

51

In Figure 3.9, the discretization of the plane is performed using the shadow of each

existing facility, Exi, and the extension of the borders of the barrier �%. The construction of

the grid lines is therefore based on the notion of shadow described in Figure 3.8. The

formation of the grid lines is further justified in Figure 3.10.

Figure 3.10 Construction of the grid in the feasible domain

To further improve the computational performance of the location algorithm in the

subdivided region proposed in [153], Bischoff and Klamroth [154] found applying a

heuristic (genetic algorithm) beneficial to solve a finite series of convex subproblems

though the final solution is an approximation to the globally optimum.

A global optimal approach to locating a facility in presence of convex forbidden

region(s) is presented by Mcgarvey and Cavalier [155] using a version of the branch-and-

bound algorithm known as Big Square Small Square (BSSS) developed by Hansen [156].

BSSS divides the plane into discrete squared regions and provides global or near-global

optimal solutions.

52

Kuhn proved two results from Weber’s location problem[157]. First, if the facilities

are not collinear, the objective function is convex meaning any local optimum is also a

unique global optimum [155]. And second, the location of the new facility is inside the

convex hull of the existing facilities. This helps to limit the search region and to improve

the computation time. In the case of location problems with barriers, it is not sufficient to

only include the existing facilities when creating the convex hull as the boundary of the

convex hull might intersect with an object. Thus, Klamroth [158] suggested an iterative

convex hull approach that extends the boundary of the convex hull to include the

intersecting objects. The boundary of the convex hull expands iteratively until all the edges

of the convex hull are found non-intersecting.

In the case of non-convex forbidden regions, Butt [159] has shown that the location

of the new facility will never be within the convex hull of a non-convex forbidden region

unless an existing facility locates inside this convex hull.

Finally, a multi-facility location problem with polyhedral barriers is considered in

[160]. They proposed two decomposition approaches to tackle the problem. The first

approach reduces the multi-facility location problem for N new facilities to N single-facility

location problems of the same type by fixing the assignment variables in the problem

formulation to 1. The second approach, on the other hand, keeps the location variables

constant and benefits from the set partitioning of the feasible domain based on visibility

properties. In the latter case, they restrict each new facility to one of the candidate domains

of the feasible space which could be deemed as the extension of the reduction results of

[153] to multiple new facilities. These decompositions result in a finite number of mixed-

53

integer programming sub-problems. They finally apply a genetic algorithm heuristic to

solve the two problems.

3.1.2.4 Heuristic methods

Heuristic techniques are widely used to address the cable harness routing and

similar problems since they are capable of handling the highly nonconvex search space of

the routing problem [161].

Of the early works on routing cable harnesses, Conru’s and Cutkosky’s method for

concurrent design of cable harnesses using heuristics drew attention [162]. After voxelizing

the workspace, to make the feasible space of the optimization problem convex, they

initially neglect the obstacles and find a globally optimal solution for the locations of the

harness transitions (breakouts). Next, if any of the transitions are placed in the obstacle

space, it must be moved to the closest cell in the free space. Then, a heuristic path planning

method locally optimizes the path between the endpoints of the cables and transitions.

However, the final path may still not be optimal due to the local optimizations, and further

human input is required to reroute the harness that is stuck in a local optimum. Additionally,

some case-specific constraints such as minimum bend radii may not have been considered

in the initial optimization problem and human user needs to take those into account to make

the final solution feasible. Thus, human interaction is crucial in this method to guarantee

the globality of the optimal solution.

In another study by Conru [161], a genetic algorithm (GA) is utilized to route the

bundles and locate the transitions between the end connectors that define the connection

points on the components. The algorithm starts with an initial configuration for the harness

54

which includes the connection information between the nodes (nodes are the end

connectors and transitions). Assuming the free space graph is known, Dijkstra’s algorithm

is applied to generate the shortest route for the wire between each pair of the desired

connectors. After the shortest routes are generated, an objective function is defined that

minimizes the total cost of all the bundles consisting of a number of wires. GA is deployed

to locate the transitions optimally using mutation and crossover operations on the initial

configuration. After the optimal locations of the transitions are found locally, the algorithm

explores the other configurations using another GA to develop close-to-global optima.

Hence, the problem is decomposed into two domains and GA is applied to each to find the

optimal solution.

In another study [163], Kimura employed a GA technique to address the problem

of finding an optimal arrangement for ship pipes with branches. He simplified the problem

by removing the branches and considering them as equipment in the design space instead.

Zhu et al. [164] have also innovated an approach to integrate optimization and

knowledge-based engineering to optimize the location and number of harness breakouts.

They proposed a two-step optimization method: initialization step, which benefits from a

roadmap path planning to define an initial configuration for the harness, and a refinement

step, which refines the locations to further improve the solution and satisfy all constraints.

The initialization is solved as a bi-level optimization problem since the problem is multi-

destination path planning: a branch level and a harness level. The branch level finds the

shortest path for each branch on a predefined roadmap using the A* algorithm on a

predetermined grid. In the harness level, Hill Climbing heuristic is deployed to locate the

55

harness breakouts. To eliminate the likely violations of the constraints at the initialization

step and improve the near-optimal solution achieved at initialization, the initial harness

configuration is refined using Generalized Pattern Search (GPS) optimization.

Most of the research studies done on the routing and design of cable harnesses

consider cables as a series of rigid segments. However, Kabul et al. argued that in addition

to geometric and collision constraints, physical and mechanical constraints of the cables

need to be accounted for to obtain a more realistic routing solution [165]. They,

consequently, asserted that cable must be considered as a deformable body for which a

motion needs to be planned. Taking the functional and manufacturing constraints noted by

Kabul et al, Hermansson et al. [166] presented a heuristic grid-based method for routing of

flexible 1D components in three-dimensional space.

3.1.3 Comparison of the methods

To summarize, all the related work on the study of multipath connection systems

including but not limited to cables and pipes classify into two main categories: design-

related research and optimization-related research. The design-related research primarily

focuses on the design process that leads to the final layout for the connectors. Researchers

over the past few decades have developed design tools such as CAD and computer-based

models, virtual reality environments, and design guidelines that can assist designers in their

decision-making pertinent to the selection of sizes and routes for multiple connectors in a

densely populated region. Additionally, design methods such as case studies were followed

to further investigate the industrial design of such systems in order to make improvements

to the practiced processes. Regardless of all the efforts, the developed tools still require

56

different levels of human intervention and thus the process lacks automation. For example,

as noted by Ng et al. [4], cable lengths, paths, and location of breakouts are decided based

on trial-and-error using physical prototypes in final stages of design (detail design stage).

More importantly, the design-based methods may not yield a final optimal layout which

could bear significant costs for the manufacturing and maintenance of the cables or pipes

[4].

Unlike the design-based methods, the optimization methods are mainly concerned

with optimizing the layout of the connectors though some of the proposed methods may

not apply to all real-world problems in practice, as claimed in [89]. Of the relevant studies,

tree-based methods have gained popularity in designing interconnected networks. Minimal

Steiner trees, in particular, are extensively employed to address problems where adding

extra nodes to a network is allowed to further minimize its total length. This fact makes the

method a well-suited candidate for cable/pipe routing problems where branching is

permitted. The original Steiner tree, however, does not deal with obstacle-avoiding

constraints; hence, researchers have to make modifications to adopt the method for

cable/pipe routing in the presence of obstacles. In fact, adding obstacles to the environment

of a Steiner tree significantly increases the complexity of the problem [133]. Therefore, the

research conducted to address these problems is limited to the use of approximations and

heuristic to find an optimal solution. Although exact solution methods are proposed

[134,135], they generally are computationally expensive and may not apply to large scale

problems without using any approximations. Hence, the obstacle-avoiding Steiner tree may

not be an efficient solution to the cable/pipe layout optimization problem.

57

Design and optimization of wind farm layout could be deemed analogous to cable

harness layout problems as both may be simplified to a network of connected nodes. Wind

farm layout design is mainly solved using MIP models. Often, the planar workspace of the

problem is discretized to a grid. With a known number of wind turbines, their optimal

locations are assigned from the grid points by solving the MIP. This is, however, unlikely

to occur in the cable harness layout problem as the locations of the components need to be

connected are known a priori. Further, the wind farm layout problem has multiple Start

nodes but only one Goal node, known as the station, where all the wind turbines are

connected. The cable harness layout problem, on the other hand, can have multiple Start

and multiple Goal nodes connected via breakouts. Since not all the physical constraints of

the cable layout problem may be mapped to the wind farm layout optimization problem,

the corresponding solution methods are not further considered for potential applications to

the cable layout optimization problem.

When the focus in the cable layout problem is shifted from the length of the cables

to the determination of the optimal location of the cable breakouts, an immediate set of

candidate methods can be considered from the Location Theory. Location problems in the

presence of obstacles have been among the challenging NP-hard problems in operations

research[152]. Though many solution methods are presented over the past four decades,

they still cannot address the problem in its entirety. For example, the methods can only deal

with convex obstacles [150,151,167], since the objective function is non-convex, the

discretization of the workspace is used [152] which results in locally optimal solutions, and

58

finally, the bi-objective multi-facility problem in presence of freeform objects remains

unsolved.

Last but not the least, heuristic methods are widely applied to solve different

instances of multipath planning problems with branches due to their efficiency in solving

NP-hard problems, although the solutions found are not necessarily global. Table 3.1

summarizes the efforts in the design and optimization of multipath connectors applicable

to cable harness layout optimization problem.

The review of the literature shows a scarcity of research efforts in developing

computationally efficient methods to tackle optimization of cable harness layout in

presence of freeform objects to global optimality. Additionally, there exist few studies that

consider other objectives besides the minimization of the total length of the cable layout.

Apart from the limitations, it is understood that the chosen optimization method

highly depends on the specifics of the problem which stems from its real-world application.

For example, the constraints of cable harness layout optimization are different from wind

farm design and pipe routing in ships. Hence, the problem must be well-defined in terms

of its constraints and criteria to be aligned with its application so that the algorithm is

practical for real-world problems and could assist designers in their decision making

regarding the selection of connectors in a complex interconnected system.

By this background, the objectives of the first part of the present study are outlined

in the next section.

59

Table 3.1 Comparison of design and optimization methods for multipath connection

problems

Classification Reference Contributions Limitations

Design tools

(CAD)

[87–91] - human-computer

interface for

designers

- geometric kernel for

modeling cables/pipes

- Sub-optimal

solutions

- lacks automation

- Based on trial-and-error

Design tools

(VR)

[4,86,94,95,97,98,168] - Consideration of

human expertise in

design

- Design automation

- Sub-optimal

solutions

- Designer-dependent

Design Heuristics Design guideline [93,169] - Instructions for cost

minimization for wire

routing and sizing

- Sub-optimal

solutions

Knowledge-based and

concurrent engineering

[3,99,101,102,104]

- Value human

knowledge in

design

- Sub-optimal

solutions

- lacks automation

Optimization-

Obstacle-avoiding

Steiner/spanning

trees

Winter [133] - introduction of Steiner

visibility

- problem breakdown

into subproblems

- approximate solution

- convex polygonal

obstacles only

Zachariasen and Winter

[134]

- exact visibility-based

method for subtree

problem

- computationally

expensive

Parque and Miyashita

[136]

- Steiner tree with n-star

topology

- known topology, not

applicable to the

general layout design

problem

Optimization-

Location theory

Katz and Cooper [150]

- first to consider

obstacle in

location problems

- only one circular

obstacle considered

Aneja and Parlar[151] - multiple obstacles - applicable to single-

facility only

Klamroth et al. [152–

154,158,160]

- new distance metric

- discretization of

workspace

- multi-facility

- local optimal

- convex obstacles

only

Heuristic

optimization

Conru and Cutkosky [170],

Kimura[163], Zhu et al.

[164]

- Computationally

efficient in solving

NP-hard problems

- Sub-optimal solutions

3.2 Research objective and proposed solution

The limitations of the existing methods in addressing cable harness layout

optimization in its general form, drive the first part of this research to explore optimal

60

solutions to the following problem: For a given number of start and goal points that

connect different components in a cluttered environment using flexible connectors (e.g.

wires), a layout is to be found for the connectors defined by their routes and the locations

of a finite number of breakouts to minimize the total lengths of needed connectors while

maximizing their commonality such that the connectors do not cross any objects and the

breakouts are not placed inside an occupied area.

The optimization objectives are set to minimize the cost of the wiring connection

systems while providing more accessibility and traceability for maintenance purposes

through maximizing the common length of the connectors (or bundling as many connectors

as possible for the longest possible distance).

The goal is to provide this insight for the designer at any stage of design by being

able to run the algorithm and based on the outcome, make appropriate recommendations

regarding the final layout of cable connectors. The underlying assumptions based on which

the problem needs to be formulated and solved are as the following:

• The problem is modeled on a 2D plane.

• Since the wiring connectors are flexible, the Euclidean distance metric is

used to calculate distances between the points in the plane.

• Obstacles are arbitrary polygons scattered on the plane.

• The cartesian coordinates of the nodes that need to be connected are given.

• The number of required breakouts is prespecified.

In addition, the problem is bi-objective and constrained, and the decision variables

of the optimization problem are the cartesian coordinates of the breakouts.

61

The first part of this research answers the question: How can this bi-objective

nonlinear optimization problem be solved without approximating the lengths of cable

routes?

Two approaches are proposed to address this research question. First, looking at the

limitations of the existing methods to tackle the location problem in presence of obstacles

without approximating the distances (e.g. using polyhedral gauges), this work investigates

the possibility of formulating the cable harness layout as bi-objective location problem in

presence of obstacles using Euclidean norm and solving the problem with a suitable

optimization method. Second, this study aims at investigating the potential of the convex

hull based routing, introduced in Chapter 2, in solving the cable harness layout as a

multipath planning problem with two objectives. The efficiency of this method in finding

the shortest path between any two points of a cluttered planar environment is shown in the

previous chapter. In this chapter, its extension and application to multipath planning

problems with more than one objective are further discussed.

The remainder of this chapter is allocated to the explanation of the two approaches

proposed to address the cable harness layout optimization problem as well as a discussion

on the results of applying the methods to sample problems.

3.3 Mixed-binary layout optimization using Euclidean norm

As discussed in the previous section, the goal is to develop an algorithm to find the

optimal layout of a cable harness assembly by finding the optimal location(s) of the

breakout(s). The problem, therefore, becomes analogous to the well-known Weber’s

problem of locating a new facility in the vicinity of existing facilities and outside forbidden

62

regions to achieve minimum traveling cost or other objectives (e.g. maximum distance

from existing facilities).

One challenge of the location problem in the presence of obstacles is that the

distances between the nodes that are not visible to each other changes and the conventional

Euclidean norm can no longer be used to determine such distances. To overcome this

challenge, Klamroth has introduced polyhedral gauges that approximate the distance

between two points not visible to each other [152]. This approximation, however, affects

the final optimal solution.

That said, the objective of this section is to further investigate the possibility of

formulating the objective functions of the cable harness optimization problem explicitly in

terms of Euclidean norm and to solve the formulated optimization problem. The notion of

visibility is utilized in defining the objective functions as discussed in the next section.

3.3.1 Visibility map for location-allocation

When an object blocks the direct path between a pair of points in an environment,

the traveling distance between them also changes and a waypoint (or a series of waypoints)

needs to be located in the unoccupied region to enable traveling from one point to the other.

The direct path, as a result, is broken into segments between the found waypoints, Start,

and Goal. The locations of these waypoints highly affect the distance to be traveled to reach

the goal point or a node.

Thus, the presence of an obstacle decomposes the free space into areas that are

either visible or invisible with respect to each node. Knowing to which of these areas the

Start/Goal node(s), the breakouts, or the waypoints belong, helps to determine the distance

63

between the points. For example, the location of a breakout is to be found for the cable

harness of Figure 3.11 with one Start node and two Goal nodes while avoiding its

placement on and traveling through the line barrier, 𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅ . The objectives are to minimize

the overall distances between the respective start and goal nodes and maximize the

common length of wires between the Start node and the breakout. As seen in this figure,

the presence of the line barrier divides the workspace into two regions based on the

visibility of points with respect to one another.

The decomposition is inspired by Klamroth’s [153] subdivision using the shadows

of the existing nodes (here 𝑆1, 𝐺1, and 𝐺2). Looking at Figure 3.11, the shadow of each

node is outlined with dashed lines. In addition, the convex hull of the nodes and the

intersecting obstacle is shown in a solid blue line to specify the bounded region inside

which the breakout must be located based on Klamroth’s proof.

Figure 3.11 Sample subdivision using shadows of existing nodes

This subdivision based on visibility is then used to define a set of objectives and

constraints per region. That is, depending on the region where the breakout is placed, the

distances can be calculated and optimized. For instance Figure 3.11 shows that every point

64

in region 1 is visible to 𝑆1 but invisible to 𝐺1 and 𝐺2. Vice versa, every point in region 2 is

invisible to 𝑆1 but visible to 𝐺1 and 𝐺2. We call this decomposition of the workspace on the

grounds of visibility of the nodes, the visibility map of the workspace with respect to the

breakout. The table below summarizes the visibility information based on the visibility

map of Figure 3.11. The checkmark is for visible and the cross mark is for the invisible

locus with respect to each node in the top row.

Table 3.2 Summary of visibility information for Figure 3.11

Breakout location 𝑺𝟏 𝑮𝟏 𝑮𝟐

Region 1 ✓  

Region 2  ✓ ✓

It is noteworthy that the location of the existing nodes highly affects the subdivision

of the feasible domain. Suppose, for instance, that the three nodes of Figure 3.11 were

located as in Figure 3.12. The difference between the figures is that the node 𝐺1, previously

inside the shadow of 𝑆1, now lies outside this shadow which creates more regions in the

feasible domain based on the visibility information of Table 3.3.

Figure 3.12 Effects of node locations on the subdivision of the workspace

65

Table 3.3 Summary of visibility information for Figure 3.12

Breakout location 𝑺𝟏 𝑮𝟏 𝑮𝟐

Region 1 ✓ ✓ ✓

Region 2 ✓ ✓ 

Region 3 ✓  

Region 4  ✓ ✓

The visibility map of the workspace enables defining the objective function(s)

explicitly using the Euclidean norm by introducing binary variables. Two sets of binary

variables are introduced to formulate the problem based on a visibility map: the first set is

used to activate the region housing the optimal location of the breakout and the second is

used to activate the potential waypoints where the optimal path needs to make a turn to

avoid an obstacle.

For example, for the workspace of Figure 3.11, two binary variables, 𝑤1 and 𝑤2,

are required to denote which region is activated to yield the optimal location of the

breakout. Binary variables are deployed since they can serve as on/off switches which

activate/deactivate a region if the value of the variable is equal to 1/0.

Additionally, due to the presence of the line barrier in Figure 3.11, a waypoint is

required to facilitate travel from the Start node to either of the Goal nodes. The optimal

locations of the waypoint are the two ends of the line barrier, 𝑂1 and 𝑂2. Depending on

which endpoint is decided in the final optimal solution, binary variables, 𝑦𝑖, can be

introduced to reflect this decision and the calculation of the Euclidean distances. The

problem can now be formulated as in Problem 1.

66

Problem 1

() ()

2

2

1 1 2

2 1 3 1 1 1 3 1 2 2

 Z (1) ,

 Z , (1) , , (1) , ,

min

max

X

X

wD w D

w S X w y S O O X y S O O X





= + −

 = + − + + − + 

() ()

() ()
1 1 1 1 1 1 1 2 2 1

2 1 1 2 2 2 2 2

, , , (1) , ,

 , , (1) , ,

D S X y X O O G y X O O G

y X O O G y X O O G

= + + + − +

+ + + − +

() ()2 3 1 1 1 3 1 2 2 1 2, , (1) , , , ,D y S O O X y S O O X X G X G= + + − + + +

1 2. . S t X O O

X C
2X 

, {0,1}, 1,2,3iy w i =

Where

X : the breakout location in the plane;

C : the convex hull of the set points S, G, and the intersecting obstacles.

In Problem 1, the first objective is to minimize the total distances between the

nodes and the breakout. Two functions, 𝐷1 and 𝐷2, are defined, respectively for regions 1

and 2, to calculate the total lengths of wires. It is clear that distances change as the location

of the breakout changes from region 1 to region 2, which entails the introduction of 𝐷1 and

𝐷2 (e.g. 𝐷1 must be used if the breakout is located in region 1). The binary variable, w,

serves as a switch for region selection in this problem. For example, if the breakout is

placed in region 1, w activates 𝐷1, that is 𝑤 = 1, and deactivates 𝐷2, and vice versa.

It should be noted that two binary variables, 𝑤1 and 𝑤2, are required to switch the

distance metrics on/off. However, since at any time only one location for the breakout is

plausible, only one variable can become active, therefore, 𝑤1 + 𝑤2 = 1. To minimize the

number of variables used in the optimization problem, the relationship between the two

67

binary variables is taken advantage of and one variable is written in terms of the other,

𝑤1 = 1 − 𝑤2 = 𝑤.

As can be seen in Problem 1, all the distances are calculated using the Euclidean

norm. In 𝐷1 distance function, the first term is to calculate the distance between the Start

node and the breakout, X. The second term in this function benefits from the introduction

of a new binary variable, 𝑦1, which indicates which route is taken to reach the first Goal

node. Since the Goal nodes are in areas invisible to any point in region 1, there needs to be

a waypoint to facilitate traveling to the Goal nodes. Two routes are conceivable to reach

the Goal nodes, one that passes from 𝑂1 and the other that passes from 𝑂2 (for the proof

that these points yield the optimal solution, please refer to [83]). If, in the second term of

𝐷1, 𝑦1 = 1, the route that passes from 𝑂1 is activated which deactivates the path with the

waypoint at 𝑂2. On the contrary, if 𝑦1 = 0, the path that passes from 𝑂2 becomes activated

(third term). The same rationale is used to add the fourth and fifth terms to 𝐷1 by

introducing another binary variable that switches between the two possible routes to 𝐺2.

As discussed, the second distance function is activated in the objective function

when the breakout is in region 2. Locating the breakout in region 2 makes it invisible to

the Start node. Therefore, a turning point must be selected (similarly at 𝑂1 or 𝑂2) to enable

traveling from 𝑆1 to 𝐺1 or 𝐺2 which results in the introduction of the third binary variable

that works similarly to 𝑦1 and 𝑦2 and forms the first two terms in 𝐷2. The last two terms in

this function calculate the distances from the breakout to either of 𝐺1 and 𝐺2 both of which

are visible from X.

68

The second objective function is to maximize the common length, here the distance

between 𝑆1 and X. It is observable in the formulation of Problem 1 that the choice of the

region for placing the breakout as well as the routes to invisible points are reflected in the

terms of the maximization function by the binary variables.

The constraints force the breakout to lie inside the convex hull of the nodes and the

barrier, but outside the barrier. Further, the decision variables are X, the cartesian

coordinates of the breakout in the plane, and all of the binary variable, w and 𝑦𝑖.

Following the same procedure and based on the visibility map of the workspace,

Problem 2 is formulated for the cable harness in Figure 3.12. Since the visibility map of

Figure 3.12 has four regions, four binary variables, 𝑤𝑖 , 𝑖 = 1, … ,4, are required to activate

one and deactivate the other three at each time. In addition, the second set of binary

variables, 𝑦𝑗 , 𝑗 = 1,2,3, is used to activate/deactivate the waypoints to be passed to reach

the nodes in the invisible regions.

 Problem 2

() () ()

2

2

4

1

1

3

2 1 4 3 1 1 1 3 1 2 2

1

 Z ,

 Z , , , (1) , ,

min

max

i i
X i

i
X i

w D

w S X w y S O O X y S O O X

 =

 =

=

 
 = + + + − +   

 





1 1 1 2, , ,D S X X G X G= + +

() ()2 1 1 1 1 1 2 1 2 2 2, , , , (1) , ,D S X X G y X O O G y X O O G= + + + + − +

() ()

() ()
3 1 2 1 1 1 2 2 2 1

1 1 1 2 1 2 2 2

, , , (1) , ,

 , , (1) , ,

D S X y X O O G y X O O G

y X O O G y X O O G

= + + + − +

+ + + − +

() ()4 3 1 1 1 3 1 2 2 1 2, , (1) , , , ,D y S O O X y S O O X X G X G= + + − + + +

1 2. . S t X O O

69

X C
2X 

4

1

1i

i

w
=

=

, , {0,1}, 1,...,4, 1,2,3i jw y i j = =

Where

X : the breakout location in plane;

C : the convex hull of the set points S, G, and the intersecting obstacles.

A more complex example with a triangular obstacle is shown in Figure 3.13 with

its visibility information summarized in Table 3.4.

Figure 3.13 Sample visibility map for workspace with one triangular obstacle

Table 3.4 Summary of visibility information for Figure 3.13

Breakout location 𝑺𝟏 𝑮𝟏 𝑮𝟐

Region 1 ✓  

Region 2   ✓

Region 3  ✓ ✓

Region 4 ✓ ✓ 

As seen in Figure 3.13 and Table 3.4, four regions are created based on the

visibilities of the existing nodes with respect to the breakout. Note that in Figure 3.13,

multiple paths are conceivable to reach the breakout from 𝑆1 depending on the waypoint(s)

taken to reach the breakout; hence, the distances can change. As a result, region 3 needs to

70

be further decomposed to areas inside each the distance from 𝑆1 to breakout is consistent.

This second level of decomposition is shown in Figure 3.14.

Figure 3.14 Level 2 decomposition of the workspace of Figure 3.13

Looking at Figure 3.14, it is discernable that for the breakout in region 31 the path

from 𝑆1 to X passes through 𝑶𝟏. Even though another route is feasible through 𝑶𝟐 and then

𝑶𝟑, this route is longer and therefore discarded from the formulation of the optimization

problem. It is also evident that the distance from 𝑆1 to X is different in the region 32 than

in the region 31. This difference comes from the visibility of the waypoints 𝑶𝟏 and 𝑶𝟐

from X in different subareas of region 3. For example, X in region 31 sees 𝑶𝟏 but not 𝑶𝟐

while X in region 32 can see both 𝑶𝟏 and 𝑶𝟐. Therefore, two paths from 𝑆1 to an X in 32

are plausible without clear superiority of one over the other (unlike the two paths from 𝑆1

to an X in 31). The situation in the region 33 is closer to that of 31’s where the route

traveling from 𝑆1 to 𝑶𝟐 to X is clearly shorter than the path from 𝑆1 to 𝑶𝟏 to 𝑶𝟑 and then

X.

Following the same logic in formulating Problem 1 and Problem 2 and using the

visibility map of Figure 3.14, a formulation of the optimization problem is provided as in

Problem 3.

71

Problem 3

() ()

() () ()

2

2

6

1

1

2 1 1 1 1

1,6 2,3

4 1 1 1 1 1 1 2 2 5 1 2 2

 Z ,

 Z , , ,

 , , (1) , , , ,

min

max

i i
X i

i i
X i i

w D

w S X w S O O X

w y S O O X y S O O X w S O O X

 =

 = =

=

   
= + +   
   

 + + + − + + + 



 

() ()1 1 2 2 1 1 1 2, , , , ,D S X X O O G X O O G= + + + +

() ()2 1 1 1 3 3 1 2, , , , ,D S O O X X O O G X G= + + + +

()3,1 1 1 1 1 2, , , ,D S O O X X G X G= + + +

() ()3,2 1 1 1 1 1 1 2 2 1 2, , (1) , , , ,D y S O O X y S O O X X G X G= + + − + + +

()3,3 1 2 2 1 2, , , ,D S O O X X G X G= + + +

() ()4 1 1 2 1 1 2 2 2 2 2, , , , (1) , ,D S X X G y X O O G y X O O G= + + + + − +

1 2 3. . S t X O O O

X C
2X 

6

1

1i

i

w
=

=

, , {0,1}, 1,...,6, 1,2i jw y i j = =

Where

X : the breakout location in plane;

C : the convex hull of the set points S, G, and the intersecting obstacles.

3.3.2 Results and discussion

The problems formulated in this section using the visibility map and binary

variables can be solved with bi-objective optimization solvers that handle integer variables

and nonlinear objective functions and constraints. A few solvers are developed that satisfy

the aforementioned criteria to solve these problems. To the best of our knowledge, no

software exists to solve this class of problems with exact optimization methods. Therefore,

72

a heuristic solver in MATLAB is sought to solve sample problems formulated in the

previous section.

Since the objective functions of a bi-objective optimization problem conflict with

each other, meaning the increase in the value of one function could cause a decrease in the

value of the other and vice versa, the problem does not have a unique solution. Instead, the

Pareto set, or the set of non-dominated solutions, is generated that shows the tradeoff

between the values of the objective functions. A Pareto non-dominated solution, shown in

Figure 3.15, is the one in which improving one objective requires degradation of the other.

Figure 3.15 Examples of Pareto non-dominated solutions

MathWorks has released two multi-objective optimization solvers in MATLAB:

ParetoSearch (PS) and Multi-Objective Genetic Algorithm (MOGA), both of which are

heuristic-based and generate the set of non-dominated solutions. PS uses pattern search

method on a set of points and iteratively searches for non-dominated points [171]. It

requires an initial guess for the decision variables. MOGA, on the contrary, is developed

based on Deb’s NSGA-II [172], an elitist genetic algorithm. Unlike PS, MOGA creates a

random initial population for the decision variables to be selected from. Some parameters

73

can affect the creation of the initial population, e.g. population size or initial population

range. For a list of user-defined parameters please refer to [173]. For this research, the

MOGA solver is selected to solve all of the bi-objective optimization problems. It is

noteworthy that using a heuristic-based solver cannot guarantee to find the true Pareto set

and one may only be able to obtain non-dominated solutions up to a known number of

generations. For this reason, in the remainder of this manuscript, the outcome of the MOGA

is referred to as non-dominated solutions, not Pareto set.

The default settings of MOGA do not allow having integer decision variables. Thus,

in the properties function that MOGA solver reads, the initial population alongside the

mutation and crossover functions are modified to accept binary variables1. A new set of

constraints specifying the ids of the binary variables is added to the MATLAB functions of

the initial population, mutation, and crossover. Also, in the main program, upper and lower

bounds of 1 and 0, respectively, are added to specify the limits of the binary variables. The

bounds as well as the modified functions are then sent to the solver to read and set up the

variables accordingly during the optimization process.

In addition to setting up the variables, following Problem 1, separate MATLAB

functions are created to quantify the constraints’ violation and evaluate the objective

functions. For the second objective function, which is the maximization of the common

length, the negative of the distance between the Start node and the breakout is used. Since

MATLAB’s default definition of an optimization problem comes only with the

1 All codes are written in MATLAB and can be accessed from: https://github.com/nmasoud/Routing-algorithms.git

https://github.com/nmasoud/Routing-algorithms.git

74

minimization of a function, for maximization problems, the negative of the function is used

to comply with MATLAB’s default definition.

The GA parameters that affect the non-dominated solutions such as the population

size and the number of generations must also be decided. For Problem 1, since the

objective functions and constraints are rather simple (due to the few numbers of nodes and

the presence of only one line barrier), the population size of 50 and 500 generations are

considered in the MOGA solver. A sample workspace is generated to mimic the visibility

map of Figure 3.11 wherein the coordinates of the Start and Goal nodes are 𝑆1 = (0,0),

𝐺1 = (6,2), and 𝐺2 = (8, −5). Additionally, a line barrier with endpoints located at 𝑂1 =

(5,3) and 𝑂2 = (4, −4) is added to the workspace. Using the above-mentioned settings,

Problem 1 is solved in MATLAB via gamultiobj solver.

To solve this problem, the constraint of avoiding the placement of the breakout on

the obstacle, 1 2X O O , is expanded and broken into two constraints that reflect the region

the breakout belongs to as shown in Problem 1-2. Region 1 is to the left of the line and

setting 𝑤 = 1 activates it, while region 2 is to the right and w must be zero to activate it.

Problem 1-2

() ()

2

2

1 1 2

2 1 3 1 1 1 3 1 2 2

 Z (1) ,

 Z , (1) , , (1) , ,

min

max

X

X

wD w D

w S X w y S O O X y S O O X





= + −

 = + − + + − + 

() ()

() ()
1 1 1 1 1 1 1 2 2 1

2 1 1 2 2 2 2 2

, , , (1) , ,

 , , (1) , ,

D S X y X O O G y X O O G

y X O O G y X O O G

= + + + − +

+ + + − +

() ()2 3 1 1 1 3 1 2 2 1 2, , (1) , , , ,D y S O O X y S O O X X G X G= + + − + + +

75

. . () 0

 (1)() 0

S t w AX b

w AX b

+ 

− − − 

X C
2X 

, {0,1}, 1,2,3iy w i =

Where

X : the breakout location in the plane;

C : the convex hull of the set points S, G, and the intersecting obstacles.

After gamultiobj solver is applied, the set of non-dominated solutions is

generated. The solver stopped at 202 generations since the average change in the spread of

the non-dominated solutions becomes less than the set tolerance. The final set of non-

dominated solutions is shown in Figure 3.16, which corresponds to the objective space and

the local optimal locations of the breakout (efficient solutions for the preimages of the non-

dominated solutions) corresponding to each of the non-dominated solutions are shown in

Figure 3.17. A colormap is used to map every solution in the objective space (Figure 3.16)

to its relevant solution in the feasible space (Figure 3.17) using the same color. It can be

seen from Figure 3.17 that all the optimal locations are in region 2 of the visibility map

which increases the maximum common length.

Figure 3.18 shows the evolution of the non-dominated solutions from early

generations to the final found at the 202nd generation. The solution set found at iteration

(i+1)th dominates all the non-dominated points found previously at the 1st, 2nd, …, and ith

generations.

76

Figure 3.16 Final set of non-dominated solutions for Problem 1-2

Figure 3.17 Optimal (efficient) locations of the breakout for Problem 1-2

77

Figure 3.18 Evolution of non-dominated fronts

Additional details of the optimal locations and their corresponding optimal values

of the objectives are provided in Table 3.5.

Table 3.5 Optimal values of decision variables and objective functions for Problem 1

Optimal breakout

location coordinates,

X* (cm)

Min total length

with the breakout,

𝒁𝟏
∗ (cm)

Max common

length, 𝒁𝟐
∗ (cm)

(7.6456 -4.2147) 20.8059 13.5154

(5.6618 1.3906) 15.0731 7.5712

(7.6456 -4.2147) 20.8059 13.5154

(6.186 -0.0907) 16.474 9.1413

(6.1787 -0.3836) 16.7669 9.414

(6.6784 -2.266) 18.7143 11.358

(5.6618 1.3906) 15.0731 7.5712

(5.9235 0.4521) 15.9251 8.5411

(6.5375 -1.8523) 18.2815 10.921

(7.3274 -3.3309) 19.8693 12.5761

(6.3669 -1.0959) 17.4983 10.1489

(7.2494 -3.0952) 19.6214 12.3279

(6.8802 -2.7686) 19.244 11.8982

78

(6.4667 -2.1137) 18.5592 11.1508

(7.3011 -3.5989) 20.1334 12.8195

(6.2822 -0.6831) 17.0749 9.7308

(6.8447 -3.0693) 19.5636 12.1744

(6.7182 -2.4896) 18.9485 11.5831

A more complex example of a location problem in the presence of an obstacle is

Problem 3 where the line barrier is replaced by a triangular obstacle that increases the

number of regions in the visibility map. In addition to the obstacle avoiding constraint

presented in Problem 1, Problem 3 has a linear equality constraint that imposes the sum

of the binary variables attributed to the region selection to be equal to one. MATLAB’s

gamultiobj solver cannot handle linear equality constraints concurrent with integer

variables. Therefore, an approach to solve the bi-objective problem by reducing it to a

single objective problem must be followed. Two common methods of solving a multi-

objective optimization problem by converting it to a single objective problem are weighted

sum and ε-constraint.

The weighted sum method benefits from the introduction of a vector of weights

multiplied by the objectives to convert the vectorized objectives to a scalar. The weights

are chosen proportionately to the importance of the objective and their sum should be equal

to one. Despite its simplicity, the weighted sum method has difficulty reaching the entire

set of non-dominated solutions when the feasible domain is non-convex (like the non-

dominated set in Figure 3.15, right). Therefore, a portion of the Pareto front would never

be found with the weighted sum.

Unlike the weighted sum, the ε-constraint method, first introduced by Haimes

[174], works with both convex and non-convex feasible sets and yields the Pareto set. The

79

method minimizes one of the objectives and expresses the other(s) in the form of inequality

constraints (i.e. the value of objective 𝑖 expressed in the constraints must be less than or

equal to 𝜀𝑖). Since the ε-constraint method has the advantage of obtaining solutions that are

not reachable using the weighted sum, it is selected to solve Problem 3.

Similar to Problem 1, the obstacle-avoiding constraint, 1 2 3X O O O , is further

broken into six constraints to reflect each of the six regions the breakout can be located.

The formulation of Problem 3 is therefore updated as in Problem 3-1.

Problem 3-1

2

6

1

1

 Zmin i i
X i

w D
 =

=

() ()1 1 2 2 1 1 1 2, , , , ,D S X X O O G X O O G= + + + +

() ()2 1 1 1 3 3 1 2, , , , ,D S O O X X O O G X G= + + + +

()3,1 1 1 1 1 2, , , ,D S O O X X G X G= + + +

() ()3,2 1 1 1 1 1 1 2 2 1 2, , (1) , , , ,D y S O O X y S O O X X G X G= + + − + + +

()3,3 1 2 2 1 2, , , ,D S O O X X G X G= + + +

() ()4 1 1 2 1 1 2 2 2 2 2, , , , (1) , ,D S X X G y X O O G y X O O G= + + + + − +

() ()

() () ()

1 1 1 1

1,6 2,3

4 1 1 1 1 1 1 2 2 5 1 2 2

. . , , ,

 , , (1) , , , ,

i i

i i

S t w S X w S O O X

w y S O O X y S O O X w S O O X 

= =

   
+ +   

   

 + + + − + + +  

 

 () 0, 1,...,6i i iw A X b i+  =

X C
2X 

6

1

1i

i

w
=

=

, , {0,1}, 1,...,6, 1,2i jw y i j = =

Where

X : the breakout location in the plane;

80

C : the convex hull of the set points S, G, and the intersecting obstacles.

Following the ε-constraint method, the problem is converted to a constrained

single-objective optimization problem with binary variables. The best solver in MATLAB

that satisfies the requirements of Problem 3-1, is the GA solver. The magnitude of ε varies

from 0.5 to 8.5 which is found based on testing the single objective of maximizing the

common length. The optimal (efficient) locations of the breakout as well as the final set of

non-dominated solutions are shown in Figure 3.19 and Figure 3.20 respectively.

Figure 3.19 Optimal (efficient) locations of the breakout for Problem 3-2

81

Figure 3.20 Set of non-dominated solutions for Problem 3-2

It is observed from Figure 3.19 and Figure 3.20 that the set of non-dominated

solutions attributed to each of the four regions (color-coded in Figure 3.20) in the visibility

map of the problem (Figure 3.13) is convex while the union of these sets shown in Figure

3.20 is non-convex. This behavior is caused by using binary variables to reflect the region

selection in the location problem. Once a region is selected for locating the breakout and

the corresponding binary variables are set, the problem, within the chosen region, becomes

convex; thus, the found non-dominated set in the outcome space also becomes convex.

However, the original problem described in Problem 3-2 is a non-convex optimization

problem. Therefore, when all the resulting non-dominated sets (created per each region)

are combined to generate the overall set of non-dominated solutions, the outcome is a non-

convex set as in Figure 3.20.

82

In addition, the numerical values of the optimal locations of the breakout as well as

the two objectives can be found in Table 3.6.

Table 3.6 Optimal values of the decision variables and objective functions for

Problem 3-2

ε Optimal breakout

location coordinates,

X* (cm)

Min total length

with the breakout,

𝒁𝟏
∗ (cm)

Max common

length, 𝒁𝟐
∗ (cm)

0.5 (-1.5033, 0.9526) 15.6877 0.499

1 (-1.0074, 0.8872) 15.8373 0.999

1.5 (-0.5177, 0.7766) 16.103 1.499

2 (-0.0322, 0.6479) 16.6294 1.999

2 (-0.0807, 0.4407) 16.6274 1.999

2.5 (0.2566, -0.0071) 16.8633 2.499

3 (0.7565, -0.0126) 16.8841 2.999

3.5 (1.2565, -0.0168) 16.9107 3.499

4 (1.7565, -0.0184) 16.9457 3.999

4.5 (2.2566, -0.0165) 16.9936 4.499

5 (2.7566, -0.0086) 17.0629 4.999

5.5 (3.2566, 0.0110) 17.1707 5.499

6 (3.8520, 2.3200) 22.6108 5.999

6 (3.7561, 0.0559) 17.3561 5.999

6.5 (4.2552, 0.1056) 17.7107 6.499

6.5 (4.3527, 1.5357) 17.8191 6.499

7 (4.7543, -0.1526) 18.2701 6.999

7 (4.7537, -0.1709) 18.27 6.999

7 (4.7663, 0.9454) 18.354 6.999

7.5 (5.2563, 0.0497) 19.1211 7.499

7.5 (5.296, 1.046) 19.1422 7.499

7.5 (5.2227, 0.5955) 19.136 7.499

7.5 (5.3112, 1.1379) 19.1438 7.499

7.5 (5.2462, 0.3285) 19.1249 7.499

8 (4.5487, 0.7756) 18.2051 6.8566

8 (5.8364, 2.4132) 20.1214 7.999

8 (5.3853, 0.5404) 19.4329 7.6549

8 (5.8259, 2.5028) 20.1237 7.999

8.5 (6.000, 3.000) 20.6322 8.2546

8.5 (5.4837, 0.9339) 19.7331 7.805

83

3.3.3 Final remarks

In this section, sample location problems are formulated using binary variables and

visibility maps. Even though the method has the advantage of providing a formulation of

the optimization function with explicit Euclidean distances between the points, the

complexity of the problem formulation (which indicates the complexity of the solution)

highly relies on the problem structure. For example, as discussed, a change in the locations

of the existing nodes can completely change the visibility map of the workspace provided

the geometry of the workspace remains unchanged.

In addition, it is shown that adding an obstacle or changing the shape of an obstacle

can drastically increase the nonlinearity of the objectives and/or constraints which has a

direct impact on the solution method. Therefore, this method is most efficient for

workspaces with as few as one simple obstacle. Further, the obstacle must be polygonal

and without any curved edges as having a curvature increases the nonlinearity of the

constraints.

Apart from the geometric structure of the workspace of a location problem, care

must be taken when formulating the problem using binary variables. For example, looking

at Figure 3.20, an outlier is present in the set of non-dominated solutions with objective

values of (22.611, 5.999). As seen in Figure 3.19, this point is located in region 4 of the

visibility map. The reason why the total length of the harness is 22.611 by placing the

breakout on this outlier is that the distance from 𝑆1 to this breakout is calculated using the

route passing from 𝑂1 and 𝑂3 instead of the shorter route passing from 𝑂2. Although from

the mathematical point of view this solution is feasible, it may not be realistic or optimal

84

from the design perspective. Hence, to avoid the attainment of such solutions and outliers

in the non-dominated set, additional constraints can be introduced to the problem

formulation to block the longer routes. If, however, more layouts are preferred to choose

from, considering other physical constraints of the wiring harnesses (e.g. accessibility),

solutions like this can remain in the non-dominated set and the constraints may not be

modified in the problem formulation.

As future extensions of this work, the following research questions can be further

investigated; (1) Is it possible to develop an algorithm that outputs the constraints and

criteria of the problem using binary variables? (2) what is the effect of non-convex

obstacles on the problem formulation and final optimal solutions? (3) can other criteria

(e.g. minimizing the number of turns in the path) be added to the optimization problem?

3.4 Layout optimization using convex hull based routing

Although the method discussed in the previous section enables the formulation of

the cable harness layout optimization problem with explicit objective functions, it may not

be computationally efficient in solving complex problems where multiple freeform objects

are scattered in the workspace. The convex hull based routing method explained in Chapter

2, on the other side, is proven efficient in generating the shortest collision-free path between

any two points in a cluttered planar environment. This section further investigates the

potential of this method in optimizing the layout of a cable harness assembly with the

constraints and criteria outlined in section 3.2.

85

3.4.1 Problem formulation

Suppose a layout for a cable harness assembly needs to be generated to connect n

components from a list of Start components to a Goal list of m components. It is assumed

that two breakouts are required; the first is to bundle n wires from the Start list and extend

to reach the second breakout, where the cables branch to reach the m components from the

Goal list.

The constraints are to avoid crossing the obstacles and placing a breakout inside an

obstacle. The objectives are (1) to minimize the total lengths of wires needed to connect all

the components including the breakouts and (2) to maximize the length between the two

breakouts for the longest possible commonality. The general mathematical formulation of

this problem is provided in Problem 4.

Problem 4

 
22

1 11 1

1 1 1 2 2 2 1 2
,, 1 1

(,) (,) + (,) , (,)maxmin
n m

i w j
B BB B i j

Z D S B n D B B D B G Z D B B
 = =

   
= + =        

 

1 2

1

. . B ,B int()
l

k

k

S t P
=



Where

B1, B2 : the two breakouts of the cable harness;

iS : ith start point, 𝑖 = 1,2, … , 𝑛;

jG : jth goal point, 𝑗 = 1,2, … , 𝑚; and

kP : kth polygonal obstacle, 𝑘 = 1,2, … , 𝑙; and

nw: the number of wires passing through the length covered between B1 and B2.

1

, (int)
(,)

(,)

l

k

k

a b ab P
D a b

D a b
otherwise

=

  =
= 


(,)D a b : the shortest distance between a and b calculated on from the route found by

applying the C-hull based roadmap

86

In Problem 4, the minimization objective function has three terms: the sum of the

distances between each start terminal and the first breakout, the distance between the two

breakouts multiplied by the number of wires passing through it, and the sum of the

distances between the second breakout and each of the goal terminals. The number of

wires passing from B1 to B2, nw, is found by taking the maximum of the number of Start

and Goal nodes. In other words: 𝑛𝑤 = 𝑚𝑎𝑥{|𝑆|, |𝐺|}, where | • | is the cardinality of a

set. The decision variables are the (𝑥, 𝑦) coordinates of the breakouts in
2

(plane). The

constraints are to avoid locating a breakout inside a polygonal obstacle.

It should be noted that the breakouts might be located on the borders of an obstacle

depending on the potential application of the optimization problem. It is also noteworthy

that the constraint of having wires not cross the interior of any obstacles is implicitly

addressed by calling the convex-hull based routing function when any two points are

invisible to each other. Therefore, the explicit representation of this constraint in the

optimization problem is not further provided.

The distance function, 𝐷(•,•) shown in Problem 4 outputs the Euclidean distance,

‖•,•‖, if the two points are visible to each other. Otherwise, the modified distance

function, 𝐷̃(•,•), calculated based on the shortest collision-free path that the convex-hull

based routing finds, is utilized.

The formulation shown in Problem 4 requires the solver to search the entire

feasible space which is the 2 plane, except the areas occupied by the obstacles, to find the

optimal locations of the breakouts. This could significantly slow down the optimization

process, especially for large-scale problems. Hence, it is recommended to adapt Klamroth’s

87

iterative convex hull [158] to limit the feasible domain inside the convex hull created by

the Start and Goal nodes. As explained previously, the boundary of this convex hull needs

to expand iteratively by including obstacles crossing the convex hull boundaries, until all

of the hull edges become collision-free. Using this idea, a new constraint is added to

Problem 4, and the problem is reformulated as in Problem 5.

Problem 5

22
1 11 1

1 1 1 2 2 2 1 2
,, 1 1

(,) (,) + (,) , (,)maxmin
n m

i w j
B BB B i j

Z D S B n D B B D B G Z D B B
 = =

   
= + =        

 

1 2

1

. . B ,B
l

k

k

S t P
=



1 2B ,B C

Where

C : the convex hull of the set points S, G, and the intersecting obstacles.

1

, (int)
(,)

(,)

l

k

k

a b ab P
D a b

D a b
otherwise

=

  =
= 


(,)D a b : the shortest distance between a and b calculated on from the route found by

applying the C-hull based roadmap

In Problem 5, C is a convex polygonal region defined by its vertices and edges. To

form this new constraint, a set of linear inequalities is added to dictate the location of the

breakouts inside this convex hull.

3.4.2 Optimization solver

This problem can be formulated and set up in MATLAB as an optimization

problem. In the main program, the workspace geometric data that includes the VRML data

of the obstacles alongside the Start and Goal sets of nodes with their coordinates are taken

as inputs. Next, the linear constraints that impose the breakouts to stay inside the

88

Klamroth’s convex hull are created. The flowchart of Figure 3.21 describes the process

used to create this convex hull.

Figure 3.21 Flowchart for the iterative convex hull creation

In this flowchart, first, the convex hull of all the nodes in the Start and Goal sets is

created using MATLAB’s “convhull” function. Next, the edges of the convex hull are

stored in the set E using their endpoints (denoted by their coordinates). Every edge in the

set E is then checked for intersections with all the existing obstacles using the intersection

detection algorithm developed in the convex-hull based roadmap [83]. If the edge is found

crossing any of the obstacles, the corresponding obstacle is included to generate the

updated convex hull. The process is continued until all the edges of the convex hull become

collision-free. In the flowchart of Figure 3.21, 𝑃𝑗 is the jth obstacle, where 𝑗 = 1, … , 𝑚.

89

After the convex hull is created, its edges are extracted to define the linear

constraints of the problem. These linear constraints specify a convex region inside which

the breakouts can be located without the need to search the entire feasible region. Using

this convex hull, the next step is to identify the obstacles that lie inside the convex hull.

This information is to be passed to the nonlinear constraint function where the optimizer

checks that the breakouts are not located inside or on the boundary of any obstacle

(depending on whether the breakouts are allowed to be located on the boundary of a

component or not). By determining the obstacles bounded inside the convex hull, the

nonlinear constraint checks for every obstacle if the breakout is placed inside or outside

this polygonal region.

A separate MATLAB function is created to set up the nonlinear constraints. These

constraints are vectorized. For example, if 𝑙 obstacles are identified inside the convex hull

region, an 𝑙 × 1 vector is created that quantifies the output of the constraints using Boolean

values. In more detail, if a breakout is located inside or on the boundary of obstacle k, 𝑘 ∈

{1,2, … , 𝑙}, the value of the kth row in the above-mentioned vector is 1; otherwise, it is zero.

The pseudocode for setting up the nonlinear constraints as explained here is shown as in

Algorithm 3.1.

90

This algorithm makes use of the InPolygon function [175] written by Redish and

Jacquenot that detects if a set of points are inside a polygonal region. The function takes,

as input, the coordinates of all the points to be checked and the vertices of the polygonal

region in either clockwise or counterclockwise order.

Since the geometric data of the obstacles is provided in the tessellated format of

VRML, the triangles that form each obstacle can be used as the set of polygonal regions.

This may, however, increase the computation time as the algorithm needs to check every

breakout point against every single triangle of an obstacle. Additionally, placing a breakout

inside the convex hull of a non-convex obstacle may cause sharp and often undesirable

turns of wires at these breakouts (see Figure 3.22).

Algorithm 3.1

Input: The set P of 𝑃𝑘, 𝑘 ∈ {1,2, … , 𝑙}, the obstacles bounded inside the convex hull, and 𝑋 =
[(𝑥1, 𝑦1), (𝑥2, 𝑦2)], the coordinates of the breakouts (the decision variables

Output: a Boolean vector C, showing which obstacles contain the breakout(s)

C ← 𝑙 × 1 vector of zeros

for (𝑘 = 1 to l), do:

if 𝐼𝑛𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑋, 𝑃𝑘) true

𝐶𝑘 ← 1

endif

end for

return C

91

Figure 3.22 Example of a breakout located inside the convex hull of a nonconvex

obstacle

To avoid these unwanted turns and to improve the computation time, instead of

using the triangles in each obstacle as the polygonal regions, this study uses the convex

hull of each obstacle as the polygonal region. We, however, recommend using the exact

border of the nonconvex obstacle (or the triangles defining the shape) for densely populated

workspaces where there may exist a Start or Goal node that is inside the convex hull of a

nonconvex obstacle. This case is further discussed in section 3.4.3.

The output of the InPolygon function is a Boolean vector that shows whether

any of the points is inside an obstacle. The code can be modified to output three types of

vectors: strictly IN, which shows if a point lies in the interior of the polygon, IN/ON, which

shows whether a point is in the interior or on the boundary of the polygon, and finally, ON,

which turns to 1 if a point lies on the boundary of the polygon, not its interior. Since the

purpose of this research is to avoid placing a breakout on a component of the workspace,

the IN/ON check is used to output the nonlinear constraint value. The MATLAB code can,

92

however, be modified to use only the interior points such that placing a breakout on the

boundary of a component is permitted. When searching for the feasible values of the

decision variables, if any element in the C vector is found nonzero, the assumed decision

variables become infeasible and must be excluded.

Lastly, the objective functions need to be set up in the optimization problem. For

this purpose, another MATLAB function is created that outputs a vector of objective

function values when the decision variables are inputted. Algorithm 3.2 provides the

pseudocode used to create this function.

Algorithm 3.2

Input: 𝑋 = [(𝑥1, 𝑦1), (𝑥2, 𝑦2)], the coordinates of the breakouts (the decision variables

Output: Z, a 2 × 1 vector of integer values for the two objective functions

Z ← 2 × 1 vector of zeros

0L

for (𝑖 = 1 to |𝑆|), do:

1(,)iL L D S B= +

end for

1 2(,)wL L n D B B= +

for (𝑗 = 1 to |𝐺|), do:

2(,)jL L D B G= +

end for

1Z L

2 1 2(,)Z D B B−

return Z

Following Problem 5, the first objective, the total lengths of wires, is decomposed

into three segments: the length between each start node and the first breakout, the length

between the two breakouts, and the length between the second breakout and each goal

node. Analogous to the mixed-binary optimization, for the second objective function,

93

which is the maximization of the common length, the negative of the distance between the

breakouts is used.

After the objective and constraint functions are set up correctly in MATLAB, a

solver should be called to solve the optimization problem. Since the two objective functions

in the bi-objective optimization problem of Problem 5 conflict, it is expected to obtain a

Pareto set of optimal solutions instead of a single value for the optimal functions.

The present problem is NP-hard with nonconvex constraints and criteria; hence,

hardly could it be solved using an exact solution method. Even if an exact method exists to

solve this problem, it would not be computationally efficient. Therefore, we need to resort

to heuristic techniques. Though they may not be the best approach in finding the global

solution, their efficiency in addressing NP-hard problems outweighs their inability to

guarantee to find the global optimum. For this research, the MOGA solver in MATLAB is

deployed to solve problems in this section.

 An example workspace with 12 scattered obstacles, 3 Start nodes, 4 Goal nodes,

and 2 breakouts, the locations of which are to be found, is shown in Figure 3.23. In this

figure, Si is the ith Start node and Gj is the jth Goal node. Also shown in this figure is the

convex hull of the nodes and intersecting objects in blue.

94

Figure 3.23 Sample workspace with start and goal nodes

The problem is solved using the explained setup and MATLAB’s MOGA solver

with 100 generations and a population size of 50. The final set of non-dominated solutions

can be seen in Figure 3.24. It should be reminded that due to the utilization of a heuristic

solver, at each execution of the GA a new set of non-dominated solutions is generated and

the non-dominated solutions at the last generation cannot be guaranteed to match the true

Pareto set.

95

Figure 3.24 Non-dominated set of solutions for Figure 3.23

For every point in the non-dominated or eventual Pareto set, there is an associated

optimal layout for the cable harness found by locating the breakouts. Four sample layouts

are depicted in the following figures.

102

wire lengths with and without the breakouts, and the total computation time for each test

case is compiled and recorded in Table 3.7.

Table 3.7 Results for testing the effects of density on optimal layout

Test

ID

Workspace

density

(%)

Max common

length (cm)

Min total

length with

breakout (cm)

Min total length

without breakout

(cm)

Total computation

time (sec)

1 14.25 39.1647 89.934 89.454 20.4921

2 16.80 44.3307 90.942 89.6053 50.4038

3 21.88 32.6631 89.9212 89.8316 73.0086

4 28.65 44.0532 91.5033 90.2484 154.9674

5 31.09 41.6997 91.2973 90.2484 174.2097

6 34.64 47.7741 92.256 90.6393 262.6323

7 37.75 49.4265 94.4517 91.8152 352.5452

8 42.06 48.933 94.5502 91.8152 544.1885

9 45.36 31.8739 95.3751 92.0603 595.7788

10 49.12 36.1219 94.2169 92.3305 800.6291

11 52.36 33.2051 97.5491 93.0223 1219.9532

It can be seen in Table 3.7 that increasing the density increases the minimum total

lengths of wires as well as the computation time (see also Figure 3.28, Figure 3.30, and

Figure 3.31). The computation time seemingly increases exponentially with the increase in

the density. Unlike the minimum total length, a trend is not observable in the changes to

the maximum common length as density increases (see Figure 3.29). Since increasing the

density beyond 52.36% in the same workspace results in the exponential growth of the

computation time, cases with densities greater than 52.36% are not further explored.

