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Figure 6 Screen capture of tree inventory attribute table in ArcGIS after field data was 

collected and key coded into the table 
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Figure 7 TiFFS crown results showing tree inventory points.  Multiple trees were 

detected as single tree crown by the detection algorithm. Crowns = Purple, Original Tree 

Inventory = Brown 
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Figure 8 Crowns and tree locations generated from TiFFS.  Manual tree inventory was 

added to show comparison of results.  TiFFS Generated Crowns = Green Polygon, 

Manual Tree Inventory = Yellow Points, TiFFS Generated Tree Location = Dark Green 

Points 
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Figure 9 LiDAR and UAV point cloud DEM comparison results.  Colored areas represent 

dissimilarities between derived rasters.  Areas of similarity (< 1 m difference) are 

removed for clarity. 
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Figure 10 LiDAR and UAV ground point (LAS class 2) comparison.  Areas of dissimilar 

point density reflect the greatest differences between respective DEM’s. Green = LiDAR 

Ground Points, Brown = UAV Ground Points 
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Table 1 Forest classified by their function as proposed by the National Commission on 

Agriculture (1976). 

Function Definition 

Protection Forest 
Protection of the forest due to terrain instability, nature of soil, 

geological formations etc.  Where the forest is protected to conserve 

other resources contained within. 

Production Forest 
Objective is to produce maximum quantity of forest products 

A. Commercial Forestry Maximum quantity of forest products as a business 

B. Industrial Forestry Timber production as required for industry with focus on production and 

economic factors 

Social Forests Forestry that meets the demands of rural and urban populations 

A. Community Forestry Forestry on lands outside conventional locations for the benefit of local 

communities in which the community is involved in management 

B. Farm Forestry Forestry that is integrated with other farm operations 

C. Extension Forestry Raising trees on farm lands, along sides of roads, wasteland, etc. and to 

maximize timber production under agroforestry 

D. Agro-Forestry A sustainable land system that combines crop, forest, and or animal 

production simultaneously within the same unit of land 

E. Recreational Forestry Practice of forestry with the objective for maintaining and developing 

forest for their scenic beauty and leisure activities 
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Table 2 Unmanned aerial vehicle (UAV) products related to Forestry uses 

UAV products Urban forestry uses 

Color aerial photography - Land cover/use mapping

- Tree inventory

- Historical documentation

- Vegetation analysis (crown density)

- Temporal comparison

- Planning

- Maintenance

- Planting

- Wildlife corridors

- Landscape fragmentation

Near Infrared (NIR) photography - Vegetation analysis

- Tree monitoring

- Vegetation health monitoring (e.g. insect/disease

detection)

LiDAR - Tree heights

- Topographic analysis

- Watershed analysis

- Infrastructure analysis

- Soil moisture,

- Forest structure

- Riparian analysis

DEM - 3D modeling

- Contours

- Road/trail design

- Slope/aspect

- Elevation

Thermal imaging - Vegetative analysis,

- Insect/disease monitoring

- Drought sensitivity

Note: Digital elevation model (DEM) is a product of color images and is used to support 

other analysis.  Technology for LiDAR sensors are creating smaller packages which in 

time can be incorporated into a UAV platform. 
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Table 3 Arial coverage by UAV flights in summer of 2014 

Flight Number of photos Date 

F01 163 4/24/2014 

F02 114 4/24/2014 

F03   99 4/24/2014 

F01 183 4/28/2014 

F02 128 4/28/2014 

F03   85 4/28/2014 

F04 106 4/28/2014 

F01 162 5/09/2014 

F02   58 5/09/2014 

F01 133 5/19/2014 

F02   88 5/19/2014 

F01   88 7/16/2014 

F02   74 7/16/2014 

F03   64 7/16/2014 

F01 174 10/1/2014 

F01   47 10/3/2014 

F01 333 10/7/2014 

F01   65 10/28/2014 

Total 2164 ------------- 
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Table 4 Flow design of processing UAV point cloud using LASTools 

Step Input File Tool Output File 

1 pointcloud.las LAS2LAS pointcloud_prj.laz 

3 pointcloud_prj.laz LASTILE Multiple _temp.laz files 

4 Multiple laz Files LASGROUNDPRO Multiple _tile_g.laz files 

5 Multiple _tile_g.laz files LASHEIGHTPRO Multiple _temp_g_h.laz Files 

6 Multiple _temp_g_h.laz Files LASCLASSIFYPRO Multiple _temp_g_h_c.las Files 
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 Table 5 LAS Classification codes for LAS 1.1-1.4 specifications as defined by the 

American Society for Photogrammetry and Remote Sensing (ASPRS) (ESRI, 2015) 

Classification Value Meaning 

0 Never Classified 

1 Unassigned 

2 Ground 

3 Low Vegetation 

4 Medium Vegetation 

5 High Vegetation 

6 Building 

7 Low Point 

8 Reserved 

9 Water 

10 Rail 

11 Road Surface 

12 Reserved 

13 Wire- Guard (Shield) 

14 Wire- Conductor (Phase) 

15 Transmission Tower 

16 Wire-Structure Connector (Insulator) 

17 Bridge Deck 

18 High Noise 

19-63 Reserved 

63-255 User Definable 
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Table 6 A portion of the tree inventory attribute table after joining: digital elevation model (DEM), tree heights, canopy 

metrics and diameter at breast height (DBH) results from point cloud data extraction using Toolbox for LiDAR Data Filtering 

and Forest Studies (TiFFS) and ArcGIS Ordinary Least Squares (OLS) regression processes

Forest Metric Extraction 

  TiFFS Results OLS  Results 

OBJECTID Genus Species Common Elevation 

Crown 

Radius 
(cm) 

Tree 

Height 
(m) 

Canopy 
Volume 

(m
2
) 

Mean 

Height 
(m) 

Standard 

Deviation 
Height (m) 

Skewness 

Height 
(m) 

Kurtosis 

Height 
(m) 

QuadMean 
Height (m) 

Percent 

Height 
(%) DBH (cm) 

503 Quercus alba White Oak 206.63 3.29 25.84 593.29 20.22 2.37 -6.38 53.10 20.88 22.48 109.22 

477 Quercus alba White Oak 211.67 5.94 23.40 1673.14 18.51 3.24 -4.38 24.25 19.25 21.62 114.30 

478 Quercus alba White Oak 212.35 6.96 24.09 2331.28 17.59 1.82 -7.55 68.92 18.16 18.92 91.44 

476 Quercus alba White Oak 209.02 11.38 27.96 7957.79 18.04 7.69 -1.09 3.03 20.06 27.96 121.92 

475 Quercus alba White Oak 209.08 4.72 27.48 900.54 24.94 0.74 -0.17 1.84 25.49 26.49 127.00 

468 Lagerstroemia indica Crape myrtle 212.06 4.03 8.45 215.24 3.03 1.30 1.05 4.80 3.78 7.54 10.16 

419 Quercus alba White Oak 213.80 3.34 17.12 557.63 16.24 0.48 -1.74 6.55 16.76 16.98 134.62 

474 Prunus pensylvanica Pin Cherry 208.87 1.95 3.12 26.38 1.65 0.67 0.47 2.89 2.24 3.46 17.78 

469 Lagerstroemia indica Crape myrtle 211.61 2.71 6.45 103.26 4.57 1.68 -1.31 3.72 5.33 7.08 10.16 

467 Cupressus x leylandii Leyland Cypress 212.58 2.88 12.47 182.53 5.99 3.43 0.33 1.94 7.30 12.82 5.08 

466 Cupressus x leylandii Leyland Cypress 215.25 2.46 9.57 116.65 5.66 2.65 -0.19 1.93 6.69 10.98 7.62 

470 Lagerstroemia indica Crape myrtle 219.70 2.65 5.77 86.16 3.16 1.53 0.09 1.81 3.96 7.00 10.16 

471 Lagerstroemia indica Crape myrtle 217.76 2.46 6.31 84.63 3.33 1.81 0.08 1.61 4.25 6.92 10.16 

465 Cupressus x leylandii Leyland Cypress 208.27 2.88 5.35 93.42 2.92 1.13 -0.09 2.15 3.61 5.57 12.70 

524 Quercus palustris Pin Oak 204.17 2.76 9.95 102.64 4.97 3.67 -0.04 1.28 6.59 10.40 30.48 

658 Quercus alba White Oak 202.96 3.24 8.31 169.71 5.20 1.65 -1.01 4.06 5.89 8.08 20.32 

659 Quercus palustris Pin Oak 203.08 4.48 15.02 511.72 10.43 3.21 -0.67 3.17 11.39 15.54 35.56 

351 Ulmus parvifolia Chinese Elm 203.17 3.48 7.57 173.36 5.79 1.05 -3.05 14.08 6.46 6.95 17.78 

352 Ulmus parvifolia Chinese Elm 203.07 3.39 7.33 192.16 5.95 1.35 -3.19 12.67 6.61 7.11 17.78 
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Classification 

Unassigned Ground High Vegetation Building Never Classified Total 

3D Point Cloud 434,964,534 395,227,776 69,570,766 52,712,480 238,118,889 1,190,594,445 

LiDAR   10,350,419   61,368,599 29,192,217   1,861,121 0    102,772,356 

Table 7 Point count after classification processing was completed using LASTools 
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Glossary 

Agisoft:     

a commercial based 3D reconstruction software that uses digital photos.  

The professional edition allows authoring of geographic information system (GIS) 

data to produce seamless imagery and 3D point clouds 

ArcGIS:     

a commercial based geographic information system (GIS) developed by 

Environmental Systems Research Institute 

Autonomous: 

operation of a UAV by onboard computer or ground based pilot by remote control 

Canopy:  

uppermost layer of the forest formed by tree crowns 

Canopy Height Model (CHM): 

raster based model representing the canopy elevation of the forest and or trees 

Diameter at Breast Height (DBH): 

measurement location to obtain tree diameter usually at 4.5’ off the ground 

Digital Elevation Model (DEM):     

raster based model representing ground or surface elevations 

Digital Terrain Model (DTM):     

raster based model representing vegetation height elevations 

Geodetic Control Point (GCP):     

global positioning system (GPS) derived point that 

can be used to accurately position non-spatially referenced geographic  data by 

serving as reference object that can be tied to its complimentary location in 

geographic data  

Geographic Information System (GIS):     

a computer based software that captures, manages, analyzes, edits and displays 

geographic data 
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Geotagging:     

process of adding geographic metadata to photographs or imagery 

Global Positioning System (GPS):     

satellite based navigation system that provides locational information 

Ground Control Station:     

facilities and computer hardware that maintains human control over unmanned 

aerial vehicles during flight 

Heads-Up-Digitizing:     

GIS process for creating feature objects from data (i.e. imagery) displayed on a 

computer screen 

Hyperspectral:     

imaging technique that collects data by scanning objects across the 

electromagnetic spectrum using three techniques: scanning spatial images, 

sequential capture of full spectral data, or capture spatial and spectral data at the 

same time 

Imagery: 

 images representing spatial objects on the earth’s surface 

LASTools: 

toolset developed by Martin Isenburg for LiDAR las formatted data.  Can be used 

through DOS command window and as a toolkit or pipeline in ArcGIS 

Light Detection and Ranging (LiDAR): 

remote sensing technique that uses a laser to measure distance by analyzing 

reflected light of a laser illuminated object on the earth 

Log ASCII Standard (LAS):     

standard file format for exchanging LiDAR data 

Mosaic:     

process of creating a single image from a collection of images 

Multi-Spectral:     

 process of capturing image data at specific frequencies of the electromagnetic 

spectrum 
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Multi-Temporal:     

data that contains information which spans across different time ranges i.e. 

multiply years 

Near Infrared (NIR):    

 image data collected in the near infrared region of the electromagnetic spectrum 

this is closest to the radiation detected by the human eye 

Orthomosaic:     

combination of orthorectification and mosaicing to create a rectified image with 

limited distortion to form a single image from a collection of images 

Orthorectification :    

process of correcting imagery distortion by using based data such as elevation 

along with camera metadata to match map projection 

Photogrammetry:     

the scientific process(s) of developing measurements from photographs 

Point Cloud:     

consists of data points referenced to a coordinate system so that each point 

contains a value for the x, y, and z 

Random Access Memory (RAM):     

a type of computer data storage for accessing and writing data at the same speed 

regardless of the order it is accessed 

Spatialtemporal:     

term used to describe spatial data over a period of time 

Structured Query Language (SQL):     

programming language used to managing data within a relational database 

Toolbox for LiDAR Data Filtering and Forest Studies (TiFFS):     

commercial based computer software for automatic viewing and analysis of 

LiDAR point clouds 
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Urban Forest:     

a collection of trees or forest stands within a city, town or suburb 

Unmanned Aerial Vehicle (UAV):     

term used to describe a remotely operated airborne vehicle that is flown in 

absence of a human pilot 

Unmanned Aerial System (UAS):     

ground control equipment, communication system and other support equipment 

including the unmanned aerial vehicle to maintain flight mission objectives  

X,Y:     

coordinate pair point representing values of a map projection that spatially locates 

an object on the earth’s surface 

Z-Value:

spatial value of a map projection that represents elevation of a located object 
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Flow Diagram for LASTool Batch Processing 
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CHAPTER FOUR 

Identifying Forest Tree Species using Object-Based Image Analysis 

(OBIA) of Unmanned Aerial Vehicle Imagery (UAV) 

Abstract: Remotely sensed data performs an important role in modeling large ecological 

areas with a high degree of detail to aid natural resource decisions.  However, collection 

of remotely sensed products can have temporal and economical limitations.  This can be 

overcome by the use of unmanned aerial vehicles (UAV) that allow multi-temporal 

flights which are reliable and economical.  Photogrammetry analysis has often relied 

upon classification processes to extract information such as forest metrics, land cover, 

and buildings. UAV ultra-high-resolution imagery can improve photogrammetry analysis.  

Processing of ultra-high-resolution data uses a different approach than traditional 

methods.  Object Based Image Analysis (OBIA) goes beyond traditional pixel levels and 

groups similar pixels into objects.  These objects can then be classified by supervised 

processes such as Random Forest (RF) to label these objects based upon ground-verified 

data.  This work used R-Studio to develop a hybrid approach (OBIA and RF) for 

classifying individual trees at the genus/species level.  This process was successful in 

classifying tree species within an urban forest landscape (93.4%).  These results 

demonstrate that the UAV is an economically effective tool for data collection and that 
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the hybrid model can be applied within a forested landscape to delineate individual trees 

by species. 

Keywords: aerial photography, Clemson University, OBIA, GIS, random forest, tree 

classification, UAV 
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1. Introduction

Remotely sensed products have been used extensively by natural resource 

disciplines in a variety of applications.  (Madden et al., 2017)  Spatial, environmental, 

and ecosystem derived analyses, among others, depend upon remote sensing products.  

Image resolution refers to the raster cell size (width and height) and/or the total number 

of image pixels. The larger the cell size, the courser the resolution and the smaller the cell 

size, the higher the resolution, which yields more detailed information (Microbus, 2015).  

Analyses that use remotely sensed data are typically conducted at the pixel level.  These 

pixels are similar in size to that of objects detected within the data (Blaschike et al., 

2012).  Spatial and temporal analysis was performed at the pixel or spectral level and was 

limited to course resolutions.  Pixel-based analysis ignores shape, location, and neighbor 

association (Addink, 2010).  Technology improvements in sensor and data acquisition 

techniques resulted in smaller pixels with higher resolution (< 1 m).  Analysis approaches 

using these highly detailed products began to branch utilize algorithms for feature 

extraction.  Features were designated as objects (i.e., grouping of similar pixels) that are 

characterized by their spectral, spatial, and neighborhood relationships. The process of 

image segmentation (i.e., feature extraction of objects) began in the 1970s and slowly 

changed the paradigm of feature extraction.  Object Based Image Analysis (OBIA) (i.e., 

image segmentation) is now commonly used for high resolution analysis (Blaschike, 

2010, Chen et al., 2018, Ye et al., 2018).  

Human perception of image-based features is mimicked by OBIA which allows 

the computer to recognize these features and group pixels into objects through image 
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segmentation.  (Gustafson et al., 2018) The object-based approach has overtaken 

traditional pixel by pixel analysis.  (Chen and Weng, 2018) There are both strengths and 

weakness to the OBIA approach (Table 1), which is the logical choice for multispectral 

high-resolution imagery analysis (Hay and Castilla, 2006). Image segmentation can be 

implemented through algorithmic methods, each having unique importance.  (Chen and 

Weng, 2018) The separation of objects from each other and from background 

environment is the result of image processing through segmentation.  (Craciun et al., 

2018) Two general approaches for method classification are local and global 

segmentation using region-based, edge-based, and watershed approaches (Kaur and Kaur, 

2014). The mean shift segmentation algorithm is a local region-based segmentation 

method utilized for multi-resolution color images in vegetation classification (Zheng et 

al., 2009; Ferraz et al., 2012). Having a good performance reputation for unsupervised 

clustering, the mean shift algorithm can be used with a comprehensive group of images.  

(Craciun et al., 2018)  The mean shift approach analyzes the mean pixel value along a 

moving window to determine pixel clusters.  The window recalculates the mean at each 

iteration and decides which clusters should be bound together to form an object that 

exhibits certain shape, spectral, and spatial characteristics (Esri, 2018). The mean shift is 

a non-parametric density function (introduced by Fukunaga and Hostetler in 1975 

(Fukunaga and Hostetler, 1975)) that uses the nearest neighbor and kernel approach of 

pattern recognition to cluster pixels.  (Ming, et al., 2012, Wu et al., 2018) 

Classification of remotely sensed data results in the labeling of objects that 

mirrors their on-ground counterparts.  Different types of classification methods are 
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available, and each has its own degree of accuracy.  Classification methods rely upon an 

algorithmic process to assess spectral similarities and to cluster pixels into classes of 

objects.  (Hasmadi et al., 2017)  The algorithm is based on user-defined characteristics, 

performance, and measurements of accuracy (Pal and Mather, 2003). Classification can 

be divided into two distinct groups: supervised and unsupervised.  (Hasmadi  et al., 2017)  

Supervised classification uses sets of training data that represent specific classes of 

objects that define how pixels are labeled.  These training data are integrated into the 

algorithm that in turn classifies pixels based upon their similarity to the training data. 

Conversely, unsupervised classification does not use training data and the outcomes are 

based upon algorithm analysis to determine group labels and to classify pixels to 

represent ground objects (Extension, 2017). The maximum likelihood classifier (MLC) is 

a supervised classification algorithm that is widely used in remote sensing.  The MLC is 

based on the Gaussian probability density function and uses class statistics from training 

samples (Foody et al., 1992). Random Forest (RF) is a classification process that is an 

improvement over MLC when classifying high resolution imagery (Fredl, 1997, Feng et 

al., 2015).  RF uses a collection of decision trees to produce accurate classification results 

of multi-dimensional remotely sensed data.  (Belgiu and Dragut, 2016) Bagging or 

boosting is used within RF to improve accuracy.  Boosting is a weighting function while 

bagging or bootstrapping performs classification using a regression (i.e., decision) tree.  

A random set of data are selected with or without replacement and a decision tree is 

formed. Multiple iterations of bootstrap decision trees are performed in which nodes are 

split from a random set of predictors.  A random selection of variables occurs at each 
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split in the tree to minimize correlations.  RF is not influenced by noise nor does it result 

in overtraining, whereas boosting can overtrain the data due to weighting effects 

(Gislason et al., 2006; Liaw and Wiener, 2002, Zabihi et al., 2016).   

The use of unmanned aerial vehicles (UAVs) (Figure 1) is widely used by natural 

resources disciplines.  (Madden et al., 2017, Hogan et al., 2017)  UAVs provide low cost 

and flexible technology that generates ultra-high-resolution imagery (< 5 cm) (Merino et 

al., 2006; Tang, 2015). The UAV can carry different sensor types: true color (Milas et al., 

2017), hyperspectral/multispectral (Johnston et al., 2003, Shen, et al., 2018, Pasquarella 

et al. 2018, Dalponte et al., 2018), thermal (Rudol and Doherty, 2008), LiDAR (Wallace, 

2012, Lee et al., 2018), and near infrared (Hunt et al., 2010, Zhu et al., 2018).  Within 

forestry, these sensors can be used for: biomass estimations (Pena et al., 2018), forest 

regeneration (Goodbody et al., 2018, Roder et al., 2018), forest inventory (Goodbody et 

al., 2017), topography mapping (Shidiq et al., 2017) and forest monitoring (Sankey, 

2017, Dash et al., 2017)  The UAV becomes an opportunity for the forest manager to 

utilize sensor technology previously inaccessible or too costly within traditional 

deployments.  (Hartley, 2017)   

The use of UAVs for mapping forest structure and complicated landscapes (e.g., 

urban forests) is cost-efficient and the collected data provides necessary detail for object 

extraction (Feng et al., 2015). Forest structure is an integral aspect to the forest manager.  

Structure describes the architecture and forest canopy in addition to providing data 

regarding tree heights, canopy characteristics and placement of individual trees (tree 

inventory) just to name a few.  The UAV is very capable tool for obtaining the data 
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needed to extract this information for the forest manager.  (Wallace et al., 2016)  

Traditional remote sensing methods have long been utilized by natural resource 

communities.  Since its introduction, the use of UAVs for remote sensing–along with 

sensor advancements–offers an economical and efficient alternative to traditional 

methods (Colomina and Molina, 2014). 

Remotely sensed data within natural resources can become inadequate due to 

temporal inconsistencies while UAV systems are becoming increasingly popular within 

forestry applications supplanting temporal shortages.  The UAV provides flexibility 

within data collections while remaining low cost.  (Tang and Shao, 2015, Liebermann et 

al., 2018) Forestry applications benefit from low turnaround time to collect data over 

large areas.  Not only is time and costs savings realized, high spatial resolutions 

accompany UAV remotely sensed products.  UAV applications are becoming a basic tool 

for the forest manager and as new purposes are developed will be a fundamental 

necessity. (Hartley, 2017)  

Forest exist across spatially diverse landscapes that results in complex properties 

residing within remotely sensed data.  Extraction of objects from remote data requires 

object-based analysis in conjunction with point cloud data for object extraction.  Forest 

landscapes are stratified for modeling predictions using object-oriented classifications.  

(Gonzalez et al., 2018, Ruiz et al., 2018) Utilizing UAV derived high resolution imagery 

(and corresponding SfM point cloud), utilizes and necessitates the combination of OBIA 

and RF analysis for high accuracy results (when compared to pixel-pixel analysis).  (Liu 

and Abd-Elraman, 2018, Franklin and Ahmed, 2017) Not just in forestry but within 
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natural systems across many spatial environments, changes occur both from natural and 

anthropogenic causes.  The UAV is a capable tool to capture high resolution data to 

enrich datasets with accuracy to meet specific needs to help understand these complex 

dynamic changes.  Utilization of high-resolution imagery within advanced image analysis 

processes is becoming the trend for obtaining beneficial knowledge leading to more 

efficient and sound management decisions.  (Fraser and Congalton, 2018) 

Within natural resource disciplines, decisions are based on in situ data collection 

methods that provide information critical to the decision-making process.  Forest 

managers use in situ visits as the primary method of data collection which are costly and 

time consuming. (Lund, 1989, Gonzalez et al., 2018).  Recent advances in remote sensing 

provide a way to capture forest stand level data.  Light Imaging Detection and Ranging 

(LiDAR) can be used to estimate vertical forest structures (Marino et al., 2018), define 

forest characteristics such as; stand volume (Yoga et al., 2018), canopy metrics 

(Simonson et al., 2018), basal area (Stovall and Shugart, 2018), and biomass.  (Jeronimo 

et al., 2018)  In addition, this information can be used for habitat mapping (Guo et al., 

2018, Campbell et al., 2018, Garabedian et al., 2018), wildlife management (Dubayah, 

2000; Lim, 2003), and land cover classification (Ekhtari et al., 2018, Huo et al., 2018). 

High resolution imagery (< 1 m) provides added accuracy when delineating landscape 

level results (i.e., forests, pasture, crops, buildings).  In forest management, in situ 

operations define not only forest stands but also collect the composition of tree species.  

High resolution images generated by new sensor technology combined with UAVs raises 

the possibility that this technology can be used to detect and classify species of trees. The 
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objectives of this study were to: 1) utilize UAV systems to capture ultra-high resolution 

imagery, 2) determine image segmentation that can be effectively used in a classification 

model, and 3) develop a hybrid classification model based on OBIA and RF to delineate 

tree species for urban and traditional forest management.   



117

2. Materials and Methods

2.1. Study Area 

Clemson University campus has an array of research and teaching facilities across 

566 ha.  The core area of campus contains an urban forest embedded with the facilities 

that support students, faculty, and staff.  Clemson opened in 1893 based on a private gift 

from Thomas Clemson.  Clemson University is located at the southern end of Pickens 

County that is in the northwest corner of South Carolina.  In addition to the core campus, 

Clemson utilizes an additional 12,949 ha of forested and agriculture land for research.  

The study area for this work covered the core campus of Clemson University in Clemson, 

South Carolina (Figure 2) (Clemson, 2014). Within the study area, a sub-sample area was 

used to improve efficiency and to limit stress on computer resources during processing. 

2.2. UAV Aerial Imagery 

Ultra-high resolution imagery was collected using an eBee UAV (senseFly, 

Cheseaux-sur-Lausanne, Switzerland) with onboard digital camera (senseFly S.O.D.A., 

20 MP, red (660 nm), green (520 nm), blue (450 nm)) and sensor activation (12.75 x 8.5 

mm (1-inch), F 2.8-11, ground resolution of 2.9 cm at 122 m), and differential GPS for 

navigation. In flight controls and camera activation were managed by onboard autopilot. 

Multiple missions were flown on July 8, 2017 between the hours of 10 AM and 2 PM.  

Flight parameters were designated during pre-flight planning and then transferred into the 

Emotion3 flight software.  Flight lines were designated with a lateral and longitudinal 

overlaps of 70% and 60%, respectively.  Flight control was managed with a portable 
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ground control station.  Flight parameters were transferred by radio link to the autopilot 

onboard the UAV.  Landing/take off zones that adhered to topographic and photographic 

requirements were designated prior to take off.  Ground control points (GCP) were 

established across the Clemson campus.  A mapping grade global positioning system 

(GPS) (Trimble 7x, Accuracy: horizontal = 25 cm, vertical = 50 cm), was used to collect 

102 locations that were used during orthorectification to aid in horizontal control. 

 

2.3. Image Processing 

After each UAV flight, images were removed from the secure digital card and 

transferred to a computer for processing.  Camera and spatial information were tagged to 

each image’s exchangeable image file (EXIF) header.  Parameters for orthorectification 

were designated using Agisoft PhotoScan Professional Edition Ver. 1.3 (64-bit) (Agisoft, 

St. Petersburg, Russia). After loading the images, a six-step process was used to process 

the images, which included alignment, building geometries, georeferencing (i.e., GCP 

inclusion), mesh, texture, mosaic, export of the seamless image, and point cloud 

extraction. GCPs were incorporated into the process to improve the horizontal accuracy 

of the resulting image.  A text file was generated in ArcGIS 10.5.0 from the GCP feature 

class and was formatted to the Agisoft schema.  A manual process was implemented in 

Agisoft to progress through each GCP.  As a GCP is selected, the corresponding image 

(i.e., the image containing the GCP) appears in the console.  The user selects each image, 

locates the GCP, and, if needed, moves the GCP to match its location on the image.  This 
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process is repeated along each image before moving to the next GCP and repeating this 

same manual process. 

2.4. Data Collection 

The characteristics displayed when adding the new UAV mosaic image to ArcGIS 

allowed for visual identification of individual trees.  Heads up digitizing was used in 

ArcGIS 10.3.0 software ((Environmental Systems Research Institute (ESRI), Redlands, 

California) (ESRI, 2016).  An empty point feature class was established using Universal 

Transverse Mercator (UTM) NAD 1983 Zone 17N meters projection to record digitized 

points that represent trees found on the UAV image.  Using heads up digitizing 

techniques, a new point was placed on each tree object found on the image.  This 

identification process relied upon tree crown structures and spectral changes that 

occurred while viewing from the nadir perspective.  Crown tonal balances at the higher 

positions (exposed to greater sunlight) were lighter than shadows cast by interior 

branches, leaves, and adjacent crowns.  UAV pre-flight discussions focused on flight 

patterns (image overlap, time of day, weather) that would aid in crown isolation.  Along 

with these tonal effects, the concave structure of tree crowns simplified visual 

identification.  To aid in tree inventory, campus management zones were added as a 

polygon feature class to the map.  Upon completion of the tree inventory, attributes were 

added and populated with the spatial position (x, y) of each tree.   

In situ data collection followed tree inventory.  Field observations were made at 

each tree to collect DBH, total height, species, and general condition.  A Biltmore stick 

was used to capture DBH by measuring the tree stem at 1.4 m above the ground (Black, 
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2014).  Tree heights were measured using a three-point method with a Nikon Forestry 

Pro Model 8381(Nikon Inc., USA Headquarters: Melville, NY) range finder.  This three-

point method involved taking range finder measurements of the stem at eye level, the 

base of the tree, and the top of the tree.  Based on these three measurements, the range 

finder internally computed the total height of the tree.  All field collected data were 

recorded by pen and paper and were added to the tree inventory feature class using key 

coding methods in ArcMap 10.3.0.   

2.5. ArcGIS processing 

The mean shift segmentation tool of ESRI’s ArcGIS (version 10.5.0) was utilized 

to pre-process UAV imagery.  This tool uses a window that moves across an image to 

iteratively look at three key properties: spectral detail, spatial detail, and minimum 

segment size.  User input varies the characterization of each property to define objects.  

Once window processing initiates, average pixel values are computed to determine the 

object for pixel grouping.  This process is calculated for each band within the input 

image.  The completed multi-spectral object segmented image was used within the 

species classification model.  This image was divided using three methods: random, 

vertical, and horizontal. Each division was then subdivided into three zones; each zone 

(total of 9) was utilized within the classification model.  Training samples were generated 

using ArcMap 10.5.0 from the tree inventory point feature class.  A buffer (1 m) was 

generated around each tree point that produced a polygon feature class that was used in 

R-Studio (Boston, MA) classification model.  After the buffer was created, a spatial join

was utilized to add the attribute(s) of each tree to the buffer.  In addition, an attribute field 
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(TreeID) was created and populated that associated the common tree species name to a 

number for raster processing in R-Studio. 

 

2.6. R processing 

R-Studio was used to build the species classification model.  This integrated 

development environment (IDE) allows for direct code execution along with a console 

that can utilize additional tools within its syntax editor.  R is a programming language 

utilized in statistical computing.  Two versions of R are available: commercial and free 

open source, both of which can be run on Windows, macOS and Linux.  Packages, 

written by R community users, increase the dimensionality and applicability of R to many 

innovative research initiatives.  Combinations of these packages, along with included sets 

of tools, allows R to be productive and robust (R, 2017). The free open source version 

was used in this study. The species classification model took advantage of classification 

and statistical packages to produce a hybrid model (OBIA and supervised classification) 

for identifying and validating the composition of tree species across the study area.  The 

model used training samples and segmented imagery representing a subsample of the 

study area.  For each segmented image and associated training sample, individual 

classification models were constructed and implemented using R-studio. 

 

2.7. Statistical Analysis 

During the execution of the tree species classification model in R-Studio, several 

statistical libraries were employed for validation and model tuning.  The RF classification 
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algorithm was implemented using defined parameters.  Tuning parameters were 

determined to identify the number of bootstraps needed, based on error rates.  Graphs 

were generated to evaluate each classification error to determine how many bootstrap 

trees were needed at a specific error return.  To determine classification and miss-

classification results, a confusion matrix was constructed for each class.  Overall model 

validation was performed by calculating a kappa value and confidence intervals.  A final 

validation was performed in which the model was repeated against the un-used bootstrap 

data.  An Out of Bag (OOB) error was generated to examine the effectiveness of the 

model against this sample for model validation.  The OOB represents the 

misclassification rate that was applied to the leftover data sample.  A smaller OOB rate 

indicates a better model.  To further stress and validate the model, ArcGIS 10.5.0 was 

used to sub-divided the study sample into three equal parts (total of nine): random, 

vertical, and horizontal sub-divisions.  The model was iterated across each and results 

were exported to a working directory.  
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3. Results and Discussion

3.1. UAV Aerial Imagery 

A total of three eBee UAV flights were conducted within the study area on July 8, 

2017 between the hours of 10 AM and 2 PM that captured ultra-high-resolution true color 

images across the study boundary (Figure 2).  Following pre-flight preparations, the UAV 

was launched and a total of 1,392 images were collected during the three flights (Table 

2).  Images with resolutions of 2.4-3.5 cm were captured at an altitude of 118.8 m.  These 

parameters and image resolutions were based on a previous forest canopy and landscape 

diversity study (Anderson and Gaston, 2013).  Autonomous take-offs and landings were 

completed in open landing zones (minimum 10 m x 15 m) with communication between 

the UAV and ground control mediated by a 2.4 GHz radio universal serial bus (USB) 

link.  The UAV did not encounter any issues during flight and provided an economical 

and effective alternative for capturing true color images as compared to traditional 

methods.   

3.2. Image Processing 

  Using Agisoft, orthorectification was completed to result in a seamless image for 

the mission flown on July 8, 2017. Inclusion of GCPs within the orthomosaic process 

resulted in increased horizontal accuracies (< 15 cm) and is necessary for UAV image 

processing.  The resulting seamless orthomosaic image (Figure 3) is a four-band image 

with a resolution of 4.1 cm.   
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3.3. Data Collection 

Utilizing the high-resolution seamless image trees were identified by tonal 

signatures and structure of their crowns.  This tree inventory was beneficial to assisting in 

situ field data collection.  Field data collection was implemented, and data was 

transferred to computer via key coding.  This manual operation was evaluated in terms of 

time between collection methods; in field and point cloud processing.  A realized savings 

(~29 days) was found by using point cloud processing for field inventories.  Tree 

inventory resulted with a total of 6,920 trees in the study area.  These results contained 96 

unique tree species spread across 51 genera.  There was a total of 39 unique tree species 

representing a total of 332 trees (Table 3) distributed across the sub-sample boundary 

used for hybrid model analysis. 

 

3.4. ArcGIS Processing 

ArcGIS 10.5.0 was used in several applications to prepare data for the 

classification model.  The large file size of the original mosaic image could not be 

processed due to limited computer resources (Two Xeon Processors (8 Core Each) Duel 

Thread (Total 32 Threads), 96 Gb Random Access Memory (RAM), Nvidia GeForce 

GTX 10 Series Video Card).  Data was extracted for subsequent processing from a subset 

of the study area.  In ArcMap, a polygon feature class was created to represent the study 

area (Figure 4).  This polygon feature class was used to clip both the orthomosaic and 

training sample data.  To stress and validate the classification model, the original 
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subsample was divided into random, vertical, and horizontal sub-divisions (Figure 5) and 

data were extracted using the same clip technique for each of the sub-divisions.   

OBIA modeling required a segmented image.  Several segmentation routines are 

available to prepare the image for processing, including watershed (Yang et al., 2017), 

mean shift (Ellis and Mathews, 2018), K-means (Niedzielski et al., 2017), normalized 

graph, interactive, and maximized clustering (Liu et al., 2012).  The mean shift 

segmentation was selected based on its characteristics for remote sensing applications 

relative to the other techniques (Mohan and Leela, 2013, Maschler et al., 2018, Ellis and 

Mathews, 2018, Silalahi et al., 2018).  Several commercial and open source applications 

are available for mean shift segmentation: QGIS (www.qgis.org/en/site), SAGA 

(www.saga-gis.org/en/index.html), GRASS (https://grass.osgeo.org), Orfeo (www.orfeo-

toolbox.org), ArcGIS (www.ESRI.com), and Ecognition (http://www.ecognition.com).  

Several of these applications were used to determine the best segmented image for 

species classification.  Some of the applications (QGIS, SAGA and GRASS) produced a 

single band output while ArcGIS and Ecognition produced a three-band image.  

Ecognition is robust and relevant, however the user needs aptitude with the software 

before use.  ArcGIS contained useful parameters for mean shift implementation and was 

executed directly from a tool menu.  The mean shift results from ArcGIS (Figure 5) were 

selected for use within the classification model. 
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3.5. R processing 

The hybrid classification model (Appendix A) was developed in blocks to 

differentiate the model implementation steps.  These blocks of code include library 

designation, loading data, data preparation, tuning, RF classification, model validation, 

predictions, and exporting results.  Code was also added to aid with model efficiency and 

to take advantage of parallel computer processing.  Upon completion of code, 

development debugging was completed, and trials were executed.  These trials offered 

insight into tool and model efficiency.  

Single band segmented images (SAGA, ORFEO, QGIS) did not produce quality 

results (OOB mean error of 17.89%).  It was decided to use a multi-band segmented 

image as input for the model.  The multi-band segmented image improved the results 

significantly (61.5% improvement) as compared to the model classification results 

generated with the single band segmented image.  These results support the use of ultra-

high-resolution images captured by UAV along with RF to classify trees based on genus 

and species. 

To further extend and validate the multiband results, additional model iterations 

were performed.  To stress the model, the sub-sample boundary was divided (Figure 5) to 

determine how the model would perform.  The results were similar across each sub-

division with the exception of Random Sec 2 and Horizontal Sec 0 (Table 4), which had a 

40.9% and 37.9% higher OOB error, respectively.  The classification model was used to 

test possible explanations for these results.  In ArcMap 10.5.0, training samples that 

intersected between both sub-divisions were selected and used to create a new feature 
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class.  Intersected training samples were selected based upon the assumption that the high 

OOBs occurred at the same location within both sub-divisions.  Each sub-division 

segmented image along with this training sample was input into the classification model 

and executed.  Both results show that Foster’s Holly (Aquifoliaceae ilex, TreeID 11) was 

misclassified as Crepe Myrtle (Lagerstroemia indica, TreeID 6).  The model also 

indicated that the reverse (Crepe Myrtle classified as Foster’s Holly) was not true, 

indicating an accurate species classification of Crepe Myrtle.  Additional research is 

needed to determine the cause of this misclassification, but it is surmised that canopy 

structure and training sample size (buffer radius too large or small) are possible causes.   

 

3.6. Statistical Analysis 

Random Forest uses a decision tree process and averaging to determine object or 

pixel classification.  Using RF has been proven highly effective for classification of high-

resolution imagery from UAV acquisitions.  (de Castro, et al., 2018)  The RF method 

allows the model to assemble the combination of all trees rather than individual parts of 

the decision tree. The RF can grow a significant number of models with averaged 

outcomes or voted on to find the best model for classification of each species.  (Melville 

et al., 2018, Berhane et al., 2018) RF can grow each tree as far as possible; however, a 

source of randomness is needed to make each tree unique.  There are two ways to achieve 

randomness.  Bagging or bootstrapping takes a randomized sample with replacement.  

Approximately one-third of the sampled data is omitted when bootstrapping. (Teluguntla 

et al., 2018)  Evolution of decision tree growth (Figure 6) differs slightly when a different 
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sample set for each tree is used.  Strong variables will still dominate the first decision in 

most tree results (Stephens, 2016). Using tuning methods, a graph was generated to 

determine the total number of trees (ntree variable) (Figure 7).  From this graph, error 

rates for each class flatten out past 50 trees except for one class that begins to diminish at 

200 trees, resulting in an ntree of 200.  OOB error rates are at their lowest rate of return at 

approximately 60 trees, and then begin to stabilize at 200 trees.   

A second randomness application is using only a subset of available variables.  By 

default, the number of variables is the square root of the total. (Berhane et al., 2018)  The 

selection of variables changes for each node in the decision tree to allow for additional 

randomness. This number can be manually set by the user using the mtry parameter.  The 

current model is based on a three-band segmented image, resulting in three variables. 

Reduction of mtry reduces correlation and strength; conversely increases of mtry result in 

increased correlation and strength.  The square root default limited the overall 

effectiveness of the model and a decision was made to use all variables, resulting in mtry 

being set to three.  Randomness in the RF decision tree generates a collection of unique 

trees, with each collection classified differently.  From the culmination of unique trees, 

votes are tallied and used to determine classification assignments.  This modeling system 

avoids over-fitting by growing a multitude of trees where mistakes are averaged across 

the results (Stephens, 2016). 

R-Studio code was used to generate a graph (Figure 8) that was used to determine 

variable importance. This graph shows the mean decrease in accuracy and the mean 

decrease Gini.  (Berhane et al., 2018)  The order of each variable in terms of importance 
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is from the top down (most important to least important). The mean decrease in accuracy 

was due to the exclusion of a variable during OOB error calculations.  The graph shows 

that band 3 is more important than band 2 and band 1.  The mean decrease in Gini refers 

to a coefficient that measures how each variable affects the homogeneity of nodes and 

leaves in the decision tree.  This coefficient measures variable importance as compared to 

the impurity index at each tree node.  These results reveal band 2 is more heterogeneous 

than band 1 and band 3 (Cutler et al., 2007; ListenData, 2017; Rodriguez-Galiano et al., 

2012).  

At the completion of RF classification, a confusion matrix was code generated in 

R-Studio.  A matrix table was constructed and used to describe classification model

performance. (Teluguntla et al., 2018)  Objects at specific locations were classified and 

accuracy was assessed based on how well the objects were correctly classified.  

Comparisons of the classified objects vs. known classifications were made within a 

confusion matrix, with informative and analytical descriptions used to encapsulate 

accuracy (Lewis and Brown, 2001).  The confusion matrix further dissected accuracy 

across individual classes to indicate model success (Story and Congalton, 1986).  A 

confusion matrix (Table 5) was constructed during each model iteration to validate both 

model and class accuracy.   

Analytical measurements were calculated from the confusion matrix to describe 

the results of each tree species classification (Table 6).  Accuracy (AC), recall (true 

positive rate TP), false positive rate (FP), true negative rate (TN), false negative rate 
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(FN), precision (P), specificity, sensitivity, and F-Score are measurements derived from 

the confusion matrix.  Explanations of these measurements can be illustrated, where: 

A is the number of correct predictions that are negative 

B is the number of incorrect predictions that are positive 

C is the number of incorrect predictions that are negative 

D is the number of correct predictions that are positive 

AC = A + D / A + B + C + D (1) 

TP = D / C+D (2) 

FP = B / A + B (3) 

TN = A / A + B (4) 

FN = C / C + D (5) 

P = D / B + D (6) 

Specificity identifies the probability that the results are true negatives.  Higher specificity 

values identify classifications that are not misclassified.  Sensitivity is the probability that 

results are true positives.  Higher sensitivity values identify classifications that are 

classified correctly (Cutler et al., 2007, Ohsaki et al, 2017). Precision or confidence is the 

positive predictive value representing the proportion of predicted positive results that are 

positive.  To compare precision and sensitivity, the harmonic average is calculated to 

formulate the F-Score.  The F-Score yields a summary of both metrics (precision and 

sensitivity) as a single value for evaluation (Ericson and Rohm, 2017). In addition to 

individual class measurements, model measurements were calculated (Table 4), including 

Kappa, model accuracy, confidence interval (CI), OOB, and p-value.  Kappa measures 
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how well RF classified results as compared to training samples.  Kappa indicates how 

well the classification model performed, which represents the expected model and 

classification accuracy. 

Model summaries (Table 4) had an OOB average (5.7% - 7.98%) that was 

consistent with whole model results (6.88%) across the sub-sample divisions.  Model 

accuracies (92.0% - 94.3%) also exhibited a close relationship to the results generated 

from the whole segmented image (93.1%), with small confidence interval ranges.  P-

values and sub-division Kappa values (90.6% - 93.5%) were also consistent with whole 

classification (92.5%) results.  The whole segmented image model results indicate a close 

relationship among sub-division iterations.  Sub-division results generated from stressing 

the classification model show consistency to the model when applied to the whole 

segmented image, for qualitative and quantitative validation of the tree classification 

process. 

Using a sample boundary to execute the R classification model showed good 

performance in the identification of tree species.  Applying stress to the model with 

implementation across sub-sample boundaries produced similar results.  Although 

computer resource limitations required sample parameters, these results indicate that the 

model should perform well across the larger study area.  UAV ultra-high-resolution 

images showed greater detail across multiple bands, resulting in increased classification 

accuracy (as compared to single band segmentation).   
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4. Conclusions

The objectives of this research were to evaluate the use of a UAV system to 

capture ultra-high-resolution images for use in a hybrid tree species classification model 

for individual tree identification.  The images were useful when converted to multi-band 

segmented images then analyzed by both the OBIA and RF classifier. Multi-band 

segmented images provided a 61.5% improvement in tree species classification compared 

to single band segmented images. Tree species classification was executed using a 

combination of open source and commercial software applications.  ArcGIS was effective 

in using the mean shift algorithm to produce a segmented three band image for data 

preparation.  R-studio provided an effective and flexible environment to develop a hybrid 

(OBIA and supervised classification) model with statistical validation. These results 

showed model efficiency within the urban forest and the model is expected to perform 

equally well in traditional forest applications. Further research is needed to identify why 

two trees (Crepe Myrtle and Fosters Holly) were misclassified and to apply the model 

against a spatially discrete set of tree species.  Overall results from this study showed that 

ultra-high-resolution images along with a hybrid approach (OBIA and RF classifier) was 

effective (mean accuracy 94.3%) in identifying individual tree species down to the 

genus/species taxonomic level.  
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         Fixed Wing Ebee        http://www.sensefly.com/products/swinglet-cam 

Multicopter        http://diydrones.com/profiles/blogs/a-newbies-guide-to-uavs

Figure 1 General classification categories of Unmanned Aerial Vehicles (UAV) 

http://www.sensefly.com/products/swinglet-cam
http://diydrones.com/profiles/blogs/a-newbies-guide-to-uavs
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Figure 2 Study boundary used for Unmanned Aerial Vehicle (UAV) implementation to 

collect high resolution imagery.  Green dots represent geodetic control points used to 

correct image spatial inaccuracies if they exist. 
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Figure 3 Completed georeference mosaic of Clemson University.  This seamless 

orthomosaic was used for object-based species classification. 
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Figure 4 Subset boundary polygon used to extract data for classification model in R-

Studio 
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A       B 

C       D 

Figure 5 Result of using the Mean Shift Segmentation tool in ArcGIS 10.5.0.  Segmented 

results were sub-divided:  A. Whole Section B. Random division C. Horizontal division 

and D. Vertical division for processing in R-Studio  
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Figure 6 Decision tree results from running the classification model in R-Studio against 

the whole segmented image Note: For clarity, only the branch for band 1 is shown 
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Figure 7 Class Error Rate graph showing change as number of bootstrapping trees 

increases Note: Graph is from using the Whole Section model 
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Figure 8 Graphs showing segmented image band importance for use in the classification 

model Note: Graph is from using the Whole Section model 
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Table 1 Strengths and Weakness of Object Based Image Analysis (OBIA) proposed by 

Hay and Castilla (2006). 

Strengths Weakness 

Image segmentation mimics human 

perception of image objects 

Current OBIA software has complicated 

options 

User can take advantage of non-parametric 

techniques while reducing computational 

load 

Useful features contain shape, texture, and 

context that are absent with pixel based 

methods 

Large datasets pose a challenge especially 

with multispectral images 

Heterogeneity can lead to different 

segmentations with no unique solution 

Objects are readily utilized within vector 

based application such as GIS 

Limited accuracy assessment of 

segmentation processes 

Commercial and Open Source software 

solutions are built upon OBIA 

Poor understanding of scale and 

hierarchical relationships at different 

resolutions 
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Table 2 Arial coverage by Unmanned Aerial Vehicle (UAV) flights in summer of 2017 

Flight Number of photos Date 

F01   167 7/8/2017 

F02   597 7/8/2017 

F03   628 7/8/2017 

Total 1392 ------------- 
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Table 3 Tree species distribution within sub-sample boundary 

Common Genus Species 

Tree 

Count 

Avg. DBH 

(cm) 

Avg.Height 

(m) 

Avg.Canopy 

(m
2
) 

Tree 

ID 

American Beech Fagus grandifolia 1 35.56 12.80 1085.73 35 

American Holly Ilex opaca 22 32.21 15.77 1038.07 1 

Black Maple Acer nigrum 6 48.68 18.78 1895.85 2 

Bradford Pear Pyrus calleryana 18 42.47 18.58 1465.26 3 

Bur Oak Quercus macrocarpa 1 30.48 17.18 370.62 31 

Chinese Elm Ulmus parvifolia 4 53.34 19.49 1238.37 4 

Common Fig Ficus carica 1 7.62 20.85 1207.31 32 

Crape myrtle Lagerstroemia indica 41 13.13 12.90 1715.05 6 

Deodar Cedar Cedrus deodara 6 102.45 17.06 1305.30 7 

Eastern Red Cedar Juniperus virginiana 6 70.27 11.91 323.22 8 

Eastern White Pine Pinus strobus 1 43.18 8.96 302.50 9 

Flowering Dogwood Cornus florida 27 10.35 16.49 1300.81 10 

Foster's Holly Aquifoliaceae ilex 60 12.23 15.94 1501.31 11 

Ginkgo Ginkgo biloba 3 44.87 10.36 218.11 12 

Golden raintree Laburnum x watereri 1 22.86 8.83 243.26 36 

Green Ash Fraxinus pennsylvanica 1 38.10 10.23 481.18 37 

Kousa Dogwood Cornus kousa 1 7.62 18.97 685.02 13 

Live Oak Quercus virginiana 8 94.61 16.18 2492.81 33 

Norway Spruce Picea abies 1 66.04 22.51 543.97 34 

Pecan Carya illinoinensis 1 66.04 20.59 4352.38 38 

Persian Ironwood Parrotia persica 1 10.16 4.78 26.06 39 

Pin Cherry Prunus pensylvanica 3 16.09 9.77 214.59 23 

Pin Oak Quercus palustris 3 53.34 15.14 868.27 24 

Port Orford Cedar Chamaecyparis lawsoniana 2 76.20 17.22 1538.99 14 

Red Maple Acer rubrum 9 41.20 21.26 994.69 25 

River Birch Betula nigra 1 55.88 18.71 519.92 15 

Sawtooth Oak Quercus acutissima 1 45.72 15.39 644.21 16 

Scarlet Oak Quercus coccinea 4 77.47 18.42 1470.91 17 

Silver Maple Acer saccharinum 1 30.48 8.18 160.97 26 

Southern Magnolia Magnolia grandiflora 17 58.57 17.93 1512.24 18 

Star Magnolia Magnolia stellata 1 38.10 12.32 341.87 40 

Sugar Maple Acer saccharum 4 86.36 20.44 996.37 27 

Swamp Chestnut Oak Quercus michauxii 1 30.48 13.15 604.26 28 

Trident Maple Acer buergeranum 1 12.70 19.53 867.42 19 

Water Oak Quercus nigra 5 80.26 23.16 1449.97 29 

Wax Myrtle Myrica cerifera 1 10.16 6.58 220.96 30 

White Oak Quercus alba 35 83.75 21.43 2240.45 20 

Willow Oak Quercus phellos 28 74.48 20.54 1976.97 21 

Yoshino Cherry Prunus x yedoensis 4 41.28 13.02 925.22 22 
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Table 4 Classification model iteration results when applied to the sub-sample area and 

each sub-division 

Model OOB Accuracy        95% CI NIR P-Value [Acc > NIR]      Kappa 

Whole 6.88% 0.9312 (0.9306, 0.9319) 0.1811 < 2.2e-16 0.9246 

  Whole Area Sub-Divisions 

Random Sec 1 9.65% 0.9032 (0.9017, 0.9047) 0.2817 < 2.2e-16 0.8839 

Random Sec 2 2.66% 0.9734  (0.9728, 0.974) 0.1668 < 2.2e-16     0.9705 

Random Sec 3 11.64% 0.8836 (0.8821, 0.885) 0.3177 < 2.2e-16   0.8628 

Average 7.98% 0.9201 0.2554 0.9057 

Horizontal Sec 0 11.08% 0.8892  (0.8879, 0.8905) 0.2136 < 2.2e-16 0.8751 

Horizontal Sec 1 3.46% 0.9654 (0.9646, 0.9662) 0.3056 < 2.2e-16 0.9597 

Horizontal Sec 2 4.21% 0.9579 (0.9569, 0.9588) 0.2348 < 2.2e-16 0.9509 

Average 6.25% 0.9375 0.2513 0.9286 

Vertical Sec 0 4.39% 0.9561 (0.9551, 0.957) 0.3334 < 2.2e-16 0.9476 

Vertical Sec 1 9.23% 0.9077  (0.9066, 0.9088) 0.1768 < 2.2e-16 0.8967 

Vertical Sec 2 3.47% 0.9653 (0.9644, 0.9662) 0.2327 < 2.2e-16 0.9611 

Average 5.70% 0.9430 0.2476 0.9351 

Sub-Division 

Average  6.64% 0.9335 0.2514 0.9231 
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Table 5 Confusion matrix results from the Vertical Sec 2 sub-division.  Values outside 

diagonal are considered miss-classified pixels 

Reference 

Predicted X1 X6 X7 X8 X10 X11 X12 X14 X15 X17 X18 X20 X21 X22 X25 X29 X33 X34 

1 11155 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 

6 1 16720 0 1 0 0 0 0 0 6 0 0 1 0 0 0 0 0 

7 0 0 5566 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 1864 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 9276 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 5582 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 1 0 0 1396 0 4173 0 0 0 0 1 0 0 0 0 0 0 

14 0 0 0 0 0 0 388 3322 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 1854 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 1853 0 1 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 14862 0 0 0 0 0 0 0 

20 1 0 1604 0 241 0 0 1 0 0 0 35299 27 0 0 0 0 0 

21 0 1 0 0 0 0 0 0 0 0 0 0 16698 0 0 0 0 1 

22 0 0 0 0 0 0 0 0 0 0 0 0 1862 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7439 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1858 0 0 

33 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 14846 0 

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1857 
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Table 6 Example of analytical measures computed from Random Sec 1 sub-division 

confusion matrix 

TP TN FP FN AC Precision Sensitivity Specificity F- Score

216 131337 1 0 100.00 99.54 100.00 100.00 99.77 

29742 107159 1182 1 99.14 96.18 100.00 98.91 98.05 

41807 89451 7899 814 93.78 84.11 98.09 91.89 90.56 

3709 461131 2 0 100.00 99.95 100.00 100.00 99.97 

13964 117270 1624 3618 96.16 89.58 79.42 98.63 84.20 

16718 123874 26 3686 97.43 99.84 81.93 99.98 90.01 

3609 134856 1 1664 98.81 99.97 68.44 100.00 81.26 

2793 128441 0 1865 98.60 100.00 59.96 100.00 74.97 

3716 133191 0 0 100.00 100.00 100.00 100.00 100.00 

6781 131005 1 862 99.38 99.99 88.72 100.00 94.02 

610 136886 0 1836 98.68 100.00 24.94 100.00 39.92 

5565 131335 1182 1 99.14 82.48 99.98 99.11 90.39 

152 667462 2749 0 99.59 5.24 100.00 99.59 9.96 

0 135366 0 320 99.76 0.00 0.00 100.00 0.00 

1852 135048 0 0 100.00 100.00 100.00 100.00 100.00 
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Glossary 

Agisoft:     

a commercial based 3D reconstruction software that uses digital photos.  

The professional edition allows authoring of geographic information system (GIS) 

data to produce seamless imagery and 3D point clouds 

ArcGIS:     

a commercial based geographic information system (GIS) developed by 

Environmental Systems Research Institute 

Autonomous: 

operation of a UAV by onboard computer or ground based pilot by remote control 

Diameter at Breast Height (DBH): 

measurement location to obtain tree diameter usually at 4.5’ off the ground 

Geodetic Control Point (GCP):     

global positioning system (GPS) derived point that 

can be used to accurately position non-spatially referenced geographic  data by 

serving as reference object that can be tied to its complimentary location in 

geographic data  

Geographic Information System (GIS):     

a computer based software that captures, manages, analyzes, edits and displays 

geographic data 

Geotagging:     

process of adding geographic metadata to photographs or imagery 

Global Positioning System (GPS):     

satellite based navigation system that provides locational information 

Ground Control Station:     

facilities and computer hardware that maintains human control over unmanned 

aerial vehicles during flight 
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Heads-Up-Digitizing:     

GIS process for creating feature objects from data (i.e. imagery) displayed on a 

computer screen 

Hyperspectral:     

imaging technique that collects data by scanning objects across the 

electromagnetic spectrum using three techniques: scanning spatial images, 

sequential capture of full spectral data, or capture spatial and spectral data at the 

same time 

Imagery: 

 images representing spatial objects on the earth’s surface 

Light Detection and Ranging (LiDAR): 

remote sensing technique that uses a laser to measure distance by analyzing 

reflected light of a laser illuminated object on the earth 

Mosaic:     

process of creating a single image from a collection of images 

Multi-Spectral:     

 process of capturing image data at specific frequencies of the electromagnetic 

spectrum 

Near Infrared (NIR):    

 image data collected in the near infrared region of the electromagnetic spectrum 

this is closest to the radiation detected by the human eye 

Orthomosaic:     

combination of orthorectification and mosaicing to create a rectified image with 

limited distortion to form a single image from a collection of images 

Orthorectification:    

process of correcting imagery distortion by using based data such as elevation 

along with camera metadata to match map projection 
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Photogrammetry:     

the scientific process(s) of developing measurements from photographs 

Spatialtemporal:     

term used to describe spatial data over a period of time 

Urban Forest:     

a collection of trees or forest stands within a city, town or suburb 

Unmanned Aerial Vehicle (UAV):     

term used to describe a remotely operated airborne vehicle that is flown in 

absence of a human pilot 

Unmanned Aerial System (UAS):     

ground control equipment, communication system and other support equipment 

including the unmanned aerial vehicle to maintain flight mission objectives  

X, Y:     

coordinate pair point representing values of a map projection that spatially locates 

an object on the earth’s surface 

Z-Value:

spatial value of a map projection that represents elevation of a located object 
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R Code for OBIA 

#Import Libraries 

library (raster) 

library (rgdal) 

library (randomForest) 

library (caret) 

library (randomcoloR) 

library (xlsx) 

library(xtable) 

library(readxl) 

library(ROCR) 

library(pROC) 

library(reprtree) 

library (doParallel) 

library(RColorBrewer) 

# Load Data 

trainSeg1 <- shapefile(“Path to training data”) 

imgSeg1 <- brick("Path to segmented image") 

colnames(trainSeg1) 

# Attach Labels 

roi_dataSeg1 <- extract(imgSeg1, trainSeg1, df= TRUE, na.exclude) 

roi_dataSeg1$desc <- as.factor(trainSeg1$CID[roi_dataSeg1$ID]) 

# Set Seed Value for Reproducibility 

set.seed(1234567890) 
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#Shorten Column Names 

colnames(roi_dataSeg1) 

colnames(roi_dataSeg1) <- c('ID', 'b1', 'b2','b3', 'desc') 

colnames(roi_dataSeg1) 

#Create Cluster to process random forest in parallel 

cl <- makeCluster(detectCores()) 

registerDoParallel(cl) 

# Clear out memory 

gc() 

# Run Random Forest Importance Matrix 

beginCluster() 

rfSeg1 <- randomForest(desc ~ b1 + b2 + b3, data= roi_dataSeg1, importance= TRUE, 

mtry = 4, ntree= 200, trControl = rfSeg1Control, tuneGrid = rfSeg1Grid,metric = 

"Kappa", maximize = true, na.action=na.exclude) 

print(rfSeg1) 

head(rfSeg1) 

names(rfSeg1) 

endCluster() 

# Create Confusion Matrix Metrics and export 

#Determine if levels and lengths are equal if not use code to make equal 

identical(levels(rfSeg1$predicted),levels(roi_dataSeg1$desc)) 

identical(length(rfSeg1$predicted),length(roi_dataSeg1$desc)) 

length(rfSeg1$predicted) 

length(roi_dataSeg1$desc) 
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#Code to make length and levels equal if needed 

# noNA<-((is.na(roi_dataSeg1$desc)+is.na(roi_dataSeg1$Seg1))==0) 

# n<-is.na(roi_dataSeg1$desc) 

# o<-is.na(rfSeg1$predicted) 

# noNA<- (o+n)==0 

# conftbl <- confusionMatrix(rfSeg1$predicted,roi_dataSeg1$desc[noNA]) 

#Create Confusion Matrix 

conftbl <- confusionMatrix(rfSeg1$predicted,roi_dataSeg1$desc) 

print(conftbl) 

n<- as.table(conftbl$byClass) 

m<-as.matrix(conftbl$byClass) 

# Write table to memory (if needed open Excel and select cell then Paste, Save excel file) 

otherwise it will write it to an excel file 

# write.table(m,'clipboard',sep='\t') 

write.xlsx(m, "Path To File") 

#Export Confusion Table 

tbl <- (rfSeg1$confusion) 

write.xlsx(tbl, "Path To File") 

TBRSeg1 <- read_excel("Path To File") 

# Read Table from Excel to make new data frame to Plot ROC 

tblA<-read_excel("Path to File") 

SS <- tblA[,2:3] 
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#Plot ROC 

plot(SS$Specificity, SS$Sensitivity) 

plot(roc(SS$Sensitivity,SS$Specificity, direction="<", col ="yellow")) 

#Install tree library to create decision tree model 

options(repos='http://cran.rstudio.org') 

have.packages <- installed.packages() 

cran.packages <- c('devtools','plotrix','randomForest','tree') 

to.install <- setdiff(cran.packages, have.packages[,1]) 

if(length(to.install)>0) install.packages(to.install) 

library(devtools) 

if(!('reprtree' %in% installed.packages())){ 

  install_github('araastat/reprtree') 

} 

for(p in c(cran.packages, 'reprtree')) eval(substitute(library(pkg), list(pkg=p))) 

# Plot decesion tree 

tr<-getTree(rfSeg1, 1, labelVar="True") 

print (tr) 

reprtree:::plot.getTree(rfSeg1, cex=0.5) 

# Plot err.rate with OOB 

coll<-colorRampPallet(brewer.pal(8,"Dark2"))(100) 

maxy <- max(rfSeg1$err.rate) 

co_set<- rainbow(25) 

layout(matrix(c(1,2),nrow=1),width=c(4,1))  

par(mar=c(5,4,4,0)) #No margin on the right side 

plot(rfSeg1, ylim=c(0,maxy), main="Class Error Rate Among N-Trees", col=co_set) 

par(mar=c(5,0,4,2)) #No margin on the left side 
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plot(c(0,1),type="n", axes=F, xlab="", ylab="") 

legend("top", colnames(rfSeg1$err.rate),cex=0.8,fill=co_set) 

#cols<-rainbow(16) 

#fill=1:16 

#  Plot err rate 

plot(rfSeg1$err.rate[,1], ylab="Error Rate") 

layout(matrix(c(1,2),nrow=1),width=c(4,1))  

par(mar=c(5,4,4,0)) #No margin on the right side 

plot(rfSeg1, log="y") 

par(mar=c(5,0,4,2)) #No margin on the left side 

plot(c(0,1),type="n", axes=F, xlab="", ylab="") 

# Model Accuracy 

TPSeg1 <- sum(diag(rfSeg1$confusion))/sum(rfSeg1$confusion) 

print (TPSeg1) 

# Misclassification Rate 

MRSeg1<- 1-sum(diag(rfSeg1$confusion))/sum(rfSeg1$confusion) 

print(MRSeg1) 

# Plot Variable Importance Measures 

varImpPlot(rfSeg1) 

# Classify 

img_classSeg1 <- imgSeg1 

names(img_classSeg1) <- c('b1','b2','b3') 

# Predict 
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img_predSeg1 <- predict(img_classSeg1, model = rfSeg1, na.rm = T) 

# Plot Classification 

# Create color map 

colors <- randomColor(100, hue = c(" ", "random", "red", "orange", "yellow","green", 

"blue", "purple", "pink", "monochrome"), luminosity = c(" ","random", "light", "bright", 

"dark")) 

colors <- randomColor(100, hue = "random", luminosity = "random") 

plotRGB(imgSeg1, r=1, g=2, b=3, stretch="lin") 

plot(img_predSeg1, col=colors) 

plot(rfSeg1$err.rate[] 
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CHAPTER FIVE 

Conclusions: This research utilized recent advancements in UAV and photogrammetry 

software and was focused on determining if this combination of technologies could 

produce accurate field measurements for arboriculture and forestry. The use of UAVs 

provides high-resolution photos, but few studies have determined the efficacy of using 

UAV-derived products for forest management.     

In chapter two, each 3D point cloud was compared to one another and to aerial 

LiDAR.  Near analysis was used to compare point clouds and found spatial similarity 

between clouds (LiDAR, Leaf off and Leaf on).  This trend was present for all points and 

when these points were stratified based on point classifications.   Further comparison of 

elevations (generated from each point cloud) to survey grade GPS elevations 

demonstrated that point clouds (LiDAR, Leaf on, Leaf off) were nearly identical with 

differences of 0.21%, 0.34 % and 4.2% respectively.  Building features showed some 

difference during spatial analysis and elevation comparisons.  This may be because of 

miss-classification of points during the model processing.  The miss-classification may 

have been caused because of classification parameters, detection algorithms, and or both.  

Further research is needed to determine the cause of these differences, but there is no 

indication that these errors limited the applicability of the UAV-point cloud for 

arboriculture and forestry applications.   

Chapter three resulted in a model that can extract standard forest metrics 

(diameter at breast height (DBH), tree heights and crown metrics (radius, volume)) from 

point clouds.  Using point cloud processing techniques discussed in chapter two, a model 
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was developed to measure tree heights and crown metrics from point clouds using third 

party applications developed for LiDAR.  Tree heights from point clouds where 

compared to measured tree heights using hypothesis testing and found that pvalues (= 

0.76) where not sufficient to reject the hypothesis that tree heights were equal at a level 

of significance of 0.05.    These results show tree heights can be extracted from 3D and 

LiDAR point clouds with confidence that they will be representative of measured values.   

DBH could not be extracted directly in like manner to tree heights.  A linear regression 

model was developed and resulted in an algorithm to estimate DBH from the point cloud 

model.    The results show through hypothesis testing that the observed DBH of trees is 

equal to the measured DBH with, at the level of significance of 0.05, a pvalue = 0.94 was 

not able to reject the hypothesis.  DEM creation from each point cloud show very little 

difference (UAV = 0.123 m, LiDAR = 0.114 m) between means.  Further hypothesis 

testing of mean concludes at the level of significance (α = 0.05) the means are equal (p = 

0.058) (CI = (0.1695, 0.1750)).       Chapter three shows that forest metric extraction and 

DEM creation from 3D and LiDAR point clouds can be successful. 

Chapter four concludes this study with results that show species classification of 

trees at the genus/species level can be accomplished with UAV high resolution imagery.  

Traditional classification techniques could not be used with UAV imagery because of the 

high spatial resolution.  A new model was successfully developed to utilize object-based 

image analysis along with supervised classification using random forest methodology.      

The resulting model was developed using RStudio and comparisons shows that the 

classification model had an overall accuracy of 94.3 % when identifying individual tree 
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species.    Further research is needed to determine if modification of flight parameters and 

or temporal considerations would improve the model.   

Forestry, both traditional and arboricultural, will benefit from this study.  Field 

based tree measurements are both expensive and time consuming.  Taking advantage of 

technological advances in remote sensing techniques and products allows the traditional 

data collection techniques to become more efficient saving time and reducing costs using 

UAV technology.  This study represents opportunities for further application and 

research.  The UAV has proven effective and further investigation and expansion of these 

results are warranted to extend and improve upon them to further test and examine 

applicability.  This research does not represent the replacement of traditional methods but 

rather a new tool(s) in forest management. 


