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CHAPTER ONE 

 

1. INTRODUCTION 

 

Motivation and Objective 

The world is rushing headlong into the Fourth Industrial Revolution in which 

smart technology, artificial intelligence, and the internet of things bring vastly different 

technologies together to form complex and interconnected systems [1]. With this, system 

engineers have set before them the challenge of designing, verifying, and validating such 

systems to meet ever-increasing customer expectations [2]. However, not only do 

customers expect a robust system that is safe, reliable, and full of features, but they also 

value a system that can be customized to fit their specific needs. This practice is on full 

display in the automotive industry where customers can select from a plethora of options, 

such as engine size, transmission type, interior and exterior colors, and upholstery 

material, along with technology-packed features like adaptive cruise control and 

automatic parking. All of this must be available while also meeting modern standards for 

safety and environmental impact. The development of complex product lines has pushed 

current engineering practices to their limits. In the automotive domain, a worrying trend 

of increasing numbers of recalls, and increasing numbers of vehicle included in those 

recalls, has emerged, as shown in Figure 1.1 below [3]. 
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Figure 1.1. Vehicle recall summary by year [3] 

 

Recalls, even ones resolved by simple ECU reflashes, are expensive for 

companies, both in cost and customer satisfaction [4]. Both Ford Motor Company [5] and 

NASA [6] have performed studies to trace the source of software bugs that cause issues 

downstream. They found that approximately 40% of bugs originate from the 

requirements phase of development, and 40% are related to system interactions. The 

primary culprits were incomplete or erroneous requirements—subsystem requirements 

that were incompatible with other subsystems’ requirements. These issues were not 

discovered until later in the development process when multiple subsystems were brought 

together for system-level testing. At this point, it is expensive to go back and fix the 

necessary requirements and update the system’s design. Hence, there is motivation to 

facilitate the employment of system-level simulations at all points in the development 

process, not just in the later stages. Simulating and analyzing new developments early, 



 3 

often, and in the context of the entire system is crucial for catching design problems early 

while they are still inexpensive to correct [7]. 

However, most organizations that develop complex cyber-physical systems deal 

in product lines instead of individual products. A product line is a set of product variants 

that are based on a shared platform and are assembled from a common set of artifacts [8]. 

In the automotive industry, each product line can have millions of variants [9] [10]. This 

has led to the emergence of product line engineering practices and software such as Pure-

Systems Pure::Variants [11] and BigLever Gears [12] to manage the development of 

product lines. Current product line engineering methods are discussed in Chapter 2; 

however, modern practices chiefly focus on managing variants in a description model, 

particularly structural variations. Little attention has been devoted to managing variants 

of simulation models. Therefore, the objective of this research is to critically evaluate the 

merits of different modeling approaches for cataloging, contextualizing, and assembling 

simulation model components in a way that is most valuable for configuring full virtual 

vehicle simulations. 

The scope of this research is limited to the automotive domain, but the 

innovations presented in this dissertation are expected to reach beyond ground vehicles to 

any cyber-physical system with distributed processing, including avionics, robotics, and 

industrial control systems. The examples and case study in this dissertation are geared 

towards the automotive domain because of the inherent complexities of the domain and 

the interests of the author. But the same principles, patterns, and benefits can likely be 
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realized in the development of any distributed processing cyber-physical system with the 

appropriate modifications to the system models and reference architectures. 

Research Context 

In this dissertation, a distinction is drawn between simulation models and 

simulation model components. A “simulation model” refers to a fully executable model, 

or one whose boundary conditions have been sufficiently defined such that the simulation 

can be executed. A “simulation model component” is a parametric or analysis model that 

is used as part of a simulation but by itself is not executable. For example, an engine 

model or even a vehicle model is not executable without also including the models for the 

driver and the environment. 

There is no single widely used process for generating simulations, but there are 

some common steps and practices in industry that can be used to evaluate a typical 

workflow for creating a simulation. Figure 1.2 below visualizes this typical workflow. 

 

Figure 1.2. Typical workflow for creating simulations 
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The overall process is characterized by static documentation, repetition, and slow, 

unreliable, point-to-point communication among individuals. The process begins in the 

upper left corner of Figure 1.2 with the determination of a simulation idea to assess the 

performance of the system, a subsystem, or some variant of the system in a specific 

context performing a certain behavior. Once the user has defined the desired simulation, 

the next step is to dig into the documentation of existing models and see if any of them fit 

the desired context. This is often static documentation that requires a high amount of 

effort to maintain and is not formalized, which makes programmatically searching 

through the documentation almost impossible. It can be laborious and unreliable for the 

user to forage documentation for relevant models as some documentation may not exist, 

may be incomplete, or may be inaccurate or out of date if a model has been modified and 

not documented. These can all give the user a false idea of the models available. Another 

option is to contact another person, typically a subject matter expert, to learn about 

existing models. This, too, is not ideal as the other person may not have a full grasp on 

the current models or be too busy to provide sufficient information. Next, the user can dig 

into the model repository itself, represented in the bottom center of Figure 1.2, which is 

often hosted by some version-control software such as Git [13]. Inspecting the source 

code of models one-by-one is an inefficient and time-consuming process for narrowing 

the repository down to models that fit the desired context. 

Once the user has an idea of the existing model components he may be able to 

reuse in his simulation, the next step is to consider what may be missing from the full 

simulation. If the user is building a simulation of a ground vehicle and could not find an 
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engine model that fits his desired analysis, then he needs to commission a new engine 

model to be built that satisfies his specifications. Or if he found an engine model that is 

close to what he needs, then he may need to ask for edits to be made to the model to work 

with his simulation. However, without an overall architecture for the simulation, it can be 

difficult to identify what may be missing from the simulation or to know how to specify 

how a new model component should be built to interface with the existing components. 

Since a ground vehicle is a distributed processing system, one of the tasks is to 

determine how the various electronic control units (ECUs) will communicate with each 

other on the controller area network (CAN). This is expressed in CAN database (DBC) 

files that define the source of each signal as well as attributes about the signal such as 

units and broadcast frequency. This requires the user to communicate with the network 

engineers to configure the DBC files for the simulation, as represented in the upper right 

corner of Figure 1.2. During these discussions, it is not uncommon to realize that more 

edits need to be made to the simulation model components, which means the user goes 

back to the simulation engineer to commission updates. This causes an iterative loop of 

effort where simulation model components are edited, then the DBC files are updated to 

reflect any changes to the models’ interfaces. 

Eventually, the user identifies all the simulation model components needed for the 

desired analysis, and the last step is to assemble them into a full simulation model. This 

can be done by hand, having a user manually connect models to each other, or the process 

can be automated. Some organizations have developed tools that can automatically 

assemble a simulation out of components, such as the Ford Automated System 
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Simulation Toolchain [14]. Once assembled, the simulation is ready to run and have the 

results analyzed. 

Research Questions 

Clearly, the typical workflow for generating a simulation model is rife with time-

consuming, unreliable, and repetitive steps. A study of this workflow and the current 

state-of-the-art in simulation modeling and variant management techniques, presented in 

Chapter II, has led to four research questions. 

1. Feature-Based Product Line Engineering (FBPLE) has been shown to be valuable for 

managing variants in description models. How can the same benefits of FBPLE be 

realized in the simulation domain in a way that lowers the overall cost of creating 

simulations and enables system-level simulations earlier in the development process? 

FBPLE is a variant modeling technique that has been developed for the purpose 

of managing the variations of superset models of entire product lines. The history and 

current practices of FBPLE are described in Chapter II. These practices have been shown 

to provide numerous benefits when applied to description models, including promoting 

reuse of model elements in such a way as to decrease the overall effort of creating 

description models for each variant of a product line. These approaches and benefits have 

been well studied and documented for system description models in languages like the 

Systems Modeling Language (SysML) [15]. The primary research question driving this 

dissertation considers if these same benefits can be realized by applying FBPLE practices 

to simulation models, and, if so, what is a good approach for doing so to maximize the 

benefits. The concern is that the simulation domain considers a number of models that is 

orders of magnitude greater than in the description domain, challenging the scalability of 
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FBPLE. This dissertation introduces a novel framework, called the Vehicle Simulation 

Architecture Framework (VSAF), for cataloging, contextualizing, searching, building, 

and assembling simulation model components into full simulations. The VSAF uses 

reference architectures, new variant modeling patterns, and specialized processes to 

reduce the overall cost—time, effort, or money—involved in creating system-level 

simulations. The VSAF is described in Chapter III, and its components are defined in the 

subsequent chapters. 

2. How can parts of a product line that are functionally similar but have drastically 

different implementations be modeled in a way that is more scalable than the current 

150% approach? 

The approach of the variant management techniques of FBPLE is to enable the 

representation of a shared platform with various components in a single model that can be 

configured to represent any variant of the product line. The greatest benefits are realized 

when variants share the same architecture and many of their components because these 

artifacts can be reused, eliminating duplication of work. However, a greater challenge 

emerges when a product line can implement drastically different architectures to realize a 

functionally similar solution. For example, every ground vehicle needs a powertrain to 

generate and deliver motive force. For a standard internal combustion engine (ICE) 

architecture, different engines, transmissions, and rear axles can be interchanged in a 

modular fashion to specify and test different variants without refactoring the model’s 

architecture. However, this becomes more difficult when other powertrain architectures 

are considered. Switching to a battery electric vehicle (BEV) architecture is not as simple 

as putting an electric motor where the ICE would normally go. Changes must be made to 
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rest of the powertrain and beyond, including the chassis, electrical, and cooling systems 

to house, control, and cool the batteries. These kinds of variations make it difficult to take 

advantage of any common elements when so much of the system is unique. 

A similar situation occurs in simulation models. The architecture and components 

of a simulation vary not only when the subject variant changes but also when the goal of 

the simulation changes. A simulation estimating the acceleration and braking 

performance of a vehicle likely uses different simulation model components, and may 

even have a different overall architecture, than a simulation intended to analyze the 

vehicle’s handling characteristics. Managing these variations is a challenge with current 

variant modeling techniques, and the benefits realized are limited. This dissertation 

introduces a novel variant modeling pattern in Chapter V called the Encapsulation 

pattern. This new approach provides a mechanism for representing variants that are 

functionally similar but architecturally different in the same reference architecture while 

mitigating the effects on the complexity of the reference architecture. 

3. How can the development of new features be directed such that they are seamlessly 

integrated with the rest of the system and facilitate system-level simulations? 

Using the FBPLE definition, a feature is a set of coordinated behaviors a system 

exhibits to provide the user with a specific experience. Features can range in complexity 

and scope, from something simple like letting a user lock the vehicle from a phone app to 

more complex like adaptive cruise control with lane keeping assist and automatic 

braking. As a company develops a product line, they add new features to the products 

over time, sometimes many years after the initial design of the system. Often, these new 
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features implement some proprietary control algorithm that directs different parts of the 

system to work together to achieve some desired behavior. As systems grow to be more 

complex and provide more features, unforeseen issues can arise where new features 

conflict with existing features and subsystem controls. The desired approach for 

mitigating these issues is to conduct system-level simulations early in the development of 

the new feature to try to uncover bugs early while they are inexpensive to fix. This 

requires the new feature to be developed with the rest of the system in mind. The 

question becomes, how can the development of a new feature be informed and directed in 

a way that does not slow down the development process while also not significantly 

increasing the complexity of the system or refactoring its controls? To accomplish this, 

the VSAF employs a technology-agnostic service-oriented reference architecture of the 

system, detailed in Chapter IV. The goal of this reference architecture is to abstract away 

the implementation details of the system to allow developers to work in an environment 

that considers communication and interfacing with other parts of the system without 

worrying about exact technology solutions until later in the design process. However, 

working in a technology-independent reference architecture creates a new problem, 

which is the need to link information from this model to the simulation models that 

analyze the system. This leads to the final research question of this dissertation. 

4. How can artifacts in the description model be linked to simulation models for variant 

configuration in a way that is reusable for any simulation of any variant in a product 

line? 

To allow for a single reference architecture to serve an entire product line in 

which significant architectural variations occur, the VSAF employs an implementation-
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independent reference architecture. However, since a simulation necessarily takes 

implementation details into account, there is a need to link the technology-abstract 

elements to their simulation counterparts. To realize the most benefits, the solution must 

allow for the reuse of logical elements in multiple variants and simulations where 

possible. Additionally, the linking mechanism itself must be reusable and not add to the 

overall cost of creating simulations. The VSAF accomplishes this by providing a 

mechanism for allocating subsystem and feature controls to the ECUs that will execute 

them, and it uses a similar method for mapping logical variables to CAN and hardware 

signals. This approach allows upstream development efforts to feed downstream 

simulations without requiring the logical models to be refactored for each variant of the 

product line. 

Challenges of Variant Management of Simulation Models 

The driving hypothesis of this research is that applying FBPLE practices to the 

management of simulation models will yield similar benefits as are shown when used 

with description models of product lines. Modeling variants and capitalizing on the reuse 

of elements, subsystems, and behaviors are essential for product line engineering as this 

greatly reduces the amount of time and effort necessary to develop the system. However, 

applying variant management techniques to the simulation domain is expected to have 

unique challenges, which calls for the development and assessment of the new modeling 

approaches presented in this dissertation. A key consideration is that 80% of modern 

automotive innovations are based on software [16], so any solution must not only include 

the vehicle hardware but also consider control algorithms. 
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Additional Degrees of Complexity 

Current product line engineering practices take into account two degrees of 

complexity that are also associated with variant management of simulations. The first is 

the number of variants within a product line. As has already been stated, the automotive 

domain deals in the order of millions of variants for a product line [9] [10]. Even with the 

removal of nonfunctional variations like exterior color and interior trim, there can still be 

thousands of functional variants of a single vehicle product line. The second degree of 

complexity is the number of subsystems in a product. From the simulation perspective, 

this can be thought of as the number of individual models needed to assemble a full 

virtual executable representation of the system. When combined with the first degree of 

complexity, there are multiple variants of each subsystem that must be created and 

maintained, and the different variants of the subsystems can be assembled to create 

different variants of the system. In addition to these two degrees of complexity, there are 

two more degrees of complexity unique to variant management of simulations that 

current variant management techniques do not take into account. 

The first is the number of simulation contexts. For verification and validation 

activities, a single product variant will be put through any number of simulation analyses. 

For example, a virtual vehicle can undergo acceleration tests, braking tests, and drive 

cycle assessments. Each of these analyses require their own unique simulation context 

and environment, adding to the complexity of the number of models that must be 

managed. The final degree of complexity is the number of levels of fidelity. Fidelity can 

be thought of as a measure of the abstractions, idealizations, and assumptions that are 
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taken for a given simulation. The more idealizations that are made, the further the 

simulation will be from representing a real-world test. Typically, as development of a 

subsystem progresses, so does the level of fidelity of the associated simulation models of 

that subsystem. For example, early in the development of an engine, the engineering team 

may only know the basic performance parameters they are aiming for, so the only virtual 

representation they can have for that engine is a lookup table based on those parameters. 

But as development progresses and more of the engine’s design is determined, the team 

can create higher fidelity simulation models such as mean value models and, eventually, 

full combustion dynamics models. Each of these levels of fidelity may be best used in 

different simulation analyses. For instance, a model that considers thermal effects is 

useful for some drive cycle assessments but not necessary for a basic acceleration test. 

Altogether, these four degrees of complexity associated with variant management of 

simulation models—product variants, subsystem variants, simulation tests, and levels of 

fidelity—imply that there are potentially hundreds of thousands of simulation models that 

must be cataloged and maintained. 

Shifts in Simulation Architecture 

A closer look at the implications of different levels of fidelity for simulation 

models reveals another challenge. While a description model of a system will maintain 

and build upon a single architecture throughout development, the same is not true for 

simulation models. Early in development of, say, an Advanced Driver Assistance System 

(ADAS) feature for a vehicle, the developers will care more about the functionality of the 

algorithms than the implementation details of the software and hardware. Because of this, 
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early simulations tend to take on a functional-based architecture with a simplified plant 

model connected to a single control model containing all the control algorithms. In 

addition, the signals passed between the plant and controller will likely be idealized state 

variables and command signals. However, at some point in development, the simulations 

will migrate over to a network-based architecture that does take in account the 

implementation details of the software. This architectural shift is illustrated in Figure 1.3 

below. 

 

Figure 1.3. Simulation architectural migration during development, from functional to physical 

 

Several changes make it difficult to reuse models from earlier simulations. For 

one, the control algorithms are now split among the multiple ECUs that implement them, 

which changes the architecture and interfaces of the controls. Also, the control and plant 

models are separated by a sensor and actuator layer, further changing the interfaces of 

these models. Finally, in addition to architectural changes, the signals themselves have 

changed. Functional-based simulations use idealized communications, but in 

implementation-based simulations, more realistic signals are used, which requires not 
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Figure 8.21. Connections among the Power's subsystems 

 

At this point, the Simulation Reference Architecture diverges from the SAE J3049 

decomposition. From here, the model uses the Repeating Three-Tiered Decomposition 

pattern defined in Chapter V. This pattern mitigates the complexity of architectural 

variations within the system simulation model while still allowing for the allocation of 

simulation model components at any level of decomposition. The Powertrain subsystem 

decomposition using the Repeating Three-Tiered pattern is shown in Figure 8.22 below. 
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Figure 8.22. Powertrain subsystem models using the Repeating Three-Tiered Decomposition pattern 

 

At this level of decomposition, the Powertrain wrapper block is the abstract 

component; the «SimModel»s grouped under it using the new «Encapsulation» 

relationship are self-contained simulation models that cannot be decomposed further; and 

the «SimModels» under the ModularPowertrainModel wrapper are the skeleton 

powertrain models that are built from lower-level components. Chapter V contains more 

information about the roles of each of the three tiers in the decomposition pattern. Each 

skeleton model defines a set of powertrain architectures that can be configured using 

FBPLE into a single variant of a powertrain. The PwrtrnICE&ParallelHyb skeleton 

model before and after slicing is shown in Figure 8.23 below. 
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Figure 8.23. Variant realization of a Powertrain skeleton model 

 

From the 150% powertrain model at the top of Figure 8.23, any ICE or parallel 

hybrid powertrain can be configured. In this use case, the ICE powertrain architecture is 

used, so the hybMtr and discnctClu parts have been removed from the model after slicing. 

The remaining parts have their types changed using the Encapsulation pattern and results 

from the ontology query from Table 8.2. To show that the Repeating Three-Tiered 

Decomposition pattern can be used at any level of decomposition, Figure 8.24 below 

shows the decomposition for the Transmission Block into its self-contained and skeleton 

models. 
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Figure 8.24. Using the Repeating Three-Tiered Decomposition pattern with Transmission models 

 

The middle row of Figure 8.24 shows the self-contained simulation model 

components for a transmission that are available in the model repository. If none of these 

models fit the desired context, then one of the three skeleton models at the bottom of 

Figure 8.24 is selected and configured using lower-level component models. In this use 

case, the 10SpdAutoLookupTable_Simulink model fits, so that Block is used to type the 

trans part in Figure 8.23. Additionally, the eng and drvln parts have been typed with their 

own encapsulations for simulation model components. These selections are all made 

using the ontology query results that showed which simulation model components are 

applicable to the user’s desired simulation context. 

The automatic execution of the Encapsulation pattern to retype abstract parts is 

only possible if one and only one simulation model component for the associated abstract 

is in the ontology query results. For example, if the list of ontology IRIs in Table 8.2 

showed that two transmission simulation models could work with the user’s desired 

simulation, then the Simulation Reference Architecture would not be able to 

automatically retype the trans part. In this case, the Simulation Reference Architecture 
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CHAPTER NINE 

 

9. VALIDATION OF WORK 

 

 

The research context and questions have been presented (Chapter I), the 

background upon which this research builds has been laid out (Chapter II), the novel 

Vehicle Simulation Architecture Framework (VSAF) has been discussed (Chapter III), 

the VSAF’s innovations have been detailed (Chapters IV, V, VI, and VII), and a use case 

of the VSAF has been described (Chapter VIII). This chapter presents the validation of 

the work within this dissertation in terms of an implicit comparison with current 

approaches to simulation model management. 

Justification for Lack of Formal Validation 

The glaring missing component from this dissertation is a formal validation of the 

VSAF. Unfortunately, due to the nature of the research and the application domain for the 

VSAF, a formal validation is not within the scope of a Ph.D. dissertation. The purpose of 

the VSAF is to manage a large number of simulation model components for the assembly 

of complex simulations; its benefits are minimal when applied to simpler domains. 

Therefore, a proper test of the VSAF would necessarily be on the scale of a production 

passenger vehicle, which is too complex of an experiment to be performed as part of 

Ph.D. research. The development and simulation of an adaptive cruise control feature, 

like the one in the use case of Chapter VIII, would require on the order of ten thousand 

man-hours, ten ECUs, a thousand CAN signals, and a million lines of code once all the 
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other parts of the vehicle needed to test such a feature are included. This would likely be 

around a two- or three-year process, and it would still only result in a single data point. 

Because of the author’s close collaboration with and funding from Ford Motor 

Company throughout this project, the VSAF is likely to be adopted in some form, so time 

will tell if its practices prove to be more efficient than current approaches. Another 

benefit of the collaboration with Ford was the constant feedback from various industry 

experts throughout the development of the VSAF. The project sponsor and industry 

experts helped direct the innovations and ensure the feasibility and viability of the ideas 

and approaches. As part of the project sponsorship, parts of the VSAF have been tested 

on more complex examples directly from the automotive industry. Unfortunately, the 

results of these tests cannot be reported here due to intellectual property concerns and the 

proprietary nature of the content. However, the results of these tests are reflected in the 

use case presented in Chapter VIII even though none of the content from that use case 

came directly from industry. 

Possible Formal Validation Methods 

Ideally, as stated above, the ideas and innovations of the VSAF would have been 

tested in their entirety on a use case on the scale of that of industry, and results would 

have been compared with current industry practices to perform a formal validation of the 

VSAF. The steps for such a validation process are as follows. First, the researcher would 

have to work with a company to modify the Logical System Architecture and Simulation 

Reference Architecture to reflect a product line the company produces. During this 

process, the total cost of initially developing these reference architectures would need to 
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be recorded in terms of time and financial investments. Additionally, the researcher 

would have to set up a model documentation ontology for the company’s simulation 

model repository while recording the total cost of this step as well. Calculating the cost of 

the initial setup of the VSAF is crucial for comparing the initial investment and 

incremental costs to those of current industry practices. 

Once the SysML reference architectures and model documentation ontology are 

set up, the next step is for the researcher to select a new feature’s development to follow 

that is still in its infancy. The researcher would be required to have unfettered access to 

the full development process. As the developers designed the feature, the researcher 

would mirror any developments into the SysML reference architecture and record the 

effort of doing so while also recording the effort of the other developers. As the feature is 

ready to be analyzed at various points in development, the researcher would assemble 

vehicle-level simulations using the VSAF while the developers would analyze their 

feature using traditional methods. The researcher would use these junctures to compare 

the incremental cost required to simulate the feature using the VSAF as opposed to 

traditional approaches. The researcher could also note if the results of the VSAF’s 

simulation were different, namely, if it caught any issues or bugs that the developers’ 

traditional assessment did not catch. These actions would be repeated throughout the 

development of the feature. At the end of development, the researcher would gather all 

data comparing the VSAF with the traditional development approaches regarding 

differences in cost, time, effort, errors made, and errors caught. This data would be the 

basis for the formal validation of the VSAF. 
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Another method for testing the VSAF could include implicit validation by means 

of formal interviews with various industry experts. While several experts from Ford 

provided guidance during the development of the VSAF, no formal interviews were 

conducted. To do this, the researcher would put together a presentation of how the VSAF 

works along with an example. He would also determine questions that he could ask to 

help evaluate the VSAF. The researcher would then contact several different companies 

to arrange times to present the VSAF to modeling and simulation experts and receive 

their feedback through both open-ended and survey-style questions. The researcher 

would then gather the results and analyze them to determine if the VSAF offers the 

opportunity for a measurable economic advantage. However, a challenge to this 

evaluation method would be the differing current simulation approaches at each 

company. Since each organization has their own development process and tools, the 

results of the interviews would likely be quite different for each company, making it 

difficult to compare results across the industry. 

VSAF Benefits and Cost Tradeoffs 

Below is a table summarizing the key benefits of the VSAF in terms of new 

capabilities enabled or facilitated by the VSAF over the current practices discussed in 

Chapter I. Table 9.1 below shows each use case, how it is handled using current 

practices, and how the VSAF supports the use case. 

 

 



 179 

Table 9.1. VSAF Benefits: New and Supported Use Cases 

Use Case Current Practice VSAF 

Verify and validate 

new features or 

software at the 

system-level before 

it is mature enough 

to integrate with the 

rest of the system 

Early validation activities 

use mockups of the rest of 

the system created by the 

feature development team. 

Self-created mockups may 

be inaccurate, compromising 

validation results, potentially 

leading to downstream errors 

that must be fixed later. 

VSAF uses a standardized and 

constantly maintained variant-

independent representation of the 

system in which each subsystem 

development team provides a 

technology-abstract black box 

view of their subsystem. This 

allows for earlier integration with 

the system's overall design and 

validation with up-to-date 

representations of subsystems 

instead of self-created mockups. 

Discover gaps in 

the simulation 

model repository 

Simulation model 

components are created on 

an as-needed basis, often 

intended for a single use. 

Model repositories are not 

maintained with modular 

component models for quick 

assembly of new 

simulations. Decentralized, 

static documentation 

complicates or prevents an 

analysis of the entire 

repository. 

VSAF employs a reference 

architecture for simulations that 

documents the role each 

simulation model component in 

the repository fills in the 

simulation. An analysis of the 

reference architecture can reveal 

plant or controller models for 

certain system variants or 

simulation contexts that are 

under-represented and should be 

further developed. 

Identify potentially 

problematic 

incompatibilities 

between models 

Model compatibility is 

assessed after the full 

simulation is built and 

configured. At this point, 

incompatibilities force 

backtracking to fix model 

components or create new 

ones. 

VSAF implements a formalized 

documentation of simulation 

model components using an 

ontology language. This 

documentation includes 

information on required and 

provided interfaces, differential 

equations, and interactions with 

connected model components 

that determine which models can 

be used together in a simulation. 

Compatibility analyses are 

performed during the model 
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searching step instead of after the 

simulation is assembled. 

Inform how to 

request and develop 

new simulation 

model components 

for the repository 

Simulation model 

components are requested 

and informed by the end user 

of a simulation, relying 

heavily on the user's 

knowledge and familiarity of 

the simulation. Model 

components are often 

developed for a specific 

simulation instead of 

modularly for use in a wide 

range of simulations. 

VSAF's reference architecture 

provides a standardized model 

within which simulation model 

components are used. This 

informs a new model 

component's role, scope, and 

interface to increase reusability. 

Formal documentation and 

searching prevent recreating 

existing models. 

Determine if an 

existing simulation 

model component 

can be used in a 

specific simulation 

context or use case 

Knowledge of an existing 

simulation model component 

is dependent on static 

documentation or 

availability of the model's 

author. No formalized or 

automated process exists for 

programmatically searching 

for model components by 

applicability in use case. 

VSAF's simulation model 

documentation ontology formally 

characterizes and indexes 

simulation model components 

available in a repository. The 

ontology's query tool reasons 

through a user's search criteria to 

programmatically determine 

which model components fit the 

user's desired system variant and 

simulation analysis. 

Inform 

configuration of 

DBC files for 

different vehicle 

variants 

Software developers and 

network engineers work 

together to divide software 

among ECUs and determine 

the CAN traffic. Each 

variant is handled separately. 

VSAF allows software 

developers to work in a variant-

independent environment. 

Logical functions are mapped to 

software which is allocated to 

ECUs. These allocations, 

managed using PLE techniques, 

automatically determine the ECU 

interfaces, which are sent to 

network engineers for DBC file 

configuration. 
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Build more 

efficient models at 

correct level of 

fidelity to balance 

accuracy and 

computation cost 

Users employ simulation 

model components that they 

are most familiar with or that 

have the most information 

available, regardless of their 

suitability for the simulation 

context. Therefore, 

simulations are not at the 

optimal fidelity for achieving 

the desired accuracy without 

unnecessary complexity that 

increases the computational 

cost. 

VSAF's query tool interprets the 

user's desired simulation analysis 

to determine what characteristics, 

namely, physical phenomena and 

observable quantities, that the 

simulation must have. It then 

searches the simulation model 

documentation ontology to find 

the model components that best 

match the desired context, 

optimizing the simulation's 

computational cost without 

sacrificing the accuracy of the 

results. 

 

Throughout the development and testing of the VSAF, several trends were 

observed. The primary observation was the difference in the initial investment and 

incremental costs of assembling simulations using the VSAF as compared to traditional 

methods. A typical workflow for generating a simulation is described in Chapter I. The 

typical workflow has little initial costs associated with it. The more an organization 

builds simulations on an as-needed basis, the more the cost skews from initial to 

incremental. If an organization puts more emphasis and effort into documenting their 

models, then those models are more like to be reused. In this case, the additional effort of 

documenting the models is offset by the effort saved of creating a new simulation model 

component that already exists. And the more that model is reused, the higher the total 

cost savings. The VSAF aims to streamline documentation by using a formal ontology to 

document the models as described in Chapter VII. Setting up the ontology does have 

some initial costs involved, but it standardizes the documentation process. Instead of 
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requiring users to fill out a documentation form manually, the ontology allows the user to 

assign formal characteristics and relationships to the model. With a proper user interface, 

the documentation cost can be reduced. Additionally, by using a formal method of 

documentation, some parts of the documentation process can be automated, particularly 

recording the metadata of each model. This not only reduces the total cost of 

documentation, but it also eliminates human errors from this part of the process. 

With formal documentation, cost savings are also realized during the model 

searching step. Instead of a user poring through a myriad of documents, searches are 

performed through a query of the ontology that indexes and searches for models that fit 

the user’s criteria. This allows users to quickly sort through existing models using any 

desired search criteria. If a search returns no results, the criteria can be broadened, and if 

a search returns many models, then the criteria can be narrowed. Additionally, a 

sophisticated search engine could return results that are close to the user’s desired context 

to provide a starting model for the creation of a new one. Compared to manually writing 

and reading static documentation of model, this approach greatly reduces the cost of 

finding models and increases the occurrences of reusing models. 

The VSAF not only helps document and find existing models, but it also 

facilitates how new models are built. The Simulation Reference Architecture in SysML 

provides an overall architecture for system-level simulations, so when a new simulation 

model component is being built, the simulation engineer can use the reference 

architecture to understand the context in which the model will be applied. This contrasts 

with the traditional method of having the initial end user set specifications for the new 
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model component. This approach in no way promotes the reuse of the new model 

component in subsequent simulations. Designing new components to the reference 

architecture instead of only the first simulation it will be used in increases the modularity 

and reusability of the model component. 

The VSAF also helps with the design of new system features by providing a 

Logical System Architecture and guidelines for both subsystem and application 

development and representation in the reference architecture. This contrasts with having 

each development team design their portion of the system in their own model without 

well-defined interfaces with the rest of the system. The VSAF saves time and effort when 

configuring a simulation by having the interactions of the logical system elements already 

defined. Also, the VSAF provides mechanisms for linking the elements in the Logical 

System Architecture to model components and CAN signals in the Simulation Reference 

Architecture. This reduces the manual effort of these steps and prevents associated 

human error. 

Overall, the VSAF facilitates the simulation process of a ground vehicle by 

automating several of the steps, improving the efficiency and effectiveness of other steps, 

and providing a reusable architecture upon which to build simulations. The initial 

investment of implementing the VSAF is rather high, but it greatly reduces the 

incremental cost of generating each subsequent simulation. As more simulations are 

created using the VSAF, the higher the cost savings, eventually offsetting and surpassing 

the initial and administrative costs. Finally, by making it easier to build system-level 

simulations, the VSAF makes it more likely for new developments to be tested in the 
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context of the entire system, helping to catch system-level design issues early while they 

are inexpensive to fix, further adding to the value of the VSAF. 

Incremental Adoption of the VSAF 

A high initial investment can be a barrier to adopting a new practice, especially 

one that has yet to be formally proven. In the case of the VSAF, a better approach than an 

all-or-nothing adoption would be an incremental adoption of the various innovations 

within the framework. Adopting the VSAF’s components in an order of highest benefit-

to-cost ratio, as described below, can allow an organization to see if the VSAF is right for 

them while also reaping some benefits before the entire framework is initialized. Doing 

this removes some of the uncertainty and risk involved in adopting new practices. In 

total, the VSAF has seven innovations, listed below in the order that they should be 

adopted to realize the most benefits at the smallest cost. 

1) Encapsulation variant management pattern (Chapter V) 

2) Slicing 150% models in multiple stages (Chapter V) 

3) Model documentation ontology (Chapter VII) 

4) Simulation Reference Architecture with the Repeating Three-Tiered 

Decomposition pattern (Chapter IV) 

5) Logical System Architecture with subsystem and application development 

guidelines (Chapter IV) 

6) Logical element-to-ECU allocation matrix with Simulation Block SysML profile 

(Chapters IV & VI) 
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7) Logical variable-to-CAN signal allocation matrix with CAN Communication 

SysML profile (Chapters IV & VI) 

The Encapsulation variant management pattern is the least costly innovation to 

adopt for any organization that already uses SysML with variant management tools like 

the Dassault Systèmes Cameo Systems Modeler MBPLE Profile [49], Pure-Systems 

Pure::Variants [11], or BigLever Gears [12]. To add the capabilities of the Encapsulation 

pattern requires modifications to the variant management tool to add both the new 

«Encapsulation» relationship and the variation point maintenance table. Dassault 

Systèmes is working on including the Encapsulation pattern in an upcoming update to 

Cameo Systems Modeler, and the INCOSE group developing SysML V2 plans to 

incorporate much of the pattern’s functionality into this long-awaited update to SysML. 

The user can expect to see improvements in the modeling of variants that are functionally 

similar but architecturally different, even if not used in the larger context of the VSAF 

[52] [104]. 

The next innovation to adopt would be the capability of slicing 150% models in 

multiple stages. Much like the Encapsulation pattern, adding in this capability would 

require some modifications to the variant management tool that an organization uses. The 

new functionality is the ability to narrow the selections of an FBPLE feature without fully 

resolving the feature and then slicing the model based on the incomplete variant 

specification. Additionally, edits made in a sliced model would need to be reflected in the 

150% model. A more detailed description of this functionality is provided in Chapter V. 

The benefit of slicing a 150% model in multiple stages is the ability to narrow a model’s 
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context to a subset of variants that a modeler may be interested in without requiring the 

specification of a single variant. This capability is useful in the VSAF for slicing the 

Logical System Architecture first and the Simulation Reference Architecture later, but 

some benefits can be realized without the rest of the VSAF as well. 

The third innovation to adopt is the model documentation ontology. This 

dissertation provided justification for using a formal ontology instead of the traditional 

FBPLE feature model due to improved scalability, expressiveness, easy of searching, and 

simplification of variation point logic. However, further research is needed to determine 

best practices for structuring, organizing, and maintaining an ontology for the 

documentation of simulation model components. Therefore, a significant amount of effort 

is still required to implement a model documentation ontology. But even without the rest 

of the VSAF, a formal, scalable, expressive, and searchable documentation method for 

simulation model components would still improve reusability of existing models, 

reducing the overall effort of generating new simulations. 

With the model documentation ontology in place, the next innovation to adopt 

would be the Simulation Reference Architecture using the Repeating Three-Tiered 

Decomposition pattern. This again calls for a sizable amount of effort because creating 

and maintaining a reference architecture is not a trivial task. It would require designing 

the architecture based on the guidelines provided in Chapter IV and modeling patterns in 

Chapter V, adding in black boxes of existing simulation model components, and linking 

these black boxes to the individuals in the ontology. However, once the initial setup has 

been done, the Simulation Reference Architecture provides several benefits like showing 
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how simulation model components connect to each other to facilitate the assembly of a 

full simulation, allowing for interface validation to be performed in SysML before 

configuring the simulation, and guiding the development of new simulation model 

components by showing the context in which they will be applied. The Simulation 

Reference Architecture realizes its full benefits when combined with the model 

documentation ontology, which is why it is listed after the ontology. 

The Logical System Architecture is next on the list for adoption. As with the 

Simulation Reference Architecture, the Logical System Architecture requires a large 

investment to prepare. First, a new logical, service-oriented representation of the system 

must be designed. If an organization already has done this as part of their development 

process, then implementing the Logical System Architecture could happen before the 

Simulation Reference Architecture and possibly even before the model documentation 

ontology. It is likely that a service-oriented view of the system will require the inclusion 

of new elements such as service brokers, which adds to the overall cost. Finally, the 

subsystem and application designers would be asked to develop black boxes of their 

elements using the guidelines provided in Chapter IV. Once all this is done, the Logical 

System Architecture facilitates the technology-abstract development of new system 

features, which ensures these features will be compatible across the full product line. It 

also improves functional safety analyses by properly assigning requirements to each 

development team and clearly showing how each logical element communicates. 

The last two innovations to be adopted are the two allocation matrices: logical 

element-to-ECU and logical variable-to-CAN signal. Both of these require the 
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implementation of both the Logical System Architecture and the Simulation Reference 

Architecture since their purpose is to link the elements of the two architectures. Also, the 

CAN signal allocation matrix relies on the ECU allocation matrix to realize its benefits, 

so it should be implemented last. Each of these matrices needs very little effort to create 

and maintain, but they provide no benefits without the previous innovations, so they are 

last for adoption. However, with these implemented, the VSAF’s full functionality is 

complete, and the organization can start designing features in a technology-abstract 

manner without worrying about implementation details, and simulations can more easily 

be designed, searched for, and assembled to facilitate system-level testing at any point in 

the development process. 
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CHAPTER TEN 

 

10. CONCLUSIONS AND FUTURE WORK 

 

 

Answers to Research Questions 

Chapter I laid out the motivation for this research as the increasing complexity of 

ground vehicle systems causing higher numbers of system interaction issues leading to 

more recalls over recent years [3] [4]. Previous work from Ford [5] and NASA [6] have 

found that many of these issues would be prevented through system-level simulations 

earlier in the design process. Therefore, the objective of this research was to critically 

evaluate the merits of different modeling approaches for cataloging, contextualizing, and 

assembling simulation model components in a way that is most valuable for configuring 

full virtual vehicle simulations. The focus of this dissertation is the automotive domain, 

but the scope of the innovations ultimately reaches beyond this to any distributed-

processing mechatronic system with the appropriate edits to the reference architectures. 

Four research questions were presented in Chapter I, and the answers to these 

questions resulting from this dissertation’s research are given below in this section. 

Chapter II provided the related work upon which this dissertation was built. Chapter III 

detailed the novel Vehicle Simulation Architecture Framework (VSAF) that was 

developed in response to the driving research questions. Chapter IV explained the SysML 

model at the heart of the VSAF, both the Logical System Architecture and Simulation 

Reference Architecture, the purpose and benefits of each of these, and guidelines for how 

to implement them. Chapter V described the three variant management patterns that were 


