






Figure 4.6. Stiffness of phantom membranes measured across increments of applied 
pressure with R2 values showing high degree of linearity and physiological stiffness 

range highlighted 

63



Figure 4.7. Stiffness of the mesh-phantom composite measured by the BOSE and 
stiffness tool across increments of applied pressure with physiological stiffness range 

highlighted 

Table 4.2. Stiffness of the inflated mesh-phantom composite measured by the BOSE and 
hand-held stiffness tool (mean ± standard deviation) 

Measurement 
Instrument 

Pressure 

BOSE ElectroForce Stiffness Tool 

0.4 psi 0.673±0.001 0.681±0.045 

1.0 psi 1.04±0.020 1.13±0.055 
1.6 psi 1.31±0.004 1.41±0.055 
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Figure 4.8. Calculated tension of phantom membranes and mesh-phantom composite 
across increments of applied pressure 
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CHAPTER FIVE 

DISCUSSION 

The broad objective of this thesis, to characterize the mechanical behavior of the 

mesh-tissue composite using abdominal wall tissue phantoms and experimental 

simulations, was fulfilled through work presented in subsequent chapters. Chapter Two 

outlined the successful development of a hand-held stiffness tool with instrumentation for 

mechanical characterization of the abdominal wall. Chapter Three subsequently outlined 

the effective characterization of mesh-tissue composite stiffness in a uniaxial tension 

simulator with abdominal wall tissue phantoms and surgical mesh. Finally, Chapter Four 

presented the successful development of a custom benchtop simulator to mimic 

abdominal wall distension and provide biaxial loading of mesh-phantom composites. 

Development and Application of the Stiffness Tool 

Chapter Two presented the development of a hand-held stiffness tool capable of 

characterizing the abdominal wall with instrumentation to measure load applied to the 

tool by a user during operation, thereby satisfying Specific Aim 1. The final design of the 

stiffness tool presented in this thesis was accomplished through iterative design utilizing 

rapid prototyping and additive manufacturing. Multiple user-load sensors and 

configurations were considered, all of which had limitations affecting the precision and 

functionality in vitro. Ultimately, the selected load sensor served as the driving factor for 

design of the removable sheath – a feature which proves useful during cleaning and 

assembly of the stiffness tool. Additional functional and aesthetic alterations to the tool 
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were considered secondary to requirements of spherical indentation, stiffness 

characterization, and user-load measurement. 

Verification of the tool was successfully completed against standard benchtop 

equipment and abdominal wall tissue phantoms characterized in terms of stiffness within 

the physiological range. Application to swine specimens showed that the tool has 

potential for use as a clinical instrument for characterizing the abdominal wall in situ. 

The swine specimens tested were collected shortly after surgical procedures, a potential 

source of variation in their abdominal wall stiffness. They were subject to various 

incisions and sutures before testing with the stiffness tool began but were only needed for 

assessing the tool’s performance against tissue and not for an exact measure of abdominal 

wall stiffness. The swine cadaver studies proved useful in verification of the hand-held 

stiffness tool and in serving as preliminary in vivo validation. 

The experimental design outlined in Chapter Two was further developed to satisfy 

Specific Aim 2 for the characterization of mesh-tissue composite stiffness in a uniaxial 

tension simulator with abdominal wall tissue phantoms and surgical mesh. In Chapter 

Three, a custom rig was used to apply a range of uniaxial tension to surgically relevant 

mesh overlaying abdominal wall tissue phantoms. The mesh-tissue composites were 

characterized with the BOSE ElectroForce benchtop system as well as the hand-held 

stiffness tool under a range of applied loads. The effects of user-load on stiffness 

measurements were better defined and effectively minimized using optimization factors 

corresponding to specific applied loads. This revealed a highly linear relationship from 

which a simple linear model could be extrapolated and used to correct stiffness values 
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acquired under a measurable user-load. Initially, it was hypothesized that the effects of 

user-load on stiffness measurements could be eliminated by simply subtracting the user-

load magnitude from indenter load values. However, doing so with a constant would only 

shift the force-displacement curve without changing the slope. As discovered through this 

work, the relationship between an applied load and change in stiffness was more complex 

than initially believed. Thus, user-load measurements may best serve as a means to 

evaluate the way in which a user is interacting and leaning into the stiffness tool. The 

methods described in Chapter Two to evaluate user-load effects on stiffness measurement 

were assumed to be the most intuitive. However, multiple combinations of user 

interactions with the stiffness tool could reduce or increase measured stiffness in ways 

that cannot be corrected with current methods. Therefore, continued development of the 

stiffness tool to further compensate for human error should be considered. 

The instrumentation and programming of the final design performed well 

considering the prototype and hand-held nature of the stiffness tool. With at least 1,200 

indentations performed with the tool through this thesis alone, it proved to be robust and 

promising for long-term service. The lifespan and performance of the tool could be 

further improved by manufacturing the tool’s casing and internal components with high 

precision parts and more industrial materials as opposed to those readily available for 

rapid polymer 3D printing. With these improvements, the stiffness tool could be 

developed commercially as a research and clinical instrument with application to any soft 

tissue including characterization of internal abdominal organs, external appendages, or 
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brain tissue by means of non-destructive indentation (Griffin 2016, Su 2009, van 

Dommelen 2010) 

Mesh-Tissue Composite Simulation and Biaxial Loading 

Two silicone rubber formulations (ECOFLEX OO-10 and OO-20) were used as 

tissue phantoms characterized as having stiffness within the theoretical range of the 

human abdominal wall (0.33 to 0.81 N/mm). A surgically relevant mesh material 

(Prolene Soft) was chosen to overlay the phantoms and simulate mesh implanted during 

hernia repair surgery. It should be noted that surgical mesh materials often exhibit a 

similar slack region to soft tissues, where under low load (a comfort region), fibers shift 

and extend before reaching high load (safety region) to shield adjacent tissues from 

excessive strain (Konerding 2012). 

Chapter Four expanded the uniaxial mesh-phantom model to fulfill Specific Aim 

3 of this thesis: the development of a benchtop simulator capable of mimicking 

abdominal distension and providing biaxial loading of mesh-phantom composites. 

Recently developed methods targeting a more standardized approach for characterizing 

mesh-biomaterials were used as the basis for design of the benchtop simulator. Tissue 

phantom membranes were selected so that they were thin yet stiff enough to serve as a 

simulation of abdominal wall tissues. Configuring the inflated membrane under known 

constraints and biaxial loading conditions produced a range of stiffness values as 

characterized by non-destructive indentation and revealed a wide range of acceptable 

parameters to simulate physiological stiffness. Additionally, the inflated membrane was 
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considered a spherical segment and with measured vertical displacement and known 

applied pressure, it was characterized in terms of biaxial tension. All measurement series 

revealed a highly linear and predictable behavior of the phantom membranes which could 

prove useful when evaluating the behavior of overlaid mesh or composites with more 

complex materials. While variations seen in stiffness measurements and tension 

calculations may be due to minimal subjective estimation of applied pressure and vertical 

displacement, it is worth noting that standardized methods of non-destructive indentation 

are often subject to variability and several parameters including indenter geometry can 

lead to varying results (McKee, 2011). With this in mind, the biaxial loading system and 

prototype stiffness tool were successful in simulating and characterizing the mesh-tissue 

composite. 
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Appendix A 

Engineering-Derived Inputs and Outputs 

Table A.1. Engineering-derived design inputs and outputs of the stiffness measurement 
tool prototype 
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Appendix B 

Engineering Drawings 
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Appendix C 
Sensor Specifications 
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