A Compact Driving Simulator to Support Research and Training Needs – Hardware, Software, and Assessment

M.S. Thesis Defense
Qimin (Jimmy) Yao
November 28, 2012

Mechanical Engineering Department
Clemson University, Clemson, SC 29634
A Virtual Driving Education Simulation
– Hardware and Software with Pilot Study

Qimin (Jimmy) Yao
November 28, 2012

Department of Mechanical Engineering
Clemson University, Clemson, SC 29634
Presentation Outline

• Introduction
• Literature Review
• Tool Features
 – Hardware and Software
 – Track Design
 – Feedback System
 – Scenarios
 – Scoring System
• Pilot Study
• Summary

Basic view of the Clemson Automotive Training System (CATS)
Introduction: Background

- In 2010, 1,963 young people were killed and another 187,000 were injured in automotive crashes in the United States.
- Young drivers, ages between 16 and 23, have more than double the number of car incidents than older drivers.
- Several factors that may cause these drivers to have higher road crash rates:
 - Less experience
 - Not familiar with the road
 - Inaccurately gauge the vehicle speed
 - Easier to be attracted by various factors
 - React improper to hazard situations

Road crashes
Introduction: Background

• The graduated driving license (GDL) was introduced in 1996 and now has been adopted throughout the United States
• Safe driving programs were first developed in 1964, now these courses have spread to many states
• Clemson University Automotive Safety Research Institute (CU ASRI) has cooperated with Petty Safe Driving since 2007 to decrease the crash rates among young drivers
 – In classroom course
 – On-track settings

Petty safe driving program
Introduction: Background

• Virtual driving education has the potential to become an important tool for training young drivers

• CarSim, used in over 30 automotive manufactures and over 100 research institutes and universities, offers advanced vehicle control and vehicle dynamic behavior

• Racing games, such as Grand Turismo 5 and Need for Speed, are examples of driving simulators; they focus on simulating the reality vehicle and the driving environment

• Open source driving simulations are easy to develop and can simulate complex driving scenarios
Introduction: Background

- Clemson Automotive Training System (CATS) was developed based on VDrift, an open source software.
- The purpose of CATS is to educate and train young drivers as a supplemental method in safe driving program.
- Insertion of CATS in Safe Driving Program (SDP):
 - Gain more driving practice
 - Become familiar with SDP modules
 - Increase entertainment

Relationships between SDP and CATS
Driving View Between CATS and SDP

- CATS can simulate the roadway to train young drivers
 - Simulates the same view as driver sitting in the vehicle
 - Create control signs for the road

Comparison in-vehicle driving view between CATS and SDP
• Lee (2007): Best way to train novice drivers is through the GDL program, then use emerging technology to support
• Chan et al. (2010): Driving simulators are effective tools for evaluating novice drivers’ hazard anticipation, speed management and attention maintenance skills
• Crundall and Andrews (2010): Commentary that training improves responsiveness to hazards in a driving simulator
• Vidotto and Bastianelli (2010): Training with a simulator improved hazard avoidance skills in teenagers
• Norfleet et al. (2011): Driving simulator proved helpful in communicating automotive safety lessons, followed by driving exercises to practice and reinforce the educational concept
Tool Features: Hardware

- 17 inch monitor
- Seat belt
- Racing chair
- Seat belt holder
- Steering wheel holder
- Throttle & brake pedal
- Steering wheel
- Speak bar
Tool Features: Software

Create Track

Bob's Track Builder

Blender

CATS

Create Scenarios

C++

Python

Automotive Research Laboratory
Tool Features: Track Design

- Customized track and user interface
 - Create track with customized shape
 - Mountain, bumps, etc.
 - Adjust the track surface coefficient
 - Modify the information display on the screen

- Objects added to environment
 - Add hundreds of objects to track
 - Make unique objects

Track with multiple objects on the road
Tool Features: Feedback System

- **Image feedback system**
 - Face images represent the driving performance to pass this scenario
 - Instructional images give hints about the scenario the driver will meet next

- **Message feedback system**
 - Offer simulated parameters such as driving ratings, reaction time, braking time, braking distance, and deceleration

Automotive Research Laboratory
Tool Features: Scenarios and Data Collection

- Create scenarios
 - Stop sign
 - Right lane selection
 - Full stopping module
 - Obstacle avoidance

- Collect parameters
 - Position of vehicle and track
 - Vehicle speed and acceleration
 - Lateral acceleration, yaw angle
 - Numbers of wheels on the track
 - Indirectly values calculated from the above

Collect data such as velocity, acceleration, and other valuable vehicle information.
Tool Features:
Stop Sign Scenario

• Scenario 1: Stop sign
 – A stop sign is placed along the roadway
 – Users are informed to bring their vehicle to a stop

Stop Sign

Automotive Research Laboratory
Tool Features:
Lane Selection Scenario

- Scenario 2: Right Lane Selection
 - Driving lane presented with a two-way split in a driving lane with one path containing an obstacle and the other path clear
 - User must select the clear path

Right Lane Selection
Testing Design Strategy: Braking Scenario

- Scenario 3: Braking
 - Users will be commanded to bring their vehicle to a sudden stop at various locations of the roadway
 - After stopping the vehicle, users will be provided with feedback on their performance

Braking Module
Tool Features: Obstacle Avoidance Scenario

- Scenario 4: Obstacle Avoidance
 - An obstacle is placed in an arbitrary location of the roadway
 - Users must identify the obstacle and maneuver their vehicle appropriately to avoid it
Tool Features: Scoring System

- Driving score will display on the top left of the screen
- User can check his/her driving score immediately while driving
- Driving score will be updated automatically during the simulation
Tool Features: Scoring System

• Four scores listed according to the scenarios, a final score has been put at the bottom of the four scores
• User can check their score status by looking at this list in the game menu
• Click on the “Detail” button; user can see more information for their driving performance
Tool Features: Scoring System

• In each scenario, the scoring system records the description of how the user gets points.
• Left column displays the items used to evaluate the user’s driving performance.
• Right column lists the score and the total points in each category received.

In game, right lane selection menu.
Tool Features: Scoring System in Background Process

- User’s information
- Pre-test score
 - 10 questions
- Score list and items
 - Four scenarios and their items
 - Related scores
- Driving performance
 - “Excellent, Good, Fair, Poor, Dangerous”
- Some basic data statistic
 - Max speed, Average speed
Tool Features: Data Collection

- Data can be collected and analyzed by Matlab

Car trajectory as measured by (x-y) coordinates

Steering wheel angles by the data system
Pilot Study

- A total of 12 students were invited to complete the testing of CATS.
- The driver performance improved an average of 12.75% (novice), 5.67% (young), and 4.31% (seasoned).

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Years Driving</th>
<th>Self Rating</th>
<th>Driving Education</th>
<th>Pre Test Score</th>
<th>1st Run Driving Score (DS)</th>
<th>2nd Run Driving Score (DS)</th>
<th>Driver Rating (DR)</th>
<th>Post Test Score</th>
<th>Knowledge Gain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>3-5</td>
<td>Excellent</td>
<td>Yes</td>
<td>100</td>
<td>86.75</td>
<td>66</td>
<td>Fair</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>6-10</td>
<td>Excellent</td>
<td>No</td>
<td>100</td>
<td>61.25</td>
<td>80</td>
<td>Good</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>6-10</td>
<td>Good</td>
<td>Yes</td>
<td>80</td>
<td>84.75</td>
<td>80</td>
<td>Good</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>3-5</td>
<td>Good</td>
<td>No</td>
<td>60</td>
<td>45</td>
<td>47.5</td>
<td>Dangerous</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>6-10</td>
<td>Excellent</td>
<td>Yes</td>
<td>100</td>
<td>54.75</td>
<td>61.25</td>
<td>Fair</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>0-2</td>
<td>Average</td>
<td>Yes</td>
<td>60</td>
<td>59.25</td>
<td>55</td>
<td>Dangerous</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>6-10</td>
<td>Average</td>
<td>Yes</td>
<td>100</td>
<td>79.25</td>
<td>76</td>
<td>Average</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>11-20</td>
<td>Good</td>
<td>Yes</td>
<td>80</td>
<td>74.75</td>
<td>73.75</td>
<td>Average</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>0-2</td>
<td>Average</td>
<td>Yes</td>
<td>100</td>
<td>62.25</td>
<td>58.5</td>
<td>Dangerous</td>
<td>80</td>
<td>-20</td>
</tr>
<tr>
<td>10</td>
<td>27</td>
<td>3-5</td>
<td>Good</td>
<td>Yes</td>
<td>100</td>
<td>19</td>
<td>54.25</td>
<td>Dangerous</td>
<td>80</td>
<td>-20</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
<td>0-2</td>
<td>Fair</td>
<td>No</td>
<td>80</td>
<td>21.5</td>
<td>65.5</td>
<td>Fair</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>0-2</td>
<td>Good</td>
<td>No</td>
<td>100</td>
<td>71.25</td>
<td>84.25</td>
<td>Good</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>24.67</td>
<td>5.25</td>
<td>Good</td>
<td>-</td>
<td>88.33</td>
<td>59.98</td>
<td>66.83</td>
<td>Fair</td>
<td>93.33</td>
<td>5</td>
</tr>
</tbody>
</table>

Pilot study results for twelve human test subjects using CATS.
Summary

- Modules developed to instruct and test users safe driving capabilities within a virtual driving environment
- Participants’ overall driving behavior became safer after using the simulator
- Young drivers showed more improvement both on driving knowledge and driving proficiency than veteran drivers
- The simulator proved to be efficient at improving driving skills and knowledge
Questions
Assessment of an Automotive Driving Simulator to Educate Novice Drivers

Qimin(Jimmy) Yao

November 28, 2012

Department of Mechanical Engineering
Clemson University, Clemson, SC 29634
Presentation Outline

• Introduction
• Literature Review
• CATS Demo
• Testing Design Strategy
 – Steps
 – Questionnaire
 – Scenarios
• Assessment
• Summary
• Future Work

CATS Station in the Safe Driving Program at Charlotte Motor Speedway (Concord, NC)
Introduction

• Simulators have been widely used in many fields
• A total of 50 participants have been invited to take the testing of the Clemson Automotive Training System (CATS)
• 35 participants were male and 15 participants were female
• Participants’ ages ranged between 23 and 31 years old
• Subjects were classified as novice (0-2 years), beginner (3-5 years), and experienced (5+ years) drivers
Literature Review: Simulator Development and Application

- Ruspa et al. (2007): FIAT auto use virtual driving tool for the **ergonomic assessment** of the external visibility during the **development of new car model**, to compare different geometries
- Kim et al. (2007): Integrate automotive simulator system of a large scale driving simulator with hardware-in-the-loop systems (HILS)
- Piegsa and Rumbolz (2011): Based on different driver habits and various car types and locations, the driving simulator be used to **measure the fuel consumption** and compare the data
- Kandhai and Smith (2011): Apply driving education simulation both in personal PC and **mobile apps**
- Groot et al. (2011): Use driving simulator to investigate whether concurrent bandwidth feedback improves learning of the **lane-keeping task**
CATS Demo

- Demo for CATS
- Click to watch demo from local
- Click to watch demo from youtube
Testing Design Strategy: Steps

• Step 1: Practice driving
 – Become familiar with the equipment such as throttle and braking pedal and then drive the vehicle on a road with no scenarios

• Step 2: Answer pre-test questionnaire
 – Ten questions about safety driving will be posted on the screen and required to answer. A score will be saved and be used to analyze the driving performance later

• Step 3: Drive CATS simulation system for the first lap
 – Four scenarios have been made on the road and students are required to react in the correct way in passing them
 – A system score will be used to collect some data and evaluate the student’s driving performance on each scenario
Testing Design Strategy : Steps

• **Step 4: Watch instruction video**
 – A short video will give purpose to design this track and scenarios and demonstrates the right method to pass each scenario

• **Step 5: Drive CATS simulation system for the second lap**
 – Instruction system will be used to give enough instructions when student is driving on each scenario for the second time

• **Step 6: Answer post-test questionnaire**
 – Ten questions are required to be answered again
Testing Design Strategy: Steps

• Step 7: Evaluation of the driving performance
 – A final score will be created based on the pre-questions answers and the driving performance of the student on the four scenarios
 – Certain value will be made to graphics to show some basic students’ performance
Testing Design Strategy : Questionnaire

• Five attitudinal questions
 – Q1: I love to show off when I'm driving.
 – Q2: If you have good skills, speeding is O.K.
 – Q6: Wearing a seatbelt makes me feel safe.
 – Q8: I'm still learning to be a good driver.
 – Q10: I would get into the car with a reckless driver if I had no other way to get home.

• Five correct / incorrect questions
 – Q3: What is the proper way a seat belt should be worn?
 – Q4: When driving, you should consistently check what?
 – Q5: Coming to a flashing red light, you should?
 – Q7: While driving on a highway, when do you use your turn signal?
 – Q9: When approaching an intersection with a yellow signal light, it is best to...
Testing Design Strategy: Scoring System Items

- Scoring system used to test and give the users’ driving performance is based on results of the pre-questions and four scenarios
 - Answer the ten pre-questions and get the scores
 - Evaluate users’ driving performance and get the scores
 - Add all the scores and get one final score

\[
S_i = \begin{cases}
\sum_{j=7}^{3} \alpha_{ij} K_{ij} ; & \text{for } (i=1,2,4) \\
\sum_{j=1}^{7} \alpha_{ij} K_{ij} ; & \text{for } (i=3)
\end{cases}
\]

DS = \frac{1}{n} \left(\sum_{i=1}^{4} S_i - \sum_{\kappa=1}^{3} \beta_{\kappa} N_{\kappa} \right)

DR = \begin{cases}
\text{Excellent}; & \text{if } 90 \leq DS \leq 100 \\
\text{Good}; & \text{if } 80 \leq DS < 90 \\
\text{Average}; & \text{if } 70 \leq DS < 80 \\
\text{Fair}; & \text{if } 60 \leq DS < 70 \\
\text{Dangerous}; & \text{if } DS < 60
\end{cases}
Testing Design Strategy: Stop Sign Scenario

- **Event 1: Stop sign**
 - A stop sign is placed along the roadway
 - Users are informed to bring their vehicle to a stop prior to the sign

- **Performance evaluation**
 - A score will be given based on the items below, the total score of this scenario is 25 points

<table>
<thead>
<tr>
<th>Items</th>
<th>Success</th>
<th>Failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vehicle speed lower than 10 mph</td>
<td>15 points</td>
<td>0 points</td>
</tr>
<tr>
<td>2. Not run off the road</td>
<td>5 points</td>
<td>0 points</td>
</tr>
<tr>
<td>3. Drive smoothly</td>
<td>5 points</td>
<td>0 points</td>
</tr>
</tbody>
</table>

25 points 0 points
Testing Design Strategy: Lane Selection Scenario

- Event 2: Right Lane Selection
 - Driving lane presented with a two way split in a driving lane with one path containing an obstacle and other path clear
 - User must select the clear path

- Performance evaluation
 - A score will be given based on the items below, the total score of this scenario is 25 points

<table>
<thead>
<tr>
<th>Items</th>
<th>Success</th>
<th>Failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Drive on the right lane.</td>
<td>10 points</td>
<td>0 points</td>
</tr>
<tr>
<td>2. Not run off the road.</td>
<td>5 points</td>
<td>0 points</td>
</tr>
<tr>
<td>3. Drive smoothly.</td>
<td>5 points</td>
<td>0 points</td>
</tr>
<tr>
<td>4. Vehicle speed lower than 30 mph.</td>
<td>5 points</td>
<td>0 points</td>
</tr>
<tr>
<td>25 points</td>
<td>0 points</td>
<td></td>
</tr>
</tbody>
</table>
Testing Design Strategy: Braking Scenario

- Event 3: Braking
 - Users will be commanded to bring their vehicle to a sudden stop at various locations of the roadway
 - After stopping in vehicle, users will be provided with feedback on their performance

- Performance evaluation
 - A score will be given based on the items below, the total score of this scenario is 25 points

<table>
<thead>
<tr>
<th>Items</th>
<th>Success</th>
<th>Failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Has vehicle stopped completely?</td>
<td>10 points</td>
<td>0 points</td>
</tr>
<tr>
<td>2. Stopping distance.</td>
<td>5 points</td>
<td>0 points</td>
</tr>
<tr>
<td>3. Stopping reaction time.</td>
<td>5 points</td>
<td>0 points</td>
</tr>
<tr>
<td>4. Stopping time.</td>
<td>5 points</td>
<td>0 points</td>
</tr>
<tr>
<td></td>
<td>25 points</td>
<td>0 points</td>
</tr>
</tbody>
</table>
Testing Design Strategy: Obstacle Avoidance Scenario

- Event 4: Obstacle Avoidance
 - An obstacle is placed in an arbitrary location of the roadway
 - Users must identify the obstacle and maneuver their vehicle appropriately to avoid it

- Performance evaluation
 - A score will be given based on the items below, the total score of this scenario is 25 points

<table>
<thead>
<tr>
<th>Items</th>
<th>Success</th>
<th>Failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Drive on the right lane.</td>
<td>10 points</td>
<td>0 points</td>
</tr>
<tr>
<td>2. Not run off the road.</td>
<td>5 points</td>
<td>0 points</td>
</tr>
<tr>
<td>3. Drive smoothly.</td>
<td>5 points</td>
<td>0 points</td>
</tr>
<tr>
<td>4. Vehicle speed lower than 30 mph.</td>
<td>5 points</td>
<td>0 points</td>
</tr>
<tr>
<td></td>
<td>25 points</td>
<td>0 points</td>
</tr>
</tbody>
</table>
Attitudinal Questionnaire Results

Attitudinal Questionnaire

<table>
<thead>
<tr>
<th>Attitude Question</th>
<th>PreTest (%)</th>
<th>PostTest (%)</th>
<th>Improvement(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SA</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>Q1: I love to show off when I'm driving</td>
<td>4</td>
<td>16</td>
<td>50</td>
</tr>
<tr>
<td>Q2: If you have good skills, speeding is OK</td>
<td>8</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td>Q6: Wearing a seatbelt makes me feel safe</td>
<td>68*</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>Q8: I'm still learning to be a good driver</td>
<td>34*</td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>Q10: I would get into the car with a reckless driver if I had no other way to get home</td>
<td>6</td>
<td>28</td>
<td>36</td>
</tr>
</tbody>
</table>
Assessment: Pre-test and Post-test: Driving Knowledge Questionnaire Results

• Correct / Incorrect questionnaire

Q3: 72% agreed to wear the seat belt on the pre-test and 92% on the post-test
Q4: 95% know the proper way to check mirrors before driving
Q5: 74% react correctly when coming to a flash red light on the pre-test and 90% on the post-test
Q7: Over 90% know when to use turn signal on the express way
Q9: 66% know the right method to approach an intersection with a yellow signal light on the pre-test and 82% on the post-test

<table>
<thead>
<tr>
<th>Question</th>
<th>PreTest(%)</th>
<th>PostTest(%)</th>
<th>Improvement(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correct</td>
<td>Incorrect</td>
<td>Correct</td>
</tr>
<tr>
<td>Q3</td>
<td>72</td>
<td>28</td>
<td>92</td>
</tr>
<tr>
<td>Q4</td>
<td>94</td>
<td>6</td>
<td>96</td>
</tr>
<tr>
<td>Q5</td>
<td>74</td>
<td>26</td>
<td>90</td>
</tr>
<tr>
<td>Q7</td>
<td>90</td>
<td>10</td>
<td>96</td>
</tr>
<tr>
<td>Q9</td>
<td>66</td>
<td>34</td>
<td>82</td>
</tr>
</tbody>
</table>

Five correct / incorrect questionnaire
Assessment: 50 Human Test Subjects

- Overall driving improvement is 28%
- Subject 2 is a novice driver and demonstrated a satisfied improvement

<table>
<thead>
<tr>
<th>Subject</th>
<th>Gender</th>
<th>Age</th>
<th>Driving Experience</th>
<th>1st Run</th>
<th>2nd Run</th>
<th>(%)</th>
<th>Driver Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>25</td>
<td>3~5</td>
<td>46.5</td>
<td>75</td>
<td>28.5</td>
<td>Average</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>23</td>
<td>0~2</td>
<td>66.8</td>
<td>80.8</td>
<td>14</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>25</td>
<td>0~2</td>
<td>55.2</td>
<td>81.5</td>
<td>46.3</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>28</td>
<td>3~5</td>
<td>82</td>
<td>82</td>
<td>0</td>
<td>Good</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>23</td>
<td>0~2</td>
<td>73.8</td>
<td>75.5</td>
<td>1.8</td>
<td>Average</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>20</td>
<td>3~5</td>
<td>39.5</td>
<td>86</td>
<td>46.5</td>
<td>Good</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>23</td>
<td>5~10</td>
<td>1.8</td>
<td>77.5</td>
<td>75.8</td>
<td>Average</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>20</td>
<td>5~10</td>
<td>86.5</td>
<td>86.5</td>
<td>0</td>
<td>Good</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>24</td>
<td>3~5</td>
<td>63.8</td>
<td>77.5</td>
<td>13.8</td>
<td>Average</td>
</tr>
<tr>
<td>46</td>
<td>M</td>
<td>26</td>
<td>3~5</td>
<td>26.3</td>
<td>76.8</td>
<td>50.5</td>
<td>Average</td>
</tr>
<tr>
<td>47</td>
<td>M</td>
<td>26</td>
<td>3~5</td>
<td>72.5</td>
<td>83.3</td>
<td>10.8</td>
<td>Good</td>
</tr>
<tr>
<td>48</td>
<td>F</td>
<td>21</td>
<td>5~10</td>
<td>83.8</td>
<td>84.5</td>
<td>0.8</td>
<td>Good</td>
</tr>
<tr>
<td>49</td>
<td>M</td>
<td>26</td>
<td>5~10</td>
<td>82.5</td>
<td>80.8</td>
<td>-1.8</td>
<td>Good</td>
</tr>
<tr>
<td>50</td>
<td>M</td>
<td>22</td>
<td>0~2</td>
<td>63.8</td>
<td>60</td>
<td>-3.8</td>
<td>Fair</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>57</td>
<td>75</td>
<td>28</td>
<td>Average</td>
</tr>
</tbody>
</table>

Table of 50 human test subjects
Assessment: Relationship Between Driving Score and Several Factors

- Driving score improved 28% when V_{peak} decreased 3% and V_{ave} increased 6%

<table>
<thead>
<tr>
<th>Subject</th>
<th>Driving Score</th>
<th>V_{peak}</th>
<th>V_{ave}</th>
<th>δ_{peak}</th>
<th>δ_{ave}</th>
<th>$\bar{N}_{offRoad}$</th>
<th>$\bar{N}_{doubleLine}$</th>
<th>$\bar{N}_{Speeding}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.5</td>
<td>-5.2</td>
<td>3</td>
<td>-5.2</td>
<td>10.9</td>
<td>0</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-334.6</td>
<td>-3.3</td>
<td>0</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>46.3</td>
<td>-2.1</td>
<td>0.2</td>
<td>-77.1</td>
<td>34.3</td>
<td>-3</td>
<td>-1</td>
<td>-5</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-0.6</td>
<td>3.3</td>
<td>228.5</td>
<td>8.2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1.8</td>
<td>-0.3</td>
<td>1</td>
<td>-268.8</td>
<td>-2.9</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>46.5</td>
<td>-21.1</td>
<td>1.1</td>
<td>-387</td>
<td>1.3</td>
<td>-1</td>
<td>-3</td>
<td>-6</td>
</tr>
<tr>
<td>13</td>
<td>75.8</td>
<td>1.3</td>
<td>-1.7</td>
<td>-247.8</td>
<td>12.6</td>
<td>-1</td>
<td>-4</td>
<td>-6</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>-0.2</td>
<td>2.5</td>
<td>65.8</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>13.8</td>
<td>-5.5</td>
<td>-3.2</td>
<td>-296</td>
<td>-7.6</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>46</td>
<td>50.5</td>
<td>-4.7</td>
<td>-2.1</td>
<td>-213</td>
<td>-1.8</td>
<td>-4</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>47</td>
<td>10.8</td>
<td>-1.7</td>
<td>2.2</td>
<td>-12.8</td>
<td>1.5</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>48</td>
<td>0.8</td>
<td>-1.6</td>
<td>9.4</td>
<td>6.6</td>
<td>4.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>-1.8</td>
<td>-1.7</td>
<td>4.8</td>
<td>65.5</td>
<td>12.9</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>-3.8</td>
<td>7.6</td>
<td>-1.5</td>
<td>-146.9</td>
<td>-1.9</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Average</td>
<td>17.2</td>
<td>-1.7</td>
<td>1.3</td>
<td>-103</td>
<td>-0.1</td>
<td>-0.5</td>
<td>-1</td>
<td>-1.5</td>
</tr>
</tbody>
</table>

Table of relationship between driving score and several factors

Automotive Research Laboratory
Assessment: Relationship Between Driving Score and Several Factors

- The average of N_{offroad}, $N_{\text{doubleline}}$, and N_{speeding} decreased show that the drivers became more cautious of passing corners on the track and they showed a better awareness of controlling vehicle speed below the speed limit.
- Drivers improved their driving performance after achieving familiarity with the track and scenarios on the road.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Novice</th>
<th>Beginner</th>
<th>Experienced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>19.5</td>
<td>14.9</td>
<td>18.1</td>
</tr>
<tr>
<td>V_{peak}</td>
<td>-2</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>V_{ave}</td>
<td>1</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>δ_{peak}</td>
<td>-42</td>
<td>-32</td>
<td>-50</td>
</tr>
<tr>
<td>δ_{ave}</td>
<td>-24</td>
<td>11</td>
<td>61</td>
</tr>
<tr>
<td>\hat{N}_{offRoad} (times)</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.7</td>
</tr>
<tr>
<td>$\hat{N}_{\text{doubleLine}}$ (times)</td>
<td>-1.3</td>
<td>-0.8</td>
<td>-0.9</td>
</tr>
<tr>
<td>$\hat{N}_{\text{speeding}}$ (times)</td>
<td>-1.7</td>
<td>-1.3</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

Table of relationship between driving score and several factors
Assessment: Self Rating and Test Rating

- Novice drivers over-estimated their driving skills
- Only half experienced drivers achieved good test rating

<table>
<thead>
<tr>
<th>Number of Subjects</th>
<th>Novice (0~2 years)</th>
<th>Beginner (3~5 years)</th>
<th>Experienced (6+ years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>21</td>
<td>9</td>
</tr>
</tbody>
</table>

Driver’s Self Rating on Pre-test Questionnaire (Question 4)

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Good</th>
<th>Average</th>
<th>Fair</th>
<th>Dangerous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novice (0~2 years)</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Beginner (3~5 years)</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Experienced (6+ years)</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

CATS Driver Rating, DR

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Good</th>
<th>Average</th>
<th>Fair</th>
<th>Dangerous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novice (0~2 years)</td>
<td>0</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Beginner (3~5 years)</td>
<td>0</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Experienced (6+ years)</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Comparison table between self-rating and test-rating
Summary

• Novice drivers demonstrate significantly greater potential in enhancing their driving skills and absorbing traffic rules than experienced drivers

• An increase in driving score correlates with a decrease in peak velocity, but an increase in average velocity

• A large proportion of drivers do not realize the potential risks created by driving over the speed limit

• An average improvement of 28% in the driving score indicates that CATS succeeded in improving driver’s performance
Future Work

- Add force feedback function into CATS
- Design and build more realistic tracks
- Implement Artificial Intelligence (AI) vehicles and interact with player vehicle
- Develop more friendly user interface
- Design a strategy to better evaluate driver’s performance
Questions