








Figure 4.6. Stiffness of phantom membranes measured across increments of applied
pressure with R* values showing high degree of linearity and physiological stiffness
range highlighted
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Figure 4.7. Stiffness of the mesh-phantom composite measured by the BOSE and
stiffness tool across increments of applied pressure with physiological stiffness range
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Table 4.2. Stiffness of the inflated mesh-phantom composite measured by the BOSE and
hand-held stiffness tool (mean + standard deviation)

Measurement
Instrument BOSE ElectroForce Stiffness Tool
Pressure
0.4 psi 0.673+0.001 0.681+0.045
1.0 psi 1.04+0.020 1.13+0.055
1.6 psi 1.31+0.004 1.41+£0.055
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Figure 4.8. Calculated tension of phantom membranes and mesh-phantom composite
across increments of applied pressure
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CHAPTER FIVE

DISCUSSION

The broad objective of this thesis, to characterize the mechanical behavior of the
mesh-tissue composite using abdominal wall tissue phantoms and experimental
simulations, was fulfilled through work presented in subsequent chapters. Chapter Two
outlined the successful development of a hand-held stiffness tool with instrumentation for
mechanical characterization of the abdominal wall. Chapter Three subsequently outlined
the effective characterization of mesh-tissue composite stiffness in a uniaxial tension
simulator with abdominal wall tissue phantoms and surgical mesh. Finally, Chapter Four
presented the successful development of a custom benchtop simulator to mimic

abdominal wall distension and provide biaxial loading of mesh-phantom composites.

Development and Application of the Stiffness Tool

Chapter Two presented the development of a hand-held stiffness tool capable of
characterizing the abdominal wall with instrumentation to measure load applied to the
tool by a user during operation, thereby satisfying Specific Aim 1. The final design of the
stiffness tool presented in this thesis was accomplished through iterative design utilizing
rapid prototyping and additive manufacturing. Multiple user-load sensors and
configurations were considered, all of which had limitations affecting the precision and
functionality in vitro. Ultimately, the selected load sensor served as the driving factor for
design of the removable sheath — a feature which proves useful during cleaning and

assembly of the stiffness tool. Additional functional and aesthetic alterations to the tool
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were considered secondary to requirements of spherical indentation, stiffness
characterization, and user-load measurement.

Verification of the tool was successfully completed against standard benchtop
equipment and abdominal wall tissue phantoms characterized in terms of stiffness within
the physiological range. Application to swine specimens showed that the tool has
potential for use as a clinical instrument for characterizing the abdominal wall in situ.
The swine specimens tested were collected shortly after surgical procedures, a potential
source of variation in their abdominal wall stiffness. They were subject to various
incisions and sutures before testing with the stiffness tool began but were only needed for
assessing the tool’s performance against tissue and not for an exact measure of abdominal
wall stiffness. The swine cadaver studies proved useful in verification of the hand-held
stiffness tool and in serving as preliminary in vivo validation.

The experimental design outlined in Chapter Two was further developed to satisty
Specific Aim 2 for the characterization of mesh-tissue composite stiffness in a uniaxial
tension simulator with abdominal wall tissue phantoms and surgical mesh. In Chapter
Three, a custom rig was used to apply a range of uniaxial tension to surgically relevant
mesh overlaying abdominal wall tissue phantoms. The mesh-tissue composites were
characterized with the BOSE ElectroForce benchtop system as well as the hand-held
stiffness tool under a range of applied loads. The effects of user-load on stiffness
measurements were better defined and effectively minimized using optimization factors
corresponding to specific applied loads. This revealed a highly linear relationship from

which a simple linear model could be extrapolated and used to correct stiffness values
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acquired under a measurable user-load. Initially, it was hypothesized that the effects of
user-load on stiffness measurements could be eliminated by simply subtracting the user-
load magnitude from indenter load values. However, doing so with a constant would only
shift the force-displacement curve without changing the slope. As discovered through this
work, the relationship between an applied load and change in stiffness was more complex
than initially believed. Thus, user-load measurements may best serve as a means to
evaluate the way in which a user is interacting and leaning into the stiffness tool. The
methods described in Chapter Two to evaluate user-load effects on stiffness measurement
were assumed to be the most intuitive. However, multiple combinations of user
interactions with the stiffness tool could reduce or increase measured stiffness in ways
that cannot be corrected with current methods. Therefore, continued development of the
stiffness tool to further compensate for human error should be considered.

The instrumentation and programming of the final design performed well
considering the prototype and hand-held nature of the stiffness tool. With at least 1,200
indentations performed with the tool through this thesis alone, it proved to be robust and
promising for long-term service. The lifespan and performance of the tool could be
further improved by manufacturing the tool’s casing and internal components with high
precision parts and more industrial materials as opposed to those readily available for
rapid polymer 3D printing. With these improvements, the stiffness tool could be
developed commercially as a research and clinical instrument with application to any soft

tissue including characterization of internal abdominal organs, external appendages, or
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brain tissue by means of non-destructive indentation (Griffin 2016, Su 2009, van

Dommelen 2010)

Mesh-Tissue Composite Simulation and Biaxial Loading

Two silicone rubber formulations (ECOFLEX OO-10 and OO-20) were used as
tissue phantoms characterized as having stiffness within the theoretical range of the
human abdominal wall (0.33 to 0.81 N/mm). A surgically relevant mesh material
(Prolene Soft) was chosen to overlay the phantoms and simulate mesh implanted during
hernia repair surgery. It should be noted that surgical mesh materials often exhibit a
similar slack region to soft tissues, where under low load (a comfort region), fibers shift
and extend before reaching high load (safety region) to shield adjacent tissues from
excessive strain (Konerding 2012).

Chapter Four expanded the uniaxial mesh-phantom model to fulfill Specific Aim
3 of this thesis: the development of a benchtop simulator capable of mimicking
abdominal distension and providing biaxial loading of mesh-phantom composites.
Recently developed methods targeting a more standardized approach for characterizing
mesh-biomaterials were used as the basis for design of the benchtop simulator. Tissue
phantom membranes were selected so that they were thin yet stiff enough to serve as a
simulation of abdominal wall tissues. Configuring the inflated membrane under known
constraints and biaxial loading conditions produced a range of stiffness values as
characterized by non-destructive indentation and revealed a wide range of acceptable

parameters to simulate physiological stiffness. Additionally, the inflated membrane was
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considered a spherical segment and with measured vertical displacement and known
applied pressure, it was characterized in terms of biaxial tension. All measurement series
revealed a highly linear and predictable behavior of the phantom membranes which could
prove useful when evaluating the behavior of overlaid mesh or composites with more
complex materials. While variations seen in stiffness measurements and tension
calculations may be due to minimal subjective estimation of applied pressure and vertical
displacement, it is worth noting that standardized methods of non-destructive indentation
are often subject to variability and several parameters including indenter geometry can
lead to varying results (McKee, 2011). With this in mind, the biaxial loading system and
prototype stiffness tool were successful in simulating and characterizing the mesh-tissue

composite.
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Appendix A

Engineering-Derived Inputs and Outputs

Table A.1. Engineering-derived design inputs and outputs of the stiffness measurement

tool prototype

SOUIFIP
%G1 Uey) ssaf J0adxa ‘swyLIo3[e
UONONpaI YIM SSAUIINS AB[NO[R))

sSupear gSOg Wox %S|
UBY) $S2] AQ JAJJIP SJUAUIAINSEAUT [BULION

2)eINdOR
SIE SJUAWIAINSBIW SSAUJJNS PIZIBULION

Q0UDIJIP
%G1 Uey} ssof j0adxa ‘swa)sAs
1oq s ssaupgys o[dwes aInseajy

sSuipear gSOF WoH %S| Uey)
53] AQ JOIJIP SJURWIAINSBAW SSAUING

QJEINOJE AT SJUIAWAINSEIW SSAUIING

paziurur
SI JUSWIRINSBAW SSAULINS
UO PBO[-12sn JO 1021IF

AJ[eoLnuaouod JiJ
pue payioads SB 2INSEAW POl PUE JOSUAS

(ww ¢/ +)
POI I2)UapUl < (] SBY JOSUAS PeO[-13s()

Q0URISLI)UI [BUWNUNT YiM JAJUIPUL
QU] I OLUADUOD S)IS JOSUS PBO[-1aS)

1s212)U1
J0 o3uel WM AJIARISUDS WLIJUOD
0} UONEIQIED J0SUas Juatnade(dsiq

wuw ()]
01 dn uonnjosaz Y3y yum syuawaoe|dsip
saInseaw J0suas QT ZMTELIdO Y340

yidop I2)uapul saInseaw
AJ21BINO0R I0SUDS JUAWAJE[dSIP I2)Uapu]

1S212)UT JO 23URI UIIIM AJARISUDS
ULIJUOD 0] UOHEBIQIED JOSUIs PO

N 0€ 03 §*( WOIJ S20I0]
SQINSBAW JOSUS PBO] §-GTN H2IUasio ]

1sarajut Jo a3uer umgm $a010%
sanseawr %—Ouﬂsoom JOSUas peo[ Iajuapuy

sIosuas Funsixa

Jo Ayyeuonouny [ng

12y}250) peary} ued pue payroads
se pajulid I8 Joysem PUE [BayS

(yond wiw 01 “yiSue] ww () Ioysem
B OJUO PBAIY) UBD [IBAYS [GBAOWUI YT

JIOSU3S Y] Y JLIJUIDUOD pue ysnjy
JiJ IoySem papealy] pue [{leays [qesoial yy

payioads se Suunseawt
suoIsuaWIp Yy pajuiid st yreays

ww o¢ > o ¥ ww
81 < ([ Ue Sey [)Bays J[qBAOWAT oY T

Suised [001 21}
UIJJIM JQUUASSE UBD IBAYS [qBAOWI

I0Suas 21} 0}
PA1I2JSURT) ST JUATUNISUT
ay} 0 pardde peog

payioads se Suunseawt
suorsuaump ym pajud st Suise)

un
§7 X W °/ WNWIXeUT 2INSEAW 3UIsed

a1y o sarmonys Suntoddns UM BAIY

Suiseo
JUSWINLGSUL 2T} UM §)iJ JOSUS PEOT

1S2I2)U1 JO 23URT UM ANANISU2S
WLIJUOO 0} UOREIGIED JOSUAS PEOT

uonsu] £4q pandde peoj woi 25UARYIP
%S T B} SSI[ [IM “Iq] b < SINSEAW
0T-00T-00T8DT JOSUAS PEO[ BSAWO

1S2I2)UT JO 23UBIT UM S20I0]
S2INSEAU A[2)BINOOE JOSU2S PBOT-IaS()

PEO[-I35T1 JO JUAWIAINSBAUL
as1021d pue 2)BINOOY

UOREIYLIDA SIS

uonedyadg

sjuowannbay udisaq

PaaN 1as()

sindinQ usisaq

sinduy udisag

72



| 4

1 40 1 133HS HOEM 2iL 31vOS ONIMYYA 3Tv DS LON Od
< HSIN
AN ‘'ON "OMA 31IS TRHALYW

JOSUSS PROT-I9sN
10} BuisnD |00]

“4ddv ONI

=Rilin aAIOIHD
< NAMY YA SIILIWMTIV NI IV SNOISNIWIA

alva INYN Q3HID3dS ISIMITFHIO SSITNN

| 0584 dNdl

Appendix B
Engineering Drawings
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Appendix C
Sensor Specifications

MINIATURE LOW-PROFILE,
THROUGH-HOLE LOAD CELLS

1.00701.25” 0D

GCompression
0-51b to 0-500 Ih
0-2.3 kg to 0-227 kg

1 Newton = 0.2248 Ib

1 daNewion = 10 Newions
1lb=454g

1t=1000kg =2204 b

LC8100/LC8125 Series

Standard

+ Low Profile

v+~ All Stainless Steel
Construction

+* Rugged Industrial Design

The LC8100 and LC8125 Series
donut load cells are an economical
solution to applications requiring

a through-hole design. With

their extremely low-profile and
compact design, they are ideal for
applications such as clamping
forces, bolt loading forces, and other
compressive loads. This series, with
its all stainless steel construction and
environmental protection, has proved
reliable in the toughest industrial
applications.

SPECIFICATIONS
Output: 2 mV/V nominal
Input: 10 Vdc (15V maximum)
Accuracy: +1.0% linearity, hysteresis
and repeatability combined
Zero Balance: +2.0% FSO
Operating Temp Range:
-54 to 121°C (-65 to 250°F)
Compensated Temp Range:
16 to 71°C (60 to 160°F)
Thermal Effects:

Zero: +0.009% FSO/°C

Span: +0.018% rdg/°C
Safe Overload: 150% of capacity
Ultimate Overload: 300% of capacity
Deflection: 0.075 mm (0.003") nominal
Input Resistance: 360 Q minimum
Output Resistance: 350 +5 Q
Construction: 17-4 PH stainless steel
Electrical: 1.5 m (5') 4-conductor
shielded cable

€ —
N~ Los12 1028 shewn
N, _l ~
N _I ~
Dimensions: mm (inch)
MODEL ob H D
LC8100 25 (1.00) | 7.1(0.28) a] F Loading Surface
LC8125 32(1.25) | 7.1(0.28) ¥ : : 5
H
WIRE CONNECTION L I

GN +Output \Loading Surface

WT -Output

BK -Ian'J)t oo

RD +Input
INSIDE DIAMETERS (ID) + =MOST POPULAR X = AVAILABLE
IDCODE| 100 125 188 200 250 312 375
MODEL | 0.100" 0.125" | 0.188" | 0.200" 0.250" | 0.312" | 0.375"
LC8100 X X X + X
LC8125 X X X + X + X

Also available in metric configurations, consult engineering for detaifs.

To Order
CAPACITY | MODEL NO. | COMPATIBLE METERS**
Model LC8100 with a 1.00" OD and Selectable ID
51b 2.3 kg LC8100-[*]-5 DP41-S, DP25B-S, DPiS
10 1b 4.5 kg LC8100-[*]-10 DP41-S, DP25B-S, DPiS
251b 11 kg LC8100-*]-25 DP41-S, DP25B-S, DPiS
50 Ib 23 kg LC8100-[*]-50 DP41-S, DP25B-S, DPIiS
100 Ib 45 kg LC8100-[*]-100 DP41-8, DP25B-S, DPiS
200 Ib 91 kg LC8100-*]-200 DP41-S, DP25B-S, DPiS
Model LC8125 with a 1.25" OD and Selectable ID
251b 11 kg LC8125-[*]-25 DP41-S, DP25B-S, DPiS
50 Ib 23 kg LC8125-[*]-50 DP41-S, DP25B-S, DPiS
100 Ib 45 kg LC8125-[*]-100 DP41-S, DP25B-S, DPiS
250 1b 114 kg LC8125-*]-250 DP41-S, DP25B-S, DPiS
500 Ib 227 kg LC8125-[*]-500 DP41-S, DP25B-S, DPiS

Comes complete with 5-point NIST-traceable calibration and 59 kQ shunt data.

** Visit us online for compatible m

elers.

[#] Select ID Code from table above to complete model number.
Ordering Examples: LC8100-200-200, 200 ib capacily load cell, 1.00" OD and 0.200" ID.
LC8100-125-10, 10 Ib capacity load cell, 1.00" OD and 0.125" ID.
LC8125-188-25, 25 Ib capacity load cell, 1.25" OD and 0.188" ID.

LC8125-200-500, 500 Ib capacity
F-87
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