip’s components (i.e., 

segments and intersections). The absolute static risk of this trip is “low-risk”. 

 

Table 4.32. Static risk of trip on Glenbrook Avenue (between Palo Alto Avenue and 

Mountain Spring Road), San Francisco, CA. 

TRIP 7: Glenbrook Avenue (Palo Alto Avenue & Mountain Spring Road) 

Segment/Intersection Name High Medium Low Static Risk 

Glenbrook Avenue 2 1 2 Low 

Glenbrook Ave @ Mountain Spring Road 2 0 2 Low 

Glenbrook Ave @ Palo Alto Ave 2 0 3 Low 

Absolute Static Risk 6 1 7 Low 

 

The absolute complexity of this trip is “low” as dynamic complexity and static risk fall 

into that category.  

4.3.8. Parkridge Drive (between Crestline Drive and Burnett Avenue)  

This trip is on Parkridge Drive between Crestline Drive and Burnett Avenue in San 

Francisco city. Parkridge Drive is a two-lane undivided local neighborhood road. Figure 

4.28 shows the location of the trip. The corresponding link to the video footage of the 

Waymo trip is included in the hyperlink here.  

https://drive.google.com/file/d/1NrwKzDmlpon6aQ5fhYuNZh39QpdtF5I9/view?usp=sharing


 

127 

 

 

Figure 4.28. Trip location of Parkridge drive (between Crestline Drive and Burnett 

Avenue), San Francisco, CA. 

 

Figure 4.29 presents the dynamic complexity plot. The entire trip is designated as 

low dynamic complexity as it remains in that class for the entire length.  
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Figure 4.29. The dynamic complexity of the trip on Parkridge drive (between Crestline 

Drive and Burnett Avenue), San Francisco, CA. 

 

This trip consists of two intersections and a segment. Table 4.33 presents the static risk 

results of the trip. The intersections, as well as the segment, were categorized as “low-risk.”  
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Table B.19 to B.21 in Appendix B presents a detailed analysis of this trip’s components 

(i.e., segments and intersections). 

 

Table 4.33. Static risk of trip on Parkridge drive (between Crestline Drive and Burnett 

Avenue), San Francisco, CA. 

TRIP 8: Parkridege Dr (Crestline Dr & Burnett Ave) 

Segment/Intersection Name High Medium Low Static Risk 

Parkridege Dr 1 0 3 Low 

Parkridge Dr & Crestline Dr 2 0 2 Low 

Parkridge Dr & Burnett Ave 2 0 2 Low 

Absolute Static risk 5 0 7 Low 

 

The absolute complexity of this trip is “low” as dynamic complexity and static risk fall 

into that category. 

 

4.3.9. 16th Avenue (between Lomita Avenue and Lawton Street)  

This trip is on 16th Avenue between Lomita Avenue and Lawton Street in San 

Francisco city. 16th Avenue is a two-lane undivided local neighborhood road. Figure 4.30 

shows the location of the trip. The corresponding link to the video footage of the Waymo 

trip is included in the hyperlink here.  

 

https://drive.google.com/file/d/1NrwKzDmlpon6aQ5fhYuNZh39QpdtF5I9/view?usp=sharing
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Figure 4.30. Trip location of 16th Avenue (between Lomita Avenue and Lawton Street), 

San Francisco, CA. 

Figure 4.31 presents the dynamic complexity plot. The entire trip is designated as 

low dynamic complexity as it remains in that class for the entire length.  
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Figure 4.31. The dynamic complexity of the trip on 16th Avenue (between Lomita 

Avenue and Lawton Street), San Francisco, CA. 

 

This trip consists of two intersections and a segment. Table 4.34 presents the static risk 

results of the trip. The intersections, as well as the segment, were categorized as “low-risk.”  
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Table B.19 to B.21 in Appendix B presents a detailed analysis of this trip’s components 

(i.e., segments and intersections). 

 

Table 4.34. Static risk of trip on16th Avenue (between Lomita Avenue and Lawton 

Street), San Francisco, CA. 

TRIP 9: 16th Ave (Lomita Ave & Lawton ST) 

Segment/Intersection Name High Medium Low Static Risk 

16th Avenue 1 0 3 Low 

16th & Lomita Avenue 2 0 2 Low 

16th & Lawton Street 2 0 2 Low 

Absolute Static Risk 5 0 7 Low 

 

The absolute complexity of this trip is “low” as dynamic complexity and static risk fall 

into that category. 
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CHAPTER FIVE  

CONCLUSION 

 

 

 

The goal of this research study was to develop a methodology to aid DRSs to measure and 

classify the contextual complexity of the routes used for on-road driving evaluations for 

medically-at-risk drivers considering both static and dynamic variables. The static  

variables (roadway type, median, lighting, etc.) were chosen from the Highway Safety 

Manual chapter on urban and suburban highways, which transportation engineers 

predominantly use to assess the safety of the roadway environment. Open source Waymo 

autonomous vehicle data was used to measure dynamic characteristics (object density, 

proximity, velocity, etc.) and develop a model. The on-road driving evaluation is 

considered to be the gold standard for testing and rehabilitation of medically-at-risk drivers. 

The product of this research was intended to build foundational work to build tools and 

methodology to measure the roadway context in order to enhance the consistency and 

validity of the on-road assessment procedures.  

The first objective of this research was to develop a dynamic contextual complexity model 

to measure and categorize the roadway environment appropriately from high to low risk. 

The dynamic complexity model was developed using two approaches i.e. statistical 

approach and the machine learning approach. The Contextual Complexity Factor Model 

developed using the statistical approach captures the density and proximity of the objects 

from the vehicle, which are the key parameters influencing the trip’s complexity. The 
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machine learning model included similar key parameters (i.e. object density, proximity, 

and velocity) and was equally proficient in predicting the dynamic complexity with 

justifiable truthfulness. This was evident as the dynamic complexity results from both the 

models closely correlated with the historical crash data. Trips where the dynamic 

contextual complexity was categorized as “high” were also the ones with higher crash totals 

that included severe injuries. Predominantly, locations with a high volume of pedestrians 

and bicyclists appeared to have a tendency to be in the high-risk. This is logical as 

pedestrians and bicyclists take less space and are placed closely, increasing the object 

density and proximity and consecutively increasing the complexity. However, this 

interpretation should be substantiated in a further scientific study with location data to 

extract historical crash experience information.  

The second objective of this dissertation was to build a static risk model to measure 

and categorize roadway environments into appropriate risk categories. The static 

contextual risk metrics were distilled from the Highway Safety Manual chapter on 

urban/suburban highways. The sensitivity analysis helped determine the most critical 

variables that affect the roadway's static risk. Furthermore, the results were utilized to 

define appropriate risk ranges to categorize the variables (i.e., high, medium, low). Each 

static variable is furnished with a table that includes fields/parameters to classify the 

variable into different risk levels. Static complexity is transferable compared to dynamic 

complexity.  
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The third objective of this research was to build an absolute contextual complexity 

model to measure and classify both dynamic and static characteristics of the driving 

environment. Static and dynamic complexity models were combined to construct absolute 

complexity, which illustrates the driving environment’s complexity. The static and 

dynamic complexities may not necessarily correlate with each other, but, together, they 

provide a comprehensive understanding of the driving environment’s complexity.  

The static and dynamic risk ranges were used to develop the numerical rating 

system that categories a given variable into high, medium, or low complexity. The risk 

levels for each variable and its ranges are presented in a tabular format for easy adoption 

by DRSs.  

 The contributions of this research go much broader than the field of driving 

rehabilitation. Identifying and predicting the risk of the driving environment can 

significantly benefit safety research, driver education, auto-insurance risk assessment, 

autonomous vehicle route planning, and many more. For example, this research could assist 

in the route planning of autonomous vehicles. Current autonomous vehicle route planning 

strategies do not consider scene complexity, making it more challenging for drivers to take 

control of the autonomous vehicle when needed. All the highway safety manual models 

are built on the historical data and do not have context associated with them. However, 

with the advent of autonomous vehicles and the technology to process complex sensor 

fusion data generated from them can assists in building safety models that consider 

contextual complexity. Addition of context would inform how many cars were there, their 
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proximity, and arrangement prior to the crash. Such information is currently missing from 

safety models. 
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Appendix A 

K-means and Hierarchical Clustering Plots 
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Front View 
Bottom View 

Back View 
Top View 

Figure A.1. K-means clustering (K=2) 
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Front View 
Bottom View 

Back View 
Top View 

Figure A.2. K-means clustering (K=3) 



 

148 

 

 

Front View 
Bottom View 

Back View Top View 

Figure A.3. K-means clustering (K=4) 
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View 

Back View Top View 

Figure A.4. K-means clustering (K=5) 
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Figure A.5. K-means clustering (K=6) 
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APPENDIX B  

Absolute Contextual Complexity Plots 
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B.1. Market Street (Between 3rd St and O'Farrel St) 

 

Table B.1. Static complexity analysis results of Market Street Segment.  

 

SEGMENTID 

segment-

4641822195449131669_380_000_400_000_with_camera_labels 

Market Street (Between 

3rd St and O'Farrel St)  Complexity 

Roadway Type 4U Medium 

On Street Parking Parallel Commercial Medium 

Median width (ft) 10 High 

Lighting Present Low 

Fixed Object Offset 5 High 

Auto Speed Enforcement Not Present High 

SEGMENT RISK  High 

 

 

Table B.2. Static complexity analysis results of intersection at Market Street and 3rd 

Street.  

 

Intersection: Market St @ 3rd St 

Intersection Type 4 Approach Signalized High 

Intersection Lighting Present Low 

Approaches with Left 

Turn Lanes 0 High 

Approaches with Right 

Turn Lanes 0 High 

Approaches with Left 

Turn Signal Phasing 0 High 

Type of Signal Phasing Permissive High 

Approaches RTOR 

Prohibited 0 High 

Intersection Red Light 

Running Not Present High 

INTERSECTION RISK  HIGH 
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Table B.3. Static complexity analysis results of intersection at Market Street & O’Farrel 

Street.  

Intersection: Market St @ O'Farrel St 

Intersection Type 3 Approach Signalized Medium 

Intersection Lighting Present Low 

Approaches with Left 

Turn Lanes 1 Medium 

Approaches with Right 

Turn Lanes 0 High 

Approaches with Left 

Turn Signal Phasing 0 High 

Type of Signal Phasing Permissive High 

Approaches RTOR 

Prohibited 0 High 

Intersection Red Light 

Running Not Present High 

INTERSECTION RISK  HIGH 
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B.2. Market Street (Between 16th & 17th St) 

 

Table B.4. Static complexity analysis results of  Market Street (Between 16th & 17th 

Street) segment.  

 

SEGMENTID 

segment-

10876852935525353526_1640_000_1660_000_with_camera_l

abels 

Market Street (Between 16th 

& 17th St)  Complexity 

Roadway Type 4 Lane Divided Medium 

On Street Parking Parallel Commercial High 

Median width (ft) 10 High 

Lighting Present Low 

Fixed Object Offset 5 High 

Auto Speed Enforcement Not Present High 

SEGMENT RISK  HIGH 

 

 

Table B.5. Static complexity analysis results of intersection on Market Street & 16th 

Street.  

 

Intersection: Market St @ 16rd St Complexity 

Intersection Type 6 Approach Signalized High 

Intersection Lighting Present Low 

Approaches with Left Turn 

Lanes 2 Medium 

Approaches with Right Turn 

Lanes 1 High 

Approaches with Left Turn 

Signal Phasing 0 High 

Type of Signal Phasing Permissive High 

Approaches RTOR Prohibited 0 High 
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Intersection Red Light Running Not Present High 

INTERSECTION RISK  HIGH 

 

 

 

 

Table. B.6. Static complexity analysis results of intersection on Market Street & 17th 

Street.  

 

Intersection: Market St @ 17th St Complexity 

Intersection Type 6 Approach Signalized High 

Intersection Lighting Present Low 

Approaches with Left Turn 

Lanes 2 Medium 

Approaches with Right Turn 

Lanes 4 Low 

Approaches with Left Turn 

Signal Phasing 0 High 

Type of Signal Phasing Permissive High 

Approaches RTOR Prohibited 3 Low 

Intersection Red Light Running Not Present High 

INTERSECTION RISK  HIGH 
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B.3. Mission Street (Between 22nd Street & 23rd Street)  

 

Table B. 7. Static complexity analysis of segment on Mission Street (between 22nd street 

and 23rd street).  

SEGMENTID 

segment-

11925224148023145510_1040_000_1060_000_with_camera

_labels 

Mission St (Between 22nd & 

23rd)  Complexity 

Roadway Type 2 Lane Undivided Low 

On Street Parking Parallel - Commercial Medium 

Median width (ft) None High 

Lighting yes Low 

Fixed Object Offset 5 High 

Auto Speed Enforcement None High 

SEGMENT RISK  High 

 

 

Table B.8. Static complexity analysis of intersection on Mission Street and 23rd Street.  

 

Intersection: Mission St @ 23rd St Complexity 

Fixed Object Offset 4 Leg Signalized High 

Intersection Lighting Present Low 

Approaches with Left Turn 

Lanes 0 High 

Approaches with Right Turn 

Lanes 2 Medium 

Approaches with Left Turn 

Signal Phasing 0 High 

Type of Signal Phasing Permissive High 

Approaches RTOR Prohibited 0 High 

Intersection Red Light Running 0 Low 

INTERSECTION RISK  High 
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B.4. Folsom Street (Between 3rd Street & Mabini Street)  

 

Table B.9. Static complexity analysis of segment on Folsom Street (between 3rd street 

and Mabini Street)  

 

SEGMENTID 

segment-

11928449532664718059_1200_000_1220_000_with_camera

_labels 

Folsom St (Between 3rd st & 

Mabini St)  Complexity 

Roadway Type 4D Medium 

On Street Parking Parallel-Commercial Medium 

Median width (ft) None (One Way) Low 

Lighting Yes Low 

Fixed Object Offset 10 High 

Auto Speed Enforcement No High 

SEGMENT RISK  MEDIUM 
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Table B.10. Static complexity analysis of intersection on Folsom Street and 3rd Street.  

 

Intersection: Folsom St @ 3rd Street Complexity 

Intersection Type 4 leg Signalized High 

Intersection Lighting Present Low 

Approaches with Left Turn 

Lanes 4 Low 

Approaches with Right Turn 

Lanes 4 Low 

Approaches with Left Turn 

Signal Phasing 4 Low 

Type of Signal Phasing Protected Low 

Approaches RTOR Prohibited 0 High 

Intersection Red Light Running Not Present High 

INTERSECTION RISK  LOW 

 

 

 

Table B. 11. Static Complexity analysis of intersection on Folsom Street and Mabini 

Street, San Francisco, CA.  

 

Intersection: Folsom St @ Mabini St. Complexity 

Intersection Type 3 Approach Signalized Medium 

Intersection Lighting Present Low 

Approaches with Left Turn 

Lanes 3 Low 

Approaches with Right Turn 

Lanes 3 Low 

Approaches with Left Turn 

Signal Phasing 3 Low 

Type of Signal Phasing Protected Low 

Approaches RTOR Prohibited 0 High 

Intersection Red Light Running Not Present High 

INTERSECTION RISK  LOW 
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B. 5. 26th Street (Between Guerrero Street & Valencia Street)  

 

Table B.11. Static complexity analysis of segment on 26th street (between Guerrero 

Street and Valencia Street)  

SEGMENTID 

segment-

13619063687271391084_1519_680_1539_680_with_camer

a_labels 

26th St (Between Guerrero St & Valencia St) Complexity 

Roadway Type 4 lane Divided Medium 

On Street Parking Parallel-Residential Medium 

Median width (ft) 0 High 

Lighting Present Low 

Fixed Object Offset 15 Medium 

Auto Speed Enforcement None High 

SEGMENT RISK  Medium 

 

Table B.12. Static complexity analysis of intersection on 26th Street and Guerrero Street.  

Intersection: 26th st @ Guerrero St Complexity 

Intersection Type 4 Approach Signalized Medium 

Intersection Lighting Present Low 

Approaches with Left Turn Lanes 0 High 

Approaches with Right Turn 

Lanes 0 High 

Approaches with Left Turn Signal 

Phasing 0 High 

Type of Signal Phasing Permissive High 

Approaches RTOR Prohibited 0 High 

Intersection Red Light Running Not Present High 

INTERSECTION RISK  HIGH 
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Table B.13. Static complexity analysis of intersection on 26th street and San Jose 

Avenue.  

Intersection: 26th St @ San Jose Ave Complexity 

Intersection Type 3 Approach stop Medium 

Intersection Lighting Not Present High 

Approaches with Left Turn Lanes 0 High 

Approaches with Right Turn 

Lanes 0 High 

Approaches with Left Turn Signal 

Phasing 0 NA 

Type of Signal Phasing NA NA 

Approaches RTOR Prohibited NA NA 

Intersection Red Light Running 0 NA 

INTERSECTION RISK  HIGH 
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B.6. 19th Street (Between Yukon Street and Seward Street)  

 

Table. B.14. Static complexity analysis of segment on 19th Street (between Yukon Street 

and Seward Street).  

SEGMENTID 

segment-

14869732972903148657_2420_000_2440_000_with_camera_la

bels 

19th St (Between Yukon St & 

Seward St)  Complexity 

Segment Type 2 lane undivided Low 

On Street Parking Parallel-Residential Low 

Median width (ft) 0 Medium 

Lighting Present Low 

Fixed Object Offset 5 High 

Auto Speed Enforcement None Low 

SEGMENT RISK  Low 

 

Table B.15. Static complexity analysis of intersection on 19th Street and Yukon Street.  

 

 

Intersection: 19th St @ Yukon St Complexity 

Intersection Control Type 4 leg stop Low 

Intersection Lighting Present Low 

Approaches with Left Turn 

Lanes 0 High 

Approaches with Right Turn 

Lanes 0 High 

Approaches with Left Turn 

Signal Phasing NA NA 

Type of Signal Phasing NA NA 

Approaches RTOR Prohibited NA NA 

Intersection Red Light 

Running 0 NA 

INTERSECTION RISK  Low 
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Table B.16. Static complexity analysis of intersection on 19th Street and Seward Street.  

 

Intersection: 19th St @ Seward St Complexity 

Intersection Control Type Yield Low 

Intersection Lighting Present Low 

Approaches with Left Turn 

Lanes 0 High 

Approaches with Right Turn 

Lanes 0 High 

Approaches with Left Turn 

Signal Phasing 0 NA 

Type of Signal Phasing NA NA 

Approaches RTOR Prohibited NA NA 

Intersection Red Light 

Running 0 NA 

INTERSECTION RISK  Low 
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B.7. Glenbrook Avenue (Between Palo Alto Avenue and Mountain Spring Road)  

 

Table B.17. Static complexity analysis of segment on Glenbrook Avenue (between Palo 

Alto Avenue and Mountain Spring Road).  

SEGMENTID 

segment-

3363533094480067586_1580_000_1600_000_with_ca

mera_labels 

Glenbrook Ave (Palo Alto Ave & Mountain Spring Rd) Complexity 

Roadway Type 2 lane undivided Low 

On Street Parking Parallel-Residential Low 

Median width (ft) 10 Medium 

Lighting Not Present High 

Fixed Object Offset 5 High 

Auto Speed Enforcement None NA 

SEGMENT RISK  Low 

 

Table B.18. Static complexity analysis of  

 

Intersection: Glenbrook Ave @ Mountain Spring Rd Complexity 

Intersection Type Minor Road Yield Low 

Intersection Lighting Present Low 

Approaches with Left Turn Lanes 0 High 

Approaches with Right Turn Lanes 0 High 

Approaches with Left Turn Signal 

Phasing NA NA 

Type of Signal Phasing NA NA 

Approaches RTOR Prohibited NA NA 

Intersection Red Light Running 0 NA 

INTERSECTION RISK Low 
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B.8. Parkridge Drive (Between Crestine Drive and Burnett Avenue) 

 

Table B.19. Static complexity analysis results for segment on Parkridge Drive (between 

Crestline Drive and Burnett Avenue).  

SEGMENTID 

segment-

5328596138024684667_2180_000_2200_000_with_came

ra_labels 

Parkridege Dr (Crestline Dr & Burnett Ave) Complexity 

Roadway Type 2 lane undivided Low 

Parking Type Parallel-Residential Low 

Median width (ft) 0 NA 

Lighting Present Present Low 

Fixed Object Offset 5 High 

Auto Speed Enforcement None NA 

SEGMENT RISK  Low 

 

 

Table B.20. Static complexity analysis results for intersection on Parkridge Drive and 

Crestline Drive. 

Intersection: Parkridge Dr & Crestline Dr Complexity 

Intersection Type Minor Road Yield Low 

Intersection Lighting Present Low 

Approaches with Left Turn Lanes 0 High 

Approaches with Right Turn Lanes 0 High 

Approaches with Left Turn Signal 

Phasing NA NA 

Type of Signal Phasing NA NA 

Approaches RTOR Prohibited NA NA 

Intersection Red Light Running 0 NA 

INTERSECTION RISK  Low 
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Table B.21.  Static complexity analysis results for intersection on Parkridge Drive and 

Burnette Avenue.  

 

Intersection: Parkridge Dr & Burnett Ave Complexity 

Intersection Type Minor Road Yield Low 

Intersection Lighting Present Low 

Approaches with Left Turn Lanes 0 High 

Approaches with Right Turn Lanes 0 High 

Approaches with Left Turn Signal 

Phasing NA NA 

Type of Signal Phasing NA NA 

Approaches RTOR Prohibited NA NA 

Intersection Red Light Running 0 NA 

INTERSECTION RISK  Low 
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B.9. 16th Avenue (Between Lomita Avenue and Lawton Street)   

 

Table B.22. Static complexity analysis of segment on 16th Avenue (between Lomita 

Avenue and Lawton Street).  

SEGMENTID 

segment-

3919438171935923501_280_000_300_000_with_camer

a_labels 

16th Ave (Lomita Ave & Lawton St) Complexity 

Roadway type 2 Lane Undivided Low 

Parking Type Parallel-Residential Low 

Median width (ft) 0 NA 

Lighting Present Present Low 

Fixed Object Offset 5 High 

Auto Speed Enforcement None NA 

SEGMENT RISK  Low 

 

Table B.23. Static complexity analysis of intersection on 16th Avenue and Lomita 

Avenue.  

Intersection: 16th & Lomita Ave Complexity 

Intersection Type Minor Road Yield Low 

Intersection Lighting Present Low 

Approaches with Left Turn Lanes 0 High 

Approaches with Right Turn Lanes 0 High 

Approaches with Left Turn Signal 

Phasing NA NA 

Type of Signal Phasing NA NA 

Approaches RTOR Prohibited NA NA 

Intersection Red Light Running 0 NA 

INTERSECTION RISK  Low 
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Table B.24. Static complexity analysis results of intersection on 16th avenue and Lawton 

Street.  

 

Intersection: 16th & Lawton ST Complexity 

Intersection Type Minor Road Yield Low 

Intersection Lighting Present Low 

Approaches with Left Turn Lanes 0 High 

Approaches with Right Turn Lanes 0 High 

Approaches with Left Turn Signal 

Phasing NA NA 

Type of Signal Phasing NA NA 

Approaches RTOR Prohibited NA NA 

Intersection Red Light Running 0 NA 

INTERSECTION RISK  Low 
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