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CHAPTER 1: INTRODUCTION 

1.1 Additive Manufacturing 

Additive Manufacturing (AM) or 3D printing has generated a renewed interest of 

engineering and manufacturing sectors in the recent years. Additive manufacturing is 

increasingly used in the development of new products: from prototypes to functional parts 

and tooling [1]. According to an industry report by Wohler’s Associates’ [2] ‘Annual 

Worldwide Progress Report on 3D printing’, by 2019, the sale of AM products and services 

could reach or exceed $6.5 billion. The dexterity of AM can be related in terms of the 

moderation of the manufacturability constraints, the ability to develop a geometrically 

complex part with reduced effort, that otherwise would have been tedious with traditional 

methods. Adding to this, these parts can be customized for low volume production with 

economic feasibility. Figure 1 shows use of AM parts in different applications.  

 

Figure 1:  Chart showing applications of AM [2]. 
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AM is the process of creating parts by depositing material in layers, i.e. by adding 

material. AM usually employs techniques such as extrusion of material as in Fused 

Deposition Modelling (FDM), Photo Polymerization: Stereo lithography (SLA) and 

Powder bed techniques like Selective Laser Sintering (SLS). A generic process for 

fabricating a part by AM starts with generating a 3D CAD (Computer Aided Design) 

model. This model is converted into an STL (Stereo lithography) file, which transforms 

the CAD geometry into a triangulated mesh format. Next, slicing software slices the model 

into horizontal layers. This software also determines an optimized toolpath for the extruder 

to generate the part boundary and infill pattern; and generates computer numeric control 

(CNC) commands. This file enables the 3D printing machine to print the final part.  

Traditional subtractive manufacturing imposes design constraints upon the 

geometry and materials of the part. These constraints can be relaxed or even eliminated 

through AM processes. The strengths of AM lie in the limitations of the traditional means 

of manufacturing. The principal point is the ability of AM to produce complex geometries 

for zero added costs. Figure 2 and Figure 3 show complex geometries manufactured from 

a single process, which is not possible through traditional manufacturing. AM enables 

materials savings by enabling infill patterns that result in lightweight parts. A high degree 

of design freedom, coupled with optimization and integration of functional features has 

resulted in designers increasingly exploiting the strengths of AM.  
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Figure 2: Parts manufactured from metal-laser sintering: Hip Implant with lattice 

structure [3] 

 

Figure 3:  Parts manufactured from metal-laser sintering: handheld ball built 

bottom-up [4]. 

1.2 Fused Deposition Modelling 

Fused Deposition Modelling (FDM) is used for printing the parts in this study. 

FDM is an AM technology based on the principle of material extrusion. FDM begins with 
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the software stage, where a CAD model of the part is created and stored in a STL (Stereo 

lithography) file format. Next, a slicing software mathematically slices the part into a 

number of layers and generates a toolpath for the printer nozzle to print the geometry. The 

software stores this data in a G-code file format for the 3D printer. The part is built from 

the bottom up, one layer at a time. In FDM, the filament is fed through an extruder nozzle, 

which heats the filament to a semi-molten state. The filament is then extruded through the 

nozzle and deposited to form the part geometry on the printer bed. Figure 4 is a 

diagrammatic representation of the FDM process. Often, the printer bed is heated to enable 

for better adhesion of the first print layer. Since the material is extruded in a semi-molten 

state, the newly deposited material fuses with the adjacent material that has previously been 

deposited. After an entire layer is deposited, the build platform moves downward along the 

z-axis by an increment equal to the filament height (layer thickness) and the next layer is 

deposited on top of it [5]. The extruder moves in X-Y plane, whereas the bed moves in Z 

direction (however, in case of certain printers, the bed moves in the X-Y plane). Even 

though FDM is quite flexible in printing complex geometries with small overhangs, by the 

support from lower layers, FDM generally has some restrictions on the slope of the 

overhang. For slopes greater than 45˚, support material is extruded which can be detached 

later. The support structure can be printed from the same material or from a different 

material if a dual-extruder set-up is present. Figure 5 shows a part built using FDM. Since 

the part is built in a single process, it eliminates the need of assembling individual parts.  
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Figure 4: Fused Deposition Modelling process representation. 

 

Figure 5: FDM parts: (left) – bicycle chain prototype, (right) – planetary gear 

system [6]. 
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The quality of the FDM parts largely depends upon the printing parameters used 

for the build process. A higher layer resolution (i.e. the number of layers) increases the 

quality of the part and better represents fine geometries. Table 1 shows the list of few of 

the process parameters affecting the properties of parts. The strength and material 

properties of the FDM part are dependent on these parameters, majorly on the layer 

orientation of the filament. Due to the type of manufacture, FDM parts not completely 

homogeneous and often exhibit voids. Thus, FDM parts have an anisotropic behavior. 

Different parameters lead to different properties for the same geometries. Figure 6 

represents a FDM part from a microstructure perspective. Table 1 lists some of the 

parameters that affect the properties of the FDM part.  

 

Figure 6: Multiscale levels of FDM part. 
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Table 1: Process Parameters affecting the final part. 

Process Parameters affecting the final part 

Extruder Temperature Layer Height 

Layer Orientation Percentage Infill  

Filament Width  Extrusion rate 

Filament Overlap Bed Temperature  

Time between bonding Movement speed 

Infill Pattern Number of shells 

 

In addition, each of these processes result in certain amount of inaccuracy. Creating 

the STL files preserves only the approximate geometric information of the original model 

[7] resulting in an imperfect geometry. In addition, the final product is largely dependent 

on the precision and accuracies of the slicers as well as the machine. Figure 7 shows the 

errors (ε) introduced in each of the stages of manufacturing the part. Thus, the additively 

manufactured part is not in perfect rendition of its 3D model. Additive manufacturing 

provides flexibility in terms of material, microstructures and layer thickness, but it also 

entails certain amount of ambiguity in terms of material properties, microstructures [8], 

etc. Owing to the intensive energy, rapid cooling, and phase changes, parts made by FDM 

and other layer-manufacturing processes may deviate from the designed geometry; and 

exhibit inaccuracies such as curling, warping, and delamination which are attributed to the 

residual stress accumulations during prototype fabrications [9]. 
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Figure 7: FDM processes introducing error at different stages. 

 Since the material is built up in layers of fibers, the directional orientation of fibers 

leads to an anisotropic behavior.  Therefore, even though the material of FDM parts is not 

anisotropic, the FDM part as a whole behaves as an anisotropic part. The mechanical 

properties of the FDM parts are generally inferior to those of the parts made from the 

traditional methods due the structure of FDM parts. The presence of voids at the 

mesostructural level accounts for some of the decreases in strength. They do result in a 

lightweight part and provide an opportunity for tailoring the mechanical performance via 

control of void geometry and layer distribution. However, the mechanical properties and 

strength of FDM parts are generally weaker as compared to traditionally manufactured 

parts, and therefore, should be analyzed.  
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1.3 Material Models  

With FDM parts exhibiting an anisotropic behavior, even though, the material being 

isotropic, it is necessary to understand the material models related to the isotropic and 

anisotropic behaviors. In a general form, Hooke’s Law states that the strain applied is 

proportional to stress induced. This enables us to obtain a general matrix relation between 

stress and strain for different materials. An isotropic material has uniform material 

properties in all the directions. The relation between stress and strain for an isotropic 

material is given in Eq. 1, 

 [ε] = [C][σ] (1) 

Where, C is the compliance matrix, 

σ = Stress, 

ε = Strain 

Equation 1 can be expanded in matrix form as follows,  

 

[
 
 
 
 
 
εxx

εyy

εzz

εyz

εzx

εxy]
 
 
 
 
 

=
1

E

[
 
 
 
 
 
1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)]
 
 
 
 
 

[
 
 
 
 
 
σxx

σyy

σzz

σyz

σzx

σxy]
 
 
 
 
 

 (2) 

Where,  

σij = stresses in respective planes,  
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εij = strain in respective planes, 

E = Young’s Modulus,  

ν = Poisson’ Ratio, 

Inverting Eq. 2, we get stress in terms of strain, given in Eq. 3,  

 

[
 
 
 
 
 
σxx

σyy

σzz

σyz

σzx

σxy]
 
 
 
 
 

=
E

(1 + ν)(1 − 2ν)

[
 
 
 
 
 
 
 
 
1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0

0 0 0
1 − 2ν

2
0 0

0 0 0 0
1 − 2ν

2
0

0 0 0 0 0
1 − 2ν

2 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
εxx

εyy

εzz

εyz

εzx

εxy]
 
 
 
 
 

 (3) 

This equation enables us to calculate the stresses at a given strain, if the material 

properties are known. Such material models are used in analytical approaches to calculate 

stresses and other mechanical variables. The isotropic model thus needs two independent 

elastic constants i.e. the Young’s modulus and Poisson’s ratio for a complete analysis. 

On the other hand, in case of anisotropic materials, the material properties change 

with direction along the object. With an anisotropic model however, we need twenty-one 

independent constants from the compliance matrix to define a material model completely. 

Deriving all twenty-one constants is not always possible and therefore, a simpler 

orthotropic material model is resorted to.   

An orthotropic material is material whose properties differ along three mutually 

orthogonal axes. Eq. 4 gives the compliance matrix for orthogonal materials, 
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[
 
 
 
 
 
εxx

εyy

εzz

εyz

εzx

εxy]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

Ex
−

νyx

Ey
−

νzx

Ez
0 0 0

−
νxy

Ex

1

Ey
−

νzy

Ez
0 0 0

−
νxz

Ex
−

νyz

Ey

1

Ez
0 0 0

0 0 0
1

Gyz
0 0

0 0 0 0
1

Gzx
0

0 0 0 0 0
1

Gxy]
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
σxx

σyy

σzz

σyz

σzx

σxy]
 
 
 
 
 

 

νij = Poisson’s ratio in different orientations, 

Gij = Shear Modulus in respective planes, 

Ei = Young’s Modulus in respective planes.  

(4) 

Inverting Eq. 4, we can solve for stresses analytically. For an orthotropic material 

model, only nine constants are required to define the material model completely. This not 

only reduces the amount of experimental data needed, but also reduces the computational 

time required for analyses.  

A special case of orthotropic materials is the transversely isotropic case. 

Transversely isotropic materials have uniform (same) properties in a given plane (e.g. x 

and y) and different properties in direction normal to this plane (z). With properties being 

similar in a given plane, this reduces the independent constants in the compliance matrix 

to five. Eq. 5 gives the compliance matrix for transversely isotropic materials, 
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[
 
 
 
 
 
εxx

εyy

εzz

εyz

εzx

εxy]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

Ep
−

νp

Ep
−

νzp

Ez
0 0 0

−
νp

Ep

1

Ep
−

νzp

Ez
0 0 0

−
νpz

Ep
−

νpz

Ep

1

Ez
0 0 0

0 0 0
1

Gpz
0 0

0 0 0 0
1

Gzp
0

0 0 0 0 0
2(1 + νp)

Ep ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
σxx

σyy

σzz

σyz

σzx

σxy]
 
 
 
 
 

 (5) 

Where, 

‘p’ represents the principle direction of symmetry,  

Ep = Ex = Ey 

The factor 1/2 multiplying the shear moduli in the compliance matrix results from 

the difference between shear strain and engineering shear strain, where, 𝛾xy = εxy + εyx =

2εxy. More information can be found in [10]. These material models are used in analytical 

methods and commercial FEA solvers to define anisotropy and isotropy in different 

analyses. The material model for composites is discussed in the next section.  

1.4 Classical Laminate Theory.  

Since the FDM parts are built up layer-by-layer, they are similar to composite 

materials in the sense that composite is also made up of stacked up laminae. Therefore, a 

composite theory might be able to lend itself for the analysis of FDM parts. This approach, 

http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/strain.cfm#engstrain
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adopted in different works, is discussed further in Chapter 2. A composite is made up of a 

stack of plies or lamina, consisting of individual fibers. Classical Laminate Theory (CLT) 

is used for analysis of composite materials. In order to extend the CLT towards analysis of 

FDM parts, it is necessary to understand the assumptions of the theory. Certain important 

assumptions pertaining to this study are [11]: 

 A perfect bonding prevails between each lamina, such that there is no slip in 

adjacent layers.  

 Each lamina is considered as a homogeneous layer of fibers.  

A coordinate system is considered for the laminae, shown as follows in Figure 8 [11],  

  

Figure 8: Coordinate system of composites [Adapted from 11]. 

For a laminate theory, the constitutive model can be described as that for a thin 

plate (Kirchhoff’s Classical Plate Theory).  If a lamina is thin and does not carry any out 

of plane loads, one can assume plane stress conditions for the lamina [11]. Causing σ3=0, 
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τ31 =0 and τ23 =0. Therefore, equation for orthotropic plane stress can be written as shown 

in Eq. 6 [12]. 

 [

ε1

ε2

ν12 
] = [

S11 S12 0
S21 S22 0
0 0 S66

] [

σ1

σ2

τ12

] (6) 

Inverting the equation gives us the stress values shown in Eq. 7 [12].  

 [

σ1

σ2

τ12

] = [
Q11 Q12 0
Q21 Q22 0
0 0 Q66

] [

ε1

ε2

ν12 
] (7) 

Where Qij are reduced stiffness coefficients given by [12], 

Q11 =
E1

1 − ν12ν21
, Q12 =

ν12E2

1 − ν12ν21
, Q22 =

E2

1 − ν12ν21
, Q66 = G12  

E1 = Longitudinal Young’s Modulus (direction 1) 

E2 = Transverse Young’s Modulus (direction 2) 

G12 = In-plane shear Modulus (direction 1) 

ν12= Major Poisson’s Ratio  

CLT builds on plane stress theory to develop relationships for composite material 

under loading. Laminate strains can be written as Eq. 8 [12]. 

 [

εx

εy

νxy

] = [

εx
0

εy
0

νxy
0

] + z [

kx

ky

kxy

] (8) 
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In addition, Eq. 9 [12] gives the corresponding stress relationship  

 [

σx

σy

τxy

] = [

Q11 Q12 Q16

Q21 Q22 Q26

Q16 Q26 Q66

] [

εx
0

εy
0

νxy
0

] + z [

Q11 Q12 Q16

Q21 Q22 Q26

Q16 Q26 Q66

] [

kx

ky

kxy

] (9) 

Equation 10 gives the stresses in each lamina in terms of these unknowns. The 

stresses in each lamina can be integrated through the laminate thickness to give resultant 

forces and moments [12]. The resultant forces and moments can be written in terms of mid-

plane strains and curvatures. 

 [
N
M

] = [
A B
B D

] [
ε0

kx
] (10) 

[N] = Resultant Forces, 

[M] = Resultant Moments, 

[A] = Extensional Coupling, 

[B] = Cross-coupling Stiffness, 

[D] = Bending Stiffness.  

These are the basic equations for the analysis of composite laminae. 

1.5 Finite Element Analysis 

Finite Element Analysis (FEA) is widely used as an analysis tool in engineering 

problems (structural, vibrational, thermal etc.), that is based on the Finite Element Method 


