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ABSTRACT 

 

 

Eastern spotted skunks are a poorly understood mesocarnivore species that 

suffered a dramatic range-wide decline in the mid-1900s. Little is known about their 

current distribution or habitat needs, and in the southern Appalachians, where the 

Carolinas and Georgia converge spotted skunks have never been studied. We investigated 

eastern spotted skunk habitat selection to develop an understanding of their habitat and 

conservation needs in this region.  

We used remote-camera surveys and occupancy modelling to evaluate factors 

hypothesized to influence the probability of eastern spotted skunk detection and 

occurrence at the landscape scale. We detected spotted skunks at 55.6% of our sites and 

on 18.5% of sampling occasions. Our detection models supported predation risk, camera 

setup, and scent-based attractants as influential to detection probability but had poor 

predictive ability overall. Our top occupancy model had moderate predictive power and 

showed a negative relationship between elevation and occupancy probability. These 

results suggest spotted skunks in the southern Appalachians may be more widely 

distributed than previously thought but are also highly cryptic and in need of further 

investigation. In particular, there is a strong need for researchers to identify thresholds of 

habitat suitability for this species.  

To evaluate fine-scale selection of rest site habitat by eastern spotted skunks we 

used VHF telemetry and discrete choice modelling. Over two summers we tracked 15 

spotted skunks and collected habitat data for 233 rest sites and 233 random available 

sites. Our top model supported positive effects of understory cover and coarse woody 
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debris (CWD), and a negative effect of distance to nearest drainage channel on rest site 

selection. Previous studies have identified understory cover as important for protection 

from avian predators, however ours is the first to identify CWD and drainage channels as 

important to spotted skunk habitat selection. These attributes were hypothesized to be 

selected based on prey availability, however direct studies of spotted skunk diet and 

foraging strategies are needed. We also recommend further investigation regarding the 

importance of drainage networks to eastern spotted skunks. Finally, we suggest that 

preservation of understory vegetation and CWD may benefit eastern spotted skunk 

conservation in the southern Appalachians.   
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CHAPTER ONE 

EVALUATING DETECTION AND OCCUPANCY PROBABILITIES OF EASTERN 

SPOTTED SKUNKS IN THE SOUTHERN APPALACHIANS 

INTRODUCTION 

Eastern spotted skunks (Spilogale putorius) are a poorly understood species that 

have been generally overlooked by wildlife biologists, to the extent that we do not have 

an accurate estimation of their current distribution despite reported wide-scale declines. 

Although they were once an important furbearer that ranged from southwestern PA, south 

to Florida and west to the eastern foothills of the rocky mountains, the species underwent 

a dramatic range-wide decline in the mid-1900s, which was only identified in 2005 

(Gompper and Hackett 2005). The legacy of this population crash has not been 

thoroughly investigated, and despite their recent upgrading to “vulnerable” by the IUCN 

(Gompper and Jachowski 2016), the current abundance, demographic trends, and 

distribution of eastern spotted skunks remain largely unknown.  To conserve this species, 

a better understanding of their habitat needs and how to effectively monitor for eastern 

spotted skunks is imperative.  

Understanding landscape-level habitat associations can provide important 

information about spotted skunk distribution, habitat needs, and where to focus future 

studies or management efforts. The large historic range of eastern spotted skunks 

suggests that they may be largely opportunistic in the array of habitats they can occupy 

(Kinlaw 1995).  However, directed investigations of landscape scale habitat selection by 

eastern spotted skunks are generally sparse, and strong predictors of occurrence have yet 
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to be identified. Still, one recently completed study from the central Appalachian 

mountains of Virginia suggests that eastern spotted skunk occurrence is influenced by  a 

combination of forest stand age and elevation (Thorne et al. 2017).  Specifically, within 

occupied landscapes, eastern spotted skunks appear to prefer younger pine forests or 

mature deciduous forests, presumably because of the increased understory complexity 

these forest types offer at the respective stages of growth (Lesmeister et al. 2009, Thorne 

et al. 2017). Forests patches characterized by dense understories are typically distributed 

sporadically throughout a landscape, and can be determined by a variety of characteristics 

such as topography, stand age, and management history, making this a difficult habitat 

attribute to manage (DeGraaf et al. 1992, Lesmeister et al. 2013). Furthermore, although 

historically eastern spotted skunks were common on homestead farms throughout the 

Midwest (DeSanty 2001), modern reports of this species in suburban or developed areas 

are sparse throughout most of their Appalachian and mid-western range. Nonetheless, 

recent direct investigations of eastern spotted skunk distribution and habitat selection 

have only been performed in protected areas that are sparsely distributed throughout their 

large range. 

An additional inhibitor to our understanding of eastern spotted skunks is a lack of 

knowledge regarding the specific methods that may be most effective for studying this 

species. Historically, the majority of reports of eastern spotted skunks were the product of 

incidental detections and trapping records (Gompper and Hackett 2005, Diggins et al. 

2015, Jachowski et al. 2015). More recently, studies have been successfully completed 

using remote-camera surveys and dedicated trapping efforts, however reported detection 
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and capture rates are typically low (Lesmeister et al. 2008, Thorne et al. 2017, Sprayberry 

and Edelman 2018). It remains unclear if these low detection rates are the product of truly 

low species abundance, or simply the cryptic nature of this species (Wilson et al. 2016). 

A variety of temporal and site-specific factors are likely to influence the detectability of 

skunks.  For example, Thorne et al. (2017) reported that moon illumination had a 

significant negative effect on detection rates of eastern spotted skunks, and suggested that 

spotted skunks could be less active due to increased susceptibility to predation on nights 

when moonlight was high.   Additionally, eastern spotted skunk detection rates were 

found to be higher during the colder winter months (Hackett et al. 2007), a trend that may 

be related to food availability or behavioral changes during the mating season (Hackett et 

al. 2007, Lesmeister et al. 2009).  Conversely, more recent efforts to study eastern spotted 

skunks have reported successful trapping of the species throughout the summer in 

Alabama (A. Edelman, University of West Georgia, Personal communication), further 

illuminating the general lack of concrete knowledge about eastern spotted skunk 

detectability.  

We performed an occupancy study in the southern Appalachians of North and 

South Carolina, with two primary objectives. First, we sought to identify ways in which 

we might improve our ability to monitor this species by assessing which factors impact 

the detection probability of eastern spotted skunks. Second, we evaluated landscape scale 

topographic and habitat attributes that we predicted would influence eastern spotted 

skunk occupancy probability in this southern Appalachian region. By comparing our 

results with findings elsewhere throughout their historic range, we can glean insights 
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about the generality of this species’ habitat requirements throughout a large portion of 

their distribution and identify future research that will enhance our understanding of the 

ecology and conservation needs of eastern spotted skunks.  

METHODS 

Study Area  

We performed this study on an approximately 1,500 km2 area at the tri-state 

convergence of North Carolina, South Carolina and Georgia (Figure 1). The surveyed 

area included parts of three national forest ranger districts and one state management 

area: the Andrew Pickens Ranger District of Sumter National Forest and Jocassee Gorges 

State Management Area in northwestern South Carolina, and the Nantahala and Pisgah 

Ranger Districts of Nantahala and Pisgah National Forests in southwestern North 

Carolina. This area ranges from 200 to 1600 m in elevation and is characterized by four 

primary forest compositions: cove hardwoods, mixed deciduous, northern hardwoods, 

and xeric oak-pine forests (Elliott et al. 1999, Turner et al. 2003). Forests are primarily 

dominated by deciduous trees, however patches of evergreen coniferous trees are also 

present on the landscape. Understory cover is dominated by dense stands of mountain 

laurel (Kalmia latifolia) and rhododendron (Rhododendron maxima), particularly in 

riparian areas and north-facing slopes (South Carolina Department of Natural Resources 

2005, Warren 2008). 

Field methods 

We surveyed 45 baited remote-camera sites (18 in 2016, 27 in 2017) for three 

months between January and April to monitor spotted skunk occurrence in southern 
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Appalachian hardwood forests. To capture potential differences in topographic or 

vegetative conditions associated with elevation and because recent detections of spotted 

skunks in the Appalachian have been primarily limited to higher elevation sites (Diggins 

et al. 2015, Wilson et al. 2016, Thorne et al. 2017), we selected sites that were stratified 

by elevation. We then created random points within our five elevational strata such that 

sampling points were at least 1.5 km from each other (an area slightly larger than the 

reported winter home range of male eastern spotted skunks) to meet the assumption of 

closure within a season of sampling (Lesmeister et al. 2009, Wilson et al. 2016). We then 

used a generalized random tessellation stratified (GRTS) sampling approach (Gitzen et al. 

2012) to identify coordinates for 20 potential sites within each elevational strata of 

potential sampling points.  We navigated to selected sites and identified a suitable site to 

setup our monitoring station within 50 m of the randomly selected coordinates.  If 

conditions were unsafe or unable to be traversed by foot, we set sites within 250 m of the 

original coordinates in a direction that would not violate the 1.5 km minimum distance 

between sites. At each site, monitoring stations consisted of a “bait tree” and a “camera 

tree” located 1.2 – 4 m apart. We used Bushnell Trophy Cams (model 119736) set to 

operate continuously and capture one photo every three seconds when triggered.  For 

bait, we used a can of sardines in oil, and one of three scent lure treatments: Caven’s 

Gusto™ to represent the musky odor of other species, cherry oil to represent a sweet food 

source, or a control treatment with no additional lure.  We rotated scent lure treatment 

every fourth week and randomly selected the starting lure for each site to avoid 

confounding the effects of season and scent lure treatment.  We revisited monitoring 
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stations every two weeks for three months, for a total of six sampling occasions per site, 

each approximately 14 days in length (Average 12.6; Median 14; Range 1-31). During 

every revisit we replaced the bait and SD card, either refreshed or changed the scent lure, 

and checked that the camera batteries were at least 50% full.  

We used a combination of field and remote sensing methods to collect detection 

and site covariate data for each monitoring site (Table 1).  In the field, we estimated 

understory density by assessing visibility to 30 m in four cardinal directions from the 

camera site. We evaluated coarse woody debris (CWD) abundance within a 30m radius 

using an index of 1-10, with 1 representing no CWD greater than 10 cm in diameter, and 

10 indicating the area was mostly covered by fallen trees and large woody debris. We 

used the package ‘suncalc’ (Agafonkin, 2018) in program R version 3.4.2 (R Core Team, 

2017) to calculate moon illumination and the number of minutes the moon was above the 

horizon each night.  We multiplied these values to obtain a single measure of moonlight 

for each sampling occasion of each site. We used ArcGIS 10.5 (ESRI 2017) and data 

from a 1/3 arc-second digital elevation model (DEM; USGS 2013) and the National Land 

Cover Dataset (NLCD 2011) to identify the aspect, elevation, and forest canopy type for 

each sampling site. We calculated the average slope and elevation, the proportion of area 

covered by evergreen forests, the proportion of area with southwest facing slopes (157.5-

292.5 degrees) and the amount and intensity of impervious landcover (as a proxy for 

human development) within a 750 m radius circle around the site, which equates to an 

area slightly over 1.75 km2, or the average winter home range of a male eastern spotted 

skunk (Lesmeister et al. 2009).  Finally, we calculated the distance of each site to the 
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nearest drainage channel, as well as the total length of drainage channels within our 750 

m buffer (Montgomery and Foufoula-Georgiou 1993) (Table 1).  

Analyses 

We used a single season occupancy modeling framework to estimate detection 

and occupancy probability of eastern spotted skunks in southern Appalachian hardwood 

forests. By repeatedly sampling a site, occupancy modelling allows for evaluation of 

species occurrence while also accounting for imperfect detection rates inherent in field 

monitoring studies (MacKenzie et al. 2006). Because of overall low detection rates, we 

defined a sampling occasion as the full length of time between visits to a site 

(approximately two weeks). Owing to the relatively large number of detection and 

occupancy covariates we evaluated, we carried out our analyses in two stages to prevent 

the development of a massive and unwieldy candidate set of a priori models (MacKenzie 

et al. 2006, Richmond et al. 2010). We first evaluated support for four hypotheses 

regarding factors predicted to influence spotted skunk detection probability while holding 

occupancy probability constant. Then, using the covariates from our top detection 

models, we evaluated support for three hypotheses regarding factors we predicted to 

influence eastern spotted skunk occupancy probability. For both stages of analyses, we 

evaluated a priori hypotheses, and ranked models using Akaike’s Information Criterion 

for small samples sizes (AICc) with a model retention threshold of two ΔAICc units. All 

quantitative detection and site covariates were scaled to have a mean of zero and a 

standard deviation of one. Within each set of detection or site covariates, we checked for 

multicollinearity, but found no variables with a correlation coefficient greater than 0.4 
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and therefore retained all variables. We used the program R package ‘unmarked’ (Fiske 

and Chandler 2011) to perform our analyses. 

We evaluated support for 13 a priori models plus a null and global model 

representing four primary hypotheses we expected to influence detection probability 

(Table 2). First, we hypothesized that predation risk influenced detection probability 

(Lesmeister et al. 2013, Thorne et al. 2017).  Specifically, we predicted less moonlight 

would reduce predation risk and increase chances of eastern spotted skunk detection.  We 

also predicted that increased coarse woody debris (CWD), increased understory cover, 

and close proximity to a stream or drainage ravine would improve immediate structural 

cover and refugia from predators, thereby increasing detection probability (Chapter 2).  

Second, we hypothesized that seasonal prey availability would influence spotted skunk 

detection (Hackett et al. 2007).  We used ordinal date as a proxy for season and predicted 

that detections would be more frequent during the colder months earlier in the year, when 

limited food resources may require spotted skunks spend more time actively foraging. 

Third, we hypothesized that the use of scent-based attractants would influence spotted 

skunk detection (Schlexer 2008), and we predicted that spotted skunk detections would 

be highest during sample occasions baited with the cherry scent lure, followed by 

occasions treated with the Gusto™ lure, while sites baited with the control treatment 

(sardines alone) would produce the fewest detections.  Finally, we hypothesized that 

camera setup could affect the probability of spotted skunk detection (Kays and Slauson 

2008), and we predicted that lower bait height, higher camera height, and greater distance 
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between camera and bait tree would increase our chances of detecting and eastern spotted 

skunks.   

To investigate site occupancy, we evaluated support for 16 a priori models plus a 

null and global model containing six covariates and representing three primary 

hypotheses that we thought would influence eastern spotted skunk occurrence (Table 3).  

Our first hypothesis was that spotted skunks would prefer areas that facilitate efficient 

movement (Fremier et al. 2015), where we predicted areas with more drainage channels, 

which can facilitate movement through suitable habitat, would improve occupancy 

probability (Campbell Grant et al. 2007). We also hypothesized skunks would prefer to 

occupy warmer habitat during the winter to reduce thermoregulatory stress (Lesmeister et 

al. 2008). We evaluated three covariates in relation to this hypothesis, and predicted that 

lower elevations, steeper slopes, and southwestern facing slopes would each 

independently provide warmer temperatures and increase occupancy probability 

(Fekedulegn et al. 2003, 2004). Finally, our third hypothesis was that eastern spotted 

skunks would be less likely to occur in areas with increased predation risk. Specifically 

we predicted that human development (represented by impermeable surfaces for this 

study) and evergreen forests would both decrease occupancy probability by increasing 

predation risk from domestic pets (Crabb 1948, Kinlaw 1995) and owls or other native 

predators (Lesmeister et al. 2010) respectively. In addition to the six single-covariate 

models described above, we also evaluated more complex a priori models that included 

multiple covariates related to each hypothesis, and sub-global models that represented 

combinations of these hypotheses.  
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Model validation 

We used k-fold cross validation to assess the predictive ability of our top ranked 

occupancy models (Boyce et al. 2002). K-fold cross validation allows us to test the 

accuracy of our top model using only the data we have already collected, by training our 

top model with only a subset of our data, and then evaluating how well the resulting 

model can predict the true state of the remaining portion of our data. We validated the 

detection component and occupancy component of our top occupancy model separately 

and used all covariates from our candidate models within two ΔAICc of our highest 

ranked occupancy model. We performed 20 iterations of k-fold validation using random 

divisions of our data into a 90:10 ratio to train and test our top model respectively. We 

interpreted our validation results using Receiver Operating Characteristics (ROC) and the 

area under the curve (AUC) value to evaluate how well our models were able to 

accurately predict if a skunk was detected or a site was occupied, based on the habitat 

variables contained in our top model (Metz 1978, Cumming 2000). We additionally 

performed a parametric bootstrap goodness of fit test of our most complex model, using 

5000 iterations to assess how well our models fit the collected data (MacKenzie and 

Bailey 2004). 

RESULTS 

We detected eastern spotted skunks at 25 of the 45 sites surveyed for this study 

(55.6% naïve occupancy) and had detections on 47 of our 254 sample occasions (18.5% 

naïve detection). Sixteen sample occasions were missed owing to logistical constraints 

and camera malfunctions. On average, latency to first detection was 28.3 days (range: 1-
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71, SD: 23.1). Cameras were active for a total of 4689 trap-nights over the course of both 

years, with an average of 12.6 active trap-nights per sampling occasion (range 0-31, SD 

4.6). Of sites known to be occupied, we detected spotted skunks on 14.1% of active trap-

nights (129 of 913 trap-nights), however when including sites where spotted skunks were 

never detected, nightly detection was only 2.8% (129 of 3689 trap-nights).   

In step one of our analysis, five of our 13 a priori detection models fell within 

two ΔAICc of our top model, and these models supported our hypotheses that predator 

avoidance, olfactory attractants, and camera station setup affected detection probability. 

Our top models included seven of our nine detection covariates: scent lure, camera 

height, bait height, distance to bait, understory cover, coarse woody debris, and distance 

to nearest drainage channel (Table 2).  Distance to bait was our best predictor and showed 

a strong positive effect on detection probability.  Our second-best predictor of detection, 

CWD, showed a moderately strong effect with its lower confidence limit falling squarely 

on zero (Figure 2). Understory cover, distance to drainage, and bait height all had 

moderate effects on detection probability. Our two lure treatments showed moderate and 

contrasting effects, however, we had relatively high levels of uncertainty regarding these 

variables (Figure 2). We observed essentially no effect of camera height on detection 

probability, and average moon illumination and date were not retained in any of our top 

models (Table 2).  Our results indicated that conditional detection probability doubled 

with every 70 cm increase in distance between camera and bait (Figure 3a), and also 

doubled with a four-fold increase in CWD (Figure 3b). Based on the seven covariates 

contained in our three top detection models, our overall conditional point estimate of 
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detection probability was 23.4% based on mean conditions, and average detection 

probability given the conditions of sample occasions in this study was 28.2%.  

We observed support for two of our a priori occupancy models in stage two of 

our analyses, both related to our hypothesis that thermoregulation would influence 

eastern spotted skunk occupancy probability. Elevation alone comprised our top model, 

while elevation and slope were both present in our second ranked model (Table 3). Only 

elevation had a significant relationship with occupancy probability (Figure 2), where the 

probability of occupancy doubled for every 130 m decrease in elevation (Figure 4). 

Although retained in our second ranked model, we saw only a moderate effect of slope on 

occupancy probability, and this covariate had relatively high uncertainty with a 

confidence interval that overlapped zero (Figure 2).  Using model averaged parameter 

estimates of both slope and elevation, our overall point estimate of eastern spotted skunk 

occupancy probability given mean conditions was 82.1% in the southern Appalachian 

hardwood forests where this study took place. Based on conditions at the sites surveyed 

in our study area, we had an average of 70.4% estimated occupancy probability.  

Results of our model validation indicated that our covariates were generally 

ineffective for accurately predicting eastern spotted skunk detection or occupancy. 

Validation of our detection covariates returned an AUC value of 0.55, indicating poor 

predictive ability of our top detection model (Swets 1988, Morelli et al. 2017). The 

occupancy portion of validation performed slightly better with an AUC value of 0.65, 

indicating moderately low predictive ability of our top occupancy model. Our data 
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showed slightly less variation than was expected, with the results of our goodness of fit 

test returning a c-hat value of 0.74. 

DISCUSSION 

Results from our study suggest that eastern spotted skunks are difficult to detect, 

but likely more widely distributed in the southern Appalachians than previously thought.  

We detected eastern spotted skunks at over 50% of our surveyed sites, but observed 

spotted skunks on <3% of our total trap-nights. Furthermore, latency to initial detection 

ranged from 1 to 71 days, with first detection occurring on average nearly a month after 

monitoring began. This suggests that surveys for eastern spotted skunks that monitor sites 

for less than one month may produce underestimates of true occupancy rates (Wilson et 

al. 2016). Nonetheless, recent efforts to identify persisting populations of eastern spotted 

skunks within the core of their historic range have been successful at detecting the 

general presence of this species overall (Sprayberry and Edelman, 2018; Thorne et al., 

2017; Wilson et al., 2016; S. Higdon, University of Missouri, Personal Communication). 

Therefore, we suggest that more sustained, dedicated survey efforts are needed to 

evaluate how widely distributed spotted skunks remain throughout their historic range.  

Our results also indicate that the species may be extremely cryptic and highlight 

the need for an improved understanding of monitoring techniques that may increase 

eastern spotted skunk detection rates. Interestingly, although we had uncertainty in the 

effects of our scent lure treatments, our results indicate that the cherry lure may work as 

an attractant while the Gusto™ may act as a deterrent to eastern spotted skunks (Figure 

2). Still, when compared with the control treatment (sardines alone), the scent lures did 
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not appear to strongly influence detection rates. Spotted skunks typically did not spend 

prolonged periods at our baited camera stations, with over one-third of detections 

consisting of only one photograph, and on average producing less than three photos per 

detection (range 1-15, median 2). Given that cameras were set to record a photo every 

three seconds, these results suggest that on average, spotted skunks spent less than nine 

seconds at our monitoring sites. This prompts the concern that our camera arrays could 

have missed detections when spotted skunks quickly passed through the camera’s 

triggering frame. Indeed, a greater distance between the camera and bait appeared to 

increase detection probability in our study, indicating that a larger frame of view may 

have positive effects on detection rates. That said, when designing camera surveys it 

should also be considered that increasing the distance between camera and bait too far 

can also result in decreased camera sensitivity for smaller species (Gompper et al. 2006). 

Given that a consumable reward can increase the time spent at a monitoring site 

(Schlexer 2008), we suggest future studies consider using eatable baits, such as deer 

carcasses (Thorne et al. 2017) or raw chicken (R.Eng, USFS Region 5 Carnivore 

Monitoring Program, Personal observation) to increase the amount of time a spotted 

skunk will spend in front of the remote camera (Schlexer 2008).  

Elevation was the most important predictor of eastern spotted skunk occurrence in 

our study, however we found a negative association with elevation that contradicts the 

findings of previous studies (Diggins et al. 2015, Thorne et al. 2017). These results 

highlight the lack of understanding we currently possess regarding the biological 

mechanisms driving eastern spotted skunk occurrence.  For instance, in the southern 
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Appalachians particular forest types (e.g. cove hardwood forests) are associated with low 

elevation areas (Bolstad et al. 1998, Elliott et al. 1999, Warren 2008), and it may be that 

these forest types provide preferable habitat for eastern spotted skunks via differences in 

the vegetative structure and species diversity they support (Turner et al. 2003, South 

Carolina Department of Natural Resources 2015). Similarly, Thorne et al. (2017) reported 

eastern spotted skunk occupancy in the central Appalachian was predicted by the 

interactive effects of elevation and stand age, and they hypothesized that this relationship 

was due to associated densities of understory cover in the different forest stands. 

Alternately, low elevation areas in our study may have been preferred because of their 

proximity to stream beds, where increased herpetofauna and invertebrate forage may be 

available (Chapter 2; Sprayberry and Edelman, 2016; Thorne and Waggy, 2017). 

Additional studies evaluating whether eastern spotted skunks discriminate between low 

elevation sites associated with drainage basins of interior mountains and low elevation 

sites along the edges of a mountain range could prove extremely valuable. Because this 

study encompassed a portion of the Blue Ridge Escarpment along the eastern edge of the 

southern Appalachians, low elevation sites in our study area may not be fully comparable 

with low elevation sites in other portions of the eastern spotted skunk’s range, nor even 

with other physiographic provinces in the Appalachian mountain range (Simon et al. 

2005). In general, identifying which biological factors associated with elevation are most 

influential to eastern spotted skunk occupancy would enable managers to better predict 

spotted skunk occurrence and determine priority areas for conservation efforts.   
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We found a lack of strong relationships between spotted skunk occurrence and 

many of our site covariates, and suggest that future work should investigate the 

importance of these and other attributes at multiple spatial and temporal scales. For 

instance, it is possible that within a heterogenous landscape such as the southern 

Appalachians, evaluating selection based on attributes averaged across >1.75 km2 may 

have captured too much of the variance present in the landscape, and consequently 

masked our ability to identify the importance of particular attributes. Indeed, results of 

our goodness of fit test revealed lower than expected variance within the collected data. 

Additionally, we were unable to evaluate certain attributes that may have been important 

to predicting occupancy probability in the southern Appalachians. For instance stand age 

was reported as an important factor in the central Appalachians (Thorne et al. 2017), 

however we were unable to obtain this data for our study area.  Nonetheless, our results 

indicate that eastern spotted skunks may be highly opportunistic in the range of habitats 

they can occupy at the landscape scale. Finally, given that we monitored the portion of 

South Carolina where spotted skunks were predicted to be the most likely to occur 

(Wilson et al. 2016) and found that over half of our sites were occupied, we suggest 

future studies additionally sample areas where occupancy may be less likely, such as un-

forested habitat, private or heavily managed lands, and sites in the nearby non-

mountainous regions. Such studies could help identify elevational thresholds and major 

habitat features that may constrain the distribution of eastern spotted skunks. 

Identification of these thresholds for even a small part of the species range will allow for 

more accurate predictions of the species current distribution.  
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While our results have contributed to a growing knowledge about the ecology and 

conservation needs of eastern spotted skunks, the cryptic nature of this species has 

limited our ability to identify any strong predictors of their occurrence. Furthermore, 

knowledge of the current abundance and demographic trends of eastern spotted skunks 

remain virtually unknown. Here, we have provided suggestions for future studies to 

improve detection rates of eastern spotted skunks and have highlighted particular 

questions that we think warrant further study. Specifically, we recommend future studies 

continue working to improve upon our ability to study this species via remote-camera 

monitoring and other non-invasive techniques. Improvement in camera monitoring 

methods could produce novel information about spotted skunk abundance and territorial 

dynamics via identification of individuals by unique spot patterns (M. Ben-David, 

University of Wyoming and D. Lesmeister, USFS Pacific Northwester Research Station, 

Personal Communication), while the addition of hair-snares to monitoring stations could 

allow for genetic evaluations of population health (B. Wuertz, Warren Wilson College, 

Personal Communication). At the same time, fine-scale studies of eastern spotted skunk 

survival and reproductive rates are urgently needed to determine the current demographic 

trend of the species in the southern Appalachians, while evaluation of spotted skunk 

responses to human development and forest management will be critical for assessing the 

vulnerability of this species to regional extirpation or extinction.  
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TABLES 

Table 1  Abbreviations and descriptions of the nine detection covariates and six site covariates included 

as potential factors influencing eastern spotted skunk detection and occupancy probabilities 

(respectively) in the southern Appalachian mountains in 2016 and 2017 

Variable Abbrev. Mean±SE (Range) Description 

Detection covariates  
 

Scent Lure 

Treatment 

Lure NA Rotating scent lure added to each 

monitoring array every check 

Cherry 
 

 A strong sweet odor representative of a 

high-sugar food source 

Gusto 
 

 A strong skunky-musky odor, 

representative of interspecific information 

Control 
 

 No added scent lure odor 

Bait Height B.ht 68.19±0.52 (42-100) Height in cm from the ground to the 

middle of the can of sardines 

Camera Height C.ht 79.10±1.37 (44-147) Height in cm from the ground to the 

middle of the remote camera 

Camera to Bait 

Distance 

Dist 2.88±0.04 (1.27-4.10) Distance in cm between the camera tree 

and the bait tree 

Coarse Woody 

Debris 

CWD 3.46±0.05 (0-8) Index of coarse woody debris within a 30 

m radius of the site 

Understory 

Density 

Undst 33.73±1.40 (0.5-91.25) Average of four estimates of percent 

visibility to 30 m from the camera tree 

Distance to 

Drainage 

Channel 

Drain 80.69±3.90 (0.20-252.74) Distance from site coordinates to nearest 

drainage channel, channels defined by a 

250 cell accumulation threshold 

Season Date 63.88±1.43 (18.5-118.25) Averaged Juliann date for all days 

included in that sample occasion 

Moon 

Illumination 

Moon 267.59±9.75 (9.37-648.20) Average percent moon illumination * 

minutes the moon was above the horizon 

for all days in that sample occasion 

Site covariates Covariates calculated for a 750m radius circle around the site coordinates 

Slope Slope 18.69±0.57 (10.0-26.8) Average slope of the land within the 

buffered area 

Southwestern 

Aspect 

SW 0.42±0.013 (0.22-0.64) Proportion of slopes facing approximately 

SW, from 157.5 to 292.5 degrees 

Elevation Elev 810.70±42.06 (340-1298) Average elevation of the land within the 

buffered area 

Drainage 

Length 

DrainLen 695.6±16.86 (442-901) Total length of drainage channels, 

channels defined by a 250 cell 

accumulation threshold 

Evergreen 

Forests 

Everg 0.12±0.017 (0-0.46) Proportion of land covered by evergreen 

forest, as determined by the NLCD 

Impervious 

Surfaces 

Imperv 0.16±0.046 (0-2.03) Averaged value of total impervious 

surfaces, as determined by the NLCD 
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Table 2 Ranked a priori candidate models for evaluating eastern spotted skunk detection 

probability in the southern Appalachians in 2016 and 2017. Occupancy probability (ψ) was 

held constant at this stage of analysis. See Table 1 for a description of detection covariates. 

Model df logLik AICc ΔAICc wi 

Lure+B.ht+C.ht+Dist+ψ 7 -109.556 236.1 0 0.232 

B.ht+C.ht+Dist+ψ 5 -112.569 236.7 0.54 0.178 

Lure+ψ 4 -113.919 236.8 0.7 0.164 

B.ht+C.ht+Dist+CWD+Drain+Undst+ψ 8 -108.832 237.7 1.52 0.108 

Lure+B.ht+C.ht+Dist+CWD+Drain+Undst+ψ 10 -105.7 237.9 1.73 0.098 

Lure+CWD+Drain+Undst+ψ 7 -110.933 238.9 2.75 0.059 

Null+ψ 2 -117.339 239 2.82 0.057 

Moon+ψ 3 -116.962 240.5 4.37 0.026 

CWD+Drain+Undst+ψ 5 -114.531 240.6 4.46 0.025 

Date+ψ 3 -117.325 241.2 5.1 0.018 

Moon+Date+Lure+ψ 6 -113.538 241.3 5.15 0.018 

Moon+Date+ψ 4 -116.952 242.9 6.76 0.008 

Detection global+ψ 12 -105.303 244.4 8.22 0.004 

Moon+Date+Lure+CWD+Drain+Undst+ψ 9 -110.665 244.5 8.33 0.004 

Moon+Date+CWD+Drain+Undst+ψ 7 -114.238 245.5 9.36 0.002 
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Table 3  Ranked a priori candidate models for evaluating eastern spotted skunk 

occupancy probability in the southern Appalachian mountains. The following 

detection covariates were included in all models (denoted as p): bait height, 

camera height, distance to bait, CWD, distance to nearest drainage channel, 

understory cover, and scent lure treatment. See Table 1 for all detection and site 

covariate descriptions. 

Model df logLik AICc ΔAICc wi 

p+Elev 11 -102.067 234.1 0 0.385 

p+Slope+Elev 12 -100.746 235.2 1.11 0.221 

p+Elev+Drain 12 -101.743 237.2 3.1 0.082 

p+Elev+Everg 12 -101.82 237.4 3.26 0.076 

p+null 10 -105.7 237.9 3.74 0.059 

p+Slope 11 -104.003 238 3.87 0.056 

p+Slope+SW+Elev 13 -100.536 238.8 4.68 0.037 

p+Drain 11 -104.649 239.3 5.16 0.029 

p+Imperv 11 -105.252 240.5 6.37 0.016 

p+SW 11 -105.627 241.3 7.12 0.011 

p+Everg 11 -105.693 241.4 7.25 0.01 

p+Slope+SW 12 -103.929 241.6 7.47 0.009 

p+Slope+SW+Elev+Drain 14 -100.313 242.6 8.49 0.006 

p+Everg+Imperv 12 -105.249 244.2 10.11 0.002 

p+Everg+Imperv+Drain 13 -104.492 246.7 12.59 0.001 

p+Slope+SW+Elev+Everg+Imperv 15 -100.514 247.6 13.45 0 

p+Global 16 -100.174 251.8 17.64 0 
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Table 4  Model averaged estimates, standard errors, 

and the cumulative weights of all occupancy (ψ) and 

detection (p) covariates retained in our top models of 

eastern spotted skunk occupancy in the southern 

Appalachians. 

Covariate Estimate Std. Error Weight 

ψ (Intercept) 1.2767 0.6709 1 

ψ (Elev) -1.2901 0.569 0.36 

ψ (Slope) 0.9657 0.679 1 

p (Intercept) -1.1871 0.334 1 

p (B.Ht) -0.4269 0.2833 1 

p (C.Ht) 0.1195 0.242 1 

p (Dist) 0.751 0.2262 1 

p (Lure_Cherry) 0.6688 0.4333 1 

p (Lure_Gusto) -0.4688 0.4957 1 

p (Undst) 0.4397 0.2743 1 

p (CWD) 0.4476 0.229 1 

p (Drain) -0.2556 0.2057 1 
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FIGURES 

 

Figure 1  Study area for our evaluation of eastern spotted skunk occupancy in the southern Appalachians; 

filled points denote sites where eastern spotted skunks were detected, while empty points are indicate 

surveyed sites where spotted skunks were not detected. 
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Figure 2  Effect sizes and 95% confidence intervals for covariates from our top a priori models evaluating 

detection and occupancy probability in the southern Appalachians. Solid lines indicate effect estimates and 

confidence intervals for our site covariates and dashed lines indicate estimates and confidence intervals for 

our detection covariates. Parameter descriptions can be found in Table 1. 
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Figure 3  Predictive plots illustrating the effects of our top detection covariates on probability of detection 

of eastern spotted skunks in the Southern Appalachians. Both figures display effects (solid lines) and 95% 

confidence intervals (dashed lines) when sites were treated with both Cherry oil (red lines) vs Caven’s 

Gusto™ (black lines). 

b a 
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Figure 4 Predictive plot illustrating the effect and 95% confidence interval of elevation, our top site 

covariate, on the occupancy probability of eastern spotted skunks in our study area of the southern 

Appalachians.  
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CHAPTER TWO 

UNDERSTORY COVER AND TOPOGRAPHIC FEATURES INFLUENCE REST 

SITE HABITAT SELECTION BY EASTERN SPOTTED SKUNKS IN SOUTHERN 

APPALACHIAN HARDWOOD FORESTS 

 

INTRODUCTION 

Eastern spotted skunks (Spilogale putorius) are a small, nocturnal mesocarnivore 

species that once ranged throughout much of the eastern United States (Kinlaw 1995). 

Although spotted skunk fur harvests once exceeded 100,000 per year, records from 

throughout the 20th century suggest that the species population had declined by over 95% 

by the end of the century (Gompper and Hackett, 2005). Consequently, many states have 

listed eastern spotted skunks as a species of conservation concern (Sprayberry and 

Edelman 2018) and the International Union for Conservation of Nature (IUCN) has 

upgraded the species’ conservation status to “Vulnerable” (Gompper and Jachowski 

2016).  Although the cause of this dramatic decline remains undetermined, disease 

outbreaks, over harvesting, and wide-spread changes in agricultural practices are the 

leading theories that could explain this population crash (Gompper and Hackett 2005).  In 

particular, the transition from small homestead farms to large scale agricultural practices 

in the 20th century has resulted in the conversion of land to single crop monocultures that 

provide little cover for resting sites, and has also led to the introduction of wide-spread 

pesticide use (Dimitri et al. 2005), two factors which may have had dramatic negative 

effects on eastern spotted skunks (DeSanty 2001, Gompper and Hackett 2005). 
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Despite indications that the range-wide decline of eastern spotted skunks may be 

due to habitat loss, recent evidence from across their historic distribution suggests they 

are moderately versatile in the range of habitats they can occupy. The plains spotted 

skunk subspecies (S. p. interrupta) has been reported to inhabit a diverse variety of 

wooded habitats, open prairies, and cultivated lands (DeSanty 2001, Lesmeister et al. 

2009). The Appalachian subspecies (S. p. putorius) has recently been recorded in 

deciduous and coniferous forests of the southern Appalachians (Sprayberry and Edelman 

2018), as well as in the high elevation spruce forests (Diggins et al. 2015) and hardwood 

forests of the central Appalachians (Thorne et al. 2017). Farther south, the Florida eastern 

spotted skunk (S. p. ambarvalis) occupies coastal scrub or dry prairie vegetation (Kinlaw 

et al., 1995; S. Harris, Clemson University, Personal communication), and have 

additionally been reported in more developed suburban areas (Gompper and Jachowski 

2016).  While these observations suggest that eastern spotted skunks may be habitat 

generalists at the landscape scale, knowledge of their current distribution, habitat needs, 

and demographic trends remain unknown.  Investigations of fine-scale habitat selection 

could provide valuable insights about the ecological factors that are driving survival rates 

in extant populations of eastern spotted skunks throughout their range.  

Evaluating fine-scale habitat preferences within an individual’s home range can 

help ecologists and wildlife managers identify specific habitat attributes that may be 

disproportionately important to a species life history (Johnson 1980). For instance 

preferred corridors for movement, patches of high forage value, or suitable sites for 

resting or rearing young may constitute only a small portion of an individual’s home 
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range, yet be imperative for its survival (Mayor et al. 2009). For spotted skunks, fine-

scale habitat suitability has been associated with dense understory cover, a general habitat 

feature that may vary in structure and composition depending on the local vegetation 

(Kinlaw 1995, Lesmeister et al. 2008, Sprayberry and Edelman 2018). However, in pine 

dominated forests of the southern US, a primary objective of many habitat management 

practices is to reduce understory cover, which can negatively affect habitat availability 

for eastern spotted skunks (Lesmeister et al. 2013, Sprayberry and Edelman 2018). 

Similarly, in southern Appalachian hardwood forests, fuel reductions and attempts to 

remove recalcitrant layers of understory shrubs are common practices (Waldrop et al. 

2016), but their effects have not been considered in respect to the eastern spotted skunk.  

Thus, an improved understanding of the fine-scale habitat needs of eastern spotted skunks 

in the southern Appalachians could allow for more precise management regarding 

primary areas of conservation concern and biological objectives that should be 

prioritized.  

In this study, we investigated summer rest and den site selection by eastern 

spotted skunks in the hardwood-dominated southern Appalachian forests of South 

Carolina. Based on results of previous mesocarnivore habitat selection studies, we 

hypothesized that three general biological factors would drive fine-scale habitat selection 

by spotted skunks. First, we hypothesized that spotted skunks would select for habitat 

that provided ample refugia from predators (Fedriani et al. 2000, Vanak and Gompper 

2010).  Second, we hypothesized that spotted skunks would prefer to use rest sites nearer 

to abundant sources of prey (Spencer et al. 1983, Litvaitis et al. 1986, Vanak and 
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Gompper 2010). Finally, we hypothesized that spotted skunks would select rest sites that 

provided stable temperatures throughout the day to limit thermoregulatory stress 

(Lesmeister et al. 2008, Aubry et al. 2013). Results from this study will provide new 

information about the habitat requirements of eastern spotted skunks in southern 

Appalachian hardwood forests, and will contribute to our understanding of the biological 

factors that may be driving spotted skunk success or declines throughout the species’ 

range.  

METHODS 

Study Area 

Our study took place in the southern Appalachian hardwood forests of 

northwestern South Carolina. These forests vary in species composition, but are primarily 

characterized by four main forest types: northern hardwoods, cove hardwoods, mixed 

deciduous, and xeric oak-pine forests (Bolstad et al. 1998, Elliott et al. 1999, Turner et al. 

2003). In particular, our study took place on 100 km2 of the Andrew Pickens Ranger 

District, Sumter National Forest, SC (Figure 1) where a recent study reported detections 

of eastern spotted skunks (Wilson et al. 2016). This area ranges from 300 to 800 m in 

elevation, and is primarily comprised of mixed deciduous, cove hardwood, and xeric oak-

pine forests. Forest canopies were dominated by oak species (Quercus spp.), red maple 

(Acer rubrum), sourwood (Oxydendrum arboretum), black gum (Nyssa sylvatica), 

hickory species (Carya spp.), tulip-poplars (Liriodendron tulipifera), and pine species 

(Pinus spp.). Understory vegetation was largely comprised of rhododendron 
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(Rhododendron maximum) and mountain laurel (Kalmia latifolia), but was frequently 

supplemented by deciduous and coniferous tree saplings, American holly (Ilex opaca), 

dog-hobble (Leucothoe fontanesiana), and dense patches of Vaccinium spp. Additionally, 

our study area spanned the Blue Ridge escarpment, a unique area where the Blue Ridge 

physiographic region abruptly drops several hundred meters into the Piedmont 

physiographic region of South Carolina (Abella et al. 2003). The nature of the 

escarpment is such that the hillsides are heavily fragmented by numerous first and second 

order ravines and streams, creating overall steep and rugged terrain (Prince et al. 2010). 

These minor headwater ravines and first order streams generally constitute more than half 

the length of total drainage networks, and are often ephemeral or entirely dry, containing 

water only during or immediately following heavy rain events (Hansen 2001).  

Field Methods 

We trapped spotted skunks from January through April of 2016 and 2017.  We 

used single-door Tomahawk live traps (15x15x48 cm) fit with corrugated plastic covers 

that provided protection from inclement weather or other animals, and set traps along 

roads surrounded by national forest land where spotted skunks had been detected in 

previous years (Wilson et al. 2016).  We baited traps with canned fish in oil mixed with 

peanut butter, and applied both cherry oil and Caven’s gusto™ (Minnesota Trapline 

Products, Inc.) as far-reaching scent lures. Once captured, skunks were run into a canvass 

handling cone to secure the animal for processing. Captured individuals were weighed, 

sexed, checked for ectoparasites, aged by tooth-wear, ear tagged (Monel ear tags, size 
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1005-1), and fit with 16g VHF zip-tie radio collars (Advanced Telemetry Systems, model 

m1545). Collar weight did not exceed 5% of any individual’s body weight, and all 

handling procedures were in accordance with The Institutional Animal Care and Use 

Committee (IACUC Protocol #2015-042).  

From April to August each year we intensively tracked collared skunks during the 

daylight hours to the immediate structure (e.g., cavity or burrow) where they were 

resting.  We used a hand-held portable telemetry receiver (Communication Specialists, R-

1000 Receiver) and a 3-element folding yagi antenna to track each skunk to its rest site 

approximately once every 6 days (range 2-22; average 6.02) until the skunk perished or 

collar malfunction inhibited our ability to locate the transmitter signal. Although some of 

these sites could be distinguished as “den sites” where females were rearing young, we 

will refer to all locations as “rest sites” for the purpose of this study. If a skunk re-used a 

rest site or stayed in a single site for more than 5 days, we treated it as an independently 

selected location. To evaluate habitat selection relative to what was available to our 

collared skunks, we also identified a random available site (henceforth “random site”) for 

each rest site. Random sites were located along a random bearing between 50 and 200 m 

from each rest site. We determined an available rest site based on three criteria outlined 

by Crabb (1948) such that a random site had to (1) exclude sunlight during the daytime 

hours, (2) provide protection and insulation from external weather conditions, and (3) 

provide protection from sympatric competitors or predators. We interpreted this last 

criterion by selecting sites with entrances that did not exceed 30x30 cm and cavities that 

appeared to extend far enough for a skunk’s body to fully fit inside (≥30 cm in length; 
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Crabb, 1944). The maximum distance of 200 m to a random site was chosen as a value 

we considered reasonable to represent the nightly-traversable distance for eastern spotted 

skunks. Post-hoc calculations of the minimum distances traversed per night (distance 

between consecutive rest sites divided by the number of days between locations) 

supported this assumption; on average, the minimum distance traversed by spotted 

skunks in a night was 99 m (range 3-636 m, median 79 m). In 2017, we increased the 

minimum distance to locate a paired random site from 50 to 80 m in order to decrease the 

frequency of locating a random site on the same slope or along the same drainage channel 

where few differences in habitat were evident.  

We recorded the location of every rest site and random site using a global 

positioning system (GPS) unit (Garmin, Kansas City, KA, USA) and measured a suite of 

surrounding habitat characteristics (Table 1).  Within a 10x10 m square centered around 

each rest site entrance we performed visual estimates of canopy cover, understory cover, 

and ground cover, and measured an index of coarse woody debris (CWD) abundance. 

Coarse woody debris was measured on a scale of 0-10, with 0 indicating no CWD >10 

cm diameter, and 10 indicating the entire area was covered by CWD. We also counted 

the number of woody stems present within a 5x5 m square around the rest site entrance. 

We used ArcGIS 10.5 (ESRI 2017) and a 1/9 arc-second digital elevation model (USGS 

2013) to calculate the slope, aspect, and distance to the nearest stream or headwater 

ravine (henceforth “drainage channels”). Drainage channels were identified using the 

‘flow accumulation’ tool and a 1500 cell accumulation threshold in ArcMap 

(Montgomery and Foufoula-Georgiou 1993); stream order was not differentiated for this 
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study.  To determine the land cover type for our sites, we used the 2011 National Land 

Cover Dataset (NLCD), and grouped land cover categories that were not deciduous, 

mixed, or coniferous forest into a fourth category considered “open” canopy (Table 1).  

Analyses 

We used a discrete choice framework to assess relative probability of selection 

based on comparisons of habitat attributes between rest sites and the paired random sites. 

These analyses allow for evaluation of the  overall perceived “utility” of a habitat patch 

within an individual’s home range, based on differences in the selected habitat as 

compared with immediately available but unselected areas (Cooper and Millspaugh 1999, 

Burnham and Anderson 2002). We used Akaike Information Criterion for small samples 

sizes (AICc) to rank our competing models, and model averaged parameter estimates 

from the candidate models that comprised a 95% confidence set.  We then compared 

model averaged parameter estimates to determine which habitat characteristics appeared 

to have the strongest effects on fine-scale eastern spotted skunk habitat selection and use. 

We developed 13 a-priori models to evaluate support for the three factors we 

hypothesized would influence rest site selection (Table 2). First, under our prey selection 

hypothesis, because spotted skunks are known to prey upon salamanders, insects, and 

small mammals (Crabb 1941, McCullough and Fritzell 1984, Kinlaw 1995, Sprayberry 

and Edelman 2016, Thorne and Waggy 2017), we predicted spotted skunks would select 

for rest sites near drainage channels and with abundant CWD where these prey items are 

likely to be abundant (McMinn and Crossley 1993, Braccia and Batzer 1999, Gompper et 

al. 2006, Bogan et al. 2013). Second, to minimize thermoregulatory stress, we predicted 
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that spotted skunks would select sites on northwestern facing slopes for their cooler and 

less humid conditions (Fekedulegn et al. 2004), and would prefer deciduous forests which 

provide deeper shade than pine, mixed, or open canopies (Lesmeister et al. 2008). Third, 

under our predation risk hypothesis, we evaluated support for five variables that we 

predicted would be positively associated with predator avoidance: ground cover, 

understory cover, canopy cover, slope, and woody stem abundance. Specifically, we 

predicted that (1) all three sources of vegetative cover would reduce skunk visibility to 

predators, that (2) steep slopes and woody stems would inhibit mammalian predator 

maneuverability (Reichman and Aitchison 1981, Litvaitis et al. 1985), and that (3) 

abundant understory cover alone would provide cover from owls, the primary predator of 

spotted skunks (Lesmeister et al. 2010). Our candidate set also included six sub-global 

models, which were combinations of the models described above, and a global model 

containing all nine habitat variables (Table 2).   

We used Program R version 3.4.2 (R Core Team, 2017) to prepare our data for 

analyses, and used the R package “mlogit” (Croissant, 2013) to evaluate our discrete 

choice models. Owing to field sampling errors, we were unable to collect ground cover 

measurements at <10% of sites. To retain this variable in our analysis, we imputed 

average ground cover values for those sites. All variables were screened for 

multicollinearity, and no variables were found to have correlation coefficients above 

0.32. We transformed the aspect degree values calculated in ArcGIS to a 0-180 linear 

measure of Southeast-Northwest orientation (respectively) using the equation asp135 = 

|asp° - 135| for aspect measures 0-314.9⁰, and asp135 = |asp° - 495| for measures ≥315⁰.  
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All continuous data were scaled linearly to range from approximately 0-10 to allow for 

comparison between variable effects. Because of limited sample size, we pooled rest site 

data from all individuals for use in our analyses.   

Model Validation 

We performed ten iterations of k-fold cross validation to test the predictive 

performance of our top model (Boyce et al. 2002). We used k=5 for each iteration of 

validation, such that we used a random subset of 80% of our choice sets (pairs of rest 

sites and random available sites) to train our top model and the remaining 20% of choice 

sets to test the predictive capacity of the trained model. For each iteration of model 

validation, we calculated the relative probability of selection for each rest site and paired 

available site in our test choice-sets, and then compared these probabilities to determine 

how often our model would accurately selected a used site over a random available site, 

as was indicated by a relative probability greater than 0.5 (Bodinof et al. 2012).   

RESULTS 

We captured 28 eastern spotted skunks between 2016 (n=15) and 2017 (n=13), 

however due to collar malfunctions, poor collar fits, and mortality events, only 15 spotted 

skunks (10 males and 5 females) were tracked to rest sites that provided data for this 

study (for more information refer to Appendix A). We successfully tracked our collared 

individuals 233 times (63 female and 170 male locations) and collected data for an 

equivalent number of random-available sites. Of these 233 tracking events, we located 

205 unique rest sites, indicating a 12% rate of re-use (n=28). Of those re-used rest sites, 

61% were at den sites of the three females known to be rearing kits (n=17). Of all re-used 
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sites, we identified only three locations where spotted skunks were recorded returning to 

the same structure on non-consecutive tracking events. Only one site was used by two 

different individuals, and the first occupant was presumed deceased several months prior 

to when the site was re-used. Structures we identified as random available sites were 

abundant on the landscape, such that on average, we found a random site less than 100 m 

from the identified rest site (average 91.8 ± 19.6, range 53-181m). 

Spotted skunks utilized a variety of structures for rest sites (Table 3), a majority 

of which were dependent on trees for structure (e.g. root burrows, tree cavities, or hollow 

logs; n=164), and a majority of these trees were snags or standing deciduous trees (n=97). 

We found the most rest sites in root burrows (n=82; 40%), which we characterized as any 

structure maintained by the presence or decomposition of major tree roots. Tree cavities 

were the next most frequently identified rest site structures (n=61; 29.8%) and were 

defined as hollows in live or dead trees, such that the cavity itself was above ground 

level. We also found many sites in ground burrows (n=40; 19.5%); underground 

structures that did not appear to be dependent on major tree roots, and were likely created 

by a small mammal. Finally, we identified several sites in hollow logs (n=22; 10.7% of 

sites) and on rare occasions under rocky substrate (n=2; <1% of sites) (Figure 2). Of the 

17 female denning sites identified, 53.3% were in ground burrows, 35.3% were in root 

cavities, while CWD and tree cavities were each used only once as den sites. Two of our 

females spent over a month in their first den site (approximately 50 and 35 days), while 

our third reproductive female spent over 2 weeks in each of her first two den sites.  
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Three of our 13 a priori models representing forage quality and predator 

avoidance comprised the 95% confidence set (Table 4). Three parameters, distance to 

drainage channel, CWD, and understory cover, were present in all three of our top 

models. Ground cover, canopy cover, slope, and woody stem count were also present in 

the models of our 95% confidence set, but had very small effect sizes, or parameter 

estimates that overlapped zero (Table 5).  We model averaged parameter estimates to 

evaluate effect size and direction of the retained covariates. Our results showed a 

negative relationship with drainage channels, such that relative probability of selection 

decreased by half for every 50 m farther a site was from a drainage channel. Understory 

cover and CWD had positive effects on relative probability, such that selection doubled 

with a 35% increase in understory cover and with a four-times increase in CWD (Figure 

3).  K-fold cross validation indicated that our model was able to accurately predict if a 

site was used or random 70% the time. 

DISCUSSION 

Consistent with previous studies, our results indicated that eastern spotted skunks 

in southern Appalachian hardwood forests select rest sites in areas where they have 

increased protection from predators (Lesmeister et al. 2008, Sprayberry and Edelman 

2018). Intraguild killing is a major factor that can drive demographic rates of many 

mesocarnivore species (Palomares and Caro 1999, Terraube and Bretagnolle 2018), and 

as one of the smallest members of this guild, the threat of intraguild killing may be 

particularly influential to eastern spotted skunk habitat selection. Although spotted 

skunks are equipped with a potent olfactory defense mechanism to deter predators in 
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close proximity, there is evidence that spotted skunks first rely on cryptic pelage pattern 

to reduce their chances of being detected by predators (Caro et al. 2013). In particular, 

owls are known to be a primary predator of eastern spotted skunks, and understory cover 

has been associated with a reduced risk of owl predation (Lesmeister et al. 2010). The 

efficacy of spotted patterns as camouflage is enhanced by dappled lighting (Caro 2005), 

which leads us to suspect that spotted skunks may not only select for a dense understory 

because it provides a barrier to direct visibility from owls overhead, but also because it 

scatters the light in a way that increases their ability to remain cryptic while they move 

about the forest floor.   

Our results supported the hypothesis that prey availability is an important driver 

of eastern spotted skunk rest site habitat selection.  While previous studies have reported 

other mesocarnivore species select habitat based on prey availability (Spencer et al. 1983, 

Litvaitis et al. 1986), ours was the first study to find indirect support for this hypothesis 

for eastern spotted skunks. As dietary generalists showing little rest site fidelity (Crabb 

1948, Lesmeister et al. 2008, Sprayberry and Edelman 2018), our results suggest that 

spotted skunks likely utilize an optimal foraging strategy by selecting rest sites in or near 

patches of high quality foraging habitat (Macarthur and Pianka 1996).  In this study we 

considered higher availability of CWD and lower distance to drainage channels as 

proxies for areas with high quality forage. However, a direct investigation of eastern 

spotted skunk diet in the southern Appalachians would allow for a better interpretation of 

how prey availability may be influencing habitat selection and behavior of eastern spotted 

skunks throughout the year. In particular, there is evidence that diet may fluctuate 
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seasonally, with spotted skunks showing a preference for small mammals in the winter 

and invertebrates in the summer (Crabb 1941, McCullough 1983). Based on our results, 

we suggest that these fluctuations in prey availability may result in seasonal variation in 

fine-scale habitat preferences of eastern spotted skunks. In particular, we recommend 

further investigation of habitat selection during the winter when prey is likely to be 

limited and deciduous leaf cover is reduced.  

In general, CWD likely serves as both foraging habitat and protective structure for 

eastern spotted skunks in southern Appalachian Hardwood forests, and may warrant 

greater consideration in regard to its overall ecological value.  Both small mammals and 

invertebrates use CWD throughout the many stages of decomposition (Harmon 1982, 

Braccia and Batzer 1999, Loeb 1999, Koenigs et al. 2002), thus providing a stable food 

source for eastern spotted skunks throughout the year. We also recorded many instances 

of spotted skunks using CWD as rest site structure, suggesting that CWD can provide 

protection from predators. In particular, CWD may be important as protective structure 

for spotted skunks in between foraging bouts while handling and consuming prey items, 

when requirements for protective cover may be less stringent (Crabb 1948). Although it 

was one of the most important habitat attributes identified in our study, other studies of 

spotted skunk rest site selection in pine dominated ecosystems have not found strong 

associations with CWD (Lesmeister et al. 2008, Sprayberry and Edelman 2018). Because 

hardwood trees tend to decay more slowly and persist on the forest floor for longer than 

many coniferous softwood species (Moorman et al. 1999), we suggest this contrasting 

result may be related to differences in overall abundance of CWD between study areas.   
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Management efforts that maintain large decaying trees and allow for the persistence of 

some CWD have been successfully implemented in other forested systems (Bull et al. 

1997), and we suggest similar practices may be beneficial in southern Appalachian 

hardwood forests.  

Distance to drainage channel was our strongest predictor of eastern spotted skunk 

rest site selection, and we suggest that this feature may warrant greater consideration as a 

habitat attribute relevant to many aspects of spotted skunk ecology. Although previous 

studies have considered distance to water or distance to streams as a predictor of 

mesocarnivore rest site selection (Spencer et al. 1983, Zielinski et al. 2004, Lesmeister et 

al. 2008, Purcell et al. 2009), these metrics often exclude consideration of dry or 

ephemeral first order streams or headwater ravines. In general, dry and ephemeral minor 

drainage channels are neither well defined nor well studied, despite these features 

constituting over half the length of stream networks (Hansen, 2001; Montgomery and 

Buffington, 1997). Furthermore, they play an important role in shaping the topography of 

mountainous terrain (Prince et al. 2010), and can have strong effects on forest and 

vegetative composition (Swanson et al. 1982, Bolstad et al. 1998). A better understanding 

of how eastern spotted skunks use variably sized drainage channels could provide 

important insights about best management practices, while knowledge of how spotted 

skunks move or travel within stream networks could provide crucial information about 

dispersal and connectivity for populations throughout the species’ range. For instance, 

drainage channels are inherently connected with a larger drainage networks and tend to 

be less steep than the surrounding hillsides, making them possible corridors for dispersal 
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and exploration (Campbell Grant et al. 2007). Confluences of drainage channels of any 

size could also act as natural hubs for olfactory communication, and may be important for 

establishing home range boundaries (Campbell Grant et al. 2007). In general, our results 

suggest there is a need for further research regarding the way animals use drainage 

networks in mountainous systems and how management practices may be impacting or 

fragmenting these features. 

Spotted skunks in the southern Appalachian hardwood forests appear to be 

opportunistic in the specific structures they use as rest sites. Nonetheless, when compared 

with rest site selection studies in conifer-dominated forests (Lesmeister et al. 2008, 

Sprayberry and Edelman 2018) we observed several differences in use and selection of 

rest site structures. Our skunks showed distinctly lower rates of site re-use than in other 

populations (12% vs >40%), suggesting that suitable rest sites may have been more 

abundant in our study area. In addition, spotted skunks in our study used tree-associated 

structures (e.g. tree cavities, root burrows, or hollow logs) twice as often and used ground 

burrows only half as often as was reported in either of the other studies (Lesmeister et al. 

2008, Sprayberry and Edelman 2018). This high use of tree-associated structures could be 

related to the increased proportion of deciduous hardwood trees in the area, which may 

provide more suitable tree cavities for mammalian carnivores (Paragi et al. 1996). In 

contrast to previous studies where 14-17.5% of rest sites were found in rocky outcrops 

(Lesmeister et al. 2008, Sprayberry and Edelman 2018), rocky outcrops were largely 

absent from our study area and composed <1% of rest sites.  Overall, given the variety of 
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structures we detected spotted skunks using as rest sites, it is likely that rest site selection 

may be more impacted by habitat characteristics of the surrounding area. 

While spotted skunk research is ongoing in many systems, our overall knowledge 

of eastern spotted skunk ecology remains vague. Although progress has been made in 

determining their current distribution over the past decade, studies of landscape-scale 

habitat selection have been unable to identify strong predictors of spotted skunk 

occurrence in their Appalachian range, which may largely be due to the species’ low 

probability of detection, (Chapter 1; Thorne et al., 2017). Thus, further studies like this 

one that track individual animals may provide the best insights about what composes 

suitable habitat for this species. In particular, investigation of the fine-scale needs for den 

sites by reproductive females could illuminate important limitations to recruitment. Many 

mesocarnivore species show increased selectivity when determining suitable den sites, 

particularly for parturition and early-rearing when offspring are extremely vulnerable 

(Brainerd et al. 1995, Paragi et al. 1996, Magoun and Copeland 1998, Bull and Heater 

2000, Birks et al. 2005). A better knowledge of the site and structure characteristics 

preferred by denning eastern spotted skunks would allow for directed efforts to ensure 

availability of suitable den site structures. Such management efforts could improve rates 

of spotted skunk kit survival which in turn could benefit the overall demographic trends 

of this cryptic species. Furthermore, recent studies of eastern spotted skunks have only 

been carried out in protected areas such as national forest or state protected land 

(Lesmeister et al. 2008, Wilson et al. 2016, Thorne et al. 2017, Sprayberry and Edelman 

2018), resulting in a lack of knowledge about how this species may be interacting with 
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and responding to anthropogenic development. A better understanding of how eastern 

spotted skunks are responding to anthropogenic influences at multiple scales is crucial to 

our ability to design effective management objectives for spotted skunk conservation. We 

also recommend future studies more directly investigate how eastern spotted skunk 

habitat selection varies over time in response to prescribed fire and other management 

practices. Overall, while our understanding of spotted skunk ecology has been greatly 

advanced in the past decade, a better understanding of eastern spotted skunk distribution, 

habitat associations and demography are still urgently needed to better understand their 

current status and develop appropriate conservation plans.  

ACKNOWLEDGEMENTS 

 We would like to thank the South Carolina Department of Natural Resources for 

their support which made this project possible as well as the USFS Oconee SC Ranger 

Office, for their permission to access gated property in the field. This research would not 

have been possible without the assistance of Kayla Morris and Songbird Hawthorne in 

the field, and the statistical advice and general opinions of Stephen Harris and Laura 

Gigliotti throughout the many revisions of this paper.  

 

LITERATURE CITED 

Abella, S. R., V. B. Shelburne, and N. W. MacDonald. 2003. Multifactor classification of 

forest landscape ecosystems of Jocassee Gorges, southern Appalachian Mountains, 

South Carolina. Canadian Journal of Forest Research 33:1933–1946. 

Aubry, K. B., C. M. Raley, S. W. Buskirk, W. J. Zielinski, M. K. Schwartz, R. T. 



 55 

Golightly, K. L. Purcell, R. D. Weir, and J. S. Yaeger. 2013. Meta-analyses of 

habitat selection by fishers at resting sites in the pacific coastal region. Journal of 

Wildlife Management 77:965–974. 

Birks, J. D. S., J. E. Messenger, and E. C. Halliwell. 2005. Diversity of den sites used by 

pine martens Martes martes: A response to the scarcity of arboreal cavities? 

Mammal Review 35:313–320. 

Bodinof, C. M., J. T. Briggler, R. E. Junge, J. Beringer, M. D. Wanner, C. D. Schuette, J. 

Ettling, and J. J. Millspaugh. 2012. Habitat attributes associated with short-term 

settlement of Ozark hellbender (Cryptobranchus alleganiensis bishopi) salamanders 

following translocation to the wild. Freshwater Biology. 

Bogan, M. T., K. S. Boersma, and D. A. Lytle. 2013. Flow intermittency alters 

longitudinal patterns of invertebrate diversity and assemblage composition in an 

arid-land stream network. Freshwater Biology 58:1016–1028. 

Bolstad, P. V, W. Swank, and J. Vose. 1998. Predicting southern Appalachian overstorey 

vegetation with digital terrain data. Landscape Ecology 13:271–283. 

Boyce, M. S., P. R. Vernier, S. E. Nielsen, and F. K. A. Schmiegelow. 2002. Evaluating 

resource selection functions. Ecological Modelling 157:281–300. 

Braccia, A., and D. P. Batzer. 1999. Invertebrates associated with coarse woody debris in 

streams, upland forests, and wetlands: A review. Water Resources 299–302. 

Brainerd, S. M., J. . Helldin, E. R. Lindström, E. Rolstad, J. Rolstad, and I. Storch. 1995. 

Pine marten ( Martes martes ) selection of resting and denning sites in Scandinavian 

managed forests. Annales Zoologici Fennici 32:151–157. 



 56 

Bull, E. L., and T. W. Heater. 2000. Resting and denning sites of American martens in 

Northeastern Oregon. Northwest Science 74:179–185. 

Bull, E. L., C. G. Parks, and T. R. Torgersen. 1997. Trees and logs imprtant to wildlife in 

the Interior Columbia River Basin. USDA Forest Service, Pacific Northwest 

Reasearch Station General Technical Report PNW-GTR-39. 

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference. 

Second edition. Springer, New York, NY. 

Campbell Grant, E. H., W. H. Lowe, and W. F. Fagan. 2007. Living in the branches: 

Population dynamics and ecological processes in dendritic networks. Ecology 

Letters 10:165–175. 

Caro, T. 2005. The adaptive significance of coloration in mammals. BioScience 55:125. 

Caro, T., T. Stankowich, C. Kiffner, and J. Hunter. 2013. Are spotted skunks conspicuous 

or cryptic? Ethology Ecology and Evolution 25:144–160. 

Cooper, A. B., and J. J. Millspaugh. 1999. The application of discrete choice models to 

wildlife resource selection studies. Ecology 80:566–575. 

Crabb, W. D. 1941. Food habits of the prairie spotted skunk in southeastern Iowa. Journal 

of Mammalogy1 22:349–364. 

Crabb, W. D. 1944. Growth, development and seasonal weights of spotted skunks. 

Journal of Mammalogy 25:213–221. 

Crabb, W. D. 1948. The ecology and management of the prairie spotted skunk in Iowa. 

Source: Ecological Monographs 1821160189:201–232. 

Cumming, G. S. 2000. Using between-model comparisons to fine-tune linear models of 



 57 

species ranges. Journal of Biogeography 27:441–455. 

DeGraaf, R., M. Yamasaki, W. B. Leak, and J. W. Lanier. 1992. New England wildlife: 

management of forested habitats. Radnor, PA. 

DeSanty, J. 2001. A review of plains spotted skunk (Spilogale putorius interrupta) 

throughout its range in North America. Missouri Department of Conservation. 

Diggins, C. A., D. S. Jachowski, J. Martin, and W. M. Ford. 2015. Incidental captures of 

eastern spotted skunk in a high- elevation red spruce forest in Virginia. Northeastern 

Naturalist Notes 22. 

Dimitri, C., A. Effland, and N. Conklin. 2005. The 20th century transformation of U.S. 

agriculture and farm policy. Economic information bulletin. Volume 3. 

Elliott, K. J., J. M. Vose, W. T. Swank, and P. V Boistad. 1999. Long-term patterns in 

vegetation-site relationships in a Southern Appalachian forest. Journal of the Torrey 

Botanical Society 126:320–334. 

Fedriani, J. M., T. K. Fuller, R. M. Sauvajot, and E. C. York. 2000. Competition and 

intraguild predation among three sympatric carnivores. Oecologia 125:258–270. 

Fekedulegn, D., J. J. Colbert, J. S. Rentch, and K. W. Gottschalk. 2004. Aspect induced 

differences in vegetation , soil , and microclimatic characteristics of an Appalachian 

watershed. Southern Appalachian Botanical Society 69:92–108. 

Fekedulegn, D., R. R. Hicks, and J. J. Colbert. 2003. Influence of topographic aspect, 

precipitation and drought on radial growth of four major tree species in an 

Appalachian watershed. Forest Ecology and Management 177:409–425. 

Fremier, A. K., M. Kiparsky, S. Gmur, J. Aycrigg, R. K. Craig, L. K. Svancara, D. D. 



 58 

Goble, B. Cosens, F. W. Davis, and J. M. Scott. 2015. A riparian conservation 

network for ecological resilience. Biological Conservation 191:29–37. Elsevier B.V. 

Gitzen, R. A., J. J. Millspaugh, A. B. Cooper, and D. S. Licht, editors. 2012. Design and 

analysis of long-term ecological monitoring studies. Cambridge University Press. 

Gompper, M. E., and H. M. Hackett. 2005. The long-term, range-wide decline of a once 

common carnivore: The eastern spotted skunk (Spilogale putorius). Animal 

Conservation 8:195–201. 

Gompper, M. E., R. W. Kays, J. C. Ray, S. D. Lapoint, D. A. Bogan, and J. R. Cryan. 

2006. A Comparison of Noninvasive Techniques to Survey Carnivore Communities 

in Northeastern North America. Wildlife Society Bulletin 34:1142–1151. 

Gompper, M., and D. Jachowski. 2016. Spilogale putorius. The IUCN Red List of 

Threatened Species. Volume e.T41636A4. 

Hackett, M. H., D. B. Lesmeister, J. Desanty-Combes, W. G. Montague, J. J. Millspaugh, 

and M. E. Gompper. 2007. Detection rates of eastern spotted skunks (Spilogale 

putorius) in Missouri and Arkansas using live-capture and non-invasive techniques. 

The American Midland Naturalist 158:123–131. 

Hansen, W. F. 2001. Identifying stream types and management implications. Forest 

Ecology and Management 143:39–46. 

Harmon, M. E. 1982. Decomposition of standing dead trees in the southern Appalachian 

mountains. Oecologia 52:214–215. 

Jachowski, D. S., T. Katzner, J. L. Rodrigue, and W. M. Ford. 2015. Monitoring 

landscape-level distribution and migration phenology of raptors using a volunteer 



 59 

camera-trap network. Wildlife Society Bulletin 39:553–563. 

Johnson, D. H. 1980. The Comparison of Usage and Availability Measurements for 

Evaluating Resource Preference. Ecology 61:65–71. 

Kays, R., and K. M. Slauson. 2008. Remote cameras. Pages 110–140 in R. A. Long, P. 

MacKay, W. J. Zielinski, and J. C. Ray, editors. Noninvasive Survey Methods for 

Carnivores. Island Press, Washington, DC. 

Kinlaw, A. 1995. Spilogale putorius. Mammalian Species 551:1–7. 

Kinlaw, A. E., L. M. Ehrhart, and P. D. Doerr. 1995. Spotted skunks (Spilogale putorius 

ambarvalis) trapped at canaveral national seashore and merrit island, Florida. Florida 

Field Naturalist 23:57–86. 

Koenigs, E., P. J. Shea, R. Borys, and M. I. Haverty. 2002. An investigation of the insect 

fauna associated with coarse woody debris of Pinus ponderosa and Abies concolor 

in Northeastern California. 

Lesmeister, D. B., R. S. Crowhurst, J. J. Millspaugh, and M. E. Gompper. 2013. 

Landscape ecology of eastern spotted ekunks in habitats restored for red-cockaded 

woodpeckers. Restoration Ecology. 

Lesmeister, D. B., M. E. Gompper, and J. J. Millspaugh. 2008. Summer resting and den 

site selection by eastern spotted skunks (Spilogale sutorius) in Arkansas. Journal of 

Mammalogy 89:1512–1520. 

Lesmeister, D. B., M. E. Gompper, and J. J. Millspaugh. 2009. Habitat selection and 

home range dynamics of eastern spotted skunks in the Ouachita Mountains, 

Arkansas, USA. Journal of Wildlife Management 73:18–2518. 



 60 

Lesmeister, D. B., J. J. Millspaugh, M. E. Gompper, and T. W. Mong. 2010. Eastern 

spotted skunk (Spilogale putorius) survival and cause-specific mortality in the 

Ouachita Mountains, Arkansas. The American Midland Naturalist 164:52–60. 

Litvaitis, J. A., J. A. Sherburne, and J. A. Bissonette. 1985. Influence of understory 

characteristics on snowshoe hare habitat use and density. The Journal of Wildlife 

Management 49:866–873. 

Litvaitis, J. A., J. A. Sherburne, and J. A. Bissonette. 1986. Bobcat habitat use and home 

range size in relation to prey density. The Journal of Wildlife Management 50:110–

117. 

Loeb, S. C. 1999. Responses of small mammals to coarse woody debris in a southeastern 

pine forest. Journal of Mammalogy 80:460–471. 

Macarthur, R. H., and E. R. Pianka. 1996. On optimal use of a patchy environment. The 

American Naturalist 100:603–609. 

MacKenzie, D. I., and L. L. Bailey. 2004. Assessing the fit of site-occupancy models. 

Journal of Agricultural, Biological, and Environmental Statistics 9:300–318. 

MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollack, L. L. Bailey, and J. E. Hines. 

2006. Occupancy estimation and modeling. Academic Press. Elsevier. 

Magoun, A. J., and J. P. Copeland. 1998. Characteristics of wolverine reproductive den 

sites. The Journal of Wildlife Management 62:1313–1320. 

Mayor, S. J., D. C. Schneider, J. A. Schaefer, and S. P. Mahoney. 2009. Habitat selection 

at multiple scales. Ecoscience 16:238–247. 

McCullough, C. 1983. Population status and habitat requirements of the eastern spotted 



 61 

skunk on the Ozark Plateau. MS Thesis. University of Missouri-Columbia. 

McCullough, C. R., and E. K. Fritzell. 1984. Ecological observations of eastern spotted 

skunks on the Ozark Plateau. Transactions, Missouri Academy of Science. Volume 

18. 

McMinn, J. W., and D. A. J. Crossley. 1993. Biodiversity and coarse woody debris in 

southern forests. Page 146 in. Proceedings of the Workshop on Course Woody 

Debris in Souther Forests: Effects on Biodiversity. 

Metz, C. E. 1978. Basic principles of ROC analysis. Seminars in nuclear medicine 8:283–

298. 

Montgomery, D. R., and J. M. Buffington. 1997. Channel-reach morpohology in 

mountain drainage basins. Departament of Geological Science 109:596–612. 

Montgomery, D. R., and E. Foufoula-Georgiou. 1993. Channel network source 

representation using digital elevation models. Water Resources Research. Volume 

29. 

Moorman, C. E., K. R. Russell, G. R. Sabin, and D. C. Guynn. 1999. Snag dynamics and 

cavity occurrence in the South Carolina Piedmont. Forest Ecology and Management 

118:37–48. 

Morelli, F., A. P. Møller, E. Nelson, Y. Benedetti, W. Liang, P. Šímová, M. Moretti, and 

P. Tryjanowski. 2017. The common cuckoo is an effective indicator of high bird 

species richness in Asia and Europe. Scientific Reports 7:1–8. 

Palomares, F., and T. M. Caro. 1999. Interspecific killing among mammalian carnivores. 

The American Naturalist 153:492–508. 



 62 

Paragi, T. F., S. M. Arthur, and W. B. Krohn. 1996. Importance of tree cavities as natal 

dens for fishers. Northern Journal of Applied Forestry 13:79–83. 

Prince, P. S., J. A. Spotila, and W. S. Henika. 2010. New physical evidence of the role of 

stream capture in active retreat of the Blue Ridge escarpment, southern 

Appalachians. Geomorphology 123:305–319. Elsevier B.V. 

Purcell, K. L., A. K. Mazzoni, S. R. Mori, and B. B. Boroski. 2009. Resting structures 

and resting habitat of fishers in the southern Sierra Nevada, California. Forest 

Ecology and Management 258:2696–2706. 

Reichman, O. J., and S. Aitchison. 1981. Mammal trails on mountain slopes : optimal 

paths in relation to slope angle and body weight. The American Naturalist1 

117:416–420. 

Richmond, O. M. W., J. E. Hines, and S. R. Beissinger. 2010. Two-species occupancy 

models : a new parameterization applied to co-occurrence of secretive rails. 

Ecological Applications 20:2036–2046. 

Schlexer, F. V. 2008. Attracting animals to detection devices. Pages 263–292 in R. A. 

Long, P. MacKay, W. J. Zielinski, and J. C. Ray, editors. Noninvasive Survey 

Methods for Carnivores. Island Press, Washington, DC. 

Simon, S. A., T. K. Collins, G. L. Kauffman, W. H. Mcnab, and C. J. Ulrey. 2005. 

Ecological zones in the Southern Appalachians: First approximation. USFS 

Southern Research Station. 

South Carolina Department of Natural Resources. 2005. Blue Ridge ecoregion terrestrial 

habitats. 



 63 

South Carolina Department of Natural Resources. 2015. South Carolina’s state wildlife 

action plan. Volume Columbia,. 

Spencer, W. D., R. H. Barrett, and W. J. Zielinski. 1983. Marten habitat preferences in 

the northern Sierra Nevada. The Journal of Wildlife Management1 47:1181–1186. 

Sprayberry, T. R., and A. J. Edelman. 2016. Food provisioning of kits by a female eastern 

spotted skunk. Southeastern Naturalist 15:N53–N56. 

Sprayberry, T. R., and A. J. Edelman. 2018. Den-site selection of eastern spotted skunks 

in the southern Appalachian Mountains. Journal of Mammalogy 0:1–10. 

Swanson, F. J., S. V. Gregory, J. R. Sedell, and A. G. Campbell. 1982. Land-water 

interactions: the riparian zone. Analysis of coniferous forest ecosystems in the 

western United States. 267–291. 

Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. American Association 

for the Advancement of Science 240:1285–1293. 

Terraube, J., and V. Bretagnolle. 2018. Top-down limitation of mesopredators by avian 

top predators: a call for research on cascading effects at the community and 

ecosystem scale. Ibis. 

Thorne, E. D., and C. Waggy. 2017. First reported observation of food provisioning to 

offspring by an eastern spotted skunk, a small carnivore. Northeastern Naturalist 

Notes 24. 

Thorne, E. D., C. Waggy, D. S. Jachowski, M. J. Kelly, and W. M. Ford. 2017. Winter 

habitat associations of eastern spotted skunks in Virginia. Journal of Wildlife 

Management 81:1042–1050. 



 64 

Turner, M. G., S. M. Pearson, P. Bolstad, and D. N. Wear. 2003. Effects of land-cover 

change on spatial pattern of forest communities in the Southern Appalachian 

Mountains ( USA ). Landscape Ecology 18:449–464. 

Vanak, A. T., and M. E. Gompper. 2010. Interference competition at the landscape level: 

The effect of free-ranging dogs on a native mesocarnivore. Journal of Applied 

Ecology 47:1225–1232. 

Waldrop, T. A., D. L. Hagan, and D. M. Simon. 2016. Repeated application of fuel 

reduction treatments in the southern Appalachian mountains, USA. Implications for 

achieving management goals. Fire Ecology 12:28–47. 

Warren, R. J. 2008. Mechanisms driving understory evergreen herb distributions across 

slope aspects: As derived from landscape position. Plant Ecology 198:297–308. 

Wilson, S. B., R. Colquhoun, A. Klink, T. Lanini, S. Riggs, B. Simpson, A. Williams, 

and D. S. Jachowski. 2016. Recent detections of Spilogale putorius (eastern spotted 

skunk) in South Carolina. SOUTHEASTERN NATURALIST 15:269–274. 

Zielinski, W. J., R. L. Truex, G. A. Schmidt, F. V Schlexer, K. N. Schmidt, and R. H. 

Barrett. 2004. Resting habitat selection by fishers in California. The Journal of 

Wildlife Management 68:475–492. 



 65 

TABLES 

Table 1  Variable names, abbreviations, and descriptions of parameters measured to evaluate eastern 

spotted skunk rest site selection the southern Appalachian hardwood forests in 2016 and 2017.  

Variable Abbreviation Description 

Canopy Cover Canopy Percent cover from canopy vegetation greater than 5 m tall within a 

10x10 m square around the site. 

Understory Cover Undst Percent cover from understory vegetation between 1-5 m tall within 

a 10x10 m square around the site. 

Ground Cover Ground Percent cover from ground-level vegetation less than 1 m tall 

within a 10x10 m square around the site. 

Coarse Woody 

Debris 

CWD Index of coarse woody debris abundance within a 10x10 m square 

around the site. Index ranged from 0-10 with 0 indicating no CWD, 

and 10 indicating a major blowdown covering the entire area. 

Stem Count Stems Number of woody stems within 5x5 m square around the site. 

Canopy Type Type A factor of the dominant cover type, calculated from the 2011 

NLDC dataset at 30 m resolution (Deciduous, Mixed, Coniferous, 

or Open) 

Dist to Drainage 

Channel 

Drain Distance to nearest drainage channel in m. Drainage channels were 

identified in ArcGIS using flow accumulator with a 1/9 arc-second 

USGS DEM and a 1500 cell accumulation threshold. 

Slope Slope Steepness of the slope in degrees, calculated in ArcGIS using a 1/9 

arc-second USGS DEM 

Aspect Aspect Aspect of the slope, calculated in ArcGIS using a 1/9 arc-second 

USGS DEM and transformed to represent a linear Northwest-

Southeast gradient 
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Table 2  Hypotheses, model structures, predicted parameter responses for the 13 a-priori models 

developed to evaluate eastern spotted skunk rest site selection in the southern Appalachian hardwood 

forests. See Table 1 for parameter descriptions 

Hypothesis Model Structure Predicted Response 

Primary Hypotheses   

(1) FORAGE: Drainages and abundant 

CWD will provide good foraging habitat 

= ß1(drain)+ß2(CWD) ß1 < 0, ß2 > 0 

(2) THERMOREGULATION: 

Northwest facing slopes and deciduous 

forests will produce cooler temperatures 

and reduce thermoregulatory stress 

= ß1(aspect)+ß2(mixed)+ß3(conifer) 

+ß4(open) 

ß1 > 0, ß2 < 0, ß3 < 0, 

ß4 < 0 

(3) PREDATORS: Ground, understory, 

and canopy cover will decrease 

visibility; steep slopes and woody stems 

will reduce predator maneuverability 

= ß1(undst)+ß2(canopy)+ß3(ground) 

+ß4(stems)+ß5(slope) 

ß1 > 0, ß2 > 0, ß3 > 0, 

ß4 > 0, ß5 > 0 

(4) PRED.COVER: Ground, 

understory, and canopy cover will 

provide reduced visibility from all 

predators 

=  ß1(undst)+ß2(ground)+ß3(canopy) ß1 > 0, ß2 > 0, ß3 > 0 

(5) PRED.MOVE: Steep slopes and 

abundant woody stems will reduce 

maneuverability for mammalian 

predators  

= ß1(stems)+ß2(slope) ß1 > 0, ß2 > 0 

(6) PRED.UNDST: Dense 

understory will provide protection 

from avian predators 

= ß1(undst) ß1 > 0 

Sub-Global Models   

(8) THERM+FORAGE = ß1(aspect)+ß2(mixed)+ß3(conifer) 

+ß4(open)+ß5(drain)+ß6(CWD) 

ß1 > 0, ß2 < 0, ß3 < 0, 

ß4 < 0, ß5 < 0, ß6 > 0 

(9) THERM+PREDATORS 

  

= ß1(aspect)+ß2(mixed)+ß3(conifer) 

+ß4(open)+ß5(undst)+ß6(canopy) 

+ß7(ground)+ß8(stems)+ß9(slope) 

ß1 > 0, ß2 < 0, ß3 < 0, 

ß4 < 0, ß5 > 0, ß6 > 0, 

ß7 > 0, ß8 > 0, ß9 > 0 

(7) FORAGE+PREDATORS 

 

= ß1(drain)+ß2(CWD)+ß3(undst) 

+ß4(canopy)+ß5(ground)+ß6(stems) 

+ß7(slope) 

ß1 < 0, ß2 > 0, ß3 > 0, 

ß4 > 0, ß5 > 0, ß6 > 0, 

ß7 > 0 

(10) FORAGE+PRED.UNDST = ß1(undst)+ß2(drain)+ ß3(CWD) ß1 > 0, ß2 < 0, ß3 > 0 

(11) FORAGE+PRED.COV = ß1(drain)+ß2(CWD)+ß3(undst) 

+ß4(canopy)+ß5(ground) 

ß1 < 0, ß2 > 0, ß3 > 0, 

ß4 > 0, ß5 > 0 

(12) FORAGE+PRED.MOVE =ß1(drain)+ß2(CWD)+ß3(stems) 

+ß4(slope) 

ß1 < 0, ß2 > 0, ß3 > 0, 

ß4 > 0 

(13) GLOBAL = ß1(drain)+ß2(CWD)+ß3(undst) 

+ß4(canopy)+ß5(ground)+ß6(stems) 

+ß7(slope)+ß8(aspect)+ß9(mixed) 

+ß10(conifer)+ß11(open) 

ß1 < 0, ß2 > 0, ß3 > 0, 

ß4 > 0, ß5 > 0, ß6 > 0, 

ß7 > 0, ß8 > 0, ß9 < 0, 

ß10 < 0, ß11 < 0 
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Table 3 Average values, standard errors, and ranges of values for each parameter 

measured to describe eastern spotted skunk rest sites and random available sites, and their 

surrounding habitat in the southern Appalachian hardwood forests of South Carolina in 

2016 and 2017. See Table 1 for parameter descriptions. 

 Rest Sites Random Sites 

Variable Avg±SE (Range) Avg ± SE 

Entrances 1.97±1.14 (1-6) 1.27 ± 0.57 (1-5) 

Entrance Area (cm2) 133.65±228.33 (10-2400) 132.53 ± 226.25 (12-2590)  

Stem Count 3.72±1.71 (0.5-7.8) 3.46 ± 1.61 (0.5-7) 

Canopy Cover (%) 78.89±18.07 (5-100) 82.73 ± 14.26 (25-100) 

Undst Cover (%) 72.51±23.03 (5-100) 62.08 ± 25.02 (0-100) 

Ground Cover (%) 27.33±28.48 (0-100) 27.26 ± 25.31 (0-100) 

CWD 4.36±2.22 (1-10) 3.82 ± 1.92 (1-10) 

Aspect(NW) 83.16±52.95 (1-179.2) 73.61 ± 52.77 (0.06-178.51) 

Slope (degrees) 20.08±8.72 (1.65-47.56) 18.38 ± 8.02 (2.54-47.72) 

Dist to Drain (m) 42.97±37.11 (0.44-156.74) 54.52 ± 39.72 (1.38-186.56) 
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Table 4  Ranked candidate models developed to predict eastern spotted 

skunks rest site selection in the southern Appalachian hardwood forests. 

Models are ranked by AICc values. See Table 2 for model descriptions.  

Model Log-Lik K AICc Δ AICc wi 

Forage+PredUndst -137.096 3 280.223 0.000 0.678 

Forage+PredCover -136.110 5 282.300 2.077 0.240 

Forage+Predators -135.226 7 284.600 4.377 0.076 

Global -134.031 11 290.416 10.193 0.004 

Forage+PredMove -142.448 4 292.950 12.727 0.001 

Forage -145.234 2 294.484 14.261 0.001 

Thermo+Forage -142.573 6 297.258 17.035 0.000 

PredCover -145.625 3 297.282 17.059 0.000 

Predators -144.060 5 298.200 17.977 0.000 

PredUndst -148.760 1 299.525 19.302 0.000 

Thermo+Predators -143.590 9 305.420 25.197 0.000 

PredMove -157.519 2 319.053 38.830 0.000 

Thermo -157.877 4 323.807 43.584 0.000 
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Table 5  Estimates and standard errors of parameters hypothesized to predict eastern spotted skunks habitat 

selection in the southern Appalachian hardwood forests. Only parameters from the models in a 95% confidence 

set and model averaged parameters are included, see Table 1 for parameter descriptions. 

Model 

Dist to 

Drain CWD 

Understory 

Cover 

Canopy 

Cover 

Ground 

Cover Slope Stems 

Forage+Undst -0.27±0.08 0.17±0.06 0.20±0.05 - - - - 

Forage+PredCov -0.26±0.08 0.16±0.06 0.21±0.06 -0.06±0.07 0.05±0.05 - - 

Forage+Predators -0.24±0.08 0.16±0.06 0.21±0.06 -0.06±0.07 0.06±0.05 0.10±0.08 -0.01±0.07 

Model Average -0.26±0.08 0.17±0.06 0.20±0.06 -0.02±0.02 0.02±0.02 0.01±0.01 <-0.01±0.01 
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FIGURES 

 
 
Figure 1  Map of our study area within the Andrew Pickens Ranger District (APRD) of Sumter National 

Forest where we evaluated eastern spotted skunk rest site selection in 2016 and 2017. 
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Figure 2  Number of structures used as rest sites by spotted skunks in the southern Appalachian hardwood 

forests of South Carolina in 2016 and 2017, compared with random sites located in the field  
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Figure 3  Predictive plots illustrating the change in relative probability of selection for the three top 

variables predicting eastern spotted skunk rest site selection in 2016 and 2017 in the southern Appalachian 

hardwood forests of South Carolina. All other covariates were held constant at their mean values for the 

creation of these plots. See Table 1 for parameter descriptions. 
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Appendix A 

Descriptive data of captured eastern spotted skunks 

Appendix A  Descriptive data about captured eastern spotted skunks and the outcome of our 

tracking efforts from April-August in 2016 and 2017 on the Andrew Pickens Ranger District 

of Sumter National Forest, South Carolina. 

Skunk 

ID 

Capture 

Date Sex 

Weight 

(g) 

Collar 

(cm) Outcome 

M01 3/2/2016 M 440 NA Mortality signal (not retrieved) 

M02 3/3/2016 M 510 NA Mortality signal in tree (not retrieved) 

F01 3/10/2016 F 330 NA Presumed mortality 

M03 3/10/2016 M 480 NA Presumed mortality 

M04 3/11/2016 M 450 NA Survive (re-captured) 

M05 3/14/2016 M 570 14.5 Mortality signal in tree (not retrieved) 

M06 3/25/2016 M 570 12.8 Mortality signal (not retrieved) 

F02 3/27/2016 F 450 NA Collar slipped 

M07 3/28/2016 M 540 11.2 Mortality signal (not retrieved) 

M08 3/29/2016 M 530 12.9 Survive (re-captured) 

M09 3/29/2016 M 510 12.5 Mortality 

M10 3/31/2016 M 430 11.9 Signal lost 

M11 4/1/2016 M 440 12.2 Collar clasp broken 

F03 4/6/2016 F 390 10.6 Collar failure (not re-captured) 

M12 4/12/2016 M 440 11.1 Survive (re-captured) 

M13 2/3/2017 M 430 11.5 Mortality signal in burrow (not retrieved) 

F04 2/22/2017 F 360 9.8 Presumed mortality 

M04 2/23/2017 M 540 10.7 Presumed mortality 

M14 2/25/2017 M 630 11.9 Collar slipped 

F05 2/26/2017 F 420 9.8 Presumed mortality 

M15 2/28/2017 M 560 11 Survived (removed collar) 

F06 3/4/2017 F 520 10.7 Presumed mortality 

M12 3/4/2017 M 650 11.5 Survived (removed collar) 

M16 3/7/2017 M 520 11.4 Signal lost 

M17 3/16/2017 M 410 9.8 Collar slipped 

F07 3/21/2017 F 360 9.1 Collar clasp broken 

M18 3/23/2017 M 590 11.1 Survived (removed collar) 

M08 3/29/2017 M 530 11.1 Survived (removed collar) 

M19 4/2/2017 M 510 10.7 Survived (removed collar) 

F08 4/7/2017 F 420 9.5 Mortality 

M20 4/11/2017 M 480 9.9 Collar slipped 
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