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Figure 2.2: Influence of ground vegetation height variablity (A), territory core ground 

vegetation density variability (B), nest distance to the nearest powerline (C), and shrub 

density (D), on the relative probability of selection at the territory core scale by 

Loggerhead Shrikes in South Carolina during 2016 and 2017.  
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Figure 2.3. Influence of nest tree diameter at breast height (DBH), on the relative 

probability of selection at the tree scale by Loggerhead Shrikes in South Carolina during 

2016 and 2017.  
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TABLES 

Table 2.1: Loggerhead Shrike tree scale and territory core scale (40m radius) nest 

selection factors used in a priori models: 

Tree Scale 
Variable Description 
DBH Diameter at breast height (cm) 
l.branch Distance from the ground to the lowest branch on the tree (m) 
c.open Average canopy opening percentage from densiometer readings 

at the trunk in each cardinal direction 
Territory Core Scale 
Variable Description 
H.Het Maximum ground cover height heterogeneity. Coefficient of 

variation of maximum vegetation heights. 
D.Het Ground cover density heterogeneity. Coefficient of variation 

of vegetation total hits. 
Grass Probability of grass presence 
Forb Probability of forb presence 
Litter Probability of litter presence 
Standing.dead Probability of standing dead vegetation presence 
Litter.depth Average litter depth  
dist.shrub Distance to the nearest woody stem >2m in height (m) 
dist.tree Distance to the nearest woody stem <2 (m) 
Shrubs Number of woody stems <2m in height within 40m radius 
Trees Number of woody stems >2m in height within 40m radius 
Posts Number posts within 40m radius 
dist.post Distance to the nearest post (m) 
dist.powerline Distance to the nearest utility line (m) 
dist.building Distance to the nearest building (m) 
dist.road Distance to the nearest road (m) 
dist.crop Distance to nearest row crop (m) 
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Table 2.2: Discrete choice model ranking for Loggerhead Shrike resource selection at the 

tree and territory core scales in South Carolina during 2016 and 2017. Models listed are 

those that contributed to the 90% cumulative model weight. K is the number parameters 

in the model. ΔAICc is the change in Akaike Information Criterion value corrected for 

small sample sizes from the top model. Wi is the Akaike weight. 

Model K ΔAICc Wi Log L. 
Territory Core Scale 
1. β(Shrub)+β(Trees)+β(D.Het)+β(H.Het) 4 0.00a 0.40 -32.73
2. β(grass)+β(posts)+β(dist.poweline)+β(Shrub)

+β(Trees) +β(D.Het)+β(H.Het)+β(dist.crop)
8 0.03 0.39 -30.33

3. β(Shrub)+β(Trees)+β(grass) 3 3.27 0.08 -34.93
Tree Scale
1. DBH 1 0.00b 0.62 -40.13
2. DBH+c.open 2 1.39 0.31 -39.79

a Territory core scale lowest AICc value was 68.79 
b Tree scale lowest AICc value was 82.29 
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Table 2.3: Top model parameter estimates, standard error (SE) and 95% confidence 

intervals on Loggerhead Shrikes’ relative selection of probability at the territory core and 

tree scales. 

Covariate Estimate SE  95% CI 
Territory Core Model 1 
Shrub -0.692 0.46

9
-1.630, 0.246

Trees -0.657 0.43
4

-1.524, 0.211
D.Het 0.892 0.49

6
-0.100, 1.884

H.Het -1.085 0.54
5

-2.175, 0.004
Territory Core Model 2
dist.crop -2.514 2.16

4
-6.842, 1.813

grass 0.440 0.40
8

-0.376, 1.257
posts -0.307 0.33

9
-0.984, 0.370

dist.poweline -0.948 0.53
0

-2.009, 0.112
Shrub -0.974 0.54

0
-2.055, 0.107

Trees -0.193 0.50
0

-1.192, 0.806
D.Het 0.860 0.49

6
-0.131, 1.851

H.Het -0.940 0.56
6

-2.073, 0.192
Tree Model 1
DBH 0.62513 0.24

257
0.140, 1.110 

Tree Model 2
DBH 0.58891 0.25

271
0.083, 1.094 

c.open 0.15732 0.22
058

-0.284, 0.598
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Appendix A 

Chapter 1 Supplemental Materiel 

Table A1.1: Detection a priori hypotheses from step 1 

Hypothesis Model Formula 
1. Detection probability will not be affected by
any of these variables. ψ(.)p(.) 

2. Time of day will increase detectability ψ(.)p(time) 
3. Increasing ambient noise level will decrease
detectability ψ(.)p(noise) 

4. Detectability will maximize at peak breeding ψ(.)p(date2) 
5. Increasing wind and temperature, and
worsening sky conditions will decrease
detectability

ψ(.)p(wind + temp + sky)

6. Increasing wind, temperature, and ambient
noise, and worsening sky conditions will decrease
detectability

ψ(.)p(wind + temp + sky + noise) 

7. Increasing wind and temperature, and
worsening sky conditions will decrease
detectability. Detectability will also maximize at
peak breeding

ψ(.)p(wind + temp + sky + date2) 

8. Increasing wind and temperature, and
worsening sky conditions will decrease
detectability. Time of day will increase
detectability.

ψ(.)p(wind + temp + sky + time) 

8. Increasing wind and temperature, and
worsening sky conditions will decrease
detectability. Time of day will increase
detectability. Detectability will also maximize at
peak breeding

ψ(.)p(wind + temp + sky + noise 
+ date2 + time)
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Table A1.2: Occupancy a priori hypotheses  
 

Hypothesis Model formula 
300 m 

1. Higher proportions of pasture at 300 m will increase 
occupancy probability   

ψ(pasture 300 m)p(covariates 
from step 1) 

2. Higher NDVI values at 300 m will decrease 
occupancy probability 

ψ(NDVI 300 m)p(covariates 
from step 1) 

3. Higher proportions of forest at 300 m will decrease 
occupancy probability   

ψ(forest 300 m)p(covariates 
from step 1) 

4. Higher proportions of pasture at 300 m will increase 
occupancy probability and NDVI values at 300 m will 
decrease occupancy probability   

ψ(pasture 300 m                   
+ NDVI 300 m)p(covariates 
from step 1) 

1 km 
5. Higher proportions of pasture at 1 km will increase 
occupancy probability   

ψ(pasture 1 km)p(covariates 
from step 1) 

6. Higher NDVI values at 1 km will decrease 
occupancy probability 

ψ(NDVI 1 km)p(covariates 
from step 1) 

7. Higher proportions of crop at 1 km will decrease 
occupancy probability   

ψ(crop 1 km)p(covariates 
from step 1) 

8. Higher proportions of forest at 1 km will decrease 
occupancy probability   

ψ(pasture 1 km p(covariates 
from step 1) 

8. Higher proportions of pasture at 1 km will increase 
occupancy probability and higher NDVI values 1 km 
will decrease occupancy probability   

ψ(pasture 1 km + NDVI1km) 
p(covariates from step 1) 

5 km 
9. Higher proportions of pasture at 5 km will increase 
occupancy probability   

ψ(Pasture 5 km)p(covariates 
from step 1) 

10. Higher NDVI values at 5 km will decrease 
occupancy probability 

ψ(NDVI 5 km)p(covariates 
from step 1) 

11. Higher proportions of pasture and pasture 
aggregation at 5 km will increase occupancy 
probability   

ψ(pasture 5 km + pasture 
aggregation 5 
km)p(covariates from step 1) 

11. Higher pasture aggregation at 5 km will increase 
occupancy probability and higher NDVI values at 5 
km will decrease occupancy probability  

ψ(pasture aggregation 5 km 
+ NDVI 5 km)p(covariates 
from step 1) 
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12. Higher proportions of pasture at 5 km will increase
occupancy probability and higher NDVI values at 5
km will decrease occupancy probability

ψ(Pasture 5 km + NDVI 5 
km)p(covariates from step 1) 

13. Higher proportions of pasture and pasture
aggregation at 5 km will increase occupancy
probability and higher NDVI values at 5 km will
decrease occupancy probability

ψ(Pasture 5 km + NDVI 5 
km + open aggregation 5 
km)p(covariates from step 1) 

14. Higher proportion of crop at 5 km will decrease
occupancy probability

ψ(crop 5 km)p(covariates 
from step 1) 

14. Higher proportions of pasture and pasture
aggregation at 5 km will increase occupancy
probability and higher NDVI values at 5 km will
decrease occupancy probability

ψ(pasture 5 km + NDVI 5 
km + pasture aggregation 5 
km)p(covariates from step 1) 

15 km 
15. Higher proportion of forest at 15 km will decrease
occupancy probability

ψ(forest 15 km)p(covariates 
from step 1) 

16. Higher proportion of forest at 15 km will decrease
occupancy probability and higher pasture aggregation
at 15 km will increase occupancy probability

ψ(forest 15 km + pasture 
aggregation 15 
km)p(covariates from step 1) 

multiple scales 
17. Higher proportions of pasture at 300 m will
increase occupancy probability and higher NDVI
values at 1 km and high proportion of forest at 15 km
will decrease occupancy probability

ψ(pasture 300 m + NDVI 1 
km +  Forest 15 
km)p(covariates from step 1) 

18. Higher proportions of pasture at 300 m will
increase occupancy probability and higher proportions
of forest at 1 km will decrease occupancy probability

ψ(pasture300 m + forest 
1km)p(covariates from step 
1) 

19. Higher proportions of pasture at 1 km will increase
occupancy probability and higher NDVI values at 300
m will decrease occupancy probability

ψ(NDVI 300 m + pasture 1 
km + forest 15 
km)p(covariates from step 1) 

20. Higher proportions of pasture at 5 km will increase
occupancy probability and higher proportions of forest
at 15 km will decrease occupancy probability

ψ(pasture 5 km + forest15 
km)p(covariates from step 1) 

21. Higher proportions of pasture at 1 km will increase
occupancy probability and higher proportions of forest
at 5 km will decrease occupancy probability

ψ(pasture1 km + forest 5 
km)p(covariates from step 1) 

22. Higher proportions of pasture at 1 km and pasture
aggregation at 5 km will increase occupancy
probability and higher NDVI values at 300 m will
decrease occupancy probability

ψ(NDVI 300 m + pasture 1 
km + pasture aggregation 5 
km+ forest 15 
km)p(covariates from step 1) 

23. Higher proportions of pasture at 1 km will increase
occupancy probability and higher proportions of forest
at 15 km will decrease occupancy probability

ψ(Pasture 1 km+forest 15 
km)p(covariates from step 1) 
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Appendix B 

Chapter 2 Supplemental Materiel 

Table A2.1: Territory core scale a priori hypotheses 

Hypothesis Model Formula 
Ground Cover 

1. Negative effect of vegetation density and
height heterogeneity, positive effect of
grass, forbs, negative effect of litter and
litter depth, and positive effect of standing
dead.  

β(D.Het)+β(H.Het)+β(grass)+β(forb) 
+β(litter)+β(litter.depth)
+β(standing.dead)

2. Positive effect of grass, forbs, negative
effect of litter and litter depth, and positive
effect of standing dead.

β(grass)+β(forb)+β(litter)+β(litter.depth) 
+β(standing.dead)

3. Negative effect of vegetation density and
height heterogeneity 

β(D.Het)+β(H.Het) 

4. Positive effect of grass. β(grass) 
Tree and shrub 

5. Negative effect of tree and shrub density,
and distance to the nearest tree and shrub

β(dist.tree)+β(dist.shrub)+β(Trees)+β(Sh
rub) 

6. Negative effect of distance to the nearest
tree and shrub

β(dist.tree)+β(dist.shrub) 

7. Negative effect of tree and shrub density β(Trees)+β(Shrub)
Proximity to manmade 

8. Negative effect of distance to powerlines
and nearest post, positive effect of distance
to building, road, and crop, and post
density

β(dist.powerline)+β(dist.building) 
+β(dist.road)+β(dist.perch)+β(dist.crop)
+β(posts)

9. Positive effect of post density, negative
effect of distance to powerline. 

β(posts)+β(dist.powerline) 

10. Positive effect of post density and
distance to buildings 

β(posts)+β(dist.building) 

11. Positive effect of post density β(posts) 
12. Positive effect of distance to crop β(d.crop) 

Combined 
13.Positive effect of grass, and post
density, negative effect of distance to
powerlines, tree and shrub density,
vegetation density and height
heterogeneity, and positive effect of
distance to crop

β(grass)+β(posts)+β(dist.powerline) 
+β(Shrub)+β(Trees)+β(D.Het)+β(H.Het)
+β(dist.crop)
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14.Positive effect of grass, and post 
density, negative effect of tree and shrub 
density 

β(grass)+β(posts)+β(Trees)+β(Shrub) 

15. Negative effect of tree and shrub 
density, and vegetation density and height 
heterogeneity 

β(Shrub)+β(Trees)+β(D.Het)+β(H.Het) 

16. Negative effect of tree and shrub 
density, positive effect of grass 

β(Shrub)+β(Trees)+β(grass) 

17. Positive effect of grass and post density β(grass)+β(posts) 
18. Positive effect of grass, forbs, negative 
effect of litter and litter depth, and positive 
effect of standing dead, positive effect of 
post density, negative effect of distance to 
the nearest tree and shrub, tree and shrub 
density, distance to powerlines and nearest 
post, positive effect of distance to building, 
road, and crop, negative effect of  
vegetation density and height heterogeneity 

β(grass)+β(forb)+β(litter)+β(litter.depth) 
+β(standing.dead)+β(posts) 
+β(dist.powerline)+β(Shrub)+β(Trees) 
+β(dist.tree)+β(dist.shrub) 
+β(dist.building)+β(dist.road) 
+β(dist.perch)+β(D.Het) 
+β(H.Het)+β(dist.crop) 
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Table A2.2: Nest tree scale a priori hypotheses 

Hypothesis Model Structure 
1. Positive influence of DBH β1(DBH) 
2. Positive influence of height of the lowest branch β1(l.branch) 
3. Negative influence of canopy openings β1(c.open) 
4. Positive influence of height of the lowest branch and
negative influence of canopy openings

β1(l.branch)+β2(open) 

5. Positive effect of DBH and negative influence of canopy
openings

β1(DBH)+β2(c.open) 
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