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In Figure 3.9, the discretization of the plane is performed using the shadow of each 

existing facility, Exi, and the extension of the borders of the barrier �%. The construction of 

the grid lines is therefore based on the notion of shadow described in Figure 3.8. The 

formation of the grid lines is further justified in Figure 3.10.  

 

Figure 3.10 Construction of the grid in the feasible domain 

To further improve the computational performance of the location algorithm in the 

subdivided region proposed in [153], Bischoff and Klamroth [154] found applying a 

heuristic (genetic algorithm) beneficial to solve a finite series of convex subproblems 

though the final solution is an approximation to the globally optimum.  

A global optimal approach to locating a facility in presence of convex forbidden 

region(s) is presented by Mcgarvey and Cavalier [155] using a version of the branch-and-

bound algorithm known as Big Square Small Square (BSSS) developed by Hansen [156]. 

BSSS divides the plane into discrete squared regions and provides global or near-global 

optimal solutions.  
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Kuhn proved two results from Weber’s location problem[157]. First, if the facilities 

are not collinear, the objective function is convex meaning any local optimum is also a 

unique global optimum [155]. And second, the location of the new facility is inside the 

convex hull of the existing facilities. This helps to limit the search region and to improve 

the computation time. In the case of location problems with barriers, it is not sufficient to 

only include the existing facilities when creating the convex hull as the boundary of the 

convex hull might intersect with an object. Thus, Klamroth [158] suggested an iterative 

convex hull approach that extends the boundary of the convex hull to include the 

intersecting objects. The boundary of the convex hull expands iteratively until all the edges 

of the convex hull are found non-intersecting.   

In the case of non-convex forbidden regions, Butt [159] has shown that the location 

of the new facility will never be within the convex hull of a non-convex forbidden region 

unless an existing facility locates inside this convex hull.   

Finally, a multi-facility location problem with polyhedral barriers is considered in 

[160]. They proposed two decomposition approaches to tackle the problem. The first 

approach reduces the multi-facility location problem for N new facilities to N single-facility 

location problems of the same type by fixing the assignment variables in the problem 

formulation to 1. The second approach, on the other hand, keeps the location variables 

constant and benefits from the set partitioning of the feasible domain based on visibility 

properties. In the latter case, they restrict each new facility to one of the candidate domains 

of the feasible space which could be deemed as the extension of the reduction results of 

[153] to multiple new facilities. These decompositions result in a finite number of mixed-
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integer programming sub-problems. They finally apply a genetic algorithm heuristic to 

solve the two problems.  

3.1.2.4 Heuristic methods 

Heuristic techniques are widely used to address the cable harness routing and 

similar problems since they are capable of handling the highly nonconvex search space of 

the routing problem [161].  

Of the early works on routing cable harnesses, Conru’s and Cutkosky’s method for 

concurrent design of cable harnesses using heuristics drew attention [162]. After voxelizing 

the workspace, to make the feasible space of the optimization problem convex, they 

initially neglect the obstacles and find a globally optimal solution for the locations of the 

harness transitions (breakouts). Next, if any of the transitions are placed in the obstacle 

space, it must be moved to the closest cell in the free space. Then, a heuristic path planning 

method locally optimizes the path between the endpoints of the cables and transitions. 

However, the final path may still not be optimal due to the local optimizations, and further 

human input is required to reroute the harness that is stuck in a local optimum. Additionally, 

some case-specific constraints such as minimum bend radii may not have been considered 

in the initial optimization problem and human user needs to take those into account to make 

the final solution feasible. Thus, human interaction is crucial in this method to guarantee 

the globality of the optimal solution. 

In another study by Conru [161], a genetic algorithm (GA) is utilized to route the 

bundles and locate the transitions between the end connectors that define the connection 

points on the components. The algorithm starts with an initial configuration for the harness 
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which includes the connection information between the nodes (nodes are the end 

connectors and transitions). Assuming the free space graph is known, Dijkstra’s algorithm 

is applied to generate the shortest route for the wire between each pair of the desired 

connectors. After the shortest routes are generated, an objective function is defined that 

minimizes the total cost of all the bundles consisting of a number of wires. GA is deployed 

to locate the transitions optimally using mutation and crossover operations on the initial 

configuration. After the optimal locations of the transitions are found locally, the algorithm 

explores the other configurations using another GA to develop close-to-global optima. 

Hence, the problem is decomposed into two domains and GA is applied to each to find the 

optimal solution.  

In another study [163], Kimura employed a GA technique to address the problem 

of finding an optimal arrangement for ship pipes with branches. He simplified the problem 

by removing the branches and considering them as equipment in the design space instead.  

Zhu et al. [164] have also innovated an approach to integrate optimization and 

knowledge-based engineering to optimize the location and number of harness breakouts. 

They proposed a two-step optimization method: initialization step, which benefits from a 

roadmap path planning to define an initial configuration for the harness, and a refinement 

step, which refines the locations to further improve the solution and satisfy all constraints. 

The initialization is solved as a bi-level optimization problem since the problem is multi-

destination path planning: a branch level and a harness level. The branch level finds the 

shortest path for each branch on a predefined roadmap using the A* algorithm on a 

predetermined grid. In the harness level, Hill Climbing heuristic is deployed to locate the 
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harness breakouts. To eliminate the likely violations of the constraints at the initialization 

step and improve the near-optimal solution achieved at initialization, the initial harness 

configuration is refined using Generalized Pattern Search (GPS) optimization.  

Most of the research studies done on the routing and design of cable harnesses 

consider cables as a series of rigid segments. However, Kabul et al. argued that in addition 

to geometric and collision constraints, physical and mechanical constraints of the cables 

need to be accounted for to obtain a more realistic routing solution [165]. They, 

consequently, asserted that cable must be considered as a deformable body for which a 

motion needs to be planned. Taking the functional and manufacturing constraints noted by 

Kabul et al, Hermansson et al. [166] presented a heuristic grid-based method for routing of 

flexible 1D components in three-dimensional space.     

3.1.3 Comparison of the methods 

To summarize, all the related work on the study of multipath connection systems 

including but not limited to cables and pipes classify into two main categories: design-

related research and optimization-related research. The design-related research primarily 

focuses on the design process that leads to the final layout for the connectors. Researchers 

over the past few decades have developed design tools such as CAD and computer-based 

models, virtual reality environments, and design guidelines that can assist designers in their 

decision-making pertinent to the selection of sizes and routes for multiple connectors in a 

densely populated region. Additionally, design methods such as case studies were followed 

to further investigate the industrial design of such systems in order to make improvements 

to the practiced processes. Regardless of all the efforts, the developed tools still require 
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different levels of human intervention and thus the process lacks automation. For example, 

as noted by Ng et al. [4], cable lengths, paths, and location of breakouts are decided based 

on trial-and-error using physical prototypes in final stages of design (detail design stage). 

More importantly, the design-based methods may not yield a final optimal layout which 

could bear significant costs for the manufacturing and maintenance of the cables or pipes 

[4].  

Unlike the design-based methods, the optimization methods are mainly concerned 

with optimizing the layout of the connectors though some of the proposed methods may 

not apply to all real-world problems in practice, as claimed in [89]. Of the relevant studies, 

tree-based methods have gained popularity in designing interconnected networks. Minimal 

Steiner trees, in particular, are extensively employed to address problems where adding 

extra nodes to a network is allowed to further minimize its total length. This fact makes the 

method a well-suited candidate for cable/pipe routing problems where branching is 

permitted. The original Steiner tree, however, does not deal with obstacle-avoiding 

constraints; hence, researchers have to make modifications to adopt the method for 

cable/pipe routing in the presence of obstacles. In fact, adding obstacles to the environment 

of a Steiner tree significantly increases the complexity of the problem [133]. Therefore, the 

research conducted to address these problems is limited to the use of approximations and 

heuristic to find an optimal solution. Although exact solution methods are proposed 

[134,135], they generally are computationally expensive and may not apply to large scale 

problems without using any approximations. Hence, the obstacle-avoiding Steiner tree may 

not be an efficient solution to the cable/pipe layout optimization problem.  



 

57 

Design and optimization of wind farm layout could be deemed analogous to cable 

harness layout problems as both may be simplified to a network of connected nodes. Wind 

farm layout design is mainly solved using MIP models. Often, the planar workspace of the 

problem is discretized to a grid. With a known number of wind turbines, their optimal 

locations are assigned from the grid points by solving the MIP. This is, however, unlikely 

to occur in the cable harness layout problem as the locations of the components need to be 

connected are known a priori. Further, the wind farm layout problem has multiple Start 

nodes but only one Goal node, known as the station, where all the wind turbines are 

connected. The cable harness layout problem, on the other hand, can have multiple Start 

and multiple Goal nodes connected via breakouts. Since not all the physical constraints of 

the cable layout problem may be mapped to the wind farm layout optimization problem, 

the corresponding solution methods are not further considered for potential applications to 

the cable layout optimization problem.   

When the focus in the cable layout problem is shifted from the length of the cables 

to the determination of the optimal location of the cable breakouts, an immediate set of 

candidate methods can be considered from the Location Theory. Location problems in the 

presence of obstacles have been among the challenging NP-hard problems in operations 

research[152]. Though many solution methods are presented over the past four decades, 

they still cannot address the problem in its entirety. For example, the methods can only deal 

with convex obstacles [150,151,167], since the objective function is non-convex, the 

discretization of the workspace is used [152] which results in locally optimal solutions, and 
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finally, the bi-objective multi-facility problem in presence of freeform objects remains 

unsolved.    

Last but not the least, heuristic methods are widely applied to solve different 

instances of multipath planning problems with branches due to their efficiency in solving 

NP-hard problems, although the solutions found are not necessarily global. Table 3.1 

summarizes the efforts in the design and optimization of multipath connectors applicable 

to cable harness layout optimization problem.  

The review of the literature shows a scarcity of research efforts in developing 

computationally efficient methods to tackle optimization of cable harness layout in 

presence of freeform objects to global optimality. Additionally, there exist few studies that 

consider other objectives besides the minimization of the total length of the cable layout.  

Apart from the limitations, it is understood that the chosen optimization method 

highly depends on the specifics of the problem which stems from its real-world application. 

For example, the constraints of cable harness layout optimization are different from wind 

farm design and pipe routing in ships. Hence, the problem must be well-defined in terms 

of its constraints and criteria to be aligned with its application so that the algorithm is 

practical for real-world problems and could assist designers in their decision making 

regarding the selection of connectors in a complex interconnected system.  

By this background, the objectives of the first part of the present study are outlined 

in the next section.  
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Table 3.1 Comparison of design and optimization methods for multipath connection 

problems  

Classification  Reference  Contributions  Limitations  

Design tools  

(CAD) 

[87–91] - human-computer 

interface for 

designers  

- geometric kernel for 

modeling cables/pipes 

- Sub-optimal 

solutions 

- lacks automation 

- Based on trial-and-error 

Design tools  

(VR) 

[4,86,94,95,97,98,168] - Consideration of 

human expertise in 

design 

- Design automation  

- Sub-optimal 

solutions 

- Designer-dependent  

Design Heuristics  Design guideline [93,169] - Instructions for cost 

minimization for wire 

routing and sizing 

- Sub-optimal 

solutions 

Knowledge-based and 

concurrent engineering 

[3,99,101,102,104] 

- Value human 

knowledge in 

design 

- Sub-optimal 

solutions 

- lacks automation  

Optimization-

Obstacle-avoiding 

Steiner/spanning 

trees 

Winter [133] - introduction of Steiner 

visibility 

- problem breakdown 

into subproblems 

- approximate solution 

- convex polygonal 

obstacles only 

Zachariasen and Winter 

[134] 

- exact visibility-based 

method for subtree 

problem  

- computationally 

expensive 

Parque and Miyashita 

[136] 

- Steiner tree with n-star 

topology 

- known topology, not 

applicable to the 

general layout design 

problem 

Optimization- 

Location theory  

Katz and Cooper [150]  

 

- first to consider 

obstacle in 

location problems  

- only one circular 

obstacle considered 

Aneja and Parlar[151] - multiple obstacles - applicable to single-

facility only 

Klamroth et al. [152–

154,158,160] 

- new distance metric 

- discretization of 

workspace 

- multi-facility 

- local optimal 

- convex obstacles 

only 

Heuristic 

optimization  

Conru and Cutkosky [170], 

Kimura[163], Zhu et al. 

[164] 

- Computationally 

efficient in solving 

NP-hard problems 

- Sub-optimal solutions 

3.2 Research objective and proposed solution 

The limitations of the existing methods in addressing cable harness layout 

optimization in its general form, drive the first part of this research to explore optimal 
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solutions to the following problem: For a given number of start and goal points that 

connect different components in a cluttered environment using flexible connectors (e.g. 

wires), a layout is to be found for the connectors defined by their routes and the locations 

of a finite number of breakouts to minimize the total lengths of needed connectors while 

maximizing their commonality such that the connectors do not cross any objects and the 

breakouts are not placed inside an occupied area.  

The optimization objectives are set to minimize the cost of the wiring connection 

systems while providing more accessibility and traceability for maintenance purposes 

through maximizing the common length of the connectors (or bundling as many connectors 

as possible for the longest possible distance).  

The goal is to provide this insight for the designer at any stage of design by being 

able to run the algorithm and based on the outcome, make appropriate recommendations 

regarding the final layout of cable connectors. The underlying assumptions based on which 

the problem needs to be formulated and solved are as the following: 

• The problem is modeled on a 2D plane. 

• Since the wiring connectors are flexible, the Euclidean distance metric is 

used to calculate distances between the points in the plane. 

• Obstacles are arbitrary polygons scattered on the plane. 

• The cartesian coordinates of the nodes that need to be connected are given. 

• The number of required breakouts is prespecified. 

In addition, the problem is bi-objective and constrained, and the decision variables 

of the optimization problem are the cartesian coordinates of the breakouts. 
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The first part of this research answers the question: How can this bi-objective 

nonlinear optimization problem be solved without approximating the lengths of cable 

routes? 

Two approaches are proposed to address this research question. First, looking at the 

limitations of the existing methods to tackle the location problem in presence of obstacles 

without approximating the distances (e.g. using polyhedral gauges), this work investigates 

the possibility of formulating the cable harness layout as bi-objective location problem in 

presence of obstacles using Euclidean norm and solving the problem with a suitable 

optimization method. Second, this study aims at investigating the potential of the convex 

hull based routing, introduced in Chapter 2, in solving the cable harness layout as a 

multipath planning problem with two objectives. The efficiency of this method in finding 

the shortest path between any two points of a cluttered planar environment is shown in the 

previous chapter. In this chapter, its extension and application to multipath planning 

problems with more than one objective are further discussed.   

The remainder of this chapter is allocated to the explanation of the two approaches 

proposed to address the cable harness layout optimization problem as well as a discussion 

on the results of applying the methods to sample problems.  

3.3 Mixed-binary layout optimization using Euclidean norm 

As discussed in the previous section, the goal is to develop an algorithm to find the 

optimal layout of a cable harness assembly by finding the optimal location(s) of the 

breakout(s). The problem, therefore, becomes analogous to the well-known Weber’s 

problem of locating a new facility in the vicinity of existing facilities and outside forbidden 
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regions to achieve minimum traveling cost or other objectives (e.g. maximum distance 

from existing facilities).  

One challenge of the location problem in the presence of obstacles is that the 

distances between the nodes that are not visible to each other changes and the conventional 

Euclidean norm can no longer be used to determine such distances. To overcome this 

challenge, Klamroth has introduced polyhedral gauges that approximate the distance 

between two points not visible to each other [152]. This approximation, however, affects 

the final optimal solution.  

That said, the objective of this section is to further investigate the possibility of 

formulating the objective functions of the cable harness optimization problem explicitly in 

terms of Euclidean norm and to solve the formulated optimization problem. The notion of 

visibility is utilized in defining the objective functions as discussed in the next section.  

3.3.1 Visibility map for location-allocation  

When an object blocks the direct path between a pair of points in an environment, 

the traveling distance between them also changes and a waypoint (or a series of waypoints) 

needs to be located in the unoccupied region to enable traveling from one point to the other. 

The direct path, as a result, is broken into segments between the found waypoints, Start, 

and Goal. The locations of these waypoints highly affect the distance to be traveled to reach 

the goal point or a node.  

Thus, the presence of an obstacle decomposes the free space into areas that are 

either visible or invisible with respect to each node. Knowing to which of these areas the 

Start/Goal node(s), the breakouts, or the waypoints belong, helps to determine the distance 
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between the points. For example, the location of a breakout is to be found for the cable 

harness of Figure 3.11 with one Start node and two Goal nodes while avoiding its 

placement on and traveling through the line barrier, 𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅ . The objectives are to minimize 

the overall distances between the respective start and goal nodes and maximize the 

common length of wires between the Start node and the breakout. As seen in this figure, 

the presence of the line barrier divides the workspace into two regions based on the 

visibility of points with respect to one another.  

The decomposition is inspired by Klamroth’s [153] subdivision using the shadows 

of the existing nodes (here 𝑆1, 𝐺1, and 𝐺2). Looking at Figure 3.11, the shadow of each 

node is outlined with dashed lines. In addition, the convex hull of the nodes and the 

intersecting obstacle is shown in a solid blue line to specify the bounded region inside 

which the breakout must be located based on Klamroth’s proof. 

 

Figure 3.11 Sample subdivision using shadows of existing nodes 

This subdivision based on visibility is then used to define a set of objectives and 

constraints per region. That is, depending on the region where the breakout is placed, the 

distances can be calculated and optimized. For instance Figure 3.11 shows that every point 
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in region 1 is visible to 𝑆1 but invisible to 𝐺1 and 𝐺2. Vice versa, every point in region 2 is 

invisible to 𝑆1 but visible to 𝐺1 and 𝐺2. We call this decomposition of the workspace on the 

grounds of visibility of the nodes, the visibility map of the workspace with respect to the 

breakout. The table below summarizes the visibility information based on the visibility 

map of Figure 3.11. The checkmark is for visible and the cross mark is for the invisible 

locus with respect to each node in the top row. 

Table 3.2 Summary of visibility information for Figure 3.11 

Breakout location  𝑺𝟏 𝑮𝟏 𝑮𝟐 

Region 1 ✓   

Region 2  ✓ ✓ 

It is noteworthy that the location of the existing nodes highly affects the subdivision 

of the feasible domain. Suppose, for instance, that the three nodes of Figure 3.11 were 

located as in Figure 3.12. The difference between the figures is that the node 𝐺1, previously 

inside the shadow of 𝑆1, now lies outside this shadow which creates more regions in the 

feasible domain based on the visibility information of Table 3.3.  

 

Figure 3.12 Effects of node locations on the subdivision of the workspace 
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Table 3.3 Summary of visibility information for Figure 3.12 

Breakout location  𝑺𝟏 𝑮𝟏 𝑮𝟐 

Region 1 ✓ ✓ ✓ 

Region 2 ✓ ✓  

Region 3 ✓   

Region 4  ✓ ✓ 

The visibility map of the workspace enables defining the objective function(s) 

explicitly using the Euclidean norm by introducing binary variables. Two sets of binary 

variables are introduced to formulate the problem based on a visibility map: the first set is 

used to activate the region housing the optimal location of the breakout and the second is 

used to activate the potential waypoints where the optimal path needs to make a turn to 

avoid an obstacle.  

For example, for the workspace of Figure 3.11, two binary variables, 𝑤1 and 𝑤2, 

are required to denote which region is activated to yield the optimal location of the 

breakout. Binary variables are deployed since they can serve as on/off switches which 

activate/deactivate a region if the value of the variable is equal to 1/0.  

Additionally, due to the presence of the line barrier in Figure 3.11, a waypoint is 

required to facilitate travel from the Start node to either of the Goal nodes. The optimal 

locations of the waypoint are the two ends of the line barrier, 𝑂1 and 𝑂2. Depending on 

which endpoint is decided in the final optimal solution, binary variables, 𝑦𝑖, can be 

introduced to reflect this decision and the calculation of the Euclidean distances. The 

problem can now be formulated as in Problem 1.  
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Where 

X : the breakout location in the plane; 

C : the convex hull of the set points S, G, and the intersecting obstacles. 

In Problem 1, the first objective is to minimize the total distances between the 

nodes and the breakout. Two functions, 𝐷1 and 𝐷2, are defined, respectively for regions 1 

and 2, to calculate the total lengths of wires. It is clear that distances change as the location 

of the breakout changes from region 1 to region 2, which entails the introduction of 𝐷1 and 

𝐷2 (e.g. 𝐷1 must be used if the breakout is located in region 1). The binary variable, w, 

serves as a switch for region selection in this problem. For example, if the breakout is 

placed in region 1, w activates 𝐷1, that is 𝑤 = 1, and deactivates 𝐷2, and vice versa. 

It should be noted that two binary variables, 𝑤1 and 𝑤2, are required to switch the 

distance metrics on/off. However, since at any time only one location for the breakout is 

plausible, only one variable can become active, therefore, 𝑤1 + 𝑤2 = 1. To minimize the 

number of variables used in the optimization problem, the relationship between the two 



 

67 

binary variables is taken advantage of and one variable is written in terms of the other,  

𝑤1 = 1 − 𝑤2 = 𝑤.  

As can be seen in Problem 1, all the distances are calculated using the Euclidean 

norm. In 𝐷1 distance function, the first term is to calculate the distance between the Start 

node and the breakout, X. The second term in this function benefits from the introduction 

of a new binary variable, 𝑦1, which indicates which route is taken to reach the first Goal 

node. Since the Goal nodes are in areas invisible to any point in region 1, there needs to be 

a waypoint to facilitate traveling to the Goal nodes. Two routes are conceivable to reach 

the Goal nodes, one that passes from 𝑂1 and the other that passes from 𝑂2 (for the proof 

that these points yield the optimal solution, please refer to [83]). If, in the second term of 

𝐷1, 𝑦1 = 1, the route that passes from 𝑂1 is activated which deactivates the path with the 

waypoint at 𝑂2. On the contrary, if 𝑦1 = 0, the path that passes from 𝑂2 becomes activated 

(third term). The same rationale is used to add the fourth and fifth terms to 𝐷1 by 

introducing another binary variable that switches between the two possible routes to 𝐺2. 

As discussed, the second distance function is activated in the objective function 

when the breakout is in region 2. Locating the breakout in region 2 makes it invisible to 

the Start node. Therefore, a turning point must be selected (similarly at 𝑂1 or 𝑂2) to enable 

traveling from 𝑆1 to 𝐺1 or 𝐺2 which results in the introduction of the third binary variable 

that works similarly to 𝑦1 and 𝑦2 and forms the first two terms in 𝐷2. The last two terms in 

this function calculate the distances from the breakout to either of 𝐺1 and 𝐺2 both of which 

are visible from X.  
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The second objective function is to maximize the common length, here the distance 

between 𝑆1 and X. It is observable in the formulation of Problem 1 that the choice of the 

region for placing the breakout as well as the routes to invisible points are reflected in the 

terms of the maximization function by the binary variables.  

The constraints force the breakout to lie inside the convex hull of the nodes and the 

barrier, but outside the barrier. Further, the decision variables are X, the cartesian 

coordinates of the breakout in the plane, and all of the binary variable, w and 𝑦𝑖.  

Following the same procedure and based on the visibility map of the workspace, 

Problem 2 is formulated for the cable harness in Figure 3.12. Since the visibility map of 

Figure 3.12 has four regions, four binary variables, 𝑤𝑖 , 𝑖 = 1, … ,4, are required to activate 

one and deactivate the other three at each time. In addition, the second set of binary 

variables, 𝑦𝑗  , 𝑗 = 1,2,3, is used to activate/deactivate the waypoints to be passed to reach 

the nodes in the invisible regions.  
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Where 

X : the breakout location in plane; 

C : the convex hull of the set points S, G, and the intersecting obstacles. 

A more complex example with a triangular obstacle is shown in Figure 3.13 with 

its visibility information summarized in Table 3.4. 

 

Figure 3.13 Sample visibility map for workspace with one triangular obstacle 

Table 3.4 Summary of visibility information for Figure 3.13 

Breakout location  𝑺𝟏 𝑮𝟏 𝑮𝟐 

Region 1 ✓   

Region 2   ✓ 

Region 3  ✓ ✓ 

Region 4 ✓ ✓  

As seen in Figure 3.13 and Table 3.4, four regions are created based on the 

visibilities of the existing nodes with respect to the breakout. Note that in Figure 3.13, 

multiple paths are conceivable to reach the breakout from 𝑆1 depending on the waypoint(s) 

taken to reach the breakout; hence, the distances can change. As a result, region 3 needs to 
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be further decomposed to areas inside each the distance from 𝑆1 to breakout is consistent. 

This second level of decomposition is shown in Figure 3.14.   

 

Figure 3.14 Level 2 decomposition of the workspace of Figure 3.13 

Looking at Figure 3.14, it is discernable that for the breakout in region 31 the path 

from 𝑆1 to X passes through 𝑶𝟏. Even though another route is feasible through 𝑶𝟐 and then 

𝑶𝟑, this route is longer and therefore discarded from the formulation of the optimization 

problem. It is also evident that the distance from 𝑆1 to X is different in the region 32 than 

in the region 31. This difference comes from the visibility of the waypoints 𝑶𝟏 and 𝑶𝟐 

from X in different subareas of region 3. For example, X in region 31 sees 𝑶𝟏 but not 𝑶𝟐 

while X in region 32 can see both 𝑶𝟏 and 𝑶𝟐. Therefore, two paths from 𝑆1 to an X in 32 

are plausible without clear superiority of one over the other (unlike the two paths from 𝑆1 

to an X in 31). The situation in the region 33 is closer to that of 31’s where the route 

traveling from 𝑆1 to 𝑶𝟐 to X is clearly shorter than the path from 𝑆1 to 𝑶𝟏 to 𝑶𝟑 and then 

X. 

Following the same logic in formulating Problem 1 and Problem 2 and using the 

visibility map of Figure 3.14, a formulation of the optimization problem is provided as in 

Problem 3.  
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Problem 3 

( ) ( )

( ) ( ) ( )

2
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         , , (1 ) , , , ,
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 =

 = =

=

   
= + +   
   

 + + + − + + + 



   

 

( ) ( )1 1 2 2 1 1 1 2, , , , ,D S X X O O G X O O G= + + + +  

( ) ( )2 1 1 1 3 3 1 2, , , , ,D S O O X X O O G X G= + + + +  

( )3,1 1 1 1 1 2, , , ,D S O O X X G X G= + + +  

( ) ( )3,2 1 1 1 1 1 1 2 2 1 2, , (1 ) , , , ,D y S O O X y S O O X X G X G= + + − + + +  

( )3,3 1 2 2 1 2, , , ,D S O O X X G X G= + + +  

( ) ( )4 1 1 2 1 1 2 2 2 2 2, , , , (1 ) , ,D S X X G y X O O G y X O O G= + + + + − +  

 

1 2 3. .   S t X O O O  

X C  
2X   

6

1

1i

i

w
=

=  

, , {0,1},    1,...,6,  1,2i jw y i j = =  

Where 

X : the breakout location in plane; 

C : the convex hull of the set points S, G, and the intersecting obstacles. 

3.3.2 Results and discussion 

The problems formulated in this section using the visibility map and binary 

variables can be solved with bi-objective optimization solvers that handle integer variables 

and nonlinear objective functions and constraints. A few solvers are developed that satisfy 

the aforementioned criteria to solve these problems. To the best of our knowledge, no 

software exists to solve this class of problems with exact optimization methods. Therefore, 
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a heuristic solver in MATLAB is sought to solve sample problems formulated in the 

previous section.  

Since the objective functions of a bi-objective optimization problem conflict with 

each other, meaning the increase in the value of one function could cause a decrease in the 

value of the other and vice versa, the problem does not have a unique solution. Instead, the 

Pareto set, or the set of non-dominated solutions, is generated that shows the tradeoff 

between the values of the objective functions. A Pareto non-dominated solution, shown in 

Figure 3.15, is the one in which improving one objective requires degradation of the other.  

 

Figure 3.15 Examples of Pareto non-dominated solutions 

MathWorks has released two multi-objective optimization solvers in MATLAB: 

ParetoSearch (PS) and Multi-Objective Genetic Algorithm (MOGA), both of which are 

heuristic-based and generate the set of non-dominated solutions. PS uses pattern search 

method on a set of points and iteratively searches for non-dominated points [171]. It 

requires an initial guess for the decision variables. MOGA, on the contrary, is developed 

based on Deb’s NSGA-II [172], an elitist genetic algorithm. Unlike PS, MOGA creates a 

random initial population for the decision variables to be selected from. Some parameters 
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can affect the creation of the initial population, e.g. population size or initial population 

range. For a list of user-defined parameters please refer to [173]. For this research, the 

MOGA solver is selected to solve all of the bi-objective optimization problems. It is 

noteworthy that using a heuristic-based solver cannot guarantee to find the true Pareto set 

and one may only be able to obtain non-dominated solutions up to a known number of 

generations. For this reason, in the remainder of this manuscript, the outcome of the MOGA 

is referred to as non-dominated solutions, not Pareto set.  

The default settings of MOGA do not allow having integer decision variables. Thus, 

in the properties function that MOGA solver reads, the initial population alongside the 

mutation and crossover functions are modified to accept binary variables1. A new set of 

constraints specifying the ids of the binary variables is added to the MATLAB functions of 

the initial population, mutation, and crossover. Also, in the main program, upper and lower 

bounds of 1 and 0, respectively, are added to specify the limits of the binary variables. The 

bounds as well as the modified functions are then sent to the solver to read and set up the 

variables accordingly during the optimization process.  

In addition to setting up the variables, following Problem 1, separate MATLAB 

functions are created to quantify the constraints’ violation and evaluate the objective 

functions. For the second objective function, which is the maximization of the common 

length, the negative of the distance between the Start node and the breakout is used. Since 

MATLAB’s default definition of an optimization problem comes only with the 

 
1 All codes are written in MATLAB and can be accessed from: https://github.com/nmasoud/Routing-algorithms.git 

https://github.com/nmasoud/Routing-algorithms.git
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minimization of a function, for maximization problems, the negative of the function is used 

to comply with MATLAB’s default definition.  

The GA parameters that affect the non-dominated solutions such as the population 

size and the number of generations must also be decided. For Problem 1, since the 

objective functions and constraints are rather simple (due to the few numbers of nodes and 

the presence of only one line barrier), the population size of 50 and 500 generations are 

considered in the MOGA solver. A sample workspace is generated to mimic the visibility 

map of Figure 3.11 wherein the coordinates of the Start and Goal nodes are 𝑆1 = (0,0), 

𝐺1 = (6,2), and 𝐺2 = (8, −5). Additionally, a line barrier with endpoints located at 𝑂1 =

(5,3) and 𝑂2 = (4, −4) is added to the workspace. Using the above-mentioned settings, 

Problem 1 is solved in MATLAB via gamultiobj solver.  

To solve this problem, the constraint of avoiding the placement of the breakout on 

the obstacle, 1 2X O O , is expanded and broken into two constraints that reflect the region 

the breakout belongs to as shown in Problem 1-2. Region 1 is to the left of the line and 

setting 𝑤 = 1 activates it, while region 2 is to the right and w must be zero to activate it.  

Problem 1-2 

( ) ( )
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2

1 1 2

2 1 3 1 1 1 3 1 2 2

 Z (1 )  ,  
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min
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w S X w y S O O X y S O O X





= + −

 = + − + + − + 
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1 1 1 1 1 1 1 2 2 1

2 1 1 2 2 2 2 2

, , , (1 ) , ,

       , , (1 ) , ,

D S X y X O O G y X O O G

y X O O G y X O O G

= + + + − +

+ + + − +
 

( ) ( )2 3 1 1 1 3 1 2 2 1 2, , (1 ) , , , ,D y S O O X y S O O X X G X G= + + − + + +  
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. .   ( ) 0

        (1 )( ) 0

S t w AX b

w AX b

+ 

− − − 
 

X C  
2X   

, {0,1},    1,2,3iy w i =  

Where 

X : the breakout location in the plane; 

C : the convex hull of the set points S, G, and the intersecting obstacles. 

After gamultiobj solver is applied, the set of non-dominated solutions is 

generated. The solver stopped at 202 generations since the average change in the spread of 

the non-dominated solutions becomes less than the set tolerance. The final set of non-

dominated solutions is shown in Figure 3.16, which corresponds to the objective space and 

the local optimal locations of the breakout (efficient solutions for the preimages of the non-

dominated solutions) corresponding to each of the non-dominated solutions are shown in 

Figure 3.17. A colormap is used to map every solution in the objective space (Figure 3.16) 

to its relevant solution in the feasible space (Figure 3.17) using the same color. It can be 

seen from Figure 3.17 that all the optimal locations are in region 2 of the visibility map 

which increases the maximum common length.   

Figure 3.18 shows the evolution of the non-dominated solutions from early 

generations to the final found at the 202nd generation. The solution set found at iteration 

(i+1)th dominates all the non-dominated points found previously at the 1st, 2nd, …, and ith 

generations.  
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Figure 3.16 Final set of non-dominated solutions for Problem 1-2 

 

Figure 3.17 Optimal (efficient) locations of the breakout for Problem 1-2 
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Figure 3.18 Evolution of non-dominated fronts 

Additional details of the optimal locations and their corresponding optimal values 

of the objectives are provided in Table 3.5. 

Table 3.5 Optimal values of decision variables and objective functions for Problem 1 

Optimal breakout 

location coordinates, 

X* (cm) 

Min total length 

with the breakout, 

𝒁𝟏
∗  (cm) 

Max common 

length, 𝒁𝟐
∗  (cm) 

(7.6456 -4.2147) 20.8059 13.5154 

(5.6618 1.3906) 15.0731 7.5712 

(7.6456 -4.2147) 20.8059 13.5154 

(6.186 -0.0907) 16.474 9.1413 

(6.1787 -0.3836) 16.7669 9.414 

(6.6784 -2.266) 18.7143 11.358 

(5.6618 1.3906) 15.0731 7.5712 

(5.9235 0.4521) 15.9251 8.5411 

(6.5375 -1.8523) 18.2815 10.921 

(7.3274 -3.3309) 19.8693 12.5761 

(6.3669 -1.0959) 17.4983 10.1489 

(7.2494 -3.0952) 19.6214 12.3279 

(6.8802 -2.7686) 19.244 11.8982 
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(6.4667 -2.1137) 18.5592 11.1508 

(7.3011 -3.5989) 20.1334 12.8195 

(6.2822 -0.6831) 17.0749 9.7308 

(6.8447 -3.0693) 19.5636 12.1744 

(6.7182 -2.4896) 18.9485 11.5831 

A more complex example of a location problem in the presence of an obstacle is 

Problem 3 where the line barrier is replaced by a triangular obstacle that increases the 

number of regions in the visibility map. In addition to the obstacle avoiding constraint 

presented in Problem 1, Problem 3 has a linear equality constraint that imposes the sum 

of the binary variables attributed to the region selection to be equal to one. MATLAB’s 

gamultiobj solver cannot handle linear equality constraints concurrent with integer 

variables. Therefore, an approach to solve the bi-objective problem by reducing it to a 

single objective problem must be followed. Two common methods of solving a multi-

objective optimization problem by converting it to a single objective problem are weighted 

sum and ε-constraint.  

The weighted sum method benefits from the introduction of a vector of weights 

multiplied by the objectives to convert the vectorized objectives to a scalar. The weights 

are chosen proportionately to the importance of the objective and their sum should be equal 

to one. Despite its simplicity, the weighted sum method has difficulty reaching the entire 

set of non-dominated solutions when the feasible domain is non-convex (like the non-

dominated set in Figure 3.15, right). Therefore, a portion of the Pareto front would never 

be found with the weighted sum.  

Unlike the weighted sum, the ε-constraint method, first introduced by Haimes 

[174], works with both convex and non-convex feasible sets and yields the Pareto set. The 
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method minimizes one of the objectives and expresses the other(s) in the form of inequality 

constraints (i.e. the value of objective 𝑖 expressed in the constraints must be less than or 

equal to 𝜀𝑖). Since the ε-constraint method has the advantage of obtaining solutions that are 

not reachable using the weighted sum, it is selected to solve Problem 3.  

Similar to Problem 1, the obstacle-avoiding constraint, 1 2 3X O O O , is further 

broken into six constraints to reflect each of the six regions the breakout can be located. 

The formulation of Problem 3 is therefore updated as in Problem 3-1.  

Problem 3-1 

2

6

1

1

 Zmin i i
X i

w D
 =

=  

( ) ( )1 1 2 2 1 1 1 2, , , , ,D S X X O O G X O O G= + + + +  

( ) ( )2 1 1 1 3 3 1 2, , , , ,D S O O X X O O G X G= + + + +  

( )3,1 1 1 1 1 2, , , ,D S O O X X G X G= + + +  

( ) ( )3,2 1 1 1 1 1 1 2 2 1 2, , (1 ) , , , ,D y S O O X y S O O X X G X G= + + − + + +  

( )3,3 1 2 2 1 2, , , ,D S O O X X G X G= + + +  

( ) ( )4 1 1 2 1 1 2 2 2 2 2, , , , (1 ) , ,D S X X G y X O O G y X O O G= + + + + − +  
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   
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         ( ) 0,   1,...,6i i iw A X b i+  =  
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2X   

6

1

1i

i

w
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, , {0,1},    1,...,6,  1,2i jw y i j = =  

Where 

X : the breakout location in the plane; 
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C : the convex hull of the set points S, G, and the intersecting obstacles. 

Following the ε-constraint method, the problem is converted to a constrained 

single-objective optimization problem with binary variables. The best solver in MATLAB 

that satisfies the requirements of Problem 3-1, is the GA solver. The magnitude of ε varies 

from 0.5 to 8.5 which is found based on testing the single objective of maximizing the 

common length. The optimal (efficient) locations of the breakout as well as the final set of 

non-dominated solutions are shown in Figure 3.19 and Figure 3.20 respectively.   

 

Figure 3.19 Optimal (efficient) locations of the breakout for Problem 3-2 
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Figure 3.20 Set of non-dominated solutions for Problem 3-2 

It is observed from Figure 3.19 and Figure 3.20 that the set of non-dominated 

solutions attributed to each of the four regions (color-coded in Figure 3.20) in the visibility 

map of the problem (Figure 3.13) is convex while the union of these sets shown in Figure 

3.20 is non-convex. This behavior is caused by using binary variables to reflect the region 

selection in the location problem. Once a region is selected for locating the breakout and 

the corresponding binary variables are set, the problem, within the chosen region, becomes 

convex; thus, the found non-dominated set in the outcome space also becomes convex. 

However, the original problem described in Problem 3-2 is a non-convex optimization 

problem. Therefore, when all the resulting non-dominated sets (created per each region) 

are combined to generate the overall set of non-dominated solutions, the outcome is a non-

convex set as in Figure 3.20.     
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In addition, the numerical values of the optimal locations of the breakout as well as 

the two objectives can be found in Table 3.6. 

Table 3.6 Optimal values of the decision variables and objective functions for 

Problem 3-2 

ε Optimal breakout 

location coordinates, 

X* (cm) 

Min total length 

with the breakout, 

𝒁𝟏
∗  (cm) 

Max common 

length, 𝒁𝟐
∗  (cm) 

0.5 (-1.5033, 0.9526) 15.6877 0.499 

1 (-1.0074, 0.8872) 15.8373 0.999 

1.5 (-0.5177, 0.7766) 16.103 1.499 

2 (-0.0322, 0.6479) 16.6294 1.999 

2 (-0.0807, 0.4407) 16.6274 1.999 

2.5 (0.2566, -0.0071) 16.8633 2.499 

3 (0.7565, -0.0126) 16.8841 2.999 

3.5 (1.2565, -0.0168) 16.9107 3.499 

4 (1.7565, -0.0184) 16.9457 3.999 

4.5 (2.2566, -0.0165) 16.9936 4.499 

5 (2.7566, -0.0086) 17.0629 4.999 

5.5 (3.2566, 0.0110) 17.1707 5.499 

6 (3.8520, 2.3200) 22.6108 5.999 

6 (3.7561, 0.0559) 17.3561 5.999 

6.5 (4.2552, 0.1056) 17.7107 6.499 

6.5 (4.3527, 1.5357) 17.8191 6.499 

7 (4.7543, -0.1526) 18.2701 6.999 

7 (4.7537, -0.1709) 18.27 6.999 

7 (4.7663, 0.9454) 18.354 6.999 

7.5 (5.2563, 0.0497) 19.1211 7.499 

7.5 (5.296, 1.046) 19.1422 7.499 

7.5 (5.2227, 0.5955) 19.136 7.499 

7.5 (5.3112, 1.1379) 19.1438 7.499 

7.5 (5.2462, 0.3285) 19.1249 7.499 

8 (4.5487, 0.7756) 18.2051 6.8566 

8 (5.8364, 2.4132) 20.1214 7.999 

8 (5.3853, 0.5404) 19.4329 7.6549 

8 (5.8259, 2.5028) 20.1237 7.999 

8.5 (6.000, 3.000) 20.6322 8.2546 

8.5 (5.4837, 0.9339) 19.7331 7.805 
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3.3.3 Final remarks  

In this section, sample location problems are formulated using binary variables and 

visibility maps. Even though the method has the advantage of providing a formulation of 

the optimization function with explicit Euclidean distances between the points, the 

complexity of the problem formulation (which indicates the complexity of the solution) 

highly relies on the problem structure. For example, as discussed, a change in the locations 

of the existing nodes can completely change the visibility map of the workspace provided 

the geometry of the workspace remains unchanged.  

In addition, it is shown that adding an obstacle or changing the shape of an obstacle 

can drastically increase the nonlinearity of the objectives and/or constraints which has a 

direct impact on the solution method. Therefore, this method is most efficient for 

workspaces with as few as one simple obstacle. Further, the obstacle must be polygonal 

and without any curved edges as having a curvature increases the nonlinearity of the 

constraints.  

Apart from the geometric structure of the workspace of a location problem, care 

must be taken when formulating the problem using binary variables. For example, looking 

at Figure 3.20, an outlier is present in the set of non-dominated solutions with objective 

values of (22.611, 5.999). As seen in Figure 3.19, this point is located in region 4 of the 

visibility map. The reason why the total length of the harness is 22.611 by placing the 

breakout on this outlier is that the distance from 𝑆1 to this breakout is calculated using the 

route passing from 𝑂1 and 𝑂3 instead of the shorter route passing from 𝑂2. Although from 

the mathematical point of view this solution is feasible, it may not be realistic or optimal 
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from the design perspective. Hence, to avoid the attainment of such solutions and outliers 

in the non-dominated set, additional constraints can be introduced to the problem 

formulation to block the longer routes. If, however, more layouts are preferred to choose 

from, considering other physical constraints of the wiring harnesses (e.g. accessibility), 

solutions like this can remain in the non-dominated set and the constraints may not be 

modified in the problem formulation.  

As future extensions of this work, the following research questions can be further 

investigated; (1) Is it possible to develop an algorithm that outputs the constraints and 

criteria of the problem using binary variables? (2) what is the effect of non-convex 

obstacles on the problem formulation and final optimal solutions? (3) can other criteria 

(e.g. minimizing the number of turns in the path) be added to the optimization problem?  

3.4 Layout optimization using convex hull based routing 

Although the method discussed in the previous section enables the formulation of 

the cable harness layout optimization problem with explicit objective functions, it may not 

be computationally efficient in solving complex problems where multiple freeform objects 

are scattered in the workspace. The convex hull based routing method explained in Chapter 

2, on the other side, is proven efficient in generating the shortest collision-free path between 

any two points in a cluttered planar environment. This section further investigates the 

potential of this method in optimizing the layout of a cable harness assembly with the 

constraints and criteria outlined in section 3.2.  
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3.4.1 Problem formulation  

Suppose a layout for a cable harness assembly needs to be generated to connect n 

components from a list of Start components to a Goal list of m components. It is assumed 

that two breakouts are required; the first is to bundle n wires from the Start list and extend 

to reach the second breakout, where the cables branch to reach the m components from the 

Goal list.  

The constraints are to avoid crossing the obstacles and placing a breakout inside an 

obstacle. The objectives are (1) to minimize the total lengths of wires needed to connect all 

the components including the breakouts and (2) to maximize the length between the two 

breakouts for the longest possible commonality. The general mathematical formulation of 

this problem is provided in Problem 4.  

Problem 4 

 
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Where 

B1, B2 : the two breakouts of the cable harness; 

iS  : ith start point, 𝑖 = 1,2, … , 𝑛;  

jG  : jth goal point, 𝑗 = 1,2, … , 𝑚; and  

kP  : kth polygonal obstacle, 𝑘 = 1,2, … , 𝑙; and 

nw: the number of wires passing through the length covered between B1 and B2. 

1

, (int )
( , )         

( , )

l

k

k

a b ab P
D a b

D a b
otherwise

=

  =
= 


  

( , )D a b : the shortest distance between a and b calculated on from the route found by 

applying the C-hull based roadmap 
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In Problem 4, the minimization objective function has three terms: the sum of the 

distances between each start terminal and the first breakout, the distance between the two 

breakouts multiplied by the number of wires passing through it, and the sum of the 

distances between the second breakout and each of the goal terminals. The number of 

wires passing from B1 to B2, nw, is found by taking the maximum of the number of Start 

and Goal nodes. In other words: 𝑛𝑤 = 𝑚𝑎𝑥{|𝑆|, |𝐺|}, where | • | is the cardinality of a 

set. The decision variables are the (𝑥, 𝑦) coordinates of the breakouts in
2

(plane). The 

constraints are to avoid locating a breakout inside a polygonal obstacle. 

It should be noted that the breakouts might be located on the borders of an obstacle 

depending on the potential application of the optimization problem. It is also noteworthy 

that the constraint of having wires not cross the interior of any obstacles is implicitly 

addressed by calling the convex-hull based routing function when any two points are 

invisible to each other. Therefore, the explicit representation of this constraint in the 

optimization problem is not further provided.  

The distance function, 𝐷(•,•) shown in Problem 4 outputs the Euclidean distance, 

‖•,•‖, if the two points are visible to each other. Otherwise, the modified distance 

function, 𝐷̃(•,•), calculated based on the shortest collision-free path that the convex-hull 

based routing finds, is utilized.  

The formulation shown in Problem 4 requires the solver to search the entire 

feasible space which is the 2 plane, except the areas occupied by the obstacles, to find the 

optimal locations of the breakouts. This could significantly slow down the optimization 

process, especially for large-scale problems. Hence, it is recommended to adapt Klamroth’s 
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iterative convex hull [158] to limit the feasible domain inside the convex hull created by 

the Start and Goal nodes. As explained previously, the boundary of this convex hull needs 

to expand iteratively by including obstacles crossing the convex hull boundaries, until all 

of the hull edges become collision-free. Using this idea, a new constraint is added to 

Problem 4, and the problem is reformulated as in Problem 5. 

Problem 5 
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Where 

C : the convex hull of the set points S, G, and the intersecting obstacles. 
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( , )D a b : the shortest distance between a and b calculated on from the route found by 

applying the C-hull based roadmap  

In Problem 5, C is a convex polygonal region defined by its vertices and edges. To 

form this new constraint, a set of linear inequalities is added to dictate the location of the 

breakouts inside this convex hull.  

3.4.2 Optimization solver   

This problem can be formulated and set up in MATLAB as an optimization 

problem. In the main program, the workspace geometric data that includes the VRML data 

of the obstacles alongside the Start and Goal sets of nodes with their coordinates are taken 

as inputs. Next, the linear constraints that impose the breakouts to stay inside the 
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Klamroth’s convex hull are created. The flowchart of Figure 3.21 describes the process 

used to create this convex hull.  

 

Figure 3.21 Flowchart for the iterative convex hull creation 

In this flowchart, first, the convex hull of all the nodes in the Start and Goal sets is 

created using MATLAB’s “convhull” function. Next, the edges of the convex hull are 

stored in the set E using their endpoints (denoted by their coordinates). Every edge in the 

set E is then checked for intersections with all the existing obstacles using the intersection 

detection algorithm developed in the convex-hull based roadmap [83]. If the edge is found 

crossing any of the obstacles, the corresponding obstacle is included to generate the 

updated convex hull. The process is continued until all the edges of the convex hull become 

collision-free. In the flowchart of Figure 3.21, 𝑃𝑗 is the jth obstacle, where 𝑗 = 1, … , 𝑚.  
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After the convex hull is created, its edges are extracted to define the linear 

constraints of the problem. These linear constraints specify a convex region inside which 

the breakouts can be located without the need to search the entire feasible region. Using 

this convex hull, the next step is to identify the obstacles that lie inside the convex hull. 

This information is to be passed to the nonlinear constraint function where the optimizer 

checks that the breakouts are not located inside or on the boundary of any obstacle 

(depending on whether the breakouts are allowed to be located on the boundary of a 

component or not). By determining the obstacles bounded inside the convex hull, the 

nonlinear constraint checks for every obstacle if the breakout is placed inside or outside 

this polygonal region.   

A separate MATLAB function is created to set up the nonlinear constraints. These 

constraints are vectorized. For example, if 𝑙 obstacles are identified inside the convex hull 

region, an 𝑙 × 1 vector is created that quantifies the output of the constraints using Boolean 

values. In more detail, if a breakout is located inside or on the boundary of obstacle k, 𝑘 ∈

{1,2, … , 𝑙}, the value of the kth row in the above-mentioned vector is 1; otherwise, it is zero. 

The pseudocode for setting up the nonlinear constraints as explained here is shown as in 

Algorithm 3.1.  
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This algorithm makes use of the InPolygon function [175] written by Redish and 

Jacquenot that detects if a set of points are inside a polygonal region. The function takes, 

as input, the coordinates of all the points to be checked and the vertices of the polygonal 

region in either clockwise or counterclockwise order. 

Since the geometric data of the obstacles is provided in the tessellated format of 

VRML, the triangles that form each obstacle can be used as the set of polygonal regions. 

This may, however, increase the computation time as the algorithm needs to check every 

breakout point against every single triangle of an obstacle. Additionally, placing a breakout 

inside the convex hull of a non-convex obstacle may cause sharp and often undesirable 

turns of wires at these breakouts (see Figure 3.22). 

Algorithm 3.1 

Input: The set P of 𝑃𝑘, 𝑘 ∈ {1,2, … , 𝑙}, the obstacles bounded inside the convex hull, and 𝑋 =
[(𝑥1, 𝑦1), (𝑥2, 𝑦2)], the coordinates of the breakouts (the decision variables  

 

Output: a Boolean vector C, showing which obstacles contain the breakout(s) 

C ← 𝑙 × 1 vector of zeros 

for (𝑘 = 1 to l), do:  

if 𝐼𝑛𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑋, 𝑃𝑘) true 

𝐶𝑘 ← 1  

endif 

 

end for 

return C 
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Figure 3.22 Example of a breakout located inside the convex hull of a nonconvex 

obstacle 

To avoid these unwanted turns and to improve the computation time, instead of 

using the triangles in each obstacle as the polygonal regions, this study uses the convex 

hull of each obstacle as the polygonal region. We, however, recommend using the exact 

border of the nonconvex obstacle (or the triangles defining the shape) for densely populated 

workspaces where there may exist a Start or Goal node that is inside the convex hull of a 

nonconvex obstacle. This case is further discussed in section 3.4.3.  

The output of the InPolygon function is a Boolean vector that shows whether 

any of the points is inside an obstacle. The code can be modified to output three types of 

vectors: strictly IN, which shows if a point lies in the interior of the polygon, IN/ON, which 

shows whether a point is in the interior or on the boundary of the polygon, and finally, ON, 

which turns to 1 if a point lies on the boundary of the polygon, not its interior. Since the 

purpose of this research is to avoid placing a breakout on a component of the workspace, 

the IN/ON check is used to output the nonlinear constraint value. The MATLAB code can, 
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however, be modified to use only the interior points such that placing a breakout on the 

boundary of a component is permitted. When searching for the feasible values of the 

decision variables, if any element in the C vector is found nonzero, the assumed decision 

variables become infeasible and must be excluded.  

Lastly, the objective functions need to be set up in the optimization problem. For 

this purpose, another MATLAB function is created that outputs a vector of objective 

function values when the decision variables are inputted. Algorithm 3.2 provides the 

pseudocode used to create this function.  

Algorithm 3.2 

Input: 𝑋 = [(𝑥1, 𝑦1), (𝑥2, 𝑦2)], the coordinates of the breakouts (the decision variables  

Output: Z, a 2 × 1 vector of integer values for the two objective functions 

Z ← 2 × 1 vector of zeros 

0L  

for (𝑖 = 1 to |𝑆|), do:  

1( , )iL L D S B= +   

end for 

1 2( , )wL L n D B B= +  

for (𝑗 = 1 to |𝐺|), do:  

2( , )jL L D B G= +   

end for 

1Z L   

2 1 2( , )Z D B B−  

return Z 

Following Problem 5, the first objective, the total lengths of wires, is decomposed 

into three segments: the length between each start node and the first breakout, the length 

between the two breakouts, and the length between the second breakout and each goal 

node. Analogous to the mixed-binary optimization, for the second objective function, 
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which is the maximization of the common length, the negative of the distance between the 

breakouts is used. 

After the objective and constraint functions are set up correctly in MATLAB, a 

solver should be called to solve the optimization problem. Since the two objective functions 

in the bi-objective optimization problem of Problem 5 conflict, it is expected to obtain a 

Pareto set of optimal solutions instead of a single value for the optimal functions.  

The present problem is NP-hard with nonconvex constraints and criteria; hence, 

hardly could it be solved using an exact solution method. Even if an exact method exists to 

solve this problem, it would not be computationally efficient. Therefore, we need to resort 

to heuristic techniques. Though they may not be the best approach in finding the global 

solution, their efficiency in addressing NP-hard problems outweighs their inability to 

guarantee to find the global optimum. For this research, the MOGA solver in MATLAB is 

deployed to solve problems in this section. 

 An example workspace with 12 scattered obstacles, 3 Start nodes, 4 Goal nodes, 

and 2 breakouts, the locations of which are to be found, is shown in Figure 3.23. In this 

figure, Si is the ith Start node and Gj is the jth Goal node. Also shown in this figure is the 

convex hull of the nodes and intersecting objects in blue. 
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Figure 3.23 Sample workspace with start and goal nodes 

The problem is solved using the explained setup and MATLAB’s MOGA solver 

with 100 generations and a population size of 50. The final set of non-dominated solutions 

can be seen in Figure 3.24. It should be reminded that due to the utilization of a heuristic 

solver, at each execution of the GA a new set of non-dominated solutions is generated and 

the non-dominated solutions at the last generation cannot be guaranteed to match the true 

Pareto set. 
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Figure 3.24 Non-dominated set of solutions for Figure 3.23 

For every point in the non-dominated or eventual Pareto set, there is an associated 

optimal layout for the cable harness found by locating the breakouts. Four sample layouts 

are depicted in the following figures.  
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wire lengths with and without the breakouts, and the total computation time for each test 

case is compiled and recorded in Table 3.7.  

Table 3.7 Results for testing the effects of density on optimal layout 

Test 

ID 

Workspace 

density 

(%) 

Max common 

length (cm) 

Min total 

length with 

breakout (cm) 

Min total length 

without breakout 

(cm) 

Total computation 

time (sec) 

1 14.25 39.1647 89.934 89.454 20.4921 

2 16.80 44.3307 90.942 89.6053 50.4038 

3 21.88 32.6631 89.9212 89.8316 73.0086 

4 28.65 44.0532 91.5033 90.2484 154.9674 

5 31.09 41.6997 91.2973 90.2484 174.2097 

6 34.64 47.7741 92.256 90.6393 262.6323 

7 37.75 49.4265 94.4517 91.8152 352.5452 

8 42.06 48.933 94.5502 91.8152 544.1885 

9 45.36 31.8739 95.3751 92.0603 595.7788 

10 49.12 36.1219 94.2169 92.3305 800.6291 

11 52.36 33.2051 97.5491 93.0223 1219.9532 

It can be seen in Table 3.7 that increasing the density increases the minimum total 

lengths of wires as well as the computation time (see also Figure 3.28, Figure 3.30, and 

Figure 3.31). The computation time seemingly increases exponentially with the increase in 

the density. Unlike the minimum total length, a trend is not observable in the changes to 

the maximum common length as density increases (see Figure 3.29). Since increasing the 

density beyond 52.36% in the same workspace results in the exponential growth of the 

computation time, cases with densities greater than 52.36% are not further explored.   


