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Abstract

Lip reading is the recognition of spoken words from the visual information of lips. It has been

of considerable interest in the Computer Vision and Speech Recognition communities to automate

this process using computer algorithms. In this thesis, we have developed a novel method involving

describing visual features using fixed length descriptors called Histogram of Oriented Displacements

to which we apply Support Vector Machines for recognition of spoken words. Using this method on

the CUAVE database we have achieved a recognition rate of 81%.
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Chapter 1

Introduction

Lip reading is a technique used to understand or interpret speech with only the visual signal

of mouth movement and without the acoustic signal. It is a technique mastered by people with

hearing disabilities. The ability to lip read allows a person with hearing impairments to communicate

with others and engage in social activities which otherwise would be difficult. Automating the

process of lip reading has applications in human computer interaction (HCI). Recent advances in the

fields of computer vision, pattern recognition and signal processing have led to a growing interest in

automating this challenging task of lip reading. Automating the ability to lip read, a process referred

to as visual speech recognition (VSR) or speech reading, could open the door for other novel related

applications.

VSR has received a great deal of attention in the last decade for its potential use in applica-

tions such as human-computer interaction (HCI), audio visual speech recognition (AVSR), speaker

recognition, sign language recognition and video surveillance. Its main aim is to recognize spo-

ken words by using only the visual signal that is produced during speech production. Hence VSR

deals with the visual domain of speech and involves image processing, object detection, pattern

recognition, artificial intelligence, statistical modeling etc.

There are two main approaches to the VSR problem, each with its own strengths and

weaknesses:

• visemic approach

• holistic approach.
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1.1 Visemic Approach

The traditional and most common approaches to VSR are based on visemes. A viseme is

one of a sequence of mouth dynamics (mouth shapes and movements) in the visual domain that are

required to generate a phoneme. Hence a viseme represents a part of the word. Several problems

arise in using visemes in VSR, such as low number of visemes (between 10 and 14), compared to the

number of phonemes (between 45 and 53). Visemes cover only a small subspace of the mouth dy-

namics in the visual domain. These problems contribute to the poor performance of the traditional

VSR systems. Hence using the visemic approach is like quantizing a signal which results in loss of

information.

1.2 Holistic Approach

The holistic approach considers the signature of a whole word rather than only a part of

it like the visemic approach does. This approach is a good alternative to the visemic approach for

automatic lip-reading. The major problem of this approach is that for a complete English language

lip reading system, we need to train all the English language words in the dictionary. But it can be

effective if trained on a specific domain of words, e.g., numbers, zip codes, cities.

Speech perception is a multimodal process and involves information from more than one

sensory modality. The McGurk effect [1] shows that visual articulatory information is integrated

into our perception of speech automatically and unconsciously. For example, a visual /ga/ combined

with an auditory /ba/ is often heard as /da/. This effect is shown to be very robust and knowledge

about it seems to have very little effect on one′s perception of it.

Interest in machine lip reading began to emerge in the mid 1980s when it was shown that

visual lip information extracted from a speaker′s lips can enhance the performance of an automatic

speech recognition system, especially in a noisy environment. Petajan was the first to investigate the

problem of machine lip reading or visual speech recognition [2]. Recently, it has also been shown that

the dynamics of the speaker′s lip during speech articulation provides useful biometric information

for speaker recognition.

Visual speech recognition involves three steps:

- Lip segmentation

2



- Feature extraction

- Classifier design.

Although significant research effort and many technological advances have been made re-

cently, visual speech recognition is still far from practical deployment. Unlike the relatively mature

field of automatic speech recognition, there are still many unsolved theoretical and algorithmic issues

in visual speech recognition. For example, the problems of lighting, shadow, pose, facial hair, camera

resolution and so forth make reliable segmentation and extraction of lip feature a difficult task. The

problem is further compounded by the difficult and variable environments these recognition systems

tend to operate in. There is also little theoretical study on the amount of phonetic/linguistic infor-

mation that can be extracted from the speaker′s lips for speech recognition. Various aspects of this

research area include lip segmentation from video sequence, lip feature extraction and modeling,

feature fusion and classifier design for visual speech recognition and speaker verification.

Audio-visual speech recognition (AVSR) is concerned with recognizing speech using both

audio signal and the visual signal of mouth movement. When there is a high amount of acoustic noise

present in the recognition environment, audio only speech recognition may produce poor results. It

has been found that including the visual signal of lip movements in speech recognition improves the

recognition accuracy. But it is also of interest to determine what kind of accuracy can be obtained

with visual-only speech recognition. This kind of a system can be useful when there is no audio

available in the recognition scene or if the audio signal is very highly degraded. In this thesis, we

work only with the visual signal in order to determine the recognition accuracy.

3



Chapter 2

Background

The focus of most audio visual speech recognition systems is to find effective ways of com-

bining video with existing audio-only speech recognition (ASR) systems[3]. However, in some cases

it is difficult to extract useful information from audio. An example is a voice controlled car stereo

system. The user has to be able to play, pause, switch stations and tracks using simple commands.

This allows the driver to keep his attention on the road and hands on the wheel. In this case, the

voice is corrupted by the car engine and traffic noise and also by the car stereo audio itself, so

almost all useful speech information is in the video. However, only a few authors have focused on

the problem of visual-only speech recognition as a stand alone problem. In this chapter, we will

review the work performed by some authors in visual speech recognition.

2.1 Previous Work

2.1.1 Visual Speech Recognition Using Support Vector Machines

In [4], Gordan et al., proposed a visual speech recognition network based on Support Vector

Machines (SVM) [5, 6]. Each word was described as a temporal sequence of visemes [7]. Each viseme

was described by a support vector machine, and the temporal character of speech was modeled by

integrating the support vector machines as nodes into a Viterbi decoding lattice [8].

The basic visual models were viseme models, and the visual word models were obtained

by a combination of the basic models into a temporal dynamic sequence. Speech was modeled as

4



a temporal sequence of symbols corresponding to the different phones produced and SVMs were

employed as nodes in a Viterbi lattice. The nodes of a Viterbi lattice are supposed to generate

posterior probabilities of the corresponding symbols to be emitted [8]. The output of an SVM was

converted into a posterior probability by a sigmoidal mapping as

P (y = +1|f(x)) = 1
1+exp(a1f(x)+a2)

where f(x) is the hyperplane equation of an SVM. a1 and a2 can be derived from the training set

using maximum likelihood estimation[9].

A network of parallel SVMs was built where each SVM was trained to classify patterns in

a particular class. The pattern xk is assigned to class Cl according to a maximum a posteriori rule:

P (yl = 1|fl(xk)) = arg maxj P (yj = 1|fj(xk))

where the probabilities were given by SVM outputs.

In the temporal domain the word models were represented starting from the visemic model

and from the total number of frames T in the word pronunciation, by assuming that the duration of

each viseme in the word pronunciation is variable, but necessarily not zero. A temporal network of

models corresponding to the different durations of visemes was represented by the Viterbi algorithm

[8] containing as many states as the number of frames T in a word. Each word in the vocabulary

was represented by a Viterbi lattice. Such a Viterbi lattice for the word one is shown in Figure

2.4. Each node in the lattice is the probability that the corresponding symbol ok is emitted at time

instant k. This probability was denoted bokk and was generated by the corresponding SVM. aokok+1

denotes the transition probability from the state that generates ok to the state that generates ok+1.

The probability that a word wd, d=1 to D, where D is the number of words in the vocabulary,

was produced following a path l in the lattice was calculated as

pd,l =
T∏
k=1

bokk
T−1∏
k=1

aokok+1|d,l

and the probability the word wd was produced was taken to be the maximum of the pd,l. The

maximum pd,l value is denoted as pd. The most probable word, that is whose probability pd is

maximum is recognized.

This system was evaluated on a task of recognizing the first 4 English digits spoken by 12

speakers from the Tulips1 [10] database. 12 visemes were used in the recognition and SVMs with

polynomial kernel of degree 3 were used. The rectangular region of interest around the mouth is

taken and downsampled into a 16x16 image. The 256 gray level values were taken and along with

their 256 temporal derivatives, each mouth image was represented by a feature vector of length 512.

5



Figure 2.1: SVM Viterbi Lattice [4]

A recognition rate of 90.6% was obtained, but this paper performed the recognition of only 4 digits.

But it proved the suitability of SVMs for visual speech recognition.

2.1.2 Visual Speech Recognition With Loosely Synchronized Feature Streams

In [11], Saenko et al. presented an approach to detecting and recognizing spoken isolated

phrases using solely the visual input. They adopted an architecture that first employs discriminative

detection of visual speech and articulatory features and then performs recognition using a model

that accounts for the loose synchronization of the feature streams. Discriminative classifiers detect

the subclass of lip appearance corresponding to the presence of speech and further decompose it into

features that correspond to the physical components of articulatory production. These components

evolve in a semi-independent fashion, and conventional viseme based approaches fail to capture the

resulting co-articulation effects. This paper presented a Dynamic Bayesian Network (DBN) with

multi-stream structure and observations consisting of articulatory feature classifier scores which

can model varying degrees of co-articulation. It evaluated a visual-only recognition system on a

command utterance task and showed comparative results on lip detection and speech/nonspeech

classification as well as recognition performance against a baseline system.

The articulators (e.g., lips and tongue) can evolve asynchronously from each other, especially

in spontaneous speech, producing varying degrees of co-articulation. Existing systems treat speech

6



Figure 2.2: Bilabial Closure During Production of Words ”romantic” and ”academic” [11]

as a sequence of atomic viseme units and so they require many context dependent visemes to deal

with co-articulation[12]. In this paper, the authors have modeled the multiple underlying physical

components of human speech production or Articulatory Features (AF)[13]. The varying degrees of

asynchrony between the AF trajectories are represented using a multi-stream model.

In this paper, the authors describe an end-to-end visual-only approach to detecting and

recognizing spoken phrases, including visual only detection of spoken phrases. They have used

articulatory features (AF) as an alternative to visemes and a DBN [14, 15] for recognition with

multiple loosely synchronized feature streams. The observations of the DBN are the outputs of

the discriminative AF classifiers. The authors evaluated their approach on a dataset containing 20

car-stereo control commands.

The appearance of the mouth can be heavily influenced by the asynchrony between artic-

ulatory gestures. This occurs when the articulatory features not involved in the production of the

current sound evolve asynchronously. The Figure 2.1 shows an example of such de-synchronization

in two snapshots taken at the moment of complete lip-closure during pronunication of romantic and

academic.

Suppose the phoneme /m/ is to be modeled in these two different utterances as a single

context-independent viseme. Both images would be considered to belong to a single class (the

bilabial viseme) and to have the same open/closed feature value (fully closed). But their appearance

is different because in the second context the mouth is 25% wider. There is also contextual variation

because, in romantic the lip rounding of /ow/ lingers during the lip closure. So modeling lip

rounding and lip opening as two separate articulatory features would capture more information

that just modeling the /m/ viseme. Allowing the features to proceed through their trajectories

asynchronously would account for these types of effects. An alternative way to model such variability

7



Figure 2.3: System Block Diagram[11]

is to use context dependent units. However, visual coarticulation effects can span three or more

visemes, requiring a large number of context dependent models.

The system consisted of two stages as shown in Figure 2.2. The first stage is a cascade of

discriminative classifiers that first detects speaking lips in the video sequence and then recognizes

components of lip appearance corresponding to the underlying articulatory processes. This stage

of the system extracts articulatory features from the input video sequence. In visual modality

only visual articulators can be modeled. A restricted articulatory feature set corresponding to the

configuration of lips was chosen. The features used were Lip Opening (LO), discretized into closed,

narrow, medium and wide states; Lip Rounding (LR), discretized into rounded and unrounded states;

and Labio-Dental (LD) which is a binary feature indicating whether the lower lip is touching the

upper teeth such as to produce /f/ or /v/. Other articulatory features that are distinguishable from

the video such as the tongue movements were not incorporated in this paper. The AF detection

stage is implemented as a cascade of discriminative classifiers each of which uses the result of the

previous classifier to narrow down the search space. Support Vector Machines (SVMs) are used as

the discriminative classifiers. In the cascade, the first classifier detects the presence and location

of the face in the image. If a face was detected, the second classifier searches the lower region of

the face for lips. Once the lips have been located, they are classified as either speaking or non-

speaking. This is accomplished in two steps. First, motion is detected and then a speaking lip

classifier is applied to determine whether the lips are moving due to speech or some other activity.

8



The final set of classifiers decompose the detected speech into several articulatory features. To

evaluate the lip detector, a subset of the AVTIMIT dataset[16] was used with the videos of 20

speakers speaking English sentences. The authors collected their own dataset consisting of videos of

3 speakers speaking similar sentences (speech dataset) and the videos of the same 3 speakers with

videos of them making non-speech movements (nonspeech dataset). The speech and nonspeech

datasets were used to train and test the speaking-lip classifier. The speech dataset was used to

train the AF classifiers and viseme classifier. The SVM lip detector detected lips in 99% of the

frames. Normalized image difference energy was calculated over consecutive frames and then low

pass filtered over a one-second window with a 2 Hz cutoff frequency. To the filtered output, a

threshold is applied to determine whether the lips are moving. For the frames which were classified

as containing moving lips, an SVM classifier is used to determine if the movement corresponds to

speech activity. Its output was median filtered using a half-second window to remove outliers. This

classifier achieved 98.2% detection rate of speaking lips. SVM classifiers were used for the three

articulatory features. A viseme SVM classifier was also used as a baseline. One-vs-all multiclass

SVM formulation was used. So 6 SVM classifiers were trained: 4 for LO; one for LR and one for LD.

One SVM for each of 6 visemes was also trained. The input vectors to the SVMs were produced by

first resizing the lip image into 32 by 16 pixels. A discrete cosine transform (DCT) is then applied to

the image and 512 coefficients are obtained. PCA transform is applied to reduce the dimensionality

of the vector to 75 components. Radial basis function (RBF) kernels were used for SVMs.

The second stage is a DBN that recognizes the phrase while explicitly modeling the possible

asynchrony between these articulatory features. This stage of the system is a short phrase recognizer

that models the visual speech in terms of underlying articulatory processes. The recognizer uses

a Dynamic Bayesian Network with a multi-stream structure and observations consisting of the

AF classifier outputs from the previous stage. The model is implemented as a Dynamic Bayesian

Network due to the semi-independent evolution of the AF streams. Figure 2.3 shows three frames

of the DBN.

The model consists of three parallel HMMs, one per AF, where the joint evolution of the

HMM states is constrained by the synchrony requirements imposed by the variable c1 and c2 as seen

in Figure 2.4. The following figure shows a conventional single stream viseme HMM which is used

as a baseline system for comparison.

The model allows the AFs to proceed through their trajectories at different rates. This

9



Figure 2.4: DBN for Articulatory Feature Based VSR[11]
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asynchrony is not completely unconstrained. Sets of trajectories that are more synchronous are more

probable than less synchronous ones and a hard constraint on the maximum degree of asynchrony

is imposed. iFt is the index into the state sequence of feature stream F at time t. If stream F is

in the nth state of a given word at time t, then iFt = n. The degree of asynchrony between two

feature streams F1 and F2 at time t is defined as |iF1
t − i

F2
t |. The probabilities of varying degrees

of asynchrony are given by the distributions of the aj variables. Each cjt variable checks that the

degree of asynchrony between its parent feature streams is ajt . This is done by having the cjt variable

always being observed with value 1 with distribution

P (cjt = 1|ajt , i
F1
t , iF2

t ) = 1

if and only if |iF1
t − i

F2
t | = ajt

and 0 otherwise, where iF1
t and iF2

t are the indices of the feature streams cjt . For example, for c1t ,

F1 = LR and F2 = LO.

For each stream the observations OF are the SVM margins for that feature and the ob-

servation model is a Gaussian mixture. Whole word models are used. A separate DBN for each

phrase in the vocabulary is trained with iF ranging from 1 to the maximum number of states in the

word. Recognition corresponds to the phrase whose DBN has the highest Viterbi score. To perform

recognition with the model, standard DBN inference algorithms [17] were used. The observation

models, the per-feature state transition probabilities and the probabilities of asynchrony between

streams are learned via maximum likelihood using the Expectation-Maximization algorithm[17].

The DBN component of the system was evaluated on the recognizing isolated phrases. A

set of 20 commands that could be used to control an in-car stereo system was chosen. The videos

of 2 speakers speaking these commands was collected (commands dataset).

The six decision values of the SVMs were used as the observations. The AF based DBN was

evaluated with some asynchrony between the feature streams. LR and LO streams were allowed to

de-synchronize by upto one index value (one state) as are LO and LD streams. The two asynchrony

probabilities p(a1 = 1) and p(a2 = 1) are learned from the training data. This model uses whole-word

units and Gaussian mixture models (GMMs) of observations (single Gaussians with tied diagonal

covariance matrices). This resulted in a visual speech recognition rate of 65.8%. The results showed

that the approach was better at accounting for variation in speech that is faster than the speech

used in training.
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2.1.3 Visual Speech Recognition Using DCT features

In [18], Hong et al., focused on dimensionality reduction strategies for DCT based features

[19, 20, 21, 22, 23] for VSR. PCA [24, 25, 19, 20, 26, 27] was applied to extract DCT coefficients.

This combination utilized the advantages of these two transforms. DCT was used to differentiate

frequencies while PCA was used to select the most important components in the DCT feature vector.

The ROI containing the mouth area was downsampled to a 32x16 image. The image trans-

form 8x8 block-based DCT was applied to this image. This method divided the 32x16 image into

8 non-overlapping blocks of 8x8 and applied the DCT transform to each of the blocks. This gave

a 512 dimensional vector as output. The dimensionality of this vector was reduced to 80 by us-

ing PCA. The resulting vector was normalized and used as a feature vector for classification using

Semi-Continuous Hidden Markov Model (SCHMM) [28] which was set with 6 states and 8 modes

per state. The system was tested using the HIT-BiCAVDB database containing speech videos from

10 speakers. Speaker Dependent recognition tests were conducted. A visual speech recognition rate

of 68.8% was obtained.

2.1.4 GA-based Informative Feature for Visual Speech Recognition

In [29], Ukai et al. proposed a feature called GA-based Informative Feature (GIF) and

applied it to Visual Speech Recognition. The feature extraction method consisted of two transforms

which converted an input vector to GIF. The two transformation matrices were obtained using

Genetic Algorithm (GA) and the training data.

The two transformation matrices, which were denoted A and B, were computed as explained

in the following. Let there be C classes and the training set be denoted R = {rn}. For an ith class,

for an input vector x, the following linear classifier was assumed:

f(x;ai) = (
N∑
j=1

ai,jxj) + ai,N+1

where ai = (ai,1, ..., ai,N , ai,N+1) are the classifier parameters and a part of the matrix A. These

classifier parameters were calculated using a GA as explained in the following. An initial population

G0 with K individuals was created with each individual having N + 1 chromosomes each of which

encoded a classifier parameter. For the kth individual vk in the hth generation Gh, a fitness function

E(vk) was calculated as follows:

E(vk) =
‖R‖∑
n=1

ln.sgn(fi(rn;a))
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where a was a parameter set obtained by decoding vk and ln was a transcribed label that equaled

1 if rn belonged to a class, or -1 otherwise. Conventional GA operations were applied to form a

next generation Gh+1; elitist selection and inheritance were applied to copy a certain individual to

Gh+1; for genetic diversity, mutation and crossover operations were also conducted to generate a

new individual. These operations were repeated for h = 0 to h = F − 1 and a final population GF

was obtained. From GF , the individuals having the K/I highest fitness values were extracted and

added to a candidate population GC . By repeating these steps I times, the selection of candidate

population GC was completed. Now GC was taken as the initial generation and all the above steps

were repeated and the best fit individual v was obtained. The transformation parameter set a was

subsequently obtained by decoding v. These steps enabled the computation of the matrix A.

An input vector x was converted into an intermediate vector y using matrix A as follows:

y = A(xT 1)
T
.

For the ith class, a mean vector µi, was calculated as

µi = 1/‖Ri‖
∑

r∈Ri
A(rT 1)

T

where Ri was a subset of the training set in which all vectors belonged to ith class. For the vector

y, a linear transformation g was defined as:

g(y;bm) =
C∑
j=1

bm,jyj

where bm = (bm,1, ...bm,C) indicated classifier parameters and a part of matrix B. For m=1, the

parameter set b1 is optimized by applying GA with fitness function modified as:

E(vk) = var(w1, ..., wC)

where wi = g(µi;b). Here b is obtained by decoding vk. For m = 2, b2 is optimized so as to

maximize a variance just as same as b1 under the constraint that the inner product between bT1 and

bT2 is zero. Similarly, for any m, the mth parameter set bm was calculated in the same way. These

steps enabled the computation of the matrix B.

The intermediate vector y is further converted into a vector z as:

z = By.

This vector z was the proposed feature GIF.

The authors used the CENSREC-1-AV database [30] for conducting lipreading experiments.

The database contained digit utterances. 59x35 mouth ROI images were obtained by lip detection

techniques. These detected lip images were then resized to 29x17. A 493 dimensional input vector

was obtained by enumerating the intensity values in the image from left-top to right-bottom. By
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applying the above two transformation matrices, the 10-dimensional GIF output vector was obtained.

To the 10-dimensional GIF vectors, first-order and second-order derivatives were added making the

feature vectors 30 dimensional. Hidden Markov Model (HMM) was used for recognition experiments.

A visual HMM was built using the Baum-Welch training algorithm, and recognition results were

obtained using Viterbi algorithm. HMMs were built for all the digits. Each digit HMM consisted

of 16 states having 8 Gaussian mixtures. In these tests, a visual speech recognition rate of 59.79%

was obtained.

2.1.5 Visual Speech Recognition Using Zernike Moments

In [31], Borde et al. computed visual features using Zernike moments. These features were

normalized and their dimensions were reduced using PCA. Viola Jones face detection algorithm

with AdaBoost was used to detect face in images. Subsequently, mouth ROI was extracted from

these detected face images. These mouth ROIs were preprocessed. The preprocessing steps included

conversion to gray scale and filtering. From the filtered image, a gray scale threshold was computed

and the mouth ROI was converted into a binary image. This enabled getting the actual ROI which

contained only the lip region.

From these processed ROIs, Zernike moments, which describe shape information, were com-

puted. These moments are the mapping of an image onto a set of complex Zernike polynomials

which form a complete orthogonal set on the unit disk with x2 + y2 = 1.

Zmn = m+1
π

∫
x

∫
y
I(x, y)[Vmn(x, y)]dxdy

where m is the order of the Zernike polynomial, n is the angular dependency, I(x, y) is the image.

The Zernike polynomials Vmn(x, y) are expected in polar coordinates using radial polynomial (Rmn)

as per the following equations:

Vmn(r, θ) = Rmn(r)e−jnθ

Rmn(r) =

m−|n|
2∑
s=0

(−1)s (m−s)!
s!(

m+|n|
2 −s)!( m−|n|

2 −s)!
rm−2s.

For each frame, Zernike moments of upto order 9 were calculated. So there were 9 feature

values for each frame. Each word in the database contained 52 frames in the corresponding video.

So for one word, a 468 dimensional feature vector was computed. The dimensionality of this feature

vector was reduced by using PCA. The authors used the vVISWa database consisting of video
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sequences of isolated utterances of 12 city names spoken by 10 speakers to test their method of

visual speech recognition. Each speaker spoke each word 10 times. Euclidean distance classifier was

used for classification. A recognition rate of 63.88% was obtained.

2.1.6 Visual Speech Recognition Using kNNR

The most important paper that has been used as the main reference in this thesis is [32].

In this work, the mouth ROI is detected first. 8 features were extracted from the ROI in each frame

of the input video. The feature extraction process is explained in the following.

The rectangular ROIs height and width were taken as two features. The mouth ROI was

transformed into the frequency domain using Discrete Wavelet Transform (DWT). This results in

four wavelet subbands LLi, LHi, HLi, HHi for each ROI. The mutual information between two con-

secutive ROIs were defined as follows.

M(X;Y ) =
∑
x

∑
y p(x, y)log( p(x,y)

p(x)p(y) )

where

X = mouth ROI in the current frame

Y = mouth ROI in the previous frame

p(x, y) = joint probability mass function (pmf) of X and Y

p(x) = marginal pmf of X

p(y) = marginal pmf of Y.

Instead of calculating the mutual information in the spatial domain, it is calculated in the

frequency domain in each of the four subbands and the average of the four values is taken as the

mutual information feature for a particular ROI as follows:

Mi = M(LLi;LLi−1)+M(HLi;HLi−1)+M(LHi;LHi−1)+M(HHi;HHi−1)
4

where

LLi, HLi, LHi;HHi are wavelet subbands of the mouth ROI in the current frame and

LLi−1, HLi−1, LHi−1;HHi−1 are wavelet subbands of the mouth ROI in the previous frame.

The Quality measure of one mouth ROI in reference to the previous mouth ROI was calcu-

lated as follows:
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Q =
4σxyx̄ȳ

(σ2
x+σ2

y)(x̄2+ȳ2)

where

x̄ = 1
N

N∑
i=1

xi

ȳ = 1
N

N∑
i=1

yi

σ2
x = 1

N

N∑
i=1

(xi − x̄)2

σ2
y = 1

N

N∑
i=1

(yi − ȳ)2

σ2
xy = 1

N

N∑
i=1

(xi − x̄)(yi − ȳ)

where

X = current ROI

Y = previous ROI

N = number of pixels in the mouth ROI image.

A Quality feature is also calculated in the frequency domain in each of the four subbands

and the average of the four values is taken as the quality feature value for a particular ROI as follows.

Qi = Q(LLi;LLi−1)+Q(HLi;HLi−1)+Q(LHi;LHi−1)+Q(HHi;HHi−1)
4

where

Qi = Quality measure for ith ROI.

HL, LH and HH subband coefficients have a Laplace distribution with a mean = 0. If the

coefficients are away from the mean by more than the subband standard deviation, those are called

significant because they are more likely associated with a significant image feature like an edge or a

corner. HL coefficients correspond to vertical features and LH coefficients correspond to horizontal

features. From this the ratio of vertical features to horizontal features can be calculated. This ratio

is computed as follows.

R =

∑
x

∑
y


0, (HLmedian − σHL) ≤ HL(x, y) ≤ (HLmedian + σHL)

1, otherwise

∑
x

∑
y


0, (LHmedian − σLH) ≤ LH(x, y) ≤ (LHmedian + σLH)

1, otherwise
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where

HLmedian and LHmedian are medians of HL and LH subbands, respectively

HL(x, y) and LH(x, y) are coefficients of HL and LH subbands, respectively

σHL and σLH are standard deviations of HL and LH subbands, respectively.

Sobel edge detector was applied to the ROI. The horizontal filter Sh highlights the horizontal

edges of the ROI and the vertical filter Sv highlights the vertical edges of the ROI. The ratio between

the amount of vertical edges to the amount of horizontal edges is calculated as follows.

ER =

W∑
x=1

H∑
y=1

1∑
i=−1

1∑
j=−1

|ROI(x+i,y+j)Sv(i+1,j+1)|

W∑
x=1

H∑
y=1

1∑
i=−1

1∑
j=−1

|ROI(x+i,y+j)Sv(i+1,j+1)|

where

ROI(x, y) = intensity value at (x,y) in the ROI

H = height of the ROI

W = width of the ROI.

The amount of red color in the ROI indicates the appearance of tongue. The amount of

tongue that appears is calculated as the ratio of the amount of red color and the size of the ROI as

follows:

RC =

W∑
x=1

H∑
y=1

Red(ROI(x,y))

WH

where

Red(ROI(x, y)) - Red component value at (x,y) in the ROI.

The amount of appearance of teeth was also taken as a feature. The ROI image was

converted into 1976 CIELAB color space (L*,a*,b*)[33] and 1976 CIELUV color space (L*,u*,v*)[33]

and a teeth pixel was defined as follows.

t =


1, a∗ ≤ (µa − σa)

1, u∗ ≤ (µu − σu)

0, otherwise

where

µa, σa = mean and standard deviation of a*

µu, σu = mean and standard deviation of u*.

The number of teeth pixels is calculated as

T =
W∑
x=1

H∑
y=1

t(x, y).
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So, mouth ROI height, width, mutual information, quality, ratio of vertical to horizontal

features, ratio of vertical edges to horizontal edges, amount of tongue and amount of teeth are

calculated as features. For each of these features, weights are assigned according to the relative

importance of that feature. This weight was computed as the ratio of the word recognition rate

obtained with only that feature and the sum of the word recognition rates of all features. Di is the

distance of the ith feature vector of a test sample from the ith feature vector of a training sample.

This distance for each feature vector is calculated using Dynamic Time Warping. The weighted

average of these eight distances is taken as the distance of a test sample from the training sample.

After computation of the distance of a test sample from the training samples, the k nearest

neighbor rule (kNNR) has been used with k = 3 to recognize a test sample. Speaker dependent tests

were conducted on a database of 27 speakers. An overall recognition rate of 76.38% was obtained.
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Chapter 3

Goal for Research and Methods

Used

This chapter describes the goal of this particular research and the specific methods used to

achieve this goal

3.1 Statement of the Problem

The goal of this thesis is to develop a novel method to perform visual speech recognition

using input from the database developed in Clemson University called Clemson University Audio

Visual Experiments (CUAVE)[34]. The database contains audio and video files of the speech of 33

speakers. There are 17 male speakers and 16 female speakers. For this thesis only the video files in

the database were used as input because visual speech recognition needs to be performed.

The camera is positioned such that a speaker is directly facing it. Each speaker speaks the

words 0 to 9. He/she repeats this for five consecutive times. Hence, each speaker speaks 50 words.

In this thesis, the video corresponding to each word is taken as the input in an isolated manner.

So isolated word speech recognition has been performed. Also, speech from a speaker was taken for

training the system and speech from the same speaker has been taken for testing.the system. So

speaker dependent speech recognition has been performed. Hence the goal is to develop a computer

program that takes the video of a word as input and gives a label, referring to which word has been
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Figure 3.1: Feature Points Detected on a Face Image

spoken, as output.

3.2 Approach

This section explains the specific methods used in this thesis.

3.2.1 Extraction of Mouth Region of Interest

A video input contains a sequence of frames. In each of these frames, on the speaker’s face,

a set of feature points are detected. An example of this detection is shown in the Figure 3.1. In

particular, 18 points are detected on the mouth of the speaker.

These 18 points allow the segmentation of the mouth region alone. The rectangular region

of the image bounded by the top most point, the bottom most point, the left most point and the

right most point of these 18 points contains the mouth region of interest (ROI). This rectangular
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Figure 3.2: Mouth Region of Interest (ROI)

region is cropped from a frame. Such a mouth ROI is shown in Figure 3.2.

3.2.2 Feature Extraction

From each of the ROI images, features are extracted. The following three features are

extracted from each ROI:

1. Mouth ROI Height

2. Mouth ROI Width

3. Appearance of tongue.

The method of extraction of each of these features is explained in the following.

3.2.2.1 Mouth ROI Height

The number of pixels along the row dimension of the mouth ROI image is taken to be the

Mouth ROI Height.

3.2.2.2 Mouth ROI Width

The number of pixels along the column dimension of the mouth ROI is taken to be the

Mouth ROI Width.

MATLAB is used in the experiments performed in this thesis. In MATLAB, the spatial

coordinate system is used for images in which the spatial resolution is 1
10000

th
of a pixel dimension.

For example, an image position of (156.1824,123.4876) is perfectly valid. This coordinate system is

used in finding the Mouth ROI Height and the Mouth ROI Width.

3.2.2.3 Appearance of Tongue

The amount of red color in the ROI represents the amount of lips and tongue. The amount

of red color contributed by the lips in the ROI will stay constant. So, as this value changes from the
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ROI in one frame to the next, it gives an indication of how much of the tongue is visible. The sum

of the red component values of all RGB pixels in the mouth ROI image is computed. This sum is

normalized by the number of pixels in the image. This gives the following measure of the amount

of red color in the ROI:

RC =

h∑
x=1

w∑
y=1

Red(ROI(x,y))

hw

where

ROI - mouth ROI

h - mouth ROI height

w - mouth ROI width.

3.2.2.4 Trajectory of Features

In an input video, from the ROI in each frame, these 3 features are calculated. Hence for

each video, a time series of 3-dimensional feature vectors is obtained. To visualize how the features

height, width and appearance of tongue vary together with frames, they are plotted in a 3D plot.

Such a plot will result in a trajectory as shown in Figure 3.3.

3.3 Histogram of Oriented Displacements

3.3.1 Variable Lengths of Feature Trajectories

Videos containing different words are of different durations. Also different speakers speak

at different speeds. Even the same speaker may speak the different renditions of the same word with

different durations. Hence the number of frames in different videos are different. So the features

extracted from a video will also be of different lengths. Figures 3.4 and 3.5 shows examples of the

height feature corresponding to two different attempts of the word 0. Figure 3.4 shows that the

word has 20 frames and Figure 3.5 shows that the word has 19 frames. So the 3D trajectories of

these different words will also be of different lengths.

3.3.2 Histogram of Oriented Displacements

To compare the different trajectories for recognition, they have to be described by fixed

length descriptors. Hence each trajectory has to be converted to a fixed length vector. The technique
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Figure 3.3: 3-Dimensional Trajectory of Features
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Figure 3.4: Word Zero, Attempt-1

Figure 3.5: Word Zero, Attempt-2
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Angle range Quantized value
[0,45) 45
[45,90) 90
[90,135) 135
[135,180) 180
[180,225) 225
[225,270) 270
[270,315) 315
[315,360) 360

Table 3.1: Angle Quantization

used in this thesis for accomplishing this is computing the Histogram of Oriented Displacements

(HOD) [35] for each trajectory.

The method of computation of HOD is explained as follows. Consider a 2-dimensional

trajectory. It is a sequence of points. Let it be denoted as T = {P1, P1, P3, ..., Pn} where Pt is the

2D position at time t. For each pair of points (Pt, Pt+1), the slope of the line connecting these two

points is calculated as follows.

slope =
Pt+1.y − Pt.y
Pt+1.x − Pt.x

.

From this slope, the angle between the two points θ can be calculated which will be be-

tween 0 ◦ and 360 ◦. These θ values are quantized into 8 values. If θ lies between 0 ◦ and 45 ◦, it

is quantized into 45 ◦ and if it lies between 45 ◦ and 90 ◦, it is quantized into 90 ◦ etc. Table 3.1

shows this quantization process. A histogram of the quantized values of θ is created. For each θ,

the corresponding histogram bin is calculated as follows:

bin =
θ ∗ 8

360
.

The length of the line between the two points is then added to the specific histogram

bin. Thus, the histogram accumulates the lengths of the consecutive moves in the corresponding

orientations. In this way, a 2D trajectory can be converted into a vector of fixed length 8. An

example of such a histogram is shown in Figure 3.6.

3.3.3 Temporal Pyramid

Dealing with the trajectory as a whole misses the temporal information. To capture this

information, a temporal pyramid approach is used. The trajectory is split into multiple levels. In
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Figure 3.6: Histogram of Oriented Displacements
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level 1, the whole trajectory is considered and the histogram is computed for it. In level 2, the

trajectory is split into 2 halves and two histograms are computed, one for each of the two halves. In

level 3, the trajectory is split into 4 quarters and four histograms are computed. Hence a total of 7

histograms are computed. The final descriptor of the 2D trajectory is the concatenation of these 7

histograms. With each histogram having 8 bins, the final descriptor’s length is 7*8=56.

3.3.4 Descriptor for the 3D Trajectory

The descriptor for a 3D trajectory is obtained by concatenating the individual descriptors

of the three 2D projections. Hence, the final descriptor of a 3D trajectory describing each word is

of length 3*56=168. So the video of each word is described by a 168 dimensional vector. We call

these vectors Word Vectors. An example of such a word vector is shown in Figure 3.7.

3.4 Recognition

A Support Vector Machine (SVM) is used to recognize the word vectors. The SVM finds the

optimal hyperplane that would separate two classes with minimum number of misclassifications. The

optimal hyperplane is the one that maximizes the margin between itself and the vectors closest to the

hyperplane called support vectors. The margin maximization problem is formulated into a Lagrange

multipliers problem which ultimately can be represented as a convex quadratic optimization problem.

From the solution of this optimization problem the parameters of the hyperplane can be computed.

SVM can be used to fit a hyperplane to both linearly separable and non linearly separable data. It

is explained in detail in the following. The following subsections (3.4.1 and 3.4.2) explaining SVM

have been taken from [36].

3.4.1 Linearly Separable Binary Classification

Let the training set have L training points, each with D dimensions and each one of them

belongs to one of two classes, yi = +1 or yi = −1. So our training data is of the form:

{xi, yi} where i = 1, ..., L, yi ∈ {+1,−1}, x ∈ RD. (3.1)
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Figure 3.7: Word Vector

28



Figure 3.8: Hyperplane Through Two Linearly Separable Classes [36]

Consider the data to be linearly separable. The hyperplane separating the two classes can be de-

scribed by wTx + b = 0 where

1. w is normal to the hyperplane

2. b
‖w‖ is the perpendicular distance from the origin to the hyperplane.

See Figure 3.8 for an illustration. Support vectors are the examples closest to the separating hyper-

plane, and the aim of SVM is to orientate the hyperplane in such a way as to be as far as possible

from the closest members of both classes. Implementing SVM involves to finding w and b such that

the following equations hold:

xi
Tw + b ≥ +1 for yi = +1 (3.2)

xi
Tw + b ≤ −1 for yi = −1. (3.3)
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These equations can be combined into

yi(xi
Tw + b)− 1 ≥ 1 ∀i. (3.4)

In Figure 3.8, the support vectors on either classes lie on two planes H1 and H2. d1 is the distance

between H1 and the hyperplane and d2 is the distance between H2 and the hyperplane. The

hyperplane must be equidistant from these two planes, so d1 = d2. This quantity is called the

SVM’s margin. In order to orientate this hyperplane to be as far from the support vectors as

possible, this margin needs to be maximized.

Using vector geometry, this margin is equal to 1
‖w‖ and maximizing it subject to the constraint in

(3.3) is equivalent to finding:

min‖w‖ such that yi(xi
Tw + b)− 1 ≥ 1 ∀i. (3.5)

Minimizing ‖w‖ is equivalent to minimizing 1
2‖w‖

2. We must therefore find:

min
1

2
‖w‖2 such that yi(xi

Tw + b)− 1 ≥ 1 ∀i. (3.6)

In order to perform this minimization, the Lagrange multipliers method is followed. Let αi, i =

1,...,L such that αi ≥ 0, ∀i be the lagrange multipliers.

LP =
1

2
‖w‖2 −

L∑
i=1

αi[yi(xi
Tw + b)− 1] (3.7)

LP =
1

2
‖w‖2 −

L∑
i=1

αiyi(xi
Tw + b)−

L∑
i=1

αi. (3.8)

We wish to find the w and b which minimizes and the αi, i=1,...,L that maximize (3.7). We

can do this by differentiating LP with respect to w and b and setting the derivatives to zero:

∂LP
∂w

= 0⇒ w =

L∑
i=1

αiyixi (3.9)

∂LP
∂b

= 0⇒
L∑
i=1

αiyi = 0. (3.10)
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Substituting (3.9) and (3.10) in (3.8) gives the expression (3.11). This has to be maximized with

respect to αi, i=1,...L.

LD =

L∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxixj s.t. αi ≥ 0 ∀i,
L∑
i=1

αiyi = 0 (3.11)

LD =

L∑
i=1

αi −
1

2

∑
i,j

αiHijαj where Hij = yiyjxi
Txj (3.12)

LD =

L∑
i=1

αi −
1

2
αTHα αi ≥ 0∀i,

L∑
i=1

αiyi = 0. (3.13)

This new formulation LD is called the dual form of the Primary LP . This LD has to be maximized,

that is, we need to implement the following:

max
α

[

L∑
i=1

αi −
1

2
αTHα] s.t. αi ≥ 0∀i,

L∑
i=1

αiyi = 0. (3.14)

This is a convex quadratic optimization problem, and solving this will give α and then (3.9) will

enable the calculation of the appropriate value of w.

A datapoint xs is called a support vector if

ys(xs
Tw + b) = 1. (3.15)

These support vectors are those that correspond to αi>0. For all other datapoints αi will be 0.

Substituting the expression for w from (3.9), we get the following expression:

ys(
∑
m∈S

αmymxm.xs + b) = 1 (3.16)

where S is the set of all support vectors. Simplifying this, we get an expression for b:

b = ys −
∑
m∈S

αmymxm.xs. (3.17)

It is better to take an average over all the support vectors, to find the optimal value of b:

b =
1

Ns

∑
s∈S

(ys −
∑
m∈S

αmymxm.xs). (3.18)
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Now, the optimal values for w and b that will result in the hyperplane are available.

3.4.2 Binary Classification for Non-linearly Separable Data

To find a hyperplane for non linearly separable data, constraints (3.2) and (3.3) are relaxed

slightly to allow for misclassified points by introducing a positive slack variable ξi, i=1,...,L:

xi
Tw + b ≥ +1 + ξi for yi = +1 (3.19)

xi
Tw + b ≤ −1 + ξi for yi = −1 (3.20)

ξi ≥ 0 ∀i. (3.21)

These conditions can be combined into:

yi(xi
Tw + b)− 1 + ξi ≥ 0 where ξi ≥ 0 ∀i. (3.22)

In this formulation, the data points that are on the incorrect side of the hyperplane have a penalty

that increases with the distance from it. The number of misclassifications should be minimized and

the following optimization should be performed:

min
1

2
‖w‖2 + C

L∑
i=1

ξi s.t. yi(xi
Tw + b)− 1 + ξi ≥ 0 ∀i (3.23)

where the parameter C controls the trade-off between the slack variable penalty and the size of the

margin. This optimization is reformulated into a Lagrangian as follows:

LP =
1

2
‖w‖2 + C

L∑
i=1

ξi −
L∑
i=1

αi[yi(xi
Tw + b− 1 + ξi)]−

L∑
i=1

µiξi. (3.24)

This Lagrangian has to be minimized with respect to w, b and ξi and maximized with respect to α

(where αi ≥ 0, µi ≥ 0, ∀i). Differentiating with respect to w, b and ξi and setting the derivatives

to 0 gives:
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∂LP
∂w

= 0⇒ w =

L∑
i=1

αiyixi (3.25)

∂LP
∂b

= 0⇒
L∑
i=1

αiyi = 0 (3.26)

∂LP
∂ξi

= 0⇒ C = αi + µi. (3.27)

Substituting these in (3.24), we get LD which has the same form as (3.13) above. (3.27), together

with µi ≥ 0,∀i implies 0 ≤ αi ≤ C,∀i. So we need to find:

max
α

[

L∑
i=1

αi −
1

2
αTHα] s.t. 0 ≤ αi ≤ C ∀i and

L∑
i=1

αiyi = 0. (3.28)

After the appropriate values of αi, i =1,...,L are found, w is calculated. b is calculated in the

same way as in (3.18), but the set of support vectors used to calculate b are determined by finding

the indices for which 0 <αi <C. This is how a hyperplane is found in the case of a non linearly

separable dataset. Once the hyperplane has been found, a new datapoint xu is classified by evaluating

yu = sgn(wTxu + b).

3.4.3 Kernels

Datasets which are not linearly separable may become linearly separable when mapped to

a higher dimensional space.Kernel methods map the data into higher dimensional spaces in the

hope that in these new higher dimensional spaces, the data may become easily separable or better

structured. But the mapping need not be explicitly computed because of the kernel trick. As can

be seen from (3.14), the function that needs to be maximized involves a matrix denoted H where

Hij = yiyjxi
Txj (from (3.12)). Hence the algorithm involves only the inner product between two

data vectors. Hence, even after mapping the data to higher dimensional space, we need to consider

only the inner product in that space, so there is no need of explicit computation of the mapping

itself. If φ is the mapping, then the inner product is expressed as:

k(xi,xj) = φ(xi)
T
φ(xj). (3.29)
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This function is called the kernel function. There are different kernel function available. When

k(xi,xj) = xi
Txj , it is called a linear kernel. In this thesis, linear kernel has been used.

3.4.4 Multiclass Classification

In a recognition problem with K classes, with K >2, K(K-1)/2 binary classifiers are trained.

Each classifier receives the training samples from a pair of classes and learns to distinguish between

those two classes. At prediction time, a voting scheme is applied. All K(K-1)/2 classifiers are applied

to the new sample and the class that received the highest number of ”+1” predictions gets predicted

by the overall classifier. This approach is called one-vs-one approach to multiclass classification.

This approach is used in this thesis to perform classification of a spoken word into 10 different

classes.
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Chapter 4

Results

Experiments were conducted using the methods explained in the previous chapter and recog-

nition results were collected. In this chapter, experiments are explained in detail and the results are

reported.

4.1 Experiments

4.1.1 Explanation of the Database

Clemson University Audio Visual Experiments (CUAVE) database [34] has audio and video

files containing the speech activity of 33 speakers. This database was developed in Clemson Univer-

sity. As described earlier, there are 17 males and 16 females. The speakers look straight into the

camera and say the words 0 to 9 consecutively for five times. Hence each speaker speaks 50 times.

The video files containing the individual words spoken by these speakers are cut using MATLAB

and are used as inputs. From these video inputs word vectors were collected.

4.1.2 Speaker Dependent Experiments

Speaker dependent recognition experiments were performed. This means that the training

of the system was performed using training data from a single speaker and the testing data from the

same speaker was used to perform classification of the words. This was repeated for all 33 speakers.
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4.1.3 k-Fold Validation

Cross validation is a technique used to validate a model developed for a statistical problem

like classification or regression. It is a validation technique used to assess how a model will generalize

to unknown data. Suppose we have a model with unknown parameters and a dataset to which the

model should be fit, that is, the training data. The fitting process optimizes the parameters so

that the model fits the training data as well as possible. Cross validation is a way to predict the

fit of this model to unseen data. One round of cross validation involves partitioning the dataset

into complementary subsets. One subset is used to train the system and the system is tested on

the other subset and test results are collected. Multiple rounds of this process are performed on

different partitions and the results are averaged over all rounds. The overall result is a valid statistical

percentage.

k-fold validation is a type of cross validation method in which the original dataset is parti-

tioned into k equal size subsamples. Of the k subsamples, one subsample is taken as the validation

set or testing set and the remaining k-1 subsamples are taken to be the training set. This cross

validation process is repeated k times (folds) by taking each of the k subsamples exactly once as

the testing set. The k recognition results are then averaged and the average is the final recognition

result. In this thesis, a value of 5 is taken for k. Hence 5-fold validation is performed.

There are 50 word vectors extracted from each of the speakers. According to 5-fold valida-

tion, this dataset is partitioned into 5 subsets of 10 word vectors each. 5 rounds of recognition are

performed on these subsets. In the first round, one subset of 10 word vectors is taken as the testing

set and the remaining 4 subsets containing 40 word vectors are collectively taken as the training data

and recognition result are collected. In the second round, a different subset is taken as the testing

data and the remaining subsets are taken as the training data and the recognition result is collected.

This process is repeated for 5 times and collectively 5 recognition percentages are available. These

are averaged to find the recognition percentage for a speaker. This process is performed for all 33

speakers.

4.2 Results

In this section, the recognition results are reported. Table 4.1 shows these results. The

first column of this table shows the speaker. The second column through the sixth column give the
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recognition rate for each of the five rounds in 5-fold validation. The last column gives the average

of the 5 recognition rates, and this is the final recognition rate for the corresponding speaker. The

average of the recognition rates of all 33 speakers is 81.03%.
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Speaker fold 1 fold 2 fold 3 fold 4 fold 5 Average
Speaker 1 100 90 100 80 100 94
Speaker 2 80 90 100 100 100 94
Speaker 3 70 100 70 90 60 78
Speaker 4 60 80 60 70 60 66
Speaker 5 80 90 90 80 90 86
Speaker 6 100 80 70 80 90 84
Speaker 7 70 80 70 70 60 70
Speaker 8 90 80 90 90 70 84
Speaker 9 70 80 70 90 90 80
Speaker 10 80 90 90 80 90 86
Speaker 11 80 70 80 70 90 78
Speaker 12 60 70 60 80 70 68
Speaker 13 80 80 100 90 100 90
Speaker 14 70 80 80 100 80 82
Speaker 15 80 90 90 90 80 86
Speaker 16 80 70 100 90 80 84
Speaker 17 90 50 50 70 90 70
Speaker 18 60 80 70 80 80 74
Speaker 19 60 60 80 70 70 68
Speaker 20 80 40 80 80 90 74
Speaker 21 60 70 60 70 50 62
Speaker 22 80 100 90 80 90 88
Speaker 23 100 100 100 70 90 92
Speaker 24 70 100 100 100 90 92
Speaker 25 70 90 70 90 70 78
Speaker 26 70 80 80 70 70 74
Speaker 27 70 80 80 60 90 76
Speaker 28 70 80 90 100 90 86
Speaker 29 70 90 80 90 100 86
Speaker 30 90 60 100 80 80 82
Speaker 31 100 80 90 90 90 90
Speaker 32 80 80 80 80 80 80
Speaker 33 100 90 100 80 90 92

Table 4.1: Recognition Results
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Chapter 5

Conclusions and Discussion

5.1 Answering the Research Questions

Visual Speech Recognition (VSR) is an area of research that involves collaborative efforts

among multiple disciplines including speech processing, image processing, computer vision and pat-

tern recognition. VSR has the potential to improve the accuracy of audio-only speech recognition

systems especially when the level of noise is high. It has applications in Human Computer Interaction

(HCI) such as visually recognizing passwords while logging in. VSR systems are part of Audio-Visual

Speech Recognition (AVSR) systems which combine the decisions from audio speech recognition and

visual speech recognition to give the final recognition result which results in improved speech recog-

nition accuracy. These systems have the potential to be implemented in consumer electronics devices

such as smartphones, car stereo systems, etc., and hence have commercial viability, too.

A critical part of the VSR systems is feature extraction and recognition. The specific meth-

ods used to extract features and the recognition algorithms used are major factors in determining

the final accuracy of the system. In this thesis, these questions have been studied. The specific

methods followed can be summarized as follows.

5.1.1 Fixed Length Description of Features

Mouth ROI height, mouth ROI width and amount of appearance of tongue have been

extracted from each frame of the input video. A method called Histogram of Oriented Displacements
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(HOD) has been applied to describe a sequence of these features extracted from each word using a

fixed length descriptor. These fixed length descriptors were called word vectors.

5.1.2 Recognition of Words

Support vector machine (SVM) with linear kernel has been used to recognize the word

vectors. Cross validation using 5-fold validation has been used to collect the recognition results.

5.1.3 Experimental Results

Speaker dependent recognition experiments have been performed on the CUAVE database

that contains speech videos of words 0 to 9. An average recognition rate of 81.03% was obtained

over 33 speakers.

5.2 Contributions

Feature extraction method has been the major topic of interest in this research. For the first

time in VSR research, the Histogram of Oriented Displacements (HOD) method has been used to

describe the features extracted. Given the good recognition accuracy obtained, it can be concluded

that the HOD method is suitable for VSR.

Also, the suitability of Support Vector Machine (SVM) has been studied. SVM proves to

be an effective algorithm that can be used in VSR.

5.3 Recommendations for Future Work

In this thesis, speaker dependent recognition has been performed. In the future, speaker

independent recognition using the HOD feature extraction method should be studied.

The developed VSR system should be incorporated in an AVSR system and tested for the

overall recognition accuracy. Such a study will give insights into the suitability of the developed

VSR system in AVSR.

SVM using kernels other than the linear kernel like RBF kernel, polynomial kernel or sig-

moidal kernel should be used for recognition and the corresponding recognition accuracies obtained

should be studied.
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Recognition algorithms other than SVM, such as k Nearest Neighbor Rule (kNNR) and,

artificial neural network (ANN) algorithms could be used to recognize the word vectors. kNNR

suffers from the curse of dimensionality. When the dimensionality of the feature vectors is high,

its performance becomes poor. Hence the dimensionality of the word vectors, which is 168 in this

thesis, has to be reduced when using kNNR. Such a study will give insights into the suitability of

those algorithms for VSR using the HOD feature extraction method.
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