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ABSTRACT 

 

 

Because rare and cryptic species can be difficult to locate, distribution maps for 

these species are often inaccurate or incomplete. Bog Turtles (Glyptemys muhlenbergii) 

are emblematic of this challenge. In fact, conducting surveys of known, historical, and 

potential Bog Turtle habitat is a specific need stated in the Bog Turtle Northern 

Population Recovery Plan and in most Comprehensive Wildlife Conservation Strategies 

of states within the southern range. Therefore we examined ways to better locate Bog 

Turtle habitat and Bog Turtles within that habitat. First we determined a detection 

probability for a standardized trapping method so we could effectively survey for Bog 

Turtles at sites with unknown occupancy status. A species distribution model (SDM) was 

then used to identify potentially suitable Bog Turtle habitat within the species’ southern 

range. The SDM was ground-validated, using our trapping method, to assess its ability to 

locate suitable Bog Turtle habitat. At a local scale we then analyzed wetlands occupied 

and unoccupied by Bog Turtles to examine differences in their habitat characteristics and 

site history. We had a 0.19 average probability of detecting a turtle at a site during one 

trapping event, implying 15 trapping events at a site would minimize the probability of 

Bog Turtles being at a site but going undetected to 5%. Ground-validation of the SDM 

with this trapping method showed that the SDM greatly over-predicted the amount of 

suitable habitat. For example, of 196 wetlands in Georgia and South Carolina identified 

as suitable by the SDM and ground-validated, only 22 met criteria for suitable Bog Turtle 

habitat, and trapping of 17 of those suitable wetlands revealed only 2 to be occupied by 

Bog Turtles. At the local scale, a discriminant analysis showed that wetlands with Bog 
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Turtles were distinguishable from those without based on area of the wetland, percent of 

the wetland that has emergent vegetation, percent of the wetland that is flooded by beaver 

or lake presence, and water pH. These results suggest that future work should focus on 

better understanding local scale characteristics distinguishing Bog Turtle wetlands, as 

current data resolution does not enable a SDM to be effective.  
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CHAPTER ONE 

 

LOCATING RARE HABITAT FOR A RARE SPECIES: EVALUATION OF A 

SPECIES DISTRIBUTION MODEL FOR BOG TURTLES (GLYPTEMYS 

MUHLENBERGII) IN THE SOUTHEASTERN UNITED STATES 

 

 

Abstract. — Because rare and cryptic species can be difficult to locate, 

distribution maps are often inaccurate or incomplete. Bog Turtles (Glyptemys 

muhlenbergii) are emblematic of this challenge. Conducting surveys of known, historical, 

and potential Bog Turtle habitat is a specific need stated in the Bog Turtle Northern 

Population Recovery Plan and in most Comprehensive Wildlife Conservation Strategies 

of states in the southern population. To address this need we constructed a species 

distribution model for the southern population of Bog Turtles and ground-validated the 

model to assess its ability to locate suitable Bog Turtle habitat. Our final model identified 

998,325 ha of potentially suitable habitat. On-the-ground evaluation of habitat identified 

as potentially suitable was carried out at 113 wetlands in Georgia and 83 in South 

Carolina. Of these only nine wetlands met criteria for suitable Bog Turtle habitat in 

Georgia and 13 in South Carolina. Trapping efforts at the nine Georgia sites and eight of 

the South Carolina sites showed Bog Turtles to be present at two of the Georgia sites. 

This ground-validation effort demonstrates that the species distribution model greatly 

over-predicts the amount of suitable habitat for Bog Turtles. Nonetheless, this manner of 

searching for rare and cryptic species does avoid the typical biases of haphazard searches 

and helps identify habitat on private property. Given these findings, the model is most 

useful when the area of interest is small, such as a county within a species’ range that 

currently has no known occurrence records.  
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INTRODUCTION 

Conservation efforts for rare and cryptic species are often hampered by an 

incomplete understanding of their distribution (Guisan et al. 2006). There are the extreme 

cases, such as Zhou’s Box Turtle (Cuora zhoui), where species are known only from 

specimens that appear in markets, with no wild populations known to scientists (Zhao et 

al. 1990; McCord and Iverson 1991). Yet the challenge of finding populations of rare and 

cryptic species is not solely a problem for the understudied ecosystems of the world. 

Searches for new populations of rare and cryptic species and efforts to better understand 

their geographic ranges occur regularly within the United States (Yozzo and Ottmann 

2003; Campbell et al. 2010; Graham et al. 2010; Sheldon and Grubbs 2014), and many of 

these searches are for herpetofauna (Apodaca et al. 2012; Groff et al. 2014; Lindeman 

2014; Pierson et al. 2014; Searcy and Schaffer 2014). In particular, efforts to study and 

conserve the Bog Turtle (Glyptemys muhlenbergii) capture the challenges faced in these 

search endeavors, as the species use of a rare habitat and its cryptic habits make locating 

populations on the landscape and individuals within a wetland especially challenging.  

Endemic to the Eastern United States, Bog Turtles are America’s smallest and 

rarest species of chelonian (Ernst and Lovich 2009). The species’ range is split into two 

regions, a Northern range reaching from New York and Massachusetts south to Maryland 

and Delaware and a Southern range predominantly found in the Appalachian region 

reaching from southern Virginia to northern Georgia. In the northern portion of their 

range Bog Turtles are listed as Threatened under the U.S. Endangered Species Act, 

whereas they are listed as Threatened by Similarity of Appearance in the southern 
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portion; globally they are considered one of the 40 most endangered turtles (USFWS 

1997; Turtle Conservation Coalition 2011).  Within their range Bog Turtles are confined 

to small, isolated, open-canopy, spring-fed wetlands characterized by shallow rivulets 

flowing over ankle to hip-deep muck (Chase et al. 1989; Tryon 1990). These wetlands are 

a rare features within the landscape, in part due to past drainage efforts for farming 

(Weakley and Schafale 1994). It is in this muck of these rare wetlands where Bog Turtles 

spend most of their time, making this small (maximum shell length of 11.5cm), mud-

colored turtle very difficult to find within a wetland (Ernst and Lovich 2009). The fact 

that they tend to occur in small populations (<50 individuals) lessens their detection 

probability even more (Rosenbaum et al. 2007). Because of the difficulties associated 

with finding Bog Turtle habitat and individuals, the State Wildlife Action Plans of 

Georgia, South Carolina, North Carolina, and Virginia, and the Bog Turtle Northern 

Population Recovery Plan all emphasize surveying for new populations in unexplored 

areas as part of their conservation strategy (USFWS 2001; GA DNR 2005; NCWRC 

2005; SC DNR 2005; VA DGIF 2005). Although there are guidelines on how to assess 

whether a site is suitable for Bog Turtles and how to survey for Bog Turtles within 

potentially suitable sites (USFWS 2001; Somers and Mansfield-Jones 2008), there are no 

suggestions on how to locate potential habitat within the greater landscape. Without 

guidelines, searches for this rare habitat tend to be haphazard and will naturally be biased 

towards roads and easily accessible areas, providing no way to assess habitat on private 

lands or far from the road. Thus there is a need to map suitable habitat for Bog Turtles to 

efficiently and strategically achieve states’ goals of locating new populations. 
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Species distribution modeling (SDM) techniques are one way to map species 

habitat associations, and they have greatly increased in popularity as user-friendly 

geographic information systems (GIS) and easily accessed remotely sensed data have 

become more available (Johnson et al. 2012). At the root of all these techniques is the 

idea that environmental conditions in places a species is known to occur can provide 

information on species-specific habitat requirements, and then new areas with the 

required environmental conditions can then be found on the landscape. The end product 

is a habitat description or map that highlights potentially suitable areas for the species. 

Such maps are now being used for conservation planning (see Rodríguez et al. 2006 for 

an overview), to decrease sampling effort when searching for rare species (Singh et al. 

2009), to locate rare species [plants (Guisan et al. 2006; Williams et al. 2009; Le Lay et 

al. 2010; Buechling and Tobalske 2011), endemic insects (Rinnhofer et al. 2012), a 

cryptic mammal (Jackson and Robertson 2011), a bat (Rebelo and Jones 2010), and 

salamanders (Apodaca et al. 2012; Chunco et al. 2013; Peterman et al. 2013)], to define 

areas for re-introduction (McKenna et al. 2013), and prioritize conservation areas (Gogol-

Prokurat 2011; Hunter et al. 2012). Because SDMs have demonstrated utility for rare 

species, including those with only a few known localities, we decided to apply the 

approach toward more efficiently and strategically locating suitable Bog Turtle habitat.  

We propose this SDM approach at a time when it is more important than ever to 

survey for new populations of Bog Turtles. Habitat loss, alteration, and degradation are 

the main threats facing Bog Turtles (USFWS 2001). A century of past ditching and 

draining efforts, encroachment of the wetland by woody vegetation, invasive plant 



 5 

species, and loss of habitat connectivity leave us trying to understand Bog Turtle habitat 

selection in an altered landscape (Tryon 1990; Buhlmann et al. 1997; USFWS 2001; 

Ernst and Lovich 2009). It is not uncommon to see this long-lived turtle persisting in 

degraded habitat it selected long-ago. We must therefore search for Bog Turtles before 

this habitat degradation becomes prohibitive in identifying habitat and understanding 

habitat selection.   

Our objective is to address the problems associated with Bog Turtle habitat 

detection by constructing a SDM for the species and ground-validating the model to 

assess its ability to locate suitable Bog Turtle habitat. This represents the first attempt to 

understand Bog Turtle distribution and habitat selection at a regional scale, as all 

previous attempts have been narrowly focused at the state level or home range scale 

(Chase et al. 1989; Carter et al. 1999; Morrow et al. 2001; Pittman and Dorcas 2009; 

Feaga et al. 2012; Feaga et al. 2013; Myers and Gibbs 2013). This regional scale 

approach was applied to the southern portion of the Bog Turtle range. This is an area 

where a regional model might be particularly useful as three states (South Carolina, 

Georgia, and Tennessee) have too few occurrence records to build a strong state level 

model. In addition, by using all known occurrence records in the south, we increase the 

likelihood of providing an accurate depiction of environmental characteristics the species 

tolerates in the south, which should generate a more accurate model (Elith et al. 2011).  
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MATERIALS AND METHODS 

Study site. — Bog Turtles were first scientifically described in 1801 from a 

Pennsylvania specimen. They were considered a northern species until 1917 when an 

individual was found in North Carolina, but other states were not added to the southern 

range until the 1960s when Bog Turtles were found in Virginia (Tryon 1990). The range 

of Bog Turtles in the south did not take its current form until 1986 when the species was 

discovered in Tennessee, the last state to be added to the range (Tryon 1990). This late 

discovery in the south is emblematic that the task is ongoing to find new populations that 

will establish a specific, thorough knowledge of the Bog Turtle range (USFWS 2001; GA 

DNR 2005; NCWRC 2005; SC DNR 2005; VA DGIF 2005). The task is complicated by 

the fact that we are now searching for populations after there has been much time for 

humans to alter the landscape through wetland drainage and other means. The need to 

find new populations is most pressing in the south, where research on the species is not as 

extensive and developmental pressure are high (Wear and Bolstad 1998). For this reason, 

we restrict our study to the southern range of Bog Turtles which occurs in northern 

Georgia, northern South Carolina, western North Carolina, eastern Tennessee, and 

southwestern Virginia. For modeling purposes, we considered the study area to be all 

counties with known Bog Turtle localities plus an additional 25 km buffer (Fig. 1).  
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FIGURE 1. Number of Bog Turtle localities by county for the southern portion of the Bog 

Turtle range. The light gray polygon represents all counties with known bog turtle 

localities plus a 25 km buffer. This region was used as the area of interest for the species 

distribution model.  
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Choice of species distribution model. — There are many potential modeling 

techniques to examine species habitat selection and distribution (Johnson et al. 2004; 

Elith et al. 2006; Satter et al. 2007; Singh et al. 2009; Buechling and Tobalske 2011; 

McKenna et al. 2013); however, many of the available tools require knowledge of both 

presence and absence at a suite of sites. Because Bog Turtles are rare and extremely 

difficult to locate, robust absence data are unavailable, and we were restricted to 

presence-only modeling techniques. We chose to use a machine-learning approach to 

species distribution modeling called maximum entropy (Maxent; Phillips et al. 2006), 

which has been shown to perform better than other presence-only models (Elith et al. 

2006) and works well with small datasets (Hernandez et al. 2006). Maxent (version 

3.3.3k) compensates for absence data by randomly selecting points (i.e., background 

points) from the study area to characterize the range and variation of the environmental 

variables available within the species’ range. By comparing the environment in areas 

with known Bog Turtle populations to the environment available to it (i.e. the 

background points), Maxent identifies species’ preferences for certain ranges of 

environmental variables. The direction and strength of these preferences allows for 

predictions on the probability of suitable conditions in unsurveyed areas. The ultimate 

product is a map, dividing the study area into suitable and unsuitable patches.  

Occurrence records. — All presence data were obtained from the Georgia 

Department of Natural Resources, South Carolina Department of Natural Resources, 

North Carolina Wildlife Resources Commission, Virginia Department of Conservation 

and Recreation, and Tennessee Department of Environment and Conservation through 
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data use agreements. Data were provided as GPS points or polygons. All polygons were 

assigned a point representing their center and then combined with the point data into a 

single shapefile using ArcGIS 10.1 (ESRI, Redlands, California, USA.).  This original 

data set of 172 localities consisted of all extant and historical sites cataloged within each 

state (Fig.1). 

Historical localities, locations in close proximity to other known locations, and non-

random species surveys can all introduce biases into the assessment of habitat suitability 

(Phillips et al. 2009; Kramer-Schadt et al. 2013). We applied three data filters to reduce 

these biases in the data. First, we kept only sites last visited and confirmed as extant in 

the past 30 years, a time period that approximates the life-span of the species (Ernst and 

Lovich 2009). Second, when several localities are clumped in a small area, the habitat 

characteristics of that area become over-represented and can bias the model. For sites that 

occurred in clusters, we randomly eliminated sites, until no site was within 5 km of 

another (Barrett et al. 2014, Sutton et al. 2015).  Boria et al. (2014) and Kramer-Schadt et 

al. (2013) both have shown that addressing this bias can result in large differences in 

model performance. The first and second filters reduced our data set from 172 to 72 

occurrence records. The third filter addresses the fact that species are rarely randomly 

sampled. Locality records can easily become spatially biased, for example, toward roads 

and certain geopolitical areas that are more sampled than others (Funk and Richardson 

2002; Graham et al. 2004; Rondinini et al. 2006; Beck et al. 2014). Bog Turtle records, 

like records for many other species, likely suffer this bias. Most sites are in close 

proximity to roads and developed areas, and locality data suggest that some states have 
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invested much more search effort than others (Fig. 1). This kind of bias can be accounted 

for by adjusting how background points are chosen. We made this adjustment using a 

target background approach, in which background data are acquired from species that are 

collected with similar biases as the target species (Phillips and Dudík 2008; Phillips et al. 

2009). To build our target group background data set we acquired locality data from other 

reptiles and amphibians (all anurans, all chelonians, several species of squamata (worm 

snake - Carphophis amoenus, ring-necked snake - Diadophis punctatus, fence lizard - 

Sceloporus undulatus, and ribbon snake - Thamnophis sauritus), and all salamanders in 

the genera Desmognathus, Plethodon, Eurycea, Gyrinophilus, Pseudotriton occurring in 

the range of interest). Occurrence records were obtained from HerpNet (Available from 

http://www.herpnet.org/ [Accessed 22 November 2013]), BISON (Biodiversity 

Information Serving Our Nation. Available from http://bison.usgs.ornl.gov/#home 

[Accessed 1 December 2013]), and GBIF (Global Biodiversity Information Facility. 

Available from http://www.gbif.org/ [Accessed 22 November 2013]), and any duplicate 

points were removed. The study area was divided into three equal areas and points were 

randomly removed from areas until the distribution of points was approximately even 

among the three areas. After filtering in this manner, 1,967 background points remained. 

This is a small but sufficient number of background points (Phillips and Dudík 2008), but 

we also built a model using a background layer with 10,000 randomly generated points 

(Phillips et al. 2006), as Phillips and Dudík (2008) show a larger number of points can 

improve model performance. Thus we produced two models, a random points (RP) model 

and a target group (TG) model. 
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Predictor variables. — A Maxent model uses environmental characteristics 

related to the natural history of a species to make predictions about potentially suitable 

habitat. We focused on 12 environmental variables. The first set of environmental 

variables, elevation, topographic relief, temperature seasonality (standard deviation of 

monthly temperatures), and maximum temperature of warmest month all relate to the 

montane, ectothermic nature of this turtle. Elevation data were obtained from the USGS 

Digital Elevation Model (DEM; Available from http://eros.usgs.gov/#/Guides/dem 

[Accessed 8 September 2013]) and were then used with the ArcGIS tool Focal Statistics 

to calculate topographic relief as the standard deviation of elevation within a 1 ha moving 

window. One hectare was chosen for this and all other moving window analyses as most 

bogs are smaller than a hectare (Lee and Nordon 1996; Buhlmann et al. 1997). Climatic 

variables (seasonality (BIO4) and maximum temperature of warmest month (BIO5)) were 

obtained from the WorldClim database (Available from www.worldclim.org/bioclim 

[Accessed 8 September 2013]) at a resolution of 1 km2. We used land cover data from the 

2011 National Land Cover Database (NLCD; Available from 

www.mrlc.gov/nlcd2011.php [Accessed 8 September 2013]) to characterize developed 

areas, pasture and hay fields, and wetlands. We specifically selected the pasture and hay 

field category to address the fact that the wetlands these species occupy tend to occur in 

flat areas in the mountains that are often ditched and drained for agricultural or 

development purposes (Tryon 1990; Moorhead and Rossell 1998). We hypothesized that 

developed areas are likely to represent unsuitable habitat, but hay fields and pastures 

browsed by livestock often remain wet and can support viable Bog Turtle populations 



 12 

(Tesauro and Ehrenfeld 2007). Since known Bog Turtle localities are represented by 

points and extracting the data directly below a point can be an inaccurate representation 

of the larger area the wetland covers, we used the Focal Statistics tool to calculate the 

percent land cover of interest (e.g. percent pasture/hay) in the surrounding hectare. As a 

species with high site fidelity that historically existed in a metapopulation structure 

(Buhlmann et al. 1997), connectivity is important, so we also included distance to nearest 

wetland and stream as modeled environmental variables. Distance to nearest wetland and 

stream were calculated using Euclidean distance and the National Wetlands Inventory 

(NWI; Available from http://www.fws.gov/wetlands/ [Accessed 8 September 2013]) and 

the USGS National Hydrography Dataset (Available from http://nhd.usgs.gov/ [Accessed 

8 September 2013]), respectively. Finally, because this species spends much of its time 

within the first 10 cm of organic wetland muck (Pittman and Dorcas 2009) and must be 

able to move through the soil, we also used information on soils: percent organic matter, 

percent clay, and percent hydric soils. Soils data were obtained from 2015 Soil Survey 

Spatial and Tabular Data (SSURGO 2.2) and gaps were filled using the larger grain but 

more geographically complete U.S. General Soil Map (STATSGO2) (Available from 

http://websoilsurvey.nrcs.usda.gov/ [Accessed 8 September 2013]). All 12 environmental 

variables were resampled to the cell size of the smallest available data (30 m x 30 m) and 

were processed in ArcGIS 10.1. A Pierson’s correlation test was done in R version 3.1.1 

(R Development Core Team 2014) on all 12 environmental variables. BIO4 and BIO5 

each correlated with elevation (r = -0.70 and -0.98, respectively), but not with each other. 

Since elevation is a much finer-grain data set and addresses geographic distribution, 
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whereas climate addresses thermal tolerances, we kept all three. No other variables 

exhibited strong correlations (all r values < 0.70). 

Model Output Processing. — To select potential Bog Turtle habitat we examined 

the Maxent logistic output in the context of 11 different default thresholds, used to 

categorize values as suitable (at or above threshold value) or unsuitable (below threshold 

value). For each of our models (RP and TG) we used the most restrictive threshold 

(‘maximum test sensitivity plus specifity’ and ‘equal training sensitivity and specificity,’ 

respectively) in an effort to restrict the model to the most promising sites. We then 

examined the intersection of the two models to evaluate areas considered unsuitable by 

both, suitable by both, and, suitable by one model but not the other.  

Model Ground-Validation. — To evaluate the predictive power of the species 

distribution model, we conducted on-the-ground surveys of sites modeled to be 

potentially suitable by both models of Bog Turtle habitat. Resources were not available to 

ground validate the model across the entire southern range. We therefore made a series of 

decisions to prioritize which areas we would examine on-the-ground. First, our ground-

validation assessed only errors of commission (i.e. areas incorrectly identified as suitable 

habitat). Next, we narrowed our focus to Georgia and South Carolina, where demand to 

find new populations was highest and resources were readily available. In Georgia the 

model identified 88,038 ha of potentially suitable habitat to survey whereas 12,635 ha 

were identified in South Carolina. We further narrowed our search to the Blue Ridge 

physiogeographic region of each state, as all Bog Turtle records except for 17 in North 

Carolina fall within this physiogeographic region. A lack of high-quality color infrared 
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imagery, made it difficult to assess in ArcGIS whether suitable areas were also wet areas. 

To ensure we would spend resources traveling to actual wetlands, we clipped the 

suitability map to all National Wetlands Inventory (NWI) wetlands in the palustrine 

emergent (PEM), palustrine scrub-shrub (PSS), or palustrine forested (PFO) categories 

(following Cowardin et al. 1979). NWI does not capture all wetlands (Leonard et al. 

2012) but was sufficient for a first round of ground-validation. Finally we had to consider 

accessibility to sites. Therefore, of the sites remaining, we prioritized those sites on 

public land within 1 km of a road and sites on private property within 20 km of a Bog 

Turtle occurrence record.  

At prioritized sites, we evaluated the quality of the habitat for Bog Turtles by 

following the Phase 1 survey guidelines established by the United States Fish and 

Wildlife Service (USFWS 2006). Characteristics of interest are: (1) presence of mucky 

areas of more organic than alluvial characteristics; (2) presence of small rivulets of water 

flowing over a muddy substrate; (3) presence of springs or seep heads; (4) presence of 

Sphagnum (Sphagnum spp), rushes (Juncus spp.), sedges (Carex spp.), alder (Alnus 

serrulata), red maple (Acer rubrum), bog rose (Rosa palustris), multiflora rose (Rosa 

multiflora), withe rod (Viburnum nudum L. var. cassinoides), royal fern (Osmunda 

regalis), cinnamon fern (Osmunda cinnamomea), red chokeberry (Aronia arbutifolia), 

turtle head (Chelone glabra); (5) large area of open canopy; (6) proximity to a stream; (7) 

active or historic beaver activity. Wetlands that met USFWS standards were those 

surveyed for Bog Turtles.  
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Traditional techniques to survey for Bog Turtles include trapping surveys and 

visual/probing surveys (USFWS 2006). To maximize detection probability, we used a 

trapping method similar to that described by Somers and Mansfield-Jones (2008) but at a 

much higher trap density (1 trap/25 m2). With this method un-baited, custom-made traps 

of galvanized welded-wire are set in shallow rivulets of water that could act as potential 

travel corridors for Bog Turtles (see Chapter 2). Traps were open from mid-May to mid-

July 2014 and checked every-other day. Based on trapping efforts at other sites in the 

region known to be occupied, we estimate that this trapping duration means there is a 

very low probability (average = 0.03) that turtles are present but not detected (Stratmann 

2015). 

 

RESULTS 

Both the random points (RP) and target group (TG) background models had high 

AUC values (RP model = 0.88, TG model = 0.91) and correctly classified a majority of 

the known Bog Turtle localities (Table 1). Each model was driven by different 

environmental variables and thus produced different suitability maps (Fig. 2). In the RP 

model, distance to wetland, maximum temperature of warmest month, elevation, and 

topographic relief had the highest percent contributions (22.8%, 19.3%, 17.4%, and 

10.8% respectively). In the TG model, distance to wetland, percent pasture/hay, percent 

developed area, and distance to stream had the highest contributions (30.7%, 29.3%, 

17.1%, and 10.8% respectively). Jackknife tests show that maximum temperature of the 
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warmest month holds the most information by itself for the RP model, whereas in the TG 

model it is percent pasture/hay.  
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TABLE 1. Overview of the SDM’s classification success. The Maxent models had high 

accuracy in correctly classifying the known Bog Turtle localities as suitable habitat. 

Known bog turtle localities and their classification (suitable or unsuitable) are presented 

for each of the three different models: random points (RP), target group (TG), and a 

model which combines the RP and TG models.  

 

Site Suitability # Localities 
Percentage (%) of All 

Localities (out of 72) 

Combined Model 

suitable in both models 52 72.2% 

suitable in only one model 14 19.4% 

unsuitable in both models 6 8.3% 

Random Points Model 

suitable 56 77.8% 

unsuitable 16 22.2% 

Target Group Model 

suitable 62 86.1% 

unsuitable 10 13.9% 
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a)
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b)

 

FIGURE 2. Maxent logistic output for (a) the random points model and (b) the target 

group model. Warmer colors indicate higher suitability. Models are based off of the same 

presence points but the random points model uses 10,000 random generated points as 

background points, while the target group model uses ~2000 points derived from 

herpetofauna occurrences as its background points.  
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For the RP model, the most conservative threshold was the maximum test 

sensitivity plus specificity. This translates to 1,219,828 ha of suitable habitat and 

6,995,533 ha of unsuitable habitat across the area of interest. For the TG model the most 

conservative threshold was the equal training sensitivity and specificity threshold. This 

resulted in 3,074,811 ha of suitable habitat and 5,140,550 ha of unsuitable habitat. When 

both models were combined 998,325 ha were considered suitable (Fig. 3).  

 

 

FIGURE 3. Binary (suitable/unsuitable) model results for the random points (purple) and 

the target group (green) models. Black areas were considered suitable in both models.  
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Of the area considered suitable by both models, 88,038 ha and 12,635 ha occurred 

in Georgia and South Carolina, respectively. When limited to PSS, PEM, or PFO NWI 

wetlands in the Blue Ridge Physiogeographic Region this narrows to 316 wetlands 

designated as suitable by both models and 34 wetlands designated as suitable by only one 

model but not the other in Georgia. In South Carolina 109 wetlands were designated as 

suitable by both models and 87 wetlands designated as suitable by one model but not the 

other. Of these wetlands 113 were examined on the ground in Georgia and 83 in South 

Carolina. Nine of the 113 sites in Georgia were considered potential Bog Turtle habitat 

and were trapped. In South Carolina 13 of the 83 sites were considered potential Bog 

Turtle habitat, although we were only able to gain permission to trap at eight of the sites 

in South Carolina.  Therefore for about every 100 wetlands searched, we found about 10 

to be suitable Bog Turtle habitat. Although wetlands deemed unsuitable for Bog Turtles 

according to USFWS guidelines cannot be counted as absences, the high number of 

wetlands not matching these guidelines would at least suggests that Maxent greatly over 

predicted the amount of suitable habitat. Of the nine trapped sites in Georgia, five were 

on public property and four were on private property. Of the eight trapped sites in South 

Carolina, three were on public property and five were on private property. In South 

Carolina, because we were denied access to five promising wetlands, three of the eight 

sites trapped were only deemed suitable by a single model. These sites were targeted 

based on their close proximity to known occurrences. Of the 17 sites trapped, we 

discovered Bog Turtles at two of the sites in Georgia. One site was a spring-fed wet 

meadow with open canopy and active beaver presence and is the only known extant 
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population of Bog Turtles in Rabun County. The other was an extremely atypical site 

located on the slope of a hill under a power line right of way. Seeps run down the hill and 

pool in several places to create areas of very shallow muck (< 30 cm). This is only the 

second Bog Turtle population found in Towns County.  

 

DISCUSSION 

 The objective of our study was to determine if species distribution modeling could 

be a useful tool to find habitat for a rare and cryptic habitat specialist. Past studies have 

demonstrated success with this approach (Guisan et al. 2006; Williams et al. 2009; Le 

Lay et al. 2010; Rebelo and Jones 2010; Buechling and Tobalske 2011; Jackson and 

Robertson 2011; Apodaca et al. 2012; Rinnhofer et al. 2012; Chunco et al. 2013, 

Peterman et al. 2013); however, we found that the modeled distribution greatly over-

predicted the amount of suitable habitat for Bog Turtles and was thus difficult to use in a 

resource-efficient manner. 

Model Differences. — We built two SDMs to address biases in our data. Known 

Bog Turtle populations are biased towards roads and easily accessible areas, and the 

discovery of one population in an area tends to focus future search efforts in areas of 

close proximity. We dealt with this bias by filtering our locality points and modeling 

available habitat from a target group background of other reptile and amphibian 

localities, which presumably share any biases in presence points (Phillips and Dudík 

2008). This target group (TG) model was substantially different from the standard 

random points background (RP) model (Fig. 2). As was expected, the RP model was 



 23 

biased toward areas of known occurrence, whereas the TG model made stronger 

predictions in less-sampled areas (Phillips et al. 2009) (Fig. 2). In the target group model, 

pasture/hay held the most information, with suitability increasing with increasing 

percentage of pasture/hay land cover. Consequently, the model indicated suitable habitat 

in areas of pasture/hay in the Piedmont region that the RP model did not consider. The 

actual importance of this habitat type may be over-emphasized and is probably due to the 

fact that 51% of Bog Turtle presence localities (37 out of 72) were associated with 

pasture/hay whereas only 10% (186 out of 1967) of the target group points were. The 

importance of pastures and hayfields to Bog Turtles is well established (Tesauro and 

Ehrenfeld 2007). Throughout the Appalachians farmers have converted wetlands to 

pastures or hay fields through ditching and draining. When these efforts fail and some 

part of the wetland remains, the site is kept as an emergent wetland through grazing 

activities, which ultimately maintain quality Bog Turtle habitat. Yet it is not the 

pasture/hay land cover that initially made the site suitable; conditions for wetland 

formation must be present. This complicated mix of geomorphology, historic land 

alteration, and current land use (i.e., grazing) highlights the importance of our duel-

modeling approach and ground validation for model output. 

Ground Validation. — The distribution model highlighted many areas that were 

not wetlands. There appear to be four main reasons why the SDM was not as restrictive 

as we had hoped. First, identifying small wetlands across large extents is difficult in 

general (Pitt et al. 2011; Leonard et al. 2012). We used NLCD and NWI to identify 

wetlands but NWI is notorious for missing small wetlands (Leonard et al. 2012), and 
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many NWI wetlands we visited no longer have standing water in them and are barely 

distinguishable as wetlands. As remote sensing continues to improve, especially with the 

availability of LiDAR, this problem may diminish and enable us to restrict the model to 

specific areas of interest (e.g., Peterman et al. 2013).  Second, high resolution 

environmental data are lacking. Wetlands tend to be small features (1-3 ha) within the 

greater landscape. In our model, 30 m x 30 m was the finest grain available (NLCD, 

DEM), with soil and climate environmental layers being particularly coarse. These large 

scale data sets used are also minimally ground-validated and have their own errors, which 

when combined with the lack of fine-scale resolution may mean that data are simply not 

fine enough resolution to pick-up small features like small wetlands within the larger 

landscape. Until finer resolution wetland and environmental data are available, there 

would be no way to improve the SDM.  Two other factors that might explain the 

difficulty of building a SDM for Bog Turtles were brought to our attention by the fact 

that we have trapped many wetlands that meet established USFWS criteria for good Bog 

Turtle habitat without detecting Bog Turtles, but know of populations in sites that would 

never be considered under USFWS criteria because they are so unusual or degraded.  

This seems to hint at two things. One, unusual sites might suggest that Bog Turtles are 

less habitat specialists than thought, with main requirements being shallow water and 

open canopy. For example, the new Bog Turtle locality in Towns County is very different 

from typical Bog Turtle habitat as it is situated on a slope, has very shallow muck, is very 

rocky, and is more a series of hillside seeps that occasionally puddle than a wetland. 

Although the model deemed it as suitable, we only trapped this area because of claims 
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that a Bog Turtle had been seen at the site. Radio-telemetry at the site has shown that 

with little mud available, individuals use cavities under shrub root clumps amidst rocky 

seeps as alternative refugia. The reporting of Somers and colleagues (2007) demonstrate 

that this unusual use of habitat is not unprecedented.  On the other hand, for degraded 

sites, site history (e.g. past ditching and draining efforts, past beaver influence, canopy 

cover over the years) may play a larger role than current habitat characteristics in 

explaining where turtles persist or have sought refugia. Some historically drained 

wetlands may have had time to recover and now appear suitable, but a recolonization 

event would be needed if those draining efforts initially extirpated Bog Turtles. Other 

wetlands may have been recently or minimally drained, enabling Bog Turtles to persist 

despite apparent habitat degradation. Thus a SDM could highlight wetlands suitable for 

Bog Turtles based on environmental characteristics, but a detailed knowledge of the site’s 

history would be required to determine its true suitability. Other studies have shown that 

incorporating information on site history can enable better predictions of species 

occurrence and patterns of biodiversity (Dupouey et al. 2002; Lunt and Spooner 2005; 

Piha et al. 2007).  

Recommended Uses of the Model. — When rare and cryptic species are targeted 

for management and conservation action, finding suitable habitat and new populations 

can represent an overwhelming task – especially when the species occurs across large 

spatial extents. Species distribution models can highlight a subset of possible search 

environments and by using such models to guide search efforts, we can strategically 

search for populations, prioritizing where to invest resources.  Using a SDM to guide 
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searches for suitable habitat is strategic in the sense that it eliminates typical search bias 

and examines the entire are of interest. Searches for habitat driven by information from a 

SDM would avoid biasing searches along or close to roads or previously searched 

locales, while drawing attention to difficult to access areas, like those on private property. 

This is especially important considering 80% of known Bog Turtle localities and 91.6 % 

of suitable habitat occur on private property. In South Carolina we were able to examine 

much of the publically owned land, and subsequently concluded if Bog Turtles still exist 

in the state, they most likely occur only on private property. In South Carolina and 

Georgia, the publically owned land is often the most topographically intense in the state 

because these areas were not valuable as agricultural lands. Yet Bog Turtles, like 

agriculture, thrive in the valleys, which puts the species in direct conflict with agricultural 

developments. The SDM emphasizes these associations and offers a platform for large-

scale conservation planning that will undoubtedly need to incorporate a number of 

stakeholders.  

A regionally-based SDM such as the one we created is particularly valuable for 

Georgia, South Carolina, and Tennessee, which have too few Bog Turtle records to build 

locally-based SDMs for Bog Turtles. In addition, in these states the need to find new 

populations is the greatest and the amount of area to search is the smallest. Collectively, 

these conditions mean over-prediction is less of a logistical problem. The large area 

modeled as suitable errs on the side of inclusion, which may be wise given our discovery 

of a Bog Turtle population in atypical habitat. Practical model application would likely 

require narrowing the focus to wetlands for survey, as was done in this study. Once this 
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list is created, a long-term plan of action based on available resources becomes more 

realistic. For states like North Carolina and Virginia where the area modeled as suitable is 

much larger, this approach may be less feasible. Nevertheless, these states may choose to 

focus on areas where gaps in the range remain to be filled.  

It should also be noted, that although a SDM may not always identify populations 

of the target species, it more often identifies suitable but unoccupied habitat. This suitable 

habitat could be used as a re-introduction site for Bog Turtles, or other mountain fen 

specialists. For example, our SDM identified two sites in Georgia that are now being 

considered as out-planting sites for swamp pink (Helonias bullata) and pitcher plants 

(e.g.Sarracenia purpurea). These wetlands could now also be surveyed for other species 

of concern within the state (e.g. bog lemmings (Synaptomys cooperi), four-toed 

salamanders (Hemidactylium scutatum), and golden-winged warbler (Vermivora 

chrysoptera)).  

The ground-based survey process is extremely time intensive (USFWS 2001; 

Somers and Mansfield-Jones 2008). Finding new populations of Bog Turtles will always 

represent a significant investment and state agencies must seriously consider if 

population discovery is where they should direct resources earmarked for this species. 

Such considerations are especially pertinent since a model that better identifies suitable 

habitat will not be available until a complete wetland layer and finer-grained 

environmental layers become available and even those improvements may not alter the 

model’s utility if site history drives the distribution of the species. Conservation efforts 

for many species (e.g. flatwoods salamanders, pine barren tree frogs, gopher frogs) pose 
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the same logistical challenges because the species is rare on the landscape, difficult to 

detect even in suitable habitat, and greatly affected by land-use change. For these species 

the answer may simply be that until wetland and environmental data become more fine 

scale, finding new populations will be resource intensive, and as long as these data are 

unavailable, it may be more prudent to prioritize resources for restoration efforts and 

conservation of known populations.   
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CHAPTER TWO 

DO HABITAT CHARACTERISTICS AND HISTORICAL DISTURBANCE 

PREDICT BOG TURTLE (GLYPTEMYS MUHLENBERGII) HABITAT OCCUPANCY 

AT THE FRINGE OF THEIR SOUTHERN RANGE? 

 

 

Abstract. — Distinguishing between sites that a species does and does not occupy 

can enhance population discovery and management. For Bog Turtles (Glyptemys 

muhlenbergii), these differences are poorly understood and it was thus the objective of 

our study to determine whether wetland characteristics and site history can effectively 

distinguish wetlands occupied by Bog Turtles from those not occupied. We measured 

wetland characteristics and evaluated historical aerial photographs for eight occupied and 

17 unoccupied wetlands in Georgia and South Carolina. Confidence of site occupancy 

was determined using results of trapping surveys in wetlands known to be occupied. 

These data minimized the probability that Bog Turtles were present but not detected at 

sites classified as unoccupied. After determining site status, we used a discriminant 

analysis to evaluate the ability of wetland environments and historical characteristics to 

predict occupancy status. Wetlands with Bog Turtles are distinguishable from those 

without based on area of the wetland, percent of the wetland that has emergent 

vegetation, percent of the wetland that is flooded by beaver or lake presence, and water 

pH. These promising results warrant further testing in other parts of the Bog Turtle range. 

In addition, this work produces the first quantifiable and repeatable method to survey for 

Bog Turtles, which will allow surveyors to have confidence that they are trapping sites 

with sufficient effort to detect even small populations of Bog Turtles. 
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INTRODUCTION 

Ecology is often defined as the study of the distribution and abundance of 

organisms (Andrewartha and Birch, 1954). Indeed, the distribution of organisms is not a 

trivial study (Hutchinson, 1957; MacArthur and Wilson, 1967; Levins, 1969; Hubbell, 

2001). Where a species is located within the landscape is confounded by several factors: 

(1) a species’ habitat needs (Hutchinson, 1957); (2) historical biogeographical processes 

such as a species’ ability to colonize a particular area (MacArthur and Wilson 1967, 

Levins 1969); (3) effects of past disturbances (Dupouey et al., 2002; Lunt and Spooner, 

2005; Piha et al., 2007); and (4) stochastic events (Hanski 1998). Understanding what 

drives the distribution of a species can be very important to finding new populations and 

better conserving known populations through effective habitat restoration and 

maintenance. Finding new populations has been a particular challenge for the 

conservation of North America’s smallest and perhaps rarest chelonian, Bog Turtles 

(Glyptemys muhlenbergii). This challenge is amplified because biologists have an 

incomplete understanding of what drives the species’ distribution.  

Bog Turtles are both rare and cryptic, and as a result they are a challenge to locate 

both within the landscape and within wetlands (Tryon, 1990; Somers and Mansfield-

Jones, 2008). As their name suggests, they are deemed habitat specialist, confined to 

habitat that is known by a multitude of names: marsh, swamp, wet meadow, spring-fed 

wetland, seepage, bog, and fen (Tryon, 1990; Rosenbaum and Nelson, 2010). The 

common denominator is that these wetlands, at least the portions used by Bog Turtles, are 

usually shallow with a soft substrate of muck, open-canopied, and spring-fed (USFWS, 
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2001; Somers et al., 2007; Rosenbaum and Nelson, 2010; Myers and Gibbs, 2013). 

Wetland drainage, succession to forest, beaver (Castor canadensis) activity, invasive 

species, and land use change (e.g. use for pasture) have all altered Bog Turtle-inhabited 

wetlands such that they can actually take many forms. As a result, it is not unusual to find 

the species in habitat that currently appears marginal if not unsuitable. For example, 

Tesauro and Ehrenfeld (2007) have shown that wetlands in livestock pastures can be 

quite suitable while Sirois and colleagues (2014) have shown that populations persist 

(albeit while declining) in response to beaver activity and invasive species. The study by 

Sirois and colleagues (2014) also shows that Bog Turtle population growth can be 

enhanced by sound habitat management, so even identifying marginal habitats that are 

occupied can yield conservation benefits. In this context, determining what characterizes 

suitable habitat for Bog Turtles, or rather, what distinguishes wetlands occupied by Bog 

Turtles from those unoccupied, is not a trivial question. The need for such knowledge is 

great because conducting surveys of known, historical, and potential Bog Turtle habitat is 

a specific need stated in the Bog Turtle Northern Population Recovery Plan and in most 

Comprehensive Wildlife Conservation Strategies of states in the southern population 

(USFWS, 2001; GA DNR, 2005; NC WRC, 2005; SC DNR, 2005; VA DGIF, 2005). 

Surveys for the species are extremely time consuming; therefore, surveys are only going 

to be cost effective when those wetlands most likely to be suitable for Bog Turtles are 

identified.  Visual/probing surveys (called ‘Phase 2 Surveys’ in USFWS, 2006) require a 

minimum of 4 surveys of 3-6 person-hours per acre of wetland with 3 to 6 days between 

surveys (USFWS, 2006). Trapping surveys, based on recommendations in Somers and 
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Mansfield-Jones (2008), require the deployment of 20 traps per hectare for 20 days. 

Given how time consuming surveys are, it is often necessary to prioritize such that only 

those sites with the most potential to have Bog Turtles are ever evaluated in detail. 

Therefore both identifying wetlands to survey and prioritizing which to survey would 

greatly benefit from understanding if and how wetlands occupied by Bog Turtles differ 

from those that are unoccupied. To-date only two studies have explicitly and 

quantitatively compared wetlands occupied by Bog Turtles and those unoccupied. Myers 

and Gibbs (2013) conducted a study in Southeastern New York using 65 Bog Turtle-

occupied wetlands. Their research focused on environmental variables available in GIS. 

In their study Bog Turtle wetlands were larger in area, contained a greater proportion of 

emergent and shrub-shrub vegetation, were located in larger watersheds, had more stream 

connections, and were more often over carbonaceous rock than randomly chosen 

wetlands within the same area. Feaga and colleagues (2012, 2013) examined 12 wetlands 

in southwest Virginia and showed that wetlands occupied by Bog Turtles had higher 

mean water tables and surface saturation then unoccupied wetlands. Yet, these hydrologic 

characteristics are time consuming and difficult to carry out making them unpractical for 

quick wetland assessments. On the other hand, those wetland characteristics examined by 

Myers and Gibb (2013) could be used to quickly assess the ‘Bog Turtle potential’ of a 

wetland, but their study depends heavily on the assumption that the unoccupied wetlands 

they used were truly unoccupied. Even if we assume unoccupied wetlands were truly 

unoccupied, then it still remains to be seen if their study findings transfer to other 

portions of the Bog Turtle range.  
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The Bog Turtle range covers a broad area of the eastern United States, and 

differences across a latitudinal gradient have been identified. For example, the species’ 

distribution appears in part to be determined by thermoregulatory requirements. Thus in 

the southern portion of their range, Bog Turtles are a montane species while they are 

found close to sea level in the northern portion (Tryon, 1990; Rosenbaum and Nelson, 

2010). The change in latitude also comes with a change in underlying geology which 

ultimately affects wetland chemistry and vegetation (Moorhead and Rossell, 1998). These 

landscape-scale changes in the setting of Bog Turtle wetlands thus warrant studies in both 

the southern and northern portion of the range to ensure that trends are consistent. In 

addition, the study by Myers and Gibbs (2013) seems atypical as they were looking at 

wetlands 13.93 ± 64.49 ha (mean ± 95% confidence interval) while most studies across 

the range describe Bog Turtle wetlands as less than 2 ha (Tryon, 1990; Buhlmann et al., 

1997). This discrepancy might be due to differences in definitions used among studies 

(entire wetland complex area vs. area used by Bog Turtles) or the fact that the Myers and 

Gibbs (2013) study used National Wetland Inventory (NWI) wetlands which tend to be 

larger wetlands (Leonard et al., 2012).  

In addition these two studies do not consider history of the wetlands, and recent 

studies have shown that past land use history can affect present day distribution of 

species (Dupouey et al., 2002; Lunt and Spooner, 2005; Piha et al., 2007). This is 

especially relevant for Bog Turtles as the shallow, open canopy wetlands they favor were 

heavily targeted in past drainage efforts, converting wetlands to pastures and agricultural 

fields (Tryon, 1990; Morrow and Rossell, 1998). In many cases, when maintenance of 
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ditches or tiles was abandoned or drainage was incomplete, wetlands were able to recover 

or persist in a degraded state. On the other end of the spectrum, lack of disturbance can 

lead to encroachment of wetlands by woody vegetation, which ultimately makes the 

wetland unsuitable for Bog Turtles (Tryon, 1990; USFWS, 2001; Ernst and Lovich, 

2009). Together this creates a continuum of wetlands in different stages of degradation, 

some of which may still be suitable for Bog Turtles. Thus knowledge of current and past 

disturbances and their duration may be important in predicting if a wetland, even though 

it looks degraded, could still be occupied by Bog Turtles. This influence of site history on 

Bog Turtle presence at a site has been minimally explored in the Bog Turtle literature.  

Given the aforementioned gaps in knowledge it is the objective of our study to 

determine whether habitat characteristics at a site and site history can effectively 

distinguish wetlands occupied by Bog Turtles from those that are not. Specifically we 

focused on wetlands at the fringe of the southern range, in Georgia and South Carolina, 

where little is known about the distribution of Bog Turtles. To-date there are eight extant, 

three historical, and two introduced populations of Bog Turtles in Georgia. In South 

Carolina there are only five known sightings of Bog Turtles, none of which have ever 

been connected to a population. Better understanding of occupied habitats will promote 

identification of new populations and allow for better management of occupied sites 

within these states and the range as a whole.  
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MATERIALS AND METHODS 

Site Selection and Description. — We surveyed 17 wetlands in Georgia and eight 

in South Carolina (Fig. 1). All surveyed sites were within the Blue Ridge 

physiogeographic region. Eleven of the Georgia sites had been identified and surveyed by 

the Georgia Department of Natural Resources (GA DNR) before 2014. The remainder of 

the sites were selected with the help of a species distribution model (SDM), which 

identified potential areas of suitable Bog Turtle habitat in the southern portion of the Bog 

Turtle range (see Chapter 1). The wetlands chosen by the SDM and used in this study all 

met suitable Bog Turtle habitat criteria according to USFWS (2001). 

 

 



 43 

 

FIGURE 1. Map of the study area within northern Georgia and South Carolina, USA. We 

trapped 17 wetlands across four counties in Georgia and eight wetlands across three 

counties in South Carolina. Trapping was confined to the Blue Ridge physiogeographic 

region of each county.  

 

Survey Method: Trapping. —  A key part of our ability to examine differences 

between wetlands occupied by Bog Turtles and those that are not, is confidence in 

designating a wetland as unoccupied by Bog Turtles. Although we can easily show a 

species occurs at a site, we can rarely prove its absence. Instead, we quantified the 

detection probability of our Bog Turtle survey method and used this to calculate the 
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probability that Bog Turtles was present at a site but went undetected (Maerz et al., in 

press).   

 Bog Turtles have historically been surveyed using either visual and probing 

surveys (USFWS, 2006) or un-baited traps (USFWS, 2006; Somers and Mansfield-Jones, 

2008). Although visual and probing surveys are most frequently used (e.g., US Fish and 

Wildlife Service recommends such surveys prior to trapping), trapping-based methods 

are easier to standardize across sites, and unlike visual and probing surveys, they are not 

affected by time of day or weather.  

 Trapping is generally conducted according to the recommendations given by 

Somers and Mansfield-Jones (2008) of setting 20 traps per hectare for 20 days (a 20-20 

rule). The study promoting this rule is based only on two Piedmont populations in North 

Carolina, and no detection probabilities were associated with the guidelines. 

Additionally, although the method recommends a trapping density and duration, it does 

not describe the arrangement of traps, which actually determines density and thus the 

replicability of the method. Trap arrangement is crucial because traps are not baited and 

strictly catch turtles within the travel corridor where traps are placed. Given the lack of 

detail in the Somers and Mansfield-Jones (2008) study, we felt it was important to create 

and validate our own trapping strategy. This would better allow for standardized trapping 

effort across sites and better promote replication among study efforts.  

 The objective of our trapping method was to detect a population of Bog Turtles at 

a site. Each wetland of interest was examined for an area within it deemed most suitable 

for trapping and Bog Turtles. These areas: (1) had small rivulets of water flowing over a 
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mucky substrate, or other potential travel corridors (e.g. small mammal tunnels in the 

vegetation, ditches); (2) had a substrate that was somewhat firm so the bottom of the trap 

was only covered by 1-2 inches of water and turtles were more likely to attempt to enter 

the trap than dive under it; and (3) were not so thickly covered in vegetation as to prevent 

traps from being set. Open canopy was preferred to closed canopy, though canopy cover 

does not appear to be a strict regulator of habitat use. Trapping areas were not always 

contiguous within the wetland. Trapping took place between late April and mid-July of 

2014. Specifically, determination of trapping location and trap placement occurred in late 

April to May when vegetation was still low and travel corridors were most apparent. 

Once a suitable trapping area was delineated, the area was gridded into 5 m by 5 m grid 

cells and one trap was placed in the most suitable travel corridor within each grid cell 

(Fig. 2). Set traps were placed such that they were filled with 1-2 inches of water to keep 

the animals cool and hydrated. Each trap was covered with vegetation to prevent turtles 

from direct exposure to sunlight. By gridding the suitable area, we avoided clumping 

traps in certain areas and we were forced to assess the entire trappable habitat, 

maximizing number and length of travel corridors trapped.  

With the permission of the Georgia Department of Natural Resources (GA DNR) 

and South Carolina Department of Natural Resources (SC DNR), all sites evaluated in 

this study were trapped using this method. One trapping event consisted of a 48 hour 

period. We deployed a total of 536 traps over 23 sites. The two other sites used in this 

study were trapped in previous years using the same method. 
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FIGURE 2. A schematic of the trapping method used in this study. Trapping takes place in 

the part of the wetland that is most suitable for Bog Turtles and where trap placement can 

be accommodated. A gridding method is used to thoroughly examine available trapping 

habitat and facilitate unbiased, even trap placement. In some grid cells there are no 

appropriate places to set a trap and thus none are set. In some sites the main movement 

corridors might be ditches. The trapping portion of the wetland may also be split into 

several distinct sections, if there is unsuitable habitat between suitable sections.  

 

 Determining Site Status (Occupied/Unoccupied). — Data obtained from 

trapping occupied wetlands in 2014 was used to calculate a detection probability for our 

trapping method. Data were analyzed in Program MARK version 7.1 (White and 

Burnham, 1999) using the Occupancy Estimation option. Due to limited data (eight sites, 

29 survey occasions) we examined only two different models. In both models Psi 
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(occupancy) was set to be constant across sites, as we know all sites to be occupied, while 

p (probability of detecting a Bog Turtle at a site during a given trapping event) was set 

constant in one model and allowed to vary by site in the other. The model allowing 

detection to vary by site had the most support, and was therefore used to calculate how 

the probability that the species is present but undetected (1-p) decreases with increasing 

survey effort (Table 1). This enabled us to calculate probability that Bog Turtles were 

present but never detected at sites considered unoccupied (Table 2).  

 Two sites were not trapped in 2014. Site G (0.46 ha) was trapped in 2010 (10 

traps/65 days), 2011(20 traps/44 days), and 2012 (16 traps/54 days). Trapping in 2010 

occurred before our method was refined and thus was at a lower density, with traps set 

opportunistically. One Bog Turtle was captured in 2010 but subsequent surveys resulted 

in no recaptures or new captures. This site is therefore transiently occupied but was 

grouped with occupied sites in all analyses. Site N (15.48 ha) has been trapped 

periodically since 1992 and 12 turtles are known from the site. We trapped it in 2010 (22 

traps/65 days) and captured two individuals and again in 2011(26 traps/61days) and 

captured four individuals six times. In 2012-2014 flooding by beaver made the site 

impossible to trap; however, based on previous captures, the site was considered 

occupied. Finally, it should be noted that two of the sites considered unoccupied (sites 

CC and J) have introduced populations of Bog Turtles and were thus used to help 

determine detection probability, but because no non-introduced Bog Turtle has ever been 

captured at the site, they are categorized with the unoccupied sites for the purpose of the 

analysis.  
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TABLE 1. Detection probabilities for occupied Georgia wetlands to calculate required trapping effort. Eight sites with Bog 

Turtle populations were trapped in Georgia using a trap density of 1 trap/ 25m2. Here we report the probability of detecting a 

Bog Turtle at a site during one trapping event (a 48 hour period). By taking the inverse (the probability that Bog Turtles are 

present at the site but not detected during a trapping event) we determined how long a site must be trapped before there is only 

a ≤ 10% or ≤5% chance that Bog Turtles are present at the site but were not detected (highlighted in gray).  

  

RC BT WC E H J FL CC Average 

p (detection probability) 0.41 0.31 0.24 0.17 0.14 0.10 0.07 0.03 0.19 

1-p 0.59 0.69 0.76 0.83 0.86 0.90 0.93 0.97 0.81 

# captures (recaptures) 14(6) 4(5) 2(5) 2(3) 5(0) 2(1) 1(1) 1(0)  

# days # of trapping events probability Bog Turtles are present, but not detected 

2 1 0.59 0.69 0.76 0.83 0.86 0.90 0.93 0.97 0.81 

4 2 0.34 0.48 0.58 0.68 0.74 0.80 0.87 0.93 0.66 

6 3 0.20 0.33 0.44 0.57 0.64 0.72 0.81 0.90 0.54 

8 4 0.12 0.23 0.33 0.47 0.55 0.65 0.75 0.87 0.44 

10 5 0.07 0.16 0.25 0.39 0.48 0.58 0.70 0.84 0.36 

12 6 0.04 0.11 0.19 0.32 0.41 0.52 0.65 0.81 0.29 

14 7 0.02 0.07 0.14 0.27 0.35 0.47 0.61 0.78 0.24 

16 8 0.01 0.05 0.11 0.22 0.31 0.42 0.56 0.76 0.19 

18 9 0.01 0.04 0.08 0.18 0.26 0.37 0.53 0.73 0.16 

20 10  0.02 0.06 0.15 0.23 0.34 0.49 0.70 0.13 

22 11  0.02 0.05 0.12 0.20 0.30 0.46 0.68 0.10 

24 12  0.01 0.04 0.10 0.17 0.27 0.42 0.66 0.09 

26 13  0.01 0.03 0.09 0.15 0.24 0.39 0.63 0.07 
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# days # of trapping events probability Bog Turtles are present, but not detected 

28 14  0.01 0.02 0.07 0.13 0.22 0.37 0.61 0.06 

30 15   0.02 0.06 0.11 0.19 0.34 0.59 0.05 

32 16   0.01 0.05 0.09 0.17 0.32 0.57 0.04 

. . . . . . . . . . . 

40 20    0.02 0.05 0.11 0.24 0.50 0.02 

42 21    0.02 0.04 0.10 0.22 0.48 0.01 

54 27    0.01 0.02 0.05 0.15 0.39  

64 32     0.01 0.03 0.10 0.33  

82 41      0.01 0.05   

130 65       0.01 0.10  

166 83        0.05  
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TABLE 2. Trapping effort invested at 23 sites in Georgia and South Carolina from late April to 

mid-July of 2014. For sites in which no Bog Turtles were captured and sites were considered 

unoccupied, we show the probability Bog Turtles are actually present at those sites but were not 

detected. Estimates are given for the lowest and highest detection probabilities we observed in 

our occupied sites, as well as the average detection probability.  

Site 
Area 

(ha) 

# 

Traps 

Set 

Area 

Trapping 

Represents* 

(m2) 

Days 

Trapped 

 

Occupied Sites 

RC 1.57 28 700 58 

E 2.11 12 300 58 

FL 1.55 24 600 58 

WC 1.02 15 375 58 

HAM 1.96 32 800 82 

BT 1.59 19 475 82 

Unoccupied Sites 

Probability Bog Turtles are 

Present but were Not 

Detected 

Min Mean Max 

p=0.03 p=0.19 p=0.41 

TR 0.13 4 100 22 0.68 0.10 0 

OSSHS 

AH 

2.96 

1.67 

43 

40 

1075 

1000 

24 

31 

0.66 

0.58 

0.09 

0.05 

0 

0 

WAT 0.09 12 300 33 0.56 0.04 0 

288 10.60 28 700 36 0.53 0.02 0 

WOOD 0.23 22 550 39 0.51 0.06 0 

A 0.62 36 900 46 0.45 0.01 0 

BRO 3.12 25 625 47 0.44 0.01 0 

TB 1.15 27 675 47 0.44 0.01 0 

CC 0.28 18 450 58 0.36 0 0 

J 

HOL 
0.63 

0.23 

17 

18 

425 

450 

58 

69 

0.36 

0.30 

0 

0 

0 

0 

P 0.86 29 725 69 0.30 0 0 

WW 0.12 26 650 69 0.30 0 0 

BURN 0.68 24 600 70 0.29 0 0 

M 2.70 16 400 70 0.29 0 0 

S 0.49 21 525 70 0.29 0 0 
*Area trapped = # traps * 25m2 as the method was to divide the trapping area into 5 m x 5 m grid cells and assign 

one trap to each grid cell (1 trap/25 m2) 
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 Habitat Characteristics. — We evaluated 11 habitat characteristics hypothesized to 

influence Bog Turtle occupancy during fall 2014. The first five were related to soil properties 

(percent organic matter, percent sand, percent silt, percent clay, and soil pH). Bog Turtles spend 

much of their time within the first 10 cm of muck in a wetland (Pittman and Dorcas, 2009), and 

thus may select for certain soils that are easier to move through (Feaga et al., 2013). We used a 

composite soil sampling approach, generally following the method of Feaga et al. (2013). 

Composite sampling involved using an 8 cm diameter, 16.5 cm long bucket auger to collect 10 

soil samples in areas covered by water from random locations within the perimeter of the 

wetland. We created a single sample from each wetland by mixing all subsamples and removing 

any pieces of vegetation, large roots, or woody debris. Samples were air dried and then sent to 

the University of Georgia Cooperative Extension’s Soil, Plant, and Water Laboratory for analysis 

for percent organic matter, percent sand, percent silt, percent clay, and soil pH. Organic matter is 

determined by the loss on ignition method for 3 hours at 360⁰C and results are given as percent 

by weight. Soil pH is calculated by placing 20 cm3 of soil in a 3-ounce wax-paper cup with 20 ml 

of 0.01 molar calcium chloride solution, which is allowed to equilibrate for at least 15 minutes. 

The soil pH is then measured using a LabFit AS-3000 Dual pH Analyzer. Since this method uses 

0.01 molar calcium chloride, as it gives more consistent readings when soil salts are low and 

between sampling periods, instead of deionized water, 0.6 is added to the measured value to 

make it comparable to the traditional method.  

 In addition to determining soil pH, we also recorded water pH at all of our sites, as 

southern mountain fens tend to be acidic (Moorhead and Rossell, 1998). pH of a wetland 

determines the vegetation community which in turn determines its faunal community (Weakley 

and Schafale, 1994; Moorhead and Rossell, 1998). Water pH was measured using a YSI with a 
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600r sonde (YSI, Yellow Springs, OH). As pH can vary within a site, three readings were taken 

randomly within the wetland and then averaged.  

 The remaining habitat characteristics describe the structure of the wetland. We used a 

GPS (Garmin GPSmap 62sc) to delineate the perimeter of the wetland, based mainly on presence 

of wetland indicative vegetation and topography. Myers and Gibbs (2013) found wetland area to 

be an important factor distinguishing occupied from unoccupied wetlands. Like Myers and Gibbs 

(2013) we also divided the wetland into the three relevant wetland categories described by 

Cowardin et al. (1979): palustrine emergent (PEM), palustrine scrub-shrub (PSS), and palustrine 

forested (PFO). Unlike Myers and Gibbs (2013) who got their data from NWI, we delineated 

these different wetland types on-the-ground using a GPS, as most wetlands were too small to use 

aerial imagery to accurately characterize the different parts of the wetland. In this process we 

also delineated the area influenced by beaver flooding, as beaver flooding has been shown to 

negatively impact Bog Turtle populations (Sirois et al., 2014). 

 Measuring the Influence of Site History. — To examine the effect of site history on 

current use of wetlands by Bog Turtles we used historical aerial imagery. Aerial images have 

been taken since the late 1930s and thus it was our goal to collect at least one photograph of each 

of our study wetlands per decade, beginning with the 1940s. The photos were obtained either 

through EarthExplorer (USGS, Available from http://earthexplorer.usgs.gov/ [Accessed 21 

January 2015]) or the University of Georgia Map Library, where hard copies of the images were 

scanned. Quality of the imagery varied throughout the decades, but all of our wetlands were 

distinct enough to easily locate in all images without georeferencing. We were strictly interested 

in condition of the wetland, rather than surrounding land use, as Bog Turtles tend to stay within 

one wetland, with only few individuals ever documented moving away from or between sites 
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(Lovich et al., 1992; Carter et al., 1999; Morrow et al., 2001; Pittman and Dorcas, 2009). We 

therefore would expect within-wetland disturbances to have the greatest impact on Bog Turtles. 

Four within-wetland disturbances were of interest to us: (1) wetland drainage, especially when it 

resulted in the conversion of the wetland to a pasture or agricultural field; (2) encroachment by 

woody vegetation leading to a closed canopy state; (3) beaver activity; and (4) flooding due to 

lake creation or maintenance. We identified the presence or absence of these disturbances within 

each decade from 1940 to 2014 and used that information to create an index of historical 

disturbance. This index ranges from 0 to 100, with higher numbers indicating more disturbance.  

 To create this index each disturbance was given a point value from 0 to 3. These point 

values were determined based on what we know about how these disturbances affect Bog 

Turtles. Wetland conversion to pasture can cause loss of habitat, but if the wetland does not 

completely disappear and there is presence of livestock, Bog Turtle populations can thrive 

(Buhlmann et al., 1997; Tesauro and Ehrenfeld, 2007). Yet creation of pasture also implies 

attempts at drainage of the wetland. Wetlands can be drained using either ditches or tiles, both of 

which lower the water table, often completely draining the wetland. While other turtle species 

have been shown to persist in ditches (Yagi and Litzgus, 2012; O’Bryan, 2014), tiling re-routes 

all water underneath the surface leaving no wet refugia like ditching does. Thus we would expect 

tiling to be much worse for wetland species than ditching. Although ditching and tiling continue 

to affect the wetland for many decades, wetlands can recover if these drainage systems are not 

maintained and fill in over time. Based on the above rationale, conversion of >75% of the 

wetland to pasture was given a value of 1. Another point was added for evidence of ditching, and 

2 points were added for evidence of tiling. Beaver activity, like creation of pasture, can also be 

damaging as well as beneficial. Flooding can create temporary loss of habitat and promote 
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invasive species, negatively affecting populations (Sirois et al., 2014). On the other hand, by 

killing trees, the flooding can also open-up wetlands that have slowly succeed to a closed 

canopied state, creating open-canopied wetlands suitable for Bog Turtles once beaver leave and 

the flooding stops (Weakley and Schafale, 1994; Buhlmann et al., 1997; Moorhead and Rossell, 

1998). Thus beaver activity during a decade was also given a value of 1. Encroachment of the 

wetland by woody vegetation is another common problem that occurs due to lack of disturbance 

(USFWS, 2001). Encroachment by woody vegetation such as alder (Alnus serrulata) and red 

maple (Acer rubrum) creates a positive feedback cycle where presence of woody vegetation 

lowers the water table through transpiration, making it more suitable for other types of woody 

vegetation which continue to remove water from the wetland (Moorhead and Rossell, 1998). 

Thus a prolonged closed canopy state can ultimately make the wetland unsuitable for Bog 

Turtles due to lack of sunlight and a low water table. Sites where >75% of the area was closed 

canopied, were assigned a value of 1. The last category, lake influence, reflects the fact that 

many lakes may have once been larger Bog Turtle habitats that were dammed for energy, 

recreation, or control structure purposes. Such activity would most likely, relegate Bog Turtles to 

the margins of the flooded region. Thus we were interested to see if they could indeed persist in 

these types of habitat. Often these lake influenced sites experience considerable erratic flooding, 

which is an unsuitable condition for a semiaquatic turtle like a Bog Turtle, so we assigned a 

value of 3 points to areas subject to fluctuating lake levels. Ultimately, these point assignments 

were meant to make minimal assumptions and were limited to disturbances that could be easily 

seen in aerial images.  

 To assign an index value to a given wetland, each decade was assigned the appropriate 

number of points for each disturbance and then points were summed across decades. Majority 
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open pasture and majority closed canopy are mutually exclusive. Pastures can revert to wetlands 

over time but once ditched or tiled these structures continue to affect the wetland and thus we 

continue to add points for these activities in all subsequent decades after initial drainage 

attempts. If both beaver and lake influence were present, the dominant disturbance was chosen. 

A ditched or tiled pasture cannot also be a beaver wetland and in the unlikely case that there is a 

beaver wetland in a forest, we would not be able to tell. This meant that for each decade there 

could be a maximum of four points (if a site was a ditched and tiled pasture). Since there were 

occasional gaps in availability of aerial imagery, we standardized across sites by dividing total 

number of points earned by total number of possible points (4*number of decades of imagery) 

and multiplying by 100. Thus our index ranged from 0 to 100 with 0 indicating no disturbance 

and 100 indicating maximum disturbance. In addition we also calculated how long a site has had 

to recover from disturbance. Examples of recovery from disturbance include a pasture reverting 

back to a wetland state, a pasture no longer being mowed or maintained, beaver leaving a site, or 

a lake being drained.  

 Discriminant Analysis. — Information on habitat characteristics and historical 

disturbance were analyzed using a discriminant analysis (DA). A DA identifies which 

combination of environmental variables distinguish groups of interest. The influence of variables 

by themselves and in conjunction with each other are relevant to the final results. It is often 

considered a reverse ANOVA because the environmental variables are the independent variables 

and the groups the dependent variables. DA not only determines which combination of 

environmental variables predict group membership, but can also be used to predict which group 

a site belongs to, given its environmental characteristics (McCune and Grace, 2002).   
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 Data used in a DA must meet several assumptions. First the predictor variables cannot 

correlate (assumption of non-multicollinearity). We ran a Pierson’s correlation test on all 

variables, keeping those with |r|<0.70. Percent clay and percent sand were correlated (r = -0.85) 

so we removed percent sand. We then standardized the remaining variables using the 

scale()function in R. Next, we tested data for homogeneity of variance/covariance using the 

approach of Anderson (2001) which relies on the betadisper() and permutest() functions in the R 

package vegan version 2.0-10 (Oksanen et al., 2013). As variances were equal (p = 0.31) we then 

tested for multivariate normality. We evaluated normality by (1) examining a linear model of the 

predictor variables and plotting a histogram of the residuals; (2) a Shapiro-Wilkes tests for each 

of the group/predictor variable combinations; and (3) Q-Q plots for each variable. All approaches 

suggested the majority of the data did not differ substantially from bivariate normality. With 

assumptions met, we ran the DA using the lda() function in MASS package (Venables and 

Ripley, 2002), with sites categorized as described under Methods: Determining Site Status. All 

analyses were run in R version 3.1.1 (R Development Core Team 2014). 

 

RESULTS 

 Data gathered in the mark/recapture study were best represented by an occupancy model 

that let detection (p) vary by site, while keeping occupancy (Psi) constant. Detection 

probabilities varied greatly from site-to-site, ranging from p = 0.03 to p = 0.41 (Table 1). The 

lowest detection probability occurred at a site with only 3 individuals, only one of which was 

caught in 2014. Yet a small number of individuals at a site did not always result in low detection 

probabilities, as years of trapping has shown that there are only 2 individuals at WC but these 

individuals were recaptured frequently enough to have a high detection probability. For a site 



 57 

with an average detection probability (p=0.19) it would take 15 trapping occasions (30 days) 

before there is only a 5% chance that Bog Turtles are present but were not captured (Table 1).  

 Examination of the habitat characteristics showed that there were no pairwise differences 

between occupied and unoccupied sites (Table 3). The historic disturbance index also did not 

show any obvious differences between occupied and unoccupied sites (Table 3). It is interesting 

to note that 6 out of 10 occupied wetlands were pastures at one point in their history and 8 out of 

10 have evidence of past drainage efforts. Site H was even tiled, with no evidence of a wetland 

until 1984, but that site has recovered sufficiently to hold one of the larger populations of Bog 

Turtles in Georgia to-date. Site BT could only be identified as a forest until 1980 when a power 

line cut is evident for the first time, giving the impression that this site is only suitable because 

the power line installation opened the canopy.  

 Despite a small sample size and the fact that there were no apparent trends in the 

variables by themselves, the discriminant analysis shows that the sites do group as a function of 

occupancy status in reduced environmental space (Figure 3). The DA was able to correctly 

classify 22 out of 25 sites. Area of the wetland, percent of the wetland that can be classified as 

PEM, percent of the wetland that is flooded by beaver activity or lake, and water pH contributed 

the most to distinguishing between the groups, respectively.  
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TABLE 3. Mean and range of the wetland characteristics used in the discriminant analysis. 

Results are divided into those for wetlands occupied by Bog Turtles (n = 8) and for those 

unoccupied (n = 17). %PEM, PSS, and PFO refer to the wetland classification of Cowardin et al. 

(1979) and represent the percent of the wetland that is considered palustrine emergent (PEM), 

palustrine scrub-shrub (PSS), and palustrine forested (PFO). % flooded refers the percentage of 

the total area that is influenced by flooding due to beaver activity or fluctuating lake levels. A 

detailed description of the historical disturbance index and years of recovery variable can be 

found in the Methods section.  

Wetland Characteristic 
Occupied Unoccupied 

Range Mean Range Mean 

% organic matter 5.71 – 17.78 11.18 5.1 – 19.03 9.72 

% silt 24 – 42.1 33.75 18 – 50.1 34.40 

% clay 12 – 36.3 23.14 4.2 – 56.2 21.78 

Water pH 5.66 – 6.67 6.10 5.20 – 6.58 5.93 

% PEM 0 – 88.29 48.23 0 – 88.67 24.53 

% PSS 0 – 57.00 24.52 0 – 100 57.01 

% PFO 0 – 51.03 27.26 0 – 86.59 18.46 

% flooded 0 – 90 28.48 0 – 100 40.24 

area (ha) 0.46 – 15.48 3.09 0.09 – 10.60 1.56 

historical disturbance 

index 
3.13 – 81.25 39.04 10.71 – 96.43 45.59 

years of recovery 0 – 68 34.63 0 – 68 39.76 
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FIGURE 3. Results of the discriminant analysis on occupied (n = 8) and unoccupied (n = 17) Bog 

Turtle wetlands in Georgia and South Carolina, USA. Our analysis consisted of only two groups, 

resulting in only one linear discriminant and thus we simply plot the discriminant scores for each 

site. Misclassified sites are marked in red and indicated by an arrow
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DISCUSSION 

 Locating new populations of Bog Turtles is important to effectively conserve this 

species (USFWS, 2001; GA DNR, 2005; NC WRC, 2005; SC DNR, 2005; VA DGIF, 

2005), but we understand very little about how wetlands occupied by Bog Turtles differ 

from those that are unoccupied (Feaga et al., 2012, 2013; Myers and Gibbs, 2013). To fill 

this gap, we used local habitat characteristics and information on site history to try and 

distinguish between wetlands occupied by Bog Turtles and those that are not. We 

examined 25 wetlands for this study, 8 occupied and 17 unoccupied. Habitat 

characteristics examined in isolation did not vary as a function of occupancy status 

(Table 3). When evaluated in a multivariate framework, a subset of these habitat 

variables become important in distinguishing among occupied and unoccupied sites. Area 

of the wetland, percent of the wetland that can be classified as PEM, percent of the 

wetland that is flooded by beaver activity or lake, and water pH contributed the most to 

distinguishing between the groups. Generally occupied sites have little beaver flooding, 

have a larger portion of the wetland that is PEM, and are least a hectare in size. Water pH 

only ranges from 5.16 to 6.67, with an average of 6.00 for the occupied sites and 5.89 for 

the unoccupied sites, and it is difficult to imagine that Bog Turtles would be responding 

to such differences changes in pH. Site history only ranked 7th in importance in 

distinguishing between groups. This variable may have greater importance if we were 

able to consider abundance instead of simply occupancy, as many of our occupied sites 

vary widely in both historical disturbance and the total number of turtles captured. Often 

less disturbed and degraded sites have larger populations (Table 4).  



 61 

TABLE 4. Overview of occupied Bog Turtle wetlands within Georgia, USA. Descriptions 

are given to emphasize distinguishing features of wetland history and habitat and how 

they relate to abundance. We approximate abundance by number of individual turtles 

observed since 2010, when formal trapping efforts began. 

Site 

# Turtles 

Observed 

Since 

2010 

Description 

RC 21 Small (<1 ha) fen with no past history of disturbance 

E 9 
Affected by extensive ditching in the past and present-day beaver 

activity but a recovering fen. 

H 9 

Despite being a ditched and tiled pasture in the past, this is now a 

well recovered fen fed by springs located within the former 

pasture. There is also an active beaver presence. 

BT 7 

A series of seeps running down a hillside under a power line cut 

amidst forest. As this site used to be forested, it appears the power 

line cut made the area open enough for Bog Turtles. The seeps 

pool in a few of the flatter areas and create pockets of muck used 

by the turtles, although the turtles also use the seeps and creeks 

flowing through the forested part of the hillside. 

N 4 

Large (>15 ha) wetland, more alluvial than groundwater fed, now 

heavily influenced by beaver. The only past disturbance was 

channeling and ditching of the two creeks within the wetland. 

W 3 
A remnant fen, completely encroached by woody vegetation. 

Turtles have not been seen at this site since 2011. 

FL 2 
The majority of this wetland has been a field since the 1940s, 

with turtles only known to be present in one deep, 2 m wide ditch. 

WC 2 

An opening amidst forest service land with turtles inhabiting 5 

ditches with very shallow mud. The land separating the ditches is 

of upland soils and is not boggy. 

G 1 
Fen in an active cow pasture with a history of extensive and 

persistent ditching and tiling that has continued to present-day.  
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 Bog Turtles appear to occupy a wide range of habitat types, as the sites in this 

study were drastically different (Table 4), and sites that meet all suitable Bog Turtle 

habitat criteria (USFWS, 2001) are often unoccupied (e.g. HOL, WW, CC, J). Bog 

Turtles may be opportunistically using any shallow, open-canopied mucky area (as some 

of our sites can hardly be classified as wetlands). Observed occupancy patterns are 

potentially confounded by Bog Turtle habitat selection, Bog Turtles dispersal ability, the 

effects of past disturbances, and stochastic events. Qualitative assessments of site 

suitability (i.e., USFWS, 2001) can be misleading and occupancy prediction is further 

hampered by turtle dispersal and stochastic events. Nevertheless, a quantitative analysis 

of habitat characteristics was sufficient to distinguish between occupied and unoccupied 

sites. If our results are transferable across states, habitat characteristics could be measured 

and evaluated in the context of our linear discriminant function. Such an approach would 

be very useful in cases were prioritization of survey efforts must occur due to limited 

resources. Taking habitat measurements is much less time consuming than properly 

surveying a wetland and could be used to identify the most promising sites (i.e. those the 

DA classifies as occupied). This approach would also be useful in the northern 

populations where any potential Bog Turtle wetland must be assessed before any building 

activity or land use alteration can occur (Somers and Mansfield-Jones, 2008). Bog Turtle 

surveys are only possible during periods of heighted turtle activity which occur between 

mid-April and July (USFWS, 2001), but requests for wetland assessment can come at all 

times of the year, often with pressure for assessment to occur quickly (Somers and 

Mansfield-Jones, 2008). In cases like these, since habitat measurements can be collected 
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year-around, wetlands could be pre-assessed using our DA approach. Using the DA to 

predict site occupancy would provide quantitative evidence that a more detailed site 

assessment is necessary or suggest that a given site is not likely to warrant allocation of 

limited time and resources.  

 Not only have we provided a way to potentially better identify Bog Turtle 

wetlands, but we have also established a method of surveying that will allow anyone 

surveying for Bog Turtles to quantify the probability that a site is unoccupied. Arguably 

even small Bog Turtle populations contribute to the species’ conservation (Shoemaker 

and Gibbs, 2013), so it is vital to know with some certainty that a site truly is unoccupied 

if no turtles are captured during survey efforts. Although our method is resource 

intensive, it can be tailored to the amount of resources available by adjusting what level 

of certainty is deemed acceptable regarding probability of detection. It should also be 

noted that the detection probabilities we observed were based on small populations; in 

fact, most of the sites had five or fewer individual captures (Table 1). In states where 

populations tend to be much larger (>10 individuals), the maximum detection probability 

we observed could be used and much less trapping effort would be required. The 

maximum detection probability we identified (p = 0.41) would suggest 12 days of 

surveys without a detection means the probability of Bog Turtles being present but 

undetected at a site is only 4%. Because detection probability varies by site, we strongly 

encourage determining locality-specific detection probability for whatever survey method 

is used. We acknowledge that trapping may not be possible at all sites, just as probing is 

not possible at our sites. But if surveys are being used to evaluate probability of species 
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absence at a site, then results are not truly meaningful or justifiable until detection 

probability is known and can be used to quantify probability of absence. To-date the 

majority of Bog Turtle surveys have been conducted assuming that the Phase 2 

(probing/visual surveys) and 3 (trapping) surveys according to USFWS guidelines are 

sufficient, but until detection probability is available for these methods, one can never 

really be sure of their efficacy and if their efficacy holds across the range of the species 

and different habitat types. This does not invalidate these guidelines, but it does suggest 

they need to be re-evaluated to ensure sufficient resources are being used, especially 

given the value of even small populations. Our survey method is transparent, flexible, and 

quantifiable. The combination of our survey technique, which allows for exact 

calculation of needed survey effort, and our manner of assessing habitats through a DA 

will allow researchers to efficiently and justifiably allocate limited resources in the most 

promising wetlands for Bog Turtles.  
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