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Abstract

In this dissertation, our objective is to determine the impact of air temperature and rainfall

on soil temperature with proximity to sidewalk. First, we concerned the many missing values in

our data set. Some traditional and commonly used methods of imputation are introduced and

then applied to the data set. Then, we concerned the relationships among the soil temperature, air

temperature, and rainfall data. Since these data are time series, Granger Causality is used to estimate

the relationships. Lastly, we focused on the analysis of the actual study design. The four distances are

considered as treatments and the three locations were considered blocks resulting in a Randomized

Complete Block Design (RCBD). Results from the time series analyses were incorporated into the

study design to determine the effect of sidewalk on soil temperature.
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Chapter 1

Introduction

1.1 Background and Motivation

Urbanization refers to the population shift from rural to urban areas, the gradual increase

in the proportion of people living in urban areas, and the ways in which each society adapts to

the change (Satterthwaite, McGranahan & Tacoli, 2010). Urbanization has become a powerful

environmental force as the world’s urban population continues to increase. One of the examples

of the urbanization process is the creation of sidewalks. These sidewalks, commonly made from

materials such as wood, brick, stone, or concrete provide ease of access. However, these sidewalks

have caused many plants species to underperform in several aspects. For example, studies have

shown that fruit plants close to concrete sidewalks tend to have reduced yield (Shi, Shao, Liu &

Wang, 2009). In addition, sidewalks also cause plants to have reduced life spans. The cause of this

reduced yield and life span is often assumed to be heat produced from the sidewalk resulting in

a warmer soil environment compared to the environment in the surrounding area. A warmer soil

environment is an issue since soil temperature affects the rate of virtually all biochemical processes

in plants and is a critical determinate of plant growth. Thus, many agricultural research projects

have studied the impact of urbanization (and specifically sidewalks) on the temperature profiles of

plants.

Concrete is the most common material used in sidewalks in the United States and Canada.

This material can be particularly harmful to plants due to temperature and also moisture impacts.

This motivated us to take a closer look at a long-term concrete sidewalk and soil temperature data
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set and develop a method to carefully extract all the useful information available on the impact of

the sidewalk on temperature. The findings from this research can help agricultural researchers to

further optimize landscape management to maximize plant yield or production.

1.2 Data Description

Soil environmental monitoring sensors are valuable tools used to record soil temperature

in landscape, nursery and agricultural management. Previous research has been conducted using

soil environmental monitoring sensors to assist in irrigation management in greenhouse production,

sports fields, golf courses, and residential landscapes (Ersavas, 2014). A study was conducted using

GS3 soil moisture sensors in the Sustainable Demonstration Garden (Figure 1.1) at Clemson Uni-

versity to determine the impact of sidewalks on soil temperature (Drennan et al., 2014). In this

study, three separate locations were chosen along the sidewalk in the Sustainable Demonstration

Garden at Clemson. Within each location, GS3 soil sensors were installed at 15 cm, 30 cm, 45 cm

and 60 cm increments from the sidewalk, at a depth of 10 cm into the soil on August 9, 2013 (Figure

1.2). In this dissertation, these three locations are considered as replications (denoted as ”rep”) or

blocks. These three reps were at a distance greater than 45cm from existing plants, were in what

appeared to be undisturbed sites, and were adjacent to a sidewalk. Therefore the only influence on

the temperatures should be the sidewalk, not other factors. Mulch was moved to the side and a

narrow 10 x 80 cm trench was dug. The soil was then replaced, uniformly compacted similar to the

surrounding soil and remulched. Measurements from the sensors were logged every 30 minutes using

EM50G data loggers and uploaded to a remote server managed by Decagon Devices from August

2013 to August 2015. Precipitation and air temperature data recorded at every 30 minutes interval

from the same time period were downloaded from the Clemson University Entomology Weather

Station.

1.3 Overall Objective and Dissertation Organization

The overall objective of the study was to determine if proximity to the sidewalk influences

soil temperature. The specific hypothesis was that the sensors near the sidewalk would have higher

soil temperature profiles than sensors placed further from the sidewalk. In addition, we would like

2



Figure 1.1: Sustainable Demonstration Garden

Figure 1.2: Sensor Installation
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to characterize the impact of air temperatures and rainfall on the influence of sidewalks on soil

temperature. The findings from this study will provide important information to growers so that

they can make good management decisions involving sidewalks and plants, specifically decisions such

as irrigation practices, plant selection and/or plant placement.

The remainder of this dissertation is organized as follows. Chapter 2 concerns the many

missing values in our data set. Some traditional and commonly used methods of imputation are

introduced and then applied to the data set. Chapter 3 concerns the relationships among the soil

temperature, air temperature, and rainfall data. Since these data are time series, Granger Causality

is used to estimate the relationships. Chapter 4 focuses on the analysis of the actual study design.

The four distances are considered as treatments and the three locations were considered blocks

resulting in a Randomized Complete Block Design (RCBD). Results from the time series analyses

were incorporated into the study design to determine the effect of sidewalk on soil temperature. The

results of the data analyses and a summary discussion are also provided in Chapter 4.

4



Chapter 2

Imputation of Missing Values in

Time-Series Data Sets

2.1 Introduction

Missing values are a problem that frequently occurs in data collection processes. In our

soil temperature time series dataset, there are many missing values. Various reasons could result in

missing values including: 1) values may not be measured, 2) values may be measured but get lost,

or 3) values may be measured but are considered unusable. In the soil temperature data set the

reason for the missing values was typically that the sensor had a malfunction at certain points in

time. Missing values can lead to problems, because many data processing and analysis steps often

rely on complete datasets. One approach to overcoming these problems is to replace the missing

values with estimated values. In statistics this process is called imputation.

Time series data sets often have missing values. Before discussing imputation techniques for

estimating the missing values in time series, we will review some common definitions and concepts

in time series data sets. A time series data set is a type of data set in which observations of a

response variable of interest (often denoted Y) are observed on a regular interval of successive times

(t1, t2, t3, · · · , tn). A univariate time series is a sequence of single observations at successive points

t1, t2, t3, · · · , tn in time. Although a univariate time series is usually considered as one column of

observations, time is in fact an implicit variable. In this study, we only considered univariate time

5



series with equispaced time intervals meaning that time increments between successive data points

are equal, |t1 − t2| = |t2 − t3| = ... = |tn−1 − tn|. Two common approaches to describe and examine

time series data set are autocorrelation analysis and separation into trend, seasonal and irregular

components (Moritz, Bartz-Beielstein, Zaefferer & Stork, 2015).

2.1.1 Autocorrelation

The analysis of a time series data set requires different considerations than those generally

encountered in more traditional data analysis procedures. The distinguishing aspect of the structure

of time series data is the non-independence of Y observations. Most statistical models are based

on the assumptions that the Y observations are independent, or uncorrelated, with other observa-

tions. However, this basic assumption is seldom satisfied for observations that are collected across

time (unless they are measured on different experimental units). Instead, Y observations are likely

to be related to other Y observations collected in close temporal proximity (and hopefully rela-

tively independent from more distant observations). For example, in our soil temperature data, soil

temperature for yesterday is probably related with today’s soil temperature. But soil temperature

collected a month ago may not be related with today’s soil temperature. So autocorrelation, also

called serial correlation, is used to measure the correlation of Y observations within a time series.

The autocorrelation of a time series process is defined as the correlation between all pairs of

observations that are separated by a fixed number of points in the time series. It is a representation

of the degree of similarity between the time series and a lagged version of itself. The calculation

process is similar to getting correlations between two different data series, except that one time

series is used twice, once in its original form and once in a lagged version. Suppose that some soil

temperatures are measured on a monthly basis over 2 years time period. The estimated correlations

between the soil temperature on month 1 vs. month 2, month 2 vs. month 3,· · · , through month

23 vs. month 24 are the first-order autocorrelations. This first-order autocorrelation coefficient is

an indication of how well the overall monthly soil temperature can be predicted on the basis of

the soil temperature on the previous month. Similarly, the h-order autocorrelation coefficient (or

autocorrelation at a lag of h) can be computed by correlating observations on month t vs. month

t+h.

The h-order autocorrelation, that is the correlation between the two random variables Yt

6



and Yt+h in a time series, is defined as:

ρ(h) =
Cov(Yt, Yt+h)

V ar(Yt)
= Corr(Yt, Yt+h). (2.1)

where Yt is the observation at time t, Yt+h represents the observation at time t+1. The numerator

in the equation of autocorrelation Cov(Yt, Yt+h) is the covariance between Yt and Yt+h of a time

series, which is called autocovariance at lag h.

An estimator or sample autocorrelation is used to estimate the population autocorrelation

and is defined as

ρ̂(h) =

∑n−h
t=1 (yt+h − ȳ)(yt − ȳ)∑n

t=1(yt − ȳ)2
(2.2)

where n is the number of observations and ȳ is the mean of all the observations.

The basic idea of using autocorrelation in imputation of a time series is that future ob-

servations usually depend on past observations. High autocorrelation values indicate the future is

strongly correlated to the past. Thus autocorrelation can be used as an indicator for imputation

reliability.

The range of the sample autocorrelation is from -1 to +1. A value of +1 means that there

is a perfect positive association, a value of -1 means that there is a perfect negative association and

zero means there is no association.

2.1.2 Decomposition

Time series data usually show a variety of patterns and, for analyses, it can be useful to

isolate these patterns in to separate components of the series. Time series decomposition seeks to

split the time series into single components each representing a certain characteristic or pattern. The

original time series can later on be reconstructed by additions or multiplications of these components.

There are typically three components of interest:

• Trend Component: expresses the long-term progression of the time series. This means there is

a long-term increase or decrease in the mean level of the Y observations. The trend does not

necessarily have to be linear.
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• Seasonal Component: is a common pattern repeating, for example every month, quarter of the

year, or day of the week. Seasonality is always of a fixed and known period, i.e. season length is

fixed. And there are two types of seasonalities: additive and multiplicative. For example, the

average soil temperature in June may rise by 6 ◦C in comparison to May. Thus, the amount of

6 ◦C over the average soil temperature in May was added to predict for every June to account

for this seasonal fluctuation. In this case, the seasonality is additive. Alternatively, during the

month of June the soil temperature may increase by 20%, that is, increase by a factor of 1.2.

In this case the temperature increase by a certain factor, and the seasonal component is thus

multiplicative in nature (Moritz et al., 2015).

• Irregular Component: describes irregular influences. These are the residuals, after the other

components have been removed from the time series. The irregular component may be, but is

not necessarily completely random.

Considering trend and seasonal influences is very important for the analyses of time series data.

Getting trend and seasonal effects modeled correctly can improve imputation results considerably.

Thus decomposition is a popular technique.

2.1.3 Missingness Mechanism

For time series data (or really any type of data), missing observations can occur due to

several reasons that are known as the ”missingness mechanism”. Missingness mechanism can be

divided into three categories: Missing Completely At Random (MCAR), Missing At Random (MAR

) and Not Missing At Random (NMAR).

To better understand and describe the following mechanisms, some notations about missing

values are introduced based on (Rubin, 1976). Let Yi, i = 1, · · · , n denote a complete series of data

which contains both the observed Yobs and the missing values Ymis. M = (M1, ...,Mn) is the missing

data indicator variable which denotes whether the value of a variable is observed or missing (i.e.

Mi = 0 if value Yi is observed and Mi = 1 if the value is missing). The pattern of missing data

is defined by the missing data indicator M. There is an underlying probability distribution of the

missing data indicator when the missing data are presented as a variable. In real situation, it is

impossible to know the exact distribution of M. However, the relationship between the data and

missing value indicator M is used to classify the missing data mechanisms.

8



Missing completely at random (MCAR)

In MCAR, there is no systematic mechanism for the way the data are missing. A variable is

missing completely at random if there are no dependencies in the missingness probability. There

are two requirements for this to be true. First, the probability that observations from one variable

are missing is independent from the values of all other variables. Second, the probability for an

observation being missing is also independent of the variable itself. Since no other variables exist

for univariate time series (except time as implicit variable), requirement one can be simplified to:

the probability that certain observation being missing is independent of time. So the probability

of an observation being missing is independent of the point in time it has been observed in MCAR

(Moritz et al., 2015). In our soil temperature data sets, the soil temperature data were monitored by

the soil sensors from the location and sent to the data logger. Due to unknown reasons, sometimes

the sensor did not work or the transmission failed. The probability for one soil temperature being

missing is independent from other soil temperatures. Also, there is no relationship between the

occurrence of missing soil temperature and the value of this soil temperature. So the missingness

mechanism for our soil temperature data sets can be treated as MCAR.

P (M |Yobs, Ymis) = P (M)

Missing at random (MAR)

Like in MCAR, in MAR the probability for an observation being missing is also independent of the

value of the observation itself. But it is dependent on other variables. Since in the case of univariate

time series, time is considered as an implicit variable, it can be said, that in MAR the probability

for an observation being missing is dependent of the point in time of this observation in the series.

For example, observations sensor data are more likely to be missing on weekends since no one is

monitoring the system on weekends.

P (M |Yobs, Ymis) = P (M |Yobs)

9



Not missing at random (NMAR)

NMAR observations are not missing in a random manner. The missing observations are neither

MCAR nor MAR. That means, the probability for a observation being missing depends on the value

of the observation itself. Furthermore the probability can (but may not necessarily) be dependent

on other variables (point of time in the series). For example, temperature sensor gives no values for

temperatures over 30 ◦C.

P (M |Yobs, Ymis) = P (M |Yobs, Ymis)

In practice, the actual missingness mechanisms resultig in the missing observations are

often unknown. Some statistical techniques have been developed to check the type of missingness

mechanism. Data can be checked for the MCAR mechanism with the Little’s test (Little, 1988). In

(Jamshidian, Jalal, & Jansen, 2014), some additional methods of checking for the MCAR mechanism

can be found. Checking for the MAR and NMAR requires manual analysis of the patterns in the

data, and application of domain knowledge. With MCAR mechanism, both observed and missing

values should have the same mean and variance since they follow the same population. Dixon (1988)

developed a two sample t-test to compare (simulated) missing values and the observed values. In

this test, the means of missing values Ymis and observations Yobs are tested to examine whether

they are significantly different. However, the means of missing values Ymis cannot be computed for

real data since no actual values are known for missing data. Therefore this method is appliable to

the missing values created by a simulation, some values are artificially removed to simulate missing

values. The details of this simulation are described in Section 2.3.2. In this test, when the null

hypothesis is true, the test statistic follows a Student’s t distribution since the variance is not known

in most cases. The variances are often assumed to be not equal. The missingness mechansim is

assumed to be MCAR when the p-value is greater than the significant level, and assumed to be

MAR or NMAR if p-value is less than the significant level. The t-statistic is given by:

T =
Ȳobs − Ȳmis√
S2
1/n1 + S2

2/n1
∼ tν , (2.3)
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where Ȳobs, S
2
1 and n1 are the sample mean, sample variance and sample size for the observed data.

Ȳmis, S
2
2 and n2 are the sample mean, sample variance and sample size for the missing data. The

degrees of freedom ν associated with this variance estimate is given by the Welch-Satterthwaite

equation (Welch, 1974):

ν =

(S2
1

n1
+

S2
2

n2

)2
(S2

1/n1)2

n1−1 +
(S2

2/n2)2

n2−1

Enders (2010) pointed out the disadvantages of the t-test approach. For very small group

sizes, statistical power is decreased. MAR and MNAR mechanisms can produce missing data with

equal means of observations and missing values.

The majority of missing data imputation methods require the missingness mechanism to be

MAR or MCAR because the specific mechanism is said to be ignorable for them (Rubin, 1976). MAR

also has the advantage of using correlations with other variables in the data set for imputation since

there are some relationship between missing values and observations from other variables. NMAR

is called non-ignorable, because in order to do the imputation a special model for why data are

missing has to be developed. For time series data the imputation algorithms do not need to rely

solely on correlations with other variables for missing value estimation, they can also use time series

characteristics for the estimation. This makes estimating missing values for time series somewhat

easier. Imputation for time series with MAR and MCAR mechanisms are nearly the same (Moritz

et al., 2015).

In most studies there are multiple mechanisms causing missing data. For example, sensor

recording failure will be treated as a missing completely at random since it has no dependencies to

the observations that are missing, but a sensor that stops working and creates missing observations

due to battery life will be treated as not missing at random. Several methods have been introduced

to estimate missing values according to specific missing mechanisms or even a general solution for

any missing values mechanism. Next we will discuss several methods for handling missing values.

2.1.4 Conventional method

Many methods have been suggested to deal with missing values. Several of them are really

simple methods. Some of the methods use statistical principles as their base.

11



• Ignoring: The first way to deal with missing values is ignoring the missing value, which is the

simplest way to deal with missing values. This method can be used under any missingness

mechanism. However, if the percentage of missing values is large, this approach can severely

impact the result of the analysis (Little & Rubin, 1989). Analysis results for data set containing

missing values can significantly differ from those without missing values.

• Deletion: This method is to simply delete the entire observation (i.e., case or unit) with missing

value and can be used with MCAR missingness mechanism. The disadvantage of this method

is reduced power due to reduced sample size. There can also be bias in the results if the

mechanism is not MCAR. Enders (2010) states that the disadvantages of deletion far outweigh

any advantage gain by creating a complete data set.

• Mean Imputation: While ignoring and deletion do not usually result in an improved analysis,

the Mean Imputation method often result in an improved solution. With mean imputation

method, each missing value Ymis is replaced by the overall mean. One disadvantage to this

method is the possible bias caused by many observations having the same values.

In addition to the simple methods above, many other more advanced methods of imputation

have been developed. Examples of popular techniques include Multiple Imputation (Rubin, 1987),

Nearest Neighbor (Vacek & Ashikaga, 1980) and Hot Deck (Ford, 1983) methods . In the literature

of imputation, time series data sets are a special challenge. Most of the sufficiently developed

conventional methods rely on correlations among variables to estimate missing values. In time series,

the correlations with previous values in the time series are as important, if not more important, as

that correlation with additional variables. Therefore, effective algorithms need to make use of the

time series characteristics. This has resulted in the development of imputation algorithms especially

tailored for time series. In the case of univariate time series, imputation methods need to exploit

time series characteristics, in order to estimate the values of the missing data (Moritz & Bartz-

Beielstein, 2015). Since our soil temperature time series data is seasonal, we need to apply methods

that perform well for seasonal time series data.

The remainder of this Chapter is organized as follows. Section 2.2 introduces some advanced

imputation methods. Section 2.3 compares 4 imputation methods for simulated missing values. We

applied seasonal Kalman filter method to our soil temperature data set and the results of the

imputation are in Section 2.4. Section 2.5 concludes with a summary discussion.
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2.2 Advanced Imputation method

This section describes some popular and commonly used imputation methods for univariate

time series data.

• Replaced by the last observed value: This method is a special case of mean imputation, where

each missing value Ymis is replaced with the mean defined as the most recent observaion Yobs

prior to it. In other words, for each observation, we replace the missing value with the last

observed value of that variable (Zeileis & Grothendieck, 2005). This is the simplest imputation

method that takes advantage of the potential relationship between concurrent observations in

time series. However, this method is problematic when there is a large time gap between a

missing value and the previous non-missing value, or when the time series has seasonal (or

other) patterns.

• Seasonal Kalman filter: This method uses a seasonal Kalman filter to estimate missing values

Ymis. The time series has to have a seasonal pattern (Harvey, 1990). The Kalman filter

basically attempts to find estimates of the missing values at time t by computing the conditional

mean and variance of the distribution for unobserved values conditional on observations up to

time t (Durbin & Koopman ,2012).

• Interpolation: This method uses linear interpolation for non-seasonal series and a periodic

decomposition with seasonal series to replace missing values (Hyndman, 2014). The seasonal

component is removed from the time series in the first step, on the remaining component (trend

and irregular) a linear interpolation is done to estimate the values. Afterwards the seasonal

component is added again. This method is supposed to be a good fit where a clear and strong

seasonality can be expected.

2.3 Imputation Implementation

In order to find the most suitable method to complete the imputation of the soil temperature

data set, we considered 4 methods: the mean imputation method introduced in section 2.1.4 and the

3 imputation methods introduced in section 2.2.1. We wanted to evaluate the performance of these

4 methods in term of RMSE and MAPE (introduced in 2.3.1). Unfortunately these measures cannot

13



be computed for real data since no actual values are known for missing data, and we cannot calualate

the difference required for these measures. Therefore we decided to perform a simulation to compare

the four methods. The simulation basically involved creating a complete time series and artificially

removing some values to simulate missing value. Then the missing values are estimated (using the

4 imputation methods) and the differences in the actual and imputed values can be calculated.

2.3.1 Imputation Evaluation

In this dissertation, the square root of the mean square error (RMSE) and the Mean Absolute

Percentage Error (MAPE) were used to determine if the results of imputation were useful. The

RMSE is a very common measure of difference between imputed and actual values. The reason for

including the MAPE is that it can be useful for datasets with a strong trend (Swanson, Tayman &

Bryan, 2011). For example, suppose a time series starts with very low values and ends up with very

high values (ie., a strong trend exists). The missing observations near the end of the time series

would have a large impact on the RMSE, while the missing observations earlier in the time series

would only have a small impact. In such cases, an error measure based on the difference between

imputed value and real value expressed as a percent can be more useful. Depending on specific

application, either the RMSE or MAPE can best represent the quality of the imputation methods.

Hence, we recorded both metrics.

RMSE The Square Root of the Mean Square Error (RMSE) between the imputed missing value

Ŷmis and the respective true missing value time series Ymis , i.e.,

RMSE(Ŷmis, Ymis) =

√∑N
t=1(Ymis(t)− Ŷmis(t))2

N
, (2.4)

where N is the number of missing values.

MAPE The Mean Absolute Percentage Error (MAPE) between the imputed value ŷ and the re-

spective true value time series y, i.e.,

MAPE(Ŷmis, Ymis) =

∑N
t=1

|Ymis(t)−Ŷmis(t)|
|Ymis(t)|

N
, (2.5)
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2.3.2 Simulation Details

The characteristics of the algorithm created for the simulations are shown below:

• Complete Data: a complete series of soil temperature observations chosen from our original

soil temperature data

• Missing Data Mechanism: MCAR, similar missing patterns of the actual soil temperature

• Missing Data Distribution: Bernoulli

• Percentage of Missing Data: adjustable

The percentage of missing values represents the parameter p of the Bernoulli distribution.

The probability mass function of the Bernoulli distribution is f(x) = px(1 − p)1−x, x ∈ (0, 1). We

created missing values at 4 different percentages (10%, 30%, 50%, 70%). For the same percentage

of missing values, the pattern of missing values can be slightly different. So we ran 30 different

random seeds to randomize the results. Overall, the simulation was performed for 30 random seeds,

4 different percentages of missing values and 4 imputation methods. That equate to 480 runs for

the data set.

We decided to use one real complete soil temperature data set with 100 observations chosen

from our original soil temperature data as the complete data set. We took a three steps approach

to compare results. In the first step, we randomly deleted some values from the complete data set

(MCAR) and obtained an incomplete data set with 4 different percentages of missing values (10%,

30%, 50%, 70%). In the second step, we applied the 4 imputation methods to the incomplete time

series data set. For the last step, we compared the difference between the imputed values and the

actual values using RMSE and MAPE. We used the statistical software R (package ”ImputeTS”) to

complete the imputaion with 4 different imputation methods. Figure 2.1-2.4 provide the imputation

results for one random seed with different missing value percentages. Table 2.1 and Table 2.2 provide

results for that one random seed.

Figure 2.5 and Figure 2.6 show the RMSE and MAPE results for 30 simulation runs and

indicate comparison of different imputation methods for the real complete soil temperature data set.

Each point in the figure is equivalent to one imputation result (given as MAPE or RMSE) for one

variation of the time series (same complete series but with different missing values due to different

random seeds). The colors in the figures mark different percentages of missing values.
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In order to choose the most suitable imputation method for our actual soil temperature

time series data, we then created some missing values with similar missingness patterns as the

actual soil temperature data. From Figure 2.9, we can see the missingness patterns of our actual soil

temperature data. Since the missingness pattern in rep2 is same as the first part of the missingness

pattern in rep3. So we created another 2 missingness patterns: one is similar to the missing pattern

in rep1, one is similar to that in rep3. Figure 2.7 and Figure 2.8 show the imputation results for one

simulation with different missing value percentages and similar missingness patterns as the actual

soil temperature.

The complete soil temperature data set we used to compare imputation methods has a clear

seasonality. From Figure 2.5 , Figure 2.6, Figure 2.7, and Figure 2.8 we can find, that seasonal

Kalman filter method show the best results for all missing percentages. This is probably because it

can handle seasonality in the data better than the other methods. Mean imputation method shows

the poorest results since the data have huge differences in the mean level. The other two imputation

methods are located in the middle between this two poles. As can be seen by looking at the two

tables, RMSE and MAPE lead to the same results. Depending on the missingness pattern of our soil

temperature data set, the seasonal Kalman filter method was applied to complete the imputation.

The results are shown in Section 2.4.

2.4 Imputation Results

In our soil temperature data, we used two year time periods, from 9/1/2013 to 8/31/2015.

The data were recorded every 30 minutes. Therefore, in theory we should have 35,040 soil tem-

perature observations (2 years x 365 days x 48 soil temperature observations per day) for the 12

combinations of locations (rep1, rep2, rep3) and distances (15cm, 30cm, 45cm, 60cm). However, we

only have around 20,000 observations for distances in rep 1 (there is nearly 15,000 missing obser-

vations). Furthermore, for rep 2 and rep 3, there is about 6,000 and 10,000 missing observations,

respectively. The plots of the soil temperatures over time for the 12 combinations are presented in

Figure 2.9. In the plots, the missingness patterns and the seasonal components are clearly shown.
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Table 2.1: RMSE for different imputation methods with different missing percentages for one simu-
lation

RMSE

Missing Percentage
10% 30% 50% 70%

Mean 0.825 0.917 0.876 0.842
Last Observation 0.201 0.312 0.381 0.411

Kalman Filter 0.052 0.061 0.071 0.078
Interpolation 0.162 0.179 0.184 0.212

Table 2.2: MAPE for different imputation methods with different missing percentages for one sim-
ulation

MAPE

Missing Percentage
10% 30% 50% 70%

Mean 2.519 2.497 2.239 2.243
Last Observation 0.423 0.515 0.758 0.937

Kalman Filter 0.108 0.121 0.146 0.228
Interpolation 0.290 0.313 0.343 0.412

One important issue to resolve was if the imputation should be done on a monthly basis.

Figure 2.10 shows the imputation results on a monthly basis. Since we have a 2 year data set, we

have in total 24 months.

2.5 Discussion

From all these figures, we can know that this imputation results perform well because the

imputed soil temperature for the 12 different combinations of rep and distance all have a similar

seasonal pattern. In the future, we need to consider how to use the other information like the other

locations, the other reps, the other time series to improve the imputation. Also, we will try to

complete the imputation of the missing data in the original scale of our soil temperature time series

data.
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Figure 2.1: Imputed Soil Temperature with 10% as missing percentage
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Figure 2.2: Imputed Soil Temperature with 30% as missing percentage
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Figure 2.3: Imputed Soil Temperature with 50% as missing percentage
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Figure 2.4: Imputed Soil Temperature with 70% as missing percentage
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Figure 2.5: RMSE Imputation Results

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
NAs

R
M
S
E

factor(miss_percent)
0.1

0.3

0.5

0.7

Mean Imputation

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
NAs

R
M
S
E

factor(miss_percent)
0.1

0.3

0.5

0.7

Last Observation

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
NAs

R
M
S
E

factor(miss_percent)
0.1

0.3

0.5

0.7

Kalman Filter

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
NAs

R
M
S
E

factor(miss_percent)
0.1

0.3

0.5

0.7

Interpolation

22



Figure 2.6: MAPE Imputation Results
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Figure 2.7: Imputed Soil Temperature with similar missingness pattern as rep 1
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Figure 2.8: Imputed Soil Temperature with similar missingness pattern as rep 3
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Figure 2.9: Plots of the Soil Temperature vs. Time for the 12 different combinations of Rep and
distance.
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Figure 2.10: Plot of the imputed Monthly Soil Temperature vs. Time for the 12 different combina-
tions of Rep and distance with the actual data in black and the imputed data in red. Month 1 is
September in 2013.
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Chapter 3

Granger Causality Test

3.1 Introduction

This chapter focuses on the relationship between the soil temperature time series, and the air

temperature, and rainfall time series. The air temperature and rainfall time series plots are shown in

Figure 3.1. For air temperature (left panel), the time axis is the same scale as the soil temperature

time axis since air temperature was recorded every 30 minutes for the 2-year period. The plot of

air temperature shows seasonal pattern and shape similar to soil temperature. For rainfall (right

panel), the time axis is also the same scale as soil temperature. The vertical axis is cumulative

precipitation from the beginning of that day. The units of precipitation are millimetre. The plot

show that rainfall is probably not seasonal. It is also important to note that there is only one air

temperature time series and one rainfall time series (not 12 different series like soil temperature)

Because soil temperature, air temperature and rainfall are all time-series data, a Granger-

Causality analysis was carried out in order to assess whether there is any potential predictability

power of air temperature and rainfall for soil temperature. The conclusion that can be drawn is that

air temperature and rainfall can be used to predict soil temperature, but the opposite, that the soil

temperature can not be used to predict air temperature and rainfall.

”The Granger Causality test is a statistical hypothesis test for determining whether one

time series somehow has a causal effect on another time series”. It was proposed by Granger (1969).

Ordinarily, regression coefficients are a measure of a relationship, but Granger argued that causality

could be tested for by measuring the ability to predict the future values of a time series using prior
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Figure 3.1: Plot of Air temperature and Rainfall

values of another time series. Since the question of ”true causality” is very difficult to demonstrate

in non-experimental data sets, and Granger assumed that one thing preceding another can be used

as a proof of causation, econometricians assert that the Granger test finds only ”predictive” or

”Granger” causality” in (Diebold, 2001). In the Granger-sense, a previous value of x is a predictive

cause of y if it is useful in forecasting a future y. In other words, previous x information is able to

increase the accuracy of the forecast of y, as opposed to only using values of y.

3.2 Methodology Details

”A time series X is said to Granger-cause Y if it can be shown, usually through a series

of t-tests and F-tests on lagged values of X, that those X values provide statistically significant

information about future values of Y” (Kang, 1985).

There are 4 basic steps for running the Granger causality Test.

• 1. State the null hypothesis and alternative hypothesis in terms of model parameters. In our

data set, the models define how air temperature or rainfall do or do not Granger-cause soil

temperature. The two models are as follows
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Y (t) =
∑
i

αiY (t− i) + e(t)

Y (t) =
∑
i

αiY (t− i) +
∑
j

βjX1(t− j) +
∑
k

γkX2(t− k) + u(t) (3.1)

The two equations in (3.1) represent a restricted model (top model, air temperature and

rainfall do not Granger-cause soil temperature) and an unrestricted model (bottom model,

air temperature and/or rainfall do Granger-cause soil temperature). The terms in the models

include: Y (t) is the soil temperature at time t, X1(t) is the air temperature at time t, X2(t)

is the precipitation at time t, α, β and γ are coefficients, e(t) and u(t) are error terms. The

errors terms are assumed to be independent.

Parameters from the two models in (3.1) can be used to test the two following hypotheses:

H0 : βj = 0, γk = 0 for all j and k (restricted model)

H1 : βj 6= 0, γk 6= 0 for some j or k (unrestricted model) (3.2)

• 2. Choose the lags. One way to choose lags i, j and k is to run a model order test and another

is to pick a series of lag values and run the Granger test several times. In either case, we chose

AIC values as the criteria (Thornton & Batten, 1985). Among all these models, choose the

one having the smallest AIC. And the lag lengths for Y (t), X1(t) and X2(t) are not necessarily

the same. The lag length for Y (t) in the restricted and unrestricted models are the same.

• 3. Calculate the F-statistic and p-value from the model residuals in (3.1). The F-statistic

equation is as follows:

F =
(RSSr −RSSur)/(pur − pr)

RSSur/(n− pur)
∼ Fpur−pr,n−pur

(3.3)

RSSur =
∑
t

û(t), RSSr =
∑
t

ê(t)

where RSSr, RSSur are sum of squared residuals of the restricted and unrestricted models,
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respectively. n is the total number of observations, pr and pur are the number of parameters

in the restricted and unrestricted models respectively.

• 4. Reject null hypothesis if p-value is less than the significant level. In this dissertation, we

choose 0.05 as the significant level.

3.3 Results

There are 35,040 observations for all these time series(after imputation). With this many

observations, it was difficult to choose the reasonable number of lags to run the Granger-Causality

test. Because our goal was to determine whether or not air temperature or rainfall had some

influence on soil temperature, we decided to calculate the average soil temperature, air temperature,

and rainfall for each month to reduce the number of observations. We then used this time series to

choose lags and perform the Granger causality test. The dataset of mean monthly air temperature

and rainfall are in Figure 3.2. Figure 3.2 indicates that the overall pattern of the original scale time

series is similar to the pattern based on monthly averages. With the 2-year data set, there were

24 months. So there are at most 24 lags to use in the Granger-Causality test. From Chapter 1,

recall that there were 3 reps (rep1, rep2 and rep3) and 4 different distances (15cm, 30cm, 45cm and

60cm), so there were 12 time-series of soil temperature. However, there was only one time-series for

air temperature and only one for rainfall. Therefore the Granger-Causality test was conducted 12

times based on the 12 soil temperature time series.

The Granger Causality test results were calculated using PROC VARMAX with software

SAS. The p-values are in Table 3.1. The results indicate air temperature and/or rainfall Granger-

cause soil temperature at the 0.05 significance level in all 12 combinations. In other words, air

temperature and rainfall were useful in predicting soil temperature in addition to previous soil

temperature.

To determine whether air temperature only or rainfall only has an impact on soil tem-

perature, we can use the following models to develop hypotheses and calculate the corresponding

p-values:
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Figure 3.2: Monthly average of Air temperature and Rainfall
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Table 3.1: Results of Granger Causality test

Restricted Model Soil Temperature
Unrestricted Model Air Temperature, Rainfall

P-value (Rep1, Dist15cm) < 0.0001
P-value (Rep1, Dist30cm) < 0.0001
P-value (Rep1, Dist45cm) < 0.0001
P-value (Rep1, Dist60cm) < 0.0001
P-value (Rep2, Dist15cm) < 0.0001
P-value (Rep2, Dist30cm) < 0.0001
P-value (Rep2, Dist45cm) < 0.0001
P-value (Rep2, Dist60cm) < 0.0001
P-value (Rep3, Dist15cm) < 0.0001
P-value (Rep3, Dist30cm) < 0.0001
P-value (Rep3, Dist45cm) < 0.0001
P-value (Rep3, Dist60cm) < 0.0001
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Table 3.2: Results of Granger Causality test

Restricted Model Soil Temperature
Unrestricted Model Air Temperature

P-value (Rep1, Dist15cm) < 0.0001
P-value (Rep1, Dist30cm) < 0.0001
P-value (Rep1, Dist45cm) < 0.0001
P-value (Rep1, Dist60cm) < 0.0001
P-value (Rep2, Dist15cm) < 0.0001
P-value (Rep2, Dist30cm) < 0.0001
P-value (Rep2, Dist45cm) < 0.0001
P-value (Rep2, Dist60cm) < 0.0001
P-value (Rep3, Dist15cm) < 0.0001
P-value (Rep3, Dist30cm) < 0.0001
P-value (Rep3, Dist45cm) < 0.0001
P-value (Rep3, Dist60cm) < 0.0001

Y (t) =
∑
i

αiY (t− i) + e(t)

Y (t) =
∑
i

αiY (t− i) +
∑
j

βjX1(t− j) + u(t) (3.4)

Y (t) =
∑
i

αiY (t− i) + e(t)

Y (t) =
∑
i

αiY (t− i) +
∑
k

γkX2(t− k) + u(t) (3.5)

The hypotheses and models using (3.4) test the impact of predicting soil temperature by

adding air temperature in addition to previous soil temperature; and the hypotheses and models

using (3.5) test the impact of predicting soil temperature by adding rainfall in addition to previous

soil temperature. The results in Table 3.2 indicate that air temperature does Granger-causes soil

temperature at the 0.05 significance level, but the results in Table 3.3 indicate that rainfall does not

Granger-cause soil temperature at the 0.05 significance level. Since some p-values from Table 3.3

are close to 0.05, there is still some possibility that rainfall Granger-causes soil temperature.
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Table 3.3: Results of Granger Causality test

Restricted Model Soil Temperature
Unrestricted Model Rainfall

P-value (Rep1, Dist15cm) 0.0672
P-value (Rep1, Dist30cm) 0.0821
P-value (Rep1, Dist45cm) 0.0529
P-value (Rep1, Dist60cm) 0.0688
P-value (Rep2, Dist15cm) 0.1452
P-value (Rep2, Dist30cm) 0.0521
P-value (Rep2, Dist45cm) 0.1332
P-value (Rep2, Dist60cm) 0.1119
P-value (Rep3, Dist15cm) 0.0921
P-value (Rep3, Dist30cm) 0.0822
P-value (Rep3, Dist45cm) 0.0569
P-value (Rep3, Dist60cm) 0.0641
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Chapter 4

Experimental Design

4.1 Introduction

The overall objective of this dissertation was to determine the impact of sidewalks on soil

temperature. Soil temperature was measured using sensors which were placed at 4 varying distances

(15cm, 30cm, 45cm, 60cm) from the sidewalk. An important question was how exactly should the

soil temperatures at these 4 distances be compared ? Designed experiments are one of the most

common and useful statistical approaches which can be used to address this kind of questions. A

designed experiment is characterized by the choice of treatments, the experimental units used, any

covariates associated with the experimental units, the way treatments are allocated to the units,

and how the responses are measured.

For this dataset, the treatments are the 4 distances from the sidewalk. The sites of the

sensors are the experimental units. Possible covariates include air temperatures and rainfall. The

sites are grouped within three different locations, reps, or blocks. Issues associated with ”assigning”

the distances to the sites will be discussed later. The measured response is the soil temperature time

series. The treatments and the blocks are often denoted as factors in a designed experiment. The

concept of fixed and random factors is also important in this study. With a fixed factor, all levels

of the factor of interest are included in the experiment. With a random factor, all levels of interest

are not in the experiment. In this soil temperature dataset, distance from the sidewalk (treatment)

was considered as a fixed factor and location or rep (block) was considered as a random factor.
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Figure 4.1: The design of the study: Rep or location is block, * is the Experimental Unit (E.U.) or
the site of the sensor. We measure the response soil temperature, and two covariates (air temperature
and rainfall) on the E.U.

15cm 30cm 45cm 60cm

Rep1 * * * *

Rep2 * * * *

Rep3 * * * *

The remainder of this chapter is organized as follows. Section 4.2 presents some basic

concepts of randomized complete block designs. Section 4.3 provides the results of comparing the

overall mean of the soil temperature time series at different distances. Results for comparing different

characteristics of the soil temperature time series (other than the overall mean) at the different

distances are also shown. The results are also adjusted for any impact of the air temperature,

rainfall, and seasonality. Section 4.4 provides some introduction to a ”peaks over threshold” approach

to comparing the soil temperatures at different distance and results based on that approach are

provided. Section 4.5 concludes with a summary discussion and opportunities for future research.

4.2 Randomized Complete Block Designs

The Randomized Complete Block Design (RCBD) is a commonly used design when similar

experimental units are grouped into blocks or replicates. It is used to control variation in the

experiment by accounting for the impact on the response due to factors such as location or time.

With a randomized complete block design, experimental units are divided into groups called blocks,

such that the variability within blocks is less than the variability among blocks (Oehlert, 2010). Then

the experimental units within each block are assigned to treatments. Blocking serves many purposes.

Within a block there is assumed homogeneity of experimental units, so treatment comparisons should

be precise. Among blocks there is heterogeneity, so treatment comparisons are made across a wide

variety of situations (Casella, 2008). As mentioned in the introduction, effects can be fixed or

random. Blocks are typically considered as random factors. There is really no interest in the

differences among the random blocks in the soil temperature study; they are used only because
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Table 4.1: Data for a randomized complete block design

Treatment
Block 1 2 · · · t Mean

1 Y11 Y21 · · · Yt1 Ȳ.1
2 Y12 Y22 · · · Yt2 Ȳ.2
...

...
...

...
...

...
b Y1b Y2b · · · Ytb Ȳ.b

Mean Ȳ1. Ȳ2. · · · Ȳt. Ȳ..

the soil temperature may be different among the different blocks, and soil temperatures may be

correlated within the blocks. Note that there is no treatment (distances) randomization in this

design since the distances from the sidewalk cannot be randomly assigned in the reps. Including

blocks as a random effect is a possible solution to the issue. The design is shown in Figure 4.1.

4.2.1 RCBD Theory

Consider RCBD similar to the soil temperature study as shown in Table 4.1. In Table 4.1,

Yij is the observation for treatment i in block j; t is the number of treatments; b is the number of

blocks; Ȳi. is the sample mean for treatment i: Ȳi. = 1
b

∑b
j=1 Yij ; Ȳ.j is the sample mean for block

j: Ȳ.j = 1
t

∑t
i=1 Yij ; Ȳ.. is the overall sample mean : Ȳ.. = 1

tb

∑t
i=1

∑b
j=1 Yij

The model for an observation in a randomized complete block design can be written in the

form (Casella, 2008):

Yij = µ+ τi + βj + εij i = 1, . . . , t; j = 1, . . . , b, (4.1)

where µ is an overall mean, τi are treatment effects, the error random variables εij
iid∼ N(0, σ2

ε ) for

i = 1, . . . , t, and j = 1, . . . , b, (normal errors with equal variances), the block effects β1, . . . , βb,
iid∼

N(0, σ2
β) and are independent of εij for all i, j.
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Table 4.2: ANOVA table for RCBD

Source SS df MS F
Treatment SST t-1 MST=SST/(t-1) MST/MSE

Block SSB b-1 MSB=SSB/(b-1)
Error SSE (b-1)(t-1) MSE=SSE/(b-1)(t-1)
Total TSS bt-1

The main goal in using the randomized complete block design was to examine the differences

in the t treatment means. The null hypothesis does not have a difference among the treatment means

while the alternative hypothesis treatment means do differ. That is:

H0 : µ1 = µ2 = · · · = µt vs Ha : µi’s are not all equal. (4.2)

Analysis of variance (ANOVA) for RCBD can be used to test (4.2). The form of the ANOVA

is shown in Table 4.2.

Note that the alternative hypothesis does not imply that all the µis are different, just that

they are not all the same. We used ANOVA to test H0 and found a small p-value (p=0.0005). So

H0 in (4.2) is rejected. Many options are available to determine how the treatment means differ

(or determining the exact meaning of at least one µi differ from the rest). In this study, Fisher’s

Protected Least Significant Difference (LSD) Test was used to compare all pairs of soil temperature

means from any two distances. For a specified significant level α, the least significant difference for

comparing µi − µj is:

LSDi,j = tα/2

√
s2(1/ni + 1/nj) (4.3)

where α is the significant level, tα/2 is the critical t-value for area α/2 and s2 is the point estimator

of σ2 (the MSE from the ANOVA table). ni and nj are the respective sample sizes from treatment

group i and j.

After calculating the LSD, we compared it to the difference in pairs of soil temperature
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Table 4.3: Mean/Max/Min soil temperature (C) at different distances from the sidewalk. Means
with the same letter in a column do not significantly differ based on ANOVA and Fisher’s Protected
(LSD) test with a significance level of 0.05.

Distance Mean Soil Temp Max Soil Temp Min Soil Temp
15cm 19.94a 25.65a 15.27a

30cm 19.66a 23.94ab 15.63a

45cm 19.56a 23.42ab 15.97a

60cm 19.47a 23.13b 16.01a

sample means. This was used to test:

H0 : µi = µj for i 6= j (4.4)

H1 : µi 6= µj for i 6= j

In the null hypothesis, the means of one pair of soil temperature are the same at a significant

level 0.05. If |Yi − Yj | ≥ LSDi,j , declare the corresponding soil temperature means µi and µj are

different. For each pairwise comparison of population means, the probability of a Type I error is

fixed at a specified value of 0.05.

4.3 Results

4.3.1 Analysis based on a RCBD for the mean, max, and min of the soil

temperature time series

Now we consider a RCBD for the overall mean of the soil temperature time series. The

model is :

Yij = µ+ τi + βj + εij i = 1, . . . , 4; j = 1, . . . , 3, (4.5)

where Yij is the mean or max or min of the entire soil temperature time series, µ is an overall mean,

τi are the effects of distance, βj is the random effects of rep and εij is error.

The results are shown in Table 4.3. Table 4.3 indicates that the highest sample mean

and max soil temperature were both recorded at 15cm and the lowest sample mean and max soil
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temperature were both recorded at 60cm. In other words, the closer to the sidewalk, the higher the

sample mean and sample max of the soil temperature time series. However, the ANOVA and Fisher’s

Protected LSD test suggest that the true population means of the soil temperature time series at

the different distances are not different (with a significance level of 0.05). The results suggest that

the proximity to the sidewalk has no influence on the true mean soil temperature. While max soil

temperature at 15cm are different from the soil temperature at 60cm. Max soil temperature at

30cm and 45cm are not significantly different. Max soil temperature at 45cm and 60cm are also not

significantly different. For the min soil temperature, the closer to the sidewalk, the lower the min of

the soil temperature which is opposite to the results for mean and max soil temperature. The results

also suggest that the proximity to the sidewalk has no influence on the true min soil temperature

with a significant level of 0.05.

4.3.2 Analysis based on a RCBD for mean, max, and min of the soil

temperature time series by month

Now we consider the randomized complete block design (4.5) by month. In other words,

we would compare characteristics of the soil temperature time series among the distances, based on

the RCBD for each month. As in the previous section, we used different characteristics of the time

series including the mean, minimum, and maximum soil temperature.

The results of mean, minimum, and maximum soil temperature are shown in Table 4.4,

Table 4.5, and Table 4.6, respectively. Table 4.4-4.6 indicate that the closer to the sidewalk, the

higher the sample mean, maximal or minimal soil temperature in warmer months (like May, June,

July, August, Spetember). The colder months (like December, January, February) simply yield

exact opposite results, the sample mean, maximal or minimal soil temperature is lowest when it

is closest to the sidewalk. Depending on the different letters in one row (each month), the overall

mean or minimum or maximum soil temperature for some pairs of different distances are significantly

different with a significant level of 0.05 for that months.
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Table 4.4: Mean soil temperatures (C) at different distances from the sidewalk for each month.
Means with the same letter in a row do not significantly differ based on ANOVA and Fisher’s
Protected LSD test with a significance level of 0.05.

Distance
Month 15cm 30cm 45cm 60cm

09− 2013 28.76a 28.45b 28.23bc 28.12c

10− 2013 26.64a 26.44ab 26.26bc 26.12c

11− 2013 20.58a 20.69a 20.60a 20.55a

12− 2013 12.75a 12.90a 13.05a 13.15a

01− 2014 9.23a 9.55ab 9.76b 9.95c

02− 2014 6.99a 7.02ab 7.21ab 7.28b

03− 2014 7.34a 7.24a 7.27a 7.17a

04− 2014 14.66a 14.18b 13.90c 13.68c

05− 2014 20.86a 20.10b 19.86b 19.57b

06− 2014 26.70a 25.98ab 25.15bc 24.81c

07− 2014 30.64a 29.92b 29.45c 29.15d

08− 2014 30.66a 30.10ab 29.60bc 29.38c

09− 2014 29.91a 29.88a 29.69a 29.43a

10− 2014 26.79a 26.81a 26.68a 26.67a

11− 2014 21.17a 21.22a 21.26a 21.19a

12− 2014 12.85a 12.95ab 13.15b 13.22b

01− 2015 9.76a 9.99ab 10.29bc 10.50c

02− 2015 7.51a 7.53a 7.78b 7.81b

03− 2015 7.97a 7.97a 7.91a 13.50a

04− 2015 15.61a 15.06b 14.89bc 14.59c

05− 2015 21.53a 20.80b 20.51bc 20.32c

06− 2015 27.73a 26.97b 26.55bc 26.28c

07− 2015 30.78a 30.38ab 30.00ab 29.77b

08− 2015 31.12a 30.49ab 30.10b 30.02b
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Table 4.5: Maximum soil temperatures (C) at different distances from the sidewalk for each month.
Means with the same letter in a row do not significantly differ based on ANOVA and Fisher’s
Protected LSD test with a significance level of 0.05.

Distance
Month 15cm 30cm 45cm 60cm

09− 2013 31.97a 31.37ab 31.37ab 30.83b

10− 2013 31.67a 30.57b 30.17c 30.07c

11− 2013 28.33a 26.25ab 25.61b 25.25b

12− 2013 18.98a 16.86a 16.49a 16.14a

01− 2014 18.45a 14.93a 14.13a 13.61a

02− 2014 20.64a 14.53b 11.62c 10.52c

03− 2014 20.99a 15.59b 13.73b 12.90b

04− 2014 22.13a 20.33b 19.57c 19.27c

05− 2014 27.03a 25.73a 25.97a 25.53a

06− 2014 29.15a 28.60a 28.70a 28.47a

07− 2014 32.26a 31.59a 31.30a 31.21a

08− 2014 32.02a 31.64a 31.63a 31.43a

09− 2014 31.81a 31.29a 31.77a 31.67a

10− 2014 30.01a 29.81a 29.88a 29.64a

11− 2014 26.77a 26.200b 25.76b 25.71b

12− 2014 15.27a 15.07a 15.20a 15.22a

01− 2015 16.32a 14.01a 13.45a 13.17a

02− 2015 16.74a 12.53a 10.74a 10.19a

03− 2015 18.11a 14.44ab 13.23ab 12.67b

04− 2015 22.79a 21.04ab 20.26b 19.90b

05− 2015 27.50a 26.36a 25.87a 25.42a

06− 2015 29.98a 29.68a 29.52a 29.17a

07− 2015 33.75a 33.43a 33.24a 33.32a

08− 2015 32.91a 32.90a 32.76a 32.81a
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Table 4.6: Minimum soil temperatures (C) at different distances from the sidewalk for each month.
Means with the same letter in a row do not significantly differ based on ANOVA and Fisher’s
Protected LSD test with a significance level of 0.05.

Distance
Month 15cm 30cm 45cm 60cm

09− 2013 24.23a 24.03a 23.97a 23.93a

10− 2013 22.53a 23.07b 23.13b 22.93b

11− 2013 16.29a 16.20b 15.93b 15.01b

12− 2013 9.00a 9.85b 10.32bc 10.50c

01− 2014 4.46a 5.31b 5.84c 6.17c

02− 2014 3.49a 4.28b 5.07c 5.36c

03− 2014 2.24a 2.98b 3.34b 3.42b

04− 2014 8.83a 9.50b 9.70b 9.77b

05− 2014 15.02a 15.32a 14.47a 14.30a

06− 2014 21.75a 21.98a 20.61a 20.50a

07− 2014 26.08a 25.87a 26.17a 25.93a

08− 2014 26.90a 26.36a 26.36a 26.14a

09− 2014 25.66a 25.85a 27.17a 27.03a

10− 2014 21.87a 22.53b 22.83b 22.72b

11− 2014 14.70a 15.73b 16.27b 16.30b

12− 2014 9.03a 9.83b 10.30bc 10.47c

01− 2015 4.86a 5.63ab 6.31bc 6.78c

02− 2015 4.03a 4.77b 5.61c 5.86c

03− 2015 3.06a 3.68b 4.27c 4.38c

04− 2015 10.43a 10.71a 10.94a 11.08a

05− 2015 16.67a 16.85a 16.99a 16.93a

06− 2015 23.94a 23.84a 23.47a 23.18a

07− 2015 26.77a 26.17a 26.78a 26.66a

08− 2015 26.95a 27.65a 27.97a 27.13a
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Table 4.7: Mean/Max/Min soil temperature (C) at different distances from the sidewalk using
model (4.6). Means with the same letter in a column do not significantly differ based on ANOVA
and Fisher’s Protected (LSD) test with a significance level of 0.05.

Distance Mean Soil Temp Max Soil Temp Min Soil Temp
15cm 20.23a 25.72a 15.31a

30cm 19.78b 25.13b 15.59a

45cm 19.62bc 24.82bc 16.03b

60cm 19.49c 24.53c 16.42c

4.3.3 Analysis based on a RCBD for the mean, max, min of the soil

temperature time series with month included in the model

We applied RCBD to our soil temperature dataset. There are 4 treatments (15cm, 30cm,

45cm, 60cm) and 3 blocks (rep1, rep2, rep3). For each distance and each rep, there are 24 monthly

soil temperatures (maxima, average and minimal). So we typically take 24 measurements on each

E.U. over time.

We used the following model:

Yijk = µ+ τi + βj + εaij + Tk + τTik + εbijk; i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2, . . . , 24; (4.6)

where Yijk is soil temperature (max, mean or min), µ is an overall mean, τi is effect of distance, βj

is the random effect of rep, Tk is the effect of time (month).εaij is the random effect of block j in

treatment i, εbijk is the experimental random error.

The results for soil temperature with maximal, average, and minimal as response are dis-

played in Figure 4.2, Figure 4.3, and Figure 4.4. Table 4.7 shows the mean, max, and min soil

temperature for increasing distances from the sidewalk with model (4.6). Table 4.7 indicates that

the highest sample mean and max soil temperature were both recorded at 15cm and the lowest

sample mean and max soil temperature were both recorded at 60cm. However, the closer to the

sidewalk, the lower the sample min of the soil temperature time series. According to the ANOVA and

Fisher’s Protected LSD test, the true population mean, max, and min of the soil temperature time

series at the different distances are different (with a significance level of 0.05). The results suggest

that the proximity to the sidewalk has influence on the true mean, max, and min soil temperature.
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Figure 4.2: Mean soil temperatures (C) at different distances (15a cm, 30b cm, 45bc cm, 60c cm)
from the sidewalk for each month. Means with the same letter do not significantly differ based on
ANOVA and Fisher’s Protected LSD test with a significance level of 0.05

Figure 4.3: Max soil temperatures (C) at different distances (15a cm, 30b cm, 45bc cm, 60c cm)
from the sidewalk for each month. Means with the same letter do not significantly differ based on
ANOVA and Fisher’s Protected LSD test with a significance level of 0.05
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Figure 4.4: Min soil temperatures (C) at different distances (15a cm, 30b cm, 45bc cm, 60c cm)
from the sidewalk for each month. Means with the same letter do not significantly differ based on
ANOVA and Fisher’s Protected LSD test with a significance level of 0.05

4.3.4 Analysis based on a RCBD for mean, max, min soil temperature

time series with air temperature included in the model

From Chapter 3, we know that air temperature have an influence on soil temperature. So

soil temperature (measured response) is related not only to the distance (treatment) but also to air

temperature (covariate). And the distances do not have an effect on air temperature. In experiment

design, covariate is defined as the variables that describe the differences in experimental units or

experimental conditions (Ott & Longnecker, 2010). The issue is that the covariates (air temperature)

are all the same for different experimental units (sites of sensor). A plot of the soil temperature for

each distance is shown in Figure 4.5 with the covariate, air temperature given on the horizontal axis.

Figure 4.5 indicated that the relationship between soil temperature and the covariate air

temperature is almost linear or curvilinear. Since the analysis of covariates combines features of the

analysis of variance and regression analysis, we make use of a general linear model formulation for

the analysis of the soil temperature time series data. If we assume a linear relationship between soil

temperature Yijk and the covariate, air temperature xijk for each treatment, we have a RCBD with

3 blocks (rep1, rep2, rep3), 4 treatments (15cm, 30c, 45c, 60cm), one covariate (air temperature)

and n = 24 observations per treatment in each block. In section 4.3.3, we add the effect of time

(month) in the RCBD model (4.6). However, the effect of month is not included in the following
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Figure 4.5: Soil temperature for 4 distances with covariate, air temperature
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Table 4.8: Expected values for the RCBD with one covariate

Block Treatment Expected Responses
1 1 β0 + β1x1
1 2 (β0 + β4) + (β1 + β7)x1
1 3 (β0 + β5) + (β1 + β8)x1
1 4 (β0 + β6) + (β1 + β9)x1
2 1 (β0 + β2) + β1x1
2 2 (β0 + β2 + β4) + (β1 + β7)x1
2 3 (β0 + β2 + β5) + (β1 + β8)x1
2 4 (β0 + β2 + β6) + (β1 + β9)x1
3 1 (β0 + β3) + β1x1
3 2 (β0 + β3 + β4) + (β1 + β7)x1
3 3 (β0 + β3 + β5) + (β1 + β8)x1
3 4 (β0 + β3 + β6) + (β1 + β9)x1

model which contains air temperature. Because the monthly air temperature is the same for any

reps and any distances.

Yijk = β0 + τi + bj + δixijk + εijk (4.7)

where i = 1, 2, 3, 4; j = 1, 2, 3; and k = 1, · · · , 24. Yijk is the mean or max or min of the monthly soil

temperature, xijk is the mean of the monthly air temperature, β0 is the intercept of the regression of

y on x, τi is the ith treatment effect, δi is the slope of the regression of y on x, bj is the jth random

block effect, and εijks are the random errors. We can write this in a general linear model as:

Full Model : y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 (4.8)

+ β7x1x4 + β8x1x5 + β9x1x6 + εijk

where x1 = covariate; x2 = 1 if block 2 , x2 = 0 otherwise; x3 = 1 if block 3 , x3 = 0 otherwise;

x4 = 1 if treatment 2, x4 = 0 otherwise; x5 = 1 if treatment 3, x5 = 0 otherwise; x6 = 1 if treatment

4 , x6 = 0 otherwise.

In the full model (4.8), the response y is related to a quantitative variable x1 and two

qualitative variables: blocks and treatments. An interpretation of βs in the model is shown in Table

4.8:

The model (4.8) provides for a linear relationship between y and x1 for each of the treatments

in each block, and it also allows for differences among intercepts and slopes. Note that the treatments
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have different slopes, but that each treatment has the same slope across blocks (Ott & Longnecker,

2010). To test whether the linear relationship between soil temperature and air temperature is

the same for the 4 distances (whether the 4 lines have equal slopes), we fit a model to the soil

temperature data in which the 4 lines have the same slope, but different intercepts.

Reduced Model I : y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + εijk (4.9)

A test for equal slopes is obtained by testing in Reduced Model I the hypotheses

H0 : β7 = β8 = β9 = 0 vs Ha : βi’s are not all equal, i = 7, 8, 9

The test F-statistic for H0 versus H1 is

F =
(SSERI − SSEF )/(dfR − dfF )

SSEF /dfF
(4.10)

where SSERI is the sum of squares error from the Reduced Model I, SSEF is the sum of squares

error from the Full Model. Based on this F-statistic, we calculated a p-value. We used mean, max,

min soil temperature as the response, respectively. We all calculated a p-value which is greater

than the significant level 0.05. Thus, the 4 treatments have the same slope. Then, we can test for

differences among the 4 treatments. We would fit a model without treatment differences:

Reduced Model II : y = β0 + β1x1 + β2x2 + β3x3 + εijk

Then the following null hypothesis can be used to test for differences among treatments.

H0 : β4 = β5 = β6 = 0 vs Ha : βi’s are not all equal, i = 4, 5, 6

The test F-statistic for H0 versus H1 is

F =
(SSERII − SSERI)/(dfRII − dfRI)

SSERI/dfRI
(4.11)

where SSERII is the sum of squares error from the Reduced Model II. Based on this F-statistic, we
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Table 4.9: Mean/Max/Min soil temperature (C) at different distances from the sidewalk with the
impact of air temperature. Means with the same letter in a column do not significantly differ with
a significance level of 0.05.

Distance Mean Soil Temp Max Soil Temp Min Soil Temp
15cm 20.11a 24.98a 14.89a

30cm 19.77ab 24.25b 15.34b

45cm 19.66ab 23.79bc 15.68bc

60cm 19.35b 23.52c 15.92c

can calculated the p-value. When the p-value is less than the significant level, we then used Fisher’s

Protected LSD test to compare any pair of soil temperature. The results are shown in Table 4.9.

4.3.5 Analysis based on a RCBD for residuals of the mean, max, min soil

temperature time series

Another approach to analyze the soil temperature with the influence of air temperature is

to use the residual from the function:

Y = f(x) (4.12)

Where f is a function to describe the relationship between soil temperature and air temperature.

We use mean air temperature as the input x and maximal, average or minimal soil temperature as

the output Y in (4.12).

We substract the effect of air temperature from soil temperature, then use the difference or

residual (y− f(x)) as the response in model (4.6). In this study, we used linear model and Granger-

causality model as f, respectively. Then we used the residual from these two models as the response

in model (4.6), respectively.

The results for residuals from linear model and Granger-causality model are in Table 4.10

and Table 4.11. From the results, we can conclude that the true residuals from the linear model are

significantly different among incremental distances (15cm, 30cm, 45cm, 60cm) from the sidewalk.

While the true residuals from the Granger-causality model do not significantly differ among incre-

mental distances (15cm, 30cm, 45cm, 60cm) from the sidewalk. When average and max monthly

soil temperature are used as output in (4.12), the highest residual from linear model and Granger-

causality model was both recorded at 15 cm and the lowest was both recorded at 60 cm. When

min monthly soil temperature are used as output in (4.12), the closer to the sidewalk the lower the
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Table 4.10: Variation of residual from linear model for increasing distances from the sidewalk. Means
with the same letter in a column do not significantly differ with a significance level of 0.05.

Distance Mean residual Max residual Min residual
15cm 0.284a 1.616a −0.415a

30cm 0.004b −0.092b −0.189ab

45cm −0.093bc −0.619bc 0.287b

60cm −0.195c −0.905c 0.317b

Table 4.11: Variation of residual from Granger Causality model for increasing distances from the
sidewalk. Means with the same letter in a column do not significantly differ with a significance level
of 0.05.

Distance Mean residual Max residual Min residual
15cm 0.115a 0.132a −0.075a

30cm 0.011a 0.122b 0.018a

45cm −0.041a 0.018bc 0.012a

60cm −0.085a −0.015c 0.107a

residual for both models.

4.4 Peaks Over Threshold

The scope of this section is to analyze temperatures using a Peaks Over Threshold (POT)

approach. The purpose of this POT approach is to analyze soil temperature extremes by comparing

the number of soil temperature that exceed a high threshold for different distances. This is motivated

by the fact that in the analysis, the max soil temperature seems to be the time series characteristics

that was influenced most by the sidewalk distance.

First, we need to choose the threshold. Commonly used procedure consists of choosing

one of the sample points as a threshold, the choice is often the kth upper order statistic Yn−k+1

from the ordered sequence Y1, · · · , Yn (Bommier, 2014). Frequently used is the 0.90 quantile. We

first calculate the 0.90 quantile for the daily soil temperature for each rep and each month. The

thresholds are shown in Figure 4.6. We then count the number of observations exceeding thresholds

and use these values as the response in model (4.6). The results are in Table 4.11
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Figure 4.6: The thresholds for different months and different reps
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Table 4.12: Average number of exceedances for increasing distances from the sidewalk by month.
Means with the same letter in a row do not significantly differ with a significance level of 0.05.

Average number of exceedances
Month 15cm 30cm 45cm 60cm

09− 2013 8a 3.67b 0.33c 0c

10− 2013 5.67a 4b 2.33c 1c

11− 2013 4.67a 4a 1.67a 1.67a

12− 2013 5.67a 5.33a 1b 1b

01− 2014 5.33a 5a 1.33a 1.33a

02− 2014 6a 2.67b 2b 1.33b

03− 2014 7.33a 3.67b 1.33c 0.67c

04− 2014 5.33a 3.67b 2.33b 0.67c

05− 2014 9.33a 3.33b 0.33c 14.300

06− 2014 9a 3b 0c 0c

07− 2014 11.33a 1.67b 0b 0b

08− 2014 9a 4b 0c 0c

09− 2014 7a 4.33b 0.67c 0c

10− 2014 5a 3a 3a 2a

11− 2014 3.67a 3.33a 2.67a 2.33a

12− 2014 4.33a 4a 2.67ab 2b

01− 2015 5.33a 3.67a 2.33a 1.67a

02− 2015 4.33a 4.33a 2b 1.33b

03− 2015 6.67a 3b 2b 1.33b

04− 2015 8a 3b 0.67c 0.33c

05− 2015 9.67a 3b 0.33c 0c

06− 2015 9.67a 2b 0.33b 0b

07− 2015 11.67a 1.33b 0b 0b

08− 2015 8.33a 3.67ab 1b 0b
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4.5 Discussion and Future Work

This work has developed a complete block design based on the monthly soil temperature time series

data with the impact of air temperature. For future research, we will consider to build a more

general design for the original data set (sample size is 35,040). And we will consider some other

methods to add the influence of air temperature into our design. In addition, we can consider spatial

space model. Since the soil temperatures were measured over distances (15cm, 30cm, 45cm, 60cm),

it is reasonable to assume that the correlation between any two observations decrease as the sensor

are further apart in distance.
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