
 vi

TABLE OF CONTENTS

Page

TITLE PAGE ... i

ABSTRACT .. ii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES ... ix

LIST OF FIGURES ... x

CHAPTER

 I. INTRODUCTION ... 1

 Motivation and Objective ... 1

 Research Context ... 4

 Research Questions .. 7

 Challenges of Variant Management of Simulation Models11

 Overview of Research Results ...15

 II. BACKGROUND AND RELATED WORK ..19

 Systems Engineering ...19

 Simulation Modeling ...27

 Architectures and Frameworks ..31

 Formalizations and Standards ..37

 III. VEHICLE SIMULATION ARCHITECTURE

FRAMEWORK ...42

 Introduction ...42

 Vehicle Simulation Architecture Framework44

 SysML Reference Architecture..50

 VSAF’s Innovations, Scope, and Assumptions59

 IV. LOGICAL SYSTEM ARCHITECTURE AND

 SIMULATION REFERENCE ARCHITECTURE63

 Introduction ...63

 xiv

List of Figures (Continued)

Figure Page

 8.24 Using the Repeating Three-Tiered Decomposition pattern

with Transmission models ... 172

 1

CHAPTER ONE

1. INTRODUCTION

Motivation and Objective

The world is rushing headlong into the Fourth Industrial Revolution in which

smart technology, artificial intelligence, and the internet of things bring vastly different

technologies together to form complex and interconnected systems [1]. With this, system

engineers have set before them the challenge of designing, verifying, and validating such

systems to meet ever-increasing customer expectations [2]. However, not only do

customers expect a robust system that is safe, reliable, and full of features, but they also

value a system that can be customized to fit their specific needs. This practice is on full

display in the automotive industry where customers can select from a plethora of options,

such as engine size, transmission type, interior and exterior colors, and upholstery

material, along with technology-packed features like adaptive cruise control and

automatic parking. All of this must be available while also meeting modern standards for

safety and environmental impact. The development of complex product lines has pushed

current engineering practices to their limits. In the automotive domain, a worrying trend

of increasing numbers of recalls, and increasing numbers of vehicle included in those

recalls, has emerged, as shown in Figure 1.1 below [3].

 2

Figure 1.1. Vehicle recall summary by year [3]

Recalls, even ones resolved by simple ECU reflashes, are expensive for

companies, both in cost and customer satisfaction [4]. Both Ford Motor Company [5] and

NASA [6] have performed studies to trace the source of software bugs that cause issues

downstream. They found that approximately 40% of bugs originate from the

requirements phase of development, and 40% are related to system interactions. The

primary culprits were incomplete or erroneous requirements—subsystem requirements

that were incompatible with other subsystems’ requirements. These issues were not

discovered until later in the development process when multiple subsystems were brought

together for system-level testing. At this point, it is expensive to go back and fix the

necessary requirements and update the system’s design. Hence, there is motivation to

facilitate the employment of system-level simulations at all points in the development

process, not just in the later stages. Simulating and analyzing new developments early,

 3

often, and in the context of the entire system is crucial for catching design problems early

while they are still inexpensive to correct [7].

However, most organizations that develop complex cyber-physical systems deal

in product lines instead of individual products. A product line is a set of product variants

that are based on a shared platform and are assembled from a common set of artifacts [8].

In the automotive industry, each product line can have millions of variants [9] [10]. This

has led to the emergence of product line engineering practices and software such as Pure-

Systems Pure::Variants [11] and BigLever Gears [12] to manage the development of

product lines. Current product line engineering methods are discussed in Chapter 2;

however, modern practices chiefly focus on managing variants in a description model,

particularly structural variations. Little attention has been devoted to managing variants

of simulation models. Therefore, the objective of this research is to critically evaluate the

merits of different modeling approaches for cataloging, contextualizing, and assembling

simulation model components in a way that is most valuable for configuring full virtual

vehicle simulations.

The scope of this research is limited to the automotive domain, but the

innovations presented in this dissertation are expected to reach beyond ground vehicles to

any cyber-physical system with distributed processing, including avionics, robotics, and

industrial control systems. The examples and case study in this dissertation are geared

towards the automotive domain because of the inherent complexities of the domain and

the interests of the author. But the same principles, patterns, and benefits can likely be

 4

realized in the development of any distributed processing cyber-physical system with the

appropriate modifications to the system models and reference architectures.

Research Context

In this dissertation, a distinction is drawn between simulation models and

simulation model components. A “simulation model” refers to a fully executable model,

or one whose boundary conditions have been sufficiently defined such that the simulation

can be executed. A “simulation model component” is a parametric or analysis model that

is used as part of a simulation but by itself is not executable. For example, an engine

model or even a vehicle model is not executable without also including the models for the

driver and the environment.

There is no single widely used process for generating simulations, but there are

some common steps and practices in industry that can be used to evaluate a typical

workflow for creating a simulation. Figure 1.2 below visualizes this typical workflow.

Figure 1.2. Typical workflow for creating simulations

 5

The overall process is characterized by static documentation, repetition, and slow,

unreliable, point-to-point communication among individuals. The process begins in the

upper left corner of Figure 1.2 with the determination of a simulation idea to assess the

performance of the system, a subsystem, or some variant of the system in a specific

context performing a certain behavior. Once the user has defined the desired simulation,

the next step is to dig into the documentation of existing models and see if any of them fit

the desired context. This is often static documentation that requires a high amount of

effort to maintain and is not formalized, which makes programmatically searching

through the documentation almost impossible. It can be laborious and unreliable for the

user to forage documentation for relevant models as some documentation may not exist,

may be incomplete, or may be inaccurate or out of date if a model has been modified and

not documented. These can all give the user a false idea of the models available. Another

option is to contact another person, typically a subject matter expert, to learn about

existing models. This, too, is not ideal as the other person may not have a full grasp on

the current models or be too busy to provide sufficient information. Next, the user can dig

into the model repository itself, represented in the bottom center of Figure 1.2, which is

often hosted by some version-control software such as Git [13]. Inspecting the source

code of models one-by-one is an inefficient and time-consuming process for narrowing

the repository down to models that fit the desired context.

Once the user has an idea of the existing model components he may be able to

reuse in his simulation, the next step is to consider what may be missing from the full

simulation. If the user is building a simulation of a ground vehicle and could not find an

 6

engine model that fits his desired analysis, then he needs to commission a new engine

model to be built that satisfies his specifications. Or if he found an engine model that is

close to what he needs, then he may need to ask for edits to be made to the model to work

with his simulation. However, without an overall architecture for the simulation, it can be

difficult to identify what may be missing from the simulation or to know how to specify

how a new model component should be built to interface with the existing components.

Since a ground vehicle is a distributed processing system, one of the tasks is to

determine how the various electronic control units (ECUs) will communicate with each

other on the controller area network (CAN). This is expressed in CAN database (DBC)

files that define the source of each signal as well as attributes about the signal such as

units and broadcast frequency. This requires the user to communicate with the network

engineers to configure the DBC files for the simulation, as represented in the upper right

corner of Figure 1.2. During these discussions, it is not uncommon to realize that more

edits need to be made to the simulation model components, which means the user goes

back to the simulation engineer to commission updates. This causes an iterative loop of

effort where simulation model components are edited, then the DBC files are updated to

reflect any changes to the models’ interfaces.

Eventually, the user identifies all the simulation model components needed for the

desired analysis, and the last step is to assemble them into a full simulation model. This

can be done by hand, having a user manually connect models to each other, or the process

can be automated. Some organizations have developed tools that can automatically

assemble a simulation out of components, such as the Ford Automated System

 7

Simulation Toolchain [14]. Once assembled, the simulation is ready to run and have the

results analyzed.

Research Questions

Clearly, the typical workflow for generating a simulation model is rife with time-

consuming, unreliable, and repetitive steps. A study of this workflow and the current

state-of-the-art in simulation modeling and variant management techniques, presented in

Chapter II, has led to four research questions.

1. Feature-Based Product Line Engineering (FBPLE) has been shown to be valuable for

managing variants in description models. How can the same benefits of FBPLE be

realized in the simulation domain in a way that lowers the overall cost of creating

simulations and enables system-level simulations earlier in the development process?

FBPLE is a variant modeling technique that has been developed for the purpose

of managing the variations of superset models of entire product lines. The history and

current practices of FBPLE are described in Chapter II. These practices have been shown

to provide numerous benefits when applied to description models, including promoting

reuse of model elements in such a way as to decrease the overall effort of creating

description models for each variant of a product line. These approaches and benefits have

been well studied and documented for system description models in languages like the

Systems Modeling Language (SysML) [15]. The primary research question driving this

dissertation considers if these same benefits can be realized by applying FBPLE practices

to simulation models, and, if so, what is a good approach for doing so to maximize the

benefits. The concern is that the simulation domain considers a number of models that is

orders of magnitude greater than in the description domain, challenging the scalability of

 8

FBPLE. This dissertation introduces a novel framework, called the Vehicle Simulation

Architecture Framework (VSAF), for cataloging, contextualizing, searching, building,

and assembling simulation model components into full simulations. The VSAF uses

reference architectures, new variant modeling patterns, and specialized processes to

reduce the overall cost—time, effort, or money—involved in creating system-level

simulations. The VSAF is described in Chapter III, and its components are defined in the

subsequent chapters.

2. How can parts of a product line that are functionally similar but have drastically

different implementations be modeled in a way that is more scalable than the current

150% approach?

The approach of the variant management techniques of FBPLE is to enable the

representation of a shared platform with various components in a single model that can be

configured to represent any variant of the product line. The greatest benefits are realized

when variants share the same architecture and many of their components because these

artifacts can be reused, eliminating duplication of work. However, a greater challenge

emerges when a product line can implement drastically different architectures to realize a

functionally similar solution. For example, every ground vehicle needs a powertrain to

generate and deliver motive force. For a standard internal combustion engine (ICE)

architecture, different engines, transmissions, and rear axles can be interchanged in a

modular fashion to specify and test different variants without refactoring the model’s

architecture. However, this becomes more difficult when other powertrain architectures

are considered. Switching to a battery electric vehicle (BEV) architecture is not as simple

as putting an electric motor where the ICE would normally go. Changes must be made to

 9

rest of the powertrain and beyond, including the chassis, electrical, and cooling systems

to house, control, and cool the batteries. These kinds of variations make it difficult to take

advantage of any common elements when so much of the system is unique.

A similar situation occurs in simulation models. The architecture and components

of a simulation vary not only when the subject variant changes but also when the goal of

the simulation changes. A simulation estimating the acceleration and braking

performance of a vehicle likely uses different simulation model components, and may

even have a different overall architecture, than a simulation intended to analyze the

vehicle’s handling characteristics. Managing these variations is a challenge with current

variant modeling techniques, and the benefits realized are limited. This dissertation

introduces a novel variant modeling pattern in Chapter V called the Encapsulation

pattern. This new approach provides a mechanism for representing variants that are

functionally similar but architecturally different in the same reference architecture while

mitigating the effects on the complexity of the reference architecture.

3. How can the development of new features be directed such that they are seamlessly

integrated with the rest of the system and facilitate system-level simulations?

Using the FBPLE definition, a feature is a set of coordinated behaviors a system

exhibits to provide the user with a specific experience. Features can range in complexity

and scope, from something simple like letting a user lock the vehicle from a phone app to

more complex like adaptive cruise control with lane keeping assist and automatic

braking. As a company develops a product line, they add new features to the products

over time, sometimes many years after the initial design of the system. Often, these new

 10

features implement some proprietary control algorithm that directs different parts of the

system to work together to achieve some desired behavior. As systems grow to be more

complex and provide more features, unforeseen issues can arise where new features

conflict with existing features and subsystem controls. The desired approach for

mitigating these issues is to conduct system-level simulations early in the development of

the new feature to try to uncover bugs early while they are inexpensive to fix. This

requires the new feature to be developed with the rest of the system in mind. The

question becomes, how can the development of a new feature be informed and directed in

a way that does not slow down the development process while also not significantly

increasing the complexity of the system or refactoring its controls? To accomplish this,

the VSAF employs a technology-agnostic service-oriented reference architecture of the

system, detailed in Chapter IV. The goal of this reference architecture is to abstract away

the implementation details of the system to allow developers to work in an environment

that considers communication and interfacing with other parts of the system without

worrying about exact technology solutions until later in the design process. However,

working in a technology-independent reference architecture creates a new problem,

which is the need to link information from this model to the simulation models that

analyze the system. This leads to the final research question of this dissertation.

4. How can artifacts in the description model be linked to simulation models for variant

configuration in a way that is reusable for any simulation of any variant in a product

line?

To allow for a single reference architecture to serve an entire product line in

which significant architectural variations occur, the VSAF employs an implementation-

 11

independent reference architecture. However, since a simulation necessarily takes

implementation details into account, there is a need to link the technology-abstract

elements to their simulation counterparts. To realize the most benefits, the solution must

allow for the reuse of logical elements in multiple variants and simulations where

possible. Additionally, the linking mechanism itself must be reusable and not add to the

overall cost of creating simulations. The VSAF accomplishes this by providing a

mechanism for allocating subsystem and feature controls to the ECUs that will execute

them, and it uses a similar method for mapping logical variables to CAN and hardware

signals. This approach allows upstream development efforts to feed downstream

simulations without requiring the logical models to be refactored for each variant of the

product line.

Challenges of Variant Management of Simulation Models

The driving hypothesis of this research is that applying FBPLE practices to the

management of simulation models will yield similar benefits as are shown when used

with description models of product lines. Modeling variants and capitalizing on the reuse

of elements, subsystems, and behaviors are essential for product line engineering as this

greatly reduces the amount of time and effort necessary to develop the system. However,

applying variant management techniques to the simulation domain is expected to have

unique challenges, which calls for the development and assessment of the new modeling

approaches presented in this dissertation. A key consideration is that 80% of modern

automotive innovations are based on software [16], so any solution must not only include

the vehicle hardware but also consider control algorithms.

 12

Additional Degrees of Complexity

Current product line engineering practices take into account two degrees of

complexity that are also associated with variant management of simulations. The first is

the number of variants within a product line. As has already been stated, the automotive

domain deals in the order of millions of variants for a product line [9] [10]. Even with the

removal of nonfunctional variations like exterior color and interior trim, there can still be

thousands of functional variants of a single vehicle product line. The second degree of

complexity is the number of subsystems in a product. From the simulation perspective,

this can be thought of as the number of individual models needed to assemble a full

virtual executable representation of the system. When combined with the first degree of

complexity, there are multiple variants of each subsystem that must be created and

maintained, and the different variants of the subsystems can be assembled to create

different variants of the system. In addition to these two degrees of complexity, there are

two more degrees of complexity unique to variant management of simulations that

current variant management techniques do not take into account.

The first is the number of simulation contexts. For verification and validation

activities, a single product variant will be put through any number of simulation analyses.

For example, a virtual vehicle can undergo acceleration tests, braking tests, and drive

cycle assessments. Each of these analyses require their own unique simulation context

and environment, adding to the complexity of the number of models that must be

managed. The final degree of complexity is the number of levels of fidelity. Fidelity can

be thought of as a measure of the abstractions, idealizations, and assumptions that are

 13

taken for a given simulation. The more idealizations that are made, the further the

simulation will be from representing a real-world test. Typically, as development of a

subsystem progresses, so does the level of fidelity of the associated simulation models of

that subsystem. For example, early in the development of an engine, the engineering team

may only know the basic performance parameters they are aiming for, so the only virtual

representation they can have for that engine is a lookup table based on those parameters.

But as development progresses and more of the engine’s design is determined, the team

can create higher fidelity simulation models such as mean value models and, eventually,

full combustion dynamics models. Each of these levels of fidelity may be best used in

different simulation analyses. For instance, a model that considers thermal effects is

useful for some drive cycle assessments but not necessary for a basic acceleration test.

Altogether, these four degrees of complexity associated with variant management of

simulation models—product variants, subsystem variants, simulation tests, and levels of

fidelity—imply that there are potentially hundreds of thousands of simulation models that

must be cataloged and maintained.

Shifts in Simulation Architecture

A closer look at the implications of different levels of fidelity for simulation

models reveals another challenge. While a description model of a system will maintain

and build upon a single architecture throughout development, the same is not true for

simulation models. Early in development of, say, an Advanced Driver Assistance System

(ADAS) feature for a vehicle, the developers will care more about the functionality of the

algorithms than the implementation details of the software and hardware. Because of this,

 14

early simulations tend to take on a functional-based architecture with a simplified plant

model connected to a single control model containing all the control algorithms. In

addition, the signals passed between the plant and controller will likely be idealized state

variables and command signals. However, at some point in development, the simulations

will migrate over to a network-based architecture that does take in account the

implementation details of the software. This architectural shift is illustrated in Figure 1.3

below.

Figure 1.3. Simulation architectural migration during development, from functional to physical

Several changes make it difficult to reuse models from earlier simulations. For

one, the control algorithms are now split among the multiple ECUs that implement them,

which changes the architecture and interfaces of the controls. Also, the control and plant

models are separated by a sensor and actuator layer, further changing the interfaces of

these models. Finally, in addition to architectural changes, the signals themselves have

changed. Functional-based simulations use idealized communications, but in

implementation-based simulations, more realistic signals are used, which requires not

 169

Figure 8.21. Connections among the Power's subsystems

At this point, the Simulation Reference Architecture diverges from the SAE J3049

decomposition. From here, the model uses the Repeating Three-Tiered Decomposition

pattern defined in Chapter V. This pattern mitigates the complexity of architectural

variations within the system simulation model while still allowing for the allocation of

simulation model components at any level of decomposition. The Powertrain subsystem

decomposition using the Repeating Three-Tiered pattern is shown in Figure 8.22 below.

 170

Figure 8.22. Powertrain subsystem models using the Repeating Three-Tiered Decomposition pattern

At this level of decomposition, the Powertrain wrapper block is the abstract

component; the «SimModel»s grouped under it using the new «Encapsulation»

relationship are self-contained simulation models that cannot be decomposed further; and

the «SimModels» under the ModularPowertrainModel wrapper are the skeleton

powertrain models that are built from lower-level components. Chapter V contains more

information about the roles of each of the three tiers in the decomposition pattern. Each

skeleton model defines a set of powertrain architectures that can be configured using

FBPLE into a single variant of a powertrain. The PwrtrnICE&ParallelHyb skeleton

model before and after slicing is shown in Figure 8.23 below.

 171

Figure 8.23. Variant realization of a Powertrain skeleton model

From the 150% powertrain model at the top of Figure 8.23, any ICE or parallel

hybrid powertrain can be configured. In this use case, the ICE powertrain architecture is

used, so the hybMtr and discnctClu parts have been removed from the model after slicing.

The remaining parts have their types changed using the Encapsulation pattern and results

from the ontology query from Table 8.2. To show that the Repeating Three-Tiered

Decomposition pattern can be used at any level of decomposition, Figure 8.24 below

shows the decomposition for the Transmission Block into its self-contained and skeleton

models.

 172

Figure 8.24. Using the Repeating Three-Tiered Decomposition pattern with Transmission models

The middle row of Figure 8.24 shows the self-contained simulation model

components for a transmission that are available in the model repository. If none of these

models fit the desired context, then one of the three skeleton models at the bottom of

Figure 8.24 is selected and configured using lower-level component models. In this use

case, the 10SpdAutoLookupTable_Simulink model fits, so that Block is used to type the

trans part in Figure 8.23. Additionally, the eng and drvln parts have been typed with their

own encapsulations for simulation model components. These selections are all made

using the ontology query results that showed which simulation model components are

applicable to the user’s desired simulation context.

The automatic execution of the Encapsulation pattern to retype abstract parts is

only possible if one and only one simulation model component for the associated abstract

is in the ontology query results. For example, if the list of ontology IRIs in Table 8.2

showed that two transmission simulation models could work with the user’s desired

simulation, then the Simulation Reference Architecture would not be able to

automatically retype the trans part. In this case, the Simulation Reference Architecture

 175

CHAPTER NINE

9. VALIDATION OF WORK

The research context and questions have been presented (Chapter I), the

background upon which this research builds has been laid out (Chapter II), the novel

Vehicle Simulation Architecture Framework (VSAF) has been discussed (Chapter III),

the VSAF’s innovations have been detailed (Chapters IV, V, VI, and VII), and a use case

of the VSAF has been described (Chapter VIII). This chapter presents the validation of

the work within this dissertation in terms of an implicit comparison with current

approaches to simulation model management.

Justification for Lack of Formal Validation

The glaring missing component from this dissertation is a formal validation of the

VSAF. Unfortunately, due to the nature of the research and the application domain for the

VSAF, a formal validation is not within the scope of a Ph.D. dissertation. The purpose of

the VSAF is to manage a large number of simulation model components for the assembly

of complex simulations; its benefits are minimal when applied to simpler domains.

Therefore, a proper test of the VSAF would necessarily be on the scale of a production

passenger vehicle, which is too complex of an experiment to be performed as part of

Ph.D. research. The development and simulation of an adaptive cruise control feature,

like the one in the use case of Chapter VIII, would require on the order of ten thousand

man-hours, ten ECUs, a thousand CAN signals, and a million lines of code once all the

 176

other parts of the vehicle needed to test such a feature are included. This would likely be

around a two- or three-year process, and it would still only result in a single data point.

Because of the author’s close collaboration with and funding from Ford Motor

Company throughout this project, the VSAF is likely to be adopted in some form, so time

will tell if its practices prove to be more efficient than current approaches. Another

benefit of the collaboration with Ford was the constant feedback from various industry

experts throughout the development of the VSAF. The project sponsor and industry

experts helped direct the innovations and ensure the feasibility and viability of the ideas

and approaches. As part of the project sponsorship, parts of the VSAF have been tested

on more complex examples directly from the automotive industry. Unfortunately, the

results of these tests cannot be reported here due to intellectual property concerns and the

proprietary nature of the content. However, the results of these tests are reflected in the

use case presented in Chapter VIII even though none of the content from that use case

came directly from industry.

Possible Formal Validation Methods

Ideally, as stated above, the ideas and innovations of the VSAF would have been

tested in their entirety on a use case on the scale of that of industry, and results would

have been compared with current industry practices to perform a formal validation of the

VSAF. The steps for such a validation process are as follows. First, the researcher would

have to work with a company to modify the Logical System Architecture and Simulation

Reference Architecture to reflect a product line the company produces. During this

process, the total cost of initially developing these reference architectures would need to

 177

be recorded in terms of time and financial investments. Additionally, the researcher

would have to set up a model documentation ontology for the company’s simulation

model repository while recording the total cost of this step as well. Calculating the cost of

the initial setup of the VSAF is crucial for comparing the initial investment and

incremental costs to those of current industry practices.

Once the SysML reference architectures and model documentation ontology are

set up, the next step is for the researcher to select a new feature’s development to follow

that is still in its infancy. The researcher would be required to have unfettered access to

the full development process. As the developers designed the feature, the researcher

would mirror any developments into the SysML reference architecture and record the

effort of doing so while also recording the effort of the other developers. As the feature is

ready to be analyzed at various points in development, the researcher would assemble

vehicle-level simulations using the VSAF while the developers would analyze their

feature using traditional methods. The researcher would use these junctures to compare

the incremental cost required to simulate the feature using the VSAF as opposed to

traditional approaches. The researcher could also note if the results of the VSAF’s

simulation were different, namely, if it caught any issues or bugs that the developers’

traditional assessment did not catch. These actions would be repeated throughout the

development of the feature. At the end of development, the researcher would gather all

data comparing the VSAF with the traditional development approaches regarding

differences in cost, time, effort, errors made, and errors caught. This data would be the

basis for the formal validation of the VSAF.

 178

Another method for testing the VSAF could include implicit validation by means

of formal interviews with various industry experts. While several experts from Ford

provided guidance during the development of the VSAF, no formal interviews were

conducted. To do this, the researcher would put together a presentation of how the VSAF

works along with an example. He would also determine questions that he could ask to

help evaluate the VSAF. The researcher would then contact several different companies

to arrange times to present the VSAF to modeling and simulation experts and receive

their feedback through both open-ended and survey-style questions. The researcher

would then gather the results and analyze them to determine if the VSAF offers the

opportunity for a measurable economic advantage. However, a challenge to this

evaluation method would be the differing current simulation approaches at each

company. Since each organization has their own development process and tools, the

results of the interviews would likely be quite different for each company, making it

difficult to compare results across the industry.

VSAF Benefits and Cost Tradeoffs

Below is a table summarizing the key benefits of the VSAF in terms of new

capabilities enabled or facilitated by the VSAF over the current practices discussed in

Chapter I. Table 9.1 below shows each use case, how it is handled using current

practices, and how the VSAF supports the use case.

 179

Table 9.1. VSAF Benefits: New and Supported Use Cases

Use Case Current Practice VSAF

Verify and validate

new features or

software at the

system-level before

it is mature enough

to integrate with the

rest of the system

Early validation activities

use mockups of the rest of

the system created by the

feature development team.

Self-created mockups may

be inaccurate, compromising

validation results, potentially

leading to downstream errors

that must be fixed later.

VSAF uses a standardized and

constantly maintained variant-

independent representation of the

system in which each subsystem

development team provides a

technology-abstract black box

view of their subsystem. This

allows for earlier integration with

the system's overall design and

validation with up-to-date

representations of subsystems

instead of self-created mockups.

Discover gaps in

the simulation

model repository

Simulation model

components are created on

an as-needed basis, often

intended for a single use.

Model repositories are not

maintained with modular

component models for quick

assembly of new

simulations. Decentralized,

static documentation

complicates or prevents an

analysis of the entire

repository.

VSAF employs a reference

architecture for simulations that

documents the role each

simulation model component in

the repository fills in the

simulation. An analysis of the

reference architecture can reveal

plant or controller models for

certain system variants or

simulation contexts that are

under-represented and should be

further developed.

Identify potentially

problematic

incompatibilities

between models

Model compatibility is

assessed after the full

simulation is built and

configured. At this point,

incompatibilities force

backtracking to fix model

components or create new

ones.

VSAF implements a formalized

documentation of simulation

model components using an

ontology language. This

documentation includes

information on required and

provided interfaces, differential

equations, and interactions with

connected model components

that determine which models can

be used together in a simulation.

Compatibility analyses are

performed during the model

 180

searching step instead of after the

simulation is assembled.

Inform how to

request and develop

new simulation

model components

for the repository

Simulation model

components are requested

and informed by the end user

of a simulation, relying

heavily on the user's

knowledge and familiarity of

the simulation. Model

components are often

developed for a specific

simulation instead of

modularly for use in a wide

range of simulations.

VSAF's reference architecture

provides a standardized model

within which simulation model

components are used. This

informs a new model

component's role, scope, and

interface to increase reusability.

Formal documentation and

searching prevent recreating

existing models.

Determine if an

existing simulation

model component

can be used in a

specific simulation

context or use case

Knowledge of an existing

simulation model component

is dependent on static

documentation or

availability of the model's

author. No formalized or

automated process exists for

programmatically searching

for model components by

applicability in use case.

VSAF's simulation model

documentation ontology formally

characterizes and indexes

simulation model components

available in a repository. The

ontology's query tool reasons

through a user's search criteria to

programmatically determine

which model components fit the

user's desired system variant and

simulation analysis.

Inform

configuration of

DBC files for

different vehicle

variants

Software developers and

network engineers work

together to divide software

among ECUs and determine

the CAN traffic. Each

variant is handled separately.

VSAF allows software

developers to work in a variant-

independent environment.

Logical functions are mapped to

software which is allocated to

ECUs. These allocations,

managed using PLE techniques,

automatically determine the ECU

interfaces, which are sent to

network engineers for DBC file

configuration.

 181

Build more

efficient models at

correct level of

fidelity to balance

accuracy and

computation cost

Users employ simulation

model components that they

are most familiar with or that

have the most information

available, regardless of their

suitability for the simulation

context. Therefore,

simulations are not at the

optimal fidelity for achieving

the desired accuracy without

unnecessary complexity that

increases the computational

cost.

VSAF's query tool interprets the

user's desired simulation analysis

to determine what characteristics,

namely, physical phenomena and

observable quantities, that the

simulation must have. It then

searches the simulation model

documentation ontology to find

the model components that best

match the desired context,

optimizing the simulation's

computational cost without

sacrificing the accuracy of the

results.

Throughout the development and testing of the VSAF, several trends were

observed. The primary observation was the difference in the initial investment and

incremental costs of assembling simulations using the VSAF as compared to traditional

methods. A typical workflow for generating a simulation is described in Chapter I. The

typical workflow has little initial costs associated with it. The more an organization

builds simulations on an as-needed basis, the more the cost skews from initial to

incremental. If an organization puts more emphasis and effort into documenting their

models, then those models are more like to be reused. In this case, the additional effort of

documenting the models is offset by the effort saved of creating a new simulation model

component that already exists. And the more that model is reused, the higher the total

cost savings. The VSAF aims to streamline documentation by using a formal ontology to

document the models as described in Chapter VII. Setting up the ontology does have

some initial costs involved, but it standardizes the documentation process. Instead of

 182

requiring users to fill out a documentation form manually, the ontology allows the user to

assign formal characteristics and relationships to the model. With a proper user interface,

the documentation cost can be reduced. Additionally, by using a formal method of

documentation, some parts of the documentation process can be automated, particularly

recording the metadata of each model. This not only reduces the total cost of

documentation, but it also eliminates human errors from this part of the process.

With formal documentation, cost savings are also realized during the model

searching step. Instead of a user poring through a myriad of documents, searches are

performed through a query of the ontology that indexes and searches for models that fit

the user’s criteria. This allows users to quickly sort through existing models using any

desired search criteria. If a search returns no results, the criteria can be broadened, and if

a search returns many models, then the criteria can be narrowed. Additionally, a

sophisticated search engine could return results that are close to the user’s desired context

to provide a starting model for the creation of a new one. Compared to manually writing

and reading static documentation of model, this approach greatly reduces the cost of

finding models and increases the occurrences of reusing models.

The VSAF not only helps document and find existing models, but it also

facilitates how new models are built. The Simulation Reference Architecture in SysML

provides an overall architecture for system-level simulations, so when a new simulation

model component is being built, the simulation engineer can use the reference

architecture to understand the context in which the model will be applied. This contrasts

with the traditional method of having the initial end user set specifications for the new

 183

model component. This approach in no way promotes the reuse of the new model

component in subsequent simulations. Designing new components to the reference

architecture instead of only the first simulation it will be used in increases the modularity

and reusability of the model component.

The VSAF also helps with the design of new system features by providing a

Logical System Architecture and guidelines for both subsystem and application

development and representation in the reference architecture. This contrasts with having

each development team design their portion of the system in their own model without

well-defined interfaces with the rest of the system. The VSAF saves time and effort when

configuring a simulation by having the interactions of the logical system elements already

defined. Also, the VSAF provides mechanisms for linking the elements in the Logical

System Architecture to model components and CAN signals in the Simulation Reference

Architecture. This reduces the manual effort of these steps and prevents associated

human error.

Overall, the VSAF facilitates the simulation process of a ground vehicle by

automating several of the steps, improving the efficiency and effectiveness of other steps,

and providing a reusable architecture upon which to build simulations. The initial

investment of implementing the VSAF is rather high, but it greatly reduces the

incremental cost of generating each subsequent simulation. As more simulations are

created using the VSAF, the higher the cost savings, eventually offsetting and surpassing

the initial and administrative costs. Finally, by making it easier to build system-level

simulations, the VSAF makes it more likely for new developments to be tested in the

 184

context of the entire system, helping to catch system-level design issues early while they

are inexpensive to fix, further adding to the value of the VSAF.

Incremental Adoption of the VSAF

A high initial investment can be a barrier to adopting a new practice, especially

one that has yet to be formally proven. In the case of the VSAF, a better approach than an

all-or-nothing adoption would be an incremental adoption of the various innovations

within the framework. Adopting the VSAF’s components in an order of highest benefit-

to-cost ratio, as described below, can allow an organization to see if the VSAF is right for

them while also reaping some benefits before the entire framework is initialized. Doing

this removes some of the uncertainty and risk involved in adopting new practices. In

total, the VSAF has seven innovations, listed below in the order that they should be

adopted to realize the most benefits at the smallest cost.

1) Encapsulation variant management pattern (Chapter V)

2) Slicing 150% models in multiple stages (Chapter V)

3) Model documentation ontology (Chapter VII)

4) Simulation Reference Architecture with the Repeating Three-Tiered

Decomposition pattern (Chapter IV)

5) Logical System Architecture with subsystem and application development

guidelines (Chapter IV)

6) Logical element-to-ECU allocation matrix with Simulation Block SysML profile

(Chapters IV & VI)

 185

7) Logical variable-to-CAN signal allocation matrix with CAN Communication

SysML profile (Chapters IV & VI)

The Encapsulation variant management pattern is the least costly innovation to

adopt for any organization that already uses SysML with variant management tools like

the Dassault Systèmes Cameo Systems Modeler MBPLE Profile [49], Pure-Systems

Pure::Variants [11], or BigLever Gears [12]. To add the capabilities of the Encapsulation

pattern requires modifications to the variant management tool to add both the new

«Encapsulation» relationship and the variation point maintenance table. Dassault

Systèmes is working on including the Encapsulation pattern in an upcoming update to

Cameo Systems Modeler, and the INCOSE group developing SysML V2 plans to

incorporate much of the pattern’s functionality into this long-awaited update to SysML.

The user can expect to see improvements in the modeling of variants that are functionally

similar but architecturally different, even if not used in the larger context of the VSAF

[52] [104].

The next innovation to adopt would be the capability of slicing 150% models in

multiple stages. Much like the Encapsulation pattern, adding in this capability would

require some modifications to the variant management tool that an organization uses. The

new functionality is the ability to narrow the selections of an FBPLE feature without fully

resolving the feature and then slicing the model based on the incomplete variant

specification. Additionally, edits made in a sliced model would need to be reflected in the

150% model. A more detailed description of this functionality is provided in Chapter V.

The benefit of slicing a 150% model in multiple stages is the ability to narrow a model’s

 186

context to a subset of variants that a modeler may be interested in without requiring the

specification of a single variant. This capability is useful in the VSAF for slicing the

Logical System Architecture first and the Simulation Reference Architecture later, but

some benefits can be realized without the rest of the VSAF as well.

The third innovation to adopt is the model documentation ontology. This

dissertation provided justification for using a formal ontology instead of the traditional

FBPLE feature model due to improved scalability, expressiveness, easy of searching, and

simplification of variation point logic. However, further research is needed to determine

best practices for structuring, organizing, and maintaining an ontology for the

documentation of simulation model components. Therefore, a significant amount of effort

is still required to implement a model documentation ontology. But even without the rest

of the VSAF, a formal, scalable, expressive, and searchable documentation method for

simulation model components would still improve reusability of existing models,

reducing the overall effort of generating new simulations.

With the model documentation ontology in place, the next innovation to adopt

would be the Simulation Reference Architecture using the Repeating Three-Tiered

Decomposition pattern. This again calls for a sizable amount of effort because creating

and maintaining a reference architecture is not a trivial task. It would require designing

the architecture based on the guidelines provided in Chapter IV and modeling patterns in

Chapter V, adding in black boxes of existing simulation model components, and linking

these black boxes to the individuals in the ontology. However, once the initial setup has

been done, the Simulation Reference Architecture provides several benefits like showing

 187

how simulation model components connect to each other to facilitate the assembly of a

full simulation, allowing for interface validation to be performed in SysML before

configuring the simulation, and guiding the development of new simulation model

components by showing the context in which they will be applied. The Simulation

Reference Architecture realizes its full benefits when combined with the model

documentation ontology, which is why it is listed after the ontology.

The Logical System Architecture is next on the list for adoption. As with the

Simulation Reference Architecture, the Logical System Architecture requires a large

investment to prepare. First, a new logical, service-oriented representation of the system

must be designed. If an organization already has done this as part of their development

process, then implementing the Logical System Architecture could happen before the

Simulation Reference Architecture and possibly even before the model documentation

ontology. It is likely that a service-oriented view of the system will require the inclusion

of new elements such as service brokers, which adds to the overall cost. Finally, the

subsystem and application designers would be asked to develop black boxes of their

elements using the guidelines provided in Chapter IV. Once all this is done, the Logical

System Architecture facilitates the technology-abstract development of new system

features, which ensures these features will be compatible across the full product line. It

also improves functional safety analyses by properly assigning requirements to each

development team and clearly showing how each logical element communicates.

The last two innovations to be adopted are the two allocation matrices: logical

element-to-ECU and logical variable-to-CAN signal. Both of these require the

 188

implementation of both the Logical System Architecture and the Simulation Reference

Architecture since their purpose is to link the elements of the two architectures. Also, the

CAN signal allocation matrix relies on the ECU allocation matrix to realize its benefits,

so it should be implemented last. Each of these matrices needs very little effort to create

and maintain, but they provide no benefits without the previous innovations, so they are

last for adoption. However, with these implemented, the VSAF’s full functionality is

complete, and the organization can start designing features in a technology-abstract

manner without worrying about implementation details, and simulations can more easily

be designed, searched for, and assembled to facilitate system-level testing at any point in

the development process.

 189

CHAPTER TEN

10. CONCLUSIONS AND FUTURE WORK

Answers to Research Questions

Chapter I laid out the motivation for this research as the increasing complexity of

ground vehicle systems causing higher numbers of system interaction issues leading to

more recalls over recent years [3] [4]. Previous work from Ford [5] and NASA [6] have

found that many of these issues would be prevented through system-level simulations

earlier in the design process. Therefore, the objective of this research was to critically

evaluate the merits of different modeling approaches for cataloging, contextualizing, and

assembling simulation model components in a way that is most valuable for configuring

full virtual vehicle simulations. The focus of this dissertation is the automotive domain,

but the scope of the innovations ultimately reaches beyond this to any distributed-

processing mechatronic system with the appropriate edits to the reference architectures.

Four research questions were presented in Chapter I, and the answers to these

questions resulting from this dissertation’s research are given below in this section.

Chapter II provided the related work upon which this dissertation was built. Chapter III

detailed the novel Vehicle Simulation Architecture Framework (VSAF) that was

developed in response to the driving research questions. Chapter IV explained the SysML

model at the heart of the VSAF, both the Logical System Architecture and Simulation

Reference Architecture, the purpose and benefits of each of these, and guidelines for how

to implement them. Chapter V described the three variant management patterns that were

