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ABSTRACT 
 
 

Tall fescue is the most widely used cool-season perennial bunchgrass in the 

southeastern United States and serves as forage for approximately 8.5 million cattle. 

Through a mutualistic relationship with the endophyte Epichloë coenophiala, tall fescue 

is bestowed insect resistance and disease, drought, and grazing tolerance. In spite of these 

desirable agronomic traits, the endophyte produces ergot alkaloids that are harmful to the 

physiology of animals consuming tall fescue. Accumulation of ergot alkaloids in animal 

systems results in a syndrome known as fescue toxicosis. Among other symptoms, 

reproductive inefficiencies are reported for beef cattle consuming toxic tall fescue. The 

objectives of this research were to assess the influence of toxic tall fescue consumption 

on bull sperm by evaluating acrosomal integrity and survival of spermatozoa following 

cryopreservation. Semen was collected and fixed from bulls that were either fed a ration 

containing toxic or nontoxic tall fescue seed or grazing toxic or nontoxic tall fescue 

pasture. Fluorescent-labeled peanut agglutinin was used to evaluate sperm acrosomal 

integrity. According to our methodologies and data, subtle, if any, differences due to 

treatment were detected. Semen was also collected, extended, and frozen from bulls 

grazing toxic or nontoxic tall fescue. Differences due to treatment post-thaw were 

detected for sperm progressive motility. Significant treatment by day interactions were 

detected for sperm concentration, motility, total motile sperm per dose, and total 

progressive motile sperm per dose post-thaw. Our results indicate that acrosomal integrity 

is not greatly affected by fescue toxicosis, and that grazing toxic tall fescue negatively 
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impacts spermatozoa physiology as measured by survival of sperm following 

cryopreservation. 
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CHAPTER ONE 
 

LITERATURE REVIEW 
 
 
 

TALL FESCUE  

Introduction  

Tall fescue [Lolium arundinaceum (Schreb.) Darbysh. = Schedonorus 

arundinaceus (Schreb.) Dumort., formerly Festuca arundinacea Schreb. var. 

arundinacea Schreb.] is the most widely used perennial, cool-season bunchgrass in the 

southeastern United States (Buckner et al., 1979; Pendlum et al., 1980; Bouton, 2000), 

occupying approximately 14 million hectares (Sleper and Buckner, 1995). Heavily 

utilized in livestock production systems, the grass serves as a primary source of forage 

for more than 8.5 million cattle in the United States (Hoveland, 1993). Along with its 

wide range of adaptation, ease of establishment, tolerance to poor management, and 

extended grazing season (Stuedemann and Hoveland, 1988), tall fescue is also a plant 

well-known for possessing desirable agronomic traits bestowed to it via a mutualistic 

relationship with the fungal endophyte, Epichloë coenophiala (Young et al., 2014). The 

endophyte produces ergot alkaloids (Trethewie et al., 1954; Maag and Tobiska, 1956), 

which are beneficial to the plant, but harmful to the physiology of the animals that 

consume it. Consumption of endophyte-infected fescue results in a syndrome known as 

fescue toxicosis (Bacon et al., 1977), costing the grazing livestock industry an estimated 

$1 billion yearly in animal production losses (Allen and Segarra, 2001; Strickland et al., 

2011).  
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History 

Although the exact date in which tall fescue was introduced to the U.S. is still 

unknown, it has been proposed that the plant was brought by accident as a contaminant in 

meadow fescue [Lolium pretense (Huds.) Darbysh. = Schedonorus pratenis (Huds.) 

Beauv., formerly Festuca pratensis Huds.] seed from Europe before 1880 (Stuedemann 

and Hoveland, 1988). The United States National Herbarium recorded the first specimen 

of tall fescue in 1886 (Cowan, 1956); however, an established cultivar of tall fescue was 

not discovered to be growing on U.S. soil until 1931 by Dr. E. N. Fergus, an agronomist 

at the University of Kentucky (Fergus and Buckner, 1972). On a farm belonging to Mr. 

W. M. Suiter located in Menifee County, Kentucky, Dr. Fergus noticed a lush, green 

stand of grass growing on a steep hillside in cold weather. It was at that time that Dr. 

Fergus identified the grass as tall fescue and took seed samples back to the University of 

Kentucky for testing and further examination. In 1943, after years of analysis, the plant 

was registered and released as what is now the most commonly used cultivar, “Kentucky-

31” (Fergus and Buckner, 1972).  

 

Adaptability and Suitability  

Grown from Florida to Canada, tall fescue is highly adapted to a multitude of 

environments and predominates in the transition zone between the temperate northern 

and subtropical southern regions of the eastern United States (Aiken and Strickland, 

2013). Its persistence as a cool-season grass in a principally humid and drought-prone 

“fescue belt” (Buckner and Bush, 1979) is unparalleled to other cool-season grasses of 
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the like, with minimum rainfall requirements ranging from 35 to 85 cm (Buckner and 

Cowan, 1973). Tolerant of flooding, poor drainage, alkalinity, and salinity (Cowan, 1956; 

Seay, 1960), tall fescue can also be ideal for pastureland in the Intermountain Region of 

the United States, ranging from southern California to northern Washington (Bush and 

Buckner, 1973). While grown on claypan and various other shallow soils, as well as on 

moist lowlands and sandy loam uplands, tall fescue exhibits its best growth in heavy or 

medium-textured soils containing large quantities of humus (Bush and Buckner, 1973).  

 

 

 

  

Figure 1.1. Tall fescue adaptation in the United States. Adapted from West, 1998. 
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Uses 

While tall fescue did not become used extensively for animal feed (pasture, hay, 

silage) in the United States until the 1940s and 50s, it now occupies upwards of 14 

million hectares of land (Sleper and Buckner, 1995). Producing a tough sod able to 

withstand being trampled by livestock (Cowan, 1956; Seay, 1960), tall fescue is a 

valuable forage grass to livestock producers. Referred to as a wonder grass, stands of 

fescue can even be established on hillsides, allowing for better use of land that would 

otherwise be unproductive (Cowan, 1956). The cultivated grass is also commonly used as 

a turf grass for lawns and is planted in waterways and ditches, and on hillsides, airfields, 

athletic fields, and pond banks to prevent soil erosion.  

 

FESCUE TOXICOSIS 

Overview 

Forage grass toxicities have been observed since the biblical periods (Matthew 

13:25 – 40), when fungus infected seed of darnel was considered toxic to animals and 

humans (Bacon, 1995). Despite tall fescue’s popularity as valuable, high quality forage, it 

can be toxic to grazing livestock. Negative effects observed in cattle grazing tall fescue, 

which include unthrifty appearance, decreased performance, as well as other arbitrary 

symptoms, were believed by early researchers to be a result of fescue poisoning 

(Merriman, 1955). Although fescue toxicosis is the most common problem, conditions 

such as fescue foot and fat necrosis also occur as a result of toxic tall fescue 

consumption.  
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Toxicity Symptoms 

Fescue Foot  

The term “fescue foot” is used to describe a non-infectious, potentially life-

threatening phenomenon that involves necrosis and sloughing of hooves due to toxicosis. 

Mainly occurring in colder climates or during winter months (Goodman, 1952), 

symptoms begin with weight loss or reduced weight gain, rough hair coat, soreness of the 

rear limbs, and arched back (Jacobson et al., 1963). Hyperemia of the coronary band 

occurs between the dewclaw and hoof, which causes swelling (Hemken et al., 1984) that 

is often hot to the touch and painful to the animal (Cunningham, 1949; Cowan, 1956). 

The animal eventually loses its ability to control the rear leg muscles (Cunningham, 

1949; Pulsford, 1950; Merriman, 1955; Fowler and Kingrey, 1956).  

As the condition progresses, drying and hardening of the skin occurs. 

Subsequently, a line of demarcation forms, causing distal portions of the limb to become 

cold, insensitive to pain, and discolored. Dry gangrene occurs, due to a restriction of 

blood supply to the hind limbs (Goodman, 1952; Jacobson et al., 1963), and peripheral 

portions of the limb may be sloughed (Cunningham, 1949; Pulsford, 1950; Cowan, 

1956). Sloughing of the tips of ears and switches of tails has also been known to occur 

(Goodman, 1952; Jensen et al., 1956; Ashley, 1958; Jacobson and Miller, 1961).  

 Initial reports of fescue foot stemmed from New Zealand (Cunningham, 1948), 

Australia (Pulsford, 1950), and the United States (Goodman, 1952), providing early 

evidence that tall fescue is poisonous forage for grazing animals. Reports have also 

indicated that the left rear leg is typically affected first (Cunningham, 1949; Klussendorf, 
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1955; Cowan, 1956; Watson et al., 1957; Hore, 1961); however, a lack of understanding 

still exists regarding the mechanisms involved in fescue toxicosis. Nevertheless, the 

ailment can involve both hind limbs (Cunningham, 1949; Pulsford, 1950; Goodman, 

1952; Stearns, 1953; Merriman, 1955; Cowan, 1956; Jensen et al., 1956; Watson et al., 

1957; Ashley, 1958). There has only been one documented case in which the front legs 

were the only limbs affected (Hore, 1961). Differences in susceptibility to the ailment 

(Cunningham, 1948) and sporadic occurrences of fescue foot in the southeastern U.S. 

have been observed in cattle, which may help to explain why it is the least common form 

of fescue toxicity.  

Figure 1.2. Sloughed hoof as a result of the fescue foot malady. Reproduced with 

permission from John Andrae (Roberts and Andrae, 2004).  
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Fat Necrosis 

Fat necrosis is a less visible condition associated with fescue toxicosis that was 

first diagnosed in a north Georgia cattle herd grazing toxic tall fescue in winter and 

spring (Williams et al., 1969). The condition is characterized by hard masses of fat within 

the adipose tissue comprising the abdominal, pelvic, and perirenal regions of the animal 

(Williams et al., 1969; Stuedemann et al., 1975), and is attributed to excessive nitrogen 

(Stuedemann et al., 1985) and poultry litter application on pastureland (Williams et al., 

1969; Wilkinson et al., 1971; Stuedemann et al., 1975).  

Although the mechanism is still unknown, it has been documented that ergot 

alkaloids produced by the endophyte within the tall fescue plant can be retained in the fat 

tissue of beef cattle (Realini et al., 2005). Serving as a potential reservoir for such 

compounds, fat deposits may allow for the steady release of toxins long after grazing 

livestock have been removed from endophyte-infected tall fescue (Roberts and Andrae, 

2004). The retention and gradual release of ergot alkaloids from fat tissue could provide 

justification as to why symptoms of fescue toxicosis are present in summer months, and 

why cattle in feedlots exhibit rough hair coats after being removed from toxic pasture 

(Roberts and Andrae, 2004). 
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Fescue Toxicosis 

The most common syndrome associated with cattle grazing tall fescue is fescue 

toxicosis, also referred to as “summer slump” or “summer syndrome” because of an 

animal’s unthrifty appearance and poor performance during summer months (Bush and 

Buckner, 1973; Hoveland et al., 1983). Although exacerbated by heat stress (Hemken et 

al., 1981), the condition is known to transpire year-round. The disorder is characterized 

by poor gains (Hoveland et al., 1983), nervousness, heat intolerance, excessive salivation, 

rough hair coat (Merriman, 1955), increased body temperature (Oliver, 2005), reduced 

conception rates, and decreased milk production (Pratt and Haynes, 1950). Clinical signs, 

such as vasoconstriction (Solomons et al., 1989; Klotz et al., 2010) and reduced serum 

prolactin concentrations have been reported, as well. Behavior changes are also seen in 

animals affected by fescue toxicosis, which often include less time spent grazing and 

Figure 1.3. Fat necrosis in a beef cow. Reproduced with 

permission from John Andrae (Roberts and Andrae, 2004).  
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prolonged congregation in wet and shaded areas (Schmidt and Osborn, 1993; Strickland 

et al., 1993; Oliver, 2005).  

 

Pioneer Studies 

Increased use of tall fescue as forage for grazing animals lead to a rise in resulting 

livestock health issues (Pratt and Haynes, 1950). Sparking scientists to identify any toxic 

agent(s) associated with the plant and attempt to ameliorate harmful effects, research 

began in the 1950s on alkaloids, rumen toxins, and anions (Bush et al., 1979). 

Unfortunately, those research efforts (Bush et al., 1979) provided no solutions to fescue 

toxicosis, with the earliest reports of ergot alkaloids (Trethewie et al., 1954; Maag and 

Tobiska, 1956) being disregarded. Preliminary observations did, however, lead scientists 

to study endophyte-infected grasses.  

 

Endophyte 

Breakthrough 

Research on plant fungi began in the 1970s due to fescue toxicosis symptoms 

being analogous to those from ergot toxicity (Robbins, 1983). In 1973, a group of 

scientists at the USDA Russell Research Center isolated three endophytic fungi of the 

species Balansia – B. epichloe (Weese), B. henningsiana Moell, and B. Myriogensopora 

atrementosa (Berk. & Curt.) Diehl – from pasture in Newton County, Georgia (Bacon et 

al., 1975). Because the fungi lived within (“endo”) the plant (“phyte”) and were not 

harmful to the host, they were referred to as “endophytes” and served as the basis for 
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grass toxicity studies (Bacon et al., 1975).  Interestingly, the same group of fungi had first 

been linked to grass toxicosis in India (Nobindro, 1934).  

 

Examination  

Toxicological investigation of Balansia fungi provided evidence that the species 

was poisonous to chick embryos and had the potential to produce ergot alkaloids (Bacon 

et al., 1975, 1979; Porter et al., 1979). These discoveries lead to the subsequent 

hypothesis that a fungal endophyte was the culprit of fescue toxicosis, promoting further 

research (Bacon, 1995). Microscopic analysis of plant tissue from tall fescue pasture in 

Newton County revealed a 100% infection rate with the fungal endophyte Epichloe 

typhina (Pers., Fr.) Tul. (Bacon et al., 1977), which was subsequently renamed 

Acremonium coenophialum (Morgan-Jones and Gams, 1982). Fourteen years later, the 

endophyte was renamed Neotyphodium coenophialum (Glenn et al., 1996), and is 

presently known as Epichloë coenophiala (Young et al., 2014). 

 

Field Trials 

Grazing trials in central Alabama further supported the hypothesis that a fungal 

endophyte was the underlying cause of fescue toxicity (Hoveland et al., 1983). The first 

trial was a three-year study in which steers were allotted to tall fescue paddocks with 

18% and 80% endophyte infection (Hoveland et al., 1980). Results showed that steers 

grazing tall fescue with lower endophyte infection resulted in average daily gain (ADG) 

values 51% higher than those grazing 80% endophyte-infected fescue (Hoveland et al., 
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1980). The second experiment was a four-year trial in which steers grazed tall fescue 

pasture with 5% and 94% endophyte infection, showing similar results (Hoveland et al., 

1983). Coincidentally, animals consuming tall fescue pasture with higher endophyte 

levels displayed signs of toxicosis.  

 

Economic Impacts 

Research has gauged the mean endophyte infection rate of tall fescue pastures in 

the United States to be 58% (Shelby and Dalrymple, 1987). Therefore, it is estimated that 

cattle grazing tall fescue lose 0.63 kg ADG due to fescue toxicity (Shelby and Dalrymple, 

1987). On a broader scale, production losses, reproductive inefficiencies, and mortalities 

are thought to cost the beef cattle industry over $600 million as a result of the fescue 

toxicosis syndrome (Hoveland, 1993). Accounting for inflation, more recent evidence 

suggests those economic losses to be approximately $1 billion for the grazing livestock 

industry (Allen and Segarra, 2001; Fribourg and Waller, 2005; Strickland et al., 2011). 

 

Advantages in the Southeast 

Unfortunately, the same endophyte that causes fescue toxicity in grazing livestock 

also gives tall fescue its desirable agronomic traits via a mutualistic relationship it has 

with the plant (Siegel et al., 1984; Bacon and Siegel, 1988; Latch, 1997). As a result, tall 

fescue is known as the forage cattle producers “can’t live with”, but “can’t live without” 

(Browning, 2003). Research by Bouton et al. (1993) and West et al. (1993) showed that 

tall fescue infected with the endophyte was more resistant to drought conditions than its 
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endophyte-free counterparts. A favorable attribute in the southeastern United States, the 

endophyte helps tall fescue persist by prompting roots to grow deeper into the soil 

(Richardson et al., 1990). Other means of facilitating drought survival include the 

endophyte’s encouragement of carbohydrate accumulation in leaf sheaths (Richardson et 

al., 1991) and ability to lower plant photosynthetic rates in order to conserve water and 

nutrients (Belesky et al., 1987). Also, through the production of ergot alkaloids, the 

endophyte is able to bestow pest resistance to the tall fescue plant, thereby reducing 

insect (Pownall et al., 1995) and aphid herbivory (Johnson et al., 1985). 

 

Ergot Alkaloids 

Structure 

Toxins produced by the endophyte are fungal metabolites and belong to a class of 

compounds known as ergot alkaloids. Including clavine alkaloids, lysergic acid amides, 

and ergopeptines (Bacon et al., 1977), these compounds have a wide spectrum of 

activities due to the fact that they are D-Lysergic acid-derived and possess a tetracyclic 

ergoline ring structure (Tudzynski et al., 2001). Interestingly, the structures of ergot 

alkaloids are similar to those of serotonin, dopamine, and noradrenaline, which make 

ergot alkaloids able to bind receptors for neurotransmitters (Berde, 1980; Weber, 1980), 

and elicit undesirable biological activity in grazing livestock. 
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Prevalence 

Numerous ergot alkaloids have been found present in tall fescue (Strickland et al., 

2011). However, ergovaline, a member of the ergopeptine class of ergot alkaloids, is the 

most prevalent and researched compound that is believed to be the cause of fescue 

toxicosis (Yates et al., 1985; Lyons et al., 1986; Belesky et al., 1988). More recent studies 

have shown that derivatives of lysergic acid may also be involved (Hill et al., 2001).  

Ergot alkaloids are present in leaf and stem tissue of wild-type tall fescue, with 

highest concentrations found in the seed (Rottinghaus et al., 1991). Research has shown 

that ergot alkaloid concentrations fluctuate during the growing season. Grazing studies 

(when fescue is in its non-vegetative state) have indicated that ergopeptine alkaloid 

concentrations peak in late spring, decrease during the summer months, and rise to 

maximum concentration in the fall (Belesky et al., 1988; Rottinghaus et al., 1991). 

However, recent research has shown that when tall fescue is maintained in a vegetative 

state of regrowth, ergovaline concentrations are low in spring, steadily increase 

throughout the spring and summer months, and greatly increase during fall (Rogers et al., 

2011).  

 

Physiological Functions 

Little information is known regarding the metabolism of ergot alkaloids in 

ruminants (Strickland et al., 2011). However, it has been documented that ergot alkaloid 

absorption occurs across the gastrointestinal epithelia of the rumen and/or in the small 

intestine (Strickland et al., 2011). Subsequently, the alkaloids are transported by the 
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lymphatic system into systemic circulation (Eckert et al., 1978). This information is 

evidenced by the in vitro analysis of excreted waste (combined with estimates of animal 

intake) due to a lack of highly sensitive analytical methods and difficulty in accessing 

tissues in vivo (Strickland et al., 2011). In beef cattle, specifically, studies have shown 

that approximately 96% of ergopeptine alkaloids ingested by grazing toxic tall fescue are 

excreted in urine (Stuedemann et al., 1998). Furthermore, very small amounts of those 

alkaloids consumed were found present in bile (Stuedemann et al., 1998). 

 

Effects on Male Reproduction  

To date, few studies have evaluated the effects of toxic fescue on male bovine 

reproduction. Moreover, results have been inconsistent. For example, field trials have 

shown that sperm concentration (Pratt et al., 2015), motility (Jones et al., 2004; Looper et 

al., 2009), and morphology (Pratt et al., 2015) are reduced as a result of grazing toxic tall 

fescue. Semen cryopreservation experiments yielded similar results for motility post-thaw 

(Pratt et al., 2015). In contrast to these findings, other studies revealed no detrimental 

effects of toxic fescue intake on semen production or quality parameters (Evans et al., 

1988; Schuenemann et al., 2005a, Stowe et al., 2013).  

It has also been reported that bulls consuming toxic fescue exhibit reduced serum 

prolactin concentrations (Schuenemann et al., 2005a,b; Stowe et al., 2013; Pratt et al., 

2015). This is a useful tool for determining whether or not animals are consuming ergot 

alkaloids, as ergot alkaloids are known to suppress prolactin release. In addition, 

prolactin has long been speculated to play a role in male reproduction of other species; 
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however, the effect of suppressed prolactin in circulation on bull reproduction is 

unknown.  

Conflicting reports involving reductions in scrotal circumference measurements 

(Jones et al., 2004; Schuenemann et al., 2005a,b; Looper et al., 2009; Stowe et al., 2013) 

due to fescue toxicity have also been described, with either no effect being observed 

(Schuenemann et al., 2005 a,b; Looper et al., 2009) or a decrease in prolonged exposure 

to ergot alkaloids (Stowe et al., 2013). Testosterone is required for maintenance of 

spermatogenesis, and in vitro experiments have shown that testosterone may be regulated 

by prolactin. However, in vivo studies have shown that, when serum prolactin 

concentrations are reduced due to the consumption of ergot alkaloids, testosterone 

concentrations are seemingly unaffected (Schuenemann et al., 2005a,b; Looper et al., 

2009; Pratt et al., 2015). 

Research concerning the direct effects of ergot alkaloids on male fertility has 

likewise been minimal. A study by Wang and colleagues (2009), involving the incubation 

of motile spermatozoa with ergotamine and dihydroergotamine, showed that both ergot 

alkaloids decreased sperm motility via alpha andrenergic receptors. In a semen freezing 

study, Gallagher and Senger (1989) documented a reduction in the number of intact 

acrosomes prior to freezing, as well as post-thaw, when ergonovine was used in semen 

extender. Spermatozoa motility was also decreased post-thaw (Gallagher and Senger, 

1989). 

Reduced embryo cleavage rates have been documented using sperm from bulls 

that were either administered ergotamine tartrate (Schuenemann et al., 2005a) or grazing 
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toxic fescue (Schuenemann et al., 2005b). Interestingly, no differences in motility or 

morphology were noted between treatments. This information may suggest, due to fescue 

toxicosis, structural and/or physiological changes to the sperm cell. Further, these 

changes may not be detected using traditional breeding soundness evaluation techniques.  

Ultimately, the mechanisms by which fescue toxicosis negatively impact 

reproduction are not well understood and warrant further research. Because fertility has 

only been assessed in vitro, it is unknown what effects ergot alkaloids have, if any, on 

sperm structure and function in vivo. 

 

Pasture Management  

Approaches 

Since most tall fescue pastures in the United States are infected with the ergot 

alkaloid-producing fungal endophyte (Shelby and Dalrymple, 1987), the seemingly 

simple and obvious solution to fescue toxicosis would be to replace pastures with 

endophyte-free tall fescue. However, unless all existing endophyte-infected fescue is 

eliminated, pasture will not remain endophyte-free (Shelby and Dalrymple, 1993) due to 

the invasive nature of the wild type. Furthermore, when compared to toxic tall fescue, 

endophyte-free fescue is not as persistent (Hill et al., 1991), is less tolerant of drought 

conditions (West et al., 1993), and is more vulnerable to plant pathogens, insect 

herbivory, and overgrazing (Latch, 1993; Malinowski and Belesky, 2000). Because of 

these issues, alternative approaches aimed at alleviating fescue toxicosis through the 

management of ergot alkaloids can be implemented (Roberts and Andrae, 2004).  
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For instance, interseeding toxic tall fescue pastures with other grasses or legumes 

has been shown to increase steer ADG by as much as 50 – 80% (Hoveland et al., 1981; 

McMurphy et al., 1990). Although dilution is considered a good practice, it often masks 

the toxic effects of ergot alkaloids, and serves as only a partial remedy to the problem 

(Roberts and Andrae, 2004). Also, research has shown that tall fescue seedheads contain 

five times more ergovaline than leaves or stems (Rottinghaus et al., 1991). Therefore, 

keeping seedheads clipped can help alleviate fescue toxicosis by reducing the 

concentration of ergot alkaloids ingested by grazing animals (Roberts and Andrae, 2004).  

Rotational grazing practices, in which cattle are placed on nontoxic forage during the 

summer months, may mitigate heat-stress problems associated with fescue toxicity as 

well. In addition, stockpiling tall fescue for winter grazing when ergovaline 

concentrations have decreased (Kallenbach et al., 2003) may also help relieve fescue 

toxicosis.  

 

Novel Endophytes 

Another management practice receiving increased attention is the replacement of 

toxic tall fescue stands with novel endophyte-containing cultivars (commonly referred to 

as “beneficial endophytes”). These cultivars contain endophytes that are members of the 

same fungal species as the endophyte found in toxic tall fescue (Roberts and Andrae, 

2004). However, they produce little to no ergot alkaloids and are considered to be 

nontoxic (Bouton et al., 2002; Parish et al., 2003; Nihsen et al., 2004). Studies have 

shown that novel endophyte cultivars not only increase plant persistence and animal 
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gains, but are also grazed for longer periods of time and consumed in larger quantities on 

a per day basis (Parish et al., 2003).  

To date, replacement of toxic tall fescue stands with novel endophyte cultivars 

may be the most cost-effective and time-efficient solution to the fescue toxicosis 

problem, affording producers the benefits of the endophyte without toxic effects. 

However, for some producers, replacement may not be worthwhile. Several aspects 

(including toxicity level, field terrain, class of livestock, and grazing management) should 

be taken into consideration before replacing established tall fescue stands (Roberts and 

Andrae, 2004). 

 

Summary 

Tall fescue is the predominant forage for millions of cattle and livestock in the 

southeastern United States. In spite of its desirable agronomic traits, the cool-season grass 

has been rendered toxic due to an ergot alkaloid-producing endophyte. Among other 

symptoms, reproductive inefficiencies are reported for beef cattle consuming toxic tall 

fescue. Moreover, little consideration has been given to researching the potential effects 

of fescue toxicosis on male reproductive physiology. Therefore, our lab is interested in 

studying spermatozoa from bulls consuming toxic tall fescue. Specifically, we are 

interested in evaluating the integrity of the acrosome – an enzyme-containing structure 

that is required for fertilization purposes. 

 

 

 

 



 19

ACROSOMAL INTEGRITY 

 

History of the Sperm Cell  

Since Leeuwenhoek’s microscopic discovery of spermatozoa in the late 1600s and 

Spallanzani’s ensuing observation that sperm are necessary for fertilization, human 

knowledge of sperm cell structure and function has been greatly improved. Though it 

wasn’t realized until 1875 by Hertwig that nuclei of the sperm and egg fused during the 

process of fertilization, his discovery laid the foundation for the concept of genetic 

inheritance. Years later, in the early 1950s, the acrosome reaction of spermatozoa was 

discovered by J.C. Dan using marine invertebrates (Dan, 1954). While still somewhat of 

an enigma in most species, it has been recognized that the acrosome is essential for 

fertilization in many animals, including mammals.  

 

Basic Sperm Cell Structure and Function 

The mature mammalian sperm cell is a small, compact, and specialized male germ 

cell comprised of two principal and morphologically distinct regions referred to as the 

“head” and “tail” (Figure 1.4). Surrounded by a continuous plasma membrane, the cell’s 

sole purpose is to deliver the male’s genetic information to the female gamete quickly 

and efficiently. Although size and shape of spermatozoa tend to be species-specific 

(Fawcett, 1975), basic structure is similar for all mammals. The “head”, or “anterior 

portion” of the cell consists mainly of the nucleus and acrosome, which function to 

facilitate fertilization. The “midpiece”, though less morphologically distinct, contains 

mitochondria that provide the energy needed for flagellum propulsion. The “tail”, or 
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“flagellum”, is an appendage that serves to propel the sperm up the female reproductive 

tract toward a non-motile egg, or ovum.  

 

Acrosome 

The acrosome is a cap-like structure derived from the Golgi apparatus that lies 

over the anterior portion of the nucleus of a sperm cell. Structurally, the acrosome 

consists of an inner acrosomal membrane (closest to the nucleus), outer acrosomal 

membrane, and acrosomal matrix (located between the inner and outer acrosomal 

membranes) (Zaneveld and De Jonge, 1991), as shown in Figure 1.5. Once believed by 

researchers to be a modified lysosome (Hartree, 1975) due to its acidic nature, the 

acrosome contains enzymes analogous to those found in lysosomes (Allison and Hartree, 

1970; Zaneveld and De Jonge, 1991; Yanagimachi, 1994). More specifically, the 

Figure 1.4. Basic sperm cell structure. Adapted from Proceptin Healthcare, Inc. 
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acrosome contains digestive enzymes that aid in sperm penetration through the outer 

membrane of the ovum (Yanagimachi, 1994), referred to as the zona pellucida.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capacitation 

Spermatozoa begin to acquire the ability to fertilize an egg as they pass through 

the epididymis and undergo a process known as epididymal maturation (Courot, 1981; 

Orgebin-Crist, 1981; Olson and Orgebin-Crist, 1982). However, the changes that occur 

during maturation do not make sperm cells entirely fertile. Following maturation and 

ejaculation, sperm must reside in the female reproductive tract for a certain period of time 

Figure 1.5. Acrosomal membranes. Adapted from Anifandis et al., 

2014. 
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(Austin, 1951; Chang, 1951) where they undergo physiological changes in order to render 

them fertile. These changes are collectively known as capacitation (Austin, 1952). While 

capacitation is not completely understood, it has been recognized that the event involves 

alterations to the surface of sperm cells (Reviewed by Yanagimachi, 1994). More 

specifically, change in or removal of a “protective coat” (Figure 1.6) from the surface of 

the sperm plasma membrane occurs, permitting sperm to interact with an egg and 

subsequently undergo the acrosome reaction (Piko, 1967). 

 

 

 

 

Figure 1.6. Conceptual visualization of mammalian capacitation. Reproduced with 

permission from Current Conceptions, Inc. (Senger, 2003). 
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Acrosome Reaction 

The acrosome reaction is an exocytotic event that is initiated when sperm bind to 

the zona pellucida of an ovum. Once sperm binding occurs, the outer acrosomal 

membrane fuses with the overlying plasma membrane (Barros et al., 1967). Fusion of 

these membranes triggers vesiculation, a process by which many small vesicles are 

created that allows for the dispersal of acrosomal enzymes (Saacke and Almquist, 1964; 

Franklin et al., 1970; Meizel, 1984). The release of acrosomal enzymes enables the sperm 

cell to “digest” its way through the zona pellucida and begin the process of fertilization 

(Senger, 2003). 

 

Importance of an Intact Acrosome   

The ability of a sperm cell to undergo capacitation, the acrosome reaction, and a 

fertilization event requires an intact acrosome at the time of ejaculation. Disruption of or 

damage to the acrosome is permanent and results in premature loss of acrosomal 

contents, which ultimately prevents fertilization (Senger, 2003). Moreover, damaged 

acrosomes do not undergo vesiculation properly, but rupture spontaneously (Senger, 

2003).  

 

Methods Used to Evaluate Acrosomal Integrity 

Overview 

The study of acrosomal integrity in mammalian species is receiving increased 

attention as a valuable tool in evaluating male subfertility and infertility. With 
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advancements in microscopic visualization and cell staining technology, methods for 

determining acrosomal integrity have been developed. However, many of these methods 

are time-consuming, involve expensive equipment and reagents, and are not optimal for 

evaluating bovine acrosomal status.  

 

Phase-Contrast and DIC Microscopy 

Phase-contrast and differential interference contrast (DIC) microscopy are 

techniques that enhance the contrast of transparent and colorless specimens for improved 

visualization. Using these methods, few spermatozoa are required, and cell viability and 

acrosomal integrity can be evaluated simultaneously (Cross and Meizel, 1989). Another 

advantage to using these techniques is that partial and/or complete acrosome reactions 

can be easily detected in viable sperm. However, these methods are optimal for 

examining sperm cells with large acrosomes (such as guinea pigs and hamsters) (Cross 

and Meizel, 1989). Also, in most species it is essential to reduce sperm velocity by 

examining spermatozoa at room temperature or in single frames of videos (Cross and 

Meizel, 1989). 

While phase-contrast and DIC microscopy can be used to assess the acrosomal 

status of live bull sperm, it is difficult due to the small size of the acrosome (Cross and 

Meizel, 1989). Using DIC microscopy, studies have shown that the presence or absence 

of the apical ridge (characteristic of an intact acrosome) can be determined in motile 

bovine sperm (Saacke and Marshall, 1968; Aalseth and Saacke, 1986). Both methods can 

also be utilized in detecting intermediate stages of the acrosome reaction and 
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degenerative acrosomal loss, to some extent, in viable spermatozoa (Hancock, 1952; 

Saacke and Marshall, 1968).  

 

Bright-Field Microscopy 

Bright-field microscopy is another method used in the assessment of acrosomal 

integrity and is the simplest microscopic technique to date, in which light is either passed 

through or reflected off of a specimen. This technique is used to view fixed or live cells, 

utilizes cost-effective equipment and stains, and allows for the creation of permanent 

slides (Cross and Meizel, 1989). Furthermore, bright-field microscopy often employs 

double staining procedures. One dye is used to detect the presence or absence of the 

acrosome, whereas another dye of a different color is used to evaluate plasma membrane 

integrity. Unfortunately, there are a limited number of stains available that are specific 

for the acrosomal region of sperm cells, and assays best suited for bright-field 

microscopy are often time-consuming (Cross and Meizel, 1989). However, there are dual 

stain dyes, such as trypan blue with giemsa (Didion et al., 1989), as well as naphthol 

yellow with erythrosin B (Cross and Watson, 1994), that have been verified for use in the 

bovine species.  

 

Fluorescence Microscopy 

 Fluorescence microscopy involves labeling cells with fluorescent probes, some of 

which are specific for intracellular content. After labeling, a fluorescence microscope is 

used to irradiate the cells with specific wavelengths of light, and then separate the emitted 
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fluorescence from the excitation light. The emission light reaches the eye or detector and 

the resulting fluorescent cells are superimposed with great contrast against a black 

background. 

One method of assessing bovine acrosomal status is through the use of 

fluorescent-labeled lectins. Lectins are proteins, mainly of plant origin, that bind specific 

carbohydrate moieties. Two lectins that are specific for intracellular acrosomal contents 

have been verified for assessing acrosomal integrity in bull spermatozoa (Cross and 

Watson, 1994). These lectins are peanut agglutinin (PNA) and pisum sativum agglutinin 

(PSA), which may be conjugated to several fluorochromes. Peanut agglutinin is derived 

from the peanut plant and binds exclusively to terminal β-galactose, which is localized on 

the outer acrosomal membrane of sperm cells (Jaiswal and Eisenbach, 2002). Pisum 

sativum agglutinin comes from the edible pea plant and is specific for α-mannose 

moieties within the acrosomal matrix. 

Fluorescence microscopy is advantageous in that it allows for vivid visualization 

of specimens and is suitable for a multitude of different species, including bovine. 

However, staining procedures are often time-consuming and take hours to complete, 

which is not ideal for large numbers of samples. Fluorescence microscopy also involves 

expensive equipment, and only allows for the evaluation of small numbers of sperm. 

 

Flow Cytometry 

 Flow cytometry is a laser-based technology that measures and analyzes 

characteristics of individual cells as they flow in a fluid stream through a beam of light. 



 27

This technique is used for fluorescent cell sorting and counting, and can also be utilized 

in evaluating bovine acrosomal status (Nagy et al., 2003). This method also offers a quick 

and objective assessment of specimens, analyzing thousands of cells per second (Graham, 

2001). Furthermore, flow cytometers afford users the ability to separate cell debris from 

actual cells through a process called “gating”, which ensures more accurate data. 

 

Conclusion 

Being able to visualize and assess the acrosomal status of spermatozoa can be 

beneficial in evaluating semen quality. It is possible that male subfertility or infertility 

could be caused by a lack of spermatozoa with intact acrosomes at the time of 

ejaculation. The effects, if any, of toxic tall fescue consumption on male bovine 

acrosomal integrity are unknown. Evaluating the acrosomal status of bulls on toxic tall 

fescue could help elucidate the reproductive inefficiencies observed due to the fescue 

toxicosis syndrome. 
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CHAPTER TWO 

USING FLUORESCENT-LABELED PEANUT AGGLUTININ TO ASSESS 

ACROSOMAL INTEGRITY OF BEEF BULLS CONSUMING TOXIC TALL FESCUE 

 

 

ABSTRACT 

Little research exists concerning the effects of fescue toxicosis on bovine male 

reproduction. The objective of this study was to assess the influence of toxic tall fescue 

consumption on acrosomal integrity of beef bulls. Semen was collected and fixed from 

bulls that were either fed a ration containing toxic (E+) or nontoxic (E-) tall fescue seed 

or grazing toxic (E+) or nontoxic (E-) tall fescue pasture. Beef bulls in 2011 (n = 14), 

2012 (n = 21), 2013 (n = 12), and 2014 (n = 25), having passed a breeding soundness 

exam (BSE), were blocked and allotted to one of two treatments. Blood samples were 

collected to determine serum prolactin (PRL) concentrations. Semen samples were 

collected via electro-ejaculation and evaluated using a computerized sperm quality 

analyzer specific for bull semen. Semen was fixed in neutral buffered formalin and stored 

at room temperature (RT) until further analysis. Fluorescent-labeled peanut agglutinin 

(PNA) was used to evaluate sperm acrosomal integrity. For acrosome assessment, fixed 

spermatozoa were incubated with PNA-Alexa Fluor 594, counterstained with DAPI, air-

dried onto microscope slides, photographed under fluorescence microscopy, and counted 

manually. Four staining patterns were observed following the exposure of spermatozoa to 

PNA-Alexa Fluor 594. Analysis revealed significant TRT effects for staining patterns 2 
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and 3 (P < 0.05). No TRT or TRT x d interactions were detected for staining patterns 1 

and 4 (P > 0.05).  

 

Key words: acrosomal integrity, fescue toxicosis, peanut agglutinin  

 

INTRODUCTION 

 
Tall fescue is the most widely used cool-season bunchgrass in the southeastern 

United States (Bouton, 2000), well known for its wide range of adaptation, ease of 

establishment, tolerance to poor management, and extended grazing season (Stuedemann 

and Hoveland, 1988). Through a mutualistic relationship with the ergot alkaloid-

producing endophyte, Epichloë coenophiala (Young et al., 2014), tall fescue is able to 

withstand drought and disease conditions, insect herbivory, and grazing pressure 

(Hoveland, 1993). Despite these desirable agronomic traits, ingestion of ergot alkaloids 

by grazing livestock causes fescue toxicosis (Thompson and Porter, 1990), a condition 

that, due to production losses and reproductive inefficiencies, is estimated to cost $1 

billion yearly in economic losses (Allen and Segarra, 2001; Fribourg and Waller, 2005; 

Strickland et al., 2011). 

Little research exists concerning the effects of fescue toxicosis on bovine male 

reproduction. Moreover, few studies have detected differences in semen quality due to 

treatment. For example, field trials have shown that sperm concentration (Pratt et al., 

2015), motility (Jones et al., 2004; Looper et al., 2009), and morphology (Pratt et al., 

2015) are reduced as a result of grazing toxic fescue. In addition, studies by 
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Schuenemann et al. documented a reduction in fertility as assessed by IVF when bulls 

were administered ergotamine tartrate (2005a) or grazing toxic fescue (2005b). The 

objective of this study was to assess the influence of toxic tall fescue consumption on 

acrosomal integrity of beef bulls consuming toxic Kentucky 31 (KY31) compared to a 

novel endophyte cultivar, Texoma Max Q II (NE). 

 

 

MATERIALS AND METHODS  

 

Experimental Design 

All animal research was approved by the Clemson University Institutional Animal 

Care and Use Committee (IACUC protocol #ARC2010-45 and #ARC2010-68). 

  

 
Treatment 

  All reagents were purchased from Sigma Scientific (St. Louis, MO), unless stated 

otherwise. In 2011, yearling beef bulls (n = 14) were fed a ration containing tall fescue 

seed that either lacked ergot alkaloids (E-) or possessed ergot alkaloids (E+) at a fixed 

concentration (0.8 µg of ergovaline & ergovalanine/g diet DM) formulated to give a 1.0 

kg per day gain (Stowe et al., 2013). For years 2012 (n = 21), 2013 (n = 12), and 2014 (n 

= 25), Angus bulls were allotted to treatment and subjected to grazing ergot alkaloid-

producing tall fescue (E+) or a novel endophyte cultivar that does not produce ergot 

alkaloids (E-). An ELISA was used to test for ergot alkaloids (Agrinostics, Ltd., Co, 

Watkinsville, GA) on 50 tillers per pasture, and the E+ pasture exhibited a 98% infection 

rate. Two weeks before the start of each study, bulls were adjusted to a concentrate or 
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forage diet. The dietary treatment period for 2011 was 126 d (April to August). Grazing 

periods for 2012, 2013, and 2014 were 155 (April to August), 60 (February to April), and 

168 (February to August) d, respectively. In 2011, bulls were subjected to electro-

ejaculation every 21 d, and in all other years at 28 or 30 d intervals. For all years, prior to 

treatment allotment, bulls were weighed and subjected to a body condition score (BCS) 

and breeding soundness exam (BSE). Only bulls passing the BSE were allotted to 

treatment, and allotment was conducted by blocking for body weight (BW) and BCS. To 

assess the effectiveness of treatment, blood samples were collected via caudal 

venipuncture and assayed for serum prolactin (PRL) in 2011, 2012, and 2014. Blood was 

allowed to clot and placed at 4° overnight, and serum was harvested by centrifugation at 

2000 x g for 15 min. at 4° C. Serum was placed in vials and stored at -20° C until used 

for RIA. Prolactin assays were performed by the F. Neal Schrick laboratory as previously 

described (Bernard et al., 1993) with mean inter- and intra-assay CV of 9.7% and 6.0%, 

respectively. 

 

Semen Collection, Evaluation, and Fixation 

Bulls were restrained in standard animal handling chutes and subjected to electro-

ejaculation using the Pulsator IV (Agtech, Manhattan, KS) on the preprogrammed 

collection mode (Stowe et al., 2013). Ejaculate volume was recorded and semen quality 

parameters were estimated on-site using a computerized sperm quality analyzer (SQA-

Vb; A-Tech, Los Angeles, CA) specific for bull semen. Semen quality parameters 

evaluated were as described by Stowe et al. (2013). Bulls failed the BSE if semen 
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samples exhibited < 30% motility or < 70% morphology, or if scrotal circumference (SC) 

measurements were < 30 cm. Following collection and analysis, 500 µl of each semen 

sample was fixed in 9.5 mL of 10% neutral buffered formalin and stored at room 

temperature (RT) until further analysis. 

 

Staining Procedure 

For each sample, two 500 µl aliquots of fixed semen were washed separately by 

centrifugation at 5000 x g for 5 min. in 1X phosphate-buffered saline (PBS). 

Supernatants were discarded, and one sperm pellet was re-suspended in 200 µl of PNA-

Alexa Fluor 594 (1 mg/ml) (Molecular Probes, Eugene, OR) diluted 1:1000 in 1X PBS 

containing 0.5% bovine serum albumin (BSA). The second sperm pellet served as a 

negative control and was re-suspended in 200 µl of 1X PBS containing 0.5% BSA. 

Sperm suspensions were subsequently incubated in the dark at RT for 1 h, and washed 

twice under the same conditions. Supernatants were discarded and all sperm pellets were 

counterstained in 200 µl of the DNA dye, DAPI (1 mg/ml) (Molecular Probes, Eugene, 

OR), diluted 1:2000 in 1X PBS containing 0.5% BSA. Sperm suspensions were 

incubated in the dark at RT for 15 – 20 min., and washed twice. Supernatants were 

discarded and final sperm pellets were re-suspended in 150 µl of 1X PBS.  

 

Fluorescence Microscopy, Photography, and Cell Counting 

Stained spermatozoa were smeared onto glass microscope slides in 15 µl aliquots 

using another glass slide. Slides were air-dried and coverslips were placed on slides using 
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1X PBS. Sperm cells were examined using the 40x objective and appropriate filters for 

Alexa Fluor 594 and DAPI on an Axio Imager 2 fluorescence microscope (Zeiss, 

Germany). Five fields per slide were selected at random and photographed using an Axio 

Cam MRm (Zeiss, Germany). Files were saved as tagged image files (.tif) for later 

counting. Photographs were uploaded into Infinity Analyze software (Lumenera 

Corporation, Canada) and all sperm cells in focus were counted manually.  

 

Statistical Analysis 

The response variables of interest were the cell counts of each staining pattern 

expressed as a percentage of the total cells counted. For each response variable, a 

statistical model was developed consistent with the experimental setup and consisted of 

terms for TRT, year, month, d, and interactions of those terms. An analysis of variance 

(ANOVA) was performed to determine which model terms were statistically significant. 

When TRT or TRT x d terms were significant, follow-up t-tests were performed to 

determine the nature of the differences. All calculations were conducted using JMP (SAS 

Inst. Inc., Cary, NC). Statistical significance was defined as P < 0.05.  

 

RESULTS 

Induction of Fescue Toxicosis 

Blood samples collected in 2011, 2012, and 2014 were used to determine serum 

PRL concentrations. Serum PRL concentrations were lower in bulls on the E+ treatment 
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compared to E- bulls in 2011 and 2012, as described by Stowe et al. (2013) and Pratt et 

al. (2015), respectively. Responses in 2014 were as expected (data not shown).  

Staining Results 

Four staining patterns were observed following the exposure of spermatozoa to 

PNA-Alexa Fluor 594, as shown in Figure 2.1. Patterns were characterized by labeling of 

the probe to the acrosomal region and were as follows: pattern 1, irregular staining of the 

anterior head, producing patchy fluorescence; pattern 2, uniform staining of the anterior 

head; pattern 3, staining of the entire acrosomal region; pattern 4, no staining in the 

acrosomal region. Analysis revealed significant TRT effects for staining patterns 2 and 3 

(P < 0.05). No TRT or TRT x d interactions were detected for staining patterns 1 and 4 (P 

> 0.05).  
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1 2 

3 4 

Figure 2.1. Different acrosomal staining patterns of formalin-fixed and PNA-Alexa 
Fluor 594 stained bull spermatozoa, as assessed with fluorescence microscopy. The 
acrosome region displayed (1) patchy fluorescence, (2) uniform staining of the anterior 
head, (3) staining of the entire acrosomal region, (4) no staining in the acrosomal region. 

Sperm cells exhibited blue fluorescence due to counterstaining with the DNA dye DAPI. 
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Figure 2.2. Mean percentages for acrosomal staining pattern 1 are given on the y-axis and day of 

treatment is on the x-axis. No TRT or TRT x d interactions were detected for pattern 1 (P > 0.05). 
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Figure 2.3. Mean percentages for acrosomal staining pattern 2 are given on the y-axis and day of 
treatment is on the x-axis. An overall TRT effect was detected for pattern 2 (P < 0.05). Specific days 

with a TRT effect (P < 0.05) are indicated by an asterisk (*). 

* *  * 
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Figure 2.4. Mean percentages for acrosomal staining pattern 3 are given on the y-axis and day of 
treatment is given on the x-axis. An overall TRT effect was detected for pattern 3 (P < 0.05). Specific 

days with a TRT effect (P < 0.05) are indicated by an asterisk (*). 

* * 
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Figure 2.5. Mean percentages for acrosomal staining pattern 4 are given on the y-axis and day of 

treatment is on the x-axis. No TRT or TRT x d interactions were detected for pattern 4 (P > 0.05). 
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DISCUSSION 

To our knowledge, this is the first study evaluating the acrosomal status of 

spermatozoa from bulls consuming toxic tall fescue. In 1989, a semen freezing study 

revealed a decrease in the number of intact acrosomes prior to freezing and post-thaw 

when ergonovine was used in semen extender, as determined by phase contrast and 

differential interference contrast microscopy (Gallagher and Senger, 1989). Gallagher 

and Senger’s (1989) findings suggest that ergot alkaloids have a negative impact on 

acrosomal integrity. However, this information has been the extent of our knowledge 

concerning the effects of ergot alkaloids on acrosomal status thus far.  

In the present study, we used a lectin PNA, Alexa Fluor 594 dye conjugate to 

assess acrosomal integrity in formalin-fixed spermatozoa from bulls consuming toxic tall 

fescue. Peanut agglutinin is a plant lectin that has been previously validated as specific 

for intracellular acrosomal contents in bull sperm (Cross and Watson, 1994). Alexa Fluor 

594 is a bright, red-fluorescent dye with high sensitivity and photostability, ideal for use 

in cell imaging. We used DAPI, a blue-fluorescent DNA dye commonly used to stain 

fixed cells, as a counterstain and marker for counting sperm. The staining patterns we 

observed in formalin-fixed spermatozoa were similar to those described by Cross and 

Watson (1994) using ethanol-fixed spermatozoa. Spermatozoa that exhibited 

uninterrupted and intense labeling in the acrosomal region were considered to be 

acrosome-intact, whereas sperm cells displaying little or no labeling in the acrosomal 

region were regarded as having lost their acrosomal contents (Cross and Watson, 1994).   



41

Using these methodologies and the data presented here, it appears that there are 

few, if any, differences in acrosomal integrity due to toxic or nontoxic fescue 

consumption. These data are consistent with previous reports regarding subtle differences 

observed in semen quality due to treatment (Stowe et al., 2013). More research is 

required to determine the negative effects of toxic tall fescue consumption on bovine 

male fertility.  
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CHAPTER THREE  

EFFECTS OF TOXIC TALL FESCUE ON BOVINE SEMEN CRYOPRESERVATION 

ABSTRACT 

In spite of the positive agronomic traits that make tall fescue a desirable forage, 

reduced fertility rates are reported for beef cattle grazing pasture containing the ergot 

alkaloid-producing endophyte, Epichloë coenophiala. The objective of this study was to 

assess the influence of toxic tall fescue consumption on spermatozoa physiology as 

measured by survival of spermatozoa following cryopreservation. Semen was collected, 

extended, and frozen from bulls grazing either toxic Kentucky 31 (KY31) or the novel 

endophyte-containing cultivar, Texoma Max Q II (NE; AR584 Ag Research). Yearling 

Angus bulls (n = 25), having passed a breeding soundness exam (BSE), were blocked 

based on body weight (BW) and body condition score (BCS). Bulls were allotted to one 

of two treatments, grazing KY31 or NE for 112 d. On d 112, all bulls were placed on NE 

pasture to the end of test (d 168) to evaluate recovery from grazing KY31. Blood, urine, 

and semen samples were collected every 28 d. There were significant TRT x d 

interactions for serum PRL concentrations, verifying the effectiveness of treatment (P < 

0.05). Serum prolactin (PRL) concentrations were decreased in the KY31 TRT vs. NE 

TRT on d 28, 84, and 112. Urinary alkaloid concentrations were affected by TRT x d 

interactions, confirming ergot alkaloids were present in animal systems (P < 0.05). Bulls 

on the NE TRT exhibited lower urinary alkaloid concentrations than KY31 on d 28, 84, 
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and 112. Post-thaw semen analysis revealed that progressive motility was decreased in 

KY31 vs. NE (P < 0.05). There were significant TRT x d interactions for concentration, 

percent motility, total motile sperm per dose, and total progressive motile sperm per dose 

post-thaw (P < 0.05). The KY31 TRT was significantly lower than NE for concentration 

on d 84; for percent motility on d 28, 84, and 168; for total motile sperm per dose on d 

28, 84, and 168; and for total progressive motile sperm per dose on d 28 and 84. Motility 

was impacted post-thaw for at least 56 d following removal from toxic pasture.  

Key Words: tall fescue, endophyte, semen freezing 

INTRODUCTION 

Heavily utilized in livestock production systems, tall fescue [Lolium 

arundinaceum (Schreb.) Darbysh. = Schedonorus arundinaceus (Schreb.) Dumort.] is the 

primary source of forage for an estimated 8.5 million cattle in the southeastern and mid-

Atlantic sectors of the United States (Hoveland, 1993). Well-known for having a wide 

range of adaptation, being easy to establish, and tolerating poor management 

(Stuedemann and Hoveland, 1988), tall fescue is also renowned for a number of desirable 

agronomic traits that are bestowed to the plant via its mutualistic relationship with a 

fungal endophyte. The endophyte, Epichloë coenophiala (Young et al., 2014), confers 

disease and insect resistance, as well as drought and grazing tolerance to the plant 

(Hoveland, 1993). Unfortunately, the endophyte produces toxic compounds, including 

ergot alkaloids (Maag and Tobiska, 1956; Trethewie et al., 1954), which are harmful to 
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the physiology of grazing livestock. Exposure to ergot alkaloids results in a syndrome 

known as fescue toxicosis, a condition that costs the entire grazing livestock industry 

approximately $1 billion yearly in economic losses (Strickland et al., 2011).  

Research efforts concerning the effects of toxic tall fescue consumption on bovine 

male reproduction have been minimal (Jones et al., 2004; Schuenemann et al., 2005a,b; 

Looper et al., 2009; Stowe et al., 2013; Pratt et al., 2015). Further, the effects, if any, of 

fescue toxicosis on semen quality and physiology are not well understood (Pratt and 

Andrae, 2015). The objective of this study was to assess the influence of toxic tall fescue 

consumption on spermatozoa survival post-thaw using standard semen cryopreservation 

procedures, comparing bulls grazing toxic Kentucky 31 (KY31) to those grazing a novel 

endophyte cultivar, Texoma Max Q II (NE). 

MATERIALS AND METHODS 

All animal research was approved by the Clemson University Institutional Animal 

Care and Use Committee (IACUC; IACUC protocol number 2014-60).  

Experimental Design 

All reagents were purchased from MOFA Global (Verona, WI) unless stated 

otherwise. Yearling Angus bulls (n = 25), having passed a breeding soundness exam 

(BSE), were blocked based on body weight (BW) and body condition score (BCS). Bulls 

were allotted to one of two treatments, grazing toxic Kentucky 31 (KY31) or nontoxic 

Texoma Max Q II (NE). Bulls were evaluated at 28 d intervals for semen quality 
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parameters. Parameters included concentration, percent motility, progressive motility, 

total motile sperm per dose, and total progressive motile sperm per dose. Semen quality 

data collected at d 56 was excluded due to a breach in experimental protocol.  

Treatment 

Grazing treatments consisted of ergot alkaloid-containing KY31 or a novel 

endophyte cultivar lacking ergot alkaloids (NE). Prior to the start of the study, bulls were 

adjusted to an all-forage diet and grazed NE pasture for two weeks. At the start of the 

test, bulls were weighed and subjected to a BCS and BSE. All bulls were subsequently 

allotted to KY31 or NE treatments and remained on treatment for 112 d. On d 112, all 

bulls were placed on NE pasture to the end of test (d 168) to evaluate recovery from 

grazing KY31. To assess the effectiveness of treatment, blood and urine samples were 

collected. Blood was collected via caudal venipuncture and assayed for serum prolactin 

(PRL). Blood was allowed to clot and placed at 4° overnight, and serum was harvested by 

centrifugation at 2000 x g for 15 min. at 4° C. Serum was placed in vials and stored at -

20° C until needed for RIA. Prolactin assays were performed by the F. Neal Schrick 

laboratory as previously described (Bernard et al., 1993) with mean inter- and intra-assay 

CV of 9.7% and 6.0%, respectively. Urine samples were collected in conical tubes, stored 

at -20° C, and later analyzed using an ELISA (Agrinostics, Ltd. Co., Watkinsville, GA).  
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Semen Evaluation 

Bulls were restrained in standard animal handling chutes and subjected to electro-

ejaculation using the Pulsator IV (Agtech, Manhattan, KS) on the preprogrammed 

collection mode (Stowe et al., 2013). Ejaculate volume was recorded and semen quality 

parameters were estimated on-site using a computerized sperm quality analyzer (SQA-

Vb; A-Tech, Los Angeles, CA) specific for bull semen. Bull ejaculates were extended 

and frozen if they met the minimum requirements of 30% motility and 70% morphology. 

Semen Extension and Cryopreservation 

In addition to having enough volume and concentration to extend and freeze 10-

20 0.5 mL doses, semen with similar and acceptable quality was extended to 30 x 106 

motile sperm/mL per manufacturer instructions using Andromed CSS 1 Step extender at 

32° C. Following extension, semen was allowed to cool to room temperature (RT) and 

immediately packaged in 0.5 mL French straws. Straws were refrigerated overnight at 4° 

C and frozen horizontally in liquid N2 vapor 16-20 h later for 10 min. Subsequently, 

straws were plunged directly into liquid N2, transferred into goblets, and stored in liquid 

N2 until further analysis. Forty-eight h post-freezing, three straws per bull were thawed at 

37° C for 1 min. and subjected to computerized sperm quality analysis.  

Statistical Analysis 

Urinary alkaloid excretion, serum PRL, and post-thaw data were analyzed using 

ANOVA to test the effects of TRT, d, and TRT x d interactions, followed by the 



47

appropriate t-tests using a significance level of 0.05. Assumptions for ANOVA and t-tests 

were checked. When any possible violations of the assumptions were detected, a 

nonparametric rank transformed ANOVA was used to confirm the original ANOVA 

results. All calculations were conducted using JMP (SAS Inst. Inc., Cary, NC).  

RESULTS 

Serum Prolactin and Urinary Alkaloid Concentrations 

Blood samples were collected and serum was assayed for PRL concentrations to 

verify the effectiveness of treatment. Serum PRL concentrations were affected by TRT x 

d interactions (P < 0.05). Serum PRL concentrations were decreased in the KY31 TRT 

vs. NE TRT on d 28, 84, and 112 (P < 0.05). No significant differences were detected at 

the start of test (d 0) or after removal from toxic pasture (d 140 and 168) (P > 0.05).  

Urine samples were collected and used as diagnostic tools to determine if ergot 

alkaloids were present in animal systems. Urinary alkaloid excretions were affected by 

TRT x d interactions (P < 0.05). Urinary alkaloid excretions were lower in the NE TRT 

vs. KY31 TRT on d 28, 84, and 112 (P < 0.05). No significant differences were detected 

at the start of test (d 0) or after removal from toxic pasture (d 140 and 168) (P > 0.05). 

Semen Cryopreservation 

There was a significant TRT effect for progressive motility post-thaw, in which 

the KY31 TRT was significantly less than the NE TRT (P < 0.05). There were significant 

TRT x d interactions for concentration, percent motility, total motile sperm per dose, and 
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total progressive motile sperm per dose (P < 0.05). The KY31 TRT was significantly less 

than NE for concentration on d 84; for percent motility on d 28, 84, and 168; for total 

motile sperm per dose on d 28, 84, and 168; and for total progressive motile sperm per 

dose on d 28 and 84 (P < 0.05). 



49 

    * *
Figure 3.1. Mean serum prolactin concentrations are given on the y-axis and day of treatment is on 
the x-axis. Significant TRT x d interactions were detected for serum prolactin concentrations 

(P < 0.05). Specific days with TRT x d interactions (P < 0.05) are indicated by an asterisk (*). 

* 
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Figure 3.2. Mean urinary alkaloid concentrations are given on the y-axis and day of treatment is 
on the x-axis. Significant TRT x d interactions were detected for urinary alkaloid concentrations 

(P < 0.05). Specific days with TRT x d interactions (P < 0.05) are indicated by an asterisk (*). 

*     *      *



51

Figure 3.3. Means for post-thaw sperm progressive motility are given on the y-axis and day of 
treatment is on the x-axis. An overall TRT effect was detected for progressive motility (P < 0.05). 

Specific days with a TRT effect (P < 0.05) are indicated by an asterisk (*). 

*    *   *
* 
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Figure 3.4. Means for post-thaw sperm concentration are given on the y-axis and day of 
treatment is on the x-axis. Significant TRT x d interactions were detected for concentration (P < 

0.05). Specific days with TRT x d interactions (P < 0.05) are indicated by an asterisk (*). 

*
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Figure 3.5. Means for post-thaw sperm motility are given on the y-axis and day of treatment is on 
the x-axis. Significant TRT x d interactions were detected for motility (P < 0.05). Specific days 

with TRT x d interactions (P < 0.05) are indicated by an asterisk (*). 

*    *   *
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Figure 3.6. Means for post-thaw total motile sperm are given on the y-axis and day of treatment is 
on the x-axis. Significant TRT x d interactions were detected for total motile sperm (P < 0.05). 

Specific days with TRT x d interactions (P < 0.05) are indicated by an asterisk (*). 

*    *   *
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Figure 3.7. Means for post-thaw total progressive motile sperm are given on the y-axis and day of 
treatment is given on the x-axis. Specific TRT x d interactions were detected for total progressive 
motile sperm (P < 0.05). Specific days with TRT x d interactions (P < 0.05) are indicated by an 

asterisk (*).  

* * 
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DISCUSSION 

Serum PRL concentrations observed in this study are in agreement with previous 

data reported from our lab (Pratt et al., 2015; Stowe et al., 2013) and from others (Looper 

et al., 2009; Schuenemann et al., 2005a,b), confirming the induction of fescue toxicosis in 

the KY31 treatment. To further verify the effectiveness of treatment, differences were 

also observed in urinary alkaloid excretions, which have not been previously reported.  

To the authors’ knowledge, this is only the second study examining the influence 

of toxic tall fescue consumption on spermatozoa physiology as measured by survival of 

spermatozoa following cryopreservation. Post-thaw computerized sperm quality analysis 

showed that spermatozoa from bulls grazing toxic tall fescue exhibited decreased 

progressive motility, percent motility, total motile sperm per dose, and total progressive 

motile sperm per dose when compared to bulls grazing nontoxic fescue. These data are 

consistent with the previous study by our lab evaluating post-thaw spermatozoa 

physiology on day 50 or greater after the start of treatment (Pratt et al., 2015). However, 

in the present study, we observed a difference in concentration post-thaw on day 84, 

which was perhaps due to an error in semen extension.  

 With the exception of concentration, it is likely that these differences in sperm 

physiology are due to fescue toxicosis; however, the mechanisms by which ergot 

alkaloids negatively affect spermatozoa are unknown at this time. Previous semen 

cryopreservation studies have shown that incubating motile spermatozoa with ergot 

alkaloids results in reduced sperm motility (Gallagher and Senger, 1989; Wang et al., 

2009). It has also been confirmed that andrenergic (Wang et al., 2009), serotonin (Pratt et 
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al., unpublished data), and dopamine (Pratt et al., unpublished data) receptors are present 

on bovine sperm cells. Moreover, because ergot alkaloids have structural similarities to 

receptors of neurotransmitters, such as serotonin and dopamine, it is not difficult to 

postulate that ergot alkaloids could bind these receptors and elicit undesirable biological 

activity (Berde, 1980; Weber, 1980). Further, there could be ergot alkaloids present in 

seminal fluid; however, there are no assays available for their detection or quantitation. 

These data demonstrate that grazing toxic tall fescue negatively impacts semen 

cryopreservation. Further, these data suggest that there is a residual negative impact from 

grazing Kentucky 31 following removal from toxic pasture. This information supports the 

idea that toxins may be gradually released months after grazing animals have been 

removed from toxic tall fescue pasture (Roberts and Andrae, 2004).  

Additional replicate studies are warranted in order to establish a timeline for 

determining the earliest toxic effects of Kentucky 31 on semen cryopreservation. 

Furthermore, additional research is necessary for establishing a recovery period from 

grazing toxic tall fescue.  
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CHAPTER FOUR 

CONCLUSION 

Tall fescue is used extensively in livestock production systems and is well known 

for its wide range of adaptation, ease of establishment, and tolerance to poor 

management. Unfortunately, the same endophyte that gives tall fescue its desirable 

agronomic traits poses a threat to animals that consume the grass. Consumption of toxic 

tall fescue and subsequent accumulation of ergot alkaloids in animal systems results in a 

syndrome known as fescue toxicosis. Research efforts concerning the effects of fescue 

toxicosis on bovine male reproduction have been minimal. Furthermore, there is 

variability between studies and inconsistent reports make it difficult to pinpoint the 

reproductive parameters affected.  

Our studies showed that there were few, if any, effects of fescue toxicosis on 

acrosomal integrity of spermatozoa from bulls consuming ergot alkaloid-producing 

Kentucky 31. However, our data from a semen cryopreservation study showed that 

grazing Kentucky 31 fescue was detrimental to spermatozoa physiology post-thaw. 

Furthermore, the data suggest that there is a residual negative impact from grazing tall 

fescue following removal from toxic pasture. Additional replicate studies are necessary to 

determine the negative effects of toxic tall fescue consumption on bovine male fertility. 

Moreover, more research is required to establish a timeline for determining the earliest 
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effects of toxic tall fescue consumption on semen cryopreservation. Also, more research 

is warranted for establishing a recovery period from grazing Kentucky 31.  
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